WO2020166315A1 - 検知方法、検知システムおよび検知プログラム - Google Patents
検知方法、検知システムおよび検知プログラム Download PDFInfo
- Publication number
- WO2020166315A1 WO2020166315A1 PCT/JP2020/002838 JP2020002838W WO2020166315A1 WO 2020166315 A1 WO2020166315 A1 WO 2020166315A1 JP 2020002838 W JP2020002838 W JP 2020002838W WO 2020166315 A1 WO2020166315 A1 WO 2020166315A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- state
- detection
- controlled object
- control input
- sensor data
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1416—Event detection, e.g. attack signature detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/55—Detecting local intrusion or implementing counter-measures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/009—Security arrangements; Authentication; Protecting privacy or anonymity specially adapted for networks, e.g. wireless sensor networks, ad-hoc networks, RFID networks or cloud networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/12—Detection or prevention of fraud
- H04W12/121—Wireless intrusion detection systems [WIDS]; Wireless intrusion prevention systems [WIPS]
Definitions
- the present invention relates to a detection method, a detection system, and a detection program.
- a confidential issue occurs in which the control system design information is leaked.
- an attacker may use the identified control system to accurately calculate the estimated value of the sensor data and perform tampering to make it appear to be operating normally at a higher level than a replay attack, making detection more difficult. become.
- the present invention has been made in view of the above, and an object thereof is to detect a replay attack by making it difficult for an attacker to identify the parameters of the control system.
- a detection method is a detection method executed by a detection system having a sensor and a controller, wherein the controller outputs from the sensor.
- a state estimation step of calculating an estimated value of the state of the controlled object using sensor data representing the state of the controlled object and a control input for controlling the state of the controlled object, and estimation of the calculated state of the controlled object A calculation step of calculating the control input to which colored noise in a predetermined frequency band is added according to the value is included.
- FIG. 1 is a schematic diagram showing a schematic configuration of a detection system according to this embodiment.
- FIG. 2 is a diagram for explaining an attack by an attacker.
- FIG. 3 is a diagram for explaining an attack by an attacker.
- FIG. 4 is a flowchart showing a detection processing procedure by the detection system according to the present embodiment.
- FIG. 5 is a diagram for explaining the embodiment.
- FIG. 6 is a diagram for explaining the embodiment.
- FIG. 7 is a diagram illustrating an example of a computer that executes the detection program.
- FIG. 1 is a schematic diagram showing a schematic configuration of the detection system according to the present embodiment.
- the detection system 1 is a control system that feedback-controls the state of a controlled object 2 such as a heat engine according to the current state.
- the detection system 1 includes a controlled object 2, a sensor 3, a controller 4, and an actuator 5.
- the sensor 3 is a sensor such as a temperature sensor that measures the state of the controlled object 2 and outputs sensor data obtained by sensing physical information indicating the state of the controlled object 2 to the controller 4 via the network.
- the sensor 3 is realized by, for example, an MPU (Micro Processing Unit) or FPGA (Field Programmable Gate Array).
- the controller 4 uses the sensor data received from the sensor 3 to calculate the control input for controlling the actuator 5 such as the valve of the control target 2.
- the controller 4 estimates the state of the controlled object 2 calculated using the sensor data indicating the state of the controlled object 2 output from the sensor 3 and the control input for controlling the state of the controlled object 2.
- the control input to which the colored noise in the predetermined frequency band is added is calculated according to the value.
- the controller 4 is realized by a general-purpose computer such as a personal computer, and a control unit such as a CPU (Central Processing Unit) executes a processing program stored in the memory.
- a control unit such as a CPU (Central Processing Unit) executes a processing program stored in the memory.
- the control unit functions as the state estimation unit 4a, the calculation unit 4b, and the detection unit 4c as illustrated in FIG.
- These functional units may be implemented in hardware that is different from each other or in part.
- the detection unit 4c may be mounted on a device different from the controller 4.
- a communication control unit (not shown) realized by a NIC (Network Interface Card) or the like controls communication between the control unit and external devices such as the control target 2 and the sensor 3 via the network.
- the controller 4 also includes a storage unit (not shown) realized by a semiconductor memory device such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disc.
- the state x(k) (hereinafter, also referred to as x k ) of the controlled object 2 at the discrete time k is represented by the following expression (1).
- (k+1) means the time after one step of k.
- w(k) is modeling noise.
- the sensor data y(k) (hereinafter, also referred to as y k ) output by the sensor 3 is represented by the following equation (2).
- v(k) is environmental noise.
- the state estimation unit 4a calculates an estimated value of the state of the controlled object 2 using the sensor data indicating the state of the controlled object 2 and the control input for controlling the state of the controlled object 2. Specifically, the state estimation unit 4a uses the Kalman filter to calculate the estimated value of the state of the controlled object 2 as shown in the following expression (3).
- the calculation unit 4b calculates the control input to which the colored noise in the predetermined frequency band is added according to the calculated estimated value of the state of the controlled object 2. Specifically, the calculation unit 4b calculates a control input for performing optimal control so that the fluctuation of the sensor data y(k) including the environmental noise v(k) shown in the above equation (2) becomes steady. To do. Further, the calculation unit 4b adds colored noise having a frequency ⁇ within a predetermined range to the control input for performing the optimum control indicated by the dotted line in the following expression (4).
- FIGS. 2 and 3 are diagrams for explaining an attack by an attacker.
- FIG. 2 illustrates a replay attack.
- attacker steals the sensor data y k-s past (k-s) is performed replay attacks that tampered with y k-s sensor data y k at the time of the attack.
- the detection unit 4c monitors the difference between the value of the sensor data and the estimated value of the sensor data calculated from the estimated value of the state to monitor the presence or absence of abnormality. Therefore, the attacker can make a replay attack by tampering with the sensor data using the same sensor data as in the past, without the controller 4 being aware of it.
- the controller 4 that is, the state estimating unit 4a and the calculating unit 4b cannot detect the replay attack, the attacker can make an arbitrary input to the actuator 5 that causes an illegal operation of the controlled object 2.
- the calculating unit 4b outputs the control input u k to which the white noise is added to the actuator 5 as shown in the following expression (5), thereby making it possible to detect the replay attack. That is, since the same sensor data as past sensor data is not actually output due to the addition of noise, it is possible to detect a replay attack.
- the white noise is noise that follows a normal distribution with mean 0 variance ⁇ .
- FIG. 3 illustrates an attack by parameter identification.
- the attacker steals the combination of the control input u k and the sensor data y k to identify the parameters of the control system.
- the attacker uses the PBSID method known as an algorithm capable of identifying the parameter only by the input/output data, and uses the parameter A of the control system shown in the above equations (1) to (3), B and C can be identified.
- the PBSID method is an algorithm for identifying the parameters A, B, C, D, and K of the innovation format represented by the following equation (6).
- the attacker can calculate the estimated value y k ′ of the sensor data y k . Therefore, the attacker can tamper with the sensor data y k with higher accuracy than the replay attack, and can make an arbitrary input to the actuator 5 that causes an unauthorized operation of the controlled object 2.
- the attacker can collect various combinations of the control input u k and the sensor data y k , so that the degree of PE property known as an index of identifiability becomes infinite.
- the PE property indicates that the larger the order, the more accurate the identification can be.
- the detection unit 4c detects an attack using past sensor data. For example, as shown in FIGS. 2 and 3, the detection unit 4c detects a replay attack by monitoring the difference between the value of the sensor data and the estimated value of the sensor data calculated from the estimated value of the state. There is.
- the detection unit 4c performs a chi-square test of the degree of freedom p using the difference between the estimated value of the sensor data and the actual center data as a random variable, as shown in the following expression (7). That is, the detection unit 4c determines that there is a replay attack when the value of the statistic g k represented by the following equation (7) exceeds a predetermined threshold.
- the calculation unit 4b selects the colored noise in the frequency band in which M (1) is as large as possible, thereby improving the replay attack detection performance. As described above, the calculation unit 4b selects the frequency band of the colored noise using the predetermined index M (1) , thereby improving the replay attack detection performance.
- FIG. 4 is a flowchart showing a detection processing procedure by the detection system 1 according to the present embodiment.
- the flowchart of FIG. 4 starts, for example, at the timing when the user performs an operation for instructing the controller 4 to start.
- the controller 4 receives sensor data obtained by sensing physical information indicating the state of the control target 2 by the sensor 3 (step S1).
- the state estimation unit 4a calculates the estimated value of the state of the controlled object 2 using the sensor data yk output from the sensor 3 and the control input uk calculated by the calculation unit 4b (step S2). ..
- the calculation unit 4b calculates a control input for performing optimal control according to the estimated value of the state (step S3). Further, the calculation unit 4b adds colored noise having a frequency ⁇ in a predetermined range to the control input for performing the optimum control (step S4).
- the calculation unit 4b outputs the control input to which the colored noise is added to the actuator 5, returns the processing to step S1, and waits for the response of the sensor data output from the sensor 3.
- the state estimation unit 4a of the controller 4 controls the sensor data output from the sensor 3 indicating the state of the control target 2 and the state of the control target 2.
- the estimated value of the state of the controlled object 2 is calculated using the control input.
- the calculation unit 4b calculates the control input to which the colored noise in the predetermined frequency band is added according to the calculated estimated value of the state of the controlled object 2.
- the detection system 1 of the present embodiment it becomes possible to easily detect the replay attack by making it difficult for the attacker to identify the parameter of the control system without changing the system configuration. Therefore, it is possible to prevent the leakage of confidential information and the attack due to more advanced falsification.
- parameter identification is performed using a control system that performs feedback control.
- This control system is specified by the parameter expressed by the following equation (11).
- Q and R respectively represent the variances of the modeled noise w and the environmental noise v that follow a normal distribution.
- N 100 times of parameter identification was performed by 1000 steps per operation using the conventional Watermark method and the control input u k according to the proposed method of the above-described embodiment.
- the conventional Watermark method it was assumed that white noise was added to the control input u k as represented by the following expression (12).
- control input u k has color noise added thereto as represented by the following expression (13).
- FIG. 5 and 6 are diagrams for explaining the embodiment.
- the identified eigenvalue of the parameter A and the true value are plotted in polar coordinates.
- the identification result and the true value are close to each other, and it is understood that the identification is performed accurately.
- the identification result and the true value are widely separated from each other, and the identification accuracy is low.
- the detection system 1 of the above-described embodiment it is confirmed that the parameter identification is difficult.
- FIG. 6 illustrates the detection result of the replay attack in the control system of the proposed method of the above embodiment.
- FIG. 6B as shown in the above equation (13), the control input u k to which the colored noise in the frequency band in which M (1) shown in FIG. 6A is sufficiently large is added is added.
- the time series change of the statistic g k (hereinafter, referred to as g) shown in the above formula (7) is illustrated.
- the detection system 1 of the above-described embodiment it is confirmed that the replay attack can be detected.
- the controller 4 of the detection system 1 can be implemented by installing a detection program that executes the above detection processing as package software or online software in a desired computer.
- the information processing apparatus can be caused to function as the controller 4 by causing the information processing apparatus to execute the above detection program.
- the information processing apparatus referred to here includes a desktop or notebook personal computer.
- the information processing device includes in its category a mobile communication terminal such as a smartphone, a mobile phone, a PHS (Personal Handyphone System), and a slate terminal such as a PDA (Personal Digital Assistant).
- the function of the controller 4 may be implemented in the cloud server.
- FIG. 7 is a diagram illustrating an example of a computer that executes a detection program.
- the computer 1000 has, for example, a memory 1010, a CPU 1020, a hard disk drive interface 1030, a disk drive interface 1040, a serial port interface 1050, a video adapter 1060, and a network interface 1070. These units are connected by a bus 1080.
- the memory 1010 includes a ROM (Read Only Memory) 1011 and a RAM 1012.
- the ROM 1011 stores, for example, a boot program such as BIOS (Basic Input Output System).
- BIOS Basic Input Output System
- the hard disk drive interface 1030 is connected to the hard disk drive 1031.
- the disk drive interface 1040 is connected to the disk drive 1041.
- a removable storage medium such as a magnetic disk or an optical disk is inserted into the disk drive 1041.
- a mouse 1051 and a keyboard 1052 are connected to the serial port interface 1050, for example.
- a display 1061 is connected to the video adapter 1060, for example.
- the hard disk drive 1031 stores, for example, an OS 1091, an application program 1092, a program module 1093, and program data 1094. Each information described in the above embodiment is stored in, for example, the hard disk drive 1031 or the memory 1010.
- the detection program is stored in the hard disk drive 1031 as a program module 1093 in which a command executed by the computer 1000 is described, for example.
- the program module 1093 in which each process executed by the controller 4 described in the above embodiment is described is stored in the hard disk drive 1031.
- the data used for information processing by the detection program is stored in the hard disk drive 1031 as the program data 1094. Then, the CPU 1020 reads the program module 1093 and the program data 1094 stored in the hard disk drive 1031 into the RAM 1012 as necessary, and executes the above-described procedures.
- the program module 1093 and the program data 1094 related to the detection program are not limited to being stored in the hard disk drive 1031 and may be stored in, for example, a removable storage medium and read by the CPU 1020 via the disk drive 1041 or the like. May be done.
- the program module 1093 and the program data 1094 related to the detection program are stored in another computer connected via a network such as LAN or WAN (Wide Area Network) and read by the CPU 1020 via the network interface 1070. May be.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer And Data Communications (AREA)
Abstract
コントローラ(4)の状態推定部(4a)が、センサ(3)から出力された制御対象(2)の状態を表すセンサデータと、制御対象(2)の状態を制御する制御入力とを用いて、制御対象(2)の状態の推定値を算出する。また、コントローラ(4)の算出部(4b)が、算出された制御対象(2)の状態の推定値に応じて、所定の周波数帯の有色ノイズを付加した制御入力を算出する。
Description
本発明は、検知方法、検知システムおよび検知プログラムに関する。
近年、センサデータを基にフィードバック制御を行う制御システムに、ネットワークを用いるケースが増加している。それに伴い、サイバー攻撃のリスクが増大している。特に、過去のセンサデータを用いて正常に動作しているように見せかける改ざんを行うリプレイ攻撃は、検知が困難であり、対策が必要である。
そこで、リプレイ攻撃を検知するために、制御入力に微小なホワイトノイズを付加し、センサデータの応答を監視するWatermarkと呼ばれる技術が提案されている(非特許文献1参照)。
Yilin Mo, Rohan Chabukswar, Bruno Sinopoli, "Detecting Integrity Attacks on SCADA Systems", IEEE Transactions on Control System Technology, Volume 22, Issue 4, 2014年7月, P.1396-1407
しかしながら、従来の技術によれば、攻撃者による制御システムのパラメータ同定が高精度に可能となる恐れがある。すなわち、制御入力にホワイトノイズを付加すると、制御入力に十分なばらつきが発生するため、アルゴリズムの可同定条件を満たし、攻撃者によるパラメータ同定の精度が大幅に向上してしまう恐れがある。
制御システムのパラメータが攻撃者に同定されると、制御システムの設計情報が漏洩するという機密上の問題が発生する。また、攻撃者が、同定した制御システムを用いて正確にセンサデータの推定値を算出し、リプレイ攻撃より高度に、正常に動作しているように見せかける改ざんを行う恐れがあり、検知がさらに困難になる。
本発明は、上記に鑑みてなされたものであって、攻撃者による制御システムのパラメータ同定を困難にして、リプレイ攻撃を検知することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る検知方法は、センサとコントローラとを有する検知システムで実行される検知方法であって、前記コントローラが、前記センサから出力された制御対象の状態を表すセンサデータと前記制御対象の状態を制御する制御入力とを用いて、前記制御対象の状態の推定値を算出する状態推定工程と、算出された前記制御対象の状態の推定値に応じて、所定の周波数帯の有色ノイズを付加した前記制御入力を算出する算出工程と、含んだことを特徴とする。
本発明によれば、攻撃者による制御システムのパラメータ同定を困難にして、リプレイ攻撃を検知することが可能となる。
以下、図面を参照して、本発明の一実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
[検知システムの構成]
図1は、本実施形態に係る検知システムの概略構成を示す模式図である。検知システム1は、例えば熱機関等の制御対象2の状態を、現在の状態に応じてフィードバック制御する制御システムである。図1に例示するように、検知システム1は、制御対象2、センサ3、コントローラ4、およびアクチュエータ5を有する。
図1は、本実施形態に係る検知システムの概略構成を示す模式図である。検知システム1は、例えば熱機関等の制御対象2の状態を、現在の状態に応じてフィードバック制御する制御システムである。図1に例示するように、検知システム1は、制御対象2、センサ3、コントローラ4、およびアクチュエータ5を有する。
センサ3は、制御対象2の状態を計測する温度センサ等のセンサであり、制御対象2の状態を表す物理情報をセンシングしたセンサデータを、ネットワークを介してコントローラ4に出力する。センサ3は、例えば、MPU(Micro Processing Unit)やFPGA(Field Programmable Gate Array)等で実現される。
コントローラ4は、センサ3から受信したセンサデータを用いて、例えば制御対象2のバルブ等のアクチュエータ5を制御する制御入力を算出する。本実施形態において、コントローラ4は、センサ3から出力された制御対象2の状態を表すセンサデータと、制御対象2の状態を制御する制御入力とを用いて算出される制御対象2の状態の推定値に応じて、所定の周波数帯の有色ノイズを付加した制御入力を算出する。
具体的には、コントローラ4は、例えばパソコン等の汎用コンピュータで実現され、CPU(Central Processing Unit)等である制御部がメモリに記憶された処理プログラムを実行する。これにより制御部が、図1に示すように、状態推定部4a、算出部4b、および検知部4cとして機能する。これらの機能部は、それぞれ、あるいは一部が異なるハードウェアに実装されてもよい。例えば、検知部4cは、コントローラ4とは異なる装置に実装されてもよい。
また、コントローラ4は、NIC(Network Interface Card)等で実現される不図示の通信制御部が、制御部と制御対象2やセンサ3等の外部の装置とのネットワークを介した通信を制御する。また、コントローラ4は、RAM、フラッシュメモリ等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される不図示の記憶部を備える。
ここで、離散時間kにおける制御対象2の状態x(k)(以下、xkとも記す)は、次式(1)を用いて表される。ここで、(k+1)は、kの1ステップ後の時間を意味する。また、w(k)はモデル化ノイズである。
この場合に、センサ3が出力するセンサデータy(k)(以下、ykとも記す)は、次式(2)で表される。ここで、v(k)は環境ノイズである。
状態推定部4aは、制御対象2の状態を表すセンサデータと制御対象2の状態を制御する制御入力とを用いて、制御対象2の状態の推定値を算出する。具体的には、状態推定部4aは、カルマンフィルタを用いて、次式(3)に示すように、制御対象2の状態の推定値を算出する。
算出部4bは、算出された制御対象2の状態の推定値に応じて、所定の周波数帯の有色ノイズを付加した制御入力を算出する。具体的には、算出部4bは、上記式(2)に示した、環境ノイズv(k)を含むセンサデータy(k)の揺らぎを定常化するように、最適制御を行う制御入力を算出する。また、算出部4bは、次式(4)に点線で示す最適制御を行う制御入力に、所定範囲の周波数ωの有色ノイズを付加する。
ここで、図2および図3は、攻撃者による攻撃を説明するための図である。まず、図2には、リプレイ攻撃が例示されている。図2に示す例では、攻撃者が過去(k-s)のセンサデータyk-sを窃取して、攻撃時にセンサデータykをyk-sに改ざんするリプレイ攻撃を行っている。この場合に、検知部4cは、センサデータの値と状態の推定値から算出されるセンサデータの推定値との差分を監視して、異常の有無を監視している。したがって、攻撃者は、コントローラ4に気づかれないように、過去と同一のセンサデータを用いてセンサデータを改ざんするリプレイ攻撃を行うことが可能である。
そして、コントローラ4すなわち状態推定部4aおよび算出部4bがリプレイ攻撃を検知できないと、攻撃者がアクチュエータ5に対し、制御対象2の不正動作を引き起こす任意の入力を行うことが可能となる。
そこで、従来のWatermark法では、次式(5)に示すように、算出部4bは、ホワイトノイズを付加した制御入力ukをアクチュエータ5に出力することにより、リプレイ攻撃を検知可能としていた。すなわち、ノイズが付加されることにより、過去のセンサデータと同一のセンサデータが実際に出力されることがないため、リプレイ攻撃を検知することが可能となる。ここで、ホワイトノイズは、平均0分散Ξの正規分布に従うノイズである。
一方、図3には、パラメータ同定による攻撃が例示されている。図3に示す例では、攻撃者が制御入力ukとセンサデータykとの組み合わせを窃取することにより、制御システムのパラメータ同定を行っている。
例えば、攻撃者は、フィードバック制御環境において、入出力データのみでパラメータを同定可能なアルゴリズムとして知られるPBSID法を用いて、上記式(1)~式(3)に示した制御システムのパラメータA、B、Cを同定することができる。PBSID法とは、次式(6)のように表されるイノベーション形式のパラメータA、B、C、D、Kを同定するアルゴリズムである。
パラメータが同定されると、攻撃者は、センサデータykの推定値yk’を算出することが可能となる。したがって、攻撃者は、リプレイ攻撃より高精度にセンサデータykの改ざんを行って、アクチュエータ5に対し、制御対象2の不正動作を引き起こす任意の入力を行うことが可能となる。
ここで、上記式(5)のように、制御入力にホワイトノイズが付加された場合には、制御入力のばらつきが大きくなる。そうすると、攻撃者は、制御入力ukとセンサデータykとの組み合わせを多様に収集可能であるため、可同定性の指標として知られるPE性の次数が無限大となる。PE性は、次数が大きいほど高精度な同定が可能であることを示す。
これに対し、上記式(4)のように、制御入力に有色ノイズを付加された場合には、有色ノイズに含まれる正弦波の周波数ωの数nに対し、PE性の次数は2nとなる。したがって、制御システムに影響の少ない周波数帯の有色ノイズを選択することにより、制御システムのパラメータ同定が困難になることがわかる。
図1の説明に戻る。検知部4cは、過去のセンサデータを用いた攻撃を検知する。例えば、図2および図3に示したように、検知部4cは、センサデータの値と状態の推定値から算出されるセンサデータの推定値との差分を監視して、リプレイ攻撃の検知している。
具体的には、検知部4cは、次式(7)に示すように、センサデータの推定値と実際のセンタデータとの差を確率変数として、自由度pのカイ二乗検定を行う。すなわち、検知部4cは、次式(7)で表される統計量gkの値が所定の閾値を超えた場合に、リプレイ攻撃が有ると判定する。
ここで、リプレイ攻撃がない場合には、確率変数「センサデータの推定値と実際のセンタデータとの差」の二乗の期待値は、次式(8)で表される。
一方、リプレイ攻撃がある場合には、確率変数「センサデータの推定値と実際のセンタデータとの差」の二乗の期待値は、次式(9)および式(10)で表される。
これらの値は、リプレイ攻撃がある場合に、リプレイ攻撃がない場合よりMだけ大きくなる。したがって、Mが十分に大きければ、リプレイ攻撃の検知が可能である。そこで、本実施形態の検知システム1では、M(1)ができるだけ大きくなる周波数帯の有色ノイズを算出部4bが選択することにより、リプレイ攻撃の検知性能を向上させることが可能となる。このように、算出部4bが、所定の指標M(1)を用いて有色ノイズの周波数帯を選択することにより、リプレイ攻撃の検知性能を向上させることが可能となる。
[検知処理]
図4は、本実施形態に係る検知システム1による検知処理手順を示すフローチャートである。図4のフローチャートは、例えば、ユーザがコントローラ4に開始を指示する操作を行ったタイミングで開始される。
図4は、本実施形態に係る検知システム1による検知処理手順を示すフローチャートである。図4のフローチャートは、例えば、ユーザがコントローラ4に開始を指示する操作を行ったタイミングで開始される。
まず、コントローラ4は、センサ3が制御対象2の状態を示す物理情報をセンシングしたセンサデータを受信する(ステップS1)。コントローラ4では、状態推定部4aが、センサ3から出力されたセンサデータykと、算出部4bが算出した制御入力ukとを用いて、制御対象2の状態の推定値を算出する(ステップS2)。
算出部4bは、状態の推定値に応じて、最適制御を行う制御入力を算出する(ステップS3)。また、算出部4bは、最適制御を行う制御入力に、所定範囲の周波数ωの有色ノイズを付加する(ステップS4)。
そして、算出部4bは、有色ノイズを付加した制御入力をアクチュエータ5に出力し、処理をステップS1に戻し、センサ3から出力されるセンサデータの応答を待つ。
以上、説明したように、本実施形態の検知システム1において、コントローラ4の状態推定部4aが、センサ3から出力された制御対象2の状態を表すセンサデータと、制御対象2の状態を制御する制御入力とを用いて、制御対象2の状態の推定値を算出する。また、算出部4bが、算出された制御対象2の状態の推定値に応じて、所定の周波数帯の有色ノイズを付加した制御入力を算出する。
これにより、本実施形態の検知システム1では、システム構成を変更することなく容易に、攻撃者による制御システムのパラメータ同定を困難にして、リプレイ攻撃を検知することが可能となる。したがって、機密情報の漏洩やさらに高度な改ざんによる攻撃を防止することが可能となる。
[実施例]
本実施例では、フィードバック制御を行う制御システムを用いて、パラメータ同定を行った。この制御システムは、次式(11)で表されるパラメータで特定される。ここで、Q、Rはそれぞれ、正規分布に従うモデル化ノイズw、環境ノイズvの分散を表す。
本実施例では、フィードバック制御を行う制御システムを用いて、パラメータ同定を行った。この制御システムは、次式(11)で表されるパラメータで特定される。ここで、Q、Rはそれぞれ、正規分布に従うモデル化ノイズw、環境ノイズvの分散を表す。
この制御システムにおいて、従来のWatermark法、および上記実施形態の提案手法による制御入力ukを用いて、1回につき1000ステップの動作によるパラメータ同定を、N=100回行った。従来のWatermark法では、制御入力ukが、次式(12)で表されるように、ホワイトノイズが付加されたものと仮定した。
また、上記実施形態の提案手法では、制御入力ukが、次式(13)で表されるように、有色ノイズが付加されたものと仮定した。
図5および図6は、実施例を説明するための図である。図5には、同定したパラメータAの固有値と、真の値とが極座標にプロットされている。従来のWatermark法によれば、図5(a)に示すように、同定結果と真値とが近く、精度よく同定されていることがわかる。一方、上記実施形態の提案手法によれば、図5(b)に示すように、同定結果と真値とが大きく離れており、同定精度が低いことがわかる。このように、上記実施形態の検知システム1によれば、パラメータ同定が困難であることが確認された。
次に、図6には、上記実施形態の提案手法の制御システムにおけるリプレイ攻撃の検知結果が例示されている。ここで、図6(a)には、上記式(10)で示したM(1)と周波数ωとの関係が例示されている。図6(a)示すように、太枠で囲んで示す周波数帯(w=0.1,011,…,0.2)では、M(1)が十分に大きいことがわかる。
また、図6(b)には、上記式(13)に示したように、図6(a)で示したM(1)が十分に大きい周波数帯の有色ノイズが付加された制御入力ukを用いた場合における、上記式(7)に示した統計量gk(以下、gと記す)の時系列変化が例示されている。ここでは、Time=100からリプレイ攻撃を開始して、gの変化を監視した。この場合に、図6(b)に示すように、Time=100以降にgの値が大きく変化して、所定の閾値を超えていることから、Time=100以降にリプレイ攻撃があると判定できる。このように、上記実施形態の検知システム1によれば、リプレイ攻撃の検知が可能であることが確認された。
[プログラム]
上記実施形態に係る検知システム1が実行する処理をコンピュータが実行可能な言語で記述したプログラムを作成することもできる。一実施形態として、検知システム1のコントローラ4は、パッケージソフトウェアやオンラインソフトウェアとして上記の検知処理を実行する検知プログラムを所望のコンピュータにインストールさせることによって実装できる。例えば、上記の検知プログラムを情報処理装置に実行させることにより、情報処理装置をコントローラ4として機能させることができる。ここで言う情報処理装置には、デスクトップ型またはノート型のパーソナルコンピュータが含まれる。また、その他にも、情報処理装置にはスマートフォン、携帯電話機やPHS(Personal Handyphone System)などの移動体通信端末、さらには、PDA(Personal Digital Assistant)などのスレート端末などがその範疇に含まれる。また、コントローラ4の機能を、クラウドサーバに実装してもよい。
上記実施形態に係る検知システム1が実行する処理をコンピュータが実行可能な言語で記述したプログラムを作成することもできる。一実施形態として、検知システム1のコントローラ4は、パッケージソフトウェアやオンラインソフトウェアとして上記の検知処理を実行する検知プログラムを所望のコンピュータにインストールさせることによって実装できる。例えば、上記の検知プログラムを情報処理装置に実行させることにより、情報処理装置をコントローラ4として機能させることができる。ここで言う情報処理装置には、デスクトップ型またはノート型のパーソナルコンピュータが含まれる。また、その他にも、情報処理装置にはスマートフォン、携帯電話機やPHS(Personal Handyphone System)などの移動体通信端末、さらには、PDA(Personal Digital Assistant)などのスレート端末などがその範疇に含まれる。また、コントローラ4の機能を、クラウドサーバに実装してもよい。
図7は、検知プログラムを実行するコンピュータの一例を示す図である。コンピュータ1000は、例えば、メモリ1010と、CPU1020と、ハードディスクドライブインタフェース1030と、ディスクドライブインタフェース1040と、シリアルポートインタフェース1050と、ビデオアダプタ1060と、ネットワークインタフェース1070とを有する。これらの各部は、バス1080によって接続される。
メモリ1010は、ROM(Read Only Memory)1011およびRAM1012を含む。ROM1011は、例えば、BIOS(Basic Input Output System)等のブートプログラムを記憶する。ハードディスクドライブインタフェース1030は、ハードディスクドライブ1031に接続される。ディスクドライブインタフェース1040は、ディスクドライブ1041に接続される。ディスクドライブ1041には、例えば、磁気ディスクや光ディスク等の着脱可能な記憶媒体が挿入される。シリアルポートインタフェース1050には、例えば、マウス1051およびキーボード1052が接続される。ビデオアダプタ1060には、例えば、ディスプレイ1061が接続される。
ここで、ハードディスクドライブ1031は、例えば、OS1091、アプリケーションプログラム1092、プログラムモジュール1093およびプログラムデータ1094を記憶する。上記実施形態で説明した各情報は、例えばハードディスクドライブ1031やメモリ1010に記憶される。
また、検知プログラムは、例えば、コンピュータ1000によって実行される指令が記述されたプログラムモジュール1093として、ハードディスクドライブ1031に記憶される。具体的には、上記実施形態で説明したコントローラ4が実行する各処理が記述されたプログラムモジュール1093が、ハードディスクドライブ1031に記憶される。
また、検知プログラムによる情報処理に用いられるデータは、プログラムデータ1094として、例えば、ハードディスクドライブ1031に記憶される。そして、CPU1020が、ハードディスクドライブ1031に記憶されたプログラムモジュール1093やプログラムデータ1094を必要に応じてRAM1012に読み出して、上述した各手順を実行する。
なお、検知プログラムに係るプログラムモジュール1093やプログラムデータ1094は、ハードディスクドライブ1031に記憶される場合に限られず、例えば、着脱可能な記憶媒体に記憶されて、ディスクドライブ1041等を介してCPU1020によって読み出されてもよい。あるいは、検知プログラムに係るプログラムモジュール1093やプログラムデータ1094は、LANやWAN(Wide Area Network)等のネットワークを介して接続された他のコンピュータに記憶され、ネットワークインタフェース1070を介してCPU1020によって読み出されてもよい。
以上、本発明者によってなされた発明を適用した実施形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施形態、実施例および運用技術等は全て本発明の範疇に含まれる。
1 検知システム
2 制御対象
3 センサ
4 コントローラ
4a 状態推定部
4b 算出部
4c 検知部
5 アクチュエータ
2 制御対象
3 センサ
4 コントローラ
4a 状態推定部
4b 算出部
4c 検知部
5 アクチュエータ
Claims (5)
- センサとコントローラとを有する検知システムで実行される検知方法であって、
前記コントローラが、
前記センサから出力された制御対象の状態を表すセンサデータと前記制御対象の状態を制御する制御入力とを用いて、前記制御対象の状態の推定値を算出する状態推定工程と、
算出された前記制御対象の状態の推定値に応じて、所定の周波数帯の有色ノイズを付加した前記制御入力を算出する算出工程と、
含んだことを特徴とする検知方法。 - 前記算出工程において、所定の指標を用いて前記所定の周波数帯を選択できることを特徴とする請求項1に記載の検知方法。
- 前記コントローラが、前記センサデータを用いて、過去のセンサデータを用いた攻撃を検知する検知工程を、さらに含んだことを特徴とする請求項1に記載の検知方法。
- センサとコントローラとを有する検知システムであって、
前記コントローラが、
前記センサから出力された制御対象の状態を表すセンサデータと前記制御対象の状態を制御する制御入力とを用いて、前記制御対象の状態の推定値を算出する状態推定部と、
算出された前記制御対象の状態の推定値に応じて、所定の周波数帯の有色ノイズを付加した前記制御入力を算出する算出部と、
を備えることを特徴とする検知システム。 - センサから出力された制御対象の状態を表すセンサデータと前記制御対象の状態を制御する制御入力とを用いて、前記制御対象の状態の推定値を算出する状態推定ステップと、
算出された前記制御対象の状態の推定値に応じて、所定の周波数帯の有色ノイズを付加した前記制御入力を算出する算出ステップと、
コンピュータに実行させる検知プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/429,945 US11876811B2 (en) | 2019-02-13 | 2020-01-27 | Detection method, detection system, and detection program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-023962 | 2019-02-13 | ||
JP2019023962A JP2020135073A (ja) | 2019-02-13 | 2019-02-13 | 検知方法、検知システムおよび検知プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020166315A1 true WO2020166315A1 (ja) | 2020-08-20 |
Family
ID=72044859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/002838 WO2020166315A1 (ja) | 2019-02-13 | 2020-01-27 | 検知方法、検知システムおよび検知プログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US11876811B2 (ja) |
JP (1) | JP2020135073A (ja) |
WO (1) | WO2020166315A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005204392A (ja) * | 2004-01-14 | 2005-07-28 | Brother Ind Ltd | モータ制御装置 |
-
2019
- 2019-02-13 JP JP2019023962A patent/JP2020135073A/ja active Pending
-
2020
- 2020-01-27 US US17/429,945 patent/US11876811B2/en active Active
- 2020-01-27 WO PCT/JP2020/002838 patent/WO2020166315A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005204392A (ja) * | 2004-01-14 | 2005-07-28 | Brother Ind Ltd | モータ制御装置 |
Non-Patent Citations (1)
Title |
---|
SANCHEZ ET AL.: "Detection of replay attacks in cyber-physical systems using a frequency-based signature", JOURNAL OF THE FRANKLIN INSTITUTE, vol. 356, no. 5, 12 February 2019 (2019-02-12), pages 2798 - 2824, XP055733639 * |
Also Published As
Publication number | Publication date |
---|---|
JP2020135073A (ja) | 2020-08-31 |
US20220217159A1 (en) | 2022-07-07 |
US11876811B2 (en) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3210364B1 (en) | Systems and methods for application security analysis | |
EP3213243B1 (en) | Systems and methods for privately performing application security analysis | |
KR20170121717A (ko) | 산업 자산 제어 시스템의 도메인 레벨 위협 검출 | |
CN110383278A (zh) | 用于检测恶意计算事件的系统和方法 | |
EP3455770B1 (en) | Systems and methods for determining security risk profiles | |
CN103905450B (zh) | 智能电网嵌入式设备网络检测评估系统与检测评估方法 | |
US8955109B1 (en) | Educating computer users concerning social engineering security threats | |
JP6400758B2 (ja) | 不正リモート管理からのコンピュータを保護するためのシステム及び方法 | |
CN103023922B (zh) | 基于控制流模型行为的动态远程证明方法 | |
US20220019676A1 (en) | Threat analysis and risk assessment for cyber-physical systems based on physical architecture and asset-centric threat modeling | |
US11252179B2 (en) | Risk analyzer and risk analysis method | |
Antrobus et al. | The forgotten I in IIoT: A vulnerability scanner for industrial Internet of Things | |
US20170134418A1 (en) | System and method for a uniform measure and assessement of an institution's aggregate cyber security risk and of the institution's cybersecurity confidence index. | |
JP2019036273A (ja) | ユーザと銀行サービスとの相互通信中における潜在的に危険なデバイスを識別するシステム及び方法 | |
JP2022177006A (ja) | プロセス制御システムの整合性低下を識別する方法 | |
CN112242991A (zh) | 用于关联事件来检测信息安全事故的系统和方法 | |
CN109843026B (zh) | 用于电子设备的散热方法和散热装置 | |
WO2020166315A1 (ja) | 検知方法、検知システムおよび検知プログラム | |
Robles-Durazno et al. | Newly engineered energy-based features for supervised anomaly detection in a physical model of a water supply system | |
JPWO2019240020A1 (ja) | 不正通信検知装置、不正通信検知方法及び製造システム | |
JP7298701B2 (ja) | 分析システム、方法およびプログラム | |
US20230164170A1 (en) | Automatic Vulnerability Mitigation in Cloud Environments | |
JP2019003533A (ja) | 検知装置および検知方法 | |
JP7184197B2 (ja) | 異常検出装置、異常検出方法および異常検出プログラム | |
KR102121274B1 (ko) | 강인(Robust) 필터, 비지도 군집(Unsupervised clustering)에 기반한 해석적 가중치 최소자승 위치 추정 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20756022 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20756022 Country of ref document: EP Kind code of ref document: A1 |