WO2020166659A1 - Method for producing biomass gas, method for producing hydrogen, system for producing biomass gas, and system for producing hydrogen - Google Patents

Method for producing biomass gas, method for producing hydrogen, system for producing biomass gas, and system for producing hydrogen Download PDF

Info

Publication number
WO2020166659A1
WO2020166659A1 PCT/JP2020/005546 JP2020005546W WO2020166659A1 WO 2020166659 A1 WO2020166659 A1 WO 2020166659A1 JP 2020005546 W JP2020005546 W JP 2020005546W WO 2020166659 A1 WO2020166659 A1 WO 2020166659A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
steam
gas
biomass gas
gasification
Prior art date
Application number
PCT/JP2020/005546
Other languages
French (fr)
Japanese (ja)
Inventor
市川 勝
木内 勉
野津 剛
鈴木 文彦
Original Assignee
有限会社市川事務所
清水建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社市川事務所, 清水建設株式会社 filed Critical 有限会社市川事務所
Priority to JP2020572307A priority Critical patent/JPWO2020166659A1/en
Publication of WO2020166659A1 publication Critical patent/WO2020166659A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Definitions

  • the present invention relates to a biomass gas production method, a hydrogen production method, a biomass gas production system, and a hydrogen production system.
  • the present application claims priority based on Japanese Patent Application No. 2019-26012 filed in Japan on February 15, 2019, the contents of which are incorporated herein by reference.
  • woody biomass has been used as a combustion fuel or treated as waste.
  • various one-stage gasification technologies such as one-stage gasification technology that directly pyrolyzes biomass using high-temperature steam, and two-stage gasification technology that pyrolyzes and decomposes the carbides produced by carbonization of biomass with high-temperature steam.
  • forms of pyrolysis gasifiers have been developed so far.
  • Biomass gas mixed gas containing CO, hydrogen, CO 2 and methane, etc.
  • high-purity hydrogen is produced by reforming reaction of biomass gas to produce fuel. It is used for batteries and the like (see Non-Patent Documents 1 to 4).
  • Pyrolysis gasification of biomass has various forms depending on the method of supplying biomass, the reaction conditions and content such as pressure, temperature and flow rate of oxidizer such as steam, heating method, gasification furnace structure and the like.
  • the pressure there is a mode in which atmospheric pressure (0.1 to 0.12 MPa) and pressurization (0.2 to 2 MPa) are used to pyrolyze and gasify biomass.
  • the temperature there is a form in which biomass is pyrolyzed and gasified at low temperature (less than 650° C.) and high temperature (650 to 1200° C.).
  • a gasifying agent there is a type in which air, oxygen, and steam are used to pyrolyze and gasify biomass.
  • a heating method there are an internal combustion gasification in which a part of biomass as a gasification raw material is reacted with oxygen to internally burn, and an external combustion gasification in which biomass as a raw material and steam are externally heated.
  • the gasification furnace type include a fixed bed, a fluidized bed, a moving bed, a stirring bed, and a rotary kiln type. Pyrolysis gasification of biomass is classified according to these types and their combinations.
  • the gasification efficiency (heat quantity of biomass gas/(heat quantity of biomass + heat quantity of external heat input) ⁇ 100) in pyrolysis gasification of biomass is at most 50 to 65%, and improvement and generation of gasification efficiency It is required to increase the amount of gas.
  • tar, wood vinegar, coke, etc. are secondarily produced in the pyrolysis gasification. It is required to reduce the processing cost of by-products generated as a by-product and reduce the burden on the local environment. It is required to improve the utilization of exhaust heat from the high temperature pyrolysis gasifier.
  • a hydrogen production method using biomass gas there is a demand for energy saving and hydrogen production cost reduction by lowering the reaction process temperature, lowering the pressure, and improving catalyst performance.
  • the present invention reduces a by-product such as tar in the pyrolysis gasification of biomass and improves the gasification efficiency of biomass and the amount of biomass gas produced, a method for producing hydrogen, a method for producing hydrogen, a system for producing biomass gas, and hydrogen. Intended for manufacturing systems.
  • a method for producing a biomass gas which comprises a pyrolysis gasification step of obtaining a biomass gas by using biomass as a raw material and gasifying with steam containing a metal component.
  • the pyrolysis gasification step includes a combustion operation for burning a part of the biomass, and a gasification operation for obtaining the biomass gas from another part of the biomass and the steam.
  • the pyrolysis gasification step has a carbonization operation for carbonizing the biomass to obtain a carbide, and a carbide gasification operation for obtaining the biomass gas from the carbide and the steam.
  • Biomass gas production method [4] The method for producing a biomass gas according to any one of [1] to [3], which has a steam heating step of heating the steam by using exhaust heat generated in the pyrolysis gasification step as a heat source. .. [5]
  • the metal component contains at least one element selected from the group consisting of sodium, potassium, lithium, calcium, magnesium, strontium, barium, boron, aluminum and gallium.
  • the metal component contains at least one salt selected from the group consisting of carbonates, sulfates, hydrochlorides and silicates, and the content of the salt is 10 to 10000 mg per 1 kg of the steam.
  • a method for producing hydrogen comprising: [8] In the hydrogen production step, a composite reforming catalyst containing at least one metal element selected from iron, cobalt, platinum, rhodium, molybdenum, zirconium, titanium, cerium, lanthanum and neodymium is used [7 ] The hydrogen production method of description.
  • a biomass gas production system having a pyrolysis gasification apparatus that obtains biomass gas by gasifying biomass with steam as a raw material and steam containing metal components.
  • the pyrolysis gasification apparatus has a combustion furnace that burns a part of the biomass, and a gasification furnace that obtains the biomass gas from another part of the biomass and the steam,
  • the pyrolysis gasifier has a carbonization furnace for carbonizing the biomass to obtain a carbide, and a carbide gasification furnace for obtaining the biomass gas from the carbide and the steam. Biomass gas production system.
  • the biomass gas production system according to any one of [9] to [11], which has steam heating means for heating the steam by using exhaust heat generated in the pyrolysis gasification device as a heat source. ..
  • a hydrogen production system comprising: the biomass gas production system according to any one of [9] to [12]; and a hydrogen production device that reforms the biomass gas to produce hydrogen.
  • the hydrogen production device has a reaction bed filled with a composite reforming catalyst, and the composite reforming catalyst includes iron, cobalt, platinum, rhodium, molybdenum, zirconium, titanium, cerium, lanthanum and
  • the hydrogen production system according to [13] which contains at least one metal element selected from neodymium.
  • biomass gas production method hydrogen production method, biomass gas production system and hydrogen production system of the present invention
  • byproducts such as tar in the pyrolysis gasification of biomass are reduced, and the gasification efficiency of biomass and the production of biomass gas are reduced.
  • the quantity can be improved.
  • the present invention is a method for producing a biomass gas, which is characterized in that biomass is pyrolyzed and gasified using high calorific value steam containing a metal component such as geothermal steam.
  • a metal component such as geothermal steam.
  • the exhaust heat of the pyrolysis gasifier and the exhaust heat of the combustion furnace can be improved by using steam heat exchanging means for geothermal power generation (including binary power generation). This makes it possible to provide a method for producing a biomass gas and a method for producing hydrogen, which are excellent in terms of environment and economy.
  • biomass used as a raw material it is preferable to use pulverized and dried biomass produced or discarded in forestry or agriculture.
  • biomass include deforested materials such as cedar, pine and bamboo, agricultural products and by-products such as rice straw and sugar cane, industrial waste materials such as construction waste materials, cotton and textile products.
  • FIG. 1 is a schematic diagram of a hydrogen production system according to this embodiment.
  • the hydrogen production system 100 of FIG. 1 includes a biomass gas production system 60 and a hydrogen production device 16.
  • the biomass gas production system 60 includes a combustion furnace 9, a pyrolysis gasification device 50 (also referred to as “pyrolysis gasification furnace”), and a steam separator 32.
  • the combustion furnace 9 is connected to an air blower 30 and a pyrolysis gasification device 50.
  • the steam separator 32 is connected to the geothermal water reservoir 31 and the pyrolysis gasification device 50.
  • the pyrolysis gasification device 50 is connected to the heat exchanger 18 via the gas separation/purification processing unit 13.
  • the heat exchanger 18 is connected to the turbine generator 19, the gas holder 14, and the heat exchanger 17.
  • the gas holder 14 is connected to the gas engine power generator 15.
  • the heat exchanger 17 is connected to the steam separator 32.
  • the pyrolysis gasification device 50 includes a gasification furnace main body 1, a gasification furnace heating unit 8, a gasification reaction tower 10, and a steam heat exchanger 34.
  • the gasification furnace main body 1 is connected to the gasification furnace heating unit 8, the gasification reaction tower 10, and the steam heat exchanger 34.
  • the steam heat exchanger 34 functions as steam heating means.
  • the gasification furnace main body 1 has a steam inlet 5 for supplying steam 33 containing a metal component such as geothermal steam into the furnace.
  • the gasification furnace heating unit 8 is connected to the biomass charging unit 4 that supplies the biomass 3 for pyrolysis gasification from the furnace top to the inside of the furnace.
  • a discharge part 11 for taking out solid ash and coke produced by pyrolysis gasification is provided at the lower part of the gasification reaction tower 10.
  • a discharge part 12 for the produced biomass gas 2 is provided above the gasification reaction tower 10.
  • the hydrogen production method according to the present embodiment uses biomass as a raw material, a biomass gas production step P3 for obtaining a biomass gas by gasification with steam containing a metal component, and reforming the biomass gas. And a hydrogen production process P4 for producing hydrogen.
  • the biomass 6 for fuel is charged into the combustion furnace 9 through the upper opening of the combustion furnace 9, and while supplying air into the combustion furnace 9 with the air blower 30, a part of the biomass 6 is burned to generate combustion gas. 7 is generated (combustion operation S1).
  • the combustion gas 7 generated in the combustion furnace 9 is supplied to the gasification furnace heating unit 8 of the pyrolysis gasification device 50.
  • the biomass 3 for pyrolysis and gasification is introduced into the gasification furnace main body 1 from the biomass introduction part 4 of the pyrolysis and gasification device 50.
  • the geothermal steam obtained by separating the geothermal water pumped from the geothermal water reservoir 31 into a gas by the steam separator 32 is used.
  • the metal component contained in the water vapor 33 includes at least one element selected from the group consisting of sodium, potassium, lithium, calcium, magnesium, strontium, barium, boron, aluminum and gallium.
  • the metal component contained in the water vapor 33 may include at least one salt selected from the group consisting of carbonates, sulfates, hydrochlorides and silicates. The content of the salt is preferably 10 to 10000 mg, more preferably 20 to 1000 mg, relative to 1 kg of steam.
  • the steam 33 is heated in the steam heat exchanger 34 using the exhaust heat WH generated in the combustion operation S1 as a heat source (steam heating step P2).
  • the steam 33 is introduced into the gasification furnace main body 1 from the steam injection unit 5 below the gasification furnace main body 1.
  • steam 33 steam obtained directly from tap water or industrial water after soft water treatment or from heavy oil combustion boiler treatment can be similarly used.
  • the gasification furnace main body 1 the charged biomass 3 and the high-temperature steam 33 are mixed and convected and uniformly heated to obtain the biomass gas 2 (gasification operation S2). Since the steam 33 contains a metal component, the biomass gas 2 with reduced by-products such as tar can be obtained.
  • the steam 33 supplied into the gasification furnace main body 1 is heated in a high temperature range of 650 to 1200° C., preferably 800 to 1000° C., and supplied to the gasification operation S2.
  • the biomass gas obtained in the gasification operation S2 is supplied to the gasification furnace reaction tower 10.
  • the biomass gas 2 containing CH 4, C 2 hydrocarbons and H 2 of the H 4 and the like, CO, CO 2 Are produced (pyrolysis gasification step P1).
  • biomass C n H 2 O m : C 1.42 H 2 O 0.91 in the case of cedar, bamboo and grass wood, n and m are positive numbers
  • steam H 2 O
  • the pyrolysis gasification reaction represented by the following formulas (1), (2), and (3) is mainly used depending on the temperature inside the gasification furnace reaction tower 10.
  • Internal temperature of the gasification reactor reaction tower 10 800° C.: C 1.42 H 2 O 0.91 +0.38H 2 O 0.74H 2 +0.75CO+0.24CH 4 +0.24C 2 H 4 +0.28CO 2 ...
  • One of the means for adjusting the pyrolysis gasification step P1 is to control the internal temperature of the gasification furnace reaction tower 10 to 800 to 1000°C.
  • the temperature inside the gasification furnace reaction tower 10 is controlled by controlling the temperature and flow rate of the combustion gas 7 and adjusting the supply flow rates of the biomass 3 and the steam 33 supplied to the gasification furnace main body 1.
  • the pyrolysis gasification reactions (1) to (3) of the biomass 3 proceed at a preferable gasification conversion rate and the biomass gas 2 Is obtained (the above is the biomass gas production process P3).
  • the solid ash and dust such as coke contained in the biomass gas 2 are removed by the gas separation/purification processing unit 13 that includes a cyclone and a bag filter that physically removes tar generated as a by-product.
  • the biomass gas 2 is stored in the gas holder 14 via the gas separation/purification processing unit 13.
  • the biomass gas 2 is supplied to both or either of the gas engine power generation device 15 and the hydrogen production device 16.
  • the biomass input part 4 is provided at the top of the furnace, and the steam input part 5 is provided at the bottom of the gasification furnace main body 1.
  • the present invention is not limited to this, and the biomass 3 may be supplied from below or from the side of the gasification furnace main body 1.
  • the steam 33 may be supplied from the furnace top or the side of the gasification furnace body 1.
  • the supply place of biomass and steam is not limited to one place, but may be plural places.
  • the exhaust heat WH of the combustion gas 7 generated in the combustion operation S1 is supplied to the heat exchanger 17.
  • Exhaust heat WH of the biomass gas 2 generated in the pyrolysis gasification step P1 is supplied to the heat exchanger 18.
  • the exhaust heat WH supplied to the heat exchanger 17 or the heat exchanger 18 is used as an additional heat source of geothermal steam (steam heating step P2).
  • the steam after the heat exchange treatment is supplied to the turbine generator 19 to be used for steam power generation using the exhaust heat.
  • the hydrogen production device 16 may include a booster that pressurizes the gas pressure to a predetermined pressure, and a gas-liquid separation device that separates the generated hydrogen H.
  • the predetermined pressure include 1 to 20 atmospheric pressure (0.1 to 2 MPa).
  • the heat source of the hydrogen production device 16 it is also possible to produce hydrogen in a predetermined temperature range by using the exhaust heat of the combustion gas 7 exhausted from the heat exchanger 17. Examples of the predetermined temperature range include 250° C. to 600° C.
  • a composite reforming catalyst containing at least one metal element selected from iron, cobalt, platinum, rhodium, molybdenum, zirconium, titanium, cerium, lanthanum and neodymium is used.
  • the "composite reforming catalyst” is a conventional catalyst containing nickel, ruthenium or the like as a main component, and selected from iron, cobalt, platinum, rhodium, molybdenum, zirconium, titanium, cerium, lanthanum and neodymium.
  • the catalyst is a mixture of at least one metal element. These catalysts may be porous oxides containing the above metal elements.
  • the porous oxide is a metal oxide having a large number of fine pores.
  • Examples of the porous oxide include zirconia and the like.
  • the composite reforming catalyst can be prepared according to a conventional impregnation method using an acetone solution of an acetylacetonato complex of a substance containing the above metal element or an aqueous solution of various salts (nitrate, hydrochloride, etc.).
  • the prepared catalyst is subjected to a reduction treatment using hydrogen gas or a reducing reagent and then subjected to a reforming reaction of biomass gas.
  • the composite reforming catalyst may be subjected to the reforming reaction of the biomass gas without performing the reduction treatment using hydrogen gas or a reducing reagent.
  • hydrogen is produced by the reforming reaction of the biomass gas 2.
  • the reaction temperature is preferably 250° C. to 600° C., more preferably 350° C. to 450° C. from the viewpoint of reactivity and thermal efficiency.
  • the reaction pressure is preferably 1 to 20 atm (0.1 to 2 MPa), more preferably 5 to 10 atm (0.5 to 1 MPa).
  • the generated hydrogen H is gas-purified by a PSA (Pressure Swing Adsorption) gas separator to obtain high-purity hydrogen (purity of 99.999% or more).
  • High-purity hydrogen is used for fuel cells of fuel cell vehicles, home power generation, and fuel cells for uninterruptible power supply (UPS).
  • FIG. 3 shows a schematic diagram of the hydrogen production system according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the hydrogen production system 200 of FIG. 3 has a biomass gas production system 62 and a hydrogen production apparatus 16.
  • the biomass gas production system 62 includes a carbonization furnace 21, a carbide gasification furnace 24, and a steam heat exchanger 27.
  • the carbonization furnace 21 is connected to an air blower 30 and a gasification furnace heating unit 25 provided in the carbide gasification furnace 24.
  • the steam heat exchanger 27 is connected to the gasification furnace heating unit 25, the steam injection unit 26 of the carbide gasification furnace 24, and a supply source of steam 29.
  • the carbide gasification furnace 24 is connected to the heat exchanger 18 via the gas separation/purification processing unit 13.
  • the heat exchanger 18 is connected to the turbine generator 19, the gas holder 14, and the heat exchanger 17.
  • the gas holder 14 is connected to the gas engine power generator 15.
  • the heat exchanger 17 is connected to the steam heat exchanger 27.
  • the pyrolysis gasification device 52 includes a carbonization furnace 21 and a carbide gasification furnace 24.
  • the steam heat exchanger 27 functions
  • the hydrogen production method of the present embodiment has a biomass gas production step including a carbonization operation S3 for carbonizing biomass to obtain a carbide and a carbide gasification operation S4 for obtaining a biomass gas from the carbide and steam.
  • P3 and the hydrogen production process P4 which reforms biomass gas and produces
  • wood biomass 20 such as cedar, pine, and bamboo
  • the air blower 30 supplies air into the carbonization furnace 21 while partially burning the wood biomass 20.
  • carbide 22 carbonization operation S3
  • the carbide 22 generated in the carbonization furnace 21 is taken out from the lower end of the carbonization furnace 21, crushed, and then charged into the carbide gasification furnace 24 through the upper opening or the middle opening.
  • the combustion gas 23 generated in the carbonization furnace 21 is supplied to the gasification furnace heating unit 25 through the upper opening, and heats the inner wall of the carbide gasification furnace 24 to a predetermined temperature.
  • the combustion gas 23 is supplied to the steam heat exchanger 27 via the gasification furnace heating unit 25.
  • the water vapor 29 contains a metal component.
  • the metal component contained in the water vapor 29 include at least one element selected from the group consisting of sodium, potassium, lithium, calcium, magnesium, strontium, barium, boron, aluminum and gallium.
  • the metal component contained in the water vapor 29 may include at least one salt selected from the group consisting of carbonates, sulfates, hydrochlorides and silicates. The content of the salt is preferably 10 to 10000 mg, more preferably 20 to 1000 mg, relative to 1 kg of steam.
  • the steam 29 is heated to a predetermined temperature by the steam heat exchanger 27, and then a part of the steam 29 is supplied from the steam charging unit 26 into the carbide gasification furnace 24.
  • the predetermined temperature include 650 to 1200°C.
  • the biomass gas 28 which is a mixed gas of hydrogen (H 2 ), carbon monoxide (CO), methane (CH 4 ) and carbon dioxide (CO 2 ) is generated (carbide gasification operation S4).
  • the generated biomass gas 28 is supplied to the gas separation/purification processing unit 13 (the above is the biomass gas manufacturing process P3). Since the water vapor 29 contains a metal component, the biomass gas 28 with reduced by-products such as tar can be obtained.
  • the biomass gas 28 that has passed through the gas separation/purification processing unit 13 is supplied to the heat exchanger 18.
  • a part of the steam 29 heated by the steam heat exchanger 27 is supplied to the turbine generator 19 via the heat exchangers 17 and 18.
  • Exhaust heat WH of the combustion gas 23 discharged from the steam heat exchanger 27 is supplied to the heat exchanger 17.
  • Exhaust heat WH of the biomass gas 28 generated in the carbide gasification furnace 24 is supplied to the heat exchanger 18.
  • the exhaust heat WH supplied to the heat exchanger 17 or the heat exchanger 18 is used as an additional heat source for steam such as geothermal steam in the heat exchangers 17 and 18 (steam heating step P2) as in the first embodiment. ).
  • the steam after the heat exchange treatment is supplied to the turbine generator 19 to be used for steam power generation using the exhaust heat.
  • the biomass gas 28 generated in the carbide gasification furnace 24 of the present embodiment has the tar and coke separated in the gas separation/purification processing unit 13 as in the first embodiment, and the heat exchangers 18, 17 after the purification processing. Are sequentially stored in the gas holder 14.
  • the biomass gas 28 in the gas holder 14 is supplied to the gas engine power generation device 15 or the hydrogen production device 16 and used for gas power generation and hydrogen production.
  • the produced biomass gas 28 is brought into contact with the composite reforming catalyst, so that the pressure is low (for example, 1 MPa or less) and in a low temperature range (for example, less than 650° C.). It is possible to perform hydrogen production in () (hydrogen production process P4). It is also possible to use the exhaust heat of the combustion gas 23 and the biomass gas 28 discharged from the carbonization furnace 21 and the carbide gasification furnace 24 as the heating heat source of the hydrogen production apparatus 16 to perform hydrogen production in a predetermined temperature range.
  • Example 1 As the steam containing metal components, the geothermal steam obtained by the steam separator of the geothermal water pumped from the geothermal water storage layer was used as the steam for the pyrolysis gasification of biomass. Pyrolysis gasification experiment of biomass by pouring cedar pellets (15% water content) as biomass into the pyrolysis gasification furnace and combustion gas furnace at supply rates of 100 kg/h for gasification and 50 kg/h for combustion, respectively I went. The temperature of the pyrolysis gasification furnace was 900° C., and the pressure was 1.2 atm (0.12 MPa). The weight ratio (S/C [kg]/[kg]) of steam (steam) and biomass in the pyrolysis gasification furnace was set to 1.9.
  • Geothermal steam A 150° C., 0.3 MPa, flow rate 200 kg/h, calorific value 650 kcal/kg
  • Example 1 soft water treated tap water was used (Comparative Example).
  • Table 1 compares the gasification conversion efficiency of biomass in the pyrolysis gas furnace in 1) and the amount of biomass gas produced, and the test results of the pyrolysis gasification reaction.
  • fuel gas yield m 3 /kg
  • fuel gas means the production amount (Nm 3 ) of fuel gas (H 2 +CO+CH 4 +C 2 H 6 +CO 2 ) per 1 kg of biomass.
  • C n H m (vol %) means the volume% of the volatile long chain hydrocarbon component in which n (n and m are natural numbers) is 2 or more.
  • concentrations of CO, hydrogen, CO 2 , CH 4 and other hydrocarbons in the outlet gas are determined by FID (hydrogen flame ionization detection) with a micro gas chromatographic analyzer (GL Science Co., Ltd.) which is filled with a gas chroma pack (Gaskuropack) and a molecular sieve 13X. Instrument) Gas chromatographic analyzer (manufactured by Shimadzu Corporation) was used for measurement. The flow rate of the exhaust gas was measured by a wet gas flow meter.
  • the production rate of the produced gas was calculated from the GC (gas chromatography) analysis of the outflow gas.
  • the gasification conversion rate was calculated from the formula “(total lower heating value of biomass gas)/(lower heating value of input biomass) ⁇ 100”.
  • the biomass gas generation rate was an average value for 2 to 10 hours.
  • the amount of tar and char produced was determined by measuring the weight of the collected filter after stopping the supply of biomass.
  • the metal components contained in the geothermal steam A were Na: 600 mg/kg, K: 95 mg/kg, Mg: 35 mg/kg, Ca: 65 mg/kg, and Sr: 15 mg/kg.
  • the metal component contained in the geothermal steam A was measured by the ion chromatography method.
  • the metal component and the salt component in the steam using the tap water after the soft water treatment are the concentrations per kg of steam, Na: 8 mg/kg, K: 3 mg/kg, Ca: 6 mg/kg, Mg: 3 mg/kg, Al. : 0.2 mg/kg, B: 0.5 mg/kg.
  • the metal component and salt component in the steam using the tap water after the soft water treatment were measured by the ion chromatograph method and the ICP (inductively coupled plasma) emission spectroscopy.
  • Examples 2 to 3 In the same manner as in Example 1, the pyrolysis gasification reaction of biomass was performed using the high temperature steams B and C containing the metal component.
  • the temperature of the pyrolysis gasification furnace was 1000° C., and the pressure was 1 atm (0.1 MPa).
  • the molar ratio (S/C) of steam (steam) and carbon in the pyrolysis gasification furnace was set to 1.5.
  • Table 2 shows the gas component composition of the fuel gas, the gasification conversion rate, the fuel gas yield, etc. From these results, when steam B and C containing a metal component were used in the pyrolysis gasification, the gasification conversion rate, the fuel gas yield and the gas calorific value (lower gas calorific value) were the same as those in Comparative Example 1 using water. It was proved to increase compared with the above. The amount of tar produced was significantly reduced.
  • the metal component of the steam B was Na: 650 mg/kg, Li: 150 mg/kg, Ca: 20 mg/kg, B: 120 mg/kg, Mg: 230 mg/kg in terms of concentration per kg of steam.
  • the concentration of the metal component of the water vapor C was Na: 380 mg/kg, K: 120 mg/kg, Mg: 85 mg/kg, Al: 130 mg/kg, Ba: 78 mg/kg per 1 kg of water vapor.
  • the metal component contained in the water vapor B was measured by the same method as the metal component and the salt component in the water vapor using the tap water after the soft water treatment.
  • the metal component contained in the steam C was measured by the same method as the metal component contained in the geothermal steam A.
  • the exit biomass gas of the pyrolysis gasification furnace was introduced into the steam reforming reactor after water washing treatment and gas purification.
  • the reaction conditions were reaction temperature: 250° C. and pressure: 0.5 MPa.
  • Table 3 shows the hydrogen production test results when a steam reforming reactor for biomass gas obtained by biomass pyrolysis gasification was provided.
  • “hydrogen yield (Nm 3 /h)” represents the amount of hydrogen having a purity of 99.999% or more.
  • the yields of hydrogen after the gas-liquid separation of the produced hydrogen gas and the PSA gas purification treatment were 690 Nm 3 /h (Example 4) and 645 Nm 3 /h (Example 5).
  • Example 1 In Example 1, the combustion gas (1000 to 1200° C.) and the biomass gas (650 to 800° C.) discharged from the pyrolysis gasification furnace using cedar pellets are connected to the gasification furnace outlet and the furnace heating part, respectively. In the heat exchanger, additional heating of geothermal steam for steam power generation (flow rate 2 t/h) was performed. Under the same operating conditions as in Example 1, steam turbo power generation was performed using high calorific steam obtained by utilizing exhaust heat of combustion gas and biomass gas of a pyrolysis gasification furnace (Experimental Example 1).
  • the power generation efficiencies with and without the use of the exhaust heat of the pyrolysis gasification furnace were 16% and 15%, and the power transmission end outputs were 273kWe and 213kWe. It was found that the use of waste heat from the biomass gasifier increases the geothermal power output by 30%.
  • Example 6 Comparative Example 3
  • Carbide obtained by mechanically crushing the recovered carbide was charged from the upper part of the pyrolysis gasification furnace.
  • Water vapor D containing a metal component (Example 6: 150° C., 0.35 MPa, flow rate 200 kg/h, calorific value 658 kcal/kg) was charged into the pyrolysis gasification furnace and tap water was used (Comparative Example 3).
  • Table 4 shows the test results of the pyrolysis gasification reaction with respect to the gasification conversion rate, the amount of produced gas, and the gas composition of the above-mentioned carbides.
  • the temperature of the pyrolysis gasification furnace was 950° C., and the pressure was 1.2 atm (0.12 MPa).
  • the molar ratio (S/C) of steam (steam) and carbide in the pyrolysis gasification furnace was 1.2. From these results, the gasification conversion rate, the fuel gas yield and the lower gas calorific value in the case of using the steam containing the metal component in the two-stage pyrolysis gasification furnace of biomass are higher than those of Comparative Example 3 using tap water. It was proved that it increased.
  • the H 2 /CO molar ratio of the produced gas was 4.3 when steam D was used, and the hydrogen produced molar ratio was increased compared to 2.5 when tap water was used. In addition, the gasification and conversion efficiency of biomass was improved to 68%.
  • the concentration of the metal component contained in the water vapor D was Na: 600 mg/kg, Li: 80 mg/kg, Sr: 15 mg/kg, Ga: 20 mg/kg, B: 12 mg/kg per 1 kg of water vapor.
  • the concentration of the metal component contained in the water vapor D was measured by the same method as the metal component and the salt component in the water vapor using the tap water after the soft water treatment.
  • the concentrations of metal components in the tap water used were Na: 6 mg/kg, K: 2 mg/kg, Ca: 5 mg/kg, Mg: 2 mg/kg, and Al: 0.1 mg/kg per 1 kg of steam.
  • the concentration of metal components in tap water was measured by the same method as the metal components contained in geothermal steam A.
  • the gasification efficiency of biomass and the yield of fuel gas and hydrogen can be improved by utilizing steam containing metal components such as geothermal steam in the pyrolysis gasification of biomass such as wood and agricultural waste. It was As a result, it is possible to provide a method for reducing the environmental load and an economical biomass pyrolysis gasification and hydrogen production method.
  • by-products such as tar in the pyrolysis gasification of biomass can be reduced and the gasification efficiency of biomass and the amount of biomass gas produced can be improved.

Abstract

Provided are a method for producing biomass gas and a method for producing hydrogen that include: a pyrolytic gasification step in which a biomass gas is obtained by using biomass as a starting material and performing gasification by water vapor containing a metal component; and a hydrogen production step.

Description

バイオマスガス製造方法、水素製造方法、バイオマスガス製造システム及び水素製造システムBiomass gas production method, hydrogen production method, biomass gas production system and hydrogen production system
 本発明は、バイオマスガス製造方法、水素製造方法、バイオマスガス製造システム及び水素製造システムに関する。本願は、2019年2月15日に日本に出願された特願2019-26012号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a biomass gas production method, a hydrogen production method, a biomass gas production system, and a hydrogen production system. The present application claims priority based on Japanese Patent Application No. 2019-26012 filed in Japan on February 15, 2019, the contents of which are incorporated herein by reference.
 これまで、木質バイオマスは燃焼燃料として用いられるか、又は廃棄物として処理されてきた。一方、バイオマスを高温の水蒸気を用いて直接熱分解ガス化する一段式ガス化技術及びバイオマスの炭化処理で生成する炭化物を高温の水蒸気で熱分解ガス化する二段式ガス化技術等、様々な形態の熱分解ガス化炉がこれまでに開発されている。熱分解ガス化で生成するバイオマスガス(CO、水素、CO及びメタン等を含む混合ガス)は、ガスエンジン発電で電力利用するほか、バイオマスガスの改質反応で高純度水素を製造して燃料電池用等に利用されている(非特許文献1~4参照)。 To date, woody biomass has been used as a combustion fuel or treated as waste. On the other hand, there are various one-stage gasification technologies such as one-stage gasification technology that directly pyrolyzes biomass using high-temperature steam, and two-stage gasification technology that pyrolyzes and decomposes the carbides produced by carbonization of biomass with high-temperature steam. Forms of pyrolysis gasifiers have been developed so far. Biomass gas (mixed gas containing CO, hydrogen, CO 2 and methane, etc.) generated by pyrolysis gasification is used as electric power in gas engine power generation, and high-purity hydrogen is produced by reforming reaction of biomass gas to produce fuel. It is used for batteries and the like (see Non-Patent Documents 1 to 4).
 バイオマスの熱分解ガス化は、バイオマスの供給方法、水蒸気等の酸化剤の圧力、温度、流量等の反応条件や含有量、加熱方式、ガス化炉構造等により様々な形式がある。
 圧力としては、常圧(0.1~0.12MPa)と加圧(0.2~2MPa)で、バイオマスを熱分解ガス化する形式がある。
 温度としては、低温(650℃未満)、高温(650~1200℃)において、バイオマスを熱分解ガス化する形式がある。
 ガス化剤としては、空気、酸素、水蒸気を用いて、バイオマスを熱分解ガス化する形式がある。
 加熱方式としては、ガス化原料となるバイオマスの一部を酸素と反応させて内部燃焼する内燃式ガス化と、原料となるバイオマスと水蒸気とを外部より加熱する外燃式ガス化がある。
 ガス化炉形式としては、固定床、流動床、移動床、攪拌床、ロータリーキルン式等が挙げられる。
 バイオマスの熱分解ガス化は、これらの形式やその組み合わせによって、それぞれ分類される。
Pyrolysis gasification of biomass has various forms depending on the method of supplying biomass, the reaction conditions and content such as pressure, temperature and flow rate of oxidizer such as steam, heating method, gasification furnace structure and the like.
As for the pressure, there is a mode in which atmospheric pressure (0.1 to 0.12 MPa) and pressurization (0.2 to 2 MPa) are used to pyrolyze and gasify biomass.
As for the temperature, there is a form in which biomass is pyrolyzed and gasified at low temperature (less than 650° C.) and high temperature (650 to 1200° C.).
As a gasifying agent, there is a type in which air, oxygen, and steam are used to pyrolyze and gasify biomass.
As a heating method, there are an internal combustion gasification in which a part of biomass as a gasification raw material is reacted with oxygen to internally burn, and an external combustion gasification in which biomass as a raw material and steam are externally heated.
Examples of the gasification furnace type include a fixed bed, a fluidized bed, a moving bed, a stirring bed, and a rotary kiln type.
Pyrolysis gasification of biomass is classified according to these types and their combinations.
 バイオマスの熱分解ガス化で生成するバイオマスガスの利用方法としては、ガスエンジン発電や、水蒸気改質反応を応用した水素製造がある。これまでの開発事例では、直接に高温の水蒸気を用いてバイオマスをガス化する一段式熱分解ガス化方法と、バイオマスを炭化炉で炭化して得た炭化物に高温の水蒸気を用いてガス化する二段式熱分解ガス化方法が知られている(特許文献1~2、非特許文献1~5参照)。 As a method of using the biomass gas generated by pyrolysis and gasification of biomass, there are gas engine power generation and hydrogen production using steam reforming reaction. In the case of development so far, one-stage pyrolysis gasification method in which high temperature steam is directly used to gasify biomass, and high temperature steam is used to gasify the carbide obtained by carbonizing biomass in a carbonization furnace. A two-stage pyrolysis gasification method is known (see Patent Documents 1 and 2 and Non-Patent Documents 1 to 5).
日本国特開2008-88434号公報Japanese Patent Laid-Open No. 2008-88434 日本国特許第5342264号公報Japanese Patent No. 5342264
 しかしながら、従来の技術では、バイオマスの熱分解ガス化におけるガス化効率(バイオマスガス熱量/(バイオマス熱量+外熱投入熱量)×100)は高々50~65%であり、ガス化効率の改良と生成ガス量の増大が求められている。
 加えて、従来の技術では、熱分解ガス化において、タール、木酢液やコーク等が副次的に生成される。副次的に生成される副生成物の処理コストや地域環境への負担低減が求められている。高温熱分解ガス化炉の排熱利用の向上が求められている。加えて、バイオマスガスを用いる水素製造方法においては、反応工程の低温化、低圧化及び触媒性能の改良による省エネルギー化並びに水素製造コストの低減が求められている。
However, in the conventional technique, the gasification efficiency (heat quantity of biomass gas/(heat quantity of biomass + heat quantity of external heat input)×100) in pyrolysis gasification of biomass is at most 50 to 65%, and improvement and generation of gasification efficiency It is required to increase the amount of gas.
In addition, in the conventional technique, tar, wood vinegar, coke, etc. are secondarily produced in the pyrolysis gasification. It is required to reduce the processing cost of by-products generated as a by-product and reduce the burden on the local environment. It is required to improve the utilization of exhaust heat from the high temperature pyrolysis gasifier. In addition, in a hydrogen production method using biomass gas, there is a demand for energy saving and hydrogen production cost reduction by lowering the reaction process temperature, lowering the pressure, and improving catalyst performance.
 本発明は、バイオマスの熱分解ガス化におけるタール等の副生成物を低減し、バイオマスのガス化効率及びバイオマスガス生成量の向上を図れるバイオマスガス製造方法、水素製造方法、バイオマスガス製造システム及び水素製造システムを目的とする。 The present invention reduces a by-product such as tar in the pyrolysis gasification of biomass and improves the gasification efficiency of biomass and the amount of biomass gas produced, a method for producing hydrogen, a method for producing hydrogen, a system for producing biomass gas, and hydrogen. Intended for manufacturing systems.
 本発明は、以下の態様を有する。
[1]バイオマスを原料とし、金属成分を含む水蒸気によるガス化により、バイオマスガスを得る熱分解ガス化工程を有する、バイオマスガス製造方法。
[2]前記熱分解ガス化工程は、前記バイオマスの一部を燃焼する燃焼操作と、前記バイオマスの他の一部と前記水蒸気とから前記バイオマスガスを得るガス化操作とを有し、前記ガス化操作は、前記燃焼操作で発生した排熱を熱源として用いる、[1]に記載のバイオマスガス製造方法。
[3]前記熱分解ガス化工程は、前記バイオマスを炭化して炭化物を得る炭化操作と、前記炭化物と前記水蒸気とから前記バイオマスガスを得る炭化物ガス化操作とを有する、[1]に記載のバイオマスガス製造方法。
[4]前記熱分解ガス化工程で発生した排熱を熱源として用いて、前記水蒸気を加熱する水蒸気加熱工程を有する、[1]~[3]のいずれか一項に記載のバイオマスガス製造方法。
[5]前記金属成分が、ナトリウム、カリウム、リチウム、カルシウム、マグネシウム、ストロンチウム、バリウム、ホウ素、アルミニウム及びガリウムからなる群から選択される少なくとも1種の元素を含む、[1]~[4]のいずれか一項に記載のバイオマスガス製造方法。
[6]前記金属成分が炭酸塩、硫酸塩、塩酸塩及びケイ酸塩からなる群から選択される少なくとも1種の塩を含み、前記塩の含有量が前記水蒸気1kgに対して、10~10000mgである[1]~[5]のいずれか一項に記載のバイオマスガス製造方法。
The present invention has the following aspects.
[1] A method for producing a biomass gas, which comprises a pyrolysis gasification step of obtaining a biomass gas by using biomass as a raw material and gasifying with steam containing a metal component.
[2] The pyrolysis gasification step includes a combustion operation for burning a part of the biomass, and a gasification operation for obtaining the biomass gas from another part of the biomass and the steam. The biomass gas production method according to [1], wherein the gasification operation uses the exhaust heat generated in the combustion operation as a heat source.
[3] The pyrolysis gasification step has a carbonization operation for carbonizing the biomass to obtain a carbide, and a carbide gasification operation for obtaining the biomass gas from the carbide and the steam. Biomass gas production method.
[4] The method for producing a biomass gas according to any one of [1] to [3], which has a steam heating step of heating the steam by using exhaust heat generated in the pyrolysis gasification step as a heat source. ..
[5] In [1] to [4], the metal component contains at least one element selected from the group consisting of sodium, potassium, lithium, calcium, magnesium, strontium, barium, boron, aluminum and gallium. The method for producing a biomass gas according to any one of claims.
[6] The metal component contains at least one salt selected from the group consisting of carbonates, sulfates, hydrochlorides and silicates, and the content of the salt is 10 to 10000 mg per 1 kg of the steam. The method for producing biomass gas according to any one of [1] to [5].
[7][1]~[6]のいずれか一項に記載のバイオマスガス製造方法により前記バイオマスガスを得るバイオマスガス製造工程と、前記バイオマスガスを改質して水素を生成する水素製造工程と、を有する、水素製造方法。
[8]前記水素製造工程は、鉄、コバルト、白金、ロジウム、モリブデン、ジルコニウム、チタン、セリウム、ランタン及びネオジムから選択される少なくとも1種の金属元素を含む複合型改質触媒を用いる、[7]に記載の水素製造方法。
[7] A biomass gas production step of obtaining the biomass gas by the biomass gas production method according to any one of [1] to [6], and a hydrogen production step of reforming the biomass gas to produce hydrogen. A method for producing hydrogen, comprising:
[8] In the hydrogen production step, a composite reforming catalyst containing at least one metal element selected from iron, cobalt, platinum, rhodium, molybdenum, zirconium, titanium, cerium, lanthanum and neodymium is used [7 ] The hydrogen production method of description.
[9]バイオマスを原料とし、金属成分を含む水蒸気によるガス化により、バイオマスガスを得る熱分解ガス化装置を有する、バイオマスガス製造システム。
[10]前記熱分解ガス化装置は、前記バイオマスの一部を燃焼する燃焼炉と、前記バイオマスの他の一部と前記水蒸気とから前記バイオマスガスを得るガス化炉とを有し、前記熱分解ガス化装置は、前記燃焼炉で発生した排熱を前記ガス化炉へ供給する手段を有する、[9]に記載のバイオマスガス製造システム。
[11]前記熱分解ガス化装置は、前記バイオマスを炭化して炭化物を得る炭化炉と、前記炭化物と前記水蒸気とから前記バイオマスガスを得る炭化物ガス化炉とを有する、[9]に記載のバイオマスガス製造システム。
[12]前記熱分解ガス化装置で発生した排熱を熱源として用いて、前記水蒸気を加熱する水蒸気加熱手段を有する、[9]~[11]のいずれか一項に記載のバイオマスガス製造システム。
[9] A biomass gas production system having a pyrolysis gasification apparatus that obtains biomass gas by gasifying biomass with steam as a raw material and steam containing metal components.
[10] The pyrolysis gasification apparatus has a combustion furnace that burns a part of the biomass, and a gasification furnace that obtains the biomass gas from another part of the biomass and the steam, The biomass gas production system according to [9], wherein the cracking gasifier has means for supplying the exhaust heat generated in the combustion furnace to the gasification furnace.
[11] The pyrolysis gasifier has a carbonization furnace for carbonizing the biomass to obtain a carbide, and a carbide gasification furnace for obtaining the biomass gas from the carbide and the steam. Biomass gas production system.
[12] The biomass gas production system according to any one of [9] to [11], which has steam heating means for heating the steam by using exhaust heat generated in the pyrolysis gasification device as a heat source. ..
[13][9]~[12]のいずれか一項に記載のバイオマスガス製造システムと、前記バイオマスガスを改質して水素を生成する水素製造装置と、を有する、水素製造システム。
[14]前記水素製造装置は、複合型改質触媒が充填された反応床を有し、前記複合型改質触媒は、鉄、コバルト、白金、ロジウム、モリブデン、ジルコニウム、チタン、セリウム、ランタン及びネオジムから選択される少なくとも1種の金属元素を含む、[13]に記載の水素の製造システム。
[13] A hydrogen production system comprising: the biomass gas production system according to any one of [9] to [12]; and a hydrogen production device that reforms the biomass gas to produce hydrogen.
[14] The hydrogen production device has a reaction bed filled with a composite reforming catalyst, and the composite reforming catalyst includes iron, cobalt, platinum, rhodium, molybdenum, zirconium, titanium, cerium, lanthanum and The hydrogen production system according to [13], which contains at least one metal element selected from neodymium.
 本発明のバイオマスガス製造方法、水素製造方法、バイオマスガス製造システム及び水素製造システムによれば、バイオマスの熱分解ガス化におけるタール等の副生成物を低減し、バイオマスのガス化効率及びバイオマスガス生成量の向上を図れる。 According to the biomass gas production method, hydrogen production method, biomass gas production system and hydrogen production system of the present invention, byproducts such as tar in the pyrolysis gasification of biomass are reduced, and the gasification efficiency of biomass and the production of biomass gas are reduced. The quantity can be improved.
本発明の第一実施形態に係る水素製造システムの概略図である。It is a schematic diagram of a hydrogen production system concerning a first embodiment of the present invention. 本発明の第一実施形態に係る水素製造方法のフローチャートである。It is a flowchart of the hydrogen production method which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る水素製造システムの概略図である。It is a schematic diagram of a hydrogen production system concerning a second embodiment of the present invention. 本発明の第二実施形態に係る水素製造方法のフローチャートである。It is a flowchart of the hydrogen production method which concerns on 2nd embodiment of this invention.
 本発明は、地熱水蒸気等の金属成分を含む高熱量水蒸気を利用して、バイオマスを熱分解ガス化することを特徴とするバイオマスガス製造方法である。本実施形態に示す技術により、バイオマスのガス化効率とバイオマスガス生成量の向上を図り、加えて、タール等の副生成物を限りなく除去できる。熱分解ガス化装置の排熱及び燃焼炉の排熱を地熱発電(バイナリー発電を含む)用のスチームの熱交換手段を用いて排熱の利用を向上できる。これにより、環境面と経済性に優れたバイオマスガス製造方法と水素製造方法とを提供できる。 The present invention is a method for producing a biomass gas, which is characterized in that biomass is pyrolyzed and gasified using high calorific value steam containing a metal component such as geothermal steam. By the technique shown in the present embodiment, the gasification efficiency of biomass and the amount of biomass gas produced can be improved, and in addition, by-products such as tar can be removed without limit. The exhaust heat of the pyrolysis gasifier and the exhaust heat of the combustion furnace can be improved by using steam heat exchanging means for geothermal power generation (including binary power generation). This makes it possible to provide a method for producing a biomass gas and a method for producing hydrogen, which are excellent in terms of environment and economy.
 本発明において、原料として用いるバイオマスとしては、林業や農業における生産又は廃棄されたバイオマスを粉砕し、乾燥したものを用いることが好ましい。バイオマスとしては、例えば、杉、松、竹等の森林伐採材、稲わら、サトウキビ等の農業生産物や副産物、建築廃材、綿、繊維製品等の産業廃棄物等を例示できる。 In the present invention, as the biomass used as a raw material, it is preferable to use pulverized and dried biomass produced or discarded in forestry or agriculture. Examples of biomass include deforested materials such as cedar, pine and bamboo, agricultural products and by-products such as rice straw and sugar cane, industrial waste materials such as construction waste materials, cotton and textile products.
[第一実施形態]
 本発明の第一実施形態について、図1を用いて説明する。図1は、本実施形態に係る水素製造システムの概略図である。
[First embodiment]
A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram of a hydrogen production system according to this embodiment.
 図1の水素製造システム100は、バイオマスガス製造システム60と、水素製造装置16とを有する。バイオマスガス製造システム60は、燃焼炉9と、熱分解ガス化装置50(「熱分解ガス化炉」ともいう。)と、気水分離器32とを有する。
 燃焼炉9は、空気ブロアー30と、熱分解ガス化装置50とに接続されている。気水分離器32は、地熱水貯留層31と、熱分解ガス化装置50とに接続されている。熱分解ガス化装置50は、ガス分離精製処理部13を介して、熱交換器18と接続されている。熱交換器18は、タービン発電機19と、ガスホールダー14と、熱交換器17とに接続されている。ガスホールダー14は、ガスエンジン発電装置15と接続されている。熱交換器17は、気水分離器32と接続されている。
 本実施形態において、熱分解ガス化装置50は、ガス化炉本体1と、ガス化炉加熱部8と、ガス化反応塔10と、水蒸気熱交換器34とで構成されている。ガス化炉本体1は、ガス化炉加熱部8と、ガス化反応塔10と、水蒸気熱交換器34とに接続されている。
 水蒸気熱交換器34は、水蒸気加熱手段として機能する。
The hydrogen production system 100 of FIG. 1 includes a biomass gas production system 60 and a hydrogen production device 16. The biomass gas production system 60 includes a combustion furnace 9, a pyrolysis gasification device 50 (also referred to as “pyrolysis gasification furnace”), and a steam separator 32.
The combustion furnace 9 is connected to an air blower 30 and a pyrolysis gasification device 50. The steam separator 32 is connected to the geothermal water reservoir 31 and the pyrolysis gasification device 50. The pyrolysis gasification device 50 is connected to the heat exchanger 18 via the gas separation/purification processing unit 13. The heat exchanger 18 is connected to the turbine generator 19, the gas holder 14, and the heat exchanger 17. The gas holder 14 is connected to the gas engine power generator 15. The heat exchanger 17 is connected to the steam separator 32.
In the present embodiment, the pyrolysis gasification device 50 includes a gasification furnace main body 1, a gasification furnace heating unit 8, a gasification reaction tower 10, and a steam heat exchanger 34. The gasification furnace main body 1 is connected to the gasification furnace heating unit 8, the gasification reaction tower 10, and the steam heat exchanger 34.
The steam heat exchanger 34 functions as steam heating means.
 ガス化炉本体1は、地熱水蒸気等の金属成分を含む水蒸気33を炉内部に供給する水蒸気投入部5を有する。
 ガス化炉加熱部8は、炉頂部から熱分解ガス化用のバイオマス3を炉内部に供給するバイオマス投入部4と接続されている。
 ガス化反応塔10の下部には、熱分解ガス化で生成する固形灰やコークを取り出す排出部11が設けられている。ガス化反応塔10の上部には、生成するバイオマスガス2の排出部12が設けられている。
The gasification furnace main body 1 has a steam inlet 5 for supplying steam 33 containing a metal component such as geothermal steam into the furnace.
The gasification furnace heating unit 8 is connected to the biomass charging unit 4 that supplies the biomass 3 for pyrolysis gasification from the furnace top to the inside of the furnace.
At the lower part of the gasification reaction tower 10, a discharge part 11 for taking out solid ash and coke produced by pyrolysis gasification is provided. Above the gasification reaction tower 10, a discharge part 12 for the produced biomass gas 2 is provided.
 次に、水素製造システム100を用いた水素製造方法の一例について、図1及び図2を用いて説明する。
 図2に示すように、本実施形態に係る水素製造方法は、バイオマスを原料とし、金属成分を含む水蒸気によるガス化により、バイオマスガスを得るバイオマスガス製造工程P3と、バイオマスガスを改質して水素を生成する水素製造工程P4とを有する。
Next, an example of a hydrogen production method using the hydrogen production system 100 will be described with reference to FIGS. 1 and 2.
As shown in FIG. 2, the hydrogen production method according to the present embodiment uses biomass as a raw material, a biomass gas production step P3 for obtaining a biomass gas by gasification with steam containing a metal component, and reforming the biomass gas. And a hydrogen production process P4 for producing hydrogen.
 まず、燃料用のバイオマス6を燃焼炉9の上部開口部より燃焼炉9内に投入し、空気ブロアー30で燃焼炉9内に空気を供給しながら、バイオマス6の一部を燃焼して燃焼ガス7を生成する(燃焼操作S1)。
 燃焼炉9で生成した燃焼ガス7は、熱分解ガス化装置50のガス化炉加熱部8に供給される。
First, the biomass 6 for fuel is charged into the combustion furnace 9 through the upper opening of the combustion furnace 9, and while supplying air into the combustion furnace 9 with the air blower 30, a part of the biomass 6 is burned to generate combustion gas. 7 is generated (combustion operation S1).
The combustion gas 7 generated in the combustion furnace 9 is supplied to the gasification furnace heating unit 8 of the pyrolysis gasification device 50.
 次に、熱分解ガス化装置50のバイオマス投入部4から熱分解ガス化用のバイオマス3をガス化炉本体1に投入する。 Next, the biomass 3 for pyrolysis and gasification is introduced into the gasification furnace main body 1 from the biomass introduction part 4 of the pyrolysis and gasification device 50.
 本実施形態において、金属成分を含む水蒸気33として、地熱水貯留層31より汲み上げた地熱水を気水分離器32で気体を分離して得られる地熱水蒸気を使用する。
 水蒸気33に含まれる金属成分としては、ナトリウム、カリウム、リチウム、カルシウム、マグネシウム、ストロンチウム、バリウム、ホウ素、アルミニウム及びガリウムからなる群から選択される少なくとも1種の元素が挙げられる。
 水蒸気33に含まれる金属成分は、炭酸塩、硫酸塩、塩酸塩及びケイ酸塩からなる群から選択される少なくとも1種の塩を含んでもよい。
 塩の含有量は、水蒸気1kgに対して、10~10000mgが好ましく、20~1000mgがより好ましい。
In the present embodiment, as the steam 33 containing a metal component, the geothermal steam obtained by separating the geothermal water pumped from the geothermal water reservoir 31 into a gas by the steam separator 32 is used.
The metal component contained in the water vapor 33 includes at least one element selected from the group consisting of sodium, potassium, lithium, calcium, magnesium, strontium, barium, boron, aluminum and gallium.
The metal component contained in the water vapor 33 may include at least one salt selected from the group consisting of carbonates, sulfates, hydrochlorides and silicates.
The content of the salt is preferably 10 to 10000 mg, more preferably 20 to 1000 mg, relative to 1 kg of steam.
 水蒸気33は、水蒸気熱交換器34において燃焼操作S1で発生した排熱WHを熱源として加熱される(水蒸気加熱工程P2)。水蒸気33は、ガス化炉本体1の下部の水蒸気投入部5よりガス化炉本体1内に投入される。水蒸気33としては、水道水や工業用水を軟水処理後に直接、あるいは重油燃焼ボイラー処理で得られる水蒸気を、同様に用いることができる。
 ガス化炉本体1内においては、投入されたバイオマス3と高温の水蒸気33とが混合対流しつつ均一に加熱されて、バイオマスガス2が得られる(ガス化操作S2)。
 水蒸気33は、金属成分を含むので、タール等の副生成物を低減したバイオマスガス2が得られる。
The steam 33 is heated in the steam heat exchanger 34 using the exhaust heat WH generated in the combustion operation S1 as a heat source (steam heating step P2). The steam 33 is introduced into the gasification furnace main body 1 from the steam injection unit 5 below the gasification furnace main body 1. As the steam 33, steam obtained directly from tap water or industrial water after soft water treatment or from heavy oil combustion boiler treatment can be similarly used.
In the gasification furnace main body 1, the charged biomass 3 and the high-temperature steam 33 are mixed and convected and uniformly heated to obtain the biomass gas 2 (gasification operation S2).
Since the steam 33 contains a metal component, the biomass gas 2 with reduced by-products such as tar can be obtained.
 ガス化炉本体1内に供給する水蒸気33は、650~1200℃の高温度域において、好ましくは800~1000℃に加熱されて、ガス化操作S2に供せられる。ガス化操作S2で得られたバイオマスガスは、ガス化炉反応塔10に供給される。ガス化炉反応塔10の内部で、高温度域での水蒸気33による熱分解ガス化が促進され、CH、C等の炭化水素及びH、CO、COを含むバイオマスガス2が生成する(熱分解ガス化工程P1)。 The steam 33 supplied into the gasification furnace main body 1 is heated in a high temperature range of 650 to 1200° C., preferably 800 to 1000° C., and supplied to the gasification operation S2. The biomass gas obtained in the gasification operation S2 is supplied to the gasification furnace reaction tower 10. In the interior of the gasification furnace reaction tower 10, is promoted pyrolysis gasification with steam 33 at a high temperature region, the biomass gas 2 containing CH 4, C 2 hydrocarbons and H 2 of the H 4 and the like, CO, CO 2 Are produced (pyrolysis gasification step P1).
 熱分解ガス化工程P1では、一般に、バイオマス(C:杉、竹、草木材の場合C1.420.91、n、mは正の数。)を原料に、水蒸気(HO)をガス化剤として、ガス化炉反応塔10の内部の温度に応じて下記式(1)、(2)、(3)の熱分解ガス化反応が主体となる。
ガス化炉反応塔10の内部の温度800℃:
1.420.91+0.38HO=0.74H+0.75CO+0.24CH+0.24C+0.28CO ・・・式(1)
ガス化炉反応塔10の内部の温度900℃:
1.420.91+0.71HO=1.27H+0.76CO+0.21CH+0.02C+0.41CO ・・・式(2)
ガス化炉反応塔10の内部の温度1000℃:
1.420.91+0.89HO=1.59H+0.76CO+0.15CH+0.51CO ・・・式(3)
In the pyrolysis gasification step P1, generally, biomass (C n H 2 O m : C 1.42 H 2 O 0.91 in the case of cedar, bamboo and grass wood, n and m are positive numbers) is used as a raw material. Using steam (H 2 O) as a gasifying agent, the pyrolysis gasification reaction represented by the following formulas (1), (2), and (3) is mainly used depending on the temperature inside the gasification furnace reaction tower 10.
Internal temperature of the gasification reactor reaction tower 10 800° C.:
C 1.42 H 2 O 0.91 +0.38H 2 O=0.74H 2 +0.75CO+0.24CH 4 +0.24C 2 H 4 +0.28CO 2 ... Formula (1)
Internal temperature of gasification reactor reaction tower 10 900° C.:
C 1.42 H 2 O 0.91 +0.71H 2 O=1.27H 2 +0.76CO+0.21CH 4 +0.02C 2 H 4 +0.41CO 2 ... Formula (2)
Internal temperature of the gasification reactor reaction tower 10 1000° C.:
C 1.42 H 2 O 0.91 +0.89H 2 O=1.59H 2 +0.76CO+0.15CH 4 +0.51CO 2 ... Formula (3)
 生成したバイオマスガスを用いて、水素を製造するためには、上記式(1)、(2)、(3)の反応がスムーズに行われるように熱分解ガス化工程P1を調整する必要がある。水蒸気に酸素や空気が混有する場合は、バイオマスの完全燃焼によりバイオマスガスのガス熱量が低下するので水蒸気の脱酸素化を行ってもよい。 In order to produce hydrogen using the produced biomass gas, it is necessary to adjust the pyrolysis gasification step P1 so that the reactions of the above formulas (1), (2) and (3) are smoothly performed. .. When oxygen and air are mixed in the water vapor, the gas heat quantity of the biomass gas decreases due to complete combustion of the biomass, so the water vapor may be deoxygenated.
 熱分解ガス化工程P1を調整する手段の1つとしては、ガス化炉反応塔10の内部の温度を、800~1000℃に制御することにある。ガス化炉反応塔10の内部の温度の制御は、燃焼ガス7の温度及び流量制御に加えて、ガス化炉本体1に供給するバイオマス3及び水蒸気33の供給流量の調整により行われる。ガス化炉反応塔10の内部の温度を、800~1000℃に制御することにより、バイオマス3の熱分解ガス化反応(1)~(3)が好ましいガス化変換率で進行してバイオマスガス2が得られる(以上、バイオマスガス製造工程P3)。 One of the means for adjusting the pyrolysis gasification step P1 is to control the internal temperature of the gasification furnace reaction tower 10 to 800 to 1000°C. The temperature inside the gasification furnace reaction tower 10 is controlled by controlling the temperature and flow rate of the combustion gas 7 and adjusting the supply flow rates of the biomass 3 and the steam 33 supplied to the gasification furnace main body 1. By controlling the temperature inside the gasification reactor reaction tower 10 at 800 to 1000° C., the pyrolysis gasification reactions (1) to (3) of the biomass 3 proceed at a preferable gasification conversion rate and the biomass gas 2 Is obtained (the above is the biomass gas production process P3).
 バイオマスガス2に含まれる固形灰やコーク等の煤塵は、サイクロンと、副次的に生成されるタールを物理的に除去するバグフィルターとを備えるガス分離精製処理部13で除去される。バイオマスガス2は、ガス分離精製処理部13を経由してガスホールダー14に貯蔵される。バイオマスガス2は、ガスエンジン発電装置15及び水素製造装置16の双方又はいずれか一方に供給される。 The solid ash and dust such as coke contained in the biomass gas 2 are removed by the gas separation/purification processing unit 13 that includes a cyclone and a bag filter that physically removes tar generated as a by-product. The biomass gas 2 is stored in the gas holder 14 via the gas separation/purification processing unit 13. The biomass gas 2 is supplied to both or either of the gas engine power generation device 15 and the hydrogen production device 16.
 本実施形態において、バイオマス投入部4は炉頂部に設けられており、水蒸気投入部5はガス化炉本体1の下部に設けられている。しかし、本発明はこれに限定されるものではなく、バイオマス3をガス化炉本体1の下方又は側方から供給してもよい。水蒸気33をガス化炉本体1の炉頂部又は側方から供給してもよい。バイオマスや水蒸気の供給箇所は1箇所のみならずに複数箇所としてもよい。 In the present embodiment, the biomass input part 4 is provided at the top of the furnace, and the steam input part 5 is provided at the bottom of the gasification furnace main body 1. However, the present invention is not limited to this, and the biomass 3 may be supplied from below or from the side of the gasification furnace main body 1. The steam 33 may be supplied from the furnace top or the side of the gasification furnace body 1. The supply place of biomass and steam is not limited to one place, but may be plural places.
 本実施形態において、燃焼操作S1で発生した燃焼ガス7の排熱WHは、熱交換機17に供給される。熱分解ガス化工程P1で発生したバイオマスガス2の排熱WHは、熱交換機18に供給される。熱交換機17又は熱交換機18に供給された排熱WHは、地熱水蒸気の追加の熱源として利用される(水蒸気加熱工程P2)。熱交換処理後の水蒸気は、タービン発電機19に投入して排熱を利用したスチーム発電に供される。 In the present embodiment, the exhaust heat WH of the combustion gas 7 generated in the combustion operation S1 is supplied to the heat exchanger 17. Exhaust heat WH of the biomass gas 2 generated in the pyrolysis gasification step P1 is supplied to the heat exchanger 18. The exhaust heat WH supplied to the heat exchanger 17 or the heat exchanger 18 is used as an additional heat source of geothermal steam (steam heating step P2). The steam after the heat exchange treatment is supplied to the turbine generator 19 to be used for steam power generation using the exhaust heat.
 バイオマスガス2を用いて水素Hを製造する場合は、複合型改質触媒が充填された反応床を有する水素製造装置16において、バイオマスガス2を改質して水素Hを生成する(水素製造工程P4)。水素製造装置16は、ガス圧力を所定圧に加圧するブースターと、生成した水素Hを分離する気液分離装置とを備えていてもよい。所定圧としては、例えば、1~20気圧(0.1~2MPa)が挙げられる。水素製造装置16の熱源として、熱交換器17より排出する燃焼ガス7の排熱を用いて所定温度域で水素を製造することもできる。所定温度域としては、例えば、250℃~600℃が挙げられる。 When hydrogen H is produced using the biomass gas 2, the biomass gas 2 is reformed to produce hydrogen H in the hydrogen production apparatus 16 having the reaction bed filled with the composite reforming catalyst (hydrogen production step. P4). The hydrogen production device 16 may include a booster that pressurizes the gas pressure to a predetermined pressure, and a gas-liquid separation device that separates the generated hydrogen H. Examples of the predetermined pressure include 1 to 20 atmospheric pressure (0.1 to 2 MPa). As the heat source of the hydrogen production device 16, it is also possible to produce hydrogen in a predetermined temperature range by using the exhaust heat of the combustion gas 7 exhausted from the heat exchanger 17. Examples of the predetermined temperature range include 250° C. to 600° C.
 本実施形態の水素製造工程P4においては、鉄、コバルト、白金、ロジウム、モリブデン、ジルコニウム、チタン、セリウム、ランタン及びネオジムから選択される少なくとも1種の金属元素を含む複合型改質触媒を用いてもよい。本明細書において、「複合型改質触媒」とは、ニッケルやルテニウム等を主成分とする従来の触媒に、鉄、コバルト、白金、ロジウム、モリブデン、ジルコニウム、チタン、セリウム、ランタン及びネオジムから選択される少なくとも1種の金属元素を混合した触媒をいう。これらの触媒は、上記金属元素を含む多孔質酸化物であってもよい。多孔質酸化物とは、細かい孔が非常に多く空いている金属酸化物のことをいう。多孔質酸化物としては、例えば、ジルコニア等が挙げられる。複合型改質触媒は、従来の含浸法に従って、上記金属元素を含む物質のアセチルアセトナト錯体のアセトン溶液や様々な塩(硝酸塩や塩酸塩等)の水溶液を用いて調製できる。通常、調製された触媒に水素ガスあるいは還元試薬を用いて還元処理後にバイオマスガスの改質反応に供する。しかし、本発明において、複合型改質触媒は、水素ガスあるいは還元試薬を用いて還元処理を行わずにバイオマスガスの改質反応に供されてもよい。 In the hydrogen production step P4 of the present embodiment, a composite reforming catalyst containing at least one metal element selected from iron, cobalt, platinum, rhodium, molybdenum, zirconium, titanium, cerium, lanthanum and neodymium is used. Good. In the present specification, the "composite reforming catalyst" is a conventional catalyst containing nickel, ruthenium or the like as a main component, and selected from iron, cobalt, platinum, rhodium, molybdenum, zirconium, titanium, cerium, lanthanum and neodymium. The catalyst is a mixture of at least one metal element. These catalysts may be porous oxides containing the above metal elements. The porous oxide is a metal oxide having a large number of fine pores. Examples of the porous oxide include zirconia and the like. The composite reforming catalyst can be prepared according to a conventional impregnation method using an acetone solution of an acetylacetonato complex of a substance containing the above metal element or an aqueous solution of various salts (nitrate, hydrochloride, etc.). Usually, the prepared catalyst is subjected to a reduction treatment using hydrogen gas or a reducing reagent and then subjected to a reforming reaction of biomass gas. However, in the present invention, the composite reforming catalyst may be subjected to the reforming reaction of the biomass gas without performing the reduction treatment using hydrogen gas or a reducing reagent.
 本実施形態の水素製造工程P4においては、バイオマスガス2の改質反応で水素製造を行う。バイオマスガス2の改質反応において、反応温度は、反応性及び熱効率という観点から250℃~600℃が好ましく、350℃~450℃がより好ましい。反応圧力は、1~20気圧(0.1~2MPa)が好ましく、5~10気圧(0.5~1MPa)がより好ましい。 In the hydrogen production process P4 of this embodiment, hydrogen is produced by the reforming reaction of the biomass gas 2. In the reforming reaction of the biomass gas 2, the reaction temperature is preferably 250° C. to 600° C., more preferably 350° C. to 450° C. from the viewpoint of reactivity and thermal efficiency. The reaction pressure is preferably 1 to 20 atm (0.1 to 2 MPa), more preferably 5 to 10 atm (0.5 to 1 MPa).
 本実施形態においては、生成した水素Hは、PSA(圧力変動吸着:Pressure Swing Adsorption)ガス分離装置によりガス精製されて高純度水素(純度99.999%以上の水素)として得られる。高純度水素は、燃料電池自動車、家庭発電及び緊急電源設備(UPS:Uninterruptible Power Supply)の燃料電池用に利用される。 In the present embodiment, the generated hydrogen H is gas-purified by a PSA (Pressure Swing Adsorption) gas separator to obtain high-purity hydrogen (purity of 99.999% or more). High-purity hydrogen is used for fuel cells of fuel cell vehicles, home power generation, and fuel cells for uninterruptible power supply (UPS).
[第二実施形態]
 本発明の第二実施形態について、図3を用いて説明する。
 図3に、本発明の第二実施形態に係る水素製造システムの概略図を示す。第一実施形態と同じ構成には、同じ符号を付して、その説明を省略する。
[Second embodiment]
The second embodiment of the present invention will be described with reference to FIG.
FIG. 3 shows a schematic diagram of the hydrogen production system according to the second embodiment of the present invention. The same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
 図3の水素製造システム200は、バイオマスガス製造システム62と、水素製造装置16とを有する。バイオマスガス製造システム62は、炭化炉21と、炭化物ガス化炉24と、水蒸気熱交換器27とを有する。
 炭化炉21は、空気ブロアー30と、炭化物ガス化炉24に設けられたガス化炉加熱部25とに接続されている。水蒸気熱交換器27は、ガス化炉加熱部25と、炭化物ガス化炉24の水蒸気投入部26と、水蒸気29の供給源とに接続されている。炭化物ガス化炉24は、ガス分離精製処理部13を介して、熱交換器18と接続されている。熱交換器18は、タービン発電機19と、ガスホールダー14と、熱交換器17とに接続されている。ガスホールダー14は、ガスエンジン発電装置15と接続されている。熱交換器17は、水蒸気熱交換器27と接続されている。
 本実施形態において、熱分解ガス化装置52は、炭化炉21と、炭化物ガス化炉24とで構成されている。
 水蒸気熱交換器27は、水蒸気加熱手段として機能する。
The hydrogen production system 200 of FIG. 3 has a biomass gas production system 62 and a hydrogen production apparatus 16. The biomass gas production system 62 includes a carbonization furnace 21, a carbide gasification furnace 24, and a steam heat exchanger 27.
The carbonization furnace 21 is connected to an air blower 30 and a gasification furnace heating unit 25 provided in the carbide gasification furnace 24. The steam heat exchanger 27 is connected to the gasification furnace heating unit 25, the steam injection unit 26 of the carbide gasification furnace 24, and a supply source of steam 29. The carbide gasification furnace 24 is connected to the heat exchanger 18 via the gas separation/purification processing unit 13. The heat exchanger 18 is connected to the turbine generator 19, the gas holder 14, and the heat exchanger 17. The gas holder 14 is connected to the gas engine power generator 15. The heat exchanger 17 is connected to the steam heat exchanger 27.
In the present embodiment, the pyrolysis gasification device 52 includes a carbonization furnace 21 and a carbide gasification furnace 24.
The steam heat exchanger 27 functions as steam heating means.
 次に、水素製造システム200を用いた水素製造方法の一例について、図3及び図4を用いて説明する。
 図4に示すように、本実施形態の水素製造方法は、バイオマスを炭化して炭化物を得る炭化操作S3と、炭化物と水蒸気とからバイオマスガスを得る炭化物ガス化操作S4とを有するバイオマスガス製造工程P3と、バイオマスガスを改質して水素を生成する水素製造工程P4とを有する。
Next, an example of a hydrogen production method using the hydrogen production system 200 will be described with reference to FIGS. 3 and 4.
As shown in FIG. 4, the hydrogen production method of the present embodiment has a biomass gas production step including a carbonization operation S3 for carbonizing biomass to obtain a carbide and a carbide gasification operation S4 for obtaining a biomass gas from the carbide and steam. P3 and the hydrogen production process P4 which reforms biomass gas and produces|generates hydrogen.
 まず、杉、松、竹等の木質バイオマス20を炭化炉21の上部開口部より炭化炉21内に投入し、空気ブロアー30で炭化炉21内に空気を供給しながら、木質バイオマス20の部分燃焼で炭化物22を生成する(炭化操作S3)。
 炭化炉21で生成した炭化物22は、炭化炉21の下端部より取り出され、破砕処理を施された後に、上部開口部又は中部開口部より、炭化物ガス化炉24に投入される。
 炭化炉21で発生する燃焼ガス23は、上部開口部を経てガス化炉加熱部25に供給され、炭化物ガス化炉24の内壁を所定温度に加熱する。燃焼ガス23は、ガス化炉加熱部25を経て、水蒸気熱交換器27に供給される。
First, wood biomass 20, such as cedar, pine, and bamboo, is put into the carbonization furnace 21 through the upper opening of the carbonization furnace 21, and the air blower 30 supplies air into the carbonization furnace 21 while partially burning the wood biomass 20. To generate the carbide 22 (carbonization operation S3).
The carbide 22 generated in the carbonization furnace 21 is taken out from the lower end of the carbonization furnace 21, crushed, and then charged into the carbide gasification furnace 24 through the upper opening or the middle opening.
The combustion gas 23 generated in the carbonization furnace 21 is supplied to the gasification furnace heating unit 25 through the upper opening, and heats the inner wall of the carbide gasification furnace 24 to a predetermined temperature. The combustion gas 23 is supplied to the steam heat exchanger 27 via the gasification furnace heating unit 25.
 水蒸気29は、金属成分を含む。
 水蒸気29に含まれる金属成分としては、ナトリウム、カリウム、リチウム、カルシウム、マグネシウム、ストロンチウム、バリウム、ホウ素、アルミニウム及びガリウムからなる群から選択される少なくとも1種の元素が挙げられる。
 水蒸気29に含まれる金属成分は、炭酸塩、硫酸塩、塩酸塩及びケイ酸塩からなる群から選択される少なくとも1種の塩を含んでもよい。
 塩の含有量は、水蒸気1kgに対して、10~10000mgが好ましく、20~1000mgがより好ましい。
The water vapor 29 contains a metal component.
Examples of the metal component contained in the water vapor 29 include at least one element selected from the group consisting of sodium, potassium, lithium, calcium, magnesium, strontium, barium, boron, aluminum and gallium.
The metal component contained in the water vapor 29 may include at least one salt selected from the group consisting of carbonates, sulfates, hydrochlorides and silicates.
The content of the salt is preferably 10 to 10000 mg, more preferably 20 to 1000 mg, relative to 1 kg of steam.
 水蒸気29は、水蒸気熱交換器27で、所定の温度に加熱された後、その一部が水蒸気投入部26から炭化物ガス化炉24内に供給される。所定の温度としては、例えば、650~1200℃が挙げられる。
 炭化物ガス化炉24の内部では、水蒸気29と炭化物22との熱分解ガス化反応(C+HO=CO+H)及びCOシフト反応(CO+HO=CO+H)等が連続して進行する(熱分解ガス化工程P1)。その結果、水素(H)、一酸化炭素(CO)、メタン(CH)及び二酸化炭素(CO)の混合ガスであるバイオマスガス28が生成する(炭化物ガス化操作S4)。生成したバイオマスガス28は、ガス分離精製処理部13に供給される(以上、バイオマスガス製造工程P3)。
 水蒸気29は、金属成分を含むので、タール等の副生成物を低減したバイオマスガス28が得られる。
 ガス分離精製処理部13を経由したバイオマスガス28は、熱交換器18に供給される。
The steam 29 is heated to a predetermined temperature by the steam heat exchanger 27, and then a part of the steam 29 is supplied from the steam charging unit 26 into the carbide gasification furnace 24. Examples of the predetermined temperature include 650 to 1200°C.
In the carbide gasification furnace 24, a thermal decomposition gasification reaction (C+H 2 O=CO+H 2 ) and a CO shift reaction (CO+H 2 O=CO 2 +H 2 ) between the steam 29 and the carbide 22 continuously proceed. (Pyrolysis gasification step P1). As a result, the biomass gas 28, which is a mixed gas of hydrogen (H 2 ), carbon monoxide (CO), methane (CH 4 ) and carbon dioxide (CO 2 ) is generated (carbide gasification operation S4). The generated biomass gas 28 is supplied to the gas separation/purification processing unit 13 (the above is the biomass gas manufacturing process P3).
Since the water vapor 29 contains a metal component, the biomass gas 28 with reduced by-products such as tar can be obtained.
The biomass gas 28 that has passed through the gas separation/purification processing unit 13 is supplied to the heat exchanger 18.
 水蒸気熱交換器27で加熱された水蒸気29の一部は、熱交換器17、18を経由し、タービン発電機19に供給される。 A part of the steam 29 heated by the steam heat exchanger 27 is supplied to the turbine generator 19 via the heat exchangers 17 and 18.
 水蒸気熱交換器27より排出される燃焼ガス23の排熱WHは、熱交換機17に供給される。炭化物ガス化炉24で生成するバイオマスガス28の排熱WHは、熱交換機18に供給される。熱交換機17又は熱交換機18に供給された排熱WHは、第一実施形態と同様に、熱交換器17、18において、地熱水蒸気等の水蒸気の追加の熱源として利用される(水蒸気加熱工程P2)。熱交換処理後の水蒸気は、タービン発電機19に投入して排熱を利用したスチーム発電に供される。 Exhaust heat WH of the combustion gas 23 discharged from the steam heat exchanger 27 is supplied to the heat exchanger 17. Exhaust heat WH of the biomass gas 28 generated in the carbide gasification furnace 24 is supplied to the heat exchanger 18. The exhaust heat WH supplied to the heat exchanger 17 or the heat exchanger 18 is used as an additional heat source for steam such as geothermal steam in the heat exchangers 17 and 18 (steam heating step P2) as in the first embodiment. ). The steam after the heat exchange treatment is supplied to the turbine generator 19 to be used for steam power generation using the exhaust heat.
 本実施形態の炭化物ガス化炉24で生成するバイオマスガス28は、第一実施形態と同様に、ガス分離精製処理部13で、タールやコークが分離され、精製処理後に、熱交換器18、17を順に経由して、ガスホールダー14に貯蔵される。
 ガスホールダー14内のバイオマスガス28は、ガスエンジン発電装置15あるいは水素製造装置16に供給されて、ガス発電及び水素製造に利用される。
The biomass gas 28 generated in the carbide gasification furnace 24 of the present embodiment has the tar and coke separated in the gas separation/purification processing unit 13 as in the first embodiment, and the heat exchangers 18, 17 after the purification processing. Are sequentially stored in the gas holder 14.
The biomass gas 28 in the gas holder 14 is supplied to the gas engine power generation device 15 or the hydrogen production device 16 and used for gas power generation and hydrogen production.
 本実施形態では、第一実施形態と同様に、生成するバイオマスガス28を複合型改質触媒に接触させることにより、低圧(例えば、1MPa以下)で、かつ、低温度域(例えば、650℃未満)において水素製造を行うことが可能である(水素製造工程P4)。水素製造装置16の加熱熱源として、炭化炉21及び炭化物ガス化炉24より排出する燃焼ガス23及びバイオマスガス28の排熱を用いて所定温度域で水素製造を行うこともできる。 In the present embodiment, as in the first embodiment, the produced biomass gas 28 is brought into contact with the composite reforming catalyst, so that the pressure is low (for example, 1 MPa or less) and in a low temperature range (for example, less than 650° C.). It is possible to perform hydrogen production in () (hydrogen production process P4). It is also possible to use the exhaust heat of the combustion gas 23 and the biomass gas 28 discharged from the carbonization furnace 21 and the carbide gasification furnace 24 as the heating heat source of the hydrogen production apparatus 16 to perform hydrogen production in a predetermined temperature range.
 本発明の実施例を以下に示すが、下記の実施例は、発明を例示するだけのものあって、本発明の内容が下記の実施例によって制限されるものではない。 Examples of the present invention will be shown below, but the following examples merely illustrate the invention, and the content of the present invention is not limited by the following examples.
[実施例1、比較例1]
 金属成分を含む水蒸気として、地熱水貯蔵層より汲み上げた地熱水の気水分離器で得られる地熱水蒸気をバイオマスの熱分解ガス化用の水蒸気として使用した。バイオマスとして杉材ペレット(15%含水率)をガス化用100kg/h及び燃焼用50kg/hの供給速度で、それぞれ熱分解ガス化炉及び燃焼ガス炉に投入してバイオマスの熱分解ガス化実験を行った。熱分解ガス化炉の温度は900℃、圧力は1.2気圧(0.12MPa)とした。熱分解ガス化炉におけるスチーム(水蒸気)とバイオマスとの重量比(S/C[kg]/[kg])は、1.9とした。金属成分を含む水蒸気として地熱水蒸気A(150℃、0.3MPa、流量200kg/h、熱量650kcal/kg)を用いた場合(実施例1)と、軟水処理の水道水を用いた場合(比較例1)での熱分解ガス炉のバイオマスのガス化変換効率及びバイオマスガスの生成量等について熱分解ガス化反応の試験結果を表1に比較して示した。表中、「燃料ガス収率(m/kg)」は、バイオマス1kg当たりの燃料ガス(H+CO+CH+C+CO)の生成量(Nm)を意味する。表中、「C(vol%)」は、n(n、mは自然数)が2以上の揮発性長鎖炭化水素成分の体積%を意味する。出口ガス中のCO、水素、CO、CH及びその他の炭化水素濃度は、ガスクロパック(Gaskuropack)及びモレキュラシーブ13Xを充填するマイクロガスクロ分析器(ジーエルサイエンス株式会社製)とFID(水素炎イオン化検出器)ガスクロ分析器(株式会社島津製作所製)を用いて測定した。排出ガスの流量は、湿式ガス流量計により測定した。生成ガスの生成速度は、流出ガスのGC(ガスクロマトグラフィー)分析から算出した。ガス化変換率は、式「(バイオマスガスの総低位発熱量)/(投入バイオマスの低位発熱量)×100」から算出した。バイオマスガスの生成速度は、2~10時間の平均値とした。タール及びチャーの生成量は、バイオマス供給を停止した後、フィルター採取重量測定により決定した。地熱水蒸気Aの含有金属成分は、Na:600mg/kg、K:95mg/kg、Mg:35mg/kg、Ca:65mg/kg、Sr:15mg/kgであった。地熱水蒸気Aの含有金属成分は、イオンクロマトグラフ法により測定した。軟水処理後の水道水を用いた水蒸気中の金属成分及び塩成分は水蒸気1kg当たりの濃度で、Na:8mg/kg、K:3mg/kg、Ca:6mg/kg、Mg:3mg/kg、Al:0.2mg/kg、B:0.5mg/kgであった。軟水処理後の水道水を用いた水蒸気中の金属成分及び塩成分は、イオンクロマトグラフ法及びICP(誘導結合プラズマ)発光分光分析法により測定した。この結果から、金属成分を含む地熱水蒸気を用いるバイオマスのガス化炉において水道水を用いた場合に比べて、ガス化変換率と燃料ガス(バイオマスガス)の生成量及びガス発熱量(低位ガス熱量)が顕著に向上して、かつ副次的に生成されるタールが低減した。
[Example 1, Comparative Example 1]
As the steam containing metal components, the geothermal steam obtained by the steam separator of the geothermal water pumped from the geothermal water storage layer was used as the steam for the pyrolysis gasification of biomass. Pyrolysis gasification experiment of biomass by pouring cedar pellets (15% water content) as biomass into the pyrolysis gasification furnace and combustion gas furnace at supply rates of 100 kg/h for gasification and 50 kg/h for combustion, respectively I went. The temperature of the pyrolysis gasification furnace was 900° C., and the pressure was 1.2 atm (0.12 MPa). The weight ratio (S/C [kg]/[kg]) of steam (steam) and biomass in the pyrolysis gasification furnace was set to 1.9. Geothermal steam A (150° C., 0.3 MPa, flow rate 200 kg/h, calorific value 650 kcal/kg) was used as water vapor containing a metal component (Example 1) and soft water treated tap water was used (Comparative Example). Table 1 compares the gasification conversion efficiency of biomass in the pyrolysis gas furnace in 1) and the amount of biomass gas produced, and the test results of the pyrolysis gasification reaction. In the table, “fuel gas yield (m 3 /kg)” means the production amount (Nm 3 ) of fuel gas (H 2 +CO+CH 4 +C 2 H 6 +CO 2 ) per 1 kg of biomass. In the table, “C n H m (vol %)” means the volume% of the volatile long chain hydrocarbon component in which n (n and m are natural numbers) is 2 or more. The concentrations of CO, hydrogen, CO 2 , CH 4 and other hydrocarbons in the outlet gas are determined by FID (hydrogen flame ionization detection) with a micro gas chromatographic analyzer (GL Science Co., Ltd.) which is filled with a gas chroma pack (Gaskuropack) and a molecular sieve 13X. Instrument) Gas chromatographic analyzer (manufactured by Shimadzu Corporation) was used for measurement. The flow rate of the exhaust gas was measured by a wet gas flow meter. The production rate of the produced gas was calculated from the GC (gas chromatography) analysis of the outflow gas. The gasification conversion rate was calculated from the formula “(total lower heating value of biomass gas)/(lower heating value of input biomass)×100”. The biomass gas generation rate was an average value for 2 to 10 hours. The amount of tar and char produced was determined by measuring the weight of the collected filter after stopping the supply of biomass. The metal components contained in the geothermal steam A were Na: 600 mg/kg, K: 95 mg/kg, Mg: 35 mg/kg, Ca: 65 mg/kg, and Sr: 15 mg/kg. The metal component contained in the geothermal steam A was measured by the ion chromatography method. The metal component and the salt component in the steam using the tap water after the soft water treatment are the concentrations per kg of steam, Na: 8 mg/kg, K: 3 mg/kg, Ca: 6 mg/kg, Mg: 3 mg/kg, Al. : 0.2 mg/kg, B: 0.5 mg/kg. The metal component and salt component in the steam using the tap water after the soft water treatment were measured by the ion chromatograph method and the ICP (inductively coupled plasma) emission spectroscopy. From these results, the gasification conversion rate, the amount of fuel gas (biomass gas) generated, and the gas calorific value (lower gas calorific value) compared to the case of using tap water in a biomass gasification furnace that uses geothermal steam containing metal components ) Was significantly improved, and tar generated as a by-product was reduced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例2~3]
 実施例1と同様に、金属成分を含む高温水蒸気B及びCを用いてバイオマスの熱分解ガス化反応を行った。熱分解ガス化炉の温度は1000℃、圧力は1気圧(0.1MPa)とした。熱分解ガス化炉におけるスチーム(水蒸気)とカーボンとのモル比(S/C)は、1.5とした。水蒸気B(実施例2:165℃、0.35MPa、流量210kg/h、熱量650kcal/kg)及び水蒸気C(実施例3:180℃、0.5MPa、流量200kg/h、熱量670kcal/kg)を用いて行った場合の燃料ガスのガス成分組成、ガス化変換率、燃料ガス収量等を表2に示した。この結果から、熱分解ガス化において金属成分を含む水蒸気B及びCを用いた場合、ガス化変換率、燃料ガスの収量及びガス発熱量(低位ガス熱量)は通常水を用いた比較例1に比べて増加することが実証された。タールの生成量は顕著に低下した。水蒸気Bの含有金属成分は水蒸気1kg当たりの濃度で、Na:650mg/kg、Li:150mg/kg、Ca:20mg/kg、B:120mg/kg、Mg:230mg/kgであった。一方、水蒸気Cの含有金属成分の濃度は、水蒸気1kg当たり、Na:380mg/kg、K:120mg/kg、Mg:85mg/kg、Al:130mg/kg、Ba:78mg/kgであった。水蒸気Bの含有金属成分は、軟水処理後の水道水を用いた水蒸気中の金属成分及び塩成分と同様の方法により測定した。水蒸気Cの含有金属成分は、地熱水蒸気Aの含有金属成分と同様の方法により測定した。
[Examples 2 to 3]
In the same manner as in Example 1, the pyrolysis gasification reaction of biomass was performed using the high temperature steams B and C containing the metal component. The temperature of the pyrolysis gasification furnace was 1000° C., and the pressure was 1 atm (0.1 MPa). The molar ratio (S/C) of steam (steam) and carbon in the pyrolysis gasification furnace was set to 1.5. Steam B (Example 2: 165° C., 0.35 MPa, flow rate 210 kg/h, heat amount 650 kcal/kg) and steam C (Example 3: 180° C., 0.5 MPa, flow rate 200 kg/h, heat amount 670 kcal/kg) Table 2 shows the gas component composition of the fuel gas, the gasification conversion rate, the fuel gas yield, etc. From these results, when steam B and C containing a metal component were used in the pyrolysis gasification, the gasification conversion rate, the fuel gas yield and the gas calorific value (lower gas calorific value) were the same as those in Comparative Example 1 using water. It was proved to increase compared with the above. The amount of tar produced was significantly reduced. The metal component of the steam B was Na: 650 mg/kg, Li: 150 mg/kg, Ca: 20 mg/kg, B: 120 mg/kg, Mg: 230 mg/kg in terms of concentration per kg of steam. On the other hand, the concentration of the metal component of the water vapor C was Na: 380 mg/kg, K: 120 mg/kg, Mg: 85 mg/kg, Al: 130 mg/kg, Ba: 78 mg/kg per 1 kg of water vapor. The metal component contained in the water vapor B was measured by the same method as the metal component and the salt component in the water vapor using the tap water after the soft water treatment. The metal component contained in the steam C was measured by the same method as the metal component contained in the geothermal steam A.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例4~5、比較例2]
 複合型改質触媒A(8%Ni、10%Ru、1%Pt、5%Ce、1%Ti、2%Co/Al)又は複合型改質触媒B(2%Fe、10%Ru、1%Rh、5%Zr、2%Mo、2%La/Al)(重量%)を充填した水蒸気改質反応器に実施例1の熱分解ガス化で得られたバイオマスガス(45%H、8%CH、25%CO、21%CO、1%C)を用いて改質反応を行った(実施例4、5)。熱分解ガス化炉の出口バイオマスガスを水洗浄処理及びガス精製後に水蒸気改質反応器に投入した。反応条件は、反応温度:250℃、圧力:0.5MPaとした。バイオマス熱分解ガス化で得られるバイオマスガスの水蒸気改質反応器を具備した場合の水素製造試験結果を表3に示す。表中、「水素収量(Nm/h)」は、純度99.999%以上の水素の量を表す。表3に示すように、生成水素ガスを気液分離後、PSAガス精製処理を行った水素収量は690Nm/h(実施例4)、645Nm/h(実施例5)であった。比較例2に示した市販触媒(25%Ni、5%Ru/Al)を用いて行った場合(540Nm/h)に比べて、実施例4の触媒A及び実施例5の触媒Bを用いた場合の水素収量及び水素変換率が増大することが実証された。
[Examples 4 to 5, Comparative Example 2]
Composite reforming catalyst A (8%Ni, 10%Ru, 1%Pt, 5%Ce, 1%Ti, 2%Co/Al 2 O 3 ) or composite reforming catalyst B (2%Fe, 10%) Biomass gas obtained by pyrolysis gasification of Example 1 in a steam reforming reactor filled with Ru, 1% Rh, 5% Zr, 2% Mo, 2% La/Al 2 O 3 ) (wt %) The reforming reaction was carried out using (45% H 2 , 8% CH 4 , 25% CO, 21% CO 2 , 1% C 2 H 6 ) (Examples 4 and 5). The exit biomass gas of the pyrolysis gasification furnace was introduced into the steam reforming reactor after water washing treatment and gas purification. The reaction conditions were reaction temperature: 250° C. and pressure: 0.5 MPa. Table 3 shows the hydrogen production test results when a steam reforming reactor for biomass gas obtained by biomass pyrolysis gasification was provided. In the table, “hydrogen yield (Nm 3 /h)” represents the amount of hydrogen having a purity of 99.999% or more. As shown in Table 3, the yields of hydrogen after the gas-liquid separation of the produced hydrogen gas and the PSA gas purification treatment were 690 Nm 3 /h (Example 4) and 645 Nm 3 /h (Example 5). Compared to the case of using the commercially available catalyst (25% Ni, 5% Ru/Al 2 O 3 ) shown in Comparative Example 2 (540 Nm 3 /h), the catalyst A of Example 4 and the catalyst of Example 5 were compared. It was demonstrated that the hydrogen yield and hydrogen conversion rate with B were increased.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[実験例1]
 実施例1において、杉ペレットを用いた熱分解ガス化炉で排出される燃焼ガス(1000~1200℃)とバイオマスガス(650~800℃)とをガス化炉出口及び炉加熱部にそれぞれ接続する熱交換器において、スチーム発電用の地熱水蒸気(流量2t/h)の追い炊き加熱を実施した。実施例1と同様の稼動条件において、熱分解ガス化炉の燃焼ガス及びバイオマスガスの排熱利用で得られる高熱量水蒸気を用いてスチームターボ発電を行った(実験例1)。その結果、熱分解ガス化炉の排熱を利用する場合と排熱を利用しない場合の発電効率は16%及び15%であり、送電端出力は273kWe及び213kWeであった。バイオマスガス化炉の排熱利用により地熱発電出力は30%増加することが分かった。
[Experimental Example 1]
In Example 1, the combustion gas (1000 to 1200° C.) and the biomass gas (650 to 800° C.) discharged from the pyrolysis gasification furnace using cedar pellets are connected to the gasification furnace outlet and the furnace heating part, respectively. In the heat exchanger, additional heating of geothermal steam for steam power generation (flow rate 2 t/h) was performed. Under the same operating conditions as in Example 1, steam turbo power generation was performed using high calorific steam obtained by utilizing exhaust heat of combustion gas and biomass gas of a pyrolysis gasification furnace (Experimental Example 1). As a result, the power generation efficiencies with and without the use of the exhaust heat of the pyrolysis gasification furnace were 16% and 15%, and the power transmission end outputs were 273kWe and 213kWe. It was found that the use of waste heat from the biomass gasifier increases the geothermal power output by 30%.
[実施例6、比較例3]
 バイオマスとして建築廃材ペレット(15%含水率)を用いて150kg/hの供給速度で図3に示す高温炭化炉に投入して炭化物回収率35%で炭化物45kg/hを生成した。回収炭化物を機械的に破砕して得られた炭化物を熱分解ガス化炉の上部より投入した。金属成分を含む水蒸気D(実施例6:150℃、0.35MPa、流量200kg/h、熱量658kcal/kg)を熱分解ガス化炉に投入した場合と水道水を用いた場合(比較例3)の炭化物のガス化変換率及び生成ガス量、ガス組成について熱分解ガス化反応の試験結果を表4に比較して示した。熱分解ガス化炉の温度は950℃、圧力は1.2気圧(0.12MPa)とした。熱分解ガス化炉におけるスチーム(水蒸気)と炭化物とのモル比(S/C)は、1.2とした。この結果から、バイオマスの2段式熱分解ガス化炉において金属成分を含む水蒸気を用いた場合、ガス化変換率、燃料ガス収率及び低位ガス熱量は、水道水を用いた比較例3に比べて増加することが実証された。生成ガスのH/COモル比は、水蒸気Dを用いた場合4.3であり、水道水を用いた場合の2.5に比べて水素生成モル比が増大した。加えて、バイオマスのガス化変換効率は68%に改善した。水蒸気Dの含有金属成分の濃度は、水蒸気1kg当たり、Na:600mg/kg、Li:80mg/kg、Sr:15mg/kg、Ga:20mg/kg、B:12mg/kgであった。水蒸気Dの含有金属成分の濃度は、軟水処理後の水道水を用いた水蒸気中の金属成分及び塩成分と同様の方法により測定した。使用した水道水の金属成分の濃度は、水蒸気1kg当たり、Na:6mg/kg、K:2mg/kg、Ca:5mg/kg、Mg:2mg/kg、Al:0.1mg/kgであった。水道水の金属成分の濃度は、地熱水蒸気Aの含有金属成分と同様の方法により測定した。
[Example 6, Comparative Example 3]
Using construction waste material pellets (15% water content) as biomass, it was charged into the high-temperature carbonization furnace shown in FIG. 3 at a supply rate of 150 kg/h to generate 45 kg/h of carbide at a carbide recovery rate of 35%. Carbide obtained by mechanically crushing the recovered carbide was charged from the upper part of the pyrolysis gasification furnace. Water vapor D containing a metal component (Example 6: 150° C., 0.35 MPa, flow rate 200 kg/h, calorific value 658 kcal/kg) was charged into the pyrolysis gasification furnace and tap water was used (Comparative Example 3). Table 4 shows the test results of the pyrolysis gasification reaction with respect to the gasification conversion rate, the amount of produced gas, and the gas composition of the above-mentioned carbides. The temperature of the pyrolysis gasification furnace was 950° C., and the pressure was 1.2 atm (0.12 MPa). The molar ratio (S/C) of steam (steam) and carbide in the pyrolysis gasification furnace was 1.2. From these results, the gasification conversion rate, the fuel gas yield and the lower gas calorific value in the case of using the steam containing the metal component in the two-stage pyrolysis gasification furnace of biomass are higher than those of Comparative Example 3 using tap water. It was proved that it increased. The H 2 /CO molar ratio of the produced gas was 4.3 when steam D was used, and the hydrogen produced molar ratio was increased compared to 2.5 when tap water was used. In addition, the gasification and conversion efficiency of biomass was improved to 68%. The concentration of the metal component contained in the water vapor D was Na: 600 mg/kg, Li: 80 mg/kg, Sr: 15 mg/kg, Ga: 20 mg/kg, B: 12 mg/kg per 1 kg of water vapor. The concentration of the metal component contained in the water vapor D was measured by the same method as the metal component and the salt component in the water vapor using the tap water after the soft water treatment. The concentrations of metal components in the tap water used were Na: 6 mg/kg, K: 2 mg/kg, Ca: 5 mg/kg, Mg: 2 mg/kg, and Al: 0.1 mg/kg per 1 kg of steam. The concentration of metal components in tap water was measured by the same method as the metal components contained in geothermal steam A.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、木材や農業廃棄物等のバイオマスの熱分解ガス化において地熱水蒸気等金属成分を含む水蒸気を利用することにより、バイオマスのガス化効率と燃料ガス及び水素収量を向上できることが分かった。これにより、環境負荷の低減と経済的なバイオマスの熱分解ガス化と水素製造方法とを提供できる。 According to the present invention, it was found that the gasification efficiency of biomass and the yield of fuel gas and hydrogen can be improved by utilizing steam containing metal components such as geothermal steam in the pyrolysis gasification of biomass such as wood and agricultural waste. It was As a result, it is possible to provide a method for reducing the environmental load and an economical biomass pyrolysis gasification and hydrogen production method.
 本発明によれば、バイオマスの熱分解ガス化におけるタール等の副生成物を低減し、バイオマスのガス化効率及びバイオマスガス生成量の向上を図れる。 According to the present invention, by-products such as tar in the pyrolysis gasification of biomass can be reduced and the gasification efficiency of biomass and the amount of biomass gas produced can be improved.
1 ガス化炉本体
2 熱分解ガス(バイオマスガス)
3 熱分解ガス化用のバイオマス
4 バイオマス投入部
5 水蒸気投入部
6 燃料用のバイオマス
7 燃焼ガス
8 ガス化炉加熱部
9 燃焼炉
10 ガス化反応塔
11 排出部
12 バイオマスガスの排出部
13 ガス分離精製処理部
14 ガスホールダー
15 ガスエンジン発電装置
16 水素製造装置
17 熱交換器
18 熱交換器
19 タービン発電機
20 木質バイオマス
21 炭化炉
22 炭化物
23 燃焼ガス
24 炭化物ガス化炉
25 ガス化炉加熱部
26 水蒸気投入部
27 水蒸気熱交換器
28 バイオマスガス
29 水蒸気
30 空気ブロアー
31 地熱水貯留層
32 気水分離器
33 水蒸気
34 水蒸気熱交換器
50 熱分解ガス化装置
52 熱分解ガス化装置
60 バイオマスガス製造システム
62 バイオマスガス製造システム
100 水素製造システム
200 水素製造システム
P1 熱分解ガス化工程
P2 水蒸気加熱工程
P3 バイオマスガス製造工程
P4 水素製造工程
S1 燃焼操作
S2 ガス化操作
S3 炭化操作
S4 炭化物ガス化操作
WH 排熱
1 Gasification furnace main body 2 Pyrolysis gas (biomass gas)
3 Biomass for pyrolysis gasification 4 Biomass input part 5 Steam input part 6 Biomass for fuel 7 Combustion gas 8 Gasification furnace heating part 9 Combustion furnace 10 Gasification reaction tower 11 Discharge part 12 Biomass gas discharge part 13 Gas separation Refining processing unit 14 Gas holder 15 Gas engine power generation device 16 Hydrogen production device 17 Heat exchanger 18 Heat exchanger 19 Turbine generator 20 Wood biomass 21 Carbonization furnace 22 Carbide 23 Combustion gas 24 Carbide gasification furnace 25 Gasification furnace heating part 26 Steam input unit 27 Steam heat exchanger 28 Biomass gas 29 Steam 30 Air blower 31 Geothermal water reservoir 32 Steam separator 33 Steam 34 Steam heat exchanger 50 Pyrolysis gasifier 52 Pyrolysis gasifier 60 Biomass gas production System 62 Biomass gas production system 100 Hydrogen production system 200 Hydrogen production system P1 Pyrolysis gasification process P2 Steam heating process P3 Biomass gas production process P4 Hydrogen production process S1 Combustion operation S2 Gasification operation S3 Carbonization operation S4 Carbide gasification operation WH Emission heat

Claims (14)

  1.  バイオマスを原料とし、金属成分を含む水蒸気によるガス化により、バイオマスガスを得る熱分解ガス化工程を有する、バイオマスガス製造方法。 A method for producing biomass gas, which has a pyrolysis gasification process in which biomass gas is gasified by steam containing metal components to obtain biomass gas.
  2.  前記熱分解ガス化工程は、前記バイオマスの一部を燃焼する燃焼操作と、前記バイオマスの他の一部と前記水蒸気とから前記バイオマスガスを得るガス化操作とを有し、
     前記ガス化操作は、前記燃焼操作で発生した排熱を熱源として用いる、請求項1に記載のバイオマスガス製造方法。
    The pyrolysis gasification step has a combustion operation of burning a part of the biomass, a gasification operation of obtaining the biomass gas from the other part of the biomass and the steam,
    The biomass gas production method according to claim 1, wherein in the gasification operation, exhaust heat generated in the combustion operation is used as a heat source.
  3.  前記熱分解ガス化工程は、前記バイオマスを炭化して炭化物を得る炭化操作と、前記炭化物と前記水蒸気とから前記バイオマスガスを得る炭化物ガス化操作とを有する、請求項1に記載のバイオマスガス製造方法。 The biomass gas production according to claim 1, wherein the pyrolysis gasification step includes a carbonization operation for carbonizing the biomass to obtain a carbide and a carbide gasification operation for obtaining the biomass gas from the carbide and the steam. Method.
  4.  前記熱分解ガス化工程で発生した排熱を熱源として用いて、前記水蒸気を加熱する水蒸気加熱工程を有する、請求項1~3のいずれか一項に記載のバイオマスガス製造方法。 The method for producing a biomass gas according to any one of claims 1 to 3, further comprising a steam heating step of heating the steam by using exhaust heat generated in the pyrolysis gasification step as a heat source.
  5.  前記金属成分が、ナトリウム、カリウム、リチウム、カルシウム、マグネシウム、ストロンチウム、バリウム、ホウ素、アルミニウム及びガリウムからなる群から選択される少なくとも1種の元素を含む、請求項1~4のいずれか一項に記載のバイオマスガス製造方法。 5. The metal component according to claim 1, wherein the metal component contains at least one element selected from the group consisting of sodium, potassium, lithium, calcium, magnesium, strontium, barium, boron, aluminum and gallium. The method for producing a biomass gas described.
  6.  前記金属成分が炭酸塩、硫酸塩、塩酸塩及びケイ酸塩からなる群から選択される少なくとも1種の塩を含み、前記塩の含有量が前記水蒸気1kgに対して、10~10000mgである請求項1~5のいずれか一項に記載のバイオマスガス製造方法。 The metal component includes at least one salt selected from the group consisting of carbonates, sulfates, hydrochlorides and silicates, and the content of the salt is 10 to 10000 mg with respect to 1 kg of the steam. Item 6. The method for producing a biomass gas according to any one of Items 1 to 5.
  7.  請求項1~6のいずれか一項に記載のバイオマスガス製造方法により前記バイオマスガスを得るバイオマスガス製造工程と、
     前記バイオマスガスを改質して水素を生成する水素製造工程と、を有する、水素製造方法。
    A biomass gas production step of obtaining the biomass gas by the method for producing biomass gas according to any one of claims 1 to 6,
    A hydrogen production step of reforming the biomass gas to produce hydrogen.
  8.  前記水素製造工程は、鉄、コバルト、白金、ロジウム、モリブデン、ジルコニウム、チタン、セリウム、ランタン及びネオジムから選択される少なくとも1種の金属元素を含む複合型改質触媒を用いる、請求項7に記載の水素製造方法。 The said hydrogen production process uses the composite reforming catalyst containing at least 1 sort(s) of metal element selected from iron, cobalt, platinum, rhodium, molybdenum, zirconium, titanium, cerium, lanthanum, and neodymium. Hydrogen production method.
  9.  バイオマスを原料とし、金属成分を含む水蒸気によるガス化により、バイオマスガスを得る熱分解ガス化装置を有する、バイオマスガス製造システム。 A biomass gas production system that has a pyrolysis gasifier that uses biomass as a raw material to produce biomass gas by gasification with steam containing metal components.
  10.  前記熱分解ガス化装置は、前記バイオマスの一部を燃焼する燃焼炉と、前記バイオマスの他の一部と前記水蒸気とから前記バイオマスガスを得るガス化炉とを有し、
     前記熱分解ガス化装置は、前記燃焼炉で発生した排熱を前記ガス化炉へ供給する手段を有する、請求項9に記載のバイオマスガス製造システム。
    The pyrolysis gasifier has a combustion furnace that burns a part of the biomass, and a gasification furnace that obtains the biomass gas from the other part of the biomass and the steam,
    The biomass gas production system according to claim 9, wherein the pyrolysis gasification device has means for supplying the exhaust heat generated in the combustion furnace to the gasification furnace.
  11.  前記熱分解ガス化装置は、前記バイオマスを炭化して炭化物を得る炭化炉と、前記炭化物と前記水蒸気とから前記バイオマスガスを得る炭化物ガス化炉とを有する、請求項9に記載のバイオマスガス製造システム。 The biomass gas production according to claim 9, wherein the pyrolysis gasifier has a carbonization furnace that carbonizes the biomass to obtain a carbide, and a carbide gasification furnace that obtains the biomass gas from the carbide and the steam. system.
  12.  前記熱分解ガス化装置で発生した排熱を熱源として用いて、前記水蒸気を加熱する水蒸気加熱手段を有する、請求項9~11のいずれか一項に記載のバイオマスガス製造システム。 The biomass gas production system according to any one of claims 9 to 11, further comprising steam heating means for heating the steam by using exhaust heat generated by the pyrolysis gasification device as a heat source.
  13.  請求項9~12のいずれか一項に記載のバイオマスガス製造システムと、
     前記バイオマスガスを改質して水素を生成する水素製造装置と、を有する、水素製造システム。
    A biomass gas production system according to any one of claims 9 to 12,
    A hydrogen production system comprising: a hydrogen production apparatus that reforms the biomass gas to produce hydrogen.
  14.  前記水素製造装置は、複合型改質触媒が充填された反応床を有し、
     前記複合型改質触媒は、鉄、コバルト、白金、ロジウム、モリブデン、ジルコニウム、チタン、セリウム、ランタン及びネオジムから選択される少なくとも1種の金属元素を含む、請求項13に記載の水素製造システム。
    The hydrogen generator has a reaction bed filled with a composite reforming catalyst,
    The hydrogen production system according to claim 13, wherein the composite reforming catalyst contains at least one metal element selected from iron, cobalt, platinum, rhodium, molybdenum, zirconium, titanium, cerium, lanthanum and neodymium.
PCT/JP2020/005546 2019-02-15 2020-02-13 Method for producing biomass gas, method for producing hydrogen, system for producing biomass gas, and system for producing hydrogen WO2020166659A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020572307A JPWO2020166659A1 (en) 2019-02-15 2020-02-13 Biomass gas production method, hydrogen production method, biomass gas production system and hydrogen production system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-026012 2019-02-15
JP2019026012 2019-02-15

Publications (1)

Publication Number Publication Date
WO2020166659A1 true WO2020166659A1 (en) 2020-08-20

Family

ID=72045604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005546 WO2020166659A1 (en) 2019-02-15 2020-02-13 Method for producing biomass gas, method for producing hydrogen, system for producing biomass gas, and system for producing hydrogen

Country Status (2)

Country Link
JP (1) JPWO2020166659A1 (en)
WO (1) WO2020166659A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113060704A (en) * 2021-03-30 2021-07-02 大连理工大学 Organic solid clean and efficient hydrogen production device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035837A (en) * 2002-07-05 2004-02-05 Mitsubishi Heavy Ind Ltd Thermal cracking gasification apparatus and the system
JP2004115674A (en) * 2002-09-26 2004-04-15 Jfe Engineering Kk Hydrogen production apparatus
WO2008050727A1 (en) * 2006-10-23 2008-05-02 Nagasaki Institute Of Applied Science Biomass gasification apparatus
WO2012117423A1 (en) * 2011-02-28 2012-09-07 Hannibal A method and a system for synthetic liquid fuel production by indirect gasification
JP2012531499A (en) * 2009-06-30 2012-12-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Process for producing a gas mixture rich in hydrogen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035837A (en) * 2002-07-05 2004-02-05 Mitsubishi Heavy Ind Ltd Thermal cracking gasification apparatus and the system
JP2004115674A (en) * 2002-09-26 2004-04-15 Jfe Engineering Kk Hydrogen production apparatus
WO2008050727A1 (en) * 2006-10-23 2008-05-02 Nagasaki Institute Of Applied Science Biomass gasification apparatus
JP2012531499A (en) * 2009-06-30 2012-12-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Process for producing a gas mixture rich in hydrogen
WO2012117423A1 (en) * 2011-02-28 2012-09-07 Hannibal A method and a system for synthetic liquid fuel production by indirect gasification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113060704A (en) * 2021-03-30 2021-07-02 大连理工大学 Organic solid clean and efficient hydrogen production device and method
CN113060704B (en) * 2021-03-30 2023-05-12 大连理工大学 Organic solid clean high-efficiency hydrogen production device and method

Also Published As

Publication number Publication date
JPWO2020166659A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
US10653995B2 (en) Sorption enhanced methanation of biomass
Fermoso et al. Sorption enhanced catalytic steam gasification process: a direct route from lignocellulosic biomass to high purity hydrogen
JP5686803B2 (en) Method for gasifying carbon-containing materials including methane pyrolysis and carbon dioxide conversion reaction
US20110035990A1 (en) Method and device for converting carbonaceous raw materials
Iordanidis et al. Autothermal sorption-enhanced steam reforming of bio-oil/biogas mixture and energy generation by fuel cells: concept analysis and process simulation
CN102965131B (en) Efficient and clean utilization technology for highly volatile young coal
CN102977927A (en) Apparatus for preparing synthesis gas based on dual fluidized bed biomass gasification and preparation method thereof
CN101100621A (en) Method and device for preparing biomass hydrogen-rich combustion gas
Hayashi et al. Gasification of low-rank solid fuels with thermochemical energy recuperation for hydrogen production and power generation
EP2126004B1 (en) Processing biomass
CN103857772A (en) Partial oxidation of methane and higher hydrocarbons in syngas streams
JP2007229548A (en) Reforming catalyst acted in biomass pyrolysis gasification process, its manufacturing method and modification process using the reforming catalyst, biomass pyrolytic gasifying device, and method for regenerating catalyst
CN103571541A (en) Catalytic gasification method for co-production of methane and tar
JP2011212598A (en) Reforming catalyst for tar-containing gas, method for manufacturing the reforming catalyst and method for reforming tar-containing gas
JP5384087B2 (en) Woody biomass gas reforming system
JP5460970B2 (en) Woody biomass gas reforming system
Terrell et al. Thermodynamic simulation of syngas production through combined biomass gasification and methane reformation
JP3925481B2 (en) Method for producing hydrogen or hydrogen-containing gas from organic waste
WO2020166659A1 (en) Method for producing biomass gas, method for producing hydrogen, system for producing biomass gas, and system for producing hydrogen
CN104987891B (en) A kind of alternative fuel based on coal hydrocarbon component classification gasification/chemical products production system
JP2008069017A (en) Method for producing hydrogen
JP2015004021A (en) Thermal decomposition gasification furnace, catalytic modification method, energy supply system and electric heat supply system
CN104962316A (en) Grading-gasification moderate-circulation type chemical-power polygeneration system for gathering CO2.
JP2011236394A (en) Woody gas producer
TWI397580B (en) Process and system for gasification with in-situ tar removal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572307

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755118

Country of ref document: EP

Kind code of ref document: A1