WO2020166726A1 - Method for preparing quiescent hepatic stellate cell, and model for evaluation of activation of quiescent hepatic stellate cell - Google Patents

Method for preparing quiescent hepatic stellate cell, and model for evaluation of activation of quiescent hepatic stellate cell Download PDF

Info

Publication number
WO2020166726A1
WO2020166726A1 PCT/JP2020/006147 JP2020006147W WO2020166726A1 WO 2020166726 A1 WO2020166726 A1 WO 2020166726A1 JP 2020006147 W JP2020006147 W JP 2020006147W WO 2020166726 A1 WO2020166726 A1 WO 2020166726A1
Authority
WO
WIPO (PCT)
Prior art keywords
hepatic stellate
cells
cell
quiescent
stellate cells
Prior art date
Application number
PCT/JP2020/006147
Other languages
French (fr)
Japanese (ja)
Inventor
宮島 篤
丈友 木戸
悠太 厚井
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to JP2020572358A priority Critical patent/JPWO2020166726A1/ja
Publication of WO2020166726A1 publication Critical patent/WO2020166726A1/en
Priority to JP2024113467A priority patent/JP2024147691A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters

Definitions

  • the present invention provides a method for preparing quiescent hepatic stellate cells by inducing differentiation of pluripotent stem cells, quiescent hepatic stellate cells obtained by the preparation method, a cell suspension containing the same, and quiescent hepatic stellate cells.
  • the present invention relates to a screening method for a drug involved in the activation of
  • the liver consists of parenchymal cells and non-parenchymal cells (hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, Pit cells), and connective tissue of the liver is composed of extracellular matrix (collagen etc.) and cells localized there.
  • the hepatic stellate cell which is a substrate-producing cell in connective tissue, is activated and transformed to promote the growth and accumulation of connective tissue.
  • the hepatic stellate cells of normal liver (hereinafter referred to as “quiescent hepatic stellate cells”) produce a small amount of extracellular matrix, change their morphology into myofibroblast-like cells upon activation, and increase in number as the number of cells increases. It is known to synthesize the extracellular matrix of.
  • the present inventors have succeeded in establishing a differentiation induction system from pluripotent stem cells to hepatic stellate cells (Patent Document 1; Non-Patent Document 1).
  • the induced hepatic stellate cells have been shown to be already activated or to be activated immediately after the culturing, like the commercially available and commercially available primary cultured hepatic stellate cells. It is not a useful tool for research and development of drug discovery such as drugs. Therefore, it is desired to develop a drug screening system that reflects the activation process of hepatic stellate cells in a culture system.
  • the present invention aims to establish a differentiation induction system from pluripotent stem cells (eg, iPS cells) to quiescent hepatic stellate cells, and to develop an activation control system thereof.
  • pluripotent stem cells eg, iPS cells
  • the present inventors have succeeded in obtaining hepatic stellate cells that stably retain a stationary phase from iPS cells by improving the conventional method for inducing differentiation of iPS cells to obtain hepatic stellate cells. Successfully completed.
  • a method for inducing differentiation of pluripotent stem cells to prepare quiescent hepatic stellate cells which comprises a step of three-dimensionally culturing pluripotent stem cells and/or a step of culturing at a low oxygen concentration ..
  • the preparation method according to the above [2] wherein after the 6th day of culture, the culture is performed with the O 2 concentration being the same as in the atmosphere.
  • a quiescent hepatic stellate cell prepared by the method according to any one of [1] to [7] above.
  • a screening method for selecting a test substance that suppresses the activation of hepatic stellate cells as a candidate substance used for a drug for treating or preventing liver disease associated with fibrosis (A) culturing a quiescent hepatic stellate cell into which a reporter gene has been prepared, prepared by the method according to [6] or [7] above; (B) quiescent by adding a drug that activates quiescent hepatic stellate cells to the culture system of quiescent hepatic stellate cells, or collecting and reseeding the quiescent hepatic stellate cells and culturing in two dimensions Activating hepatic stellate cells to obtain activated hepatic stellate cells; (C)
  • non-activated quiescent hepatic stellate cells from iPS cells.
  • the obtained drug can be used for a system for screening a drug for treating a liver disease associated with liver fibrosis such as cirrhosis and evaluating the therapeutic drug.
  • FIG. 1 shows a method for inducing differentiation of human iPS cells to prepare quiescent hepatic stellate cells.
  • the photographs in the figure are images of morphological changes in spheroid formation in the process of differentiation induction of human iPS cells.
  • FIG. 2 shows an undifferentiated marker gene (OCT4, NANOG), a mesodermal marker gene (MESP1, T), and a transseptal mesenchyme/hepatic star during the differentiation process of human iPS cells into quiescent hepatic stellate cells.
  • OCT4 undifferentiated marker gene
  • MEP1 mesodermal marker gene
  • T transseptal mesenchyme/hepatic star
  • FIG. 3 is a diagram showing the effect of inducing differentiation into stationary hepatic stellate cells derived from human iPS cells by the presence or absence of addition of a Rock inhibitor (Y27632) to the culture system.
  • NGFR and LRAT are marker genes for quiescent hepatic stellate cells
  • ACTA2 and COL1A1 are marker genes for activated hepatic stellate cells.
  • FIG. 4 shows an experimental method for examining the oxygen concentration in culture in inducing differentiation of quiescent hepatic stellate cells of human iPS cells and the results thereof.
  • FIG. 5 shows the results of examining the gene expression of each group by separating the NGFR+ cells (“posi”) and the NGFR ⁇ cells (“nega”) by the MoFLo XDP cell sorter on the 8th day after the initiation of differentiation induction. ..
  • “bulk” refers to a cell group before separation by a cell sorter.
  • FIG. 6 shows an image of quiescent hepatic stellate cells obtained by inducing differentiation from iPS cells.
  • FIG. 7 shows each gene in iPS cell-derived hepatic stellate cells (“Ver. 1”) prepared by the conventional method and iPS cell-derived quiescent hepatic stellate cells (“Ver. 2”) prepared by the method of the present invention. The result of having comparatively examined expression is shown.
  • FIG. 8 shows the results of comparative study of gene expression in primary cultured hepatic stellate cells (“hHSC”) and iPS cell-derived resting hepatic stellate cells (“iPS-HSC(Ver2)”) prepared by the method of the present invention. Indicates.
  • FIG. 1 primary cultured hepatic stellate cells
  • iPS-HSC(Ver2) iPS cell-derived resting hepatic stellate cells
  • FIG. 9 shows the results of examining the vitamin A storage capacity in stationary phase hepatic stellate cells by flow cytometry after adding 10 ⁇ M retinol to a culture system of iPS cell-derived stationary phase hepatic stellate cells and culturing for 4 days.
  • FIG. 10 shows the experimental method for activating the stationary hepatic stellate cells derived from iPS cells and the result of the expression of the activated hepatic stellate cell marker genes (ACTA2 and COL1A1).
  • FIG. 11 shows the results of evaluating the activating capacity by inducing differentiation of quiescent hepatic stellate cells from iPS cells.
  • FIG. 12 shows a method for visualizing the activation of the activated hepatic stellate cell marker gene (ACTA2) along with the activation of quiescent hepatic stellate cells derived from iPS cells.
  • ACTA2 activated hepatic stellate cell marker gene
  • RFP indicates a gene encoding a red fluorescent protein
  • 2A indicates an intervening sequence encoding a peptide sequence of about 20 amino acid residues derived from virus.
  • FIG. 13 shows the results of analyzing the expression of RFP accompanying activation by inducing differentiation of quiescent hepatic stellate cells from the ACTA2-RFP reporter iPS cells.
  • FIG. 14 shows a method for evaluating hepatic stellate cell activation using reporter iPS cells obtained by introducing a reporter gene into quiescent hepatic stellate cells derived from iPS cells.
  • FIG. 15 is a graph showing activation marker genes for agents (TGFb) that enhance activation of hepatic stellate cells and agents (A83-01, ICG-001) that suppress activation using the evaluation method shown in FIG. The result of having examined expression is shown.
  • TGFb agents that enhance activation of hepatic stellate cells
  • agents A83-01, ICG-001
  • FIG. 16 shows the results of observing the fluorescence of the reporter protein (RFP) in the reporter iPS cells 5 days after the addition of each drug, using an FV3000 confocal laser scanning microscope.
  • A is a fluorescence image of RFP
  • B is a superimposition of images obtained by simultaneously staining the nuclei of cells using Hoechst 33342.
  • FIG. 17 shows a screening system for therapeutic agents using an activation evaluation system for quiescent hepatic stellate cells derived from reporter iPS cells.
  • the lower left diagram shows the results of automatically detecting the number of viable cells and RFP positive cells in each well (green: positive control, red: negative control).
  • the lower right figure shows the validation results of the screening system.
  • Green dots show the analysis result of each well and show the area of RFP fluorescence in hepatic stellate cells derived from ACTA2-RFP reporter iPS cells. Pink dots indicate the area of RFP fluorescence in hepatic stellate cells derived from normal iPS cells.
  • the present invention relates to a method for preparing quiescent hepatic stellate cells, which comprises the step of inducing differentiation of pluripotent stem cells and fractionating quiescent hepatic stellate cells using the NGFR-positive phenotype as an index.
  • the present invention also relates to a method for introducing a reporter gene into the obtained resting hepatic stellate cells and screening a drug for treating a liver disease associated with liver fibrosis such as cirrhosis.
  • the present invention is described in detail below.
  • pluripotent stem cells are cells having self-renewal ability and pluripotency, which compose the living body. A cell having the ability to form any cell.
  • Self-renewal ability refers to the ability to make the same undifferentiated cell as oneself from one cell.
  • Differenceentiation potential refers to the ability of cells to differentiate.
  • the pluripotent stem cells include, for example, induced pluripotent stem cells (iPS cells), embryonic stem cells (ES cells), mouse cells (multi-lineage differing cell sperm cells, and embryonic stem cells).
  • the pluripotent stem cells used in the present invention are preferably iPS cells.
  • the source of pluripotent stem cells may be any of mammals, birds, fish, reptiles and amphibians, and is not particularly limited. Mammals include primates (human, monkey, etc.), rodents (mouse, rat, guinea pig, etc.), cats, dogs, rabbits, sheep, pigs, cows, horses, donkeys, goats, ferrets, and the like. More preferably human.
  • the “iPS cell” refers to a cultured cell in which a somatic cell is initialized to an undifferentiated state by introducing a reprogramming factor into the somatic cell to impart pluripotency.
  • a reprogramming factor for example, OCT3/4, KLF4, SOX2, and c-Myc can be used (Yu J, et al., Science, 2007; 318:1917-20), and c-Myc from the above four genes can be used.
  • OCT3/4, KLF4, SOX2, and c-Myc can be used (Yu J, et al., Science, 2007; 318:1917-20), and c-Myc from the above four genes can be used.
  • OCT3/4 and SOX2 and LIN28 and Nanog can be used (Takahashi K, et al., Cell, 2007; 131:861-72).
  • the form of introduction of these factors into cells is not particularly limited, and examples thereof include gene introduction using a plasmid, introduction of synthetic RNA, and direct introduction as a protein.
  • iPS cells prepared from cells derived from healthy volunteers having an HLA (Human Leukocyte Antigen) type combination (HLA homozygote) that is considered to be less likely to cause rejection may be used.
  • HLA Human Leukocyte Antigen
  • the pluripotent stem cells including iPS cells commercially available products or cells that have been distributed may be used, or newly prepared cells may be used.
  • Examples of the iPS cells include 253G1 strain, 201B6 strain, 201B7 strain, 409B2 strain, 454E2 strain, HiPS-RIKEN-1A strain, HiPS-RIKEN-2A strain, HiPS-RIKEN-12A strain, Nips-B2 strain, TkDN4-M. Strain, TkDA3-1 strain, TkDA3-2 strain, TkDA3-4 strain, TkDA3-5 strain, TkDA3-9 strain, TkDA3-20 strain, hiPSC38-2 strain, MSC-iPSC1 strain, BJ-iPSC1 strain, etc. can do. Newly produced clinical grade iPS cells may be used.
  • the origin of cells for producing iPS cells is not particularly limited, but, for example, fibroblasts or lymphocytes can be used.
  • Hepatic stellate cell typically refers to a stellate fibroblast-like cell having a vitamin A storage capacity, which is present in the liver and is in a dormant state (quiescent phase). Alternatively, it may be in an activated state.
  • hepatic stellate cells in the dormant state (quiescent phase) are particularly referred to as “quiescent hepatic stellate cells” to distinguish them from activated hepatic stellate cells.
  • quiescent hepatic stellate cells Normally, even dormant hepatic stellate cells produce extracellular matrix such as collagen to form connective tissue, which is important for the normal organization of organ structures.
  • the hepatic stellate cells when the hepatic stellate cells are activated, the hepatic stellate cells produce large amounts of excess collagen and inflammatory molecules.
  • the distinction between stationary hepatic stellate cells and activated hepatic stellate cells can be distinguished by measuring the protein production and gene expression mainly expressed in each hepatic stellate cell.
  • a method of measuring the mRNA expression using a marker gene specific to each gene can be used.
  • Quantitative RT-PCR is a convenient method, although the amount of gene expression is not limited to quantification and analysis.
  • quiescent hepatic stellate cells derived from iPS cells
  • NGFR and/or the function of a gene expressed at the same time as NGFR (for example, LRAT, NES, HGF, And CYGB) can be used to sort stationary hepatic stellate cells.
  • the above-mentioned protein or gene may be referred to as “quiescent marker”.
  • NGFR is an abbreviation of N erve G rowth F actor R eceptor ( neurotrophic factor receptor)
  • LRAT is retinol esterification enzyme
  • a cyl t ransferase lecithin - retinol acyltransferase ) stands for "NES” is nestin (a nestin)
  • HGF is an abbreviation for H epatocyte G rowth F actor (hepatocyte growth factor)
  • CYGB is Cytoglobin (site globin) Stands for.
  • fibrosis-related gene markers that are expressed in cells when the quiescent hepatic stellate cells are activated include, but are not limited to, ACTA2, COL1A1 and the like (sometimes referred to as "activation marker” in the present specification. ) Can be used.
  • ACTA2 is ⁇ -smooth muscle actin 2
  • COL1A1 is an abbreviation for Collagen, Type I, Alpha 1 (type I collagen ⁇ 1).
  • iPS cells are used as pluripotent stem cells, the differentiation process can be observed using a gene specifically expressed in each stage as an index.
  • undifferentiated marker genes include OCT4 and NANOG
  • mesoderm marker genes include MESP1 and T
  • lateral septal mesenchymal/hepatic stellate cell marker genes include HLX, LHX2, and FOXF1. ..
  • the expression of "activation marker” in quiescent hepatic stellate cells is Is lower than the expression level of the marker, for example, 99% or less, 95% or less, 90% or less, 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, It is preferably 20% or less, 10% or less, 5% or less, and 0%.
  • the expression of the "quiescent marker" in activated hepatic stellate cells is lower than the expression level of the marker in quiescent hepatic stellate cells, for example, 99% or less, 95% or less, 90% or less, It is preferably 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, 5% or less, 0%.
  • the expression level of the activation marker of hepatic stellate cells after activation is preferably higher than the expression level of the markers of the same cells before activation, but not limited to 1.1 times, .2x, 1.3x, 1.5x, 2x, 3x, 4x, 5x, 10x, 15x, 20x, 30x, 40x, 50x, 60x, 70x, It may be 80 times, 90 times, 100 times, 200 times, 300 times, 500 times, 1000 times or the like.
  • the primers that can be used in the quantitative RT-PCR are as follows.
  • the present invention is a method for inducing differentiation of pluripotent stem cells (eg, iPS cells) to prepare quiescent hepatic stellate cells, Provided is a preparation method including a step of three-dimensionally culturing pluripotent stem cells and/or a step of culturing at a low oxygen concentration.
  • the present invention can induce quiescent hepatic stellate cell differentiation by three-dimensionally culturing pluripotent stem cells.
  • the term “three-dimensional culture” has the meaning commonly used by those skilled in the art, and can include culture forms such as spheroid culture, suspension culture, and gel culture.
  • the "gel culture” is a method of culturing cells in a gel substrate, and the gel substrate itself may or may not have an affinity for cells. May be. Further, differentiation of quiescent hepatic stellate cells can also be induced by culturing pluripotent stem cells at a low oxygen concentration together with or independently of the above three-dimensional culture. The low oxygen concentration and the culture period will be described later.
  • the present inventors have previously reported a method of inducing hepatic stellate cell differentiation from iPS cells by using a Rock inhibitor (WO2016/148216; Koui, Y. ., et al., Stem. Cell. Rep., 2017, 9, 490-498).
  • a Rock inhibitor is used in the same manner as in the conventional method, but by changing the time of addition to the culture system, iPS cell-derived resting hepatic stellate cells that could not be obtained until now are obtained. I got it successfully.
  • the present invention provides a method for preparing quiescent hepatic stellate cells, which comprises the step of inducing differentiation of pluripotent stem cells (eg, iPS cells) and fractionating quiescent hepatic stellate cells using an NGFR-positive phenotype as an index.
  • pluripotent stem cells eg, iPS cells
  • a desired quiescent hepatic stellate cell can be obtained by adding a Rock inhibitor from day 4 after the initiation of differentiation induction of pluripotent stem cells.
  • the known induction of hepatic stellate cell differentiation from iPS cells is to add a Rock inhibitor from the 6th day after the initiation of differentiation induction.
  • the hepatic stellate cells obtained there are active when the expression of the marker gene is examined. It was a modified hepatic stellate cell.
  • the hepatic stellate cells obtained by the present invention have a remarkable gene expression observed in quiescent hepatic stellate cells as compared with the hepatic stellate cells obtained by the conventional method.
  • the gene expression seen in activated hepatic stellate cells cannot be observed. Similar results were also obtained by comparison with primary cultured hepatic stellate cells (Example 3).
  • the start time of adding the Rock inhibitor is preferably 4 to 5 days before the 6th day from the start of differentiation induction.
  • Rho-kinase Rho-associated protein kinase
  • Rho-kinase Rho-associated protein kinase
  • Rho-kinase is a serine-threonine protein kinase identified as a target protein of the low-molecular-weight GTP-binding protein Rho, and is known to be involved in various physiological functions such as smooth muscle contraction and cell morphological changes.
  • the Rock inhibitor that can be used here is not particularly limited, and may be in the form of a low molecular compound, an antibody, an antisense compound, or the like.
  • Y27632 ((R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide), Fasudil (hexahydro-1-(5-isoquinolinesulfonyl) -1H-1,4-diazepine), H-1152((S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl]-hexahydro-1H-1,4-diazepine ) And the like.
  • it is Y27632.
  • the concentration at which the Rock inhibitor is added to the medium can be appropriately selected by those skilled in the art.
  • the concentration added to the medium is 0.1 to 50 ⁇ M, preferably 1 to 30 ⁇ M, more preferably 5 to 20 ⁇ M, and even more preferably 10 ⁇ M.
  • the Rock inhibitor As described above, it is preferable to start addition of the Rock inhibitor on the 4th day after the start of induction, but prior to that, the Rock inhibitor should be added on the first day (0th day) to the 1st day after the start of induction. It can be added appropriately. In this respect, it is no different from the conventional derivatization method. According to the present invention, as long as the desired quiescent hepatic stellate cells can be obtained by inducing differentiation from pluripotent stem cells, the type, concentration, and timing of addition of various additives other than the Rock inhibitor added to the culture system And the combination of additives are not limited.
  • Such additives include, but are not limited to, BMP4 (factor that induces differentiation of pluripotent stem cells into mesoderm), ActA (activin A), bFGF, VEGF (vascular endothelial growth factor), SB431542 (TGF- ⁇ . Inhibitors), Dorsomorphin (BMP inhibitors) and the like.
  • BMP4 factor that induces differentiation of pluripotent stem cells into mesoderm
  • ActA activin A
  • bFGF vascular endothelial growth factor
  • SB431542 TGF- ⁇ . Inhibitors
  • Dorsomorphin BMP inhibitors
  • the time of addition to the medium is preferably immediately after the start of induction (day 0) to day 4, and the addition concentration is not limited, but is 0.5 to 50 ng/ml, 1 to 40 ng/ml, 2 to For example, 30 ng/ml is exemplified, and the addition concentration may be changed depending on the timing of addition.
  • the added concentration of BMP4 on the 1st to 4th days may be higher than the added concentration on the 0th to 1st days.
  • the timing of addition to the medium is preferably 1 to 4 days after the start of induction, and the concentration of addition is not limited, but 1 to 20 ng/ml, 2 to 10 ng/ml, 3 to 5 ng/ml, etc. are exemplified. It Regarding ActA, the timing of addition to the medium is preferably 1 to 4 days after the start of induction, and the concentration of addition is not limited, but 1 to 20 ng/ml, 2 to 10 ng/ml, 3 to 5 ng/ml, etc. are exemplified.
  • the timing of addition to the medium is preferably 1 to 4 days after the start of induction, and the concentration of addition is not limited, but examples thereof include 1 to 20 ng/ml, 2 to 10 ng/ml, and 3 to 5 ng/ml.
  • the timing of addition to the medium is preferably 4 to 6 days after the start of induction, and the concentration of addition is not limited, but examples thereof include 1 to 30 ng/ml, 3 to 20 ng/ml, and 5 to 15 ng/ml.
  • the timing of addition to the medium is preferably on the 4th day after the start of induction, and the concentration of addition is not limited, but examples thereof include 1 to 15 ⁇ M, 2 to 10 ⁇ M, and 3 to 7 ⁇ M.
  • the time of addition to the medium is preferably on the 4th day after the start of induction, and the addition concentration is not limited, but may be 0.05 to 5 ⁇ M, 0.1 to 3 ⁇ M, 0.3 to 1 ⁇ M, etc.
  • the additive concentration of the above-mentioned additive may be any value within the range of the enumerated values, and, for example, in "1 to 20 ng/ml", 1, 2, 3, 4, 5, 1. 5, 3.5, etc. are included.
  • the cell culture medium for culturing the cells can be appropriately selected by those skilled in the art.
  • the method of inducing differentiation of iPS cells to produce quiescent hepatic stellate cells is typically as shown in FIG. Specifically, using Stempro-34 SFM as the basic medium, 10 ⁇ M Y27632, 2 ng/ml BMP4 was added from day 0 to day 1 of induction, and 5 ng/ml ActA (activin 1 to day 4 from the day of induction was added.
  • oxygen culturing cells (O 2) concentration is comparable to the O 2 concentration in the atmosphere (approximately 20%), the induction method of the present invention, initiation of induction (day 0) - It is characterized by setting the O 2 concentration to 4% until the 6th day. It may be difficult to keep the O 2 concentration in the incubator constant at exactly 4% due to an artificial culturing operation, so that the O 2 concentration may be increased for a very limited time.
  • iPS cells, ES cells, somatic stem cells and the like are suitable for suspension culture and form cell clusters with the progress of culture. Therefore, in culturing such cells, a low-adhesion incubator whose surface is coated with polyhydroxyethyl methacrylic acid (poly-HEMA), hydrogel, MPC (2-Methrylylethyl Phosphoryl Choline) polymer, collagen, etc. It can be carried out by suspension culture (spheroid formation) of cells on a non-adhesive incubator not coated with the cell adhesion molecule.
  • the low-adhesion incubator and non-adhesive incubator may be commercially available or may be prepared in a laboratory.
  • EZSPHERE a container for spheroid formation culture
  • VECELL registered trademark
  • NCP NemoCulture Plate
  • ULA ultra-low adhesion surface culture vessel
  • commercially available non-adhesive incubators include, for example, petri dishes for suspension culture (manufactured by Nunc), and for suspension cell culture. Examples include commercially available petri dishes (Sumitomo Bakelite Co., Ltd.) and non-treatment plates (BD Falcon Co.).
  • the seeding concentration of cells in various incubators can be adjusted appropriately.
  • a 96-well type culture vessel for example, 1 ⁇ 10 3 to 1 ⁇ 10 6 cells/well, preferably It may be seeded at 5 ⁇ 10 3 to 5 ⁇ 10 5 cells/well, more preferably 1 ⁇ 10 4 to 1 ⁇ 10 5 cells/well.
  • pluripotent stem cells eg, iPS cells
  • NGFR-positive cells are detected at the final stage of differentiation induction (eg, 8 days from the start of induction). Resting hepatic stellate cells can be sorted using the phenotype as an index.
  • the process of collecting quiescent hepatic stellate cells using the NGFR-positive phenotype as an index is not particularly limited, but for example, fluorescence activated cell sorting (FACS) or magnetic cell sorting (MACS) ) Can be performed.
  • FACS fluorescence activated cell sorting
  • MCS magnetic cell sorting
  • the stationary phase hepatic stellate cells can be collected not only by the above-mentioned sorting but also by autofluorescence of cells or by centrifugation.
  • the cells emit autofluorescence due to vitamin uptake, and thus the cells can be fractionated using a means for detecting fluorescence and used as an index.
  • the quiescent hepatic stellate cells of the present invention are sorted by using the NGFR-positive phenotype as an index.
  • the cell fraction may be 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% with respect to all cells.
  • 98% or more or 99% or more stationary phase hepatic stellate cells are included.
  • the abundance ratio of quiescent hepatic stellate cells and activated hepatic stellate cells in the cell fraction obtained after the above-mentioned fractionation is higher than that of activated hepatic stellate cells.
  • hepatic stellate cells for example, 51:49, 55:45, 60:40, 70:30, 80:20, 90:10, 95:5, 97:3, 98:2. , 99:1, 100:0, etc.
  • the quiescent hepatic stellate cells obtained by the method of the present invention may be provided by being contained in a cell culture solution, a cell suspension, a cell preservation solution, or a hydrogel in a suitable container. Further, the quiescent hepatic stellate cells can be cryopreserved, for example, can be cryopreserved at ⁇ 80° C. for 3 months or longer, 6 months or longer, 9 months or longer, or 12 months or longer. ..
  • the stationary phase hepatic stellate cells of the present invention after freezing and thawing are not activated and can maintain stationary phase.
  • hepatic stellate cells Preparation of quiescent hepatic stellate cells into which a reporter gene has been introduced. It According to the present invention, as described above, in activated hepatic stellate cells, since ACTA2 and COL1A1 can be detected as gene markers, the expression levels of these genes may be determined, or these genes themselves may be determined. Instead of determining the expression level of the gene, the expression level of the introduced reporter gene may be measured or its expression may be visualized.
  • the hepatic stellate cells used in the screening method described below may be iPS cell-derived quiescent hepatic stellate cells into which a reporter gene functionally expressed in association with the expression of the above gene marker has been introduced.
  • reporter genes examples include, but are not limited to, fluorescent protein genes (red fluorescent protein, green fluorescent protein, yellow fluorescent protein, high-sensitivity green fluorescent protein, orange fluorescent protein, cyan fluorescent protein, etc.), luciferase gene (luc), Examples include beta-galactosidase gene (beta-gal), alkaline phosphatase gene (AP), secretory alkaline phosphatase gene (SEAP), beta-glucuronidase gene (GUS), and the like.
  • fluorescent protein genes red fluorescent protein, green fluorescent protein, yellow fluorescent protein, high-sensitivity green fluorescent protein, orange fluorescent protein, cyan fluorescent protein, etc.
  • luc luciferase gene
  • beta-galactosidase gene beta-galactosidase gene
  • AP alkaline phosphatase gene
  • SEAP secretory alkaline phosphatase gene
  • GUS beta-glucuronidase gene
  • the reporter gene can be introduced into cells by genome editing techniques such as CRISPR/Cas9 system (Cong, L., et al., Science, 2013, 339, 819-823), TALEN (Transcribing Activator-Like Effector Nuclease). (Cermak, T., et al., Nucleic Acids Res., 2011, 39:e82), ZFN (Zinc Finger Nuclease) (Kim, Y.-G., et al., Proc. Natl. Acad. Sci. USA). , 1996, 93:1156-1160) and the like, which are known to those skilled in the art.
  • CRISPR/Cas9 system Cong, L., et al., Science, 2013, 339, 819-823
  • TALEN Transcribing Activator-Like Effector Nuclease
  • ZFN Zinc Finger Nuclease
  • a method of introducing a vector into which a reporter gene is incorporated may be used, and the gene transfer using the vector is not limited, but may be viral or non-viral gene transfer (for example, , Plasmid introduction, phage integrase, transposon, adenovirus, adeno-associated virus, and lentilvirus).
  • viral or non-viral gene transfer for example, Plasmid introduction, phage integrase, transposon, adenovirus, adeno-associated virus, and lentilvirus.
  • the combination of the gene of the gene marker and the reporter gene is not particularly limited, and may be, for example, ACTA2-RFP, ACTA2-lus, COL1A1-LacZ, or the like.
  • an intervening sequence (for example, a gene encoding the 2A peptide sequence) may be appropriately introduced between the gene marker and the reporter gene.
  • the purpose of introducing the intervening sequence varies.
  • the 2A peptide is a peptide sequence of about 20 amino acid residues derived from a virus, which is recognized by a protease (2A peptidase) which is internal to cells, and is cleaved at a position of one residue from the C terminus.
  • Multiple genes linked to one unit by a 2A peptide eg, ACTA2-RFP
  • the hepatic stellate cells into which the reporter gene obtained by the method of the present invention has been introduced are quiescent hepatic stellate cells can be confirmed by examining the expression of each gene marker.
  • the quiescent hepatic stellate cell into which the reporter gene of the present invention has been introduced can be provided as a cell fraction, like the quiescent hepatic stellate cell into which the reporter gene has not been introduced.
  • the quiescent hepatic stellate cells into which the reporter gene has been introduced are provided by being contained in a cell culture medium, a cell suspension, a cell preservation solution, or a hydrogel in a suitable container. obtain. Furthermore, the quiescent hepatic stellate cells into which the reporter gene has been introduced can be cryopreserved, for example, at ⁇ 80° C. for 3 months or more, 6 months or more, 9 months or more, or 12 months or more. It is possible to The quiescent hepatic stellate cells into which the reporter gene of the present invention has been introduced after freezing and thawing are not activated and can maintain the quiescent phase.
  • the culture system of quiescent hepatic stellate cells derived from pluripotent stem cells (particularly iPS cells) of the present invention is used for liver disease associated with hepatic stellate cell-induced liver cirrhosis and liver fibrosis. It serves as an evaluation model for drugs (test substances) that treat and prevent.
  • a screening for selecting a test substance that suppresses activation of hepatic stellate cells as a candidate substance used as a drug for treating or preventing liver disease associated with fibrosis comprising: (A) culturing quiescent hepatic stellate cells derived from pluripotent stem cells into which a reporter gene has been introduced; (B) quiescent by adding a drug that activates quiescent hepatic stellate cells to the culture system of quiescent hepatic stellate cells, or collecting and reseeding the quiescent hepatic stellate cells and culturing in two dimensions Activating hepatic stellate cells to obtain activated hepatic stellate cells; (C) adding a test substance to a culture system of activated hepatic stellate cells; (D) comparing the expression level of the reporter gene before and after the addition of the test substance; and (e) for treating or
  • the comparison of the expression level of the reporter gene depends on the type of the reporter gene used, and thus may be the comparison of the numerical values measured quantitatively, or the qualitative comparison of the observed images. May be According to the present invention, when the expression level of a reporter gene is decreased, it is selected as a test substance used in a drug for treating or preventing liver disease. The expression level is decreased by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80, 90%, or 100% from the expression level when hepatic stellate cells are activated. It is preferable.
  • treating or “preventing” liver disease with a test substance can be used equivalently to the meaning of these general terms, eg, to reduce the effects of the disease. It has the meaning of controlling, abolishing, suppressing, relieving, reducing the severity of the disease, reducing the possibility of developing the disease, slowing the progression of the disease and/or curing the disease.
  • Drugs that can activate hepatic stellate cells in the screening method of the present invention include, but are not limited to, TGF- ⁇ , PDGF, chemokines, and the like. As described in Example 6 described later, in a culture system in which iPS cell-derived resting hepatic stellate cells were activated by TGF- ⁇ , A83-01 (TGF- ⁇ inhibitor) or Activation of hepatic stellate cells can be suppressed by adding ICG-001 (WNT inhibitor).
  • the culture system to which the above drug is added may be a three-dimensional culture system, a gel culture system, or a two-dimensional culture system. Also, the terms "three-dimensional culture” and “gel culture” are as defined above, while the term “two-dimensional culture” has the same meaning as commonly used by one of ordinary skill in the art.
  • the activation of quiescent hepatic stellate cells is performed not only by adding the above-mentioned activatable drug to the culture system, but also by inoculating the quiescent hepatic stellate cells in a two-dimensional culture system and culturing. It is possible.
  • the expression level of the activation marker of hepatic stellate cells after being activated by two-dimensional culture is preferably higher than the expression level of the marker of the same cells before activation, but is not limited to 1.1 times.
  • the cell culture substrate used for the two-dimensional culture is not limited as long as it is a cell culture substrate capable of obtaining activated hepatic stellate cells.
  • a cell culture substrate may be a plate or dish made of plastic such as polystyrene, polyethylene, polypropylene, polyethylene terephthalate, or the like, which has a hard bottom surface for cells, or glass.
  • the culture surface (bottom surface) of the above-mentioned cell culture substrate may be coated with a cell adhesion molecule such as collagen. The seeding concentration of cells in the two-dimensional culture can be adjusted appropriately.
  • kits suitable for screening a drug (test substance) for treating and preventing liver disease associated with cirrhosis and liver fibrosis.
  • the kit of the present invention comprises a quiescent hepatic stellate cell (or a cell culture solution containing the cell) into which the reporter gene of the present invention has been introduced, a drug for activating the quiescent hepatic stellate cell ( (Above), a culture container, a cell culture medium, instructions for using the kit, and the like.
  • Quantitative RT-PCR RNA was extracted using TRIzol reagent (Life Technologies) or NucleoSpin RNA XS (MACHEREY-NAGAL, Duren, Germany). The remaining genomic DNA was digested with DNaseI (Life Technologies 1oogies), and then single-stranded cDNA was synthesized using PrimeScript II 1st strand cDNA Synthesis Kit (Takara bio, Shiga, Japan). Quantitative RT-PCR was performed using SYBR Premix EX TaqII (Takara bio, Shiga, Japan), and data was calculated according to the ddCt method using ⁇ -actin as a standardized control.
  • Example 1 Induction of differentiation of iPS cells into quiescent hepatic stellate cells (1) Preparation of quiescent hepatic stellate cells Human iPS cells (TkDN4-M) (Tokyo University, Takayama, N., et al., J. Exp) Med., 2010, 207, 2817-2830) was cultured in a dish coated with vitronectin (Thermo Fisher Scientific). The iPS cells were detached from the dish using a StemPro Accutase Cell Dissociation Reagent (Thermo Fisher Scientific), and cultured at 1 ⁇ 10 4 cells/cm 2 in the Ultra-low attachment 6 wells, and seeded on the embryo-like plate.
  • TkDN4-M Human iPS cells
  • Thermo Fisher Scientific StemPro Accutase Cell Dissociation Reagent
  • Stempro-34 SFM Stempro-34 SFM (Thermo Fisher Scientific) as a basic medium
  • 2 ng/ml BMP4 10 ⁇ M Y27632 was added on the first day of induction 0 to 1 and 5 ng/ml ActivinA, 5 ng/ml bFGF, 30 ng on the first to fourth day of induction.
  • /Ml BMP4 was added.
  • 10 ng/ml VEGF, 5.4 ⁇ M SB431542, 0.5 ⁇ M Dorsormorphin, and 10 ⁇ M Y27632 were added 4 to 8 days after the initiation of induction.
  • NGFR-Positive Cells After induction of differentiation for 8 days, cells expressing NGFR (posi) and cells not expressing (nega) were collected using a MoFLo XDP cell sorter (Beckman Coulter, Inc), and before separation. The gene expression of the cells was compared by quantitative RT-PCR. Results are shown in FIG. In NGFR positive cells (posi), hepatic stellate cell markers (NGFR, LRAT, NES) were highly expressed, but activated hepatic stellate cell markers (ACTA2, COL1A1) were extremely low.
  • NGFR negative cells had high expression of activated hepatic stellate cell markers (ACTA2, COL1A1). From this result, it was revealed that quiescent hepatic stellate cells can be distinguished from activated hepatic stellate cells by the presence or absence of NGFR expression, and NGFR can be an index for distinguishing both cells.
  • Example 2 Comparison with hepatic stellate cells derived from iPS cells obtained by a known derivatization method Conventional hepatic stellate cells derived from iPS cells (“Ver. 1”) (WO 2016/148216; Koui, Y) , Et al., Stem. Cell. Rep., 2017, 9, 490-498) and the iPS cell-derived hepatic stellate cells (“Ver. 2”) prepared in Example 1 were used for quantitative RT. -It was analyzed by PCR and compared.
  • the hepatic stellate cell markers (NGFR, LRAT, NES) were highly expressed in the hepatic stellate cells prepared in Example 1, and the expression of the activated hepatic stellate cell markers (ACTA2, COL1A1) was extremely low.
  • the hepatic stellate cells prepared by the conventional method had extremely high expression of the activated hepatic stellate cell marker (FIG. 7). From this, it was revealed that the hepatic stellate cells prepared by the conventional method are in the activated state and the hepatic stellate cells prepared in Example 1 are in the stationary phase.
  • Example 3 Comparison with primary culture hepatic stellate cells
  • the gene expression in the iPS cell-derived hepatic stellate cells (“ver2") prepared in Example 1 and the gene expression of the primary culture hepatic stellate cells were compared by quantitative RT-PCR. investigated.
  • Primary cultured hepatic stellate cells were obtained from Lonza. The results are similar to those in Example 2, but the hepatic stellate cell markers (NGFR, LRAT, NES) are highly expressed in the hepatic stellate cells prepared in Example 1, and the activated hepatic stellate cell markers (ACTA2, COL1A1) are The expression was extremely low (Fig. 8).
  • Example 4 Vitamin A storage capacity
  • the stationary phase hepatic stellate cells prepared in Example 1 were cultured, 10 ⁇ M retinol was added to the medium, and the cells were cultured for 4 days. After detaching the cells using 0.05% trypsin/0.5 mM EDTA, intracellular autofluorescence of vitamin A was detected by flow cytometry using CantoII (BD Biosciences).
  • LX2 human stellate cell line
  • MSC mesenchymal stem cells
  • Example 5 Induction of activation of quiescent hepatic stellate cells
  • the quiescent hepatic stellate cells prepared in Example 1 were seeded and cultured on a collagen-coated plastic plate. Gene expression was analyzed by quantitative RT-PCR before culturing and after 5 days of culturing. The expression of the activated stellate cell markers (ACTA2, COL1A1) was remarkably enhanced after the culture as compared with that before the culture (FIG. 10). It was found that the quiescent hepatic stellate cells prepared in Example 1 can induce activation in the culture system, like the quiescent hepatic stellate cells in the living body.
  • FIG. 11 The lower left diagram of FIG. 11 shows activated stellate cell markers (ACTA2, COL1A1, COL1A2) of hepatic stellate cells immediately after production (day 0) and after induction of activation (day 1, day 3, and day 5). , And COL3A1) gene expression analysis results. An increase in the activated stellate cell marker could be confirmed over time.
  • the central figure shows an image in which the expression of the activated astrocyte marker aSMA (ACTA2) was confirmed by immunostaining.
  • the lower right diagram is the result of measuring by ELISA the procollagen ⁇ 1 (Pro-Collagen alpha1) secreted in the culture supernatant. From the above results, activation of quiescent hepatic stellate cells could be demonstrated at the gene level and the protein level.
  • Example 6 Validation of evaluation system based on activation of quiescent hepatic stellate cells (1) Preparation of reporter iPS cells Human iPS cells (TkDN4-M) were genetically modified using the CRISPR-Cas9 system. The stop codon of ACTA2, which is an activated hepatic stellate cell marker gene, was deleted, and RFP was inserted with the 2A peptide interposed (see FIGS. 12 and 13). Thus, quiescent hepatic stellate cells having the ACTA2-RFP reporter gene were obtained.
  • ACTA2 which is an activated hepatic stellate cell marker gene
  • the expression of the activated stellate cell markers (ACTA2, COL1A1) was remarkably enhanced after the culture as compared with that before the culture.
  • the expression of these marker genes was enhanced by the addition of TGFb, and the expression was suppressed by the addition of A83-01 and ICG-001.
  • the fluorescence of the reporter protein RFP in the cells after 5 days of culture was observed with an FV3000 confocal laser scanning microscope (OLYMPUS) (FIG. 16A).
  • Hoechst 33342 was used to stain the nuclei of cells (FIG. 16B). RFP fluorescence was suppressed under the conditions of addition of A83-01 and ICG-001 in correlation with gene expression.
  • quiescent hepatic stellate cells were prepared from iPS cells having the ACTA2-RFP reporter gene, and then the expression of RFP was observed with a FV3000 confocal laser scanning microscope (OLYMPUS) over time in a two-dimensional culture system (Fig. 13 middle, lower left figure). No expression of RFP was observed in undifferentiated iPS cells or hepatic stellate cells immediately after activation induction (day 1). Further, when the activation was induced from the 3rd day to the 5th day, the fluorescence of RFP gradually became strongly observed.
  • OLEDUS FV3000 confocal laser scanning microscope
  • Example 7 Development of therapeutic drug screening system using activation evaluation system of quiescent hepatic stellate cells derived from reporter iPS cells
  • the validity of the therapeutic drug screening system was verified (hereinafter referred to as an experiment). , Called "validation").
  • Quiescent hepatic stellate cells were generated from the ACTA2-RFP reporter iPS cells and then seeded in 384-well plates. Subsequently, Hoechst (nuclear stain) was added after 5 days of culture. An FV3000 confocal laser microscope was used to image the RFP fluorescence and Hoechst fluorescence for each well (lower left in FIG. 17).
  • the area of the RFP positive area (the activation degree of hepatic stellate cells) and the number of Hoechst dots (the number of cells) are calculated. It was calculated for each well (lower right in FIG. 17). Green dots in the lower right graph indicate the area of the RFP positive area in each well. The pink dots are the area of the RFP positive area when hepatic stellate cells derived from normal iPS cells were cultured by the same method (thus, the area is almost zero).
  • the CV value shown in the graph indicates the degree of variation of the green dots, and the smaller the value, the less the variation is, which can be said to be a good screening system.
  • Z'-factor is one of the indexes for evaluating the quality of the screening system, and is a value calculated from the dispersion of data and the intensity of measured values. Generally, it can be said that a Z′-factor of 0.5 or more is appropriate as a screening system.
  • the evaluation system using the iPS cell-derived quiescent hepatic stellate cells produced according to the present invention can be a useful tool for research and development of drug discovery such as therapeutic agents for fibrosis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention addresses the problem of providing: a method for preparing a quiescent hepatic stellate cell by inducing the differentiation of a pluripotent stem cell; and a method for screening for a chemical substance involved in the activation of a quiescent hepatic stellate cell. According to the present invention, a method for preparing a quiescent hepatic stellate cell is provided, which comprises a step of inducing the differentiation of an iPS cell and fractionating a quiescent hepatic stellate cell by employing a NGFR-positive phenotype as an index. Also provided is a screening method for selecting as a candidate substance that can be used as a drug for treating or preventing a fibrosis-related liver disease on the basis of the expression amount of a gene marker that is expressed specifically in a hepatic stellate cell that is activated by introducing a reporter gene into the quiescent hepatic stellate cell.

Description

静止期肝星細胞の調製方法と活性化評価モデルPreparation method of resting hepatic stellate cells and activation evaluation model
 本発明は、多能性幹細胞を分化誘導して静止期肝星細胞を調製する方法、該調製方法によって得られた静止期肝星細胞及びそれを含む細胞懸濁液、ならびに静止期肝星細胞の活性化に関与する薬剤のスクリーニング法に関する。 The present invention provides a method for preparing quiescent hepatic stellate cells by inducing differentiation of pluripotent stem cells, quiescent hepatic stellate cells obtained by the preparation method, a cell suspension containing the same, and quiescent hepatic stellate cells. The present invention relates to a screening method for a drug involved in the activation of
 肝臓の結合組織の増生及び蓄積は、肝臓の循環傷害を引き起こし、さらに肝実質細胞障害の原因となり、さらなる結合組織の増生及び蓄積がおこり、肝硬変や肝線維化を伴う肝疾患症の原因になると考えられている。肝臓は、肝実質細胞と非実質細胞(肝星細胞、クッパー細胞、類洞内皮細胞、Pit細胞)からなり、肝臓の結合組織は細胞外基質(コラーゲンなど)とそこに局在する細胞から構成されている。結合組織中の基質産生担当細胞である肝星細胞(Hepatic Stellate Cell:HSC)が活性化され、形質転換することにより、結合組織の増生及び蓄積が促進される。正常肝臓の肝星細胞(以下、「静止期肝星細胞」と呼ぶ)は、細胞外基質の生産量が少なく、活性化に伴い筋線維芽様細胞に形態を変化させ、細胞の増加とともに多量の細胞外基質を合成することが知られている。 Proliferation and accumulation of connective tissue of the liver causes circulatory injury of the liver, which causes hepatic parenchymal cell damage, further proliferation and accumulation of connective tissue, and causes liver disease accompanied by cirrhosis and liver fibrosis. It is considered. The liver consists of parenchymal cells and non-parenchymal cells (hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, Pit cells), and connective tissue of the liver is composed of extracellular matrix (collagen etc.) and cells localized there. Has been done. The hepatic stellate cell (HSC), which is a substrate-producing cell in connective tissue, is activated and transformed to promote the growth and accumulation of connective tissue. The hepatic stellate cells of normal liver (hereinafter referred to as “quiescent hepatic stellate cells”) produce a small amount of extracellular matrix, change their morphology into myofibroblast-like cells upon activation, and increase in number as the number of cells increases. It is known to synthesize the extracellular matrix of.
 したがって、肝硬変などの肝線維化を伴う肝疾患患者の肝星細胞の活性化を抑制し、結合組織の増生及び蓄積を軽減する治療法及び予防法が必要とされ、肝星細胞の活性化を抑制させる薬剤のスクリーニングは重要であると言える。このような必要性があるにも関わらず、肝星細胞の活性化を抑制する薬物の効率的なスクリーニング法は知られていない。 Therefore, there is a need for a therapeutic method and a prophylactic method for suppressing the activation of hepatic stellate cells in patients with liver diseases associated with liver fibrosis such as liver cirrhosis, and for reducing the growth and accumulation of connective tissue. It can be said that screening for drugs to be suppressed is important. Despite such a need, an efficient screening method for a drug that suppresses the activation of hepatic stellate cells is not known.
 本発明者らは、これまでに多能性幹細胞から肝星細胞への分化誘導系の樹立に成功している(特許文献1;非特許文献1)。しかしながら、誘導した肝星細胞は、現在市販され、入手可能な初代培養肝星細胞と同様に、すでに活性化しているか又は培養直後から活性化してしまうことが明らかとなっているため、線維症治療薬などの創薬の研究及び開発の有用ツールにはなっていない。そこで、肝星細胞の活性化過程を培養系で反映する創薬スクリーニング系の開発が望まれる。 The present inventors have succeeded in establishing a differentiation induction system from pluripotent stem cells to hepatic stellate cells (Patent Document 1; Non-Patent Document 1). However, the induced hepatic stellate cells have been shown to be already activated or to be activated immediately after the culturing, like the commercially available and commercially available primary cultured hepatic stellate cells. It is not a useful tool for research and development of drug discovery such as drugs. Therefore, it is desired to develop a drug screening system that reflects the activation process of hepatic stellate cells in a culture system.
国際公開第2016/148216号International Publication No. 2016/148216
 上記の通り、市販の初代培養星細胞は既に活性化しており、そもそもヒト生体から創薬スクリーニング系の構築に十分な静止期肝星細胞を多量に得ることは不可能である。したがって、本発明は、多能性幹細胞(例えば、iPS細胞)から静止期肝星細胞への分化誘導系の樹立と、その活性化制御系の開発を目的する。 As described above, commercially available primary cultured stellate cells have already been activated, and it is impossible to obtain a large amount of quiescent hepatic stellate cells sufficient to construct a drug screening system from the human body. Therefore, the present invention aims to establish a differentiation induction system from pluripotent stem cells (eg, iPS cells) to quiescent hepatic stellate cells, and to develop an activation control system thereof.
 本発明者らは、従来のiPS細胞を分化誘導して肝星細胞を得る方法を改良することにより、iPS細胞から静止期を安定に保持した肝星細胞を得ることに成功し、本発明を完成することに成功した。 The present inventors have succeeded in obtaining hepatic stellate cells that stably retain a stationary phase from iPS cells by improving the conventional method for inducing differentiation of iPS cells to obtain hepatic stellate cells. Successfully completed.
 すなわち本発明は、以下の態様を有する。
[1]多能性幹細胞を分化誘導して静止期肝星細胞を調製する方法であって、多能性幹細胞を三次元培養する工程、及び/又は低酸素濃度で培養する工程を含む調製方法。
[2]
 培養0~6日目まで約4%Oの存在下で多能性幹細胞を培養する、上記[1]に記載の調製方法。
[3]
 培養6日目以降、O濃度を大気中と同一にして培養を行う、上記[2]に記載の調製方法。
[4]
 三次元培養が、スフェロイド培養、浮遊培養又はゲル培養である、上記[1]~[3]のいずれか1つに記載の調製方法。
[5]
 Rock阻害剤を添加する工程を含む、上記[1]~[4]のいずれか1つに記載の調製方法。
[6]
 分化誘導前に多能性幹細胞にレポーター遺伝子を組み込む工程をさらに含む、上記[1]~[5]のいずれか1つに記載の調製方法。
[7]
 分化誘導過程又は分化誘導後にレポーター遺伝子を静止期肝星細胞に組み込む工程をさらに含む、上記[1]~[5]のいずれか1つに記載の調製方法。
[8]
 上記[1]~[7]のいずれか1つに記載の方法で調製された静止期肝星細胞。
[9]
 上記[8]に記載の静止期肝星細胞を含む細胞懸濁液。
[10]
 肝星細胞の活性化を抑制する被験物質を、線維化を伴う肝疾患症を治療又は予防するための薬剤に使用される候補物質として選択するスクリーニング法であって、
 (a)上記[6]又は[7]に記載の方法で調製された、レポーター遺伝子が導入された静止期肝星細胞を培養し;
 (b)上記静止期肝星細胞の培養系に静止期肝星細胞を活性化する薬物を添加するか、又は上記静止期肝星細胞を回収及び再播種して二次元培養することによって、静止期肝星細胞を活性化して、活性化肝星細胞を得て;
 (c)活性化肝星細胞の培養系に被験物質を添加し;
 (d)レポーター遺伝子の発現量を被験物質の添加前後で比較し;及び
 (e)被験物質の添加後にレポーター遺伝子の発現量が減少している場合に、肝疾患症を治療又は予防するための薬剤に使用される候補物質として選択する
ことを含むスクリーニング法。
[11]
 上記[10]に記載のスクリーニング法に使用するためのキットであって、上記[8]に記載の静止期肝星細胞又は上記[9]に記載の細胞懸濁液を含むキット。
That is, the present invention has the following aspects.
[1] A method for inducing differentiation of pluripotent stem cells to prepare quiescent hepatic stellate cells, which comprises a step of three-dimensionally culturing pluripotent stem cells and/or a step of culturing at a low oxygen concentration ..
[2]
The preparation method according to [1] above, wherein pluripotent stem cells are cultured in the presence of about 4% O 2 from the 0th to 6th day of culture.
[3]
The preparation method according to the above [2], wherein after the 6th day of culture, the culture is performed with the O 2 concentration being the same as in the atmosphere.
[4]
The preparation method according to any one of the above [1] to [3], wherein the three-dimensional culture is spheroid culture, suspension culture or gel culture.
[5]
The preparation method according to any one of the above [1] to [4], which comprises a step of adding a Rock inhibitor.
[6]
The preparation method according to any one of [1] to [5] above, which further comprises a step of incorporating a reporter gene into pluripotent stem cells before differentiation induction.
[7]
The preparation method according to any one of the above [1] to [5], further comprising a step of incorporating a reporter gene into a quiescent hepatic stellate cell during or after the differentiation induction process.
[8]
A quiescent hepatic stellate cell prepared by the method according to any one of [1] to [7] above.
[9]
A cell suspension containing quiescent hepatic stellate cells according to [8] above.
[10]
A screening method for selecting a test substance that suppresses the activation of hepatic stellate cells as a candidate substance used for a drug for treating or preventing liver disease associated with fibrosis,
(A) culturing a quiescent hepatic stellate cell into which a reporter gene has been prepared, prepared by the method according to [6] or [7] above;
(B) quiescent by adding a drug that activates quiescent hepatic stellate cells to the culture system of quiescent hepatic stellate cells, or collecting and reseeding the quiescent hepatic stellate cells and culturing in two dimensions Activating hepatic stellate cells to obtain activated hepatic stellate cells;
(C) adding a test substance to a culture system of activated hepatic stellate cells;
(D) comparing the expression level of the reporter gene before and after the addition of the test substance; and (e) for treating or preventing liver disease when the expression level of the reporter gene decreases after the addition of the test substance A screening method comprising selecting as a candidate substance used for a drug.
[11]
A kit for use in the screening method described in [10] above, which comprises the quiescent hepatic stellate cells described in [8] above or the cell suspension described in [9] above.
 本発明によれば、iPS細胞から、活性化されていない静止期にある肝星細胞を調製することが可能である。得られた肝硬変などの肝線維化を伴う肝疾患治療用の創薬をスクリーニングし、治療薬を評価する系に利用可能である。 According to the present invention, it is possible to prepare non-activated quiescent hepatic stellate cells from iPS cells. The obtained drug can be used for a system for screening a drug for treating a liver disease associated with liver fibrosis such as cirrhosis and evaluating the therapeutic drug.
図1は、ヒトiPS細胞を分化誘導して、静止期肝星細胞を調製する方法を示す。図中の写真は、ヒトiPS細胞が分化誘導される過程でスフェロイド形成する形態学的変化を撮像したものである。FIG. 1 shows a method for inducing differentiation of human iPS cells to prepare quiescent hepatic stellate cells. The photographs in the figure are images of morphological changes in spheroid formation in the process of differentiation induction of human iPS cells. 図2は、ヒトiPS細胞からの静止期肝星細胞への分化過程において、未分化マーカー遺伝子(OCT4、NANOG)、中胚葉マーカー遺伝子(MESP1、T)、及び横中隔間充織/肝星細胞マーカー遺伝子(HLX、LHX2、FOXF1)の経時的な発現を解析した結果を示す。FIG. 2 shows an undifferentiated marker gene (OCT4, NANOG), a mesodermal marker gene (MESP1, T), and a transseptal mesenchyme/hepatic star during the differentiation process of human iPS cells into quiescent hepatic stellate cells. The result of having analyzed the expression with time of a cell marker gene (HLX, LHX2, FOXF1) is shown. 図3は、Rock阻害剤(Y27632)の培養系への添加の有無による、ヒトiPS細胞由来の静止期肝星細胞への分化誘導効果を示す図である。図中、NGFR及びLRATは、静止期肝星細胞のマーカー遺伝子であり、ACTA2及びCOL1A1は、活性化された肝星細胞のマーカー遺伝子である。FIG. 3 is a diagram showing the effect of inducing differentiation into stationary hepatic stellate cells derived from human iPS cells by the presence or absence of addition of a Rock inhibitor (Y27632) to the culture system. In the figure, NGFR and LRAT are marker genes for quiescent hepatic stellate cells, and ACTA2 and COL1A1 are marker genes for activated hepatic stellate cells. 図4は、ヒトiPS細胞の静止期肝星細胞の分化誘導における培養中の酸素濃度を検討した実験方法とその結果を示す。分化誘導開始後の1~6日目まで酸素濃度を4%とし、6日目以降は、酸素濃度を4%に維持した場合と20%(大気中の酸素濃度に対応する)に変更した場合で比較した。比較検討は、活性化された肝星細胞のマーカー遺伝子である、ACTA2及びCOL1A1の相対的発現について行った。FIG. 4 shows an experimental method for examining the oxygen concentration in culture in inducing differentiation of quiescent hepatic stellate cells of human iPS cells and the results thereof. When the oxygen concentration is 4% from the 1st to 6th day after the initiation of differentiation induction, and after the 6th day, the oxygen concentration is maintained at 4% and changed to 20% (corresponding to the atmospheric oxygen concentration). Compared with. A comparative study was performed on the relative expression of the activated hepatic stellate cell marker genes, ACTA2 and COL1A1. 図5は、分化誘導開始後の8日目に、NGFR+細胞(「posi」)及びNGFR-細胞(「nega」)をそれぞれMoFLo XDP セルソーターにより分離し、各群の遺伝子発現を検討した結果を示す。図中、「bulk」は、セルソーターによる分離前の細胞群を指す。FIG. 5 shows the results of examining the gene expression of each group by separating the NGFR+ cells (“posi”) and the NGFR− cells (“nega”) by the MoFLo XDP cell sorter on the 8th day after the initiation of differentiation induction. .. In the figure, “bulk” refers to a cell group before separation by a cell sorter. 図6は、iPS細胞から分化誘導して得た静止期肝星細胞の画像を示す。FIG. 6 shows an image of quiescent hepatic stellate cells obtained by inducing differentiation from iPS cells. 図7は、従来法により調製したiPS細胞由来の肝星細胞(「Ver.1」)と本発明の方法により調製したiPS細胞由来の静止期肝星細胞(「Ver.2」)における各遺伝子発現を比較検討した結果を示す。FIG. 7 shows each gene in iPS cell-derived hepatic stellate cells (“Ver. 1”) prepared by the conventional method and iPS cell-derived quiescent hepatic stellate cells (“Ver. 2”) prepared by the method of the present invention. The result of having comparatively examined expression is shown. 図8は、初代培養肝星細胞(「hHSC」)と本発明の方法により調製したiPS細胞由来の静止期肝星細胞(「iPS-HSC(Ver2)」)における各遺伝子発現を比較検討した結果を示す。FIG. 8 shows the results of comparative study of gene expression in primary cultured hepatic stellate cells (“hHSC”) and iPS cell-derived resting hepatic stellate cells (“iPS-HSC(Ver2)”) prepared by the method of the present invention. Indicates. 図9は、iPS細胞由来の静止期肝星細胞の培養系に10μM レチノールを添加し、4日間培養した後に、静止期肝星細胞におけるビタミンA貯蔵能をフローサイトメトリーによって検討した結果を示す。FIG. 9 shows the results of examining the vitamin A storage capacity in stationary phase hepatic stellate cells by flow cytometry after adding 10 μM retinol to a culture system of iPS cell-derived stationary phase hepatic stellate cells and culturing for 4 days. 図10は、iPS細胞由来の静止期肝星細胞を活性化誘導するための実験手法と活性化肝星細胞マーカー遺伝子(ACTA2及びCOL1A1)の発現の結果を示す。FIG. 10 shows the experimental method for activating the stationary hepatic stellate cells derived from iPS cells and the result of the expression of the activated hepatic stellate cell marker genes (ACTA2 and COL1A1). 図11は、iPS細胞から静止期肝星細胞を分化誘導し、活性化能を評価した結果を示す。左下図は、培養系における活性化星細胞マーカーの遺伝子発現を示し、中央図は、活性化5日後にaSWA染色した画像を示し、右下図は、培地上清中に分泌されるプロコラーゲン1aを定量した結果を示す。FIG. 11 shows the results of evaluating the activating capacity by inducing differentiation of quiescent hepatic stellate cells from iPS cells. The lower left figure shows the gene expression of the activated stellate cell marker in the culture system, the central figure shows the image stained with aSWA after 5 days of activation, and the lower right figure shows the procollagen 1a secreted in the medium supernatant. The quantified results are shown. 図12は、iPS細胞由来の静止期肝星細胞の活性化に伴い、活性化肝星細胞マーカー遺伝子(ACTA2)の活性化を可視化するための手法を示す。図中、「RFP」は、赤色蛍光タンパク質をコードする遺伝子を示し、「2A」は、ウイルス由来の20アミノ酸残基前後のペプチド配列をコードする介在配列を示す。FIG. 12 shows a method for visualizing the activation of the activated hepatic stellate cell marker gene (ACTA2) along with the activation of quiescent hepatic stellate cells derived from iPS cells. In the figure, "RFP" indicates a gene encoding a red fluorescent protein, and "2A" indicates an intervening sequence encoding a peptide sequence of about 20 amino acid residues derived from virus. 図13は、ACTA2-RFPレポーターiPS細胞から静止期肝星細胞を分化誘導し、活性化に伴うRFPの発現を解析した結果を示す。FIG. 13 shows the results of analyzing the expression of RFP accompanying activation by inducing differentiation of quiescent hepatic stellate cells from the ACTA2-RFP reporter iPS cells. 図14は、iPS細胞由来の静止期肝星細胞にレポーター遺伝子を導入したレポーターiPS細胞を用いた肝星細胞活性化を評価する手法を示す。FIG. 14 shows a method for evaluating hepatic stellate cell activation using reporter iPS cells obtained by introducing a reporter gene into quiescent hepatic stellate cells derived from iPS cells. 図15は、図14で示した評価法を用いて、肝星細胞の活性化を増強する薬剤(TGFb)及び活性化を抑制する薬剤(A83-01、ICG-001)による活性化マーカー遺伝子の発現を検討した結果を示す。FIG. 15 is a graph showing activation marker genes for agents (TGFb) that enhance activation of hepatic stellate cells and agents (A83-01, ICG-001) that suppress activation using the evaluation method shown in FIG. The result of having examined expression is shown. 図16は、各薬剤を添加してから5日後のレポーターiPS細胞におけるレポータータンパク質(RFP)の蛍光をFV3000共焦点レーザー走査型顕微鏡により観察した結果を示す。Aは、RFPの蛍光画像であり、Bは、同時にHoechst33342を用いて細胞の核を染色した画像を重ね合わせたものである。FIG. 16 shows the results of observing the fluorescence of the reporter protein (RFP) in the reporter iPS cells 5 days after the addition of each drug, using an FV3000 confocal laser scanning microscope. A is a fluorescence image of RFP, and B is a superimposition of images obtained by simultaneously staining the nuclei of cells using Hoechst 33342. 図17は、レポーターiPS細胞由来の静止期肝星細胞の活性化評価系を用いた治療薬のスクリーニング系を示す。左下図は、各ウェル内の生細胞数とRFP陽性細胞を自動的に検出した結果を示す(緑色:陽性対照、赤色:陰性対照)。右下図は、スクリーニング系のバリデーション結果を示す。緑色のドットは、各ウェルの解析結果をし、ACTA2-RFPレポーターiPS細胞に由来する肝星細胞におけるRFPの蛍光の面積を示す。ピンクのドットは、正常のiPS細胞に由来する肝星細胞におけるRFPの蛍光の面積を示す。FIG. 17 shows a screening system for therapeutic agents using an activation evaluation system for quiescent hepatic stellate cells derived from reporter iPS cells. The lower left diagram shows the results of automatically detecting the number of viable cells and RFP positive cells in each well (green: positive control, red: negative control). The lower right figure shows the validation results of the screening system. Green dots show the analysis result of each well and show the area of RFP fluorescence in hepatic stellate cells derived from ACTA2-RFP reporter iPS cells. Pink dots indicate the area of RFP fluorescence in hepatic stellate cells derived from normal iPS cells.
 本発明は、多能性幹細胞を分化誘導して、NGFR陽性の表現型を指標として静止期肝星細胞を分取する工程を含む、静止期肝星細胞の調製方法に関する。また、得られた静止期肝星細胞にレポーター遺伝子を導入し、肝硬変などの肝線維化を伴う肝疾患を治療するための薬剤をスクリーニングするための方法に関する。本発明を以下に詳細に説明する。 The present invention relates to a method for preparing quiescent hepatic stellate cells, which comprises the step of inducing differentiation of pluripotent stem cells and fractionating quiescent hepatic stellate cells using the NGFR-positive phenotype as an index. The present invention also relates to a method for introducing a reporter gene into the obtained resting hepatic stellate cells and screening a drug for treating a liver disease associated with liver fibrosis such as cirrhosis. The present invention is described in detail below.
1.多能性幹細胞由来の静止期肝星細胞の作製
(1)多能性幹細胞
 本明細書において「多能性幹細胞」とは、自己複製能と多分化能を有する細胞であり、生体を構成するあらゆる細胞を形成する能力を備える細胞をいう。「自己複製能」とは、1つの細胞から自分と同じ未分化な細胞を作る能力のことをいう。「分化能」とは、細胞が分化する能力をいう。多能性幹細胞としては、例えば、人工多能性幹細胞(induced pluripotent stem cell:iPS細胞)、胚性幹細胞(embryonic stem cell:ES細胞)、Muse細胞(Multi-lineage differentiating Stress Enduring cell)、精子幹細胞(germline stem cell:GS細胞)、胚性生殖細胞(embryonic germ cell:EG細胞)などが含まれるが、これらに限定されない。本発明に用いる多能性幹細胞は、好ましくは、iPS細胞である。なお、多能性幹細胞の由来は、哺乳動物、鳥類、魚類、爬虫類及び両生類のいずれでもよく、特に限定されない。哺乳動物は、霊長類(ヒト、サルなど)、げっ歯類(マウス、ラット、モルモットなど)、ネコ、イヌ、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ロバ、ヤギ、フェレットなどを含む。より好ましくはヒトである。
1. Preparation of quiescent hepatic stellate cells derived from pluripotent stem cells (1) Pluripotent stem cells In the present specification, "pluripotent stem cells" are cells having self-renewal ability and pluripotency, which compose the living body. A cell having the ability to form any cell. "Self-renewal ability" refers to the ability to make the same undifferentiated cell as oneself from one cell. "Differentiation potential" refers to the ability of cells to differentiate. The pluripotent stem cells include, for example, induced pluripotent stem cells (iPS cells), embryonic stem cells (ES cells), mouse cells (multi-lineage differing cell sperm cells, and embryonic stem cells). (Germline stem cells: GS cells), embryonic germ cells (embryonic germ cells: EG cells) and the like, but are not limited thereto. The pluripotent stem cells used in the present invention are preferably iPS cells. The source of pluripotent stem cells may be any of mammals, birds, fish, reptiles and amphibians, and is not particularly limited. Mammals include primates (human, monkey, etc.), rodents (mouse, rat, guinea pig, etc.), cats, dogs, rabbits, sheep, pigs, cows, horses, donkeys, goats, ferrets, and the like. More preferably human.
 本発明において「iPS細胞」とは、体細胞に初期化因子を導入することにより体細胞を未分化状態へと初期化し、多能性を付与した培養細胞をいう。初期化因子としては、例えば、OCT3/4及びKLF4及びSOX2及びc-Mycを用いることができ(Yu J,et al.,Science,2007;318:1917-20)、上記4遺伝子からc-Mycを除く3遺伝子(後述するTkDN4-M、253G1)、また、OCT3/4及びSOX2及びLIN28及びNanogを用いることができる(Takahashi K,et al.,Cell,2007;131:861-72)。これらの因子の細胞への導入形態は特に限定されないが、例えば、プラスミドを用いた遺伝子導入、合成RNAの導入、タンパク質として直接導入などが挙げられる。また、microRNAやRNA、低分子化合物等を用いた方法で作製されたiPS細胞を用いてもよい。また、拒絶反応が起きにくいとされるHLA(Human Leukocyte Antigen)型の組み合わせ(HLAホモ接合体)を持つ健常人ボランティア由来の細胞から作製されたiPS細胞を用いてもよい。iPS細胞を始めとする多能性幹細胞は、市販品又は分譲を受けた細胞を用いてもよく、新たに作製したものを用いてもよい。iPS細胞として、例えば、253G1株、201B6株、201B7株、409B2株、454E2株、HiPS-RIKEN-1A株、HiPS-RIKEN-2A株、HiPS-RIKEN-12A株、Nips-B2株、TkDN4-M株、TkDA3-1株、TkDA3-2株、TkDA3-4株、TkDA3-5株、TkDA3-9株、TkDA3-20株、hiPSC 38-2株、MSC-iPSC1株、BJ-iPSC1株等を使用することができる。新たに作製された臨床グレードのiPS細胞を用いてもよい。iPS細胞を作製する際の細胞の由来は特に限定されないが、例えば、繊維芽細胞又はリンパ球等を用いることができる。 In the present invention, the “iPS cell” refers to a cultured cell in which a somatic cell is initialized to an undifferentiated state by introducing a reprogramming factor into the somatic cell to impart pluripotency. As the reprogramming factor, for example, OCT3/4, KLF4, SOX2, and c-Myc can be used (Yu J, et al., Science, 2007; 318:1917-20), and c-Myc from the above four genes can be used. Except for 3 genes (TkDN4-M, 253G1 described later), OCT3/4 and SOX2 and LIN28 and Nanog can be used (Takahashi K, et al., Cell, 2007; 131:861-72). The form of introduction of these factors into cells is not particularly limited, and examples thereof include gene introduction using a plasmid, introduction of synthetic RNA, and direct introduction as a protein. Moreover, you may use the iPS cell produced by the method using microRNA, RNA, a low molecular compound, etc. In addition, iPS cells prepared from cells derived from healthy volunteers having an HLA (Human Leukocyte Antigen) type combination (HLA homozygote) that is considered to be less likely to cause rejection may be used. As the pluripotent stem cells including iPS cells, commercially available products or cells that have been distributed may be used, or newly prepared cells may be used. Examples of the iPS cells include 253G1 strain, 201B6 strain, 201B7 strain, 409B2 strain, 454E2 strain, HiPS-RIKEN-1A strain, HiPS-RIKEN-2A strain, HiPS-RIKEN-12A strain, Nips-B2 strain, TkDN4-M. Strain, TkDA3-1 strain, TkDA3-2 strain, TkDA3-4 strain, TkDA3-5 strain, TkDA3-9 strain, TkDA3-20 strain, hiPSC38-2 strain, MSC-iPSC1 strain, BJ-iPSC1 strain, etc. can do. Newly produced clinical grade iPS cells may be used. The origin of cells for producing iPS cells is not particularly limited, but, for example, fibroblasts or lymphocytes can be used.
(2)肝星細胞
 本発明において「肝星細胞」とは、典型的には、肝臓に存在する、ビタミンA貯蔵能を有する星状の線維芽細胞様細胞を指し、休眠状態(静止期)又は活性化状態であってもよい。本明細書では、休眠状態(静止期)にある肝星細胞を特に「静止期肝星細胞」と記載し、活性化状態にある肝星細胞と区別する。通常、休眠状態の肝星細胞であっても、臓器の構造の正常な組織化に重要な結合組織を形成するためにコラーゲンなどの細胞外基質を産生する。一方、肝星細胞が活性化されると、肝星細胞は、大量で過剰のコラーゲンや炎症性分子を産生するようになる。
(2) Hepatic stellate cell In the present invention, the term “hepatic stellate cell” typically refers to a stellate fibroblast-like cell having a vitamin A storage capacity, which is present in the liver and is in a dormant state (quiescent phase). Alternatively, it may be in an activated state. In the present specification, hepatic stellate cells in the dormant state (quiescent phase) are particularly referred to as “quiescent hepatic stellate cells” to distinguish them from activated hepatic stellate cells. Normally, even dormant hepatic stellate cells produce extracellular matrix such as collagen to form connective tissue, which is important for the normal organization of organ structures. On the other hand, when the hepatic stellate cells are activated, the hepatic stellate cells produce large amounts of excess collagen and inflammatory molecules.
 静止期肝星細胞と活性化された肝星細胞の区別は、各肝星細胞に主に発現するタンパク質産生や遺伝子発現を測定することにより可能である。各肝星細胞の遺伝子発現の有無や比較検討する場合、それぞれの遺伝子に固有のマーカー遺伝子を用いて、そのmRNA発現を測定する方法が使用され得る。遺伝子発現量を定量及び分析には、限定されないが、定量RT-PCRが簡便な方法である。 The distinction between stationary hepatic stellate cells and activated hepatic stellate cells can be distinguished by measuring the protein production and gene expression mainly expressed in each hepatic stellate cell. When comparing the presence or absence of gene expression in each hepatic stellate cell, a method of measuring the mRNA expression using a marker gene specific to each gene can be used. Quantitative RT-PCR is a convenient method, although the amount of gene expression is not limited to quantification and analysis.
 本発明によれば、iPS細胞由来の静止期肝星細胞の遺伝子発現の指標として、限定されないが、NGFR、及び/又はNGFRと同時期に発現する遺伝子の機能(例えば、LRAT、NES、HGF、及びCYGBなど)を使用することにより静止期肝星細胞を分取することができる。本明細書において、上記のタンパク質又は遺伝子を「静止期マーカー」と称することがある。「NGFR」は、erve rowth actor eceptor(神経栄養因子受容体)の略であり、「LRAT」は、レチノールエステル化酵素であるecithin etinol cylransferase(レシチン-レチノールアシルトランスフェラーゼ)の略であり、「NES」は、Nestin(ネスチン)であり、「HGF」は、epatocyte rowth actor(肝細胞増殖因子)の略であり、「CYGB」は、Cytoglobin(サイトグロビン)の略である。一方、上記静止期肝星細胞が活性化された場合に細胞に発現する線維化関連遺伝子マーカーとして、限定されないが、ACTA2、COL1A1など(本明細書において、「活性化マーカー」と称することがある)を使用することができる。「ACTA2」は、α-平滑筋アクチン2であり、「COL1A1」は、Collagen,Type I,Alpha 1(I型コラーゲンα1)の略である。また、多能性幹細胞としてiPS細胞を使用する場合、分化の過程は、各段階に特異的に発現する遺伝子を指標として観察することができる。例えば、未分化マーカー遺伝子として、OCT4及びNANOGが挙げられ、中胚葉マーカー遺伝子として、MESP1及びTが挙げられ、横中隔間充織/肝星細胞マーカー遺伝子として、HLX、LHX2、FOXF1が挙げられる。なお、静止期肝星細胞と活性化された肝星細胞のそれぞれのマーカー遺伝子の発現量を比較した場合、静止期肝星細胞における「活性化マーカー」の発現は、活性化された肝星細胞の同マーカーの発現量と比較して低く、例えば、99%以下、95%以下、90%以下、80%以下、70%以下、60%以下、50%以下、40%以下、30%以下、20%以下、10%以下、5%以下、0%であることが好ましい。一方、活性化された肝星細胞における「静止期マーカー」の発現は、静止期肝星細胞の同マーカーの発現量と比較して低く、例えば、99%以下、95%以下、90%以下、80%以下、70%以下、60%以下、50%以下、40%以下、30%以下、20%以下、10%以下、5%以下、0%であることが好ましい。また、活性化された後の肝星細胞の活性化マーカーの発現量は、活性化前の同細胞のマーカーの発現量と比較して高いことが好ましく、限定されないが、1.1倍、1.2倍、1.3倍、1.5倍、2倍、3倍、4倍、5倍、10倍、15倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍、100倍、200倍、300倍、500倍、1000倍などであってもよい。 According to the present invention, as an index of gene expression of quiescent hepatic stellate cells derived from iPS cells, but not limited to, NGFR and/or the function of a gene expressed at the same time as NGFR (for example, LRAT, NES, HGF, And CYGB) can be used to sort stationary hepatic stellate cells. In the present specification, the above-mentioned protein or gene may be referred to as “quiescent marker”. "NGFR" is an abbreviation of N erve G rowth F actor R eceptor ( neurotrophic factor receptor), "LRAT" is retinol esterification enzyme L ecithin R etinol A cyl t ransferase ( lecithin - retinol acyltransferase ) stands for "NES" is nestin (a nestin), "HGF" is an abbreviation for H epatocyte G rowth F actor (hepatocyte growth factor), "CYGB" is Cytoglobin (site globin) Stands for. On the other hand, fibrosis-related gene markers that are expressed in cells when the quiescent hepatic stellate cells are activated include, but are not limited to, ACTA2, COL1A1 and the like (sometimes referred to as "activation marker" in the present specification. ) Can be used. “ACTA2” is α-smooth muscle actin 2, and “COL1A1” is an abbreviation for Collagen, Type I, Alpha 1 (type I collagen α1). Further, when iPS cells are used as pluripotent stem cells, the differentiation process can be observed using a gene specifically expressed in each stage as an index. For example, undifferentiated marker genes include OCT4 and NANOG, mesoderm marker genes include MESP1 and T, and lateral septal mesenchymal/hepatic stellate cell marker genes include HLX, LHX2, and FOXF1. .. When the expression levels of the marker genes of quiescent hepatic stellate cells and activated hepatic stellate cells are compared, the expression of "activation marker" in quiescent hepatic stellate cells is Is lower than the expression level of the marker, for example, 99% or less, 95% or less, 90% or less, 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, It is preferably 20% or less, 10% or less, 5% or less, and 0%. On the other hand, the expression of the "quiescent marker" in activated hepatic stellate cells is lower than the expression level of the marker in quiescent hepatic stellate cells, for example, 99% or less, 95% or less, 90% or less, It is preferably 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, 5% or less, 0%. In addition, the expression level of the activation marker of hepatic stellate cells after activation is preferably higher than the expression level of the markers of the same cells before activation, but not limited to 1.1 times, .2x, 1.3x, 1.5x, 2x, 3x, 4x, 5x, 10x, 15x, 20x, 30x, 40x, 50x, 60x, 70x, It may be 80 times, 90 times, 100 times, 200 times, 300 times, 500 times, 1000 times or the like.
 定量RT-PCRで使用され得るプライマーは、以下の通りである。
Figure JPOXMLDOC01-appb-T000001
The primers that can be used in the quantitative RT-PCR are as follows.
Figure JPOXMLDOC01-appb-T000001
(3)多能性幹細胞から静止期肝星細胞への分化誘導法
 本発明は、多能性幹細胞(例えば、iPS細胞)を分化誘導して静止期肝星細胞を調製する方法であって、多能性幹細胞を三次元培養する工程、及び/又は低酸素濃度で培養する工程を含む調製方法を提供する。本発明は、多能性幹細胞を三次元培養することによって静止期肝星細胞を分化誘導することができる。ここで、「三次元培養」とは、当業者が一般的に使用される意味を有するが、例えば、スフェロイド培養、浮遊培養、又はゲル培養などの培養形態を含むことができる。また、「ゲル培養」とは、ゲル状基質中で細胞を培養する方法であって、ゲル状基質自体は、細胞に親和性のあるものであってもよく、又は親和性がないものであってもよい。また、上記の三次元培養とともに又は独立して、多能性幹細胞を低酸素濃度で培養することによっても静止期肝星細胞を分化誘導することができる。低酸素の濃度及び培養時期などについては、後述する。
(3) Method for Inducing Differentiation of Pluripotent Stem Cells into Quiescent Hepatic Stellate Cells The present invention is a method for inducing differentiation of pluripotent stem cells (eg, iPS cells) to prepare quiescent hepatic stellate cells, Provided is a preparation method including a step of three-dimensionally culturing pluripotent stem cells and/or a step of culturing at a low oxygen concentration. The present invention can induce quiescent hepatic stellate cell differentiation by three-dimensionally culturing pluripotent stem cells. Here, the term “three-dimensional culture” has the meaning commonly used by those skilled in the art, and can include culture forms such as spheroid culture, suspension culture, and gel culture. Further, the "gel culture" is a method of culturing cells in a gel substrate, and the gel substrate itself may or may not have an affinity for cells. May be. Further, differentiation of quiescent hepatic stellate cells can also be induced by culturing pluripotent stem cells at a low oxygen concentration together with or independently of the above three-dimensional culture. The low oxygen concentration and the culture period will be described later.
 別の態様によれば、これまでに本発明者らは、Rock阻害剤を用いてiPS細胞から肝星細胞を分化誘導する方法を報告している(国際公開第2016/148216号;Koui,Y.,et al.,Stem.Cell.Rep.,2017,9,490-498を参照されたい)。本発明によれば、従前の方法と同様にRock阻害剤を使用するが、培養系に添加する時期を変更することにより、これまで得ることができなかったiPS細胞由来の静止期肝星細胞を得ることに成功した。 According to another aspect, the present inventors have previously reported a method of inducing hepatic stellate cell differentiation from iPS cells by using a Rock inhibitor (WO2016/148216; Koui, Y. ., et al., Stem. Cell. Rep., 2017, 9, 490-498). According to the present invention, a Rock inhibitor is used in the same manner as in the conventional method, but by changing the time of addition to the culture system, iPS cell-derived resting hepatic stellate cells that could not be obtained until now are obtained. I got it successfully.
 本発明は、多能性幹細胞(例えば、iPS細胞)を分化誘導して、NGFR陽性の表現型を指標として静止期肝星細胞を分取する工程を含む、静止期肝星細胞を調製する方法を提供する。本発明によれば、多能性幹細胞を分化誘導開始後の4日目からRock阻害剤を添加することにより、所望の静止期肝星細胞を得ることができる。公知のiPS細胞から肝星細胞を分化誘導は、分化誘導開始後の6日目からRock阻害剤を添加するものであるが、そこで得られる肝星細胞は、マーカー遺伝子の発現を検討すると、活性化された肝星細胞であった。後述する実施例2において、本発明により得られた肝星細胞は、従来の方法によって得られた肝星細胞と比較して、静止期肝星細胞に見られる遺伝子発現が顕著であり、さらに、活性化された肝星細胞に見られる遺伝子発現が観察することができない。また、初代培養肝星細胞との比較によっても同様の結果が得られた(実施例3)。このように、Rock阻害剤を添加する開始時期としては、分化誘導開始から6日目になる以前の4~5日目が好ましい。 The present invention provides a method for preparing quiescent hepatic stellate cells, which comprises the step of inducing differentiation of pluripotent stem cells (eg, iPS cells) and fractionating quiescent hepatic stellate cells using an NGFR-positive phenotype as an index. I will provide a. According to the present invention, a desired quiescent hepatic stellate cell can be obtained by adding a Rock inhibitor from day 4 after the initiation of differentiation induction of pluripotent stem cells. The known induction of hepatic stellate cell differentiation from iPS cells is to add a Rock inhibitor from the 6th day after the initiation of differentiation induction. The hepatic stellate cells obtained there are active when the expression of the marker gene is examined. It was a modified hepatic stellate cell. In Example 2 which will be described later, the hepatic stellate cells obtained by the present invention have a remarkable gene expression observed in quiescent hepatic stellate cells as compared with the hepatic stellate cells obtained by the conventional method. The gene expression seen in activated hepatic stellate cells cannot be observed. Similar results were also obtained by comparison with primary cultured hepatic stellate cells (Example 3). Thus, the start time of adding the Rock inhibitor is preferably 4 to 5 days before the 6th day from the start of differentiation induction.
 多能性幹細胞から肝星細胞を分化誘導するために使用される上記のRock阻害剤は、Rhoキナーゼ(Rho-associated protein kinase:Rock)を阻害する薬剤を指す。「Rhoキナーゼ」は、低分子量GTP結合蛋白Rhoの標的蛋白質として同定されたセリン-スレオニン蛋白リン酸化酵素であり、平滑筋収縮や細胞の形態変化など様々な生理機能に関与していることが知られている。ここで、使用可能なRock阻害剤としては、特に限定されず、低分子化合物、抗体、またはアンチセンス化合物などの形態のものであってもよい。例えば、Y27632((R)-(+)-トランス-N-(4-ピリジル)-4-(1-アミノエチル)-シクロヘキサンカルボキサミド)、ファスジル(Fasudil)(ヘキサヒドロ-1-(5-イソキノリンスルホニル)-1H-1,4-ジアゼピン)、H-1152((S)-(+)-2-メチル-1-[(4-メチル-5-イソキノリニル)スフホニル]-ヘキサヒドロ-1H-1,4-ジアゼピン)などが挙げられる。好ましくは、Y27632である。また、Rock阻害剤を培地に添加する際の濃度は、当業者であれば適宜、選択可能である。例えば、Y27632を使用する場合、培地への添加濃度は、0.1~50μM、好ましくは1~30μM、より好ましくは5~20μM、さらにより好ましくは10μMである。 The above-mentioned Rock inhibitor used for inducing differentiation of hepatic stellate cells from pluripotent stem cells refers to a drug that inhibits Rho-kinase (Rho-associated protein kinase). “Rho-kinase” is a serine-threonine protein kinase identified as a target protein of the low-molecular-weight GTP-binding protein Rho, and is known to be involved in various physiological functions such as smooth muscle contraction and cell morphological changes. Has been. The Rock inhibitor that can be used here is not particularly limited, and may be in the form of a low molecular compound, an antibody, an antisense compound, or the like. For example, Y27632 ((R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide), Fasudil (hexahydro-1-(5-isoquinolinesulfonyl) -1H-1,4-diazepine), H-1152((S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl]-hexahydro-1H-1,4-diazepine ) And the like. Preferably, it is Y27632. The concentration at which the Rock inhibitor is added to the medium can be appropriately selected by those skilled in the art. For example, when Y27632 is used, the concentration added to the medium is 0.1 to 50 μM, preferably 1 to 30 μM, more preferably 5 to 20 μM, and even more preferably 10 μM.
 上記の通り、Rock阻害剤の添加を開始する時期は、誘導開始後の4日目が好ましいが、それに先行して、誘導開始の直後(0日目)~1日目にもRock阻害剤を適宜添加することができる。この点においては、従来の誘導化法と相違しない。本発明によれば、多能性幹細胞から分化誘導して所望の静止期肝星細胞を得ることできる限りにおいて、培養系に添加されるRock阻害剤以外の各種添加剤の種類、濃度、添加時期、及び添加剤の組み合わせは限定されない。このような添加剤としては、限定されないが、BMP4(多能性幹細胞を中胚葉に分化誘導させる因子)、ActA(アクチビンA)、bFGF、VEGF(血管内皮細胞増殖因子)、SB431542(TGF-β阻害剤)、ドルソモルフィン(Dorsomorphin)(BMP阻害剤)などが挙げられる。BMP4について、培地への添加時期は、誘導開始の直後(0日目)~4日目が好ましく、添加濃度は、限定されないが、0.5~50ng/ml、1~40ng/ml、2~30ng/mlなどが例示され、添加時期により、添加濃度を変更してもよい。例えば、1~4日目のBMP4の添加濃度は、0~1日目までの添加濃度と比べて高くてもよい。ActAについて、培地への添加時期は、誘導開始の1~4日目が好ましく、添加濃度は、限定されないが、1~20ng/ml、2~10ng/ml、3~5ng/mlなどが例示される。ActAについて、培地への添加時期は、誘導開始の1~4日目が好ましく、添加濃度は、限定されないが、1~20ng/ml、2~10ng/ml、3~5ng/mlなどが例示される。bFGFについて、培地への添加時期は、誘導開始の1~4日目が好ましく、添加濃度は、限定されないが、1~20ng/ml、2~10ng/ml、3~5ng/mlなどが例示される。VEGFについて、培地への添加時期は、誘導開始の4~6日目が好ましく、添加濃度は、限定されないが、1~30ng/ml、3~20ng/ml、5~15ng/mlなどが例示される。SB431542について、培地への添加時期は、誘導開始の4日目以降が好ましく、添加濃度は、限定されないが、1~15μM、2~10μM、3~7μMなどが例示される。ドルソモルフィンについて、培地への添加時期は、誘導開始の4日目以降が好ましく、添加濃度は、限定されないが、0.05~5μM、0.1~3μM、0.3~1μMなどが例示される。上記の添加剤の添加濃度は、列挙した数値の範囲内に含まれる任意の数値であってもよく、例えば、「1~20ng/ml」では、1、2、3、4、5、1.5、3.5などが含まれる。また、多能性幹細胞から分化誘導して所望の静止期肝星細胞を得る過程において、細胞を培養する細胞培養液は、当業者であれば適宜、選択可能である。例示的な態様において、iPS細胞を分化誘導して静止期肝星細胞を作製する方法は、典型的には、図1に示される通りである。具体的には、Stempro-34 SFMを基本培地として、誘導開始0日から1日に10μMのY27632、2ng/mlのBMP4を添加し、誘導開始1日~4日に5ng/mlのActA(アクチビンA)、5ng/mlのbFGF、30ng/mlのBMP4を加え、誘導開始4日から6日に10ng/mlのVEGF、5.4μMのSB431542、0.5μMのドルソモルフィン、及び10μMのY27632を加えることで行う。この条件で8日目まで培養し、NGFR陽性細胞を分取して静止期肝星細胞を得ることができる。 As described above, it is preferable to start addition of the Rock inhibitor on the 4th day after the start of induction, but prior to that, the Rock inhibitor should be added on the first day (0th day) to the 1st day after the start of induction. It can be added appropriately. In this respect, it is no different from the conventional derivatization method. According to the present invention, as long as the desired quiescent hepatic stellate cells can be obtained by inducing differentiation from pluripotent stem cells, the type, concentration, and timing of addition of various additives other than the Rock inhibitor added to the culture system And the combination of additives are not limited. Such additives include, but are not limited to, BMP4 (factor that induces differentiation of pluripotent stem cells into mesoderm), ActA (activin A), bFGF, VEGF (vascular endothelial growth factor), SB431542 (TGF-β. Inhibitors), Dorsomorphin (BMP inhibitors) and the like. For BMP4, the time of addition to the medium is preferably immediately after the start of induction (day 0) to day 4, and the addition concentration is not limited, but is 0.5 to 50 ng/ml, 1 to 40 ng/ml, 2 to For example, 30 ng/ml is exemplified, and the addition concentration may be changed depending on the timing of addition. For example, the added concentration of BMP4 on the 1st to 4th days may be higher than the added concentration on the 0th to 1st days. Regarding ActA, the timing of addition to the medium is preferably 1 to 4 days after the start of induction, and the concentration of addition is not limited, but 1 to 20 ng/ml, 2 to 10 ng/ml, 3 to 5 ng/ml, etc. are exemplified. It Regarding ActA, the timing of addition to the medium is preferably 1 to 4 days after the start of induction, and the concentration of addition is not limited, but 1 to 20 ng/ml, 2 to 10 ng/ml, 3 to 5 ng/ml, etc. are exemplified. It Regarding bFGF, the timing of addition to the medium is preferably 1 to 4 days after the start of induction, and the concentration of addition is not limited, but examples thereof include 1 to 20 ng/ml, 2 to 10 ng/ml, and 3 to 5 ng/ml. It Regarding VEGF, the timing of addition to the medium is preferably 4 to 6 days after the start of induction, and the concentration of addition is not limited, but examples thereof include 1 to 30 ng/ml, 3 to 20 ng/ml, and 5 to 15 ng/ml. It For SB431542, the timing of addition to the medium is preferably on the 4th day after the start of induction, and the concentration of addition is not limited, but examples thereof include 1 to 15 μM, 2 to 10 μM, and 3 to 7 μM. For dorsomorphin, the time of addition to the medium is preferably on the 4th day after the start of induction, and the addition concentration is not limited, but may be 0.05 to 5 μM, 0.1 to 3 μM, 0.3 to 1 μM, etc. It The additive concentration of the above-mentioned additive may be any value within the range of the enumerated values, and, for example, in "1 to 20 ng/ml", 1, 2, 3, 4, 5, 1. 5, 3.5, etc. are included. In addition, in the process of inducing differentiation from pluripotent stem cells to obtain the desired resting hepatic stellate cells, the cell culture medium for culturing the cells can be appropriately selected by those skilled in the art. In an exemplary embodiment, the method of inducing differentiation of iPS cells to produce quiescent hepatic stellate cells is typically as shown in FIG. Specifically, using Stempro-34 SFM as the basic medium, 10 μM Y27632, 2 ng/ml BMP4 was added from day 0 to day 1 of induction, and 5 ng/ml ActA (activin 1 to day 4 from the day of induction was added. A) 5 ng/ml bFGF, 30 ng/ml BMP4 are added, and 10 ng/ml VEGF, 5.4 μM SB431542, 0.5 μM dorsomorphin, and 10 μM Y27632 are added 4 to 6 days after the start of induction. Do that. By culturing under these conditions until the 8th day, NGFR-positive cells can be collected to obtain quiescent hepatic stellate cells.
 一般的に、細胞を培養する酸素(O)濃度は、大気中のO濃度(約20%)と同程度であるが、本発明の誘導化方法では、誘導開始(0日目)~6日目までO濃度を4%とすることを特徴とする。人為的な培養操作などにより、インキュベーター内のO濃度を厳密に4%に一定に維持することは困難な場合もあるため、ごく限定された時間、O濃度が上昇し得ることもある。後述する実施例1に記載されるように、6日目以降にO濃度を4%に維持して培養を持続した場合と、6日目以降にO濃度を20%にして培養した場合では、高O濃度の環境下での培養により、肝星細胞の活性化が抑制されることも見出された。したがって、本発明において、静止期肝星細胞への分化誘導化では、上述してRock阻害剤の添加時期のみならず、培養中のO濃度を上昇させることも重要な要素であると言える。 In general, oxygen culturing cells (O 2) concentration is comparable to the O 2 concentration in the atmosphere (approximately 20%), the induction method of the present invention, initiation of induction (day 0) - It is characterized by setting the O 2 concentration to 4% until the 6th day. It may be difficult to keep the O 2 concentration in the incubator constant at exactly 4% due to an artificial culturing operation, so that the O 2 concentration may be increased for a very limited time. As described in Example 1 to be described later, the case where the O 2 concentration was maintained at 4% and the culture was continued after the 6th day, and the case where the O 2 concentration was increased to 20% and the culture was performed after the 6th day It was also found that culturing in an environment of high O 2 concentration suppresses activation of hepatic stellate cells. Therefore, in the present invention, it can be said that in inducing differentiation into quiescent hepatic stellate cells, not only the above-mentioned addition timing of the Rock inhibitor but also increasing the O 2 concentration in culture is an important factor.
 多能性幹細胞のうち、iPS細胞、ES細胞、体性幹細胞などは浮遊培養に適しており、培養経過とともに細胞塊を形成する。したがって、このような細胞の培養では、ポリヒドロキシエチルメタクリル酸(poly-HEMA)、ハイドロゲル、MPC(2-Methacryloylethyl Phosphoryl Choline)ポリマーなどで表面がコーティングされた低接着性の培養器や、コラーゲンなどの細胞接着分子でコーティングされていない非接着性の培養器上で細胞を浮遊培養(スフェロイド形成)することにより行うことができる。上記低接着性の培養器や非接着性の培養器は、市販のものであってもよく、又は研究室において調製したものであってもよい。さらには、市販の低接着性の培養器としては、例えば、EZSPHERE(スフェロイド形成培養用容器)(IWAKI社)、VECELL(登録商標)プレート(ベセル株式会社)、NCP(NanoCulture Plate)(SCIVAX Life Sciences社)、ULA(超低接着表面)培養容器(CORNING社)を挙げることができ、市販の非接着性の培養器としては、例えば、浮遊培養用ペトリディッシュ(Nunc社製)、浮遊細胞培養用シャーレ(住友ベークライト社)、ノントリートメントプレート(BD Falcon社)の市販品を挙げることができる。なお、各種培養器への細胞の播種濃度は、適宜調整可能であり、例えば、96ウェルタイプの培養用容器を使用する場合、例えば、1×10~1×10細胞/ウェル、好ましくは5×10~5×10細胞/ウェル、より好ましくは1×10~1×10細胞/ウェルで播種され得る。 Among pluripotent stem cells, iPS cells, ES cells, somatic stem cells and the like are suitable for suspension culture and form cell clusters with the progress of culture. Therefore, in culturing such cells, a low-adhesion incubator whose surface is coated with polyhydroxyethyl methacrylic acid (poly-HEMA), hydrogel, MPC (2-Methrylylethyl Phosphoryl Choline) polymer, collagen, etc. It can be carried out by suspension culture (spheroid formation) of cells on a non-adhesive incubator not coated with the cell adhesion molecule. The low-adhesion incubator and non-adhesive incubator may be commercially available or may be prepared in a laboratory. Furthermore, as a commercially available low-adhesive incubator, for example, EZSPHERE (a container for spheroid formation culture) (IWAKI), VECELL (registered trademark) plate (Bethel Co., Ltd.), NCP (NanoCulture Plate) (SCIVAX Life Sciences). Company), ULA (ultra-low adhesion surface) culture vessel (CORNING Co.), and commercially available non-adhesive incubators include, for example, petri dishes for suspension culture (manufactured by Nunc), and for suspension cell culture. Examples include commercially available petri dishes (Sumitomo Bakelite Co., Ltd.) and non-treatment plates (BD Falcon Co.). The seeding concentration of cells in various incubators can be adjusted appropriately. For example, when a 96-well type culture vessel is used, for example, 1×10 3 to 1×10 6 cells/well, preferably It may be seeded at 5×10 3 to 5×10 5 cells/well, more preferably 1×10 4 to 1×10 5 cells/well.
 本発明によれば、多能性幹細胞(例えば、iPS細胞)を分化誘導して静止期肝星細胞を作製する場合、分化誘導の最終段階(例えば、誘導開始から8日目)でNGFR陽性の表現型を指標として静止期肝星細胞を分取することができる。NGFR陽性の表現型を指標として静止期肝星細胞を分取する工程は、特に限定されないが、例えば、蛍光活性化細胞ソーティング(Fluorescence Activated Cell Sorting;FACS)又は磁気細胞ソーティング(Magnetic Cell Sorting;MACS)により行うことができる。また、本発明によれば、静止期肝星細胞の分取には、上記のソーティングに限定されず、細胞の自家蛍光に基づいて、又は遠心分離によっても可能である。例えば、LRAT陽性期では、ビタミンの取り込みに起因して、細胞が自家蛍光を発することから蛍光を検出する手段を用いて分取し、指標とすることもできる。 According to the present invention, when pluripotent stem cells (eg, iPS cells) are induced to differentiate to produce quiescent hepatic stellate cells, NGFR-positive cells are detected at the final stage of differentiation induction (eg, 8 days from the start of induction). Resting hepatic stellate cells can be sorted using the phenotype as an index. The process of collecting quiescent hepatic stellate cells using the NGFR-positive phenotype as an index is not particularly limited, but for example, fluorescence activated cell sorting (FACS) or magnetic cell sorting (MACS) ) Can be performed. Further, according to the present invention, the stationary phase hepatic stellate cells can be collected not only by the above-mentioned sorting but also by autofluorescence of cells or by centrifugation. For example, in the LRAT-positive period, cells emit autofluorescence due to vitamin uptake, and thus the cells can be fractionated using a means for detecting fluorescence and used as an index.
 上記の通り、本発明の静止期肝星細胞は、NGFR陽性の表現型を指標として分取されるものであるが、静止期肝星細胞の使用では、該静止期肝星細胞を含む細胞画分であってもよく、例えば、該細胞画分は、全細胞に対して90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上又は99%以上の静止期肝星細胞を含む。また、別の態様では、上記の分取後に得られた細胞画分中の静止期肝星細胞と活性化された肝星細胞との存在比は、活性化された肝星細胞よりも静止期肝星細胞が多く存在すれば特に限定されないが、例えば、51:49、55:45、60:40、70:30、80:20、90:10、95:5、97:3、98:2、99:1、100:0などであり得る。 As described above, the quiescent hepatic stellate cells of the present invention are sorted by using the NGFR-positive phenotype as an index. For example, the cell fraction may be 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% with respect to all cells. As described above, 98% or more or 99% or more stationary phase hepatic stellate cells are included. In another aspect, the abundance ratio of quiescent hepatic stellate cells and activated hepatic stellate cells in the cell fraction obtained after the above-mentioned fractionation is higher than that of activated hepatic stellate cells. It is not particularly limited as long as there are many hepatic stellate cells, for example, 51:49, 55:45, 60:40, 70:30, 80:20, 90:10, 95:5, 97:3, 98:2. , 99:1, 100:0, etc.
 なお、本発明の方法によって得られた静止期肝星細胞は、適切な容器中で、細胞培養液、細胞懸濁液、細胞保存液、ハイドロゲルに含有させて提供され得る。さらに、該静止期肝星細胞は、凍結保存され得、例えば、-80℃で、3か月以上、6か月以上、9か月以上、又は12か月以上凍結保存することが可能である。凍結後、解凍した後における本発明の静止期肝星細胞は、活性化されておらず、静止期を維持し得る。 The quiescent hepatic stellate cells obtained by the method of the present invention may be provided by being contained in a cell culture solution, a cell suspension, a cell preservation solution, or a hydrogel in a suitable container. Further, the quiescent hepatic stellate cells can be cryopreserved, for example, can be cryopreserved at −80° C. for 3 months or longer, 6 months or longer, 9 months or longer, or 12 months or longer. .. The stationary phase hepatic stellate cells of the present invention after freezing and thawing are not activated and can maintain stationary phase.
2.レポーター遺伝子を導入した静止期肝星細胞の作製
 肝星細胞の活性化が一因となって生じる肝硬変や肝線維化を伴う肝疾患症を治療及び予防するための薬剤をスクリーニングする方法が提供される。本発明によれば、上述したように、活性化された肝星細胞は、ACTA2及びCOL1A1が遺伝子マーカーとして検出され得るため、これらの遺伝子の発現量を決定してもよく、又はこれらの遺伝子自体の発現量を決定する代わりに、導入したレポーター遺伝子の発現量を測定し、若しくはその発現を可視化してもよい。後述するスクリーニング法に使用される肝星細胞は、上記遺伝子マーカーの発現に付随して機能発現するレポーター遺伝子が導入されたiPS細胞由来の静止期肝星細胞であり得る。
2. Preparation of quiescent hepatic stellate cells into which a reporter gene has been introduced A method for screening a drug for treating and preventing liver disease associated with liver cirrhosis and liver fibrosis caused by activation of hepatic stellate cells is provided. It According to the present invention, as described above, in activated hepatic stellate cells, since ACTA2 and COL1A1 can be detected as gene markers, the expression levels of these genes may be determined, or these genes themselves may be determined. Instead of determining the expression level of the gene, the expression level of the introduced reporter gene may be measured or its expression may be visualized. The hepatic stellate cells used in the screening method described below may be iPS cell-derived quiescent hepatic stellate cells into which a reporter gene functionally expressed in association with the expression of the above gene marker has been introduced.
 導入可能なレポーター遺伝子としては、限定されないが、蛍光タンパク質遺伝子(赤色蛍光タンパク質、緑色蛍光タンパク質、黄色蛍光タンパク質、高感度緑色蛍光タンパク質、橙色蛍光タンパク質、シアン蛍光タンパク質など)、ルシフェラーゼ遺伝子(luc)、ベータ-ガラクトシダーゼ遺伝子(beta-gal)、アルカリホスファターゼ遺伝子(AP)、分泌型アルカリホスファターゼ遺伝子(SEAP)、ベータグルクロニダーゼ遺伝子(GUS)などが挙げられる。 Examples of reporter genes that can be introduced include, but are not limited to, fluorescent protein genes (red fluorescent protein, green fluorescent protein, yellow fluorescent protein, high-sensitivity green fluorescent protein, orange fluorescent protein, cyan fluorescent protein, etc.), luciferase gene (luc), Examples include beta-galactosidase gene (beta-gal), alkaline phosphatase gene (AP), secretory alkaline phosphatase gene (SEAP), beta-glucuronidase gene (GUS), and the like.
 細胞へのレポーター遺伝子の導入法は、ゲノム編集技術、例えば、CRISPR/Cas9システム(Cong,L.,et al.,Science,2013,339,819-823)、TALEN(Transcription Activator-Like Effector Nuclease)(Cermak,T.,et al.,Nucleic Acids Res.,2011,39:e82)、ZFN(Zinc Finger Nuclease)(Kim,Y.-G.,et al.,Proc.Natl.Acad.Sci.USA,1996,93:1156-1160)などの当業者にとって公知の遺伝子改変技術を用いて行うことができる。また、より一般的な遺伝子導入法として、レポーター遺伝子を組み込んだベクターを導入する方法を用いてもよく、ベクターを用いた遺伝子導入としては、限定されないが、ウイルス性又は非ウイルス性遺伝子導入(例えば、プラスミド導入、ファージインテグラーゼ、トランスポゾン、アデノウイルス、アデノ随伴ウイルス、及びレンチウイスルなど)が挙げられる。 The reporter gene can be introduced into cells by genome editing techniques such as CRISPR/Cas9 system (Cong, L., et al., Science, 2013, 339, 819-823), TALEN (Transcribing Activator-Like Effector Nuclease). (Cermak, T., et al., Nucleic Acids Res., 2011, 39:e82), ZFN (Zinc Finger Nuclease) (Kim, Y.-G., et al., Proc. Natl. Acad. Sci. USA). , 1996, 93:1156-1160) and the like, which are known to those skilled in the art. Further, as a more general gene transfer method, a method of introducing a vector into which a reporter gene is incorporated may be used, and the gene transfer using the vector is not limited, but may be viral or non-viral gene transfer (for example, , Plasmid introduction, phage integrase, transposon, adenovirus, adeno-associated virus, and lentilvirus).
 遺伝子マーカーとレポーター遺伝子の遺伝子の組み合わせは、特に限定されず、例えば、ACTA2-RFP、ACTA2-lus、COL1A1-LacZなどであってもよい。また、遺伝子マーカーとレポーター遺伝子の間に適宜、介在配列(例えば、2Aペプチド配列をコードする遺伝子)を導入してもよい。介在配列を導入する目的は様々である。例えば、2Aペプチドは、ウイルス由来の20アミノ酸残基前後のペプチド配列であり、細胞に内在するプロテアーゼ(2Aペプチダーゼ)により認識され、C末端から1残基の位置で切断される。2Aペプチドにより1つのユニットに連結された複数遺伝子(例えば、ACTA2-RFP)は、1つのユニットとして転写翻訳された後、2Aペプチダーゼで切断され得る。 The combination of the gene of the gene marker and the reporter gene is not particularly limited, and may be, for example, ACTA2-RFP, ACTA2-lus, COL1A1-LacZ, or the like. In addition, an intervening sequence (for example, a gene encoding the 2A peptide sequence) may be appropriately introduced between the gene marker and the reporter gene. The purpose of introducing the intervening sequence varies. For example, the 2A peptide is a peptide sequence of about 20 amino acid residues derived from a virus, which is recognized by a protease (2A peptidase) which is internal to cells, and is cleaved at a position of one residue from the C terminus. Multiple genes linked to one unit by a 2A peptide (eg, ACTA2-RFP) can be transcribed and translated as a unit and then cleaved with a 2A peptidase.
 本発明の方法によって得られるレポーター遺伝子が導入された肝星細胞が静止期肝星細胞であるかどうかは、各遺伝子マーカーの発現を調べることによって確認することができる。また、本発明のレポーター遺伝子が導入された静止期肝星細胞は、レポーター遺伝子が導入されていない静止期肝星細胞と同様に、細胞画分として提供され得る。 Whether the hepatic stellate cells into which the reporter gene obtained by the method of the present invention has been introduced are quiescent hepatic stellate cells can be confirmed by examining the expression of each gene marker. In addition, the quiescent hepatic stellate cell into which the reporter gene of the present invention has been introduced can be provided as a cell fraction, like the quiescent hepatic stellate cell into which the reporter gene has not been introduced.
 なお、本発明の方法によって得られたレポーター遺伝子が導入された静止期肝星細胞は、適切な容器中で、細胞培養液、細胞懸濁液、細胞保存液、ハイドロゲルに含有させて提供され得る。さらに、該レポーター遺伝子が導入された静止期肝星細胞は、凍結保存され得、例えば、-80℃で、3か月以上、6か月以上、9か月以上、又は12か月以上凍結保存することが可能である。凍結後、解凍した後における本発明のレポーター遺伝子が導入された静止期肝星細胞は、活性化されておらず、静止期を維持し得る。 The quiescent hepatic stellate cells into which the reporter gene has been introduced, obtained by the method of the present invention, are provided by being contained in a cell culture medium, a cell suspension, a cell preservation solution, or a hydrogel in a suitable container. obtain. Furthermore, the quiescent hepatic stellate cells into which the reporter gene has been introduced can be cryopreserved, for example, at −80° C. for 3 months or more, 6 months or more, 9 months or more, or 12 months or more. It is possible to The quiescent hepatic stellate cells into which the reporter gene of the present invention has been introduced after freezing and thawing are not activated and can maintain the quiescent phase.
3.評価モデル及び有効な治療薬のスクリーニング法
 本発明の多能性幹細胞(特にiPS細胞)由来の静止期肝星細胞の培養系は、肝星細胞に起因した肝硬変や肝線維化を伴う肝疾患症を治療及び予防する薬剤(被験物質)の評価モデルとなる。より具体的には、本発明によれば、肝星細胞の活性化を抑制する被験物質を、線維化を伴う肝疾患症を治療又は予防するための薬剤に使用される候補物質として選択するスクリーニング法が提供され、該スクリーニング法は、
 (a)レポーター遺伝子が導入された多能性幹細胞由来の静止期肝星細胞を培養し;
 (b)上記静止期肝星細胞の培養系に静止期肝星細胞を活性化する薬物を添加するか、又は上記静止期肝星細胞を回収及び再播種して二次元培養することによって、静止期肝星細胞を活性化して、活性化肝星細胞を得て;
 (c)活性化肝星細胞の培養系に被験物質を添加し;
 (d)レポーター遺伝子の発現量を被験物質の添加前後で比較し;及び
 (e)被験物質の添加後にレポーター遺伝子の発現量が減少している場合に、肝疾患症を治療又は予防するための薬剤に使用される候補物質として選択する
ことを含み得る。
3. Evaluation Model and Screening Method for Effective Therapeutic Agents The culture system of quiescent hepatic stellate cells derived from pluripotent stem cells (particularly iPS cells) of the present invention is used for liver disease associated with hepatic stellate cell-induced liver cirrhosis and liver fibrosis. It serves as an evaluation model for drugs (test substances) that treat and prevent. More specifically, according to the present invention, a screening for selecting a test substance that suppresses activation of hepatic stellate cells as a candidate substance used as a drug for treating or preventing liver disease associated with fibrosis A method is provided, the screening method comprising:
(A) culturing quiescent hepatic stellate cells derived from pluripotent stem cells into which a reporter gene has been introduced;
(B) quiescent by adding a drug that activates quiescent hepatic stellate cells to the culture system of quiescent hepatic stellate cells, or collecting and reseeding the quiescent hepatic stellate cells and culturing in two dimensions Activating hepatic stellate cells to obtain activated hepatic stellate cells;
(C) adding a test substance to a culture system of activated hepatic stellate cells;
(D) comparing the expression level of the reporter gene before and after the addition of the test substance; and (e) for treating or preventing liver disease when the expression level of the reporter gene decreases after the addition of the test substance It may include selecting as a candidate substance for use in a drug.
 本発明では、レポーター遺伝子の発現量の比較は、使用されるレポーター遺伝子のタイプに依存するため、定量的に測定された数値の比較であってもよく、また観察された画像の定性的な比較であってもよい。本発明によれば、レポーター遺伝子の発現量が減少した場合に、肝疾患症を治療又は予防するための薬剤に使用される被験物質として選択することを特徴とするが、被験物質を添加後の発現量が、肝星細胞を活性化したときの発現量から少なくとも10%、20%、30%、40%、50%、60%、70%、80、90%、又は100%減少していることが好ましい。 In the present invention, the comparison of the expression level of the reporter gene depends on the type of the reporter gene used, and thus may be the comparison of the numerical values measured quantitatively, or the qualitative comparison of the observed images. May be According to the present invention, when the expression level of a reporter gene is decreased, it is selected as a test substance used in a drug for treating or preventing liver disease. The expression level is decreased by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80, 90%, or 100% from the expression level when hepatic stellate cells are activated. It is preferable.
 本明細書で使用するとき、被験物質によって肝疾患症を「治療する」又は「予防する」とは、これらの一般的な用語の意味と同等に使用され得て、例えば、疾患の影響を低減する、無効にする、抑制する、和らげる、疾患の重症度を軽減する、疾患を発症する可能性を減らす、疾患の進行を鈍化させる及び/または疾患を治癒させる、など意味を有する。 As used herein, “treating” or “preventing” liver disease with a test substance can be used equivalently to the meaning of these general terms, eg, to reduce the effects of the disease. It has the meaning of controlling, abolishing, suppressing, relieving, reducing the severity of the disease, reducing the possibility of developing the disease, slowing the progression of the disease and/or curing the disease.
 本発明のスクリーニング法において肝星細胞を活性化し得る薬物としては、限定されないが、TGF-β、PDGF、ケモカインなどが挙げられる。後述する実施例6に記載されるように、iPS細胞由来の静止期肝星細胞をTGF-βにより活性化した培養系に、被験物質の例として、A83-01(TGF-β阻害剤)やICG-001(WNT阻害剤)を添加することにより、肝星細胞の活性化を抑制することができる。なお、上記の薬物を添加する培養系は、三次元培養系又はゲル培養系であってもよく、又は二次元培養系であってもよい。また、「三次元培養」及び「ゲル培養」なる用語は、上記で定義した通りであり、一方、「二次元培養」なる用語は、当業者が通常、用いる用語と同じ意味を有する。 Drugs that can activate hepatic stellate cells in the screening method of the present invention include, but are not limited to, TGF-β, PDGF, chemokines, and the like. As described in Example 6 described later, in a culture system in which iPS cell-derived resting hepatic stellate cells were activated by TGF-β, A83-01 (TGF-β inhibitor) or Activation of hepatic stellate cells can be suppressed by adding ICG-001 (WNT inhibitor). The culture system to which the above drug is added may be a three-dimensional culture system, a gel culture system, or a two-dimensional culture system. Also, the terms "three-dimensional culture" and "gel culture" are as defined above, while the term "two-dimensional culture" has the same meaning as commonly used by one of ordinary skill in the art.
 別の態様において、静止期肝星細胞の活性化は、上述の活性化し得る薬物の培養系への添加のみならず、静止期肝星細胞を二次元培養系に播種し、培養することによっても可能である。二次元培養によって活性化された後の肝星細胞の活性化マーカーの発現量は、活性化前の同細胞のマーカーの発現量と比較して高いことが好ましく、限定されないが、1.1倍、1.2倍、1.3倍、1.5倍、2倍、3倍、4倍、5倍、10倍、15倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍、100倍、200倍、300倍、500倍、1000倍などであってもよい。なお、二次元培養に使用する細胞培養基材は、活性化肝星細胞を得ることができる細胞培養基材であれば限定されない。このような細胞培養基材には、細胞に対して硬い底面を有する、例えば、ポリスチレン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどのプラスチック製やガラス製のプレートやディッシュであってもよい。また、上記の細胞培養基材の培養面(底面)は、コラーゲンなどの細胞接着分子でコーティングされていてもよい。また、二次元培養における細胞の播種濃度は、適宜調整し得る。 In another embodiment, the activation of quiescent hepatic stellate cells is performed not only by adding the above-mentioned activatable drug to the culture system, but also by inoculating the quiescent hepatic stellate cells in a two-dimensional culture system and culturing. It is possible. The expression level of the activation marker of hepatic stellate cells after being activated by two-dimensional culture is preferably higher than the expression level of the marker of the same cells before activation, but is not limited to 1.1 times. , 1.2 times, 1.3 times, 1.5 times, 2 times, 3 times, 4 times, 5 times, 10 times, 15 times, 20 times, 30 times, 40 times, 50 times, 60 times, 70 times It may be double, 80 times, 90 times, 100 times, 200 times, 300 times, 500 times, 1000 times or the like. The cell culture substrate used for the two-dimensional culture is not limited as long as it is a cell culture substrate capable of obtaining activated hepatic stellate cells. Such a cell culture substrate may be a plate or dish made of plastic such as polystyrene, polyethylene, polypropylene, polyethylene terephthalate, or the like, which has a hard bottom surface for cells, or glass. Further, the culture surface (bottom surface) of the above-mentioned cell culture substrate may be coated with a cell adhesion molecule such as collagen. The seeding concentration of cells in the two-dimensional culture can be adjusted appropriately.
4.キット
 本発明は、肝硬変や肝線維化を伴う肝疾患症を治療及び予防するための薬剤(被験物質)をスクリーニングするのに適したキットが提供される。一態様では、本発明のキットには、本発明のレポーター遺伝子が導入された静止期肝星細胞(又は該細胞を含む細胞培養液など)、静止期肝星細胞を活性化するための薬物(上述)、培養容器、細胞培養培地、キットの使用説明書などが含まれる。
4. Kit The present invention provides a kit suitable for screening a drug (test substance) for treating and preventing liver disease associated with cirrhosis and liver fibrosis. In one aspect, the kit of the present invention comprises a quiescent hepatic stellate cell (or a cell culture solution containing the cell) into which the reporter gene of the present invention has been introduced, a drug for activating the quiescent hepatic stellate cell ( (Above), a culture container, a cell culture medium, instructions for using the kit, and the like.
 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
定量RT-PCR
 TRIzol reagent(Life Technologies)若しくはNucleoSpin RNA XS(MACHEREY-NAGAL,Duren,Germany)を用いてRNAを抽出した。残存しているゲノムDNAを、DNaseI(Life Techno1ogies)を用いて消化後、PrimeScript II 1st strand cDNA Synthesis Kit(Takara bio,Shiga,Japan)を用いて一本鎖cDNAを合成した。定量RT-PCRは、SYBR Premix EX TaqII(Takara bio,Shiga,Japan)を用いて行い、データはβ-アクチンを標準化コントロールとしてddCt法に従って算出した。
Quantitative RT-PCR
RNA was extracted using TRIzol reagent (Life Technologies) or NucleoSpin RNA XS (MACHEREY-NAGAL, Duren, Germany). The remaining genomic DNA was digested with DNaseI (Life Technologies 1oogies), and then single-stranded cDNA was synthesized using PrimeScript II 1st strand cDNA Synthesis Kit (Takara bio, Shiga, Japan). Quantitative RT-PCR was performed using SYBR Premix EX TaqII (Takara bio, Shiga, Japan), and data was calculated according to the ddCt method using β-actin as a standardized control.
実施例1:iPS細胞から静止期肝星細胞への分化誘導
(1)静止期肝星細胞の作製
 ヒトiPS細胞(TkDN4-M)(東京大学、Takayama,N.,et al.,J.Exp.Med.,2010,207,2817-2830)をビトロネクチンコート(Thermo Fisher Scientific)したディッシュで培養した。iPS細胞をStemPro Accutase Cell Dissociation Reagent(Thermo Fisher Scientific)を用いてディッシュから剥離し、1×10cells/cmでUltra-low attachment 6 well plateへ播種し、胚様体形成培養を行なった。Stempro-34 SFM(Thermo Fisher Scientific)を基本培地として、誘導開始0~1日に2ng/ml BMP4、10μM Y27632を添加し、誘導開始1~4日に5ng/ml ActivinA、5ng/ml bFGF、30ng/ml BMP4を添加した。その後、誘導開始4~8日に10ng/ml VEGF、5.4μM SB431542、0.5μM Dorsomorphin、10μM Y27632を添加した。なお、誘導開始0~6日は4%酸素濃度環境下で培養し、誘導開始6~8日は20%酸素濃度環境下で培養した。8日間誘導後、MoFLo XDP セルソーター(Beckman Coulter,Inc)を用いてNGFRを発現する静止期肝星細胞を分取した(図1)。また、図1に示した細胞形態の画像から、胚様体が形成されている過程が観察できた。
Example 1: Induction of differentiation of iPS cells into quiescent hepatic stellate cells (1) Preparation of quiescent hepatic stellate cells Human iPS cells (TkDN4-M) (Tokyo University, Takayama, N., et al., J. Exp) Med., 2010, 207, 2817-2830) was cultured in a dish coated with vitronectin (Thermo Fisher Scientific). The iPS cells were detached from the dish using a StemPro Accutase Cell Dissociation Reagent (Thermo Fisher Scientific), and cultured at 1×10 4 cells/cm 2 in the Ultra-low attachment 6 wells, and seeded on the embryo-like plate. Using Stempro-34 SFM (Thermo Fisher Scientific) as a basic medium, 2 ng/ml BMP4, 10 μM Y27632 was added on the first day of induction 0 to 1 and 5 ng/ml ActivinA, 5 ng/ml bFGF, 30 ng on the first to fourth day of induction. /Ml BMP4 was added. After that, 10 ng/ml VEGF, 5.4 μM SB431542, 0.5 μM Dorsormorphin, and 10 μM Y27632 were added 4 to 8 days after the initiation of induction. It should be noted that 0 to 6 days after the start of induction was cultured in a 4% oxygen concentration environment, and 6 to 8 days after the start of induction was cultured in a 20% oxygen concentration environment. After induction for 8 days, quiescent hepatic stellate cells expressing NGFR were fractionated using a MoFLo XDP cell sorter (Beckman Coulter, Inc) (FIG. 1). Moreover, from the image of the cell morphology shown in FIG. 1, the process in which embryoid bodies were formed could be observed.
(2)静止期肝星細胞分化過程における遺伝子発現解析
 iPS細胞から分化誘導開始後の0日、1日、4日、6日、8日における未分化マーカー(OCT4、NANOG)、中胚葉マーカー(MESP1、T)、横中隔間充織/星細胞マーカー(HLX、LHX2、FOXF1)の遺伝子発現を定量RT-PCRによって解析した。未分化マーカーは分化誘導の進行に伴って減少し、中胚葉マーカーは分化誘導中期で高発現し、その後、横中隔間充織/星細胞マーカーは分化誘導後期で高発現した(図2)。この結果から、iPS細胞から静止期肝星細胞を分化誘導する本発明の方法が適切なものであることが判明した。
(2) Gene expression analysis during quiescent hepatic stellate cell differentiation process: Undifferentiated markers (OCT4, NANOG), mesoderm marker (0 days, 1, 4, 6 and 8 days after initiation of differentiation induction from iPS cells) Gene expression of MESP1, T), transseptal mesenchymal/astrocytic markers (HLX, LHX2, FOXF1) was analyzed by quantitative RT-PCR. Undifferentiated markers decreased with the progress of differentiation induction, mesoderm markers were highly expressed in the middle stage of differentiation induction, and lateral mesenchymal mesenchymal/astrocytic markers were highly expressed in the latter stages of differentiation induction (Fig. 2). .. From these results, it was found that the method of the present invention for inducing the differentiation of quiescent hepatic stellate cells from iPS cells is appropriate.
(3)Y27632の効果
 誘導開始後の4日目に10μM Y27632を培養系に添加し、Y27632による静止期肝星細胞への分化誘導効果を定量RT-PCRによって解析した。肝星細胞マーカー(NGFR、LRAT)は、Y27632の添加によって各マーカー遺伝子の発現が誘導された。一方、活性化肝星細胞マーカー(ACTA2、COL1A1)は、Y27632添加によって発現が抑制された(図3)。この結果から、誘導開始後の4日目にY27632を添加することにより、静止期肝星細胞を誘導することができることが分かった。
(3) Effect of Y27632 On the fourth day after the start of induction, 10 μM Y27632 was added to the culture system, and the effect of Y27632 to induce differentiation into quiescent hepatic stellate cells was analyzed by quantitative RT-PCR. For the hepatic stellate cell markers (NGFR, LRAT), the expression of each marker gene was induced by the addition of Y27632. On the other hand, the expression of activated hepatic stellate cell markers (ACTA2, COL1A1) was suppressed by the addition of Y27632 (FIG. 3). From these results, it was found that quiescent hepatic stellate cells can be induced by adding Y27632 on the fourth day after the start of induction.
(4)酸素濃度の検討
 誘導開始後の0~6日における4%の酸素濃度を6日から20%に変化させる条件によって、活性化肝星細胞マーカー遺伝子の発現に変化が観察されるのかを定量RT-PCRにより解析した。図4に示されるように、活性化星細胞マーカー(ACTA2、COL1A1)の発現は、20%酸素濃度環境下で抑制された。
(4) Examination of oxygen concentration Whether changes in the expression of activated hepatic stellate cell marker gene are observed under the condition of changing the oxygen concentration of 4% from 0 to 6 days after the start of induction to 6% from 6 days It was analyzed by quantitative RT-PCR. As shown in FIG. 4, the expression of activated stellate cell markers (ACTA2, COL1A1) was suppressed in a 20% oxygen concentration environment.
(5)NGFR陽性細胞のセルソートの効果
 8日間の分化誘導後、MoFLo XDP セルソーター(Beckman Coulter,Inc)を用いてNGFRを発現する細胞(posi)と発現しない細胞(nega)を回収し、分離前の細胞(bulk)との遺伝子発現を定量RT-PCRで比較した。結果を図5に示す。NGFR陽性細胞(posi)では、肝星細胞マーカー(NGFR、LRAT、NES)は高発現したが、活性化肝星細胞マーカー(ACTA2、COL1A1)の発現は極めて低かった。一方、NGFR陰性細胞(nega)は、活性化肝星細胞マーカー(ACTA2、COL1A1)の発現が高かった。この結果から、NGFRの発現の有無により静止期肝星細胞と活性化肝星細胞を区別することができ、NGFRが両者の細胞を区別する指標となり得ることが判明した。
(5) Effect of Cell Sorting of NGFR-Positive Cells After induction of differentiation for 8 days, cells expressing NGFR (posi) and cells not expressing (nega) were collected using a MoFLo XDP cell sorter (Beckman Coulter, Inc), and before separation. The gene expression of the cells was compared by quantitative RT-PCR. Results are shown in FIG. In NGFR positive cells (posi), hepatic stellate cell markers (NGFR, LRAT, NES) were highly expressed, but activated hepatic stellate cell markers (ACTA2, COL1A1) were extremely low. On the other hand, NGFR negative cells (nega) had high expression of activated hepatic stellate cell markers (ACTA2, COL1A1). From this result, it was revealed that quiescent hepatic stellate cells can be distinguished from activated hepatic stellate cells by the presence or absence of NGFR expression, and NGFR can be an index for distinguishing both cells.
(6)iPS細胞由来の静止期肝星細胞の細胞形態
 誘導開始から8日目のiPS細胞由来の静止期肝星細胞の形態観察を行った結果を図6に示す。画像からも明らかなように得られた細胞は、通常の肝星細胞と同様に星状の線維芽細胞様形態を示した。
(6) Cell morphology of iPS cell-derived quiescent hepatic stellate cells The results of morphological observation of iPS cell-derived quiescent hepatic stellate cells on the 8th day from the start of induction are shown in FIG. As is clear from the image, the obtained cells showed a stellate fibroblast-like morphology like ordinary hepatic stellate cells.
実施例2:公知の誘導化法により得たiPS細胞由来の肝星細胞との比較
 従来のiPS細胞由来の肝星細胞(「Ver.1」)(国際公開第2016/148216号;Koui,Y.,et al.,Stem.Cell.Rep.,2017,9,490-498参照)と、実施例1において作製したiPS細胞由来の肝星細胞(「Ver.2」)における遺伝子発現を定量RT-PCRによって解析し、比較検討した。肝星細胞マーカー(NGFR、LRAT、NES)は、実施例1で作製した肝星細胞において高発現し、活性化肝星細胞マーカー(ACTA2、COL1A1)の発現は極めて低かった。一方、従来法により作製した肝星細胞は、活性化肝星細胞マーカーの発現が極めて高かった(図7)。このことから、従来法で作製した肝星細胞は活性化状態であり、実施例1で作製した肝星細胞は静止期にあることが判明した。
Example 2: Comparison with hepatic stellate cells derived from iPS cells obtained by a known derivatization method Conventional hepatic stellate cells derived from iPS cells ("Ver. 1") (WO 2016/148216; Koui, Y) , Et al., Stem. Cell. Rep., 2017, 9, 490-498) and the iPS cell-derived hepatic stellate cells (“Ver. 2”) prepared in Example 1 were used for quantitative RT. -It was analyzed by PCR and compared. The hepatic stellate cell markers (NGFR, LRAT, NES) were highly expressed in the hepatic stellate cells prepared in Example 1, and the expression of the activated hepatic stellate cell markers (ACTA2, COL1A1) was extremely low. On the other hand, the hepatic stellate cells prepared by the conventional method had extremely high expression of the activated hepatic stellate cell marker (FIG. 7). From this, it was revealed that the hepatic stellate cells prepared by the conventional method are in the activated state and the hepatic stellate cells prepared in Example 1 are in the stationary phase.
実施例3:初代培養肝星細胞との比較
 実施例1で作製したiPS細胞由来の肝星細胞(「ver2」)における遺伝子発現と、初代培養肝星細胞の遺伝子発現を定量RT-PCRによって比較検討した。初代培養肝星細胞は、Lonza社から入手した。実施例2と同様の結果であるが、肝星細胞マーカー(NGFR、LRAT、NES)は、実施例1で作製した肝星細胞で高発現し、活性化肝星細胞マーカー(ACTA2、COL1A1)は極めて低い発現だった(図8)。一方、初代培養肝星細胞では、肝星細胞マーカーは極めて低い発現であり、活性化肝星細胞マーカーの発現は顕著に高かった(図8)。これは、実施例2の結果と同様に、実施例1で作製した肝星細胞は静止期にあり、初代培養肝星細胞は活性化した状態にあることが判明した。
Example 3: Comparison with primary culture hepatic stellate cells The gene expression in the iPS cell-derived hepatic stellate cells ("ver2") prepared in Example 1 and the gene expression of the primary culture hepatic stellate cells were compared by quantitative RT-PCR. investigated. Primary cultured hepatic stellate cells were obtained from Lonza. The results are similar to those in Example 2, but the hepatic stellate cell markers (NGFR, LRAT, NES) are highly expressed in the hepatic stellate cells prepared in Example 1, and the activated hepatic stellate cell markers (ACTA2, COL1A1) are The expression was extremely low (Fig. 8). On the other hand, in the primary cultured hepatic stellate cells, the expression of the hepatic stellate cell marker was extremely low, and the expression of the activated hepatic stellate cell marker was significantly high (FIG. 8). Similar to the results of Example 2, it was revealed that the hepatic stellate cells prepared in Example 1 were in the stationary phase and the primary cultured hepatic stellate cells were in the activated state.
実施例4:ビタミンA貯蔵能
 実施例1で作製した静止期肝星細胞を培養し、培地に10μM レチノールを添加し、4日間培養した。0.05%トリプシン/0.5mM EDTAを用いて細胞を剥離後、CantoII(BD Biociences)を用いてフローサイトメトリーによって細胞内のビタミンAの自家蛍光を検出した。LX2(ヒト星細胞株)、初代培養肝星細胞(2ロット(#1、#2))、及び間葉系幹細胞(MSC)を比較対照のために、同様の解析を行なった。結果を図9に示す。LX2及び初代培養肝星細胞と同様に、実施例1で作製した静止期肝星細胞は細胞内にビタミンAを貯蔵していることから、肝星細胞として機能していることが分かった。
Example 4: Vitamin A storage capacity The stationary phase hepatic stellate cells prepared in Example 1 were cultured, 10 µM retinol was added to the medium, and the cells were cultured for 4 days. After detaching the cells using 0.05% trypsin/0.5 mM EDTA, intracellular autofluorescence of vitamin A was detected by flow cytometry using CantoII (BD Biosciences). LX2 (human stellate cell line), primary hepatic stellate cells (2 lots (#1, #2)), and mesenchymal stem cells (MSC) were subjected to the same analysis for comparison. The results are shown in Fig. 9. Like the LX2 and primary cultured hepatic stellate cells, the quiescent hepatic stellate cells prepared in Example 1 stored vitamin A in the cells, and thus were found to function as hepatic stellate cells.
実施例5:静止期肝星細胞の活性化誘導
 実施例1で作製した静止期肝星細胞をコラーゲンコートしたプラスチックプレートに播種し、培養した。培養前と5日間の培養後における遺伝子発現を定量RT-PCRによって解析した。活性化星細胞マーカー(ACTA2、COL1A1)は培養前と比較して、培養後で顕著に発現が亢進した(図10)。実施例1で作製した静止期肝星細胞は、生体の静止期肝星細胞と同様に、培養系で活性化を誘導できることが分かった。
Example 5: Induction of activation of quiescent hepatic stellate cells The quiescent hepatic stellate cells prepared in Example 1 were seeded and cultured on a collagen-coated plastic plate. Gene expression was analyzed by quantitative RT-PCR before culturing and after 5 days of culturing. The expression of the activated stellate cell markers (ACTA2, COL1A1) was remarkably enhanced after the culture as compared with that before the culture (FIG. 10). It was found that the quiescent hepatic stellate cells prepared in Example 1 can induce activation in the culture system, like the quiescent hepatic stellate cells in the living body.
 追加的に、実施例1で作製した静止期肝星細胞を二次元培養系で活性化を誘導した(図11)。図11の左下図は、作製した直後(0日目)、活性化誘導後(1日目、3日目、及び5日目)における肝星細胞の活性化星細胞マーカー(ACTA2、COL1A1、COL1A2、及びCOL3A1)の遺伝子発現解析の結果を示す。経時的に活性化星細胞マーカーの上昇が確認できた。中央図は、活性化星細胞マーカーであるaSMA(ACTA2)の発現を免疫染色で確認した画像を示す。右下図は、培養上清中に分泌されるプロコラーゲンα1(Pro-Collagen alpha1)をELISAによって測定した結果である。上記の結果から、遺伝子レベル及びタンパク質レベルで静止期肝星細胞の活性化を証明することができた。 Additionally, the quiescent hepatic stellate cells prepared in Example 1 were induced to activate in a two-dimensional culture system (Fig. 11). The lower left diagram of FIG. 11 shows activated stellate cell markers (ACTA2, COL1A1, COL1A2) of hepatic stellate cells immediately after production (day 0) and after induction of activation (day 1, day 3, and day 5). , And COL3A1) gene expression analysis results. An increase in the activated stellate cell marker could be confirmed over time. The central figure shows an image in which the expression of the activated astrocyte marker aSMA (ACTA2) was confirmed by immunostaining. The lower right diagram is the result of measuring by ELISA the procollagen α1 (Pro-Collagen alpha1) secreted in the culture supernatant. From the above results, activation of quiescent hepatic stellate cells could be demonstrated at the gene level and the protein level.
実施例6:静止期肝星細胞の活性化に基づく評価系の検証
(1)レポーターiPS細胞の作製
 ヒトiPS細胞(TkDN4-M)にCRISPR-Cas9システムを用いて遺伝子改変を行った。活性化肝星細胞マーカー遺伝子であるACTA2の終止コドンを削り、2Aペプチドを挟んでRFPを挿入した(図12及び図13参照)。これにより、ACTA2-RFPレポーター遺伝子を有する静止期肝星細胞を得た。
Example 6: Validation of evaluation system based on activation of quiescent hepatic stellate cells (1) Preparation of reporter iPS cells Human iPS cells (TkDN4-M) were genetically modified using the CRISPR-Cas9 system. The stop codon of ACTA2, which is an activated hepatic stellate cell marker gene, was deleted, and RFP was inserted with the 2A peptide interposed (see FIGS. 12 and 13). Thus, quiescent hepatic stellate cells having the ACTA2-RFP reporter gene were obtained.
(2)レポーターiPS細胞を用いた肝星細胞活性化評価
 ACTA2-RFPレポーター遺伝子を有するiPS細胞から静止期肝星細胞を分化誘導した。コラーゲンコートディッシュに播種し、播種翌日に細胞の接着を確認後、培地を交換した。その際、培地に肝星細胞の活性化を増強する薬剤(TGFb)、活性化を抑制する薬剤(A83-01、ICG-001)を添加した(図14参照)。培養前と5日間の培養後における遺伝子発現を定量RT-PCRによって解析した(図15)。活性化星細胞マーカー(ACTA2、COL1A1)は培養前と比較して、培養後で顕著に発現が亢進した。また、TGFbの添加によってこれらマーカー遺伝子の発現が増強され、A83-01、ICG-001添加によってその発現は抑制された。培養5日後の細胞におけるレポータータンパク質であるRFPの蛍光をFV3000共焦点レーザー走査型顕微鏡(OLYMPUS)で観察した(図16A)。同時に、Hoechst33342を用いて細胞の核を染色した(図16B)。遺伝子発現と相関してA83-01およびICG-001添加条件ではRFPの蛍光が抑制された。
(2) Evaluation of hepatic stellate cell activation using reporter iPS cells Differentiated quiescent hepatic stellate cells were induced from iPS cells having the ACTA2-RFP reporter gene. The cells were seeded on a collagen-coated dish, and on the day after seeding, after confirming cell adhesion, the medium was replaced. At that time, a drug that enhances the activation of hepatic stellate cells (TGFb) and a drug that suppresses the activation (A83-01, ICG-001) were added to the medium (see FIG. 14). Gene expression was analyzed by quantitative RT-PCR before culturing and after 5 days of culturing (FIG. 15). The expression of the activated stellate cell markers (ACTA2, COL1A1) was remarkably enhanced after the culture as compared with that before the culture. The expression of these marker genes was enhanced by the addition of TGFb, and the expression was suppressed by the addition of A83-01 and ICG-001. The fluorescence of the reporter protein RFP in the cells after 5 days of culture was observed with an FV3000 confocal laser scanning microscope (OLYMPUS) (FIG. 16A). At the same time, Hoechst 33342 was used to stain the nuclei of cells (FIG. 16B). RFP fluorescence was suppressed under the conditions of addition of A83-01 and ICG-001 in correlation with gene expression.
 追加的に、ACTA2-RFPレポーター遺伝子を有するiPS細胞から静止期肝星細胞を作製し、その後、二次元培養系でRFPの発現をFV3000共焦点レーザー顕微鏡(OLYMPUS)で経時的に観察した(図13中、左下図)。未分化なiPS細胞や活性化誘導直後(1日目)の肝星細胞では、RFPの発現を認めなかった。さらに、3日目から5日目まで活性化を誘導すると、徐々にRFPの蛍光が強く観察されるようになった。 Additionally, quiescent hepatic stellate cells were prepared from iPS cells having the ACTA2-RFP reporter gene, and then the expression of RFP was observed with a FV3000 confocal laser scanning microscope (OLYMPUS) over time in a two-dimensional culture system (Fig. 13 middle, lower left figure). No expression of RFP was observed in undifferentiated iPS cells or hepatic stellate cells immediately after activation induction (day 1). Further, when the activation was induced from the 3rd day to the 5th day, the fluorescence of RFP gradually became strongly observed.
 また、5日目まで活性化を誘導した後、フローサイトメトリー解析によりRFPの蛍光発現細胞を解析した。作製した直後の静止期星細胞(0日目)ではRFPを発現する細胞は認められないが、活性化誘導後(5日目)の肝星細胞はほぼ全ての細胞がRFPを発現することが分かった(図13中、右下図)。これにより、未分化なiPS細胞や静止期肝星細胞ではRFPを発現せず、活性化することによって徐々にRFPを発現することがわかり、このACTA2-RFPレポーターiPS細胞に由来する静止期星細胞の活性化状態をRFPの発現を指標に定量的に評価できることが示された。 Also, after inducing activation up to the 5th day, cells expressing RFP fluorescence were analyzed by flow cytometry analysis. No cells expressing RFP were observed in the quiescent stellate cells (day 0) immediately after preparation, but almost all the hepatic stellate cells after induction of activation (day 5) expressed RFP. It was understood (the lower right figure in FIG. 13). This revealed that undifferentiated iPS cells and quiescent hepatic stellate cells did not express RFP, but gradually expressed RFP upon activation, indicating that quiescent stellate cells derived from this ACTA2-RFP reporter iPS cell It was shown that the activation state of R. can be quantitatively evaluated using the expression of RFP as an index.
実施例7:レポーターiPS細胞由来の静止期肝星細胞の活性化評価系を用いた治療薬のスクリーニング系の開発
 本実施例では、治療薬のスクリーニング系の妥当性を検証した実験である(以下、「バリデーション」と呼ぶ)。ACTA2-RFPレポーターiPS細胞から静止期肝星細胞を作製し、その後、384ウェルプレートに播種した。続いて、培養5日後にHoechst(核染色液)を添加した。FV3000共焦点レーザー顕微鏡を使用して、各ウェルごとにRFPの蛍光とヘキストの蛍光を撮像した(図17中、左下)。次に、得られた画像に基づいて、画像解析ソフト「cellSens」(OLYMPUS)を使用して、RFP陽性エリアの面積(肝星細胞の活性化度合い)とHoechstのドットの数(細胞数)を各ウェルごとに算出した(図17中、右下)。右下のグラフにおける緑色のドットは、各ウェルにおけるRFP陽性エリアの面積を示す。ピンク色のドットは、正常のiPS細胞に由来する肝星細胞を同様な方法で培養した際のRFP陽性エリアの面積である(したがって、面積はほぼゼロになっている)。グラフに記載されているCV値は、緑色のドットのばらつき度合いを示し、値が小さいほどばらつきが少なく、良いスクリーニング系と言える。Z’-factorは、スクリーニング系の質を評価する指標の1つであり、データのばらつきや測定値の強度から算出される値である。一般的に、Z’-factorが0.5以上ならスクリーニング系として妥当であると言える。
Example 7: Development of therapeutic drug screening system using activation evaluation system of quiescent hepatic stellate cells derived from reporter iPS cells In this example, the validity of the therapeutic drug screening system was verified (hereinafter referred to as an experiment). , Called "validation"). Quiescent hepatic stellate cells were generated from the ACTA2-RFP reporter iPS cells and then seeded in 384-well plates. Subsequently, Hoechst (nuclear stain) was added after 5 days of culture. An FV3000 confocal laser microscope was used to image the RFP fluorescence and Hoechst fluorescence for each well (lower left in FIG. 17). Next, using the image analysis software "cellSens" (OLYMPUS), based on the obtained image, the area of the RFP positive area (the activation degree of hepatic stellate cells) and the number of Hoechst dots (the number of cells) are calculated. It was calculated for each well (lower right in FIG. 17). Green dots in the lower right graph indicate the area of the RFP positive area in each well. The pink dots are the area of the RFP positive area when hepatic stellate cells derived from normal iPS cells were cultured by the same method (thus, the area is almost zero). The CV value shown in the graph indicates the degree of variation of the green dots, and the smaller the value, the less the variation is, which can be said to be a good screening system. Z'-factor is one of the indexes for evaluating the quality of the screening system, and is a value calculated from the dispersion of data and the intensity of measured values. Generally, it can be said that a Z′-factor of 0.5 or more is appropriate as a screening system.
 本発明によって作製したiPS細胞由来の静止期肝星細胞を用いた評価系は、線維症治療薬などの創薬の研究及び開発の有用ツールになり得る。 The evaluation system using the iPS cell-derived quiescent hepatic stellate cells produced according to the present invention can be a useful tool for research and development of drug discovery such as therapeutic agents for fibrosis.
 本明細書に引用する全ての刊行物及び特許文献は、参照により全体として本明細書中に援用される。なお、例示を目的として、本発明の特定の実施形態を本明細書において説明したが、本発明の精神及び範囲から逸脱することなく、種々の改変が行われる場合があることは、当業者に容易に理解されるであろう。 All publications and patent documents cited in this specification are incorporated herein by reference in their entirety. Although specific embodiments of the invention have been described herein for purposes of illustration, it will be understood by those skilled in the art that various modifications may be made without departing from the spirit and scope of the invention. It will be easily understood.

Claims (11)

  1.  多能性幹細胞を分化誘導して静止期肝星細胞を調製する方法であって、多能性幹細胞を三次元培養する工程、及び/又は低酸素濃度で培養する工程を含む調製方法。 A method for preparing quiescent hepatic stellate cells by inducing differentiation of pluripotent stem cells, comprising a step of three-dimensionally culturing pluripotent stem cells and/or a step of culturing at a low oxygen concentration.
  2.  培養0~6日目まで約4%Oの存在下で多能性幹細胞を培養する、請求項1に記載の調製方法。 The preparation method according to claim 1, wherein the pluripotent stem cells are cultured in the presence of about 4% O 2 from day 0 to day 6 of culture.
  3.  培養6日目以降、O濃度を大気中と同一にして培養を行う、請求項2に記載の調製方法。 The preparation method according to claim 2, wherein the culture is performed at the same O 2 concentration as that in the atmosphere after the 6th day of culture.
  4.  三次元培養が、スフェロイド培養、浮遊培養又はゲル培養である、請求項1~3のいずれか1項に記載の調製方法。 The preparation method according to any one of claims 1 to 3, wherein the three-dimensional culture is spheroid culture, suspension culture, or gel culture.
  5.  Rock阻害剤を添加する工程を含む、請求項1~4のいずれか1項に記載の調製方法。 The preparation method according to any one of claims 1 to 4, comprising a step of adding a Rock inhibitor.
  6.  分化誘導前に多能性幹細胞にレポーター遺伝子を組み込む工程をさらに含む、請求項1~5のいずれか1項に記載の調製方法。 The preparation method according to any one of claims 1 to 5, further comprising a step of incorporating a reporter gene into pluripotent stem cells before inducing differentiation.
  7.  分化誘導過程又は分化誘導後にレポーター遺伝子を静止期肝星細胞に組み込む工程をさらに含む、請求項1~5のいずれか1項に記載の調製方法。 The preparation method according to any one of claims 1 to 5, further comprising a step of inducing a reporter gene into a quiescent hepatic stellate cell during or after the induction of differentiation.
  8.  請求項1~7のいずれか1項に記載の方法で調製された静止期肝星細胞。 A quiescent hepatic stellate cell prepared by the method according to any one of claims 1 to 7.
  9.  請求項8に記載の静止期肝星細胞を含む細胞懸濁液。 A cell suspension containing the quiescent hepatic stellate cells according to claim 8.
  10.  肝星細胞の活性化を抑制する被験物質を、線維化を伴う肝疾患症を治療又は予防するための薬剤に使用される候補物質として選択するスクリーニング法であって、
     (a)請求項6又は7に記載の方法で調製された、レポーター遺伝子が導入された静止期肝星細胞を培養し;
     (b)前記静止期肝星細胞の培養系に静止期肝星細胞を活性化する薬物を添加するか、又は前記静止期肝星細胞を回収及び再播種して二次元培養することによって、静止期肝星細胞を活性化して、活性化肝星細胞を得て;
     (c)活性化肝星細胞の培養系に被験物質を添加し;
     (d)レポーター遺伝子の発現量を被験物質の添加前後で比較し;及び
     (e)被験物質の添加後にレポーター遺伝子の発現量が減少している場合に、肝疾患症を治療又は予防するための薬剤に使用される候補物質として選択する
    ことを含むスクリーニング法。
    A screening method for selecting a test substance that suppresses the activation of hepatic stellate cells as a candidate substance used as a drug for treating or preventing liver disease associated with fibrosis,
    (A) culturing a quiescent hepatic stellate cell into which a reporter gene has been prepared, prepared by the method according to claim 6 or 7;
    (B) by adding a drug that activates stationary phase hepatic stellate cells to the stationary phase hepatic stellate cell culture system, or recovering and reseeding the stationary phase hepatic stellate cells and performing two-dimensional culturing. Activating hepatic stellate cells to obtain activated hepatic stellate cells;
    (C) adding a test substance to a culture system of activated hepatic stellate cells;
    (D) comparing the expression level of the reporter gene before and after the addition of the test substance; and (e) for treating or preventing liver disease when the expression level of the reporter gene decreases after the addition of the test substance A screening method comprising selecting as a candidate substance used for a drug.
  11.  請求項10に記載のスクリーニング法に使用するためのキットであって、請求項8に記載の静止期肝星細胞又は請求項9に記載の細胞懸濁液を含むキット。 A kit for use in the screening method according to claim 10, which comprises the quiescent hepatic stellate cells according to claim 8 or the cell suspension according to claim 9.
PCT/JP2020/006147 2019-02-15 2020-02-17 Method for preparing quiescent hepatic stellate cell, and model for evaluation of activation of quiescent hepatic stellate cell WO2020166726A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020572358A JPWO2020166726A1 (en) 2019-02-15 2020-02-17
JP2024113467A JP2024147691A (en) 2019-02-15 2024-07-16 Method for preparing quiescent hepatic stellate cells and a model for evaluating their activation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019025802 2019-02-15
JP2019-025802 2019-02-15

Publications (1)

Publication Number Publication Date
WO2020166726A1 true WO2020166726A1 (en) 2020-08-20

Family

ID=72044098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006147 WO2020166726A1 (en) 2019-02-15 2020-02-17 Method for preparing quiescent hepatic stellate cell, and model for evaluation of activation of quiescent hepatic stellate cell

Country Status (2)

Country Link
JP (2) JPWO2020166726A1 (en)
WO (1) WO2020166726A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725260A (en) * 2021-01-15 2021-04-30 北京大学 Method for obtaining hepatic stellate cells by differentiation of embryonic stem cells
WO2023223519A1 (en) * 2022-05-19 2023-11-23 Ism株式会社 Method for deactivating activated stellate cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232588A (en) * 2014-09-12 2014-12-24 中国医学科学院医药生物技术研究所 Construction and application of anti-hepatic fibrosis drug high-throughput screening cell model
WO2016148216A1 (en) * 2015-03-18 2016-09-22 国立大学法人 東京大学 Liver cells and liver non-parenchymal cells, and methods for preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232588A (en) * 2014-09-12 2014-12-24 中国医学科学院医药生物技术研究所 Construction and application of anti-hepatic fibrosis drug high-throughput screening cell model
WO2016148216A1 (en) * 2015-03-18 2016-09-22 国立大学法人 東京大学 Liver cells and liver non-parenchymal cells, and methods for preparation thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOUI, Y. ET AL.: "An In Vitro Human Liver Model by iPSC-Derived Parenchymal and Non-parenchymal Cells", STEM CELL REPORTS, vol. 9, 8 August 2017 (2017-08-08), pages 490 - 498, XP055694369, DOI: 10.1016/j.stemcr.2017.06.010 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725260A (en) * 2021-01-15 2021-04-30 北京大学 Method for obtaining hepatic stellate cells by differentiation of embryonic stem cells
WO2023223519A1 (en) * 2022-05-19 2023-11-23 Ism株式会社 Method for deactivating activated stellate cells

Also Published As

Publication number Publication date
JPWO2020166726A1 (en) 2020-08-20
JP2024147691A (en) 2024-10-16

Similar Documents

Publication Publication Date Title
Noseda et al. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium
Sivaraj et al. Regional specialization and fate specification of bone stromal cells in skeletal development
JP7386290B2 (en) Genetic markers for engraftment of human ventricular progenitor cells
Barboni et al. Gestational stage affects amniotic epithelial cells phenotype, methylation status, immunomodulatory and stemness properties
Ho et al. A guide to single-cell transcriptomics in adult rodent brain: the medium spiny neuron transcriptome revisited
EP2962698B1 (en) Pharmaceutical composition including migratory factor for guiding pluripotent stem cells to injury
JP2024147691A (en) Method for preparing quiescent hepatic stellate cells and a model for evaluating their activation
US20210254012A1 (en) Next generation designer liver organoids and their methods of preparation and use
US20230236171A1 (en) Methods, culture medias and devices for generating embryos in vitro from stem cells
Fitch et al. Gata3 targets Runx1 in the embryonic haematopoietic stem cell niche
KR20230025005A (en) Materials and methods for producing pluripotent stem cells
Fiedorowicz et al. Tissue-specific promoter-based reporter system for monitoring cell differentiation from iPSCs to cardiomyocytes
JP6629770B2 (en) Method for assessing cell differentiation status
Wang et al. Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery
Yeo et al. Chromatin accessibility dynamics of neurogenic niche cells reveal defects in neural stem cell adhesion and migration during aging
JP6918062B2 (en) How to evaluate the differentiation status of cells
Mariappan et al. Transcriptional profiling of CD31+ cells isolated from murine embryonic stem cells
Sadek et al. Bone-marrow-derived side population cells for myocardial regeneration
US20210322454A1 (en) Hippo regulation of cardiac vascularity, fibrosis, and inflammation
JP5030039B2 (en) Method for evaluating stem cell differentiation potential
Sinha et al. Derivation of contractile smooth muscle cells from embryonic stem cells
JP7446242B2 (en) Cell population containing embryonic erythroblasts and its production method, cell culture composition, and compound testing method
WO2019156216A1 (en) Cardiomyocyte propagation promoting agent and use thereof
KR101117422B1 (en) Method for evaluating differentiation capability of stem cells
Morrison et al. Targeted gene delivery to differentiated skeletal muscle: a tool to study dedifferentiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020572358

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20755589

Country of ref document: EP

Kind code of ref document: A1