WO2020166727A1 - Oncolytic virus using human adenovirus type 35 as base - Google Patents

Oncolytic virus using human adenovirus type 35 as base Download PDF

Info

Publication number
WO2020166727A1
WO2020166727A1 PCT/JP2020/006383 JP2020006383W WO2020166727A1 WO 2020166727 A1 WO2020166727 A1 WO 2020166727A1 JP 2020006383 W JP2020006383 W JP 2020006383W WO 2020166727 A1 WO2020166727 A1 WO 2020166727A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
gene
cancer
cell
oncolytic
Prior art date
Application number
PCT/JP2020/006383
Other languages
French (fr)
Japanese (ja)
Inventor
水口 裕之
櫻井 文教
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2020572359A priority Critical patent/JPWO2020166727A1/en
Publication of WO2020166727A1 publication Critical patent/WO2020166727A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/861Adenoviral vectors

Definitions

  • the present invention relates to an oncolytic virus based on human adenovirus type 35, and a pharmaceutical composition containing the virus.
  • Oncolytic virus is expected to be a novel anti-cancer agent because it infects and proliferates specifically in cancer cells and kills cancer cells.
  • an oncolytic virus consisting of 10 or more kinds of various viruses has been developed, and the oncolytic adenovirus (Ad) is one of the most clinically developed oncolytic viruses.
  • Ad oncolytic adenovirus
  • Ad derived from various animal species other than human has also been identified, but most of them are being developed as oncolytic Ad.
  • Is derived from human type 5 Ad In the case of the Ad vector lacking the proliferative ability (mainly used as a vaccine vector for infectious diseases), vectorization other than human type 5 Ad is in progress, but it is almost used as an oncolytic virus. Limited to human type 5 Ad.
  • Ad by reversely utilizing the fact that it is accompanied by an immune reaction, is used as a vaccine vector against emerging/re-emerging infectious diseases such as HIV (Human Immunodeficiency Virus), Ebola hemorrhagic fever, highly pathogenic influenza, or cancer cell-specific virus amplification.
  • HIV Human Immunodeficiency Virus
  • Ebola hemorrhagic fever highly pathogenic influenza
  • cancer cell-specific virus amplification By virtue of this, non-clinical and clinical trials are actively progressing as an oncolytic virus that kills cancer cells.
  • the herpesvirus IMLYGICTM (Talimogene Laherparepvec) carrying the GM-CSF gene was approved by the US FDA as a therapeutic agent for melanoma in 2015, but the Ad-based oncolytic virus is also active. Development has been advanced. Initially, the virus ONYX-015 (dl1520) deficient in the E1B-encoded 55 kDa protein was noticed so as to specifically replicate and kill cells p53-deficient (many cancer cells). However, it was not approved in the United States. By the way, in 2006, Oncorine H101, a virus preparation almost equivalent to ONYX-015, was approved as a drug in China.
  • a tumor-specific promoter that expresses the E1A (and E1B) gene essential for Ad replication to cause virus replication in a tumor-specific manner and kill cells is often used.
  • the anti-tumor effect of oncolytic Ad is not only the direct cell killing effect associated with virus replication, but also the stimulation of DAMPs (damage-associated molecular patterns) associated with cancer cell death and the induction of immune system such as anti-virus immunity. It is also considered to make a large contribution, and from the viewpoint of efficiently activating antitumor immunity, it has been attempted to incorporate various cytokines or immune-related genes that activate the immune system into oncolytic Ad. ..
  • oncolytic Ad that have been developed so far have human type 5 Ad as the basic skeleton.
  • oncolytic Ad in which a foreign peptide is inserted into the fiber region that plays an important role in cell infection, and Ad derived from other serotypes Oncolytic Ad substituted with fiber has also been developed, but the basic skeleton is derived from human type 5 Ad.
  • PsiOxus Therapeutics has a clinical study of a chimeric virus (Enadenotucirev; ColoAd1) consisting of human type 3 and type 11 Ad. Testing is in progress.
  • Ad vaccine vectors non-proliferative Ad vectors
  • human type 35 Ad belonging to subgroup B group which is different from human type 5 Ad belonging to subgroup C group, has a very low existing antibody retention rate in humans, and as an infectious receptor, all except human erythrocytes are excluded. It has the characteristic of using CD46, which is expressed in cells of E. coli, in particular, highly expressed in cancer cells, as a receptor, and was considered to be promising as a vaccine vector against infectious diseases.
  • Non-patent document 1 J. Virol., 88, 10354, 2014
  • an oncolytic virus for treating cancer by human type 35 Ad has been desired.
  • the present inventors have succeeded in developing an oncolytic virus preparation having human 35 type Ad as a basic skeleton and completed the present invention. That is, the present invention is as follows. (1) A recombinant oncolytic type 35 adenovirus in which the hTERT promoter or Survivin promoter and the E1 gene are integrated into the type 35 adenovirus genome. (2) A recombinant oncolytic type 35 adenovirus in which the hTERT promoter or Survivin promoter and the E1A gene are integrated into the type 35 adenovirus genome.
  • a pharmaceutical composition comprising the recombinant oncolytic type 35 adenovirus according to any one of (1) to (5).
  • examples of the pharmaceutical composition include those for treating cancer, and examples of the cancer include breast cancer.
  • the recombinant oncolytic type 35 adenovirus according to any one of (1) to (5) or the pharmaceutical composition according to (6) 6 is administered to a cancer patient. How to treat cancer.
  • the present inventors have started the development of an oncolytic virus preparation having human type 35 Ad as a basic skeleton and succeeded in the development (FIG. 1).
  • the modification of each viral gene suitable for the oncolytic virus revealed in the studies so far was carried out to prepare an optimal oncolytic Ad basic virus for cancer treatment.
  • (3) shDicer cassette attachment and (4) mutant E1a use can be selected as necessary and are not necessarily essential configurations.
  • a shDicer cassette that enhances the antitumor effect can be inserted (Fig. 2).
  • the gene to be inserted is not limited to the shDicer cassette, and a gene encoding a cell death induction-related protein or an immunostimulation-related protein can be inserted.
  • the shDicer cassette, a gene encoding a cell death induction-related protein, and a gene encoding an immunostimulatory-related protein may be inserted individually or in appropriate combination.
  • Examples of the gene encoding the cell death induction-related protein include, but are not limited to, a gene encoding p53, a gene encoding p38, a gene encoding SAPK, and the like.
  • Examples of the gene encoding the immunostimulation-related protein include a gene encoding PD-1 and a gene encoding LAG-3.
  • an immune checkpoint inhibitor or radiation therapy can be used in combination.
  • the Ad-derived E1B 55 kDa protein inhibits DNA repair by degrading the Mre11/Rad50/NBS1 (MRN) protein complex induced by double-stranded DNA damage in cancer cells caused by radiation It has been demonstrated to dramatically increase sensitivity (Fig. 3).
  • the present inventors have a track record of developing the 35-type Ad vector for the first time in the world (Patent No. 4237449; Gene Ther., 10, 1041, 2003), and have the best technology and knowledge on Ad modification in Japan and overseas. Have
  • an oncolytic virus having a human 35 type Ad as a basic skeleton is prepared, and a viral gene (promoter, use of mutant E1a gene, etc.) that influences viral replication and antitumor effect is modified to produce a foreign gene.
  • a viral gene promoter, use of mutant E1a gene, etc.
  • a variety of modified human type 35 Ad was examined for virus replication ability, antitumor effect, innate immunity and antitumor immune activation ability under both in vitro and in vivo conditions, and a new oncolytic alternative to human type 5 Ad To clarify the usefulness of Ad.
  • Ad oncolytic type 35 adenovirus
  • A When normal cancer cells not infected with oncolytic Ad are irradiated, a repair mechanism of DNA damage works.
  • B When normal cancer cells infected with oncolytic Ad were irradiated, Ad-derived E1B 55 kDa protein induces Mre11/Rad50 induced by double-strand DNA damage in cancer cells due to radiation. Degrading the /NBS1(MRN) protein complex inhibits DNA repair and dramatically enhances radiation sensitivity.
  • OAd5 and OAd35 were infected with a human cancer cell line with VP (vector particle)/cell shown in the figure. After incubation for 5 days, cells were stained with crystal violet reagent. It is a figure which shows the result of infecting a human cancer cell line with 300 VP/cell of oncolytic type 5 Ad (OAd5) and oncolytic type 35 Ad (OAd35). Cell viability was determined by WST-8 assay at each time point shown in the figure. The data was normalized by the data of the mock infection group. It is a figure which shows the result of infecting a normal human cell with VP/cell shown in the figure by OAd5 and OAd35. After incubation for 5 days, cells were stained with crystal violet reagent.
  • oncolytic human type 35 Ad was developed as a new oncolytic virus replacing conventional oncolytic human type 5 Ad, and its usefulness was evaluated.
  • Oncolytic human type 35 Ad has an extremely low antibody retention rate in humans as compared with conventional oncolytic human type 5 Ad, so that the influence of existing antibodies is eliminated, and it is expressed in a wide range of human cells as an infection receptor. It was shown that infection is enhanced by using CD46 whose expression is increased in cancer cells. Further, the high innate immunity-inducing ability of human type 35 Ad leads to enhancement of anti-tumor immunity in the case of oncolytic virus for the purpose of treating cancer, and is expected to be an extremely great advantage (Table 1). ..
  • a plasmid having the entire genome of human type 35 Ad was prepared, and then a system capable of producing various modified oncolytic human type 35 Ad genomes by simple recombination of the plasmid was developed.
  • This plasmid is linearized by cutting at unique restriction enzyme sites present at both ends of the viral genome, and the desired virus can be produced by transfecting any cell (for example, HEK293 cell).
  • the present inventors have revealed that knocking down Dicer enhances Ad replication (WO2015/25940; Mol. Cancer Ther., 16, 251, 2017, etc.). Therefore, in the present invention, the shDicer cassette can be added, which makes it possible to enhance the cell killing effect (FIG. 2). Further, in the present invention, it is also possible to add a mutation to a sequence that avoids activation of innate immunity of the E1a gene, which is essential for viral growth, and thereby optimizes a tumor-specific promoter (use of Survivin or hTERT promoter). , ADP (adenovirus death protein) gene retention function and the like can be imparted, and more excellent oncolytic human type 35 Ad can be obtained.
  • ADP adenovirus death protein
  • various oncolytic human type 35 Ad viruses are analyzed for viral characteristics such as virus replication ability and cytotoxic activity.
  • the virus of the present invention is expected to have an innate immune activating effect and an antitumor immunity inducing effect, and a tumor growth suppressing effect in combination with an immune checkpoint inhibitor.
  • the Ad-derived E1B 55 kDa protein inhibits DNA repair by degrading the Mre11/Rad50/NBS1 (MRN) protein complex induced by double-strand DNA damage in cancer cells caused by radiation, resulting in radiation sensitivity. It has been proved to dramatically increase (Cancer Res., 70, 9339, 2010). Therefore, in the present invention, oncolytic Ad and radiation therapy can be combined, and thereby a synergistic antitumor effect can be expected (FIG. 3).
  • Oncolytic virus is expected to be a novel anti-cancer agent because it infects and proliferates specifically in cancer cells and kills cancer cells.
  • oncolytic viruses based on 10 or more viruses have been developed, and oncolytic adenovirus (Ad) is one of the most clinically developed oncolytic viruses.
  • Ad5 is an Ad5 infection receptor, Coxsackievirus. Problems such as difficulty in infecting and adenovirus receptor (CAR)-negative cells and (ii) that many adults carry a neutralizing antibody against Ad5 have become apparent.
  • type 35 Ad (Ad35) belonging to subgroup B is characterized in that it uses CD46 expressed in all human cells except erythrocytes as an infection receptor and has a low antibody retention rate in adults. .. From this, it is expected that the Ad35-based oncolytic Ad can infect a wide range of cancer cells including CAR-negative cells and can avoid the influence of anti-Ad5 antibody.
  • E1 gene (divided into E1A gene and E1B gene), which is essential for Ad self-proliferation, is mounted downstream of a tumor-specific promoter so that tumor cell-specific growth can be achieved.
  • Design Ad As a tumor-specific promoter, a human telomerase Reverse Transcriptase (hTERT) promoter, which is highly active in many human cancer cells, is used. As the promoter, the Survivin promoter can also be used.
  • An E1 gene expression cassette designed to insert the E1A gene downstream of the promoter and to express the E1B gene from the virus original promoter is used for the type 5 and 35 type Ad genomes. It was inserted into the E1 deletion region.
  • the E1A gene and E1B gene of OAd5 are used in oncolytic Ad5 (OAd5), and the E1A gene and E1B gene of OAd35 are used in oncolytic Ad35 (OAd35), respectively.
  • a plasmid encoding the Ad genome into which the E1 gene expression cassette had been inserted was treated with a restriction enzyme to linearize it, and then each OAd was recovered by introducing the gene into a packaging cell.
  • packaging cells H1299 cells were used for OAd5, and HEK293 cells were used for OAd35. These OAds were allowed to act on various cultured cells, and the cell killing effect and Ad genome amount were measured.
  • each OAd did not show a remarkable cell killing effect on various normal human cells.
  • each OAd was allowed to act on the above cancer cell lines, and the amount of virus particles bound to the cell surface was examined. As a result, each OAd efficiently binds to CAR-positive cells while it binds to CAR-negative cells.
  • only OAd35 showed high binding ability.
  • the cell killing effect of OAd5 was remarkably attenuated by the anti-Ad5 antibody, whereas that of OAd35 was not inhibited by the anti-Ad5 serum. It did not receive and showed a high cell killing effect.
  • the OAd35 developed in the present invention showed a higher cell killing effect on human cancer cells regardless of the expression of CAR, as compared with the conventional OAd5. It also showed a high cell killing effect even in the presence of anti-Ad5 antibody. From the above, it was shown that OAd35 can overcome the problems of OAd5.
  • the present invention provides a pharmaceutical composition containing the recombinant oncolytic type 35 adenovirus.
  • the present invention also provides a method for treating cancer, which comprises administering the recombinant oncolytic type 35 adenovirus or the pharmaceutical composition to a cancer patient.
  • the type of tumor (cancer) to be treated is not limited and includes, for example, brain tumor, head and neck cancer, gastric cancer, colon cancer, lung cancer, liver cancer, prostate cancer, pancreatic cancer, esophageal cancer, bladder cancer, gallbladder cancer. , Bile duct cancer, breast cancer, uterine cancer, thyroid cancer, ovarian cancer, leukemia, lymphoma, sarcoma, mesenchymal tumor, and the like, with breast cancer being preferred.
  • the pharmaceutical composition of the present invention can be applied to the affected area as it is, or any known method, for example, injection in a tumor, vein, muscle, intraperitoneal or subcutaneous, or inhalation from nasal cavity, oral cavity or lung, It can also be introduced into a living body (target cell or organ) by oral administration, intravascular administration using a catheter or the like.
  • the recombinant oncolytic type 35 adenovirus of the present invention may be used as it is, or a known pharmaceutically acceptable carrier such as an excipient, a bulking agent, a binder, a lubricant, or a known addition.
  • Agents buffering agents, isotonicity agents, chelating agents, coloring agents, preservatives, perfumes, flavoring agents, sweetening agents, etc.
  • buffering agents can be mixed.
  • the pharmaceutical composition of the present invention includes oral administration agents such as tablets, capsules, powders, granules, pills, solutions, syrups, parenteral administration agents such as injections, external preparations, suppositories, and eye drops. It can be administered orally or parenterally depending on the form. Preferably, local injection into tumor, muscle, abdominal cavity and the like, injection into vein and the like are exemplified.
  • the dose of recombinant oncolytic type 35 adenovirus is appropriately selected according to the type of active ingredient, administration route, administration subject, age, weight, sex of patient, symptoms and other conditions.
  • the dose is preferably about 10 6 to 10 11 PFU, preferably about 10 9 to 10 11 PFU, and can be administered once a day or divided into several times. It should be noted that the recombinant oncolytic type 35 adenovirus of the present invention does not prevent the combined use with known anticancer agents, radiation and the like.
  • Experimental material Cells HEK293 cells are DULBECCO'S MODIFIED EAGLE'S MEDIUM (DMEM) (10% Fetal Bovine Serum (FBS), 100 U/mL penicillin, 1 mM L-glutamine-containing), A549 cells, HepGNH cells, F24C cells, T24 cells, F24 cells, and T cells.
  • DMEM Fetal Bovine Serum
  • ⁇ 5 cells contained DMEM (containing 10% FBS, 100 ⁇ g/mL streptomycin, and 100 U/mL penicillin)
  • H1299 and MCF-7 cells contained RPMI1640 MEDIUM (containing 10% FBS, 100 ⁇ g/mL streptomycin, and 100 U/mL penicillin). It was used for cultivation in the presence of 37° C., saturated vapor pressure and 5% CO 2 . All the FBSs used in this example were used after being inactivated at 56° C. for 30 minutes.
  • Oncolytic Ad based on the plasmid Ad5 pAdHM3-hmE1 which is a plasmid for producing OAd5 was prepared as follows.
  • the region containing BGH poly (A) sequence fragment and hTERT promoter was amplified by PCR using pHMTERT-L (plasmid with luciferase gene inserted downstream of hTERT promoter) as template DNA. By doing so, a BGH poly(A) sequence fragment and an hTERT promoter fragment were obtained.
  • pHM15 shuttle plasmid; Hum Gene Ther. 2003 Sep1; 14(13): 1265-77.
  • pHM15-BGH fragment treated with BamHI/PstI and the hTERT promoter fragment that could be amplified by PCR were ligated to obtain pHM15-hTERT carrying the BGH poly(A) sequence downstream of the hTERT promoter.
  • pHM15-hTERT-EEB a fragment obtained by treating pHM15-hTERT with EcoRI/BamHI and a synthetic oligo DNA encoding the EcoRI-EcoRV-BamHI recognition sequence were ligated to obtain pHM15-hTERT-EEB.
  • the E1 gene was amplified by the PCR method using pTG3602 having the full length of the Ad genome as a template DNA to obtain an E1 gene fragment.
  • p3xFLAG-CMV-10 (a cloning plasmid having a multi-cloning site; reference URL: https://www. sigmaaldrich. com/catalog/product/sigma/e7658?
  • pHM15-hTERT-E1- ⁇ XbaI was obtained using the Quick Change Lighting Mutagenesis kit and the primers.
  • a fragment obtained by treating p3xFLAG-CMV-E1 with SacI was self-ligated to obtain p3xFLAG-CMV-E1 ⁇ ss.
  • p3xFLAG-CMV-E1 ⁇ ss ⁇ XbaI was obtained by subjecting p3xFLAG-CMV-E1 ⁇ ss to XbaI treatment, smoothing with Klenow treatment, and self-ligation.
  • pHM15-hTERT-E1- ⁇ XbaI and p3xFLAG-CMV-E1 ⁇ ss ⁇ XbaI were ligated with BamHI/SacI-treated fragments to obtain pHM15-hTERT-E1-2 ⁇ XbaI.
  • pE1-BS (FASMAC) and pHM15-hTERT-E1-2 ⁇ XbaI which are plasmids purchased by artificially synthesizing a sequence in which the LTCHE motif of Ad E1 gene was replaced with the VTSHD motif, were treated with SacI/BspEI, respectively. Ligation was performed to obtain pHM15-hTERT-mE1-2 ⁇ XbaI.
  • pAdHM3-hmE1 was obtained by ligating the fragments of pAdHM3 and pHM5-hmE1, which are plasmids carrying the Ad5 genome lacking the E1 gene, with I-CeuI/PI-SceI.
  • the plasmid AdAd2-based oncolytic Ad for OAd35 production was constructed as follows. First, pAd35-mE1-1, which is a plasmid in which the 5′ITR of Ad35 and the middle of the E1 gene (Ad35 2804 MfeI) are installed downstream of the survivin promoter, and the middle of the E1 gene of Ad35 to the middle of the pIX gene (Ad35 2804).
  • the plasmid pAd35-mE1-2 which has a sequence of about 4603 bp), was artificially synthesized (outsourced to Genewiz).
  • Fragmet obtained by treating these plasmids with MfeI/SpeI was ligated to obtain pAd35-surv-mE1.
  • a fragment of pAdMS2, which is a plasmid carrying the Ad35 genome lacking the E1 gene, treated with SwaI and a fragment of pAd35-surv-mE1 treated with SalI were transformed into E. coli.
  • E. coli BJ5183 (recBC and sbcBC) was transformed at the same time to induce homologous recombination to obtain pAdMS2-surv-mE1 in which the cassette expressing the Ad1 E1 gene under the control of survivin promoter was mounted in the E1-deficient region. ..
  • hTERT promoter fragment 2 obtained by amplifying the gene by the PCR method and pAdMS2-surv-mE1 treated with PmeI are subjected to In-Fusion reaction.
  • pAdMS2-hTERT-mE1 was prepared.
  • Oncolytic Ad By linearizing the plasmid DNAs obtained by treating pAdHM3-hmE1 and pAdMS2-hTERT-mE1 with PacI and SbfI, respectively, and transfecting them into HEK293 cells using Lipofectamine 2000 (Invitrogen), OAd-tANB (OAd5) and OAd35, respectively. -TANB(OAd35) was obtained. Then, OAd-tANB was subjected to a third-fourth infection with H1299 cells and OAd35 with HEK293 cells in a large-scale preparation.
  • OAd Oncolytic Ad
  • Ad was purified by density gradient centrifugation of cesium chloride, and dialyzed against a solution consisting of 10 mM Tris (pH 7.5), 1 mM MgCl 2 , and 10% glycerol.
  • OAd35-sANB was obtained by transfecting pAdMS2-surv-mE1 with SbfI and then transfecting HEK293 cells.
  • the shDicer expression cassette was inserted downstream of the E1B expression cassette of pAdMS2-hTERT-mE1 and pAdMS2-surv-mE1 to obtain pAdMS2-hTERT-mE1-shDicer and pAdMS2-surv-mE1-shDicer.
  • the cells were suspended again in 100 ⁇ L of PBS containing 2% FBS, 1 ⁇ L of PE-labeled Goat Anti-Mouse Ig was added, and the reaction was carried out on ice for 30 minutes in the dark. After washing with 4 mL of PBS containing 2% FBS, centrifugation was carried out at 1500 rpm for 5 minutes, the supernatant was removed by suction, suspended in 500 ⁇ L of PBS containing 2% FBS, and the expression was analyzed using a flow cytometer (MACS Quant Analyzer; Miltenyi Biotec). Data were analyzed by FCS multicolor data analysis software (Flojo).
  • Ad Genome Copy Number After collecting each cell, Total DNA was extracted using DNeasy Blood & Tissue Kit (QIAGEN), and Ad genome copy number was quantitatively determined using THUDERBIRD SYBR qPCR Mix (TOYOBO) and the following primers. PCR was performed. For the measurement, StepOnePlus real-time PCR systems (Applied Biosystems) were used.
  • Crystal Violet Assay Oncolytic Ad was allowed to act on each cell at 100 to 1000 VP/cell, and after 5 days, live cells were stained with crystal violet.
  • Oncolytic Ad was allowed to act on each cell at 300 VP/cell, and cell viability was measured using Cell Counting Kit-8 (Dojindo Laboratories).
  • Anti-Ad5 immunity was induced in C57BL/6 mice by tail vein administration of E1-deficient Ad5 vector at 1 ⁇ 10 10 VP/mouse. Blood was collected by orbital blood sampling 19 days after Ad5 vector administration, and allowed to stand at 37° C. for 1 hour for complete blood coagulation, and then left at 4° C. overnight. The next day, centrifugation (3,000 rpm, 5 minutes) was performed, and the supernatant was collected as anti-Ad5 serum.
  • Oncolytic activity of each OAd in the presence of anti-Ad5 serum Antiserum collected from a mouse immunized with E1-deficient Ad5 vector and each oncolytic Ad were diluted and mixed in a medium containing no FBS.
  • the mouse antiserum was serially diluted every two-fold dilution so that the final dilution ratio was 1/400 to 1/1600, and the oncolytic Ad was adjusted to 300 VP/cell (total 50 mL).
  • the prepared solution was incubated for 30 minutes and then allowed to act on the cells. After 1.5 hours, an equal amount of a medium containing 20% FBS was added, and after 5 days, cell viability was measured using Cell Counting Kit-8 (Dojindo Laboratories).
  • Intratumoral administration to Mouse xenograph model H1299 cells (3 ⁇ 10 6 cells per mouse) containing 50% Matrigel (Corning, Corning, NY) at the age of 5 weeks in female BALB/c nu/nu mice (Japan SLC, Hamamatsu, Japan) ) was subcutaneously injected into the right flank. After tumors grew to approximately 5-6 mm in diameter, mice were randomly assigned to three groups. PBS, OAd5, and OAd35 were injected intratumorally into each group at a dose of 2.4 ⁇ 10 9 VP/mouse and reinjected 3 days later. Tumor size was measured every 3 days. The tumor volume was calculated by the following formula. Tumor volume (mm 3 ) 1/2 ⁇ a ⁇ b 2 (a indicates the longest dimension (major axis), b indicates the shortest dimension (minor axis)).
  • Oncolytic Ad35 Oncolytic Ad35
  • E1A gene and E1B gene which is essential for Ad self-proliferation
  • the oncolytic Ad was designed to grow in.
  • a tumor-specific promoter a human Telomerase Reverse Transcriptase (hTERT) promoter (SEQ ID NO: 11), which has high activity in many human cancer cells, or a Survivin promoter was used.
  • the E1A gene (569 to 1441 bp (SEQ ID NO: 6) was used as a cancer cell-specific promoter with reference to the gene sequence information of Ad35 (SEQ ID NO: 5).
  • An E1 gene expression cassette was constructed so that it was inserted downstream of a certain hTERT promoter or the Survivin promoter, and the Ad35 E1B gene was expressed from the virus original promoter (FIG. 4).
  • the E1A gene a mutant E1A gene (SEQ ID NO: 7) was used instead of the wild-type E1A gene (SEQ ID NO: 6).
  • the mutation is a mutation in the nucleotide sequence that avoids the activation of innate immunity of the E1A gene, which is essential for virus growth, and is specifically the 343rd T(th) in the nucleotide sequence of SEQ ID NO:6. Thymine) is replaced with G (glycine), the 350th G is replaced with C (cytosine), and the 357th A (adenine) is replaced with T (in short, in the base sequence of SEQ ID NO: 6).
  • the 343rd to 357th bases "TTGCACTGCTATGAA" are replaced with "GTGCACTCCTATGAT”.
  • the mutation can be appropriately performed using a well-known gene recombination technique.
  • E1B gene promoter region and E1B gene region of Ad35 1442 to 3400 bp (SEQ ID NO: 8) were inserted downstream of the E1A expression cassette with reference to the gene sequence information of Ad35 (SEQ ID NO: 5).
  • the promoter region of the E1B gene is presumed to be 1442-1610 bp (SEQ ID NO: 9), and the E1B gene region is 1611-3400 bp (SEQ ID NO: 10).
  • E1 gene expression cassette "wild type E1A gene + E1B gene promoter region + E1B gene” (SEQ ID NO: 12) and "mutant E1A gene + E1B gene promoter region + E1B gene” (SEQ ID NO: 13) were used.
  • a donor plasmid was prepared in which about 450 bp (1 to 455 bp) upstream of the E1 deletion region of Ad35 and about 1200 bp (3401 to 4634 bp) downstream were added as homology arms to both sides of the E1 gene expression cassette.
  • the donor plasmid and the plasmid encoding the Ad35 genome were linearized by restriction enzyme treatment, and E. E. coli BJ5183 (recBC and sbcBC) was transformed at the same time to induce homologous recombination to insert the E1 gene expression cassette into the E1 deletion region of the Ad35 genome (FIG. 4).
  • E. E. coli BJ5183 recBC and sbcBC
  • OAd5 oncolytic type 5 Ad
  • an E1 gene expression cassette designed to insert the E1A gene of Ad5 downstream of the hTERT promoter and to express the E1B gene of Ad5 from the virus original promoter was prepared. It was inserted into the E1 deletion region of the type 5 Ad genome.
  • a plasmid encoding the Ad genome into which the E1 gene expression cassette had been inserted was treated with a restriction enzyme to linearize it, and then the gene was introduced into HEK293 cells, which are packaging cells, to recover OAd5 and OAd35. After that, H1299 cells for OAd5 and HEK293 cells for OAd35 were quaternized to prepare a large amount. Since HEK293 cells have the E1 gene of Ad5 in their genome, amplification of OAd5 in HEK293 cells causes homologous recombination between the E1 gene expression cassette in the OAd5 genome and the E1 gene region in the cells. Since the wild-type Ad5 may be contaminated, H1299 cells not having the E1 gene were used for amplification of OAd5.
  • each OAd was prepared in a large amount, it was purified by cesium chloride density gradient centrifugation.
  • VP Virus Particle
  • the physical titer of OAd35 was about 10 times lower than that of OAd5.
  • the ratio of physical and biological titers of OAd35 was 1:8.5, which was comparable to that of OAd5 (Table 3).
  • Ad5 and Ad35 which are the basis of OAd, prepared this time have CAR and CD46 as infectious receptors, respectively. Therefore, each of 5 types of human cancer cell lines (HepG2 cells; human liver cancer-derived, A549 cells; human lung cancer-derived, H1299 cells; human lung cancer-derived, T24 cells; human bladder cancer-derived, MCF-7 cells; human breast cancer-derived) The expression level of the receptor was measured by flow cytometry (Fig. 5).
  • CAR and CD46 were both highly expressed in HepG2 cells, A549 cells, and H1299 cells.
  • MCF-7 cells CD46 was highly expressed, but CAR was only slightly expressed.
  • CAR was not expressed at all in T24 cells, but CD46 was highly expressed. From these results, hereinafter, HepG2 cells, A549 cells, and H1299 cells were used as CAR-positive cells, and T24 cells and MCF-7 cells were used as CAR-negative cells.
  • each OAd was allowed to act on various human cancer cell lines, and after 5 days of virus action, crystal was added. Violet staining was performed to measure cell viability (Fig. 6A). With crystal violet staining, only live cells are stained blue-violet.
  • CAR-positive HepG2 cells showed high cell killing effect in both OAd acting groups, and almost all cells were killed at all virus doses. Further, although CAR was sufficiently expressed in A549 cells, no sufficient cell killing effect was observed in the OAd5 acting group, and a high cell killing effect was shown in the OAd35 acting group. Although H1299 cells expressed CAR and CD46 similarly to HepG2 cells and A549 cells, the cell killing effect was higher in the OAd5 acting group than in the OAd35 acting group.
  • CAR-negative T24 cells did not show a cell-killing effect at all viral doses in the OAd5 action group, whereas almost all cells in the OAd35 action group died at 300 VP/cell.
  • MCF-7 cells almost all cells were dead at 300 VP/cell in the OAd5 acting group and 10 VP/cell in the OAd35 acting group. This is presumably because OAD5 could be infected because CAR expression was slightly observed in MCF-7 cells.
  • Ad35 had the highest killing effect on MCF-7, which is a breast cancer cell.
  • the virus of the present invention is considered to be particularly useful for treating breast cancer.
  • each OAd was allowed to act for 1.5 hours at 4° C., and the genome of OAd bound to the cell surface was examined. The amount was measured by the quantitative PCR method (Fig. 7). As a result, both OAd5 and OAd35 showed similar Ad genome amounts to CAR-positive cells, suggesting that both OAds can efficiently bind to CAR-positive cells. On the other hand, CAR-negative cells showed a higher Ad genome amount in the OAd35 acting group than in OAd5. From these results, it was suggested that although OAd5 is difficult to bind to CAR-negative cells, OAd35 has high binding ability regardless of CAR expression in target cells.
  • the anti-Ad5 serum was obtained by injecting the E1-deficient Ad5 vector into the C57BL/6 mouse by tail vein administration at 1 ⁇ 10 10 VP/mouse to induce anti-Ad5 immunity.
  • cell death was suppressed in the OAd5 acting group, whereas it was not suppressed in the OAd35 acting group (FIG. 9A).
  • cell death by OAd35 was not suppressed even in the presence of anti-Ad5 serum (Fig. 9B). From the above results, it was suggested that OAd35 can infect target cells even in the presence of anti-Ad5 antibody.
  • OAd was intratumorally administered to xenograft model in which a tumor was subcutaneously formed in mice with H1299 cells (Fig. 10). After intratumoral administration of OAd5 and OAd35, tumor growth was significantly suppressed.
  • the in vitro oncolytic activity against H1299 cells was higher in OAd5 than in OAd35 (Fig. 6A), but there was no significant difference between OAd5 and OAd35 in the tumor growth inhibitory effect in vivo. From these results, it was shown that OAd35 has a sufficient antitumor effect in vivo.
  • the E1 gene expression cassette is an important factor that controls the growth of Ad and various designs have been made.
  • the hTERT promoter was used.
  • the hTERT promoter is reported to exhibit high activity in 80% or more of cancer cells, and is considered to be useful because it can be applied to many cancer cells.
  • the plasmid encoding the OAd35 genome prepared in this Example has restriction enzyme sites inserted on both sides of the hTERT promoter region of the E1 gene expression cassette, it does not lose tumor specificity and is superior in activity to hTERT. When a tumor-specific promoter is developed or when a cancer cell of a specific tissue is targeted, the promoter can be easily exchanged.
  • OAd35 Since there is a report that the expression of CAR decreases as the malignancy of cancer increases, OAd35 has high malignancy and can efficiently infect even cancer cells whose CAR expression is decreased or disappeared. Be expected. Further, although A549 cells expressed 90% or more of both CAR and CD46, the cell killing effect by OAd5 was low, and the high cell killing effect by OAd35 was observed.
  • OAd5 showed a higher cell-killing effect on H1299 cells, which are other human lung cancer cell lines, and therefore OAd5 showed a lower cell-killing effect on A549 cells. It is considered that the cause is not a specific phenomenon, but a difference in the life cycle of Ad5 and Ad35 (infection pathway, uncoating, nuclear translocation, transcription translation, virus particle formation, etc.).
  • OAd35 The binding of OAd35 to the surface of various human cancer cells was examined. CAR-positive cells showed similar binding ability to both OAds, whereas CAR-negative cells exhibited OAD35 having a significantly higher binding ability. (Fig. 7). The infection and proliferation ability of OAd5 and OAd35 in various human cancer cells was examined, and both of the OAds showed high infection and proliferation ability after 24 to 72 hours in various human cancer cells (FIG. 8). Interestingly, genomic amplification of OAd5 was also found in CAR-negative cells, but Ad5 is not only a CAR-dependent infection pathway, but also ⁇ V integrin-dependent infection on the cell surface and blood coagulation factor X (FX)-dependent. It is considered that OAd5 is infected via these pathways because it is possible to infect the cells even in the general infection.
  • FX blood coagulation factor X
  • the intratumoral administration protocol is most used in cancer treatment using OAd.
  • intratumoral administration when anti-Ad5 antibody is present, oncolytic Ad leaked into the blood is immediately trapped by the antibody, and it is difficult to exert a therapeutic effect on metastatic lesions.
  • Ad35 has a low antibody retention rate and does not accumulate in a specific tissue. Since it was shown in this example that OAd35 was not affected by anti-Ad5 antibody, not only the antitumor effect of intratumoral administration of OAd35 but also the metastasis after intravenous administration were observed during in vivo and clinical administration. Can also be expected to have therapeutic effects on cancer
  • human type 35 Ad in the present invention is extremely useful in the case of an oncolytic virus for the purpose of treating cancer, on the contrary that it can lead to enhancement of antitumor immunity.

Abstract

The present invention provides a recombinant oncolytic adenovirus type 35 in which an hTERT promotor or a Survivin promotor and the E1 gene are incorporated into the genome of adenovirus type 35.

Description

ヒト35型アデノウイルスを基盤とした腫瘍溶解性ウイルスOncolytic virus based on human adenovirus type 35
 本発明は、ヒト35型アデノウイルスを基盤とした腫瘍溶解性ウイルス、及び当該ウイルスを含む医薬組成物に関する。 The present invention relates to an oncolytic virus based on human adenovirus type 35, and a pharmaceutical composition containing the virus.
 腫瘍溶解性ウイルスは、がん細胞特異的に感染増殖し、がん細胞を死滅させることから、新規抗癌剤として期待されている。これまで10種以上の様々なウイルスからなる腫瘍溶解性ウイルスが開発されているが、腫瘍溶解性アデノウイルス(Ad)は最も臨床開発が進んでいる腫瘍溶解性ウイルスの一つである。一方で、Adはヒト由来のものだけでも67種類の血清型が存在し、ヒト以外の様々な動物種由来のAdも同定されているが、腫瘍溶解性Adとして開発が進んでいるのはほとんどがヒト5型Ad由来のものである。増殖能を欠損させたAdベクター(主に感染症に対するワクチンベクターと使用されている)の場合には、ヒト5型Ad以外のベクター化も進んでいるが、腫瘍溶解性ウイルスとしての利用はほぼヒト5型Adに限られている。 Oncolytic virus is expected to be a novel anti-cancer agent because it infects and proliferates specifically in cancer cells and kills cancer cells. Up to now, an oncolytic virus consisting of 10 or more kinds of various viruses has been developed, and the oncolytic adenovirus (Ad) is one of the most clinically developed oncolytic viruses. On the other hand, there are 67 serotypes of Ad alone derived from humans, and Ad derived from various animal species other than human has also been identified, but most of them are being developed as oncolytic Ad. Is derived from human type 5 Ad. In the case of the Ad vector lacking the proliferative ability (mainly used as a vaccine vector for infectious diseases), vectorization other than human type 5 Ad is in progress, but it is almost used as an oncolytic virus. Limited to human type 5 Ad.
 遺伝子治療の進展につれて、各種遺伝子治療用ベクターの改良と共に、その特性・機能がより明確になってきた。そして最近では、疾病や投与法、投与部位(標的細胞)に応じて各ベクターの使い分けが進んできた。Adは、現在では免疫反応を伴うことを逆に利用して、HIV(Human Immunodeficiency Virus)やエボラ出血熱、高病原性インフルエンザなどの新興・再興感染症に対するワクチンベクターとして、あるいは癌細胞特異的にウイルス増幅することで癌細胞を死滅させる腫瘍溶解性ウイルスとして盛んに非臨床・臨床試験が進んでいる。 With the progress of gene therapy, the characteristics and functions of various gene therapy vectors have become clearer as well as improved. In recent years, the proper use of each vector has advanced depending on the disease, administration method, and administration site (target cell). Ad, by reversely utilizing the fact that it is accompanied by an immune reaction, is used as a vaccine vector against emerging/re-emerging infectious diseases such as HIV (Human Immunodeficiency Virus), Ebola hemorrhagic fever, highly pathogenic influenza, or cancer cell-specific virus amplification. By virtue of this, non-clinical and clinical trials are actively progressing as an oncolytic virus that kills cancer cells.
 腫瘍溶解性ウイルスについては、GM−CSF遺伝子を搭載したヘルペスウイルスIMLYGICTM(Talimogene Laherparepvec)が2015年にメラノーマに対する治療薬として米国FDAに承認されたが、Adを基盤とした腫瘍溶解性ウイルスも、活発な開発が進められてきた。当初は、p53を欠損した細胞(多くの癌細胞)で特異的に複製し細胞を殺傷するように、E1Bによってコードされる55kDaのタンパク質を欠損させたウイルスONYX−015(dl1520)が注目されたが、米国において承認には至らなかった。ちなみに、中国では2006年にONYX−015とほぼ同等のウイルス製剤であるOncorine H101が医薬品として承認された。現在は、腫瘍特異的なプロモーターでAdの複製に必須のE1A(とE1B)遺伝子を発現させることで、腫瘍特異的にウイルス複製を生じさせ、細胞を死滅させるアプローチが多く用いられている。腫瘍溶解性Adによる抗腫瘍効果は、ウイルス複製に伴う直接的な殺細胞効果だけでなく、癌細胞死滅に伴うDAMPs(damage−associated molecular patterns)による刺激や抗ウイルス免疫等の免疫系の惹起による寄与も大きいと考えられており、効率良く抗腫瘍免疫を活性化させるという観点から、免疫系を活性化する様々なサイトカインや免疫関連遺伝子などを腫瘍溶解性Adに搭載させることも試みられている。 Regarding the oncolytic virus, the herpesvirus IMLYGICTM (Talimogene Laherparepvec) carrying the GM-CSF gene was approved by the US FDA as a therapeutic agent for melanoma in 2015, but the Ad-based oncolytic virus is also active. Development has been advanced. Initially, the virus ONYX-015 (dl1520) deficient in the E1B-encoded 55 kDa protein was noticed so as to specifically replicate and kill cells p53-deficient (many cancer cells). However, it was not approved in the United States. By the way, in 2006, Oncorine H101, a virus preparation almost equivalent to ONYX-015, was approved as a drug in China. At present, a tumor-specific promoter that expresses the E1A (and E1B) gene essential for Ad replication to cause virus replication in a tumor-specific manner and kill cells is often used. The anti-tumor effect of oncolytic Ad is not only the direct cell killing effect associated with virus replication, but also the stimulation of DAMPs (damage-associated molecular patterns) associated with cancer cell death and the induction of immune system such as anti-virus immunity. It is also considered to make a large contribution, and from the viewpoint of efficiently activating antitumor immunity, it has been attempted to incorporate various cytokines or immune-related genes that activate the immune system into oncolytic Ad. ..
 しかしながら、これまで開発された腫瘍溶解性Adは、ヒト5型Adを基本骨格としたものがほとんどである。感染域を変更し、より癌細胞への感染能を向上させるために、細胞への感染に重要な役割を果たすファイバー領域に外来ペプチドを挿入した腫瘍溶解性Adや、他の血清型のAd由来ファイバーに置換した腫瘍溶解性Adも開発されているが、基本骨格はヒト5型Ad由来である。基本構造をヒト5型Ad以外のもので腫瘍溶解性Adを作製した例は極めて限られており、例えばPsiOxus Therapeutics社は、ヒト3型と11型Adからなるキメラウイルス(Enadenotucirev;ColoAd1)の臨床試験を進めている。 However, most of the oncolytic Ad that have been developed so far have human type 5 Ad as the basic skeleton. In order to change the infected area and improve the ability to infect cancer cells, oncolytic Ad in which a foreign peptide is inserted into the fiber region that plays an important role in cell infection, and Ad derived from other serotypes Oncolytic Ad substituted with fiber has also been developed, but the basic skeleton is derived from human type 5 Ad. There are very few examples of producing oncolytic Ad with a basic structure other than human type 5 Ad. For example, PsiOxus Therapeutics has a clinical study of a chimeric virus (Enadenotucirev; ColoAd1) consisting of human type 3 and type 11 Ad. Testing is in progress.
 一方で、特に感染症に対するAdワクチンベクター(増殖不能Adベクター)の場合には、ヒト5型Ad以外の他の種や血清型由来のAdベクターを用いた研究も活発に行われている。その中でも、サブグループC群に属するヒト5型Adとは異なったサブグループB群に属するヒト35型Adは、ヒトにおける既存抗体保持率が極めて低く、感染受容体としてヒトにおいては赤血球を除く全ての細胞で発現し、特に癌細胞で高発現しているCD46を受容体とするといった特徴を有しており、感染症に対するワクチンベクターとしても有望と考えられた。しかしながら、ヒト35型Adベクターは、従来のヒト5型Adベクターに比べ自然免疫誘導能が高いことが明らかになり(非特許文献1:J.Virol.,88,10354,2014)、このために抗原遺伝子の発現期間が短期化し、ワクチン効果が減弱することが明らかとなった。
 先行技術文献
 非特許文献1:J.Virol.,88,10354,2014
On the other hand, particularly in the case of Ad vaccine vectors (non-proliferative Ad vectors) against infectious diseases, studies using Ad vectors derived from species other than human type 5 Ad and serotypes have been actively conducted. Among them, human type 35 Ad belonging to subgroup B group, which is different from human type 5 Ad belonging to subgroup C group, has a very low existing antibody retention rate in humans, and as an infectious receptor, all except human erythrocytes are excluded. It has the characteristic of using CD46, which is expressed in cells of E. coli, in particular, highly expressed in cancer cells, as a receptor, and was considered to be promising as a vaccine vector against infectious diseases. However, it has been revealed that the human type 35 Ad vector has higher innate immunity-inducing ability than the conventional human type 5 Ad vector (Non-patent document 1: J. Virol., 88, 10354, 2014), and for this reason. It was revealed that the expression period of the antigen gene was shortened and the vaccine effect was diminished.
Prior Art Document Non-Patent Document 1: J. Virol. , 88, 10354, 2014
 本発明においては、ヒト35型Adによる、癌治療を目的とした腫瘍溶解性ウイルスが望まれていた。 In the present invention, an oncolytic virus for treating cancer by human type 35 Ad has been desired.
 そこで本発明者らは、ヒト35型Adを基本骨格とした腫瘍溶解性ウイルス製剤の開発に成功し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
 (1)hTERTプロモーター又はSurvivinプロモーター、及びE1遺伝子が35型アデノウイルスゲノムに組み込まれた、組換え腫瘍溶解性35型アデノウイルス。
 (2)hTERTプロモーター又はSurvivinプロモーター、及びE1A遺伝子が35型アデノウイルスゲノムに組み込まれた、組換え腫瘍溶解性35型アデノウイルス。
 (3)hTERTプロモーター又はSurvivinプロモーター、E1A遺伝子、E1Bプロモーター及びE1B遺伝子が35型アデノウイルスゲノムに組み込まれた、組換え腫瘍溶解性35型アデノウイルス。
 (4)E1A遺伝子が変異型のものである(2)又は(3)に記載の組換え腫瘍溶解性35型アデノウイルス。
 (5)細胞死誘導関連タンパク質又は免疫賦活関連タンパク質をコードする遺伝子をさらに含む、(1)~(4)のいずれか1項に記載の組換え腫瘍溶解性35型アデノウイルス。
 (6)(1)~(5)のいずれか1項に記載の組換え腫瘍溶解性35型アデノウイルスを含む医薬組成物。ここで、当該医薬組成物としては、例えば癌治療用のものが挙げられ、癌としては、例えば乳癌が挙げられる。
 (7)(1)~(5)のいずれか1項に記載の組換え腫瘍溶解性35型アデノウイルス、又は(6)6に記載の医薬組成物を癌患者に投与することを特徴とする癌の治療方法。
 (8)癌患者が乳癌患者である(7)に記載の治療方法。
 発明の効果
Therefore, the present inventors have succeeded in developing an oncolytic virus preparation having human 35 type Ad as a basic skeleton and completed the present invention.
That is, the present invention is as follows.
(1) A recombinant oncolytic type 35 adenovirus in which the hTERT promoter or Survivin promoter and the E1 gene are integrated into the type 35 adenovirus genome.
(2) A recombinant oncolytic type 35 adenovirus in which the hTERT promoter or Survivin promoter and the E1A gene are integrated into the type 35 adenovirus genome.
(3) A recombinant oncolytic type 35 adenovirus in which the hTERT promoter or Survivin promoter, E1A gene, E1B promoter and E1B gene are integrated into the type 35 adenovirus genome.
(4) The recombinant oncolytic type 35 adenovirus according to (2) or (3), wherein the E1A gene is a mutant type.
(5) The recombinant oncolytic type 35 adenovirus according to any one of (1) to (4), which further comprises a gene encoding a cell death induction-related protein or an immunostimulation-related protein.
(6) A pharmaceutical composition comprising the recombinant oncolytic type 35 adenovirus according to any one of (1) to (5). Here, examples of the pharmaceutical composition include those for treating cancer, and examples of the cancer include breast cancer.
(7) The recombinant oncolytic type 35 adenovirus according to any one of (1) to (5) or the pharmaceutical composition according to (6) 6 is administered to a cancer patient. How to treat cancer.
(8) The treatment method according to (7), wherein the cancer patient is a breast cancer patient.
Effect of the invention
 ヒト35型Adによる高い自然免疫誘導能は、癌治療を目的とした腫瘍溶解性ウイルスの場合には逆に抗腫瘍免疫の増強につながり、極めて大きな長所になると期待される。 The high innate immunity-inducing ability of human type 35 Ad, on the contrary, leads to the enhancement of anti-tumor immunity in the case of an oncolytic virus for the purpose of treating cancer, and is expected to be a great advantage.
 本発明者らは、ヒト35型Adを基本骨格とした腫瘍溶解性ウイルス製剤の開発に着手し、その開発に成功した(図1)。本発明では、これまでの研究で明らかとなった腫瘍溶解性ウイルスに適した各ウイルス遺伝子の改変を加え、癌治療のために最適な腫瘍溶解性Adの基本ウイルスの作製を行った。なお、図1において、▲3▼shDicerカセットの付与、及び▲4▼mutant E1aの利用は、必要に応じて選択することができるものであり、必ずしも必須の構成ではない。本発明では、例えば抗腫瘍効果を増強するshDicerカセットを挿入することもできる(図2)。但し、挿入する遺伝子はshDicerカセットに限定されるものではなく、細胞死誘導関連タンパク質や免疫賦活関連タンパク質をコードする遺伝子を挿入することもできる。shDicerカセット、細胞死誘導関連タンパク質をコードする遺伝子、及び免疫賦活関連タンパク質をコードする遺伝子は、それぞれ単独で挿入してもよく、適宜組み合わせて挿入してもよい。
 ここで細胞死誘導関連タンパク質をコードする遺伝子としては、例えばp53をコードする遺伝子、p38をコードする遺伝子、SAPKをコードする遺伝子などが挙げられるが、これらに限定されるものではない。
 また、免疫賦活関連タンパク質をコードする遺伝子としては、例えばPD−1をコードする遺伝子、LAG−3をコードする遺伝子などが挙げられる。
The present inventors have started the development of an oncolytic virus preparation having human type 35 Ad as a basic skeleton and succeeded in the development (FIG. 1). In the present invention, the modification of each viral gene suitable for the oncolytic virus revealed in the studies so far was carried out to prepare an optimal oncolytic Ad basic virus for cancer treatment. In FIG. 1, (3) shDicer cassette attachment and (4) mutant E1a use can be selected as necessary and are not necessarily essential configurations. In the present invention, for example, a shDicer cassette that enhances the antitumor effect can be inserted (Fig. 2). However, the gene to be inserted is not limited to the shDicer cassette, and a gene encoding a cell death induction-related protein or an immunostimulation-related protein can be inserted. The shDicer cassette, a gene encoding a cell death induction-related protein, and a gene encoding an immunostimulatory-related protein may be inserted individually or in appropriate combination.
Examples of the gene encoding the cell death induction-related protein include, but are not limited to, a gene encoding p53, a gene encoding p38, a gene encoding SAPK, and the like.
Examples of the gene encoding the immunostimulation-related protein include a gene encoding PD-1 and a gene encoding LAG-3.
 さらに、本発明の一態様において、免疫チェックポイント阻害剤や放射線治療を併用することができる。これまでに、Ad由来のE1B 55kDaタンパク質が、放射線によるがん細胞の二重鎖DNA障害により誘導されるMre11/Rad50/NBS1(MRN)タンパク質複合体を分解することでDNA修復を阻害し、放射線感受性を飛躍的に増強することが証明されている(図3)。また、本発明者らは世界に先駆けて35型Adベクターを開発した実績を持ち(特許第4237449号;Gene Ther.,10,1041,2003)、国内外随一のAd改変に関する技術と知識を有している。 Further, in one embodiment of the present invention, an immune checkpoint inhibitor or radiation therapy can be used in combination. So far, the Ad-derived E1B 55 kDa protein inhibits DNA repair by degrading the Mre11/Rad50/NBS1 (MRN) protein complex induced by double-stranded DNA damage in cancer cells caused by radiation It has been demonstrated to dramatically increase sensitivity (Fig. 3). In addition, the present inventors have a track record of developing the 35-type Ad vector for the first time in the world (Patent No. 4237449; Gene Ther., 10, 1041, 2003), and have the best technology and knowledge on Ad modification in Japan and overseas. Have
 本発明では、ヒト35型Adを基本骨格とした腫瘍溶解性ウイルスを作製し、さらにウイルス複製や抗腫瘍効果に影響を与えるウイルス遺伝子(プロモーター、変異E1a遺伝子の利用等)を改変し、外来遺伝子を挿入することで、最適化する。種々の改変ヒト35型Adについて、ウイルス複製能や抗腫瘍効果、自然免疫および抗腫瘍免疫活性化能についてin vitro、in vivoの両条件化で検討し、ヒト5型Adに代わる新しい腫瘍溶解性Adの有用性を明らかにする。 In the present invention, an oncolytic virus having a human 35 type Ad as a basic skeleton is prepared, and a viral gene (promoter, use of mutant E1a gene, etc.) that influences viral replication and antitumor effect is modified to produce a foreign gene. Optimize by inserting. A variety of modified human type 35 Ad was examined for virus replication ability, antitumor effect, innate immunity and antitumor immune activation ability under both in vitro and in vivo conditions, and a new oncolytic alternative to human type 5 Ad To clarify the usefulness of Ad.
本発明の腫瘍溶解性35型アデノウイルス(Ad)の一例の概要図である。It is a schematic diagram of an example of the oncolytic type 35 adenovirus (Ad) of the present invention. Dicer発現のノックダウンによるAd複製能向上のメカニズムを示す図である。It is a figure which shows the mechanism of Ad replication ability improvement by knockdown of Dicer expression. 腫瘍溶解性Adと放射線との相乗効果のメカニズムを示す図である。A:腫瘍溶解性Adが感染していない通常のがん細胞に放射線を照射した場合、DNA損傷の修復機構が働く。B:腫瘍溶解性Adが感染している通常のがん細胞に放射線を照射した場合は、Ad由来のE1B 55kDaタンパク質が、放射線によるがん細胞の二重鎖DNA障害により誘導されるMre11/Rad50/NBS1(MRN)タンパク質複合体を分解することでDNA修復を阻害し、放射線感受性を飛躍的に増強する。It is a figure which shows the mechanism of the synergistic effect of oncolytic Ad and radiation. A: When normal cancer cells not infected with oncolytic Ad are irradiated, a repair mechanism of DNA damage works. B: When normal cancer cells infected with oncolytic Ad were irradiated, Ad-derived E1B 55 kDa protein induces Mre11/Rad50 induced by double-strand DNA damage in cancer cells due to radiation. Degrading the /NBS1(MRN) protein complex inhibits DNA repair and dramatically enhances radiation sensitivity. 腫瘍溶解性35型Ad(OAd35)構築のためのストラテジーを示す図である。It is a figure which shows the strategy for oncolytic type 35 Ad (OAd35) construction. ヒト癌細胞におけるCAR及びCD46発現のフローサイトメトリー分析の結果を示す図である。細胞は抗CAR(RmcB)抗体または抗CD46(M177)抗体とともにインキュベートした。細胞を洗浄後、細胞をPE結合ヤギ抗マウスIg二次抗体とともにインキュベートした後、FCM分析を行った。灰色のヒストグラムはアイソタイプコントロール抗体を、赤いヒストグラムは抗CAR(RmcB)抗体または抗CD46(M177)抗体を示す。It is a figure which shows the result of the flow cytometric analysis of CAR and CD46 expression in a human cancer cell. Cells were incubated with anti-CAR (RmcB) antibody or anti-CD46 (M177) antibody. After washing the cells, the cells were incubated with a PE-conjugated goat anti-mouse Ig secondary antibody prior to FCM analysis. Gray histograms show isotype control antibodies and red histograms show anti-CAR (RmcB) or anti-CD46 (M177) antibodies. OAd5及びOAd35の癌細胞溶解活性を示す図である。OAd5及びOAd35を図中に示すVP(vector particle)/細胞でヒト癌細胞株に感染させた。5日間のインキュベーション後、クリスタルバイオレット試薬で細胞を染色した。It is a figure which shows the cancer cell lytic activity of OAd5 and OAd35. OAd5 and OAd35 were infected with a human cancer cell line with VP (vector particle)/cell shown in the figure. After incubation for 5 days, cells were stained with crystal violet reagent. 腫瘍溶解性5型Ad(OAd5)及び腫瘍溶解性35型Ad(OAd35)を300VP/細胞でヒト癌細胞株に感染させた結果を示す図である。図中に示す各時点においてWST−8アッセイにより細胞生存率を決定した。データは模擬感染グループのデータにより正規化した。It is a figure which shows the result of infecting a human cancer cell line with 300 VP/cell of oncolytic type 5 Ad (OAd5) and oncolytic type 35 Ad (OAd35). Cell viability was determined by WST-8 assay at each time point shown in the figure. The data was normalized by the data of the mock infection group. OAd5及びOAd35を図中に示すVP/細胞で正常なヒト細胞に感染させた結果を示す図である。5日間インキュベーションした後、クリスタルバイオレット試薬で細胞を染色した。It is a figure which shows the result of infecting a normal human cell with VP/cell shown in the figure by OAd5 and OAd35. After incubation for 5 days, cells were stained with crystal violet reagent. OAd5及びOAd35の癌細胞溶解活性を示す図である。It is a figure which shows the cancer cell lytic activity of OAd5 and OAd35. OAd5及びOAd35の癌細胞溶解活性を示す図である。It is a figure which shows the cancer cell lytic activity of OAd5 and OAd35. 癌細胞表面へのOAdの接着の結果を示す図である。OAd5及びOAd35を100VP/細胞でヒト癌細胞株に感染させ、4℃でインキュベートした。1.5時間インキュベーションした後、リアルタイムPCR分析により、OAdのウイルスゲノムのコピー数を決定した。It is a figure which shows the result of adhesion of OAd to the cancer cell surface. Human cancer cell lines were infected with OAd5 and OAd35 at 100 VP/cell and incubated at 4°C. After a 1.5 hour incubation, the copy number of the viral genome of OAd was determined by real-time PCR analysis. 腫瘍溶解性Ad(OAd)感染後の癌細胞中のAdゲノムコピー数を示す図である。OAd5及びOAd35を100VP/細胞でヒト癌細胞株に感染させた。図中に示す各時点で、リアルタイムPCR分析によりOAdのウイルスゲノムのコピー数を決定した。It is a figure which shows Ad genome copy number in the cancer cell after oncolytic Ad(OAd) infection. Human cancer cell lines were infected with OAd5 and OAd35 at 100 VP/cell. At each time point shown in the figure, the copy number of the viral genome of OAd was determined by real-time PCR analysis. 抗Ad5血清存在下におけるOAdの癌細胞溶解活性を示す図である。OAdをマウス抗Ad5血清存在下でHepG2細胞(A)及びT24細胞(B)に感染させた。5日間インキュベーションした後、WST−8アッセイにより細胞生存率を決定した。データは模擬感染グループのデータによって正規化した。It is a figure which shows the cancer cell lytic activity of OAd in the presence of anti-Ad5 serum. HepG2 cells (A) and T24 cells (B) were infected with OAd in the presence of mouse anti-Ad5 serum. After incubation for 5 days, cell viability was determined by WST-8 assay. Data were normalized by data from mock infection group. OAd35の腫瘍内投与後の腫瘍体積の測定結果を示す図である。OAdを2.4x10VP/マウスの用量で腫瘍内に注射した。矢印はウイルス注入後の日数(0日目と3日目)を示す。腫瘍体積は、平均腫瘍体積±S.E。として表される。p<0.05(vs.PBS)。(n=5)It is a figure which shows the measurement result of the tumor volume after intratumor administration of OAd35. OAd was injected intratumorally at a dose of 2.4×10 9 VP/mouse. Arrows indicate the days after virus injection (day 0 and day 3). Tumor volume is the mean tumor volume ± S.M. E. Expressed as * P<0.05 (vs. PBS). (N=5)
 以下、本発明を詳細に説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。なお、本明細書は、本願優先権主張の基礎となる米国仮出願第62/804,334号明細書(2019年2月12日出願)の全体を包含する。また、本明細書において引用された全ての刊行物、例えば先行技術文献、及び公開公報、特許公報その他の特許文献は、参照として本明細書に組み込まれる。 The present invention will be described in detail below. The scope of the present invention is not limited to these descriptions, and other than the following examples, the present invention can be appropriately modified and implemented within a range not impairing the gist of the present invention. The present specification includes the entire US provisional application No. 62/804,334 (filed on February 12, 2019), which is the basis for claiming priority of the present application. Further, all the publications cited in the present specification, for example, prior art documents, and publications, patent publications and other patent documents are incorporated herein by reference.
 本発明では、従来の腫瘍溶解性ヒト5型Adに代わる新しい腫瘍溶解性ウイルスとして、腫瘍溶解性ヒト35型Adを開発し、およびその有用性評価を行った。腫瘍溶解性ヒト35型Adは、従来の腫瘍溶解性ヒト5型Adと比べ、ヒトにおける抗体保持率が極めて低いことから既存抗体による影響の排除、感染受容体として広範なヒト細胞で発現し特にがん細胞で発現亢進しているCD46を利用することによる感染増強等が示された。また、ヒト35型Adによる高い自然免疫誘導能は、癌治療を目的とした腫瘍溶解性ウイルスの場合には逆に抗腫瘍免疫の増強につながり、極めて大きな長所になると期待される(表1)。
Figure JPOXMLDOC01-appb-T000001
In the present invention, oncolytic human type 35 Ad was developed as a new oncolytic virus replacing conventional oncolytic human type 5 Ad, and its usefulness was evaluated. Oncolytic human type 35 Ad has an extremely low antibody retention rate in humans as compared with conventional oncolytic human type 5 Ad, so that the influence of existing antibodies is eliminated, and it is expressed in a wide range of human cells as an infection receptor. It was shown that infection is enhanced by using CD46 whose expression is increased in cancer cells. Further, the high innate immunity-inducing ability of human type 35 Ad leads to enhancement of anti-tumor immunity in the case of oncolytic virus for the purpose of treating cancer, and is expected to be an extremely great advantage (Table 1). ..
Figure JPOXMLDOC01-appb-T000001
 本発明においては、まずヒト35型Adの全ゲノムを有したプラスミドを作製し、プラスミドの簡便な組換えで種々の改変腫瘍溶解性ヒト35型Adゲノムが作製できるシステムを開発した。このプラスミドは、ウイルスゲノム両末端に存在するユニークな制限酵素部位で切断することで線状化し、任意の細胞(例えばHEK293細胞)にトランスフェクションすると目的のウイルスを作製できる。 In the present invention, first, a plasmid having the entire genome of human type 35 Ad was prepared, and then a system capable of producing various modified oncolytic human type 35 Ad genomes by simple recombination of the plasmid was developed. This plasmid is linearized by cutting at unique restriction enzyme sites present at both ends of the viral genome, and the desired virus can be produced by transfecting any cell (for example, HEK293 cell).
 さらに、本発明者らは、これまでにDicerをノックダウンすることでAd複製が亢進されることを明らかにしている(WO2015/25940号;Mol.Cancer Ther.,16,251,2017等)。そこで、本発明においてはshDicerカセットを付与することができ、これにより殺細胞効果の増強を図ることが可能となる(図2)。また本発明においては、ウイルス増殖に必須のE1a遺伝子の自然免疫の活性化を回避する配列に変異を付与することもでき、これにより、腫瘍特異的プロモーターの最適化(SurvivinやhTERTプロモーターの利用)、ADP(adenovirus death protein)遺伝子の保持等の機能を付与し、より優れた腫瘍溶解性ヒト35型Adを得ることができる。 Furthermore, the present inventors have revealed that knocking down Dicer enhances Ad replication (WO2015/25940; Mol. Cancer Ther., 16, 251, 2017, etc.). Therefore, in the present invention, the shDicer cassette can be added, which makes it possible to enhance the cell killing effect (FIG. 2). Further, in the present invention, it is also possible to add a mutation to a sequence that avoids activation of innate immunity of the E1a gene, which is essential for viral growth, and thereby optimizes a tumor-specific promoter (use of Survivin or hTERT promoter). , ADP (adenovirus death protein) gene retention function and the like can be imparted, and more excellent oncolytic human type 35 Ad can be obtained.
 また、本発明においては、各種腫瘍溶解性ヒト35型Adのウイルス複製能や細胞障害活性等のウイルス特性を解析する。また、本発明のウイルスは、自然免疫活性化効果及び抗腫瘍免疫誘導効果や、免疫チェックポイント阻害剤との併用による腫瘍の増殖抑制効果などが期待される。
 一方、Ad由来のE1B 55kDaタンパク質は、放射線によるがん細胞の二重鎖DNA障害により誘導されるMre11/Rad50/NBS1(MRN)タンパク質複合体を分解することでDNA修復を阻害し、放射線感受性を飛躍的に増強することが証明されている(Cancer Res.,70,9339,2010)。そこで本発明においては、腫瘍溶解性Adと放射線療法とを組み合わせることができ、これにより、相乗的な抗腫瘍効果が期待できる(図3)。
Further, in the present invention, various oncolytic human type 35 Ad viruses are analyzed for viral characteristics such as virus replication ability and cytotoxic activity. Further, the virus of the present invention is expected to have an innate immune activating effect and an antitumor immunity inducing effect, and a tumor growth suppressing effect in combination with an immune checkpoint inhibitor.
On the other hand, the Ad-derived E1B 55 kDa protein inhibits DNA repair by degrading the Mre11/Rad50/NBS1 (MRN) protein complex induced by double-strand DNA damage in cancer cells caused by radiation, resulting in radiation sensitivity. It has been proved to dramatically increase (Cancer Res., 70, 9339, 2010). Therefore, in the present invention, oncolytic Ad and radiation therapy can be combined, and thereby a synergistic antitumor effect can be expected (FIG. 3).
 腫瘍溶解性ウイルスは、癌細胞特異的に感染増殖し、癌細胞を死滅させることから、新規抗癌剤として期待されている。これまで10種以上のウイルスを基盤とした腫瘍溶解性ウイルスが開発されているが、腫瘍溶解性アデノウイルス(Ad)は、最も臨床開発が進んでいる腫瘍溶解性ウイルスの一つである。これまで開発されてきた腫瘍溶解性Adは、サブグループC群に属する5型Ad(Ad5)を基盤としたものがほとんどであるが、近年、(i)Ad5は、Ad5感染受容体であるCoxsackievirus and adenovirus receptor(CAR)陰性細胞に対して感染が困難なことや、(ii)多くの成人が、Ad5に対する中和抗体を保持していることなどの問題が明らかとなってきた。一方で、サブグループB群に属する35型Ad(Ad35)は、赤血球を除く全てのヒト細胞に発現するCD46を感染受容体としていることや、成人における抗体保持率が低いことが特徴として挙げられる。このことから、Ad35を基盤とした腫瘍溶解性Adは、CAR陰性細胞を含む幅広い癌細胞に感染可能であるとともに、抗Ad5抗体の影響を回避できることが期待される。 Oncolytic virus is expected to be a novel anti-cancer agent because it infects and proliferates specifically in cancer cells and kills cancer cells. Up to now, oncolytic viruses based on 10 or more viruses have been developed, and oncolytic adenovirus (Ad) is one of the most clinically developed oncolytic viruses. Most of the oncolytic Ad that have been developed so far are based on type 5 Ad (Ad5) belonging to the subgroup C group, but in recent years, (i) Ad5 is an Ad5 infection receptor, Coxsackievirus. Problems such as difficulty in infecting and adenovirus receptor (CAR)-negative cells and (ii) that many adults carry a neutralizing antibody against Ad5 have become apparent. On the other hand, type 35 Ad (Ad35) belonging to subgroup B is characterized in that it uses CD46 expressed in all human cells except erythrocytes as an infection receptor and has a low antibody retention rate in adults. .. From this, it is expected that the Ad35-based oncolytic Ad can infect a wide range of cancer cells including CAR-negative cells and can avoid the influence of anti-Ad5 antibody.
 本発明の一態様では、Adの自己増殖に必須であるE1遺伝子(E1A遺伝子とE1B遺伝子に分かれる)を腫瘍特異的プロモーター下流に搭載することで、癌細胞特異的に増殖するように腫瘍溶解性Adを設計する。腫瘍特異的プロモーターとしては多くのヒト癌細胞において活性が高いhuman Telomerase Reverse Transcriptase(hTERT)プロモーターなどが用いられる。またプロモーターとしては、Survivinプロモーターを用いることもできる
 プロモーター下流にE1A遺伝子を挿入するとともに、ウイルス本来のプロモーターよりE1B遺伝子を発現するように設計したE1遺伝子発現カセットを、5型ならびに35型AdゲノムのE1欠損領域に挿入した。腫瘍溶解性Ad5(OAd5)においてはOAd5のE1A遺伝子及びE1B遺伝子を、腫瘍溶解性Ad35(OAd35)においてはOAd35のE1A遺伝子及びE1B遺伝子をそれぞれ使用している。E1遺伝子発現カセットを挿入したAdゲノムをコードしたプラスミドを制限酵素処理して線状化した後、パッケージング細胞に遺伝子導入することで各OAdを回収した。パッケージング細胞としては、OAd5に関してはH1299細胞、OAd35に関してはHEK293細胞を用いた。これらのOAdを種々の培養細胞に作用させ、殺細胞効果やAdゲノム量の測定を行った。
In one aspect of the present invention, E1 gene (divided into E1A gene and E1B gene), which is essential for Ad self-proliferation, is mounted downstream of a tumor-specific promoter so that tumor cell-specific growth can be achieved. Design Ad. As a tumor-specific promoter, a human telomerase Reverse Transcriptase (hTERT) promoter, which is highly active in many human cancer cells, is used. As the promoter, the Survivin promoter can also be used. An E1 gene expression cassette designed to insert the E1A gene downstream of the promoter and to express the E1B gene from the virus original promoter is used for the type 5 and 35 type Ad genomes. It was inserted into the E1 deletion region. The E1A gene and E1B gene of OAd5 are used in oncolytic Ad5 (OAd5), and the E1A gene and E1B gene of OAd35 are used in oncolytic Ad35 (OAd35), respectively. A plasmid encoding the Ad genome into which the E1 gene expression cassette had been inserted was treated with a restriction enzyme to linearize it, and then each OAd was recovered by introducing the gene into a packaging cell. As packaging cells, H1299 cells were used for OAd5, and HEK293 cells were used for OAd35. These OAds were allowed to act on various cultured cells, and the cell killing effect and Ad genome amount were measured.
 作製した各OAdの癌細胞に対する殺細胞効果を検討するため、CAR陽性ヒト癌細胞(HepG2細胞、A549細胞、H1299細胞)、およびCAR陰性ヒト癌細胞(T24細胞、MCF−7細胞)に、作製した腫瘍溶解性Ad5(OAd5)ならびに腫瘍溶解性Ad35(OAd35)を作用させ、ウイルス作用5日後の細胞生存率を評価した。その結果、両OAdともにCAR陽性細胞に対しては高い殺細胞効果を示した。一方、CAR陰性細胞に対しては、OAd5が全てのウイルス用量で有意な殺細胞効果を示さなかったのに対し、OAd35は、T24細胞では300VP/cell以上で、MCF−7細胞では10VP/cell以上でほぼ全ての細胞を死滅させた。 In order to examine the cell-killing effect of each OAd produced on cancer cells, production was performed on CAR-positive human cancer cells (HepG2 cells, A549 cells, H1299 cells) and CAR-negative human cancer cells (T24 cells, MCF-7 cells). The oncolytic Ad5 (OAd5) and the oncolytic Ad35 (OAd35) were allowed to act, and the cell viability 5 days after the viral action was evaluated. As a result, both OAds showed a high cell killing effect on CAR-positive cells. On the other hand, while OAd5 did not show a significant cell killing effect on CAR-negative cells at all virus doses, OAd35 showed 300 VP/cell or more in T24 cells and 10 VP/cell in MCF-7 cells. Almost all cells were killed by the above.
 また、各OAdとも、各種ヒト正常細胞に対しては顕著な殺細胞効果を示さなかった。次に、各OAdを上記の癌細胞株に作用させ、ウイルス粒子の細胞表面への結合量を検討したところ、各OAdともにCAR陽性細胞に対しては効率よく結合する一方で、CAR陰性細胞に対してはOAd35のみが高い結合能を示した。さらに、抗Ad5血清と各OAdを30分間インキュベートした後、各種癌細胞に作用させたところ、OAd5は、抗Ad5抗体により殺細胞効果が著しく減弱したのに対し、OAd35では抗Ad5血清による阻害は受けず、高い殺細胞効果を示した。 Also, each OAd did not show a remarkable cell killing effect on various normal human cells. Next, each OAd was allowed to act on the above cancer cell lines, and the amount of virus particles bound to the cell surface was examined. As a result, each OAd efficiently binds to CAR-positive cells while it binds to CAR-negative cells. On the other hand, only OAd35 showed high binding ability. Furthermore, when each anti-Ad5 serum was incubated with each OAd for 30 minutes and then allowed to act on various cancer cells, the cell killing effect of OAd5 was remarkably attenuated by the anti-Ad5 antibody, whereas that of OAd35 was not inhibited by the anti-Ad5 serum. It did not receive and showed a high cell killing effect.
 本発明において開発したOAd35は、従来型のOAd5と比べ、ヒト癌細胞に対しCARの発現に関わらず高い殺細胞効果を示した。また、抗Ad5抗体存在下においても高い殺細胞効果を示した。以上のことから、OAd35は、OAd5が持つ問題点を克服可能であることが示された。 The OAd35 developed in the present invention showed a higher cell killing effect on human cancer cells regardless of the expression of CAR, as compared with the conventional OAd5. It also showed a high cell killing effect even in the presence of anti-Ad5 antibody. From the above, it was shown that OAd35 can overcome the problems of OAd5.
<治療方法及び医薬組成物>
 本発明は、前記組換え腫瘍溶解性35型アデノウイルスを含む医薬組成物を提供する。また本発明は、前記組換え腫瘍溶解性35型アデノウイルス、又は前記医薬組成物を癌患者に投与することを特徴とする癌の治療方法を提供する。
 治療の対象となる腫瘍(癌)の種類は、限定されるものではなく、例えば、脳腫瘍、頭頸部癌、胃癌、大腸癌、肺癌、肝癌、前立腺癌、膵癌、食道癌、膀胱癌、胆嚢癌、胆管癌、乳癌、子宮癌、甲状腺癌、卵巣癌、白血病、リンパ腫、肉腫、間葉系腫瘍等が挙げられ、乳癌が好ましい。
<Treatment method and pharmaceutical composition>
The present invention provides a pharmaceutical composition containing the recombinant oncolytic type 35 adenovirus. The present invention also provides a method for treating cancer, which comprises administering the recombinant oncolytic type 35 adenovirus or the pharmaceutical composition to a cancer patient.
The type of tumor (cancer) to be treated is not limited and includes, for example, brain tumor, head and neck cancer, gastric cancer, colon cancer, lung cancer, liver cancer, prostate cancer, pancreatic cancer, esophageal cancer, bladder cancer, gallbladder cancer. , Bile duct cancer, breast cancer, uterine cancer, thyroid cancer, ovarian cancer, leukemia, lymphoma, sarcoma, mesenchymal tumor, and the like, with breast cancer being preferred.
 本発明の医薬組成物は、そのまま患部に適用することもできるし、あらゆる公知の方法、例えば、腫瘍内、静脈、筋肉、腹腔内又は皮下等の注射、あるいは鼻腔、口腔又は肺からの吸入、経口投与、カテーテルなどを用いた血管内投与等により生体(対象となる細胞や臓器)に導入することもできる。 The pharmaceutical composition of the present invention can be applied to the affected area as it is, or any known method, for example, injection in a tumor, vein, muscle, intraperitoneal or subcutaneous, or inhalation from nasal cavity, oral cavity or lung, It can also be introduced into a living body (target cell or organ) by oral administration, intravascular administration using a catheter or the like.
 また、本発明の組換え腫瘍溶解性35型アデノウイルスは、そのまま用いてもよく、あるいは賦形剤、増量剤、結合剤、滑沢剤等公知の薬学的に許容される担体、公知の添加剤(緩衝剤、等張化剤、キレート剤、着色剤、保存剤、香料、風味剤、甘味剤等が含まれる。)などと混合することができる。 Further, the recombinant oncolytic type 35 adenovirus of the present invention may be used as it is, or a known pharmaceutically acceptable carrier such as an excipient, a bulking agent, a binder, a lubricant, or a known addition. Agents (buffering agents, isotonicity agents, chelating agents, coloring agents, preservatives, perfumes, flavoring agents, sweetening agents, etc.) can be mixed.
 本発明の医薬組成物は、錠剤、カプセル剤、散剤、顆粒剤、丸剤、液剤、シロップ剤等の経口投与剤、注射剤、外用剤、坐剤、点眼剤等の非経口投与剤などの形態に応じて、経口投与又は非経口投与することができる。好ましくは、腫瘍内、筋肉、腹腔等への局部注射、静脈への注射等が例示される。 The pharmaceutical composition of the present invention includes oral administration agents such as tablets, capsules, powders, granules, pills, solutions, syrups, parenteral administration agents such as injections, external preparations, suppositories, and eye drops. It can be administered orally or parenterally depending on the form. Preferably, local injection into tumor, muscle, abdominal cavity and the like, injection into vein and the like are exemplified.
 組換え腫瘍溶解性35型アデノウイルスの投与量は、有効成分の種類、投与経路、投与対象、患者の年齢、体重、性別、症状その他の条件により適宜選択されるが、一日投与量としては、10~1011PFU程度、好ましくは10~1011PFU程度とするのがよく、1日1回投与することもでき、数回に分けて投与することもできる。
なお、本発明の組換え腫瘍溶解性35型アデノウイルスは、公知の抗癌剤や放射線などとの併用を妨げるものではない。
The dose of recombinant oncolytic type 35 adenovirus is appropriately selected according to the type of active ingredient, administration route, administration subject, age, weight, sex of patient, symptoms and other conditions. The dose is preferably about 10 6 to 10 11 PFU, preferably about 10 9 to 10 11 PFU, and can be administered once a day or divided into several times.
It should be noted that the recombinant oncolytic type 35 adenovirus of the present invention does not prevent the combined use with known anticancer agents, radiation and the like.
 以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
1.実験材料
細胞
 HEK293細胞はDULBECCO’S MODIFIED EAGLE’S MEDIUM(DMEM)(10% Fetal Bovine Serum(FBS)、100U/mLペニシリン、1mM L−glutamine含有)、A549細胞、HepG2細胞、T24細胞、NHLF細胞、MRC−5細胞はDMEM(10% FBS、100μg/mLストレプトマイシン、および100U/mLペニシリン含有)、H1299及びMCF−7細胞はRPMI1640 MEDIUM(10% FBS、100μg/mLストレプトマイシン、および100U/mLペニシリン含有)を用いて、37℃、飽和蒸気圧、5%CO存在下で培養した。なお、本実施例において使用したFBSは、すべて56℃、30分間の非働化処理を行った後に使用した。
1. Experimental material
Cells HEK293 cells are DULBECCO'S MODIFIED EAGLE'S MEDIUM (DMEM) (10% Fetal Bovine Serum (FBS), 100 U/mL penicillin, 1 mM L-glutamine-containing), A549 cells, HepGNH cells, F24C cells, T24 cells, F24 cells, and T cells. −5 cells contained DMEM (containing 10% FBS, 100 μg/mL streptomycin, and 100 U/mL penicillin), and H1299 and MCF-7 cells contained RPMI1640 MEDIUM (containing 10% FBS, 100 μg/mL streptomycin, and 100 U/mL penicillin). It was used for cultivation in the presence of 37° C., saturated vapor pressure and 5% CO 2 . All the FBSs used in this example were used after being inactivated at 56° C. for 30 minutes.
プラスミド
 Ad5を基盤とした腫瘍溶解性Ad、OAd5作製用プラスミドであるpAdHM3−hmE1は以下のように作製した。
Oncolytic Ad based on the plasmid Ad5, pAdHM3-hmE1 which is a plasmid for producing OAd5 was prepared as follows.
 まず初めに、BGH poly(A)配列フラグメントとhTERT promoter(配列番号11)を含む領域を、pHMTERT−L(hTERT promoterの下流にルシフェラーゼ遺伝子が挿入されたプラスミド)を鋳型DNAとしてPCR法によりそれぞれ増幅することで、BGH poly(A)配列フラグメントとhTERT promoterフラグメントを得た。次に、pHM15(シャトルプラスミド;Hum Gene Ther.2003 Sep1;14(13):1265−77.)をEcoRI/ApaI処理したフラグメントと上記のBGH poly(A)配列フラグメントをライゲーションし、pHM15−BGHを得た。次に、pHM15−BGHをBamHI/PstI処理したフラグメントと、PCRにより増幅し得たhTERT promoterフラグメントをライゲーションし、hTERT promoter下流にBGH poly(A)配列を搭載したpHM15−hTERTを得た。 First, the region containing BGH poly (A) sequence fragment and hTERT promoter (SEQ ID NO: 11) was amplified by PCR using pHMTERT-L (plasmid with luciferase gene inserted downstream of hTERT promoter) as template DNA. By doing so, a BGH poly(A) sequence fragment and an hTERT promoter fragment were obtained. Next, pHM15 (shuttle plasmid; Hum Gene Ther. 2003 Sep1; 14(13): 1265-77.) was ligated with the EcoRI/ApaI-treated fragment and the BGH poly(A) sequence fragment described above to obtain pHM15-BGH. Obtained. Next, the pHM15-BGH fragment treated with BamHI/PstI and the hTERT promoter fragment that could be amplified by PCR were ligated to obtain pHM15-hTERT carrying the BGH poly(A) sequence downstream of the hTERT promoter.
 次に、pHM15−hTERTをEcoRI/BamHI処理したフラグメントと、EcoRI−EcoRV−BamHI認識配列をコードした合成オリゴDNAをライゲーションし、pHM15−hTERT−EEBを得た。次に、Adゲノムの全長を持つpTG3602を鋳型DNAとして、PCR法によりE1遺伝子を増幅してE1遺伝子フラグメントを得た。次に、p3xFLAG−CMV−10(マルチクローニングサイトを有するクローニング用のプラスミド;参照URL:
https://www.sigmaaldrich.com/catalog/product/sigma/e7658?lang=ja&region=JP)をEcoRV処理したフラグメントと、E1遺伝子フラグメントをライゲーションし、p3xFLAG−CMV−E1を得た。次に、pHM15−hTERT−EEBとp3xFLAG−CMV−E1をそれぞれEcoRI/BamHI処理したフラグメントをライゲーションし、hTERT promoter下流にE1遺伝子を搭載したプラスミド、pHM15−hTERT−E1を得た。
Next, a fragment obtained by treating pHM15-hTERT with EcoRI/BamHI and a synthetic oligo DNA encoding the EcoRI-EcoRV-BamHI recognition sequence were ligated to obtain pHM15-hTERT-EEB. Next, the E1 gene was amplified by the PCR method using pTG3602 having the full length of the Ad genome as a template DNA to obtain an E1 gene fragment. Next, p3xFLAG-CMV-10 (a cloning plasmid having a multi-cloning site; reference URL:
https://www. sigmaaldrich. com/catalog/product/sigma/e7658? lig=ja&region=JP) was ligated to the EcoRV-treated fragment and the E1 gene fragment to obtain p3xFLAG-CMV-E1. Next, the fragments obtained by treating each of pHM15-hTERT-EEB and p3xFLAG-CMV-E1 with EcoRI/BamHI were ligated to obtain pHM15-hTERT-E1 plasmid having the E1 gene downstream of the hTERT promoter.
 pHM15−hTERT−E1上のXbaIサイトを欠失させるため、Quick Change Lightning Mutagenesis kitとプライマーを用いて、pHM15−hTERT−E1−ΔXbaIを得た。また、p3xFLAG−CMV−E1をSacI処理したフラグメントをセルフライゲーションし、p3xFLAG−CMV−E1Δssを得た。そして、p3xFLAG−CMV−E1ΔssをXbaI処理した後、Klenow処理で平滑化、セルフライゲーションすることで、p3xFLAG−CMV−E1ΔssΔXbaIを得た。次に、pHM15−hTERT−E1−ΔXbaIとp3xFLAG−CMV−E1ΔssΔXbaIをそれぞれBamHI/SacI処理したフラグメントをライゲーションし、pHM15−hTERT−E1−2ΔXbaIを得た。次に、AdのE1遺伝子のLTCHEモチーフをVTSHDモチーフに置換した配列を人工合成して購入したプラスミドであるpE1−BS(FASMAC)とpHM15−hTERT−E1−2ΔXbaIをそれぞれSacI/BspEI処理したフラグメントをライゲーションし、pHM15−hTERT−mE1−2ΔXbaIを得た。 In order to delete the XbaI site on pHM15-hTERT-E1, pHM15-hTERT-E1-ΔXbaI was obtained using the Quick Change Lighting Mutagenesis kit and the primers. In addition, a fragment obtained by treating p3xFLAG-CMV-E1 with SacI was self-ligated to obtain p3xFLAG-CMV-E1Δss. Then, p3xFLAG-CMV-E1ΔssΔXbaI was obtained by subjecting p3xFLAG-CMV-E1Δss to XbaI treatment, smoothing with Klenow treatment, and self-ligation. Next, pHM15-hTERT-E1-ΔXbaI and p3xFLAG-CMV-E1ΔssΔXbaI were ligated with BamHI/SacI-treated fragments to obtain pHM15-hTERT-E1-2ΔXbaI. Next, pE1-BS (FASMAC) and pHM15-hTERT-E1-2ΔXbaI, which are plasmids purchased by artificially synthesizing a sequence in which the LTCHE motif of Ad E1 gene was replaced with the VTSHD motif, were treated with SacI/BspEI, respectively. Ligation was performed to obtain pHM15-hTERT-mE1-2ΔXbaI.
 そして、pHM15−hTERT−mE1−2ΔXbaIをSpeI処理したフラグメントと、pHM3(シャトルプラスミド;Hum Gene Ther.1998Nov 20;9(17):2577−83)をXbaI処理したフラグメントをライゲーションし、pHM3−hmE1を得た。次に、pHM3−hmE1とpHM5をそれぞれI−CeuI/PI−SceI処理したフラグメントをライゲーションし、hTERT promoter制御下でAd5のE1遺伝子を発現するカセットを搭載したプラスミドであるpHM5−hmE1を得た。最後に、E1遺伝子を欠損したAd5のゲノムを搭載したプラスミドであるpAdHM3とpHM5−hmE1をそれぞれI−CeuI/PI−SceI処理したフラグメントをライゲーションすることで、pAdHM3−hmE1を得た。 Then, the fragment treated with SpeI of pHM15-hTERT-mE1-2ΔXbaI and the fragment treated with XbaI of pHM3 (shuttle plasmid; Hum Gene Ther. 1998 Nov 20;9(17):2577-83) were ligated to obtain pHM3-hmE1. Obtained. Next, the fragments obtained by treating pHM3-hmE1 and pHM5 with I-CeuI/PI-SceI respectively were ligated to obtain pHM5-hmE1 which is a plasmid carrying a cassette expressing the Ad1 E1 gene under the control of hTERT promoter. Finally, pAdHM3-hmE1 was obtained by ligating the fragments of pAdHM3 and pHM5-hmE1, which are plasmids carrying the Ad5 genome lacking the E1 gene, with I-CeuI/PI-SceI.
 Ad35を基盤とした腫瘍溶解性AdであるOAd35作製用プラスミドであるpAdMS2−hTERT−mE1は以下のように作製した。まず、Ad35の5’ITR、survivin promoter下流にE1遺伝子中の途中(Ad35 2804 MfeI)までを搭載したプラスミドであるpAd35−mE1−1と、Ad35のE1遺伝子途中からpIX遺伝子の途中まで(Ad35 2804~4603bp)の配列を搭載したプラスミドであるpAd35−mE1−2を人工合成した(Genewiz社に外注)。 The plasmid AdAd2-based oncolytic Ad for OAd35 production, pAdMS2-hTERT-mE1, was constructed as follows. First, pAd35-mE1-1, which is a plasmid in which the 5′ITR of Ad35 and the middle of the E1 gene (Ad35 2804 MfeI) are installed downstream of the survivin promoter, and the middle of the E1 gene of Ad35 to the middle of the pIX gene (Ad35 2804). The plasmid pAd35-mE1-2, which has a sequence of about 4603 bp), was artificially synthesized (outsourced to Genewiz).
これらのプラスミドをMfeI/SpeI処理したフラグメトをライゲーションし、pAd35−surv−mE1を得た。次に、E1遺伝子を欠損したAd35のゲノムを搭載したプラスミドであるpAdMS2をSwaI処理したフラグメントとpAd35−surv−mE1をSalI処理したフラグメントをE.coli BJ5183(recBC and sbcBC)に同時に形質転換し、相同組換えを誘発することにより、survivin promoter制御下においてAd35のE1遺伝子を発現するカセットをE1欠損領域に搭載したpAdMS2−surv−mE1を得た。 Fragmet obtained by treating these plasmids with MfeI/SpeI was ligated to obtain pAd35-surv-mE1. Next, a fragment of pAdMS2, which is a plasmid carrying the Ad35 genome lacking the E1 gene, treated with SwaI and a fragment of pAd35-surv-mE1 treated with SalI were transformed into E. coli. E. coli BJ5183 (recBC and sbcBC) was transformed at the same time to induce homologous recombination to obtain pAdMS2-surv-mE1 in which the cassette expressing the Ad1 E1 gene under the control of survivin promoter was mounted in the E1-deficient region. ..
 最後に、pHMTERT−Lを鋳型DNAとして、以下のプライマーをそれぞれ用いてPCR法により遺伝子を増幅して得たhTERT promoterフラグメント2とpAdMS2−surv−mE1をPmeI処理したフラグメントをIn−Fusion反応を行うことで、pAdMS2−hTERT−mE1を作製した。 Finally, using pHMTERT-L as a template DNA and using the following primers, hTERT promoter fragment 2 obtained by amplifying the gene by the PCR method and pAdMS2-surv-mE1 treated with PmeI are subjected to In-Fusion reaction. Thus, pAdMS2-hTERT-mE1 was prepared.
腫瘍溶解性Ad(OAd)
 pAdHM3−hmE1およびpAdMS2−hTERT−mE1を、それぞれPacIおよびSbfI処理し線状にしたプラスミドDNAを、Lipofectamine2000(Invitrogen)を用いてHEK293細胞にトランスフェクションすることで、それぞれOAd−tANB(OAd5)とOAd35−tANB(OAd35)を得た。その後、OAd−tANBはH1299細胞に、OAd35はHEK293細胞に3−4次感染させることで大量調製した。得られた各Adを塩化セシウムの密度勾配遠心にて精製し、10mM Tris(pH7.5)、1mM MgCl、10% glycerolからなる溶液で透析した。OAd35−sANBは、pAdMS2−surv−mE1をSbfIで処理したのち、HEK293細胞にTransfectionすることで得た。pAdMS2−hTERT−mE1およびpAdMS2−surv−mE1のE1B発現カセットの下流にshDicer発現カセットを挿入し、pAdMS2−hTERT−mE1−shDicer,pAdMS2−surv−mE1−shDicerを得た。これらのプラスミドをSbfIで処理した後、HEK293細胞にTransfectionすることで、OAd35−tANB−shDicer及びOAd35−sANB−shDicerを得た。
 各Adの物理学的タイター(Virus Particle:VP)はMaizelらの方法により測定した。
Oncolytic Ad (OAd)
By linearizing the plasmid DNAs obtained by treating pAdHM3-hmE1 and pAdMS2-hTERT-mE1 with PacI and SbfI, respectively, and transfecting them into HEK293 cells using Lipofectamine 2000 (Invitrogen), OAd-tANB (OAd5) and OAd35, respectively. -TANB(OAd35) was obtained. Then, OAd-tANB was subjected to a third-fourth infection with H1299 cells and OAd35 with HEK293 cells in a large-scale preparation. Each obtained Ad was purified by density gradient centrifugation of cesium chloride, and dialyzed against a solution consisting of 10 mM Tris (pH 7.5), 1 mM MgCl 2 , and 10% glycerol. OAd35-sANB was obtained by transfecting pAdMS2-surv-mE1 with SbfI and then transfecting HEK293 cells. The shDicer expression cassette was inserted downstream of the E1B expression cassette of pAdMS2-hTERT-mE1 and pAdMS2-surv-mE1 to obtain pAdMS2-hTERT-mE1-shDicer and pAdMS2-surv-mE1-shDicer. After treating these plasmids with SbfI, they were transfected into HEK293 cells to obtain OAd35-tANB-shDicer and OAd35-sANB-shDicer.
The physical titer (VP) of each Ad was measured by the method of Maizel et al.
2.評価方法
フローサイトメトリー分析
 各細胞5×10cellsを3%FBS含有PBS100μLに懸濁し、Mouse anti−CAR monoclonal antibody(RmcB)、Mouse anti−CD46 monoclonal antibody(M177)もしくはPurified Mouse IgG1,κIsotype Controlを1μL加え、1時間氷上、遮光で反応させた。2%FBS含有PBS4mLで洗浄後、1500rpm、5分間遠心し上清を吸引除去した。
2. Evaluation method
Flow cytometric analysis 5×10 5 cells of each cell were suspended in 100 μL of PBS containing 3% FBS, and Mouse anti-CAR monoclonal antibody (RmcB), Mouse anti-CD46 monoclonal anti-body (M177) or Pur anti-MoI anti-molar (M177) was added. The reaction was allowed to proceed on the ice for 1 hour while protected from light. After washing with 4 mL of PBS containing 2% FBS, the mixture was centrifuged at 1500 rpm for 5 minutes, and the supernatant was removed by suction.
 細胞を再び2%FBS含有PBS100μLに懸濁し、PE標識Goat Anti−Mouse Igを1μL加え、30分間氷上、遮光で反応させた。2%FBS含有PBS4mLで洗浄後、1500rpm、5分間遠心し上清を吸引除去し、2%FBS含有PBS500μLに懸濁し、フローサイトメーター(MACS Quant Analyzer;Miltenyi Biotec)を用いて発現を解析した。データは、FCSマルチカラーデータ解析ソフトウェア(Flojo)により解析した。 The cells were suspended again in 100 μL of PBS containing 2% FBS, 1 μL of PE-labeled Goat Anti-Mouse Ig was added, and the reaction was carried out on ice for 30 minutes in the dark. After washing with 4 mL of PBS containing 2% FBS, centrifugation was carried out at 1500 rpm for 5 minutes, the supernatant was removed by suction, suspended in 500 μL of PBS containing 2% FBS, and the expression was analyzed using a flow cytometer (MACS Quant Analyzer; Miltenyi Biotec). Data were analyzed by FCS multicolor data analysis software (Flojo).
Adゲノムコピー数の決定
 各細胞を回収後、DNeasy Blood & Tissue Kit(QIAGEN)を用いてTotal DNAを抽出し、Adゲノムコピー数をTHUDERBIRD SYBR qPCR Mix(TOYOBO)および以下のプライマーを用いて定量的PCRを行った。測定にはStepOnePlus real−time PCR systems(Applied Biosystems)を用いた。
Determination of Ad Genome Copy Number After collecting each cell, Total DNA was extracted using DNeasy Blood & Tissue Kit (QIAGEN), and Ad genome copy number was quantitatively determined using THUDERBIRD SYBR qPCR Mix (TOYOBO) and the following primers. PCR was performed. For the measurement, StepOnePlus real-time PCR systems (Applied Biosystems) were used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
クリスタルバイオレットアッセイ
 各細胞に腫瘍溶解性Adを100~1000VP/cellで作用させ、5日後にクリスタルバイオレットにより生細胞を染色した。
Crystal Violet Assay Oncolytic Ad was allowed to act on each cell at 100 to 1000 VP/cell, and after 5 days, live cells were stained with crystal violet.
細胞生存率アッセイ
 各細胞に腫瘍溶解性Adを300VP/cellで作用させ、細胞生存率をCell Counting Kit−8(同仁化学研究所)を用いて測定した。
Cell viability assay Oncolytic Ad was allowed to act on each cell at 300 VP/cell, and cell viability was measured using Cell Counting Kit-8 (Dojindo Laboratories).
Ad5ベクターによる免疫
 C57BL/6マウスにE1欠損Ad5ベクターを1×1010VP/mouseで尾静脈内投与することにより、抗Ad5免疫を誘導した。Ad5ベクター投与19日後に眼窩採血により血液を回収し、37℃で1時間静置して完全に血液凝固をさせた後、4℃で一晩静置した。翌日遠心操作(3,000rpm、5分)を行い、上清を抗Ad5血清として回収した。
Immunization with Ad5 vector Anti-Ad5 immunity was induced in C57BL/6 mice by tail vein administration of E1-deficient Ad5 vector at 1×10 10 VP/mouse. Blood was collected by orbital blood sampling 19 days after Ad5 vector administration, and allowed to stand at 37° C. for 1 hour for complete blood coagulation, and then left at 4° C. overnight. The next day, centrifugation (3,000 rpm, 5 minutes) was performed, and the supernatant was collected as anti-Ad5 serum.
抗Ad5血清存在下での各OAdの癌細胞溶解活性
 E1欠損Ad5ベクターで免疫を行ったマウスより採取した抗血清と各腫瘍溶解性Adを、FBSを含まない培地で希釈し混合した。なお、マウス抗血清は最終希釈倍率が1/400から1/1600になるように2倍希釈ごとに段階希釈し、腫瘍溶解性Adは300VP/cellとなるように調製した(total 50mL)。調製した溶液を30分間インキュベートした後、細胞に作用させた。1.5時間後、20%FBSを含む培地を等量加えて、5日後に細胞生存率をCell Counting Kit−8(同仁化学研究所)を用いて測定した。
Oncolytic activity of each OAd in the presence of anti-Ad5 serum Antiserum collected from a mouse immunized with E1-deficient Ad5 vector and each oncolytic Ad were diluted and mixed in a medium containing no FBS. The mouse antiserum was serially diluted every two-fold dilution so that the final dilution ratio was 1/400 to 1/1600, and the oncolytic Ad was adjusted to 300 VP/cell (total 50 mL). The prepared solution was incubated for 30 minutes and then allowed to act on the cells. After 1.5 hours, an equal amount of a medium containing 20% FBS was added, and after 5 days, cell viability was measured using Cell Counting Kit-8 (Dojindo Laboratories).
Mouse xenographt modelへの腫瘍内投与
 H1299細胞(マウスあたり3x10細胞)を、50%マトリゲル(Corning、Corning、NY)を含む5週齢の雌BALB/c nu/nuマウス(日本SLC、浜松、日本)の右脇腹に皮下注射した。腫瘍が直径約5~6mmに成長した後、マウスをランダムに3つのグループに割り当てた。PBS、OAd5、およびOAd35を各群に2.4×10VP/マウスの用量で腫瘍内注射し、3日後に再注射した。腫瘍の大きさを3日ごとに測定した。腫瘍体積は次の式で計算した。
 腫瘍体積(mm)=1/2×a×b (aは最長寸法(長径)、bは最短寸法(短径)を示す)。
Intratumoral administration to Mouse xenograph model H1299 cells (3×10 6 cells per mouse) containing 50% Matrigel (Corning, Corning, NY) at the age of 5 weeks in female BALB/c nu/nu mice (Japan SLC, Hamamatsu, Japan) ) Was subcutaneously injected into the right flank. After tumors grew to approximately 5-6 mm in diameter, mice were randomly assigned to three groups. PBS, OAd5, and OAd35 were injected intratumorally into each group at a dose of 2.4×10 9 VP/mouse and reinjected 3 days later. Tumor size was measured every 3 days. The tumor volume was calculated by the following formula.
Tumor volume (mm 3 )=1/2×a×b 2 (a indicates the longest dimension (major axis), b indicates the shortest dimension (minor axis)).
3.結果
腫瘍溶解性Ad35(OAd35)の作製方法
 本実施例では、Adの自己増殖に必須であるE1遺伝子(E1A遺伝子とE1B遺伝子に分かれる)を腫瘍特異的プロモーター下流に搭載することで、癌細胞特異的に増殖するように腫瘍溶解性Adを設計した。腫瘍特異的プロモーターとしては多くのヒト癌細胞において活性が高いhuman Telomerase Reverse Transcriptase(hTERT)プロモーター(配列番号11)、又はSurvivinプロモーターを用いた。まず、腫瘍溶解性35型Ad(OAd35)の作製においては、Ad35の遺伝子配列情報(配列番号5)を参考に、E1A遺伝子(569~1441bp(配列番号6))を、癌細胞特異的プロモーターであるhTERTプロモーター又はSurvivinプロモーター下流に挿入するとともに、ウイルス本来のプロモーターよりAd35のE1B遺伝子を発現するようにE1遺伝子発現カセットを作製した(図4)。ここで、E1A遺伝子としては、上記の野生型のE1A遺伝子(配列番号6)に代えて、変異型のE1A遺伝子(配列番号7)も用いた。当該変異は、ウイルス増殖に必須のE1A遺伝子の自然免疫の活性化を回避する塩基配列に変異を付与したものであり、具体的には、配列番号6の塩基配列中の第343番目のT(チミン)がG(グリシン)に、第350番目のGがC(シトシン)に、第357番目のA(アデニン)がTに、それぞれ置換されたもの(要するに、配列番号6の塩基配列中の第343~357番目の塩基「TTGCACTGCTATGAA」が「GTGCACTCCTATGAT」に置換されたもの)である。当該変異は、周知の遺伝子組換え技術を用いて適宜行うことができる。
3. result
Method for Producing Oncolytic Ad35 (OAd35) In this example, by mounting the E1 gene (divided into E1A gene and E1B gene), which is essential for Ad self-proliferation, downstream of a tumor-specific promoter, The oncolytic Ad was designed to grow in. As a tumor-specific promoter, a human Telomerase Reverse Transcriptase (hTERT) promoter (SEQ ID NO: 11), which has high activity in many human cancer cells, or a Survivin promoter was used. First, in the production of oncolytic type 35 Ad (OAd35), the E1A gene (569 to 1441 bp (SEQ ID NO: 6)) was used as a cancer cell-specific promoter with reference to the gene sequence information of Ad35 (SEQ ID NO: 5). An E1 gene expression cassette was constructed so that it was inserted downstream of a certain hTERT promoter or the Survivin promoter, and the Ad35 E1B gene was expressed from the virus original promoter (FIG. 4). Here, as the E1A gene, a mutant E1A gene (SEQ ID NO: 7) was used instead of the wild-type E1A gene (SEQ ID NO: 6). The mutation is a mutation in the nucleotide sequence that avoids the activation of innate immunity of the E1A gene, which is essential for virus growth, and is specifically the 343rd T(th) in the nucleotide sequence of SEQ ID NO:6. Thymine) is replaced with G (glycine), the 350th G is replaced with C (cytosine), and the 357th A (adenine) is replaced with T (in short, in the base sequence of SEQ ID NO: 6). The 343rd to 357th bases "TTGCACTGCTATGAA" are replaced with "GTGCACTCCTATGAT". The mutation can be appropriately performed using a well-known gene recombination technique.
 Ad35のE1B遺伝子のプロモーター領域およびE1B遺伝子領域としては、Ad35の遺伝子配列情報(配列番号5)を参考に、1442~3400bp(配列番号8)をE1A発現カセットの下流に挿入した。ここで、E1B遺伝子のプロモーター領域は、1442~1610bp(配列番号9)と推定され、また、E1B遺伝子領域は、1611~3400bp(配列番号10)である。
 このように、E1遺伝子発現カセットとしては、「野生型E1A遺伝子+E1B遺伝子プロモーター領域+E1B遺伝子」(配列番号12)、及び「変異型E1A遺伝子+E1B遺伝子プロモーター領域+E1B遺伝子」(配列番号13)を用いた。
 さらに、そのE1遺伝子発現カセットの両側にAd35のE1欠損領域の上流側約450bp(1~455bp)と下流側約1200bp(3401~4634bp)をホモロジーアームとして付加したドナープラスミドを作製した。
As the E1B gene promoter region and E1B gene region of Ad35, 1442 to 3400 bp (SEQ ID NO: 8) were inserted downstream of the E1A expression cassette with reference to the gene sequence information of Ad35 (SEQ ID NO: 5). Here, the promoter region of the E1B gene is presumed to be 1442-1610 bp (SEQ ID NO: 9), and the E1B gene region is 1611-3400 bp (SEQ ID NO: 10).
Thus, as the E1 gene expression cassette, "wild type E1A gene + E1B gene promoter region + E1B gene" (SEQ ID NO: 12) and "mutant E1A gene + E1B gene promoter region + E1B gene" (SEQ ID NO: 13) were used. ..
Further, a donor plasmid was prepared in which about 450 bp (1 to 455 bp) upstream of the E1 deletion region of Ad35 and about 1200 bp (3401 to 4634 bp) downstream were added as homology arms to both sides of the E1 gene expression cassette.
 ドナープラスミドとAd35のゲノムをコードしたプラスミドを制限酵素素処理により線状化し、E.coliBJ5183(recBC and sbcBC)に同時に形質転換し、相同組換えを誘発することにより、Ad35ゲノムのE1欠損領域にE1遺伝子発現カセットを挿入した(図4)。腫瘍溶解性5型Ad(OAd5)についても、同様に、hTERTプロモーター下流にAd5のE1A遺伝子を挿入するとともに、ウイルス本来のプロモーターよりAd5のE1B遺伝子を発現するように設計したE1遺伝子発現カセットを、5型AdゲノムのE1欠損領域に挿入した。 The donor plasmid and the plasmid encoding the Ad35 genome were linearized by restriction enzyme treatment, and E. E. coli BJ5183 (recBC and sbcBC) was transformed at the same time to induce homologous recombination to insert the E1 gene expression cassette into the E1 deletion region of the Ad35 genome (FIG. 4). Similarly, for oncolytic type 5 Ad (OAd5), an E1 gene expression cassette designed to insert the E1A gene of Ad5 downstream of the hTERT promoter and to express the E1B gene of Ad5 from the virus original promoter was prepared. It was inserted into the E1 deletion region of the type 5 Ad genome.
 E1遺伝子発現カセットを挿入したAdゲノムをコードしたプラスミドを制限酵素処理して線状化した後、パッケージング細胞であるHEK293細胞に遺伝子導入することでOAd5およびOAd35を回収した。その後、OAd5に関してはH1299細胞に、OAd35に関してはHEK293細胞に4次感染させて大量調製した。HEK293細胞は、そのゲノム内にAd5のE1遺伝子を有しているため、HEK293細胞でOAd5を増幅させると、OAd5ゲノム中のE1遺伝子発現カセットと、細胞中のE1遺伝子領域が相同組換えを起こし、野生型のAd5が混入してしまう恐れがあるため、OAd5の増幅には、E1遺伝子を有してしないH1299細胞を用いた。 A plasmid encoding the Ad genome into which the E1 gene expression cassette had been inserted was treated with a restriction enzyme to linearize it, and then the gene was introduced into HEK293 cells, which are packaging cells, to recover OAd5 and OAd35. After that, H1299 cells for OAd5 and HEK293 cells for OAd35 were quaternized to prepare a large amount. Since HEK293 cells have the E1 gene of Ad5 in their genome, amplification of OAd5 in HEK293 cells causes homologous recombination between the E1 gene expression cassette in the OAd5 genome and the E1 gene region in the cells. Since the wild-type Ad5 may be contaminated, H1299 cells not having the E1 gene were used for amplification of OAd5.
 各OAdを大量調製した後、塩化セシウムの密度勾配遠心にて精製した。また各OAdの物理学的タイターであるVirus Particle(VP)/cellを測定した結果、OAd35については、OAd5と比較すると約10倍低いタイターを得た。また、OAd35の物理的力価はOAd5の物理的力価よりも約10倍低かった。OAd35の物理的力価と生物学的力価の比は1:8.5で、これはOAd5の力価と同等であった(表3)。
Figure JPOXMLDOC01-appb-T000003
After each OAd was prepared in a large amount, it was purified by cesium chloride density gradient centrifugation. The physical titer of each OAd, Virus Particle (VP)/cell, was measured. As a result, about OAd35, a titer about 10 times lower than that of OAd5 was obtained. The physical titer of OAd35 was about 10 times lower than that of OAd5. The ratio of physical and biological titers of OAd35 was 1:8.5, which was comparable to that of OAd5 (Table 3).
Figure JPOXMLDOC01-appb-T000003
ヒト癌細胞株におけるAd感染受容体の発現
 今回作製したOAdの基盤となるAd5、Ad35は、それぞれCAR、CD46を感染受容体としている。そこで、5種類のヒト癌細胞株(HepG2細胞;ヒト肝癌由来、A549細胞;ヒト肺癌由来、H1299細胞;ヒト肺癌由来、T24細胞;ヒト膀胱癌由来、MCF−7細胞;ヒト乳癌由来)における各受容体の発現量をフローサイトメトリーにより測定した(図5)。
Expression of Ad Infectious Receptor in Human Cancer Cell Lines Ad5 and Ad35, which are the basis of OAd, prepared this time have CAR and CD46 as infectious receptors, respectively. Therefore, each of 5 types of human cancer cell lines (HepG2 cells; human liver cancer-derived, A549 cells; human lung cancer-derived, H1299 cells; human lung cancer-derived, T24 cells; human bladder cancer-derived, MCF-7 cells; human breast cancer-derived) The expression level of the receptor was measured by flow cytometry (Fig. 5).
 その結果、HepG2細胞、A549細胞、H1299細胞では、CAR、CD46ともに高発現していた。一方、MCF−7細胞ではCD46は高発現していたが、CARはわずかしか発現していなかった。また、T24細胞ではCARは全く発現していなかったが、CD46は高発現していた。これらの結果から、以降はHepG2細胞、A549細胞、H1299細胞はCAR陽性細胞、T24細胞、MCF−7細胞についてはCAR陰性細胞として用いることとした。 As a result, CAR and CD46 were both highly expressed in HepG2 cells, A549 cells, and H1299 cells. On the other hand, in MCF-7 cells, CD46 was highly expressed, but CAR was only slightly expressed. Moreover, CAR was not expressed at all in T24 cells, but CD46 was highly expressed. From these results, hereinafter, HepG2 cells, A549 cells, and H1299 cells were used as CAR-positive cells, and T24 cells and MCF-7 cells were used as CAR-negative cells.
ヒト培養細胞における各OAdの殺細胞効果
 次に、今回作製した各OAdのヒト癌細胞株における殺細胞効果を検討するため、各種ヒト癌細胞株に各OAdを作用させ、ウイルス作用5日後にクリスタルバイオレット染色を行い、細胞生存率を測定した(図6A)。クリスタルバイオレット染色では生細胞のみが青紫色に染色される。
Cell-killing effect of each OAd in human cultured cells Next, in order to examine the cell-killing effect of each OAd produced in this time in the human cancer cell line, each OAd was allowed to act on various human cancer cell lines, and after 5 days of virus action, crystal was added. Violet staining was performed to measure cell viability (Fig. 6A). With crystal violet staining, only live cells are stained blue-violet.
 その結果、CAR陽性細胞であるHepG2細胞では両OAd作用群ともに高い殺細胞効果を示し、全てのウイルス用量でほぼ全ての細胞が死滅していた。また、A549細胞では十分にCARが発現しているのに関わらず、OAd5作用群では十分な殺細胞効果は見られず、OAd35作用群で高い殺細胞効果を示した。H1299細胞は、HepG2細胞及びA549細胞と同様にCAR及びCD46が発現しているにも関わらず、OAd5作用群の方がOAd35作用群に比べて殺細胞効果が高かった。 As a result, CAR-positive HepG2 cells showed high cell killing effect in both OAd acting groups, and almost all cells were killed at all virus doses. Further, although CAR was sufficiently expressed in A549 cells, no sufficient cell killing effect was observed in the OAd5 acting group, and a high cell killing effect was shown in the OAd35 acting group. Although H1299 cells expressed CAR and CD46 similarly to HepG2 cells and A549 cells, the cell killing effect was higher in the OAd5 acting group than in the OAd35 acting group.
 一方、CAR陰性細胞であるT24細胞では、OAd5作用群の全てのウイルス用量で殺細胞効果を示さなかったのに対し、OAd35作用群では300VP/cellにおいてほぼ全ての細胞が死滅していた。また、MCF−7細胞では、OAd5作用群で300VP/cell、OAd35作用群で10VP/cellで、ほぼ全ての細胞が死滅していた。これは、MCF−7細胞でわずかにCARの発現が見られたことにより、OAd5が感染できたためと考えられる。なお、全ての細胞株のなかで乳癌細胞であるMCF−7に対するAd35の殺傷効果が最も高かった。この現象は、CARやCD45などの受容体の発現だけでは説明することができず、まだ知られていない生活環の違いなど(感染経路、脱殻、核内移行、転写翻訳、ウイルス粒子形成等)が原因として考えられる。したがって本発明のウイルスは特に乳癌の治療に有用であると考えられる。 On the other hand, CAR-negative T24 cells did not show a cell-killing effect at all viral doses in the OAd5 action group, whereas almost all cells in the OAd35 action group died at 300 VP/cell. In MCF-7 cells, almost all cells were dead at 300 VP/cell in the OAd5 acting group and 10 VP/cell in the OAd35 acting group. This is presumably because OAD5 could be infected because CAR expression was slightly observed in MCF-7 cells. Among all the cell lines, Ad35 had the highest killing effect on MCF-7, which is a breast cancer cell. This phenomenon cannot be explained only by the expression of receptors such as CAR and CD45, and the unknown life cycle differences (infection pathway, uncoating, nuclear translocation, transcription translation, viral particle formation, etc.) Is considered to be the cause. Therefore, the virus of the present invention is considered to be particularly useful for treating breast cancer.
 さらに、各OAdによる殺細胞効果を定量的に測定するため、WST−8試薬を用いて、細胞生存率を経時的に測定した(図6B)。その結果、クリスタルバイオレット染色の結果と相関した結果が得られた。具体的には、HepG2細胞では両OAd作用群とも高い殺細胞効果を示したが、A549細胞、T24細胞、H1299細胞、MCF−7細胞ではOAd5作用群と比べOAd35作用群で有意に高い殺細胞効果を示した。 Furthermore, in order to quantitatively measure the cell killing effect of each OAd, the cell viability was measured over time using the WST-8 reagent (Fig. 6B). As a result, results correlated with the results of crystal violet staining were obtained. Specifically, in HepG2 cells, both OAd action groups showed a high cell killing effect, but in A549 cells, T24 cells, H1299 cells and MCF-7 cells, a significantly higher cell killing effect in the OAd35 action group than in the OAd5 action group. Showed the effect.
 次に、ヒト正常細胞に対する各OAdの安全性を検討するため、各種ヒト正常細胞(MRC−5細胞;ヒト胎児由来肺線維芽細胞、NHLF;成人由来肺繊維芽細胞、HUVEC;ヒト臍帯静脈内皮細胞)に各OAdを作用させ、上記と同様にクリスタルバイオレット染色を行い、細胞生存率を測定した(図6C)。その結果、各OAd作用群ともに顕著な殺細胞効果を示さなかった。全てのヒト正常細胞において、OAd35作用群では高ウイルス用量(300、1000VP/cell)で細胞死が観察された。これは、生体内投与において想定される用量と比べ極めて高い用量でウイルスが感染したために、細胞にダメージを与えてしまい、細胞死が観察されたと考えられる。
さらに、各OAdを用いて、各種癌細胞に対する殺細胞効果を検討した(図6D、図6E)。
 以上の結果、今回新たに作製したOAd35は癌細胞特異的に殺細胞効果を示すことが明らかとなった。
Next, in order to examine the safety of each OAd against human normal cells, various human normal cells (MRC-5 cells; human fetal lung fibroblasts, NHLF; adult lung fibroblasts, HUVEC; human umbilical vein endothelium) Each cell was treated with each OAd and subjected to crystal violet staining in the same manner as above to measure cell viability (FIG. 6C). As a result, no significant cell killing effect was shown in each OAd acting group. In all human normal cells, cell death was observed at high virus doses (300, 1000 VP/cell) in the OAd35 acting group. It is considered that this is because the virus was infected at a dose extremely higher than the dose assumed in the in vivo administration, which caused damage to the cells and cell death was observed.
Furthermore, the cell-killing effect on various cancer cells was examined using each OAd (FIG. 6D, FIG. 6E).
As a result of the above, it was revealed that the newly produced OAd35 exhibits a cell killing effect specifically in cancer cells.
各OAdの細胞表面への結合能
 次に、各OAdの各ヒト癌細胞株への結合能を検討するため、各OAdを4℃で1.5時間作用させ、細胞表面に結合したOAdのゲノム量を定量的PCR法により測定した(図7)。その結果、CAR陽性細胞に対してはOAd5、OAd35ともに同程度のAdゲノム量を示したことから、CAR陽性細胞に対しては両OAdともに効率よく結合できることが示唆された。一方、CAR陰性細胞では、OAd5と比べ、OAd35作用群で高いAdゲノム量を示した。この結果より、OAd5はCAR陰性細胞に対しては結合しにくいが、OAd35は標的細胞のCARの発現に関わらず、高い結合能を有することが示唆された。
Cell-Binding Ability of Each OAd Next, in order to examine the binding ability of each OAd to each human cancer cell line, each OAd was allowed to act for 1.5 hours at 4° C., and the genome of OAd bound to the cell surface was examined. The amount was measured by the quantitative PCR method (Fig. 7). As a result, both OAd5 and OAd35 showed similar Ad genome amounts to CAR-positive cells, suggesting that both OAds can efficiently bind to CAR-positive cells. On the other hand, CAR-negative cells showed a higher Ad genome amount in the OAd35 acting group than in OAd5. From these results, it was suggested that although OAd5 is difficult to bind to CAR-negative cells, OAd35 has high binding ability regardless of CAR expression in target cells.
各種ヒト癌細胞における各OAdの感染増殖能
 次に、図6A,6B,6D,6Eで示した各OAd作用によるヒト癌細胞での細胞死が、Ad増殖によるものであるかを検討するため、各種ヒト癌細胞に各OAdを作用し、ウイルス作用24時間、72時間後のAdゲノム量を測定した(図8)。その結果、各種ヒト癌細胞において、両OAdともに24時間後から72時間後にかけてAdゲノム量が増加していた。特に、CAR陰性細胞において、OAd35作用群では、OAd5作用群と比べ、Adゲノムが大きく増加していた。以上の結果より、OAd35はCAR陽性細胞のみならず、CAR陰性細胞に対しても効率よく感染増殖できることが示された。
Infective proliferation ability of each OAd in various human cancer cells Next, in order to examine whether cell death in human cancer cells due to each OAd action shown in FIGS. 6A, 6B, 6D, and 6E is due to Ad proliferation, Each OAd was made to act on various human cancer cells, and the Ad genome amount was measured 24 hours and 72 hours after the virus action (FIG. 8). As a result, in various human cancer cells, the amount of Ad genome increased from 24 hours to 72 hours after both OAds. Particularly, in CAR-negative cells, the Ad genome greatly increased in the OAd35 acting group as compared with the OAd5 acting group. From the above results, it was shown that OAd35 can efficiently infect and propagate not only CAR-positive cells but also CAR-negative cells.
抗Ad5血清存在下における各OAdの殺細胞効果
 最後に、今回作製したOAd35が、Ad5に対する抗体存在下でも標的細胞に感染し、殺細胞効果を示すのかを検討するため、1/400希釈から1/1600希釈まで2倍ずつ段階希釈した抗Ad5血清と各OAdを30分間インキュベートした後、各種ヒト癌細胞に作用し、ウイルス作用5日後における殺細胞効果を測定した。
Cell-killing effect of each OAd in the presence of anti-Ad5 serum Lastly, in order to examine whether Oad35 produced this time infects target cells even in the presence of an antibody against Ad5 and shows a cell-killing effect, 1/400 dilution to 1 After incubating each OAd with anti-Ad5 serum that had been serially diluted 2-fold to a dilution of 1600 for 30 minutes, the anti-Ad5 serum acted on various human cancer cells, and the cell-killing effect after 5 days of virus action was measured.
 抗Ad5血清は、C57BL/6マウスにE1欠損Ad5ベクターを1×1010VP/mouseで尾静脈内投与し、抗Ad5免疫を誘導することで取得した。その結果、HepG2細胞において、抗Ad5血清存在下では、OAd5作用群での細胞死が抑制されたのに対し、OAd35作用群では抑制されなかった(図9A)。また、T24細胞においても、抗Ad5血清存在下でもOAd35による細胞死は抑制されなかった(図9B)。以上の結果より、OAd35は、抗Ad5抗体存在下でも標的細胞に感染可能であることが示唆された。 The anti-Ad5 serum was obtained by injecting the E1-deficient Ad5 vector into the C57BL/6 mouse by tail vein administration at 1×10 10 VP/mouse to induce anti-Ad5 immunity. As a result, in HepG2 cells, in the presence of anti-Ad5 serum, cell death was suppressed in the OAd5 acting group, whereas it was not suppressed in the OAd35 acting group (FIG. 9A). In T24 cells, cell death by OAd35 was not suppressed even in the presence of anti-Ad5 serum (Fig. 9B). From the above results, it was suggested that OAd35 can infect target cells even in the presence of anti-Ad5 antibody.
 OAd35のin vivoでの抗腫瘍効果を調べるために、H1299細胞によりマウスの皮下に腫瘍を形成させたxenograft modelに対し、OAdを腫瘍内投与した(図10)。OAd5およびOAd35の腫瘍内投与後、腫瘍の成長は有意に抑制した。H1299細胞に対するin vitro癌細胞溶解活性はOAd5の方がOAd35よりも高かったが(図6A)、in vivoにおける腫瘍成長抑制効果ではOAd5とOAd35との間で有意な差はなかった。これらの結果から、OAd35がin vivoにおいて十分な抗腫瘍効果があることが示された。 In order to investigate the anti-tumor effect of OAd35 in vivo, OAd was intratumorally administered to xenograft model in which a tumor was subcutaneously formed in mice with H1299 cells (Fig. 10). After intratumoral administration of OAd5 and OAd35, tumor growth was significantly suppressed. The in vitro oncolytic activity against H1299 cells was higher in OAd5 than in OAd35 (Fig. 6A), but there was no significant difference between OAd5 and OAd35 in the tumor growth inhibitory effect in vivo. From these results, it was shown that OAd35 has a sufficient antitumor effect in vivo.
4.考察
 本実施例では、Ad35を基盤とした新規腫瘍溶解性Adの開発に取り組み、ヒト培養細胞株における殺細胞効果などのOAd35の特性について検討した。今回開発したOAd35は、hTERTプロモーター又はSurvivinプロモーター下流にE1A遺伝子を挿入し、E1B遺伝子本来のプロモーターよりE1B遺伝子が発現するように設計した(図4)。
4. Discussion In this example, the development of a novel oncolytic Ad based on Ad35 was investigated, and the properties of OAd35 such as the cell-killing effect in a human cultured cell line were examined. The OAd35 developed this time was designed so that the E1A gene was inserted downstream of the hTERT promoter or the Survivin promoter and the E1B gene was expressed from the original promoter of the E1B gene (FIG. 4).
 E1遺伝子発現カセットはAdの増殖を司る重要なファクターであり、様々な設計がなされているが、本実施例ではhTERTプロモーターを用いた。hTERTプロモーターは、80%以上の癌細胞において高い活性を示すと報告されており、多くの癌細胞に適用可能である点から、有用であると考えられる。本実施例において作製したOAd35のゲノムをコードしたプラスミドは、E1遺伝子発現カセットのhTERTプロモーター領域の両側に制限酵素サイトを挿入しているので、腫瘍特異性を失わず、hTERTよりも活性が高い優れた腫瘍特異的プロモーターが開発された場合や、特定の組織の癌細胞を標的とする場合には、プロモーターを簡便に交換可能になっている。 The E1 gene expression cassette is an important factor that controls the growth of Ad and various designs have been made. In this example, the hTERT promoter was used. The hTERT promoter is reported to exhibit high activity in 80% or more of cancer cells, and is considered to be useful because it can be applied to many cancer cells. Since the plasmid encoding the OAd35 genome prepared in this Example has restriction enzyme sites inserted on both sides of the hTERT promoter region of the E1 gene expression cassette, it does not lose tumor specificity and is superior in activity to hTERT. When a tumor-specific promoter is developed or when a cancer cell of a specific tissue is targeted, the promoter can be easily exchanged.
 ヒト癌細胞におけるOAd35の殺細胞効果をクリスタルバイオレット染色、WST−8試薬を用いて測定したところ、OAd35はCAR陽性細胞、CAR陰性細胞どちらにも効率よく感染し、高い殺細胞効果を示した(図6A,図6B)。Ad35のFiberはAd5感染受容体CARには結合しないが、Ad35感染受容体であるCD46と結合するため、OAd35はCAR陽性および陰性細胞の両者に効率よく感染できたものと考えられる。 When the cell killing effect of OAd35 in human cancer cells was measured using crystal violet staining and WST-8 reagent, OAd35 efficiently infected both CAR-positive cells and CAR-negative cells and showed a high cell-killing effect ( 6A and 6B). Although the fiber of Ad35 does not bind to the Ad5 infection receptor CAR, but binds to the Ad35 infection receptor CD46, it is considered that OAd35 was able to efficiently infect both CAR positive and negative cells.
 癌の悪性度が上がるとともに、CARの発現が減少するという報告もあることから、OAd35は悪性度が高く、CARの発現が減少、もしくは消失した癌細胞に対しても高効率に感染することが期待される。また、A549細胞はCAR、CD46ともに90%以上発現していたににも関わらず、OAd5による殺細胞効果は低く、OAd35により高い殺細胞効果が観察された。 Since there is a report that the expression of CAR decreases as the malignancy of cancer increases, OAd35 has high malignancy and can efficiently infect even cancer cells whose CAR expression is decreased or disappeared. Be expected. Further, although A549 cells expressed 90% or more of both CAR and CD46, the cell killing effect by OAd5 was low, and the high cell killing effect by OAd35 was observed.
 一方、他のヒト肺癌細胞株であるH1299細胞に対しては、OAd5がより高い殺細胞効果を示したことから、OAd5がA549細胞に対して低い殺細胞効果しか示さなかったのは、肺癌細胞特異的な現象ではなく、Ad5とAd35の生活環の違い(感染経路、脱殻、核内移行、転写翻訳、ウイルス粒子形成等)が原因として考えられる。 On the other hand, OAd5 showed a higher cell-killing effect on H1299 cells, which are other human lung cancer cell lines, and therefore OAd5 showed a lower cell-killing effect on A549 cells. It is considered that the cause is not a specific phenomenon, but a difference in the life cycle of Ad5 and Ad35 (infection pathway, uncoating, nuclear translocation, transcription translation, virus particle formation, etc.).
 OAd35と各種ヒト癌細胞表面への結合についての検討を行ったが、CAR陽性細胞では両OAdとも同程度の結合能を示した一方で、CAR陰性細胞ではOAd35が顕著に高い結合能を示した(図7)。
 OAd5とOAd35の各種ヒト癌細胞における感染増殖能を検討したが、各種ヒト癌細胞において両OAdとも24時間から72時間後にかけて高い感染増殖能を示した(図8)。興味深いことに、CAR陰性細胞においてもOAd5のゲノム増幅が見られたが、Ad5はCAR依存的な感染経路だけでなく、細胞表面のαVインテグリン依存的な感染や血液凝固第X因子(FX)依存的な感染においても細胞に感染可能であるので、それらの経路を介してOAd5が感染したと考えられる。
The binding of OAd35 to the surface of various human cancer cells was examined. CAR-positive cells showed similar binding ability to both OAds, whereas CAR-negative cells exhibited OAD35 having a significantly higher binding ability. (Fig. 7).
The infection and proliferation ability of OAd5 and OAd35 in various human cancer cells was examined, and both of the OAds showed high infection and proliferation ability after 24 to 72 hours in various human cancer cells (FIG. 8). Interestingly, genomic amplification of OAd5 was also found in CAR-negative cells, but Ad5 is not only a CAR-dependent infection pathway, but also αV integrin-dependent infection on the cell surface and blood coagulation factor X (FX)-dependent. It is considered that OAd5 is infected via these pathways because it is possible to infect the cells even in the general infection.
 80%以上の成人は、自然暴露により抗Ad5抗体を有していることが報告されており、腫瘍溶解性Adを用いた癌治療において大きな問題となっている。今回、抗Ad5抗体存在下におけるOAd35の殺細胞効果について検討したが、OAd5は抗Ad5抗体存在下において殺細胞効果が抑制されたのに対し、OAd35では抑制されなかった(図9)。これにより、たとえ抗Ad5抗体を有する実験動物やヒトに対してもOAd35は抗腫瘍効果を発揮することが期待される。 It has been reported that more than 80% of adults have anti-Ad5 antibody by natural exposure, which is a big problem in cancer treatment using oncolytic Ad. This time, the cell-killing effect of OAd35 in the presence of anti-Ad5 antibody was examined, but the cell-killing effect of OAd5 was suppressed in the presence of anti-Ad5 antibody, whereas it was not suppressed by OAd35 (FIG. 9). Therefore, OAd35 is expected to exert an antitumor effect even on experimental animals and humans having anti-Ad5 antibody.
 現状、OAdを用いた癌治療では、腫瘍内投与のプロトコルが最も用いられている。腫瘍内投与の場合、抗Ad5抗体が存在すると、血中に漏出した腫瘍溶解性Adは直ちに抗体にトラップされ、転移巣に対して治療効果を発揮することは困難である。一方で、Ad35は抗体保持率が低く、特定の組織に集積しないという特徴を持つ。本実施例でOAd35は抗Ad5抗体の影響を受けないことが示されたので、in vivoや臨床での投与においても、OAd35の腫瘍内投与の抗腫瘍効果だけでなく、静脈内投与後の転移癌に対する治療効果も期待できる Currently, the intratumoral administration protocol is most used in cancer treatment using OAd. In the case of intratumoral administration, when anti-Ad5 antibody is present, oncolytic Ad leaked into the blood is immediately trapped by the antibody, and it is difficult to exert a therapeutic effect on metastatic lesions. On the other hand, Ad35 has a low antibody retention rate and does not accumulate in a specific tissue. Since it was shown in this example that OAd35 was not affected by anti-Ad5 antibody, not only the antitumor effect of intratumoral administration of OAd35 but also the metastasis after intravenous administration were observed during in vivo and clinical administration. Can also be expected to have therapeutic effects on cancer
 本発明における、ヒト35型Adによる高い自然免疫誘導能は、癌治療を目的とした腫瘍溶解性ウイルスの場合には逆に抗腫瘍免疫の増強につながり得る点で、極めて有用なものである。 The high innate immunity-inducing ability of human type 35 Ad in the present invention is extremely useful in the case of an oncolytic virus for the purpose of treating cancer, on the contrary that it can lead to enhancement of antitumor immunity.
 配列番号1~4:合成DNA
 配列番号7:合成DNA
 配列番号13:合成DNA
SEQ ID NOs: 1-4: Synthetic DNA
SEQ ID NO: 7: Synthetic DNA
SEQ ID NO: 13: Synthetic DNA

Claims (10)

  1.  hTERTプロモーター又はSurvivinプロモーター、及びE1遺伝子が35型アデノウイルスゲノムに組み込まれた、組換え腫瘍溶解性35型アデノウイルス。 Recombinant oncolytic type 35 adenovirus in which the hTERT promoter or Survivin promoter and E1 gene are integrated into the type 35 adenovirus genome.
  2.  hTERTプロモーター又はSurvivinプロモーター、及びE1A遺伝子が35型アデノウイルスゲノムに組み込まれた、組換え腫瘍溶解性35型アデノウイルス。 A recombinant oncolytic type 35 adenovirus in which the hTERT promoter or Survivin promoter and the E1A gene are integrated into the type 35 adenovirus genome.
  3.  hTERTプロモーター又はSurvivinプロモーター、E1A遺伝子、E1Bプロモーター及びE1B遺伝子が35型アデノウイルスゲノムに組み込まれた、組換え腫瘍溶解性35型アデノウイルス。 A recombinant oncolytic type 35 adenovirus in which the hTERT promoter or Survivin promoter, E1A gene, E1B promoter and E1B gene are integrated into the type 35 adenovirus genome.
  4.  E1A遺伝子が変異型のものである、請求項2又は3に記載の組換え腫瘍溶解性35型アデノウイルス。 The recombinant oncolytic type 35 adenovirus according to claim 2 or 3, wherein the E1A gene is of a mutant type.
  5.  細胞死誘導関連タンパク質又は免疫賦活関連タンパク質をコードする遺伝子をさらに含む、請求項1~4のいずれか1項に記載の組換え腫瘍溶解性35型アデノウイルス。 The recombinant oncolytic type 35 adenovirus according to any one of claims 1 to 4, further comprising a gene encoding a cell death induction-related protein or an immunostimulation-related protein.
  6.  請求項1~5のいずれか1項に記載の組換え腫瘍溶解性35型アデノウイルスを含む、医薬組成物。 A pharmaceutical composition comprising the recombinant oncolytic type 35 adenovirus according to any one of claims 1 to 5.
  7.  癌の治療用のものである、請求項6に記載の医薬組成物。 The pharmaceutical composition according to claim 6, which is for treating cancer.
  8.  癌が乳癌である、請求項7に記載の医薬組成物。 The pharmaceutical composition according to claim 7, wherein the cancer is breast cancer.
  9.  請求項1~5のいずれか1項に記載の組換え腫瘍溶解性35型アデノウイルス、又は請求項6~8のいずれか1項に記載の医薬組成物を癌患者に投与することを特徴とする、癌の治療方法。 A recombinant oncolytic type 35 adenovirus according to any one of claims 1 to 5 or a pharmaceutical composition according to any one of claims 6 to 8 is administered to a cancer patient. How to treat cancer.
  10.  癌患者が乳癌患者である、請求項9に記載の治療方法。 The treatment method according to claim 9, wherein the cancer patient is a breast cancer patient.
PCT/JP2020/006383 2019-02-12 2020-02-12 Oncolytic virus using human adenovirus type 35 as base WO2020166727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020572359A JPWO2020166727A1 (en) 2019-02-12 2020-02-12 Oncolytic virus based on human type 35 adenovirus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962804334P 2019-02-12 2019-02-12
US62/804,334 2019-02-12

Publications (1)

Publication Number Publication Date
WO2020166727A1 true WO2020166727A1 (en) 2020-08-20

Family

ID=72044398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006383 WO2020166727A1 (en) 2019-02-12 2020-02-12 Oncolytic virus using human adenovirus type 35 as base

Country Status (2)

Country Link
JP (1) JPWO2020166727A1 (en)
WO (1) WO2020166727A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008047A (en) * 2002-06-05 2004-01-15 Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Adenoviral vector
WO2005115476A1 (en) * 2004-05-25 2005-12-08 Univ Kurume Drug comprising as the active ingredient proliferative vector containing survivin promoter
JP2008501349A (en) * 2004-06-07 2008-01-24 ツェンドゥー カンホン バイオテクノロジーズ カンパニー リミテッド Construction and use of oncolytic adenovirus recombinants, in particular recombinants expressing the immunomodulator GM-CSF in tumors
WO2015025940A1 (en) * 2013-08-23 2015-02-26 国立大学法人大阪大学 Novel adenovirus and method for promoting growth thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008047A (en) * 2002-06-05 2004-01-15 Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Adenoviral vector
WO2005115476A1 (en) * 2004-05-25 2005-12-08 Univ Kurume Drug comprising as the active ingredient proliferative vector containing survivin promoter
JP2008501349A (en) * 2004-06-07 2008-01-24 ツェンドゥー カンホン バイオテクノロジーズ カンパニー リミテッド Construction and use of oncolytic adenovirus recombinants, in particular recombinants expressing the immunomodulator GM-CSF in tumors
WO2015025940A1 (en) * 2013-08-23 2015-02-26 国立大学法人大阪大学 Novel adenovirus and method for promoting growth thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKURAI, F. ET AL.: "Adenovirus serotype 35 vector-induced innate immune responses in dendritic cells derived from wild-type and human CD 46- transgenic mice: Comparison with a fiber-substituted Ad vector containing fiber proteins of Ad serotype 35.", JOURNAL OF CONTROLLED RELEASE, vol. 148, no. 2, 2010, pages 212 - 218, XP027509912, DOI: 10.1016/j.jconrel.2010.08.025 *

Also Published As

Publication number Publication date
JPWO2020166727A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP6817979B2 (en) Tumor-selective E1A and E1B mutants
JP6639412B2 (en) Adenovirus comprising an albumin binding moiety
US20240100106A1 (en) Isolated recombinant oncolytic adenoviruses, pharmaceutical compositions, and uses thereof for drugs for treatment of tumors and/or cancers
JP5075839B2 (en) Oncolytic adenovirus for the treatment of cancer
EP2486137B1 (en) Replication-competent ad11p based viral vectors
JP5746823B2 (en) Adenovirus having a mutation in the endoplasmic reticulum retention domain of E3-19K protein and its use in cancer therapy
EP3737403B1 (en) Modified adenoviruses
JP2013516978A (en) Method for producing adenovirus vector and virus preparation produced thereby
JP4361708B2 (en) Replication-competent anti-cancer vector
JP7144915B2 (en) Viruses to treat tumors
WO2020166727A1 (en) Oncolytic virus using human adenovirus type 35 as base
JP6483019B2 (en) Novel adenovirus and method for promoting its growth
JP2022552870A (en) Adenovirus with modified adenoviral hexon protein
US20220235332A1 (en) Fast and Accurate Three-Plasmid Oncolytic Adenovirus Recombinant Packaging System AD5MIXPLUS and Application Thereof
JP5580043B2 (en) Radiosensitization enhancer
WO2024005211A1 (en) Hexon-modified adenovirus vector
US20220281921A1 (en) Oncolytic non-human adenoviruses and uses thereof
JP2022553870A (en) Replication-promoting oncolytic adenovirus
Hammer Engineering of oncolytic adenoviruses for delivery by mesenchymal stem cells to pancreatic cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755745

Country of ref document: EP

Kind code of ref document: A1