JP5030039B2 - Method for evaluating stem cell differentiation potential - Google Patents

Method for evaluating stem cell differentiation potential Download PDF

Info

Publication number
JP5030039B2
JP5030039B2 JP2009155943A JP2009155943A JP5030039B2 JP 5030039 B2 JP5030039 B2 JP 5030039B2 JP 2009155943 A JP2009155943 A JP 2009155943A JP 2009155943 A JP2009155943 A JP 2009155943A JP 5030039 B2 JP5030039 B2 JP 5030039B2
Authority
JP
Japan
Prior art keywords
cells
tissue
stem cells
cell
primordium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009155943A
Other languages
Japanese (ja)
Other versions
JP2012019690A (en
Inventor
英司 小林
隆 横尾
豊 花園
比呂志 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Pharmaceutical Co Ltd
Jichi Medical University
Original Assignee
Otsuka Pharmaceutical Co Ltd
Jichi Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co Ltd, Jichi Medical University filed Critical Otsuka Pharmaceutical Co Ltd
Priority to JP2009155943A priority Critical patent/JP5030039B2/en
Publication of JP2012019690A publication Critical patent/JP2012019690A/en
Application granted granted Critical
Publication of JP5030039B2 publication Critical patent/JP5030039B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply determining whether a stem cell is a cell forming a tumor such as a teratoma in a living body or a cell capable of differentiating into various cells without tumorigenesis in the living body to contribute to normal histogenesis. <P>SOLUTION: There is provided the method for evaluating the possibility that the stem cell is capable of differentiating into a cell composing a desired tissue in the living body including following steps: (1) transplanting the stem cell which is the object of evaluation into a primordium of a desired tissue of a non-human mammal; (2) culturing the tissue primordium in vitro; and (3) determining the possibility that the stem cell is capable of differentiating into the cell composing the tissue in the living body using the degree of the dispersion of the cell derived from the transplanted stem cell in the cultured tissue primordium as an index. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、幹細胞が生体内で所望の組織を構成する細胞へ分化し得るか否か評価する方法に関する。   The present invention relates to a method for evaluating whether stem cells can be differentiated into cells constituting a desired tissue in vivo.

近年の幹細胞研究の進歩により多分化能を示す種々の幹細胞が樹立されている。臨床レベルでこれらの幹細胞を用いて臓器や組織を適切に再生するためには、使用する幹細胞が、目的臓器に適切に分化し、且つ正常な組織形態を構築し得ることを予め確認しておくことが重要である。   Various stem cells exhibiting pluripotency have been established by recent advances in stem cell research. In order to properly regenerate organs and tissues using these stem cells at the clinical level, it is confirmed in advance that the stem cells used can be properly differentiated into target organs and can form normal tissue morphology. This is very important.

現在までに樹立された幹細胞のうちES細胞やiPS細胞は、きわめて効率よく増殖し、種々の細胞へと分化し得る能力を有しているものの(非特許文献1)、これをそのまま生体内へ移植すると、多くの場合正常な組織構築へ寄与することが出来ずに、奇形腫を形成してしまう(非特許文献2)。一方、間葉系幹細胞(MSC)などの体性幹細胞は、インビトロでの継代培養においてはしばしば増殖停止(replicative senescence)を起すが、生体内へ移植すると腫瘍形成なく種々の細胞に分化し、正常な組織構築へ寄与する(非特許文献3)。しかし、上記2つの性質のうち、幹細胞がいずれの性質を有しているかを確認するためには、多くの反復培養や分化誘導試験を行わなければならないため、多くの時間を費やしてしまう。従って、組織や臓器へ確実に分化する幹細胞を迅速に開発するため、種々の幹細胞が上述のいずれの性質を有するか、そして幹細胞が奇形腫形成を起こさないように改良されているかを簡便にスクリーニングする方法の確立が望まれている。   Among stem cells established to date, ES cells and iPS cells have the ability to proliferate and differentiate into various cells (Non-Patent Document 1), but they are directly transferred into the living body. When transplanted, in many cases, it cannot contribute to normal tissue construction and forms a teratoma (Non-patent Document 2). On the other hand, somatic stem cells such as mesenchymal stem cells (MSC) often undergo replicative senescence in in vitro subculture, but when transplanted in vivo, they differentiate into various cells without tumor formation, Contributes to normal tissue construction (Non-patent Document 3). However, in order to confirm which of the above two properties a stem cell has, many repeated cultures and differentiation induction tests must be performed, and thus a lot of time is consumed. Therefore, in order to rapidly develop stem cells that can be reliably differentiated into tissues and organs, it is easy to screen whether the various stem cells have the above-mentioned properties and whether the stem cells have been improved so as not to cause teratoma formation. Establishment of a method to do this is desired.

Nagata M. et al., J. Gene Med., vol. 5; p. 921, 2003Nagata M. et al., J. Gene Med., Vol. 5; p. 921, 2003 Asano T. et al., Methods Mol. Bio., vol. 329; p. 459, 2006Asano T. et al., Methods Mol. Bio., Vol. 329; p. 459, 2006 Hara M. et al., J. Autoimmun., vol. 30; p. 163, 2008Hara M. et al., J. Autoimmun., Vol. 30; p. 163, 2008

本発明の目的は、幹細胞が生体内で奇形腫等の腫瘍を形成する細胞であるか、或いは生体内で腫瘍形成なく種々の細胞に分化し、正常な組織構成に寄与し得る細胞であるかを簡便に検定する方法を提供することである。   An object of the present invention is whether stem cells are cells that form tumors such as teratomas in vivo, or are cells that can differentiate into various cells in vivo without tumor formation and contribute to normal tissue structure It is to provide a method for simply assaying.

本発明者らは、鋭意検討の結果、幹細胞を蛍光遺伝子の導入等により蛍光標識し、哺乳動物の胎児腎臓原基に打ち込んで得られる蛍光イメージにおける細胞の分散の程度に基づき、幹細胞の腫瘍形成能の有無を容易に判定し得ることを見出し、本発明を完成させた。   As a result of intensive studies, the inventors of the present invention have made stem cell tumor formation based on the degree of cell dispersion in a fluorescent image obtained by fluorescently labeling stem cells by introduction of a fluorescent gene or the like and driving them into a fetal kidney primordia of a mammal. The present inventors have found that the presence or absence of the ability can be easily determined, and completed the present invention.

即ち、本発明は以下に関する。
[1]以下の工程を含む、幹細胞が生体内で所望の組織を構成する細胞へ分化し得るか否か評価する方法:
(1)評価対象の幹細胞を非ヒト哺乳動物の所望の組織の原基中に移植すること、
(2)該組織原基をインビトロで培養すること、
(3)培養した該組織原基における移植された幹細胞由来の細胞の分散の程度を指標に、該幹細胞が生体内で当該組織を構成する細胞に分化し得る可能性を判定すること。
[2]評価対象の幹細胞が、移植される組織原基の細胞と識別し得るように標識されている、[1]記載の方法。
[3]標識が蛍光標識である、[2]記載の方法。
[4]組織が腎臓である、[1]記載の方法。
[5]幹細胞が間葉系幹細胞である、[1]記載の方法。
That is, the present invention relates to the following.
[1] A method for evaluating whether or not stem cells can be differentiated into cells constituting a desired tissue in vivo, including the following steps:
(1) transplanting stem cells to be evaluated into a primordium of a desired tissue of a non-human mammal,
(2) culturing the tissue primordium in vitro;
(3) Determining the possibility that the stem cells can differentiate into cells constituting the tissue in vivo using the degree of dispersion of the cells derived from the transplanted stem cells in the cultured tissue primordia as an index.
[2] The method according to [1], wherein the stem cells to be evaluated are labeled so as to be distinguishable from the tissue primordium cells to be transplanted.
[3] The method according to [2], wherein the label is a fluorescent label.
[4] The method according to [1], wherein the tissue is a kidney.
[5] The method according to [1], wherein the stem cell is a mesenchymal stem cell.

本発明の方法を用いれば、幹細胞が生体内で奇形腫等の腫瘍を形成する細胞であるか、或いは生体内で腫瘍形成なく種々の細胞に分化し、正常な組織形成に寄与し得る細胞であるかを簡便に検定することができる。   By using the method of the present invention, stem cells are cells that form tumors such as teratomas in vivo, or cells that can differentiate into various cells without tumor formation in vivo and contribute to normal tissue formation. It is possible to easily test whether it exists.

サルES細胞を移入したメタネフロンの蛍光イメージの経時的変化を示す。The time-dependent change of the fluorescence image of the metanephron which introduce | transduced the monkey ES cell is shown. サルES細胞を移入したメタネフロンの可視光イメージを示す。奇形腫が形成され、3つの胚葉系への分化が認められた。The visible light image of the metanephron which introduce | transduced the monkey ES cell is shown. Teratomas were formed and differentiation into 3 germ layers was observed. ブタMSCを移入したメタネフロンの蛍光イメージの経時的変化を示す。The time-dependent change of the fluorescence image of the metanephron which transferred porcine MSC is shown. マウスiPS細胞を移入したメタネフロンの蛍光イメージの経時的変化を示す。The time-dependent change of the fluorescence image of the metanephron which transferred mouse iPS cell is shown.

本発明は、以下の工程を含む、幹細胞が生体内で所望の組織を構成する細胞へ分化し得るか否か評価する方法を提供するものである:
(1)評価対象の幹細胞を非ヒト哺乳動物の所望の組織の原基中に移植すること、
(2)該組織原基をインビトロで培養すること、
(3)培養した該組織原基における移植された幹細胞由来の細胞の分散の程度を指標に、該幹細胞が生体内で当該組織を構成する細胞に分化し得る可能性を判定すること。
The present invention provides a method for evaluating whether stem cells can be differentiated into cells constituting a desired tissue in vivo, including the following steps:
(1) transplanting stem cells to be evaluated into a primordium of a desired tissue of a non-human mammal,
(2) culturing the tissue primordium in vitro;
(3) Determining the possibility that the stem cells can differentiate into cells constituting the tissue in vivo using the degree of dispersion of the cells derived from the transplanted stem cells in the cultured tissue primordia as an index.

本明細書中、「幹細胞」とは、自己複製能及び分化・増殖能を有する未熟な細胞を意味する。幹細胞には、分化能力に応じて、多能性幹細胞(pluripotent stem cell)、複能性幹細胞(multipotent stem cell)、単能性幹細胞(unipotent stem cell)等の亜集団が含まれる。多能性幹細胞とは、それ自体では個体になることが出来ないが、生体を構成する全ての組織や細胞へ分化し得る能力を有する細胞を意味する。複能性幹細胞とは、全ての種類ではないが、複数種の組織や細胞へ分化し得る能力を有する細胞を意味する。単能性幹細胞とは、特定の組織や細胞へ分化し得る能力を有する細胞を意味する。   In the present specification, the “stem cell” means an immature cell having self-renewal ability and differentiation / proliferation ability. The stem cells include subpopulations such as pluripotent stem cells, multipotent stem cells, unipotent stem cells, etc., depending on the differentiation ability. A pluripotent stem cell means a cell that cannot be an individual by itself, but has an ability to differentiate into all tissues and cells constituting a living body. A multipotent stem cell means a cell having the ability to differentiate into multiple types of tissues and cells, although not all types. A unipotent stem cell means a cell having the ability to differentiate into a specific tissue or cell.

多能性幹細胞としては、胚性幹細胞(ES細胞)、EG細胞、iPS細胞等を挙げることが出来る。ES細胞は、内部細胞塊をフィーダー細胞上で培養することにより製造することが出来る。EG細胞は、始原生殖細胞をmSCF、LIF及びbFGFを含む培地中で培養することにより製造することが出来る(Cell, 70: 841-847, 1992)。iPS細胞は、体細胞(例えば線維芽細胞、皮膚細胞等)にOct3/4、Sox2及びKlf4(必要に応じて更にc−Myc又はn−Myc)を導入することにより製造することが出来る(Cell, 126: p. 663-676, 2006;Nature, 448: p. 313-317, 2007;Nat Biotechnol, 26: p. 101-106, 2008;Cell 131: 861-872, 2007)。体細胞の核を核移植することによって作製された初期胚を培養することによって樹立した幹細胞も、多能性幹細胞としてまた好ましい(Nature, 385, 810 (1997);Science, 280, 1256 (1998);Nature Biotechnology, 17, 456 (1999);Nature, 394, 369 (1998); Nature Genetics, 22, 127 (1999); Proc. Natl. Acad. Sci. USA, 96, 14984 (1999))、Rideout IIIら (Nature Genetics, 24, 109 (2000))。   Examples of pluripotent stem cells include embryonic stem cells (ES cells), EG cells, iPS cells, and the like. ES cells can be produced by culturing inner cell masses on feeder cells. EG cells can be produced by culturing primordial germ cells in a medium containing mSCF, LIF and bFGF (Cell, 70: 841-847, 1992). iPS cells can be produced by introducing Oct3 / 4, Sox2 and Klf4 (c-Myc or n-Myc as necessary) into somatic cells (eg, fibroblasts, skin cells, etc.) (Cell , 126: p. 663-676, 2006; Nature, 448: p. 313-317, 2007; Nat Biotechnol, 26: p. 101-106, 2008; Cell 131: 861-872, 2007). Stem cells established by culturing early embryos produced by nuclear transfer of somatic cell nuclei are also preferred as pluripotent stem cells (Nature, 385, 810 (1997); Science, 280, 1256 (1998). Nature Biotechnology, 17, 456 (1999); Nature, 394, 369 (1998); Nature Genetics, 22, 127 (1999); Proc. Natl. Acad. Sci. USA, 96, 14984 (1999)), Rideout III (Nature Genetics, 24, 109 (2000)).

複能性幹細胞としては、間葉系幹細胞、造血系幹細胞、神経系幹細胞、骨髄幹細胞、生殖幹細胞等の体性幹細胞等を挙げることが出来る。複能性幹細胞は、好ましくは間葉系幹細胞である。間葉系幹細胞とは、骨芽細胞、軟骨芽細胞及び脂肪芽細胞等の全て又はいくつかへの分化が可能な幹細胞又はその前駆細胞の集団を広義に意味する。間葉系幹細胞は腎臓のエリスロポエチン産生細胞への分化能を有し得る(Transplantation 85: 1654-1658, 2008)。複能性幹細胞は、自体公知の方法により、生体から単離することが出来る。例えば、間葉系幹細胞は、哺乳動物の骨髄液、末梢血、臍帯血等から公知の一般的な方法で採取することが出来る。例えば、骨髄穿刺後の造血幹細胞等の培養、継代によりヒト間葉系幹細胞を単離することができる(Journal of Autoimmunity, 30 (2008) 163-171)。複能性幹細胞は、上述の多能性幹細胞を適切な誘導条件下で培養することによっても得ることが出来る。   Examples of multipotent stem cells include somatic stem cells such as mesenchymal stem cells, hematopoietic stem cells, neural stem cells, bone marrow stem cells, and reproductive stem cells. The multipotent stem cell is preferably a mesenchymal stem cell. A mesenchymal stem cell broadly means a population of stem cells or precursor cells thereof that can differentiate into all or some of osteoblasts, chondroblasts, and lipoblasts. Mesenchymal stem cells may have the ability to differentiate into erythropoietin-producing cells of the kidney (Transplantation 85: 1654-1658, 2008). Multipotent stem cells can be isolated from a living body by a method known per se. For example, mesenchymal stem cells can be collected from mammalian bone marrow fluid, peripheral blood, umbilical cord blood and the like by a known general method. For example, human mesenchymal stem cells can be isolated by culture and passage of hematopoietic stem cells after bone marrow puncture (Journal of Autoimmunity, 30 (2008) 163-171). Multipotent stem cells can also be obtained by culturing the above-mentioned pluripotent stem cells under appropriate induction conditions.

評価の対象となる幹細胞は、好ましくは、ES細胞、EG細胞、iPS細胞、複能性幹細胞(例えば間葉系幹細胞)等である。   The stem cells to be evaluated are preferably ES cells, EG cells, iPS cells, multipotent stem cells (for example, mesenchymal stem cells) and the like.

本発明において用いられる幹細胞が由来する哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類、ウサギ等のウサギ目、ブタ、ウシ、ヤギ、ウマ、ヒツジ等の有蹄目、イヌ、ネコ等のネコ目、ヒト、サル、アカゲザル、マーモセット、オランウータン、チンパンジーなどの霊長類等を挙げることが出来る。樹立された幹細胞の癌原性は、マウス等では見られなくてもイヌやサルなどの大型哺乳動物の幹細胞で認められるケースが報告されている(Xiao-Bing Zhang, et al. JCI 118;1502,2008)こと等の理由から、本発明の方法は、有蹄目、ネコ目及び霊長類の幹細胞の評価に有利である。   Examples of mammals from which stem cells used in the present invention are derived include rodents such as mice, rats, hamsters and guinea pigs, rabbits such as rabbits, ungulates such as pigs, cows, goats, horses and sheep, Examples include cats such as dogs and cats, primates such as humans, monkeys, rhesus monkeys, marmosets, orangutans, chimpanzees, and the like. The established carcinogenicity of stem cells has been reported to be observed in stem cells of large mammals such as dogs and monkeys even though they are not found in mice (Xiao-Bing Zhang, et al. JCI 118; 1502 The method of the present invention is advantageous for the evaluation of ungulate, feline and primate stem cells.

本発明の方法は、例えば、幹細胞による特定の組織の再生医療を行うに先立って、その幹細胞が所望の組織を構成する細胞へ適切に分化し得るか否かを評価する目的で実施される。従って、評価対象となる幹細胞は、所望の組織(例えば腎臓)を構成する細胞へ生体内で分化することが期待される幹細胞である。   The method of the present invention is performed, for example, for the purpose of evaluating whether or not the stem cells can be appropriately differentiated into cells constituting a desired tissue prior to performing regenerative medicine of a specific tissue using stem cells. Therefore, the stem cell to be evaluated is a stem cell expected to differentiate in vivo into cells constituting a desired tissue (for example, kidney).

「生体内での所望の組織を構成する細胞への分化」とは、幹細胞を生体内の当該所望の組織またはその組織の原基内へ移植した場合に、幹細胞が当該組織を構成する細胞へ分化することを意味する。例えば多能性幹細胞等については、本来的には全ての組織や細胞へ分化する能力を有しているにも関わらず、生体内の組織へ移植すると当該組織を構成する細胞へ分化せずに奇形腫を生じてしまう場合があることが知られている。本発明の方法を用いれば、幹細胞を生体内へ移植したときに、このように奇形腫等の腫瘍を形成せずに適切に所望の組織を構成する細胞へ分化し得るか否かを簡便に評価することが出来る。   “Differentiation into cells constituting a desired tissue in vivo” means that when stem cells are transplanted into the desired tissue in vivo or the primordium of the tissue, the stem cells become cells constituting the tissue. It means to differentiate. For example, pluripotent stem cells, etc. are inherently capable of differentiating into all tissues and cells, but when transplanted into in vivo tissues, they do not differentiate into cells constituting the tissues. It is known that teratomas can occur. Using the method of the present invention, when stem cells are transplanted into a living body, whether or not the cells can be appropriately differentiated into cells constituting a desired tissue without forming a tumor such as a teratoma is easily determined. Can be evaluated.

「組織」の種類は、特に限定されるものではないが、例えば、腎臓、脳、脊髄、胃、膵臓、肝臓、甲状腺、骨髄、皮膚、筋肉、肺、消化管(例: 大腸、小腸)、血管、心臓、胸腺、脾臓、末梢血、睾丸、卵巣、胎盤、子宮、骨、骨格筋等を挙げることが出来る。   The type of `` tissue '' is not particularly limited, but for example, kidney, brain, spinal cord, stomach, pancreas, liver, thyroid, bone marrow, skin, muscle, lung, digestive tract (e.g., large intestine, small intestine), Examples include blood vessels, heart, thymus, spleen, peripheral blood, testicles, ovary, placenta, uterus, bone, skeletal muscle and the like.

「組織の原基」とは、哺乳動物の胎仔における当該組織の発生相当部位をいう。例えば、腎臓の原基であるメタネフロンを例示することが出来る。メタネフロンは、哺乳動物胎仔の尿管芽発芽部位の周囲、より詳しくは体節と側板の間に位置する。メタネフロンは、好ましくは、後腎形成中胚葉である。   “Tissue primordium” refers to a site corresponding to the occurrence of the tissue in a mammalian fetus. For example, metanephron, which is a primordium of the kidney, can be exemplified. Metanephron is located around the ureteric bud germination site of the mammalian fetus, more specifically between the segment and the side plate. The metanephron is preferably a metanephric mesoderm.

本発明において用いられる組織の原基は、通常、評価対象の幹細胞が分化することが期待されている組織の原基である。例えば、評価対象の幹細胞が腎臓を構成する細胞(例えば、エリスロポエチン産生細胞)へ分化することが期待されている場合には、該幹細胞を腎臓の原基へ移植する。組織の原基が由来する哺乳動物としては、上述のものを挙げることが出来る。評価対象の幹細胞の動物種と組織の原基の動物種は同一であっても異なっていてもよい。例えば、ヒトの幹細胞を評価するために、該幹細胞をブタやラット等の非ヒト哺乳動物の組織の原基中へ移植することが出来る。   The tissue primordium used in the present invention is usually a tissue primordium in which the stem cells to be evaluated are expected to differentiate. For example, when the stem cells to be evaluated are expected to differentiate into cells that constitute the kidney (for example, erythropoietin-producing cells), the stem cells are transplanted into the kidney primordium. Examples of mammals from which the tissue primordium is derived include those described above. The animal species of the stem cell to be evaluated and the animal species of the tissue primordium may be the same or different. For example, in order to evaluate human stem cells, the stem cells can be transplanted into a primordium of a tissue of a non-human mammal such as a pig or rat.

組織の原基は哺乳動物の胎仔から生体外に摘出される。後腎組織はラットでは通常E11.5、マウスではE9.5から形成され始めるので、組織の原基としてメタネフロンを使用する場合には、前記ステージ以降の胎仔が通常使用される。好ましくはラットでE14以降、マウスでE12以降、より好ましくはラットでE14〜16、マウスでE12〜14である。その他の哺乳動物においても、同様のステージの胎仔が好適に使用できる。しかし、その前後のステージも、条件を選定することによって適用可能である。胎仔からの組織の原基の摘出は、実体顕微鏡等を用いて、行うことが可能である。   The tissue primordium is removed from the mammalian fetus in vitro. Since the metanephric tissue begins to form from E11.5 in the rat and E9.5 in the mouse, the fetus after the stage is usually used when metanephron is used as the tissue primordium. Preferably, it is E14 or later in rats, E12 or later in mice, more preferably E14-16 in rats, and E12-14 in mice. In other mammals, fetuses of the same stage can be preferably used. However, the stages before and after that can also be applied by selecting conditions. Extraction of the tissue primordium from the fetus can be performed using a stereomicroscope or the like.

組織原基中への幹細胞の移植は、実体顕微鏡下でマニピュレーターやマイクロピペット等を用いて行われる。移植する細胞の数は組織原基の大きさ等に基づき適宜設定することができるが、例えばラットの腎臓原基を使用する場合には、通常約1000〜10000個の幹細胞が注入される。尚、幹細胞は、通常、生体外に摘出された組織原基中へ移植されるが、幹細胞を、哺乳動物の胎仔内にある組織原基中へ移植し、その後、該幹細胞を含有する組織原基を胎仔から生体外へ摘出してもよい。腎臓原基への幹細胞の注入については、Yokoo T, et al. J Am Soc Nephrol 17;1026,2006等を参照のこと。   Transplantation of stem cells into the tissue primordium is performed using a manipulator, a micropipette, or the like under a stereomicroscope. The number of cells to be transplanted can be set as appropriate based on the size of the tissue primordia, etc. For example, when using rat kidney primordia, about 1000 to 10,000 stem cells are usually injected. Stem cells are usually transplanted into a tissue primordium that has been removed in vitro, but the stem cells are transplanted into a tissue primordium in the fetus of a mammal, and then the stem cell containing the stem cells. The group may be removed from the fetus in vitro. See Yokoo T, et al. J Am Soc Nephrol 17; 1026,2006 etc. for the injection of stem cells into the renal primordium.

移植する幹細胞は、好ましくは単離精製されたものである。「単離精製」とは、目的とする幹細胞以外の細胞を除去する操作がなされていることを意味する。幹細胞の純度は、本発明の方法により評価を行うことができる限り特に限定されないが、通常10%以上、好ましくは50%以上、より好ましくは80%以上、最も好ましくは90%以上(例えば実質的に100%)である。   The stem cells to be transplanted are preferably isolated and purified. “Isolated and purified” means that an operation to remove cells other than the target stem cells has been performed. The purity of the stem cell is not particularly limited as long as it can be evaluated by the method of the present invention, but is usually 10% or more, preferably 50% or more, more preferably 80% or more, and most preferably 90% or more (for example, substantially 100%).

評価対象の幹細胞は、移植される組織原基の細胞と識別し得るように標識されていることが好ましい。標識の種類としては、蛍光標識、発光標識、放射線同位体標識等を挙げることが出来るが、測定が簡便であり、詳細な解析が可能であることから、蛍光標識又は発光標識が好ましく、蛍光標識が最も好ましい。蛍光又は発光による幹細胞の標識は、幹細胞へ蛍光標識遺伝子又は発光標識遺伝子を導入することにより行うことが出来る。蛍光又は発光標識遺伝子には、蛍光又は発光を有するタンパク質をコードする遺伝子、及び対応する蛍光基質又は発光基質と混合することにより蛍光又は発光を生じる酵素をコードする遺伝子が含まれる。前者としては、GFP、RFP、YFP、CFP、EGFP、クサビラオレンジ等の蛍光タンパク質をコードする遺伝子を挙げることができる。後者としては、ルシフェラーゼ、β−ガラクトシダーゼ、ペルオキシダーゼ等の酵素をコードする遺伝子を挙げることが出来る。ルシフェラーゼの基質(発光)としてはルシフェリン(及び必要に応じてATP)等を挙げることができる。β−ガラクトシダーゼの基質(発光)としては、ルシフェリンガラクトシド基質(6−O−β−ガラクトピラノシルルシフェリン)等を挙げることができる。ペルオキシダーゼの基質としては、ルミノール(及び必要に応じて過酸化水素)等を挙げることができる。   The stem cells to be evaluated are preferably labeled so that they can be distinguished from the cells of the tissue primordia to be transplanted. Examples of the type of label include a fluorescent label, a luminescent label, and a radioisotope label. However, a fluorescent label or a luminescent label is preferable because measurement is simple and detailed analysis is possible. Is most preferred. The stem cells can be labeled by fluorescence or luminescence by introducing a fluorescence-labeled gene or a luminescence-labeled gene into the stem cells. The fluorescent or luminescent labeling gene includes a gene encoding a protein having fluorescence or luminescence, and a gene encoding an enzyme that generates fluorescence or luminescence when mixed with a corresponding fluorescent substrate or luminescent substrate. Examples of the former include genes encoding fluorescent proteins such as GFP, RFP, YFP, CFP, EGFP, and wedge orange. Examples of the latter include genes encoding enzymes such as luciferase, β-galactosidase, and peroxidase. Examples of the luciferase substrate (luminescence) include luciferin (and ATP if necessary). Examples of the substrate (luminescence) of β-galactosidase include luciferin galactoside substrate (6-O-β-galactopyranosyl luciferin). Examples of the substrate for peroxidase include luminol (and hydrogen peroxide if necessary).

幹細胞への発光又は蛍光標識遺伝子の導入は、自体公知の遺伝子工学的手法を用いて行うことができる。例えば、目的とする細胞内で機能可能なプロモーターの下流に機能的に上記標識遺伝子が連結されたコンストラクト(発現ベクター)により、幹細胞をインビトロでトランスフェクトし、該細胞を適当な培地中で培養することによって、該標識遺伝子を幹細胞内に導入することができる。   Introduction of a luminescent or fluorescently labeled gene into stem cells can be performed using a genetic engineering technique known per se. For example, stem cells are transfected in vitro with a construct (expression vector) in which the marker gene is operably linked downstream of a promoter capable of functioning in the target cells, and the cells are cultured in an appropriate medium. Thus, the marker gene can be introduced into stem cells.

トランスフェクションの方法としては、生物学的方法、物理的方法、化学的方法などを示すことができる。生物学的方法としては、例えば、ウイルスベクターを使用する方法、特異的受容体を利用する方法、細胞融合法(HVJ(センダイウイルス)、ポリエチレングリコール(PEG)、電気的細胞融合法、微少核融合法(染色体移入))が挙げられる。また、物理的方法としては、顕微注入(マイクロインジェクション)法、電気穿孔(エレクトロポレーション)法、遺伝子銃(パーティクルガン)法を用いる方法が挙げられる。化学的方法としては、リン酸カルシウム沈殿法、リポフェクション法、DEAE−デキストラン法、プロトプラスト法、赤血球ゴースト法、赤血球膜ゴースト法、マイクロカプセル法が挙げられる。   Examples of transfection methods include biological methods, physical methods, chemical methods, and the like. Biological methods include, for example, a method using a viral vector, a method using a specific receptor, a cell fusion method (HVJ (Sendai virus), polyethylene glycol (PEG), an electric cell fusion method, micronucleus fusion, and the like. Law (chromosome transfer)). Examples of physical methods include a method using a microinjection method, an electroporation method, and a gene gun (particle gun) method. Examples of the chemical method include calcium phosphate precipitation, lipofection, DEAE-dextran, protoplast, erythrocyte ghost, erythrocyte membrane ghost, and microcapsule.

発現ベクターとしては、プラスミドベクター、PAC、BAC、YAC、ウイルスベクター、レトロウイルスベクター等が挙げられ、適宜選択することが出来る。   Examples of expression vectors include plasmid vectors, PAC, BAC, YAC, viral vectors, retroviral vectors, and the like, which can be appropriately selected.

プロモーターの種類は、標識遺伝子が導入された細胞内で、該標識遺伝子の発現を誘導又は促進できるものであれば特に限定されない。該プロモーターとしては、SRαプロモーター、CMVプロモーター、PGKプロモーター、SV40プロモーター、ROSA26等を挙げることができる。   The type of promoter is not particularly limited as long as it can induce or promote the expression of the marker gene in the cell into which the marker gene has been introduced. Examples of the promoter include SRα promoter, CMV promoter, PGK promoter, SV40 promoter, ROSA26 and the like.

上記発現ベクターは、目的とするmRNAの転写を終結する配列(ポリA、一般にターミネーターと呼ばれる)を有していることが好ましい。その他、標識遺伝子をさらに高発現させる目的で、スプライシングシグナル、エンハンサー領域、真核遺伝子のイントロンの一部を、プロモーター領域の5'上流、プロモーター領域と翻訳領域間あるいは翻訳領域の3'下流に連結することも可能である。また、上記発現ベクターは、導入された標識遺伝子が安定に組み込まれたクローンを選択するための選択マーカー遺伝子(例:ネオマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子、アンピシリン耐性などの薬剤耐性遺伝子)をさらに含み得る。   The expression vector preferably has a sequence (poly A, generally referred to as a terminator) that terminates transcription of the target mRNA. In addition, splicing signals, enhancer regions, and introns of eukaryotic genes are partly connected 5 ′ upstream of the promoter region, between the promoter region and the translation region, or 3 ′ downstream of the translation region for the purpose of further expressing the marker gene. It is also possible to do. The expression vector further includes a selection marker gene (eg, neomycin resistance gene, hygromycin resistance gene, drug resistance gene such as ampicillin resistance) for selecting a clone in which the introduced marker gene is stably integrated. obtain.

また、発光又は蛍光標識遺伝子が導入された哺乳動物から摘出された幹細胞を用いてもよい。該哺乳動物は、自体公知の遺伝子工学的手法を用いて製造することができる。例えば、哺乳動物の受精卵や、未受精卵、精子及びその前駆細胞などの生殖細胞に、リン酸カルシウム共沈殿法、電気穿孔(エレクトロポレーション)法、リポフェクション法、凝集法、顕微注入(マイクロインジェクション)法、遺伝子銃(パーティクルガン)法、DEAE−デキストラン法などの遺伝子導入法によって、発光又は蛍光標識遺伝子を導入し、その生殖細胞に由来する子孫動物を得ることにより、発光又は蛍光標識遺伝子が導入された哺乳動物を製造することができる。   Alternatively, stem cells extracted from a mammal into which a luminescent or fluorescent labeling gene has been introduced may be used. The mammal can be produced using a genetic engineering technique known per se. For example, fertilized eggs such as mammalian fertilized eggs, unfertilized eggs, sperm and their precursor cells, calcium phosphate coprecipitation method, electroporation method, lipofection method, aggregation method, microinjection (microinjection) Luminescent or fluorescently labeled genes are introduced by introducing a luminescent or fluorescently labeled gene by a gene transfer method such as a method, a gene gun (particle gun) method, or a DEAE-dextran method, and obtaining progeny animals derived from the germ cells. Mammals can be produced.

生殖細胞への遺伝子導入にあたっては、目的とする標識遺伝子を、対象となる哺乳動物の細胞内で機能可能なプロモーターの下流に連結したコンストラクト(発現ベクター)を用いるのが一般的に有利である。   When introducing a gene into a germ cell, it is generally advantageous to use a construct (expression vector) in which a target marker gene is linked downstream of a promoter that can function in a target mammalian cell.

具体的には、対象となる哺乳動物の細胞内で機能可能なプロモーターの下流に、標識遺伝子を含むポリヌクレオチドを連結した発現ベクターを、対象となる哺乳動物の受精卵等へマイクロインジェクションし、その受精卵を偽妊娠動物の子宮内に移植することによって、標識遺伝子を高発現する遺伝子導入哺乳動物を作出できる。   Specifically, an expression vector in which a polynucleotide containing a marker gene is linked downstream of a promoter that can function in the cells of the subject mammal is microinjected into a fertilized egg of the subject mammal, and the like. By transferring the fertilized egg into the uterus of a pseudopregnant animal, a transgenic mammal that highly expresses the marker gene can be produced.

発現ベクターとしては、プラスミドベクター、PAC、BAC、YAC、ウイルスベクター、レトロウイルスベクター等が挙げられ、適宜選択することが出来る。   Examples of expression vectors include plasmid vectors, PAC, BAC, YAC, viral vectors, retroviral vectors, and the like, which can be appropriately selected.

プロモーターの種類は、標識遺伝子が導入された哺乳動物内で、該標識遺伝子の発現を誘導又は促進できるものであれば特に限定されない。プロモーターとして、組織非特異的なものを用いることにより、発光又は蛍光標識遺伝子を偏在的に発現する哺乳動物を製造することができる。この哺乳動物から摘出された組織を用いれば、一回の試験で多数の種類の組織の保存効果を同時に評価することが可能である。組織非特異的なプロモーターとしては、SRαプロモーター、CMVプロモーター、PGKプロモーター、SV40プロモーター、ROSA26、βアクチンプロモーター等を挙げることができる。また、組織特異的プロモーターを用いれば、発光又は蛍光標識遺伝子を目的とする組織に特異的に発現する哺乳動物を製造することができる。例えばα1ATプロモーターを用いれば肝臓特異的に、βアクチンプロモーターを用いれば骨格筋特異的に、エノラーゼプロモーターを用いれば神経特異的にそれぞれ標識遺伝子を発現させることができる。   The type of promoter is not particularly limited as long as it can induce or promote the expression of the marker gene in the mammal into which the marker gene has been introduced. By using a non-tissue-specific promoter as a promoter, a mammal that ubiquitously expresses a luminescent or fluorescently labeled gene can be produced. By using a tissue extracted from this mammal, it is possible to simultaneously evaluate the preservation effect of many types of tissues in a single test. Examples of the tissue non-specific promoter include SRα promoter, CMV promoter, PGK promoter, SV40 promoter, ROSA26, β-actin promoter and the like. In addition, if a tissue-specific promoter is used, a mammal that specifically expresses a luminescent or fluorescently labeled gene in the target tissue can be produced. For example, the marker gene can be expressed in a liver-specific manner by using the α1AT promoter, in a skeletal muscle-specific manner by using the β-actin promoter, and in a nerve-specific manner by using the enolase promoter.

上記発現ベクターは、目的とするmRNAの転写を終結する配列(ポリA、一般にターミネーターと呼ばれる)を有していることが好ましい。その他、標識遺伝子をさらに高発現させる目的で、スプライシングシグナル、エンハンサー領域、真核遺伝子のイントロンの一部を、プロモーター領域の5’上流、プロモーター領域と翻訳領域間あるいは翻訳領域の3’下流に連結することも可能である。また、上記発現ベクターは、導入された標識遺伝子が安定に組み込まれたクローンを選択するための選択マーカー遺伝子(例:ネオマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子、アンピシリン耐性などの薬剤耐性遺伝子)をさらに含み得る。   The expression vector preferably has a sequence (poly A, generally referred to as a terminator) that terminates transcription of the target mRNA. In addition, splicing signals, enhancer regions, and introns of eukaryotic genes are partly connected 5 ′ upstream of the promoter region, between the promoter region and the translation region, or 3 ′ downstream of the translation region for the purpose of further expressing the marker gene. It is also possible to do. The expression vector further includes a selection marker gene (eg, neomycin resistance gene, hygromycin resistance gene, drug resistance gene such as ampicillin resistance) for selecting a clone in which the introduced marker gene is stably integrated. obtain.

次に、幹細胞が移植された組織原基をインビトロで培養する。組織原基の培養は、通常の器官培養の手法を用いて行うことが出来る。例えば、ディッシュに適切な培地を加え、その上へフィルターを浮かべ、フィルターを介して培地が組織原基に供給される様にフィルター上に組織原基を配置し、ディッシュをインキュベーター内に静置することにより、組織原基の培養を行うことができる。培養条件は、組織培養技術において通常用いられている培養条件を用いることができる。例えば、培養温度は通常約30〜40℃の範囲であり、好ましくは約37℃が例示される。CO濃度は通常約1〜10%の範囲であり、好ましくは約5%が例示される。湿度は通常約70〜100%の範囲であり、好ましくは約95〜100%が例示される。培養期間は、評価に十分な長さである限り、特に限定されることなく適宜設定することが出来るが、ラットの腎臓原基を用いた場合には、通常7〜14日間程度である。 Next, the tissue primordium in which the stem cells are transplanted is cultured in vitro. The culture of the tissue primordium can be performed using a normal organ culture technique. For example, add a suitable medium to the dish, float the filter on it, place the tissue primordium on the filter so that the medium is supplied to the tissue primordium through the filter, and leave the dish in the incubator Thus, the tissue primordium can be cultured. As culture conditions, culture conditions usually used in tissue culture techniques can be used. For example, the culture temperature is usually in the range of about 30 to 40 ° C, preferably about 37 ° C. The CO 2 concentration is usually in the range of about 1 to 10%, preferably about 5%. The humidity is usually in the range of about 70 to 100%, preferably about 95 to 100%. The culture period can be appropriately set without particular limitation as long as it is long enough for evaluation, but is usually about 7 to 14 days when rat kidney primordia are used.

そして、培養した該組織原基における移植された幹細胞由来の細胞の分散の程度を指標に、該幹細胞が生体内で当該組織を構成する細胞に分化し得る可能性が判定される。移植された幹細胞由来の細胞の分散の程度は、顕微鏡や、適切なイメージング装置を用いて行うことが出来る。蛍光等により幹細胞が標識されている場合には、該標識を検出可能な顕微鏡や、適切なイメージング装置が用いられる。後述の実施例に示すように、生体内で当該組織を構成する細胞に分化し得る幹細胞は、増殖とともに組織原基内で分散し、当該組織を構成する細胞へ分化する。幹細胞が蛍光等で標識されている場合には、当該標識の分散として、細胞の分散を容易に検出することが出来る。一方、生体内で当該組織を構成する細胞に分化することが出来ず、奇形腫等の腫瘍を形成してしまう幹細胞は、組織原基内で分散せずに、細胞塊の態様を呈し、奇形腫等の腫瘍を形成する。細胞の増殖とともに、細胞塊の大きさが大きくなる。幹細胞が蛍光等で標識されている場合には、当該標識の塊として、細胞塊を容易に検出することが出来る。上記判定は、組織原基における移植された幹細胞由来の細胞の分散の程度(又は有無)と幹細胞が生体内で当該組織を構成する細胞に分化し得る可能性との間のこのような正の相関に基づき行われる。   Then, using the degree of dispersion of the transplanted stem cell-derived cells in the cultured tissue primordia as an index, the possibility that the stem cells can differentiate into cells constituting the tissue in vivo is determined. The degree of dispersion of transplanted stem cell-derived cells can be determined using a microscope or an appropriate imaging apparatus. When stem cells are labeled with fluorescence or the like, a microscope capable of detecting the label or an appropriate imaging apparatus is used. As shown in Examples described later, stem cells that can differentiate into cells constituting the tissue in vivo are dispersed in the tissue primordium along with proliferation, and differentiate into cells constituting the tissue. When stem cells are labeled with fluorescence or the like, cell dispersion can be easily detected as the dispersion of the label. On the other hand, stem cells that cannot differentiate into cells constituting the tissue in vivo and form tumors such as teratomas, do not disperse within the tissue primordium, exhibit a cell mass form, and deform A tumor such as a tumor is formed. As the cells grow, the size of the cell mass increases. When stem cells are labeled with fluorescence or the like, the cell mass can be easily detected as the labeled mass. The above determination is based on such a positive value between the degree (or presence) of the distribution of transplanted stem cell-derived cells in the tissue primordia and the possibility that the stem cells can differentiate into cells constituting the tissue in vivo. Based on correlation.

即ち、培養後の組織原基内で、移植した幹細胞由来の細胞が増殖とともに分散する場合には、当該幹細胞は生体内で当該組織を構成する細胞に分化し得る可能性が高いと判定することが出来る。一方、培養後の組織原基内で、移植した幹細胞由来の細胞が分散せずに、細胞塊の態様を呈した場合には、当該幹細胞は生体内で当該組織を構成する細胞に分化することが出来ず、奇形腫等の腫瘍を形成してしまう可能性が高いと判定することが出来る。   That is, if the cells derived from the transplanted stem cells are dispersed with proliferation in the tissue primordium after culturing, it is determined that the stem cells are highly likely to be differentiated into cells constituting the tissue in vivo. I can do it. On the other hand, when cells derived from transplanted stem cells do not disperse in the tissue primordium after culturing and exhibit a cell mass, the stem cells are differentiated into cells constituting the tissue in vivo. Therefore, it can be determined that there is a high possibility of forming a tumor such as a teratoma.

本発明の方法を用いれば、例えば、幹細胞による特定の組織の再生医療を行うに先立って、その幹細胞が所望の組織を構成する細胞へ適切に分化し得るか否かを評価することが出来るので、幹細胞の品質コントロールに有用である。また、本発明の方法を用いれば、多能性幹細胞からインビトロで分化させた複能性幹細胞や単能性幹細胞を用いて再生医療を行う場合に、十分に分化しておらず、奇形腫等の腫瘍形成能を有する細胞が混入していないか、容易に評価することが出来る。更に、本発明の方法を用いれば、iPS細胞が、所定の組織を構成する細胞へ分化し得るか、或いは未分化な状態に初期化されており奇形腫形成能を有しているかを評価することが出来る。   By using the method of the present invention, for example, it is possible to evaluate whether or not the stem cells can be appropriately differentiated into cells constituting a desired tissue prior to performing regenerative medicine of a specific tissue using stem cells. It is useful for stem cell quality control. In addition, if the method of the present invention is used to perform regenerative medicine using multipotent stem cells or pluripotent stem cells differentiated in vitro from pluripotent stem cells, they are not sufficiently differentiated, such as teratomas It is possible to easily evaluate whether cells having tumor-forming ability are mixed. Furthermore, by using the method of the present invention, it is evaluated whether iPS cells can be differentiated into cells constituting a predetermined tissue, or have been initialized to an undifferentiated state and have a teratoma forming ability. I can do it.

また、本発明は、幹細胞が生体内で所望の組織を構成する細胞へ分化し得るか否か評価するためのキットを提供する。該キットには、本発明の方法において用いられる、生体外へ分離された所望の組織の原基(例えば、メタネフロン等)が含まれる。組織の原基は、適切な組織保存液(例えば、ET−Kyoto液等)中で凍結されていてもよい。   The present invention also provides a kit for evaluating whether stem cells can be differentiated into cells constituting a desired tissue in vivo. The kit contains a desired tissue primordium (for example, metanephron, etc.) used in the method of the present invention and separated in vitro. The tissue primordium may be frozen in an appropriate tissue preservation solution (eg, ET-Kyoto solution).

本発明のキットは、更に、本発明の方法において評価対象の幹細胞を移植される組織原基の細胞と識別し得るように標識するための試薬を含むことができる。該試薬としては、蛍光標識試薬、発光標識試薬、放射線同位体標識試薬等が挙げられる。該試薬としては、例えば、上述の蛍光タンパク質を発現し得る発現ベクターや、酵素を発現し得る発現ベクターと、該酵素に対応する蛍光基質又は発光基質との組み合わせ等を挙げる。また、本発明のキットは、上述の方法により発現ベクターを幹細胞へトランスフェクトするための試薬を更に含むこともできる。   The kit of the present invention can further contain a reagent for labeling the stem cells to be evaluated in the method of the present invention so that they can be distinguished from the cells of the tissue primordia to be transplanted. Examples of the reagent include a fluorescent labeling reagent, a luminescent labeling reagent, and a radioisotope labeling reagent. Examples of the reagent include a combination of an expression vector capable of expressing the above-described fluorescent protein, an expression vector capable of expressing an enzyme, and a fluorescent substrate or a luminescent substrate corresponding to the enzyme. The kit of the present invention can further contain a reagent for transfecting the expression vector into stem cells by the above-described method.

本発明のキットは、更に、本発明の方法において使用される種々の試薬やツール(例えば、組織原基中へ幹細胞を移植するためのツール(マニピュレーター、マイクロピペット等)、組織原基をインビトロで培養するためのディッシュ、フィルター、培地、上記本発明の方法が記載された指示書、標識を検出可能な顕微鏡や適切なイメージング装置等)を含むことが出来る。   The kit of the present invention further comprises various reagents and tools used in the method of the present invention (for example, tools for transplanting stem cells into tissue primordia (manipulators, micropipettes, etc.), tissue primordium in vitro. A dish for culturing, a filter, a culture medium, instructions describing the above-described method of the present invention, a microscope capable of detecting a label, an appropriate imaging apparatus, and the like.

本発明のキットを用いることにより、本発明の方法により容易に幹細胞が生体内で所望の組織を構成する細胞へ分化し得るか否か評価することができる。   By using the kit of the present invention, it is possible to easily evaluate whether the stem cells can be differentiated into cells constituting a desired tissue in vivo by the method of the present invention.

以下、実施例を示して本発明をより具体的に説明するが、本発明は以下に示す実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited at all by the Example shown below.

(実施例1)
iPSを代表とする幹細胞は種々の遺伝子を導入することにより樹立されるが、樹立された幹細胞の癌原性は、マウス等では見られなくてもイヌやサルなどの大型動物の幹細胞で認められるケースが報告されている(Xiao-Bing Zhang, et al. JCI 118;1502,2008)。そこで本試験においては、緑色蛍光タンパク(GFP)で標識したサルES細胞(Nagata M, et al. J Gene Med 5;921,2003)、及び赤色蛍光タンパクであるクサビラオレンジが導入されたブタ(Matsunari H, et al. Cloning Stem Cells 10;313,2008)から樹立されたMSCを用いた。
当該サルES細胞は、生体内へ移植すると奇形腫を形成すること、及び当該ブタMSCは、腎臓原基内へ移植すると腎臓を構成するエリスロポエチン産生細胞へ分化し得ることが知られている(Transplantation 85: 1654-1658, 2008)。
テストする幹細胞のラット胎児腎臓原基への注入は既報に沿った(Yokoo T, et al. J Am Soc Nephrol 17;1026,2006)。具体的には、100〜10000個の細胞(サルES細胞又はブタMSC)を実体顕微鏡下でマウスピペットを用いてラット胎児腎原基中へ注入した。注入後の腎原基を定法によりフィルターつき2重培養皿上で10〜14日間、器官培養を行った。培養後の腎原基を蛍光顕微鏡下で観察した。
Example 1
Although stem cells typified by iPS are established by introducing various genes, the carcinogenicity of the established stem cells is observed in stem cells of large animals such as dogs and monkeys even though they are not found in mice. Cases have been reported (Xiao-Bing Zhang, et al. JCI 118; 1502,2008). Therefore, in this test, monkey ES cells labeled with green fluorescent protein (GFP) (Nagata M, et al. J Gene Med 5; 921,2003) and pigs introduced with red fluorescent protein, wedgefly orange ( MSC established from Matsunari H, et al. Cloning Stem Cells 10; 313, 2008) was used.
The monkey ES cells are known to form teratomas when transplanted in vivo, and the porcine MSCs can be differentiated into erythropoietin-producing cells constituting the kidney when transplanted into the renal primordia (Transplantation). 85: 1654-1658, 2008).
Injection of test stem cells into rat fetal kidney primordia was in line with previous reports (Yokoo T, et al. J Am Soc Nephrol 17; 1026, 2006). Specifically, 100-10000 cells (monkey ES cells or porcine MSC) were injected into the rat fetal kidney primordia using a mouse pipette under a stereomicroscope. The kidney primordium after the injection was cultured on a double culture dish with a filter for 10 to 14 days by a conventional method. The cultured kidney primordium was observed under a fluorescence microscope.

その結果、サルES細胞を移入した場合には、移入した細胞が1つの塊となり、奇形腫を形成する様子が蛍光イメージにより確認された(図1)。奇形腫の形成は、光学顕微鏡においても確認された(図2)。一方、ブタMSCは、腫瘍を形成することなく腎臓原基中に分散し、腎臓へ分化した(図3)。   As a result, when the monkey ES cells were transferred, it was confirmed by fluorescence image that the transferred cells became one lump and formed teratomas (FIG. 1). The formation of teratomas was also confirmed by light microscopy (FIG. 2). On the other hand, porcine MSCs dispersed in the kidney primordium without forming a tumor and differentiated into the kidney (FIG. 3).

(実施例2)
妊娠ラットより15日齢の胎仔ラットを分離し、実体顕微鏡下にて胎仔ラットから腎臓原基を摘出し、フィルターつき二重培養皿のフィルター上に静置した。一方、既報の方法 (Takahashi K, et al. Nature Protocols 12;2, 2007) にて樹立されたマウスiPS細胞を1000〜10000個の細胞懸濁液とし、実体顕微鏡下にてマウスピペットを用いて、上記ラット腎臓原基中へ注入した。細胞注入後のラット腎臓原基は、定法により14日間、器官培養を行った。培養後の腎臓原基を蛍光顕微鏡下にて観察した。
その結果、ES細胞と同様に、マウスiPS細胞を移入した場合には、移入した細胞が一つの塊となり、奇形腫を形成する様子が蛍光イメージにより確認された(図4)。
(Example 2)
A 15-day-old fetal rat was isolated from the pregnant rat, and the kidney primordium was removed from the fetal rat under a stereomicroscope and allowed to stand on a filter in a double culture dish with a filter. On the other hand, a mouse iPS cell established by a previously reported method (Takahashi K, et al. Nature Protocols 12; 2, 2007) was made into a cell suspension of 1,000 to 10,000 cells, and a mouse pipette was used under a stereomicroscope. Were injected into the rat kidney primordium. Rat kidney primordium after cell injection was cultured for 14 days by a conventional method. The cultured kidney primordium was observed under a fluorescence microscope.
As a result, as in the case of ES cells, when mouse iPS cells were transferred, it was confirmed by fluorescence image that the transferred cells became one lump and formed teratomas (FIG. 4).

本発明の方法を用いれば、幹細胞が生体内で奇形腫等の腫瘍を形成する細胞であるか、或いは生体内で腫瘍形成なく種々の細胞に分化し、正常な組織形成に寄与し得る細胞であるかを簡便に検定することができる。
本出願は国際出願 PCT/JP2008/073849(出願日:2008年12月26日)を基礎としており、その内容は本明細書に全て包含されるものである。
By using the method of the present invention, stem cells are cells that form tumors such as teratomas in vivo, or cells that can differentiate into various cells without tumor formation in vivo and contribute to normal tissue formation. It is possible to easily test whether it exists.
This application is based on the international application PCT / JP2008 / 073849 (filing date: December 26, 2008), the contents of which are incorporated in full herein.

Claims (6)

以下の工程を含む、幹細胞が生体内で所望の組織を構成する細胞へ分化し得るか否か評価する方法:
(1)評価対象の幹細胞を非ヒト哺乳動物の所望の組織の原基中に移植すること、
(2)該組織原基をインビトロで培養すること、
(3)培養した該組織原基における移植された幹細胞由来の細胞の分散の程度を指標に、該組織原基における移植された幹細胞由来の細胞の分散の程度又は有無と幹細胞が生体内で当該組織を構成する細胞に分化し得る可能性との間の正の相関に基づき、該幹細胞が生体内で当該組織を構成する細胞に分化し得る可能性を判定すること。
A method for evaluating whether a stem cell can be differentiated into a cell constituting a desired tissue in vivo, comprising the following steps:
(1) transplanting stem cells to be evaluated into a primordium of a desired tissue of a non-human mammal,
(2) culturing the tissue primordium in vitro;
(3) Using the degree of dispersion of transplanted stem cell-derived cells in the cultured tissue primordia as an index, the degree of presence or absence of transplanted stem cell-derived cells in the tissue primordium and the stem cells in vivo Determining the possibility that the stem cells can differentiate into cells constituting the tissue in vivo based on a positive correlation with the possibility of differentiation into cells constituting the tissue.
工程(3)において、培養後の組織原基内で、移植した幹細胞由来の細胞が増殖とともに分散する場合には、当該幹細胞は生体内で当該組織を構成する細胞に分化し得る可能性が高いと判定し、培養後の組織原基内で、移植した幹細胞由来の細胞が分散せずに、細胞塊の態様を呈した場合には、当該幹細胞は生体内で当該組織を構成する細胞に分化することが出来ず、腫瘍を形成してしまう可能性が高いと判定する、請求項1記載の方法。In the step (3), in the case where the transplanted stem cell-derived cells are dispersed with proliferation in the cultured tissue primordia, the stem cells are highly likely to be differentiated into cells constituting the tissue in vivo. When the stem cells derived from the transplanted stem cells do not disperse in the tissue primordium after culturing, and exhibit a cell mass aspect, the stem cells differentiate into cells constituting the tissue in vivo. The method according to claim 1, wherein the method is determined to be unfavorable and likely to form a tumor. 評価対象の幹細胞が、移植される組織原基の細胞と識別し得るように標識されている、請求項1又は2記載の方法。 The method according to claim 1 or 2 , wherein the stem cells to be evaluated are labeled so as to be distinguishable from the cells of the tissue primordium to be transplanted. 標識が蛍光標識である、請求項記載の方法。 The method of claim 3 , wherein the label is a fluorescent label. 組織が腎臓である、請求項1〜4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4 , wherein the tissue is a kidney. 幹細胞が間葉系幹細胞である、請求項1〜5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5 , wherein the stem cell is a mesenchymal stem cell.
JP2009155943A 2008-12-26 2009-06-30 Method for evaluating stem cell differentiation potential Expired - Fee Related JP5030039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009155943A JP5030039B2 (en) 2008-12-26 2009-06-30 Method for evaluating stem cell differentiation potential

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010537173 2008-12-26
JP2010537173 2008-12-26
JP2009155943A JP5030039B2 (en) 2008-12-26 2009-06-30 Method for evaluating stem cell differentiation potential

Publications (2)

Publication Number Publication Date
JP2012019690A JP2012019690A (en) 2012-02-02
JP5030039B2 true JP5030039B2 (en) 2012-09-19

Family

ID=45774520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009155943A Expired - Fee Related JP5030039B2 (en) 2008-12-26 2009-06-30 Method for evaluating stem cell differentiation potential

Country Status (1)

Country Link
JP (1) JP5030039B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9334475B2 (en) * 2012-04-06 2016-05-10 Kyoto University Method for inducing erythropoietin-producing cell
JP6580329B2 (en) 2014-03-31 2019-09-25 シスメックス株式会社 Method for obtaining differentiated cells and / or products of differentiated cells from undifferentiated cells

Also Published As

Publication number Publication date
JP2012019690A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
Singh et al. Describing the stem cell potency: the various methods of functional assessment and in silico diagnostics
Kretzschmar et al. Lineage tracing
EP2971059B1 (en) A method and quality control molecular based mouse embryo assay for use with in vitro fertilization technology
GB2490443A (en) Organ regeneration method using iPS cells and blastocyst complementation
WO2021049613A1 (en) Method for inducing immature oocytes and method for producing mature oocytes
US10667499B2 (en) Method and quality control molecular based mouse embryo assay for use with in vitro fertilization technology
WO2006129696A1 (en) EXPRESSION VECTOR HAVING PROMOTER SEQUENCE OF Vasa HOMOLOGUE GENE DERIVED FROM MAMMAL AND USE THEREOF
JP4904153B2 (en) Tissue modeling in embryonic stem (ES) cell lines
Sommer et al. Transgenic Stra8-EYFP pigs: a model for developing male germ cell technologies
JP5030039B2 (en) Method for evaluating stem cell differentiation potential
Stephenson et al. Preimplantation genetic diagnosis as a source of human embryonic stem cells for disease research and drug discovery
WO2010073760A1 (en) Method for evaluation of differentiation ability of stem cell
JP2011004674A (en) METHOD FOR PRODUCING INDUCED PLURIPOTENT STEM CELL (iPS CELL)
Wu et al. Long-term in vivo chimeric cells tracking in non-human primate
WO2021200768A1 (en) Human chromosome dispersion method and isolation method, and method for transplanting human chromosome into animal embryo
US20240284882A1 (en) Method and use of a transgenic mouse line
Grandela et al. STRAIGHT-IN: A platform for high-throughput targeting of large DNA payloads into human pluripotent stem cells
JP4017544B2 (en) Sperm propagation method
McMahon et al. Phenotypic Analysis of Early Neurogenesis in a Mouse Chimeric Embryo and Stem Cell-Based Neuruloid Model
조호연 Studies on application of spermatogonial stem cell for quail genome modification
JP2012029653A (en) Method for evaluating pluripotency of cell
WO2015171250A1 (en) A method and quality control molecular based mouse embryo assay for use with in vitro fertilization technology
Dym et al. THE SPERMATOGONIAL STEM CELL MODEL
JP2004344060A (en) Bovine embryonic stem cell and method for producing bovine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

R150 Certificate of patent or registration of utility model

Ref document number: 5030039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees