WO2020166299A1 - 材料特性予測装置および材料特性予測方法 - Google Patents

材料特性予測装置および材料特性予測方法 Download PDF

Info

Publication number
WO2020166299A1
WO2020166299A1 PCT/JP2020/002303 JP2020002303W WO2020166299A1 WO 2020166299 A1 WO2020166299 A1 WO 2020166299A1 JP 2020002303 W JP2020002303 W JP 2020002303W WO 2020166299 A1 WO2020166299 A1 WO 2020166299A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
prediction
parameter
data points
visualization
Prior art date
Application number
PCT/JP2020/002303
Other languages
English (en)
French (fr)
Inventor
彰規 淺原
秀和 森田
貴之 林
俊宏 鯨井
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020166299A1 publication Critical patent/WO2020166299A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a material property predicting apparatus and a material property predicting method, and particularly to an evaluation utilizing human knowledge when predicting material characteristics based on experimental data during material development and selecting an appropriate material.
  • the present invention relates to a material property predicting apparatus and a material property predicting method suitable for performing.
  • a model for predicting experimental results is constructed by inputting data from various experiments into an information system and subjecting it to machine learning.
  • a well-known method is to obtain a function that returns a characteristic by regression analysis.
  • a model representing material properties represented by such a function will be referred to as a material property prediction model.
  • Patent Document 1 A system for analyzing data on compounds by a computer is described in Patent Document 1, for example.
  • chemical data is mapped to a map window (FIG. 6) in a two-dimensional space to be visualized, and a user edits the visualized data, thereby compressing the data into two dimensions.
  • a method of screening by adjusting so as to make it easier to see is disclosed.
  • Patent Document 2 a technique capable of high-speed screening for discovering a drug is described in Patent Document 2, for example.
  • Patent Document 2 in order to derive a law connecting structural features and biological activity from relatively small screening data, a material having good material properties for similar data on a subspace that is a space where parameters are partially used.
  • a screening method for preferentially experimenting with a candidate having a large number is disclosed.
  • Patent Document 1 visualizes chemical data in a mapping window on a two-dimensional space, and a user edits the visualized data to obtain a two-dimensional compression result.
  • the screen is adjusted so that it is easy to see. This method facilitates visual screening.
  • it is necessary for the user to consider everything in order to reflect the result of material property prediction, and labor is required.
  • the analysis method described in Patent Document 2 is a method of preferentially experimenting candidates that often have good material characteristics for similar data on a subspace that is a space where parameters are partially used. there were. According to this method, screening can be performed even if there are many parameters, but in a situation where there are not many data and too many parameters, it may be judged that there is a correlation even though there is no correlation. This is a phenomenon similar to the above-mentioned over-learning, and it is still unsolved that it is not easy to improve the accuracy without selecting parameters.
  • An object of the present invention is to utilize human knowledge in predictive value evaluation for screening an experimental plan when predicting material properties based on experimental data during material development and selecting appropriate materials. It is to provide a material property prediction device and a material property prediction method capable of performing evaluation.
  • the material property prediction device of the present invention is preferably a material property prediction device that predicts and displays material properties, and a material data table that stores material properties and material parameters associated with the material, and material parameters.
  • the material data visualization table that stores the result of dimensional compression of two-dimensional coordinates as a two-dimensional coordinate and the parameter importance table that stores the parameter importance associated with each material parameter are held, and the two-dimensional compression is performed from the material parameter.
  • coordinates a dimensionless compression unit without teacher data stored in the material data table, and a 2D visualization unit that two-dimensionally displays the two-dimensional coordinates stored in the material data visualization table as material data points and accepts the position change of the material data points.
  • a regression analysis is performed, the parameter importance stored in the parameter importance table is updated, and the material data point that has been changed and the position that has not been changed Similar to the dimensional compression part with semi-supervised data that dimensionally compresses the material parameter of the material data point and updates it as two-dimensional coordinates stored in the material data visualization table, and the material parameter in which the parameter importance is weighted to each material parameter Based on the degree, a regression analysis is performed to have a predictive evaluation unit for predicting material properties.
  • ADVANTAGE OF THE INVENTION when predicting the characteristic of the material based on the experimental data at the time of material development, and selecting an appropriate material, human knowledge was utilized in the predicted value evaluation for screening of an experimental plan. It is possible to provide a material property prediction device and a material property prediction method that can perform evaluation.
  • 6 is a flowchart showing an example of a material data 2D display screen according to the first embodiment. It is a flow chart which shows an example of a material property prediction presentation screen. It is a functional block diagram of the material property prediction apparatus of Embodiment 2. It is a figure which shows an example of a material visualization background table. 9 is a flowchart illustrating an example of material data visualization processing according to the second embodiment. It is a figure which shows an example of the material data 2D display screen of Embodiment 2.
  • the material property prediction device 101 is a device that presents necessary information for predicting material properties from information about materials according to a user's operation.
  • the material property prediction apparatus 101 has a functional configuration including a prediction evaluation unit 112, a teacher data-less dimension compression unit 113, a 2D (Dimension) visualization unit 115, a semi-teacher data presence dimension compression unit 116, and a material.
  • the characteristic prediction presentation unit 117 is included.
  • the prediction evaluation unit 112 is a functional unit that calculates the prediction accuracy by weighting the material parameters.
  • the teacher data-less dimension compression unit 113 is a functional unit that gives parameters of a multidimensional material and converts the parameters into two-dimensional coordinates.
  • “without teacher data” is contrasted with "with semi-teacher data” that appears later, and it corresponds to the value of the material parameter of the material data table in which the given original data is stored. , Means to dimensionally compress as it is.
  • the 2D visualization unit 115 is a functional unit that visualizes the two-dimensional coordinates obtained by converting the material parameter information.
  • the semi-supervised data dimensional compression unit 116 dimensionally compresses the material parameter again based on the user editing result of the material parameter and the two-dimensional coordinate data obtained by dimensionally compressing the parameter, and calculates a dimensional coordinate. Is. “Having semi-supervised data” means that the user interface of the user edits the information regarding the material data and newly performs dimension compression using the data generated thereby.
  • the material property prediction/presentation unit 117 is a functional unit that finally presents a material property prediction to the user.
  • the material property prediction apparatus 101 also holds a material data table 240, a material data visualization table 250, a parameter importance table 260, and a material/coordinate mapping table 270 as data.
  • the material data table 240 is a table that stores information regarding the characteristics of the material and the parameters given to the material.
  • a material data visualization table 250 is a table that stores the information-converted two-dimensional coordinates of material data and information related thereto.
  • the parameter importance table 260 is a table that stores the parameter importance (details will be described later) of each parameter used in the material prediction calculation process.
  • the material/coordinate mapping table 270 is a table that stores the correspondence between the material and the two-dimensional coordinates when the user edits the two-dimensional display point of the material displayed on the screen (details will be described later).
  • the material property prediction device 101 can be realized by a general information processing device such as a personal computer or a workstation.
  • the material property prediction apparatus 101 is, for example, as shown in FIG. 2, a CPU (Central Processing Unit) 201, a main memory 202, a network I/F 206, a display I/F 203, an input/output I/F 204, an auxiliary storage I/F 205. However, they are connected by a bus.
  • a CPU Central Processing Unit
  • the CPU 201 controls each part of the material property prediction apparatus 101, loads the necessary program into the main memory 202, and executes it.
  • the main memory 202 is usually composed of a volatile memory such as a RAM, and stores a program executed by the CPU 201 and data to be referred to.
  • the network I/F 206 is an interface for communicating with other devices via the network connected to the material property prediction device 101.
  • the display I/F 203 is an interface for connecting a display device 210 such as an LCD (Liquid Crystal Display).
  • a display device 210 such as an LCD (Liquid Crystal Display).
  • the input/output I/F 204 is an interface for connecting an input/output device.
  • a keyboard 221 and a pointing device mouse 222 are connected.
  • the auxiliary storage I/F 205 is an interface for connecting an auxiliary storage device such as a HDD (Hard Disk Drive) 230 or SSD (Solid State Drive).
  • a HDD Hard Disk Drive
  • SSD Solid State Drive
  • the HDD 230 has a large storage capacity, and stores a program for executing this embodiment.
  • the material property prediction apparatus 101 has a prediction evaluation program 231, a dimension compression program 232 without teacher data, a 2D visualization program 233, a dimension compression program 234 with semi-teacher data, and a material characteristic prediction presentation program 235 installed.
  • the prediction evaluation program 231, the teacher data-less dimension compression program 232, the 2D visualization program 233, the semi-teacher data-containing dimension compression program 234, and the material property prediction presentation program 235 are the prediction evaluation unit 112, the teacher data-less dimension compression unit 113 and 2D, respectively. It is a program that executes the functions of the visualization unit 115, the semi-supervised data presence dimension compression unit 116, and the material property prediction presentation unit 117.
  • the HDD 230 also stores a material data table 240, a material data visualization table 250, a parameter importance table 260, and a material/coordinate mapping table 270.
  • the material data table 240 is a table that stores information regarding materials, and as shown in FIG. 3, is a table configured by records including items of a material ID 501, a material name 502, a material characteristic 503, and a material parameter 504. ..
  • the material ID 501 stores an identifier that uniquely identifies the material.
  • the material name 502 stores the name of the material.
  • the material property 503 stores a numerical value representing the property of the material which has been found out by an experiment or the like. As the material property 503, a numerical value known by an experiment or the like is stored, but it may be blank when no experiment is performed on the material.
  • the material parameter 504 stores parameters for calculating material properties such as material structure information and manufacturing conditions.
  • the material parameter 504 is stored, for example, in the form of (parameter 1, value 1), (parameter 2, value 2),... As a pair of a plurality of parameter IDs and their values.
  • the material parameter 504 may include all information indicating the structure of the material or the production process such as the chemical structural formula.
  • the material data visualization table 250 is a table that stores work data relating to materials when visualizing material data, and as shown in FIG. 4, a material ID 601, a material characteristic 602, a material parameter 603, an edit presence/absence flag 604, and a prediction. It is a table composed of records including items of an accuracy evaluation value 605, an X coordinate 606, a Y coordinate 607, and a material property prediction value 608.
  • the material ID 601, the material characteristic 602, and the material parameter 603 store the values obtained by duplicating the values of the material ID 501, the material characteristic 503, and the material parameter 504 of the material data table 240, respectively.
  • the edit presence/absence flag 604 stores a flag indicating whether or not the user has edited the material indicated by the material ID 501 on the material data 2D display screen (described later).
  • the initial value of the edit presence/absence flag 604 is the FALSE value.
  • the prediction accuracy evaluation value 605 stores a prediction accuracy evaluation value (details will be described later) obtained by the cross validation of the prediction evaluation unit 112. It should be noted that no prediction is made for a material property 602 that is blank, and the prediction accuracy evaluation value 605 is stored blank.
  • the X-coordinate 606 and the Y-coordinate 607 can be values when the values of the material parameter 504 are two-dimensionally compressed by dimension compression (details will be described later).
  • the material property prediction value 608 stores the material property 602 if it exists, and stores the material property prediction value by the prediction evaluation unit 112 otherwise.
  • the material/coordinate mapping table 270 is a table that stores the result when the user edits on the material data 2D display screen (described later), and as shown in FIG. 5, the material ID 901, the X coordinate 901, and the Y coordinate. It is a table composed of records including items of 902.
  • the edited X coordinate 901 and Y coordinate 902 corresponding to the edited data are described in the material ID 601. It is recorded in the form corresponding to the ID.
  • the parameter importance table 260 is a table that stores the parameter importance for each parameter, and is a table that is configured by records including items of a parameter ID 1101 and a parameter importance 1102.
  • the parameter importance 1102 stores the value of the parameter importance with respect to the parameter ID stored in the parameter ID 1101 (the parameter ID described in the material parameter 504 of FIG. 3).
  • the parameter ID is a unique identifier for all materials.
  • the parameter importance will be described later in detail, when the user newly takes the dimension of the material parameter into consideration by taking into consideration the data edited from the material data 2D display screen, and obtains the X coordinate and the Y coordinate, It is evaluated as a kind of weighting for each material parameter of the kernel function when constructing the prediction function by regression analysis.
  • the material property prediction apparatus 101 executes the material data visualization process and displays the material data 2D display screen 312 to the user ((I) initial map presentation).
  • the material data 2D display screen which will be described in detail later, is a screen for displaying the result of compressing the material parameter information shown in the material data visualization table 250 in a two-dimensional space and the information related thereto.
  • the person performs data operation on the display screen from the material data 2D display screen 312, and accordingly, the material property prediction apparatus 101 performs parameter importance editing processing ((II) map editing/update).
  • the parameter importance will be modified in a manner in line with the user's knowledge. This processing updates the parameter importance.
  • the user repeatedly executes this data operation until satisfied, and the record is accumulated as the material/coordinate mapping table 270, and finally reflected in the material data visualization table.
  • the material property prediction apparatus 101 executes the material property prediction presentation process 331 and presents the material property prediction display screen to the user (((III) Browsing prediction result)).
  • the user can grasp the material properties that reflect the data operation in the above (II) map editing/updating phase.
  • the prediction evaluation unit 112 calculates a prediction accuracy evaluation value (details will be described later) by cross-validation (details will be described later) based on the material data table 240 (S100).
  • the predictive evaluation unit 112 acquires only the material property 602 described in the material data visualization table 250 and calculates a predictive accuracy evaluation value of the material property based on the cross validation. For those in which the material property 602 is not described, the material property prediction function is constructed by using the data in which the material property 602 is described as learning data (details will be described later), and the predicted value of the material property is calculated. .. The result is stored in the prediction accuracy evaluation value 605 and the material property prediction value 608 of the material data visualization table 250.
  • the prediction evaluation unit 112 configures a function (hereinafter, referred to as “material property prediction function”) that returns a predicted value of the material property when the value of the material parameter described in the material parameter 504 of the material data table 240 is given as an argument.
  • material property prediction function a function that predicts material properties based on the degree of similarity between two data, and can be realized by a known kernel regression analysis method, support vector regression, or the like.
  • the prediction evaluation unit 112 is characterized in that each variable of the material parameter can be weighted and used based on the parameter importance in the calculation of the similarity between data (details will be described later).
  • the parameter importance corresponds to the initial value, it may be determined by an arbitrary method, for example, it may be fixed to a predetermined value or may be determined randomly.
  • cross-validation in statistics, the sample data is divided, a part of the sample data is used as learning data, and the rest is used as evaluation data.
  • learning data is analyzed, This is a method of testing the analysis with the evaluation data and applying it to verify/confirm the validity of the analysis itself.
  • a material property prediction function is constructed from the learning data of the material data, and the predicted value of the material property is calculated by inputting the material parameter of the evaluation data. Then, the difference between the material property (hereinafter, referred to as “true value”) originally present in the evaluation data and the predicted value is obtained as an error. The smaller the absolute value of this error, the more accurate the prediction accuracy evaluation value of the reference is obtained.
  • any method may be used as long as it can be recognized by the user as accuracy. For example, when a value obtained by dividing the error by the true value is used, the effect of increasing the error as the number of true values increases can be relaxed and evaluated. Alternatively, if the reciprocal of the absolute value of the error is used, it is possible to use an index that is intuitive to the effect that the larger the error, the higher the accuracy. Alternatively, by taking the logarithm of the ratio of the true value and the predicted value, it is difficult to further improve when the accuracy is already high (for example, to make the original 80% correct one 89% correct) It is not ten times easier to change the original 99% correct state to the 99.9% correct state).
  • the teacher data-less dimension compression unit 113 generates the X and Y coordinates of the material parameter by the dimension reduction method for multivariate, and stores them in the X coordinate 606 and the Y coordinate 607 of the material data visualization table 250 ( S101).
  • the dimension reduction method for multivariate means that when the multivariate data is regarded as the point data in the multidimensional space, the relation between the point data is not impaired as much as possible (features required for statistical analysis. Is retained as much as possible), and is mapped as point data in low-dimensional space.
  • the map method and t-SNE method are known.
  • the 2D visualization unit 115 generates display information of the material data 2D display screen 312 and presents it to the user by the display device 219 (S102).
  • the material data 2D display screen 312 includes display elements of a material data display frame 701, a material detailed information display frame 707, a color code designation radio button 708, an update button 709, and a completion button 710.
  • the material data display frame 701 is an area for plotting point data (hereinafter referred to as “material data points”) in which material parameters are dimensionally compressed and mapped to X and Y coordinates.
  • material data points are plotted so that the characteristics of the material data can be easily grasped.
  • blank material properties that is, unmeasured materials are displayed as white circles 702
  • those with a high prediction accuracy evaluation value 605 are black diamonds 703
  • those with a high prediction accuracy evaluation value 605 are gray diamonds 705.
  • the lower ones are represented in different formats, such as the white diamond 704.
  • the material detailed information display frame 707 is an area for displaying detailed information of material data.
  • the user operates the cursor 706 with the mouse 222 and clicks a material data point in the material data display frame 701, detailed information regarding the material is displayed in the material detailed information display frame 707 in the lower left.
  • the displayed information is created based on the information of the material parameter 603 of the material data visualization table 250, and the characteristics of the material are displayed in an easy-to-understand manner.
  • the color code designation radio button 708 is a button set when the user switches the color code designation. Here, an example is shown in which the prediction accuracy of the material and the material characteristics are switched.
  • the update button 709 is a button designated when the user's change is reflected in the data
  • the completion 710 button is a button for the user to finish the work and close the material data 2D display screen 312. ..
  • the material property prediction device first presents the material data 2D display screen 312 shown in FIG. 12 to accept the user's data movement input (S200).
  • the user can move the position of each point by operating the cursor 706 with a pointing device such as the mouse 220 to drag each point in the material data display frame 701.
  • the material property prediction method of the present invention focuses on the relationship between the prediction accuracy and the validity of the arrangement in the material data display frame 701. That is, since improving the prediction accuracy is similar to increasing the validity of the arrangement in the material data display frame 701, the arrangement in the material data display frame 701 is performed by linking the two according to the parameter importance. It is possible to adjust the parameter importance so that the prediction accuracy can be improved by a simple method of correcting.
  • the user can make a correction centering on data with a low prediction accuracy evaluation value and moving to another point that seems to be more similar in terms of material properties.
  • the material property prediction apparatus 101 receives the movement result (S202).
  • the edited result is recorded in the material/coordinate mapping table 270 as a work table, and finally stored in the X coordinate 606 and the Y coordinate 607 of the material data visualization table 250.
  • the edit presence/absence flag 604 is changed from FALSE (false) to TRUE (true).
  • the material property prediction apparatus 101 executes a dimension compression execution process with semi-supervised data for re-execution of dimension compression based on this data editing information (S203). Details of the dimension compression execution process with semi-supervised data will be described later with reference to FIG.
  • the prediction evaluation unit 112 executes a process of evaluating the prediction accuracy using the parameter importance table 260 (S204).
  • KGPR Kernel Gaussian Process Regression
  • KGPR constructs a prediction function using a kernel function that is a function indicating the similarity between two data, but in the present embodiment, a function that takes the weighted Euclidean distance of two material parameters as an argument is used.
  • the weighted Euclidean distance means D( ⁇ m i ⁇ , ⁇ n i ⁇ ) defined by the following (Formula 1) with respect to two material parameters ⁇ m i ⁇ , ⁇ n i ⁇ .
  • D( ⁇ m i ⁇ , ⁇ n i ⁇ ) ⁇ i ⁇ i (m i ⁇ n i ) 2 (Equation 1)
  • ⁇ i is a parameter indicating the parameter importance of the material parameter
  • ⁇ i means taking the sum over all the material parameters.
  • Equation 2 In the well-known KGPR regression analysis, values of kernel functions are obtained for all data used for learning, and the values are used to construct a prediction function.
  • ⁇ i of the kernel function can be determined by a known optimization method (for example, gradient descent method) so that the likelihood is maximized.
  • the prediction accuracy is evaluated by the KGPR and the prediction accuracy is evaluated. That is, for two material parameters ⁇ m i ⁇ , ⁇ n i ⁇ , D( ⁇ m i ⁇ , ⁇ n i ⁇ ) defined in the above (formula 1) is used and represented by (formula 2).
  • the prediction function of the material property is obtained by using the Gaussian function as a kernel function.
  • the value of the parameter importance 1102 of the parameter importance table 260 is used as ⁇ i .
  • the edited result of the material data point on the material data 2D display screen of the user is reflected in the parameter importance 1102 of the parameter importance table 260. It Therefore, this makes it possible to make a prediction that reflects the knowledge of the user.
  • the parameter importance 1102 of the parameter importance table 260 may not be used as it is, but may not be significantly different from the value of the parameter importance 1102 of the parameter importance table 260. For example, a method is conceivable in which some of the upper ranks having a large parameter importance 1102 in the parameter importance table 260 are left as they are, and the rest are optimized by the gradient descent method in the same manner as when constructing the dimensional compression function.
  • a method of performing constrained optimization so that the parameter importance 1102 of the parameter importance table 260 does not significantly differ from the parameter importance 1102, and a degree of deviation from the parameter importance 1102 of the parameter importance table 260 are penalized.
  • any method can be used as long as it can reflect the parameter importance 1102 of the parameter importance table 260.
  • S203 of the parameter importance editing process first, a record in which the edit presence/absence flag 604 of the material data visualization table 250 is TRUE is acquired (S300).
  • This regression analysis is a process of constructing a dimensional compression function g of the following (Formula 3) that gives the edited X coordinate 901 and Y coordinate 902 when the material parameter is given as an argument.
  • (X,Y) g( ⁇ m i ⁇ , ⁇ i ⁇ ) (Equation 3)
  • (X, Y) is the value of the edited X coordinate 901 and Y coordinate 902, respectively
  • ⁇ m i ⁇ is the value of the material parameter 603 of the material data visualization table 250
  • ⁇ i ⁇ is the material.
  • It is the value of the parameter importance 1102 of the parameter importance table 260 corresponding to the material parameter indicated by the parameter 603.
  • This method uses the same method as when the material property prediction function of the prediction evaluation unit 112 described above is constructed, except that only the objective variables are different.
  • n i ⁇ is used as the kernel function of the Gaussian function represented by (Equation 2) to obtain a prediction function of material properties (prediction by KGPR).
  • the edit presence/absence flag 604 obtains FALSE from the material data for visualization in the material data visualization table 250 (S302), and the edit presence/absence flag 604 is TRUE.
  • the edit presence/absence flag 604 is TRUE, the edited X coordinate 901 and Y coordinate 902 may be used as they are for simplifying the calculation.
  • the parameter importance obtained in the process of obtaining this dimensional compression function is recorded in the parameter importance 1102 of the parameter importance table 260 (S304).
  • material data (material ID 601, material property 602, material parameter 603, material property prediction value 608) is acquired from the material data visualization table 250 (S400), and the parameter ID 1101 is acquired from the parameter importance table 260.
  • the parameter importance 1102 is acquired (S401), and the result of material property prediction based on the parameter importance is displayed on the material property prediction presentation screen 332 (S402).
  • the material property prediction presentation screen 332 includes display elements of a material property prediction value display frame 1301, a parameter importance display frame 1310, a material information detail display frame 1320, and a completion button 710.
  • the material property predicted value display frame 1301 In the material property predicted value display frame 1301, the material ID 601, the material property 602, the material property predicted value 608 of the material data visualization table 250, and the material name 502 of the material data table 240 are displayed.
  • the material property display field 1302 displayed in the material property prediction value display frame 1301 is displayed using the value of the material property 602 or, if there is no such value, the value of the material property prediction value 608.
  • the predicted material property value 608 when displayed, it can be displayed with, for example, an underline so that it can be distinguished from it. Further, when the user selects one of the displayed materials, the details can be displayed in the material information details display frame 1320.
  • the parameter importance corresponding to the material of the material ID is displayed with reference to the material parameter 603 of the material data visualization table 250 and the parameter importance 1102 of the parameter importance table 260.
  • the material property predicting apparatus of the present embodiment allows the user's knowledge to be easily incorporated into the prediction when evaluating the material property for screening the experiment plan, and can be evaluated. This makes it easy to plan an experiment and, in turn, makes it possible to develop a good material with a small number of experiments.
  • the user edits the material data points displayed on the material data 2D display screen 312, and thus relates to the material property prediction apparatus that enables material prediction that makes use of the knowledge.
  • the material data is visualized in the two-dimensional space, but since the sense of distance cannot be grasped, it may be difficult to edit.
  • the material property predicting apparatus is a material property predicting apparatus having the same concept as that of the first embodiment, and a background drawing is displayed on the screen of the material data 2D display screen 312 to grasp the relationship between the data. This is to make it easier.
  • the material property prediction apparatus 101 of the present embodiment has a material visualization background table 1401 in addition to the material property prediction apparatus 101 shown in FIG. 1 of the first embodiment. Then, the 2D visualization unit 115 forms a screen using the material visualization background table 1401.
  • the material visualization background table 1401 is a table that stores the image data of the background image of the material data display frame 701 of the material data 2D display screen 312, and as shown in FIG. 15, the lower left X coordinate 1601 and the lower left Y coordinate 1602. , Upper right X coordinate 1603, upper right Y coordinate 1604, and background image data 1605.
  • the lower left X coordinate 1601, the lower left Y coordinate 1602, the upper right X coordinate 1603, and the upper right Y coordinate 1604 represent coordinate points of the corresponding background image data 1605, respectively.
  • the material data visualization processing of the second embodiment will be described with reference to FIG.
  • the difference from the first embodiment is that after the X and Y coordinates of the material data points are determined by the dimension compression of the material parameters by the dimensionless compression unit 113 without teacher data, the coordinate origin is determined by referring to the data of the material visualization background table 1401. The point is that there is a process (S110) for matching the scales.
  • the 2D visualization unit 115 obtains the center of the coordinates of the background image in which the image data is stored in the material visualization background table 1401, and also obtains the center of gravity of the X coordinate 606 and the Y coordinate 607 of the material data visualization table 250, the difference between the two. To calculate. By subtracting this difference from the X coordinate 606 and the Y coordinate 607 of the material data visualization table 250, the coordinates of the background image and the material data visualization table 250 can be matched. As a method of this correction, any method may be used as long as it is a method that appropriately overlaps the background image.
  • the material data 2D display screen according to the second embodiment will be described with reference to FIG.
  • a map of Japan is displayed as a background image in an overlapping manner. In this way, by displaying the background image that is familiar to the user and is easy to grasp intuitively, the distance between the material data can be easily grasped intuitively.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

材料特性予測装置は、材料データ可視化テーブルに格納された二次元座標を材料データ点として、二次元表示し、材料データ点の位置変更を受け付ける2D可視化部と、受け付けた材料データ点の位置変更の情報に基づいて、回帰分析を行って、パラメータ重要度を更新し、位置変更された材料データ点と位置変更されていない材料データ点の材料パラメータを次元圧縮して、二次元座標として更新する半教師データあり次元圧縮部と、パラメータ重要度を各々の材料パラメータに加重した材料パラメータの類似度に基づいて、回帰分析を行って、材料特性を予測する予測評価部とを有する。パラメータ重要度は、例えば、KGBRのカーネル関数に用いられる加重ユークリッド距離の重み係数とする。 これにより、実験計画のスクリーニングのための予測値評価において、人の知見を活かした材料特性予測を行えるようになる。

Description

材料特性予測装置および材料特性予測方法
 本発明は、材料特性予測装置および材料特性予測方法に係り、特に、材料開発時の実験データに基づいて材料の特性を予測して、適切な材料を選別する場合に人の知見を活かした評価を行うのに好適な材料特性予測装置および材料特性予測方法に関する。
 データ分析を行うための統計処理技術の発展に伴い、材料科学においてもデータ分析を行う需要が高まっている。特に、材料科学分野では、新素材の開発を効率的に行うために、次の実験の候補の選定を既知のデータを元にして行うスクリーニングとよばれる手法が知られている。
 スクリーニングの手法としては、各種実験のデータを情報システムに入力して機械学習にかけることによって、実験結果の予測のモデルを構築し、その予測にもとづき、材料設計に関する様々なパラメータを引数にとり材料の特性を返す関数を回帰分析によって求める方法がよく知られている。なお、以下の説明においては、そのような関数によって表現される材料特性を表すモデルを材料特性予測モデルと呼ぶこととする。
 化合物に関するデータをコンピュータにより分析するシステムは、例えば、特許文献1に記載がある。特許文献1には、化学データを2次元空間上のマップウィンドウ(図6)にマッピングして可視化するとともに、可視化されたデータに対して利用者が編集を行うことにより、2次元への圧縮結果が見やすくなるように調整してスクリーニングする方法が開示されている。
 また、薬剤を発見するためのスクリーニングを高速に行える技術は、例えば、特許文献2に記載がある。特許文献2では、比較的小さいスクリーニングデータから構造的特徴と生物活性を結びつける法則を導くために、パラメータを部分的に用いた空間である部分空間上で、類似するデータによい材料特性を持つものが多い候補を優先的に実験するスクリーニングの方法が開示されている。
特表2001-503546号公報 特表2005-506511号公報
 材料開発においては、材料特性予測モデルの精度を高めることより、より的確に新材料の候補に対する有望性を見極めることができ、不要な実験を省略することで効率的な材料開発ができるようになると期待される。
 しかしながら、実際には、材料特性予測の精度を高めることは容易ではない。その大きな理由の一つが、高い精度で予測を行うのに必要なデータ数が多いという点である。その原因の一つが、材料のパラメータの多さにある。どのパラメータが材料特性に寄与するかがわからないと、すべてのパラメータを予測に用いることになる。そのような場合には、機械学習において一般に過学習とよばれる現象を引き起こし、精度低下を招く。これを補うために実験を増やすことも考えられるが、予測に要するデータ数は、材料のパラメータ数に対して指数関数的に増大するため、かなり多くの実験をせねばならない。するとその実験の労力を新材料の探索に振り向けたほうが早かったというような事態もありうる。
 そこで、予測のみに頼るのではなく、多くのパラメータをもつデータを適切に2次元空間に投影圧縮して可視化することによってスクリーニングをしやすくする技術がある。
 上記特許文献1に記載された分析システムは、化学データを2次元空間上のマッピングウィンドウに可視化するとともに、可視化されたデータに対して利用者が編集を行うことにより、2次元への圧縮結果が見やすくなるように調整してスクリーニングするものである。この方法により、目視でのスクリーニングはしやすくなる。しかしながら、これに加えて材料特性予測の結果を反映するには利用者がすべてを勘案することが必要であり、労力を要する。
 また、上記特許文献2に記載された分析方法は、パラメータを部分的に用いた空間である部分空間上で、類似するデータによい材料特性を持つものが多い候補を優先的に実験する方法であった。この方法によれば、パラメータが多くてもスクリーニングができるが、データがあまりなくパラメータが多すぎる状況では、実際には相関がないのに相関があるかのように判断してしまうことがある。これは上述の過学習と同様の現象であり、パラメータの取捨選択なしに、精度向上するのは容易ではない点は依然として解決していない。
 本発明の目的は、材料開発時の実験データに基づいて材料の特性を予測して、適切な材料を選別する場合に、実験計画のスクリーニングのための予測値評価において、人の知見を活かした評価を行うことのできる材料特性予測装置および材料特性予測方法を提供することにある。
 本発明の材料特性予測装置は、好ましくは、材料特性を予測して表示する材料特性予測装置であって、材料特性とその材料と関連付けられた材料パラメータとを格納する材料データテーブルと、材料パラメータの次元圧縮した結果を二次元座標として格納する材料データ可視化テーブルと、材料パラメータの各々に対応付けられたパラメータ重要度を格納するパラメータ重要度テーブルとを保持し、材料パラメータから次元圧縮により二次元座標として、材料データテーブルに格納する教師データなし次元圧縮部と、材料データ可視化テーブルに格納された二次元座標を材料データ点として、二次元表示し、材料データ点の位置変更を受け付ける2D可視化部と、受け付けた材料データ点の位置変更の情報に基づいて、回帰分析を行って、パラメータ重要度テーブルに格納されたパラメータ重要度を更新し、位置変更された材料データ点と位置変更されていない材料データ点の材料パラメータを次元圧縮して、材料データ可視化テーブルに格納される二次元座標として更新する半教師データあり次元圧縮部と、パラメータ重要度を各々の材料パラメータに加重した材料パラメータの類似度に基づいて、回帰分析を行って、材料特性を予測する予測評価部とを有するようにしたものである。
 本発明によれば、材料開発時の実験データに基づいて材料の特性を予測して、適切な材料を選別する場合に、実験計画のスクリーニングのための予測値評価において、人の知見を活かした評価を行うことのできる材料特性予測装置および材料特性予測方法を提供することができる。
実施形態1の材料特性予測装置の機能構成図である。 材料特性予測装置のハードウェア・ソフトウェア構成図である。 材料データテーブルの一例を示す図である。 材料データ可視化テーブルの一例を示す図である。 材料・座標マッピングテーブルの一例を示す図である。 パラメータ重要度テーブルの一例を示す図である。 材料特性予測装置による処理の概要を示すフローチャートである。 実施形態1の材料データ可視化処理の一例を示すフローチャートである。 パラメータ重要度編集処理の一例を示すフローチャートである。 パラメータ重要度付き次元圧縮処理の一例を示すフローチャートである。 材料特性予測提示処理の一例を示すフローチャートである。 実施形態1の材料データ2D表示画面の一例を示すフローチャートである。 材料特性予測提示画面の一例を示すフローチャートである。 実施形態2の材料特性予測装置の機能構成図である。 材料可視化背景テーブルの一例を示す図である。 実施形態2の材料データ可視化処理の一例を示すフローチャートである。 実施形態2の材料データ2D表示画面の一例を示す図である。
 以下、本発明に係る各実施形態を、図1ないし図17を用いて説明する。
実施形態1
 以下、本発明に係る実施形態1を、図1ないし図13を用いて説明する。
 先ず、図1および図2を用いて実施形態1の材料特性予測装置の構成について説明する。
  材料特性予測装置101は、利用者の操作に従い、材料に関する情報から材料特性を予測するための必要な情報を提示する装置である。
 材料特性予測装置101は、図1に示されるように、機能構成として、予測評価部112、教師データなし次元圧縮部113、2D(Dimension)可視化部115、半教師データあり次元圧縮部116、材料特性予測提示部117からなる。
 予測評価部112は、材料のパラメータに加重して予測精度を算出する機能部である。教師データなし次元圧縮部113は、多次元の材料のパラメータを与え、それを2次元の座標へと変換をする機能部である。ここで、「教師データなし」としたのは、後に出てくる「半教師データあり」と対比したものであり、与えられた原データが格納された材料データテーブルの材料パラメータの値に対して、そのまま次元圧縮することを意味する。2D可視化部115は、材料のパラメータの情報が変換された2次元の座標を可視化する機能部である。半教師データあり次元圧縮部116は、材料のパラメータとそれを次元圧縮した2次元の座標データのユーザ編集結果に基づいて、材料のパラメータを再び次元圧縮して、次元の座標を算出する機能部である。「半教師データあり」というのは、利用者のユーザインタフェースによって、材料データに関する情報を編集して、それにより生成されるデータを用いて新たに次元圧縮をすることを意味する。材料特性予測提示部117は、利用者に最終的に材料特性の予測を提示する機能部である。
 また、材料特性予測装置101は、データとして、材料データテーブル240、材料データ可視化テーブル250、パラメータ重要度テーブル260、材料・座標マッピングテーブル270を保持する。
 材料データテーブル240は、材料の特性と材料に与えるパラメータに関する情報を格納するテーブルである。材料データ可視化テーブル250、材料データの情報変換した2次元の座標と、それに関連する情報を格納するテーブルである。パラメータ重要度テーブル260は、材料予測の算出過程で用いる各々のパラメータのパラメータ重要度(詳細は、後述)を格納するテーブルである。材料・座標マッピングテーブル270は、利用者が画面に表示された材料の2次元表示の点を編集したとき(詳細は、後述)、材料と2次元座標の対応付けを格納するテーブルである。
 次に、図2を用いて材料特性予測装置のハードウェア・ソフトウェア構成について説明する。
 材料特性予測装置101は、パーソナルコンピュータ、ワークステーションのような一般的な情報処理装置により実現することができる。材料特性予測装置101は、例えば、図2に示されるように、CPU(Central Processing Unit)201、メインメモリ202、ネットワークI/F206、表示I/F203、入出力I/F204、補助記憶I/F205が、バスにより結合された形態になっている。
 CPU201は、材料特性予測装置101の各部を制御し、メインメモリ202に必要なプログラムをロードして実行する。
 メインメモリ202は、通常、RAMなどの揮発メモリで構成され、CPU201が実行するプログラム、参照するデータが記憶される。
 ネットワークI/F206は、材料特性予測装置101に接続されたネットワークを介して他の装置と通信するためのインタフェースである。
 表示I/F203は、LCD(Liquid Crystal Display)などの表示装置210を接続するためのインタフェースである。
 入出力I/F204は、入出力装置を接続するためのインタフェースである。図2の例では、キーボード221とポインティングデバイスのマウス222が接続されている。
 補助記憶I/F205は、HDD(Hard Disk Drive)230やSSD(Solid State Drive)などの補助記憶装置を接続するためのインタフェースである。
 HDD230は、大容量の記憶容量を有しており、本実施形態を実行するためのプログラムが格納されている。材料特性予測装置101には、予測評価プログラム231、教師データなし次元圧縮プログラム232、2D可視化プログラム233、半教師データあり次元圧縮プログラム234、材料特性予測提示プログラム235がインストールされている。
 予測評価プログラム231、教師データなし次元圧縮プログラム232、2D可視化プログラム233、半教師データあり次元圧縮プログラム234、材料特性予測提示プログラム235は、それぞれ予測評価部112、教師データなし次元圧縮部113、2D可視化部115、半教師データあり次元圧縮部116、材料特性予測提示部117の機能を実行するプログラムである。
 また、HDD230には、材料データテーブル240、材料データ可視化テーブル250、パラメータ重要度テーブル260、材料・座標マッピングテーブル270が格納されている。
 次に、図3ないし図6を用いて材料特性予測装置の取り扱うデータ構造について説明する。
 材料データテーブル240は、材料に関する情報を格納するテーブルであり、図3に示されるように、材料ID501、材料名称502、材料特性503、材料パラメータ504の項目からなるレコードにより構成されるテーブルである。
 材料ID501には、材料を一意に識別する識別子が格納される。材料名称502には、材料の名称が格納される。材料特性503は、実験などによって判明している材料の特性を表す数値が格納される。材料特性503については、実験などによって判明している数値が格納されるが、その材料について実験が行われていないときには、空白であってもよい。材料パラメータ504には、材料の構造情報、製造条件などの材料の特性を算出するためのパラメータが格納される。材料パラメータ504は、例えば、複数のパラメータIDと、その値のペアとして、(パラメータ1,値1),(パラメータ2,値2),…のような形式で格納される。材料パラメータ504には、化学構造式など材料の構造や生成過程を示すあらゆる情報を含んでよい。
 材料データ可視化テーブル250は、材料データを可視化するにあたっての材料に関する作業データを格納するテーブルであり、図4に示されるように、材料ID601、材料特性602、材料パラメータ603、編集有無フラグ604、予測精度評価値605、X座標606、Y座標607、材料特性予測値608の項目からなるレコードにより構成されるテーブルである。
 材料ID601、材料特性602、材料パラメータ603には、それぞれ、材料データテーブル240の材料ID501、材料特性503、材料パラメータ504の値を複製した値が格納される。編集有無フラグ604には、その材料ID501で示す材料に対して、ユーザが材料データ2D表示画面(後述)により編集を行ったか否かを示すフラグが格納される。この編集有無フラグ604の初期値は、FALSE値である。予測精度評価値605には、予測評価部112の交差検証による予測精度評価値(詳細は、後述)が格納される。なお、材料特性602が空白のものについての予測は行われず、予測精度評価値605は空白としたまま格納される。X座標606、Y座標607には、材料パラメータ504の値を次元圧縮(詳細は後述)して、二次元にしたときの値が可能される。材料特性予測値608には、材料特性602がある場合はそれが格納され、そうでない場合は予測評価部112による材料特性の予測値を格納する。
 材料・座標マッピングテーブル270は、ユーザが材料データ2D表示画面(後述)により編集を行ったときの結果を格納するテーブルであり、図5に示されるように、材料ID901、X座標901、Y座標902の項目からなるレコードにより構成されるテーブルである。材料・座標マッピングテーブル270では、ユーザが材料データ2D表示画面によりデータ編集を行ったときに、編集が行われたデータに対応する編集後のX座標901とY座標902が、材料ID601に記載されたIDと対応づく形で記録される。
 パラメータ重要度テーブル260は、各パラメータに対するパラメータ重要度を格納するテーブルであり、パラメータID1101、パラメータ重要度1102の項目からなるレコードにより構成されるテーブルである。
 パラメータ重要度1102には、パラメータID1101に格納されたパラメータID(図3の材料パラメータ504に記述されたパラメータID)に対するパラメータ重要度の値が格納される。なお、パラメータIDは、全ての材料に対して一意的な識別子をつけるものとする。パラメータ重要度は、詳細は後述するが、ユーザが材料データ2D表示画面より編集されたデータも考慮にいれて、新たに材料パラメータの次元圧縮をして、X座標、Y座標を求めるときに、回帰分析により予測関数を構築するときのカーネル関数の各材料パラメータに対するある種の重み付けとして評価される。
 次に、図7ないし図13を用いて材料特性予測装置の処理について説明する。
 先ず、図7を用いてユーザが材料特性予測装置を利用して材料予測をするときの処理の概要について説明する。
  材料特性予測装置101は、材料データ可視化処理を実行し、利用者に材料データ2D表示画面312を表示する((I)初期マップ提示)。材料データ2D表示画面は、後に詳細に説明するが、材料データ可視化テーブル250に示した材料パラメータの情報を2次元空間上に圧縮した結果とそれと関連した情報を表示する画面である
 次に、利用者に材料データ2D表示画面312から表示画面上でデータ操作を行い、それに伴って、材料特性予測装置101は、パラメータ重要度編集処理を行う((II)マップ編集・更新)。これによってパラメータ重要度が利用者の知見に沿った形に修正されていくことになる。この処理により、パラメータ重要度が更新される。そして、利用者は、満足するまでこのデータ操作を繰り返し実行し、その記録は材料・座標マッピングテーブル270として蓄積され、最終的には、材料データ可視化テーブルに反映される。
 最後に、材料特性予測装置101は、マップ編集・更新処理が終了すると、材料特性予測提示処理331を実行し、材料特性予測表示画面を利用者に提示する(((III)予測結果閲覧)。これにより、利用者は、上記の(II)マップ編集・更新のフェーズのデータ操作が反映された材料特性を把握することができる。
 次に、図8を用いて材料データ可視化処理について説明する。
  材料データ可視化処理では、先ず、予測評価部112が、材料データテーブル240に基づいて交差検証(詳細は、後述)によって予測精度評価値(詳細は、後述)を算出する(S100)。
 この処理を詳細に説明すれば、以下のようになる。予測評価部112は、材料データ可視化テーブル250の材料特性602が記述されているもののみを取得して、交差検証に基づいて、材料特性の予測精度評価値を算出する。材料特性602が記述されていないものについては、材料特性602が記述されているデータを学習データとして用いて材料特性予測関数を構築して(詳細は、後述)、材料特性の予測値を算出する。その結果は、材料データ可視化テーブル250の予測精度評価値605、材料特性予測値608に格納される。
 予測評価部112は、材料データテーブル240の材料パラメータ504に記述された材料パラメータの値を引数に与えると材料特性の予測値を返す関数(以下、「材料特性予測関数」とよぶ)を構成する機能を有する。この機能は、二つのデータの間の類似度に基づいて、材料特性を予測するものであり、公知のカーネル回帰分析法やサポートベクタ回帰などにより実現できる。予測評価部112は、データ間の類似度の計算において、材料パラメータの各変数にパラメータ重要度に基づき加重して用いることができる点に特徴があるが(詳細は後述)、この材料データ可視化処理においては、パラメータ重要度は初期値に相当するため、任意の方法で決定してよく、例えば、所定の値に固定してもよいし、ランダムに決定してもよい。
 ここで、交差検証(Cross-validation)とは、統計学において、標本データを分割し、標本データの一部を学習用データ、残りを評価用データとして、その学習用データでまず解析して、評価用データでその解析のテストを行い、解析自身の妥当性の検証・確認に当てる手法である。本実施形態の交差検証においては、材料データの学習用データにより、材料特性予測関数を構築し、評価用データの材料パラメータを入力することによって、材料特性の予測値を算出する。その上で、評価用データに元々ある材料特性(以下、「真値」と呼ぶ)と当該予測値の差を誤差として求める。この誤差の絶対値が小さいほど、精度がよい基準の予測精度評価値が求まる。なお、この予測値から予測精度評価値を算出する方法としては、利用者に精度として認識可能な方法であればどのような方法を用いてもよい。例えば、誤差を真値で除算する値を用いると、真値の数が多いほど誤差が大きくなる効果を緩和して評価することができる。あるいは、誤差の絶対値の逆数を用いると、大きいほど精度がよいという直感にあった指標とすることができる。あるいは、真値と予測値の比の対数を求めることで、精度がすでに高いときは更なる向上は難しい点に配慮した(例えば、元々80%正しいものを89%正しい状態にすることに対して、元々99%正しいものを99.9%正しい状態にすることは十倍簡単とはいえない)予測精度評価値となる。
 次に、教師データなし次元圧縮部113は、材料パラメータを、多変量に対する次元削減手法により、X座標、Y座標を生成し、材料データ可視化テーブル250のX座標606、Y座標607に格納する(S101)。ここで、多変量に対する次元削減手法とは、多変量のデータを多次元空間上の点データとみなしたときに、その点データ同士の関係をなるべく損なわないように(統計分析に必要となる特徴をできるだけ保持するように)、低次元空間の点データとしてマッピングする方法であり、主成分分析法、部分空間法、独立成分分析法、非負値行列分解法、特異値行列分解法、自己組織化マップ法、t-SNE法などが知られている。
 最後に、以上の結果に基づいて、2D可視化部115は、材料データ2D表示画面312の表示情報を生成して、表示装置219により利用者に提示する(S102)。
 ここで、図12を用いて材料データ2D表示画面312の詳細について説明する。
  材料データ2D表示画面312は、図12に示されるように、材料データ表示フレーム701、材料詳細情報表示フレーム707、色分け指定ラジオボタン708、更新ボタン709、完了ボタン710の表示要素からなる。
 材料データ表示フレーム701は、材料パラメータを次元圧縮して、X座標、Y座標にマッピングした点データ(以下、「材料データ点」という)をプロットする領域である。材料データ表示フレーム701には、材料データがその特徴を把握しやすいように、材料データ点がプロットされる。この図12に示した例では、材料特性が空白すなわち未計測のものは、白い円702で表示され、また、予測精度評価値605が高いものは黒いひし形703、ついで高いものがグレーのひし形705、低いものが白いひし形704のように異なる形式で表現される。
 材料詳細情報表示フレーム707は、材料データの詳細な情報を表示する領域である。利用者がマウス222を用いてカーソル706を操作し、材料データ表示フレーム701内の材料データ点をクリックすると、その材料に関する詳細な情報が左下の材料詳細情報表示フレーム707に表示される。表示される情報は、材料データ可視化テーブル250の材料パラメータ603の情報に基づいて、作成されるものであり、その材料の特徴がわかりやすく表示される。
 色分け指定ラジオボタン708は、色分けの指定を利用者が切り換えられるときに設定するボタンである。ここでは、その材料の予測精度、材料特性で切り換える例が示されている。
 更新ボタン709は、利用者の変更をデータに反映されるときに指定するボタンであり、完了710ボタンは、利用者が作業を終了し、この材料データ2D表示画面312を閉じるためのボタンである。
 次に、図9を用いてパラメータ重要度編集処理について説明する。
  パラメータ重要度編集処理では、材料特性予測装置は、先ず、図12に示した材料データ2D表示画面312を提示して利用者のデータ移動の入力を受け付ける(S200)。利用者は、マウス220のようなポインティングデバイスにより、カーソル706を操作して材料データ表示フレーム701内の各点をドラッグすることにより各点の位置を移動させることができる。
 上記の次元圧縮手法の特徴から明らかなように、基本的には材料データ表示フレーム701内の各点は、材料パラメータが比較的似た材料が近くに配置されることが期待される。また、もし材料パラメータが似ていると材料特性も近いという傾向があるなら、材料パラメータの類似性を用いて予測する予測評価部112による予測精度も高いことが期待される。逆に、図12に示した予測精度評価値の低い点(白いひし形704)があるとき、材料特性の近さは、材料パラメータの類似性が整合しないことになる。このことは、材料データ表示フレーム701内での、その点の配置が適切でないことにつながる。
 本発明の材料特性の予測の手法は、この予測精度と材料データ表示フレーム701内での配置の妥当性の関連性に着目したものである。すなわち、予測精度を高めることと、材料データ表示フレーム701内での配置の妥当性を高めることは類似しているので、パラメータ重要度により両者を結びつけることによって、材料データ表示フレーム701内での配置の修正という簡便な方法で予測精度が高くなるようなパラメータ重要度の調整ができるのである。
 本実施形態では、利用者は、予測精度評価値の低いデータを中心に、材料特性の観点でより似ていると思われる別の点の周囲に移動するという修正を施すことができる。しかるのち、更新ボタン709を押下することにより、データ移動をした場合に(S201:YES)、材料特性予測装置101は、その移動結果を受け付ける(S202)。このとき、編集の結果は、ワークテーブルとして、材料・座標マッピングテーブル270に記録され、最終的に、材料データ可視化テーブル250のX座標606、Y座標607に格納される。そして、編集有無フラグ604がFALSE(偽)からTRUE(真)へと変更される。
 次に、材料特性予測装置101は、このデータ編集情報に基づき、次元圧縮を再実行するための、半教師データあり次元圧縮実行処理が実行される(S203)。半教師データあり次元圧縮実行処理の詳細は、後に図10を用いて説明する。
 次は、予測評価部112が、パラメータ重要度テーブル260を用いて予測精度を評価する処理が実行される(S204)。
 ここで本実施形態における、次元圧縮関数を構成するための回帰分析の手法とパラメータ重要度の意義について詳しく述べる。本実施形態では、公知のカーネルガウシアンプロセス回帰法(KGPR:Kernel Gaussian Process Regression)を用いる。一般に、KGPRは二つのデータの間の類似度を示す関数であるカーネル関数を用いて予測関数を構築するが、本実施形態においては二つの材料パラメータの加重ユークリッド距離を引数にとる関数を用いる。この加重ユークリッド距離とは、二つの材料パラメータ{m}、{n}に対して、以下の(式1)で定義されるD({m},{n})を意味する。
   D({m},{n})=Σγ(m-n  …(式1)
 ここで、γは材料パラメータのパラメータ重要度を示すパラメータであり、Σはすべての材料パラメータにわたって和をとることを意味する。本実施形態では、この加重ユークリッド距離を用いた以下の(式2)で表されるガウス関数を以ってカーネル関数とする。
      k({m},{n})=exp(-D({m},{n}))  …(式2)
 公知のKGPRの回帰分析では、学習に用いるデータすべてについてカーネル関数の値を求め、それを用いて予測関数を構築する。それと同時に、学習に用いるデータと予測関数のあてはまり度合いを示す尤度を計算することができる。ここでカーネル関数のγは、公知の最適化法(例えば、勾配降下法)によって尤度が最大になるように決定することができる。
 予測評価部112が、パラメータ重要度テーブル260を用いて予測精度を評価する処理では、このKGPRによって予測を行い、その予測精度を評価する。すなわち、二つの材料パラメータ{m}、{n}に対して、上記の(式1)で定義されるD({m},{n})を用いた(式2)で表されるガウス関数をカーネル関数として材料特性の予測関数を求める。
  この際、γiは、パラメータ重要度テーブル260のパラメータ重要度1102の値を用いる。
 後に、詳細に説明するように、S203の半教師データあり次元圧縮処理で、利用者の材料データ2D表示画面の材料データ点の編集結果が、パラメータ重要度テーブル260のパラメータ重要度1102に反映される。そのため、これによって、利用者の知見を反映した予測ができるようになる。なお、このパラメータ重要度テーブル260のパラメータ重要度1102をそのまま用いるのではなく、パラメータ重要度テーブル260のパラメータ重要度1102の値から大きく異ならないようにしてもよい。例えば、パラメータ重要度テーブル260のパラメータ重要度1102が大きい上位のいくつかはそのままにし、残りを上記の次元圧縮関数を構成する際と同様にして、勾配降下法で最適化する方法が考えられる。他にも、パラメータ重要度テーブル260のパラメータ重要度1102から大きく異ならない範囲で最適化するように制約つきの最適化を行う方法や、パラメータ重要度テーブル260のパラメータ重要度1102からずれた度合いをペナルティとして与える方法などがあるが、パラメータ重要度テーブル260のパラメータ重要度1102を反映できる方法であればどのような方法でもよい。
 次に、図10を用いて半教師データあり次元圧縮処理の詳細について説明する。
  これは、図9に示したパラメータ重要度編集処理のS203に示した処理である。
  パラメータ重要度編集処理のS203では、先ず、材料データ可視化テーブル250の編集有無フラグ604がTRUEのレコードが取得される(S300)。
 次に、それらのレコードのデータに対して、回帰分析を実行する(S301)。この回帰分析は、材料パラメータを引数に与えると、編集後のX座標901とY座標902を与える以下の(式3)の次元圧縮関数gを構築する処理である。
      (X,Y)=g({m},{γ})   …(式3)
 ここで、(X,Y)は、それぞれ、編集後のX座標901とY座標902の値、{m}は、材料データ可視化テーブル250の材料パラメータ603の値、{γ}は、材料パラメータ603に示される材料パラメータに対応するパラメータ重要度テーブル260のパラメータ重要度1102の値である。この手法は、上で説明した予測評価部112の材料特性予測関数を構築したときと同様の手法を用い、ただし、目的変数のみが異なる形となる。
 すなわち、材料パラメータmに対応するパラメータ重要度をγとして、二つの材料パラメータ{m}、{n}に対して、(式1)で定義されるD({m},{n})を用いた(式2)で表されるガウス関数をカーネル関数として材料特性の予測関数を求める(KGPRによる予測)。
 本実施形態にこの方法を適用すると、材料パラメータを編集後のX座標901とY座標902に投影するような次元圧縮関数を求めると同時に、そのときのパラメータ重要度γを決定できる。
 上記の手順により次元圧縮関数およびパラメータ重要度が求まったら、材料データ可視化テーブル250の可視化向け材料データから、編集有無フラグ604がFALSEのものを取得し(S302)、編集有無フラグ604がTRUEのものとあわせて、次元圧縮関数に材料パラメータを入力することにより、新たなX座標606、Y座標607を求めて材料データ可視化テーブル250に設定する(S303)。この際、編集有無フラグ604がTRUEのものについては、計算の簡略化のために、編集後のX座標901とY座標902をそのまま用いるようにしてもよい。
 この次元圧縮関数を求める過程で得られたパラメータ重要度は、パラメータ重要度テーブル260のパラメータ重要度1102に記録される(S304)。
 次に、図11を用いて材料特性予測提示処理の詳細について説明する。
  材料特性予測提示処理では、材料データ可視化テーブル250から、材料データ(材料ID601、材料特性602、材料パラメータ603、材料特性予測値608)を取得し(S400)、パラメータ重要度テーブル260から、パラメータID1101、パラメータ重要度1102を取得し(S401)、パラメータ重要度に基づいて、材料特性を予測した結果を材料特性予測提示画面332に表示する(S402)。
 ここで、図13を用いて材料特性予測提示画面について説明する。
  材料特性予測提示画面332は、図13に示されるように、材料特性予測値表示フレーム1301、パラメータ重要度表示フレーム1310、材料情報詳細表示フレーム1320、完了ボタン710の表示要素からなる。
 材料特性予測値表示フレーム1301には、材料データ可視化テーブル250の材料ID601、材料特性602、材料特性予測値608、材料データテーブル240の材料名称502の値が表示される。材料特性予測値表示フレーム1301に表示される材料特性表示欄1302については、材料特性602の値か、それがない場合には、材料特性予測値608の値を用いて表示する。この際、材料特性予測値608が表示されているときにはそれと判別がつくように、例えば下線をつけるなどして表示することができる。また、利用者が表示されている材料のうちの一つを選択すると、その詳細を材料情報詳細表示フレーム1320に表示するようにもできる。
 パラメータ重要度表示フレーム1310には、材料IDの材料に対応するパラメータ重要度が、材料データ可視化テーブル250の材料パラメータ603、パラメータ重要度テーブル260のパラメータ重要度1102を参照して表示される。
 以上説明してきたように、本実施形態の材料特性予測装置により、実験計画のスクリーニングのために、材料特性予測するときに、利用者の持つ知見を容易に予測に組み込んで評価できるようになる。これにより実験計画がたてやすくなり、ひいては少ない実験回数でよい材料を開発可能となる。
実施形態2
 以下、本発明に係る実施形態2を、図14ないし図17を用いて説明する。
  実施形態1では、利用者が材料データ2D表示画面312に表示される材料データ点を編集することにより、その知見を活かした材料予測が可能になる材料特性予測装置に関するものであった。実施形態1では、二次元空間上に材料データが可視化されているが、その距離感が把握できないため、編集がしにくいことがある。本実施形態では既存の何らかの画像と二次元座標を対応付けることによって距離感を把握できるように表示できる。
 そこで、本実施形態の材料特性予測装置は、実施形態1と同様の思想の材料特性予測装置で、材料データ2D表示画面312の画面に背景図面を表示することにより、データ間の関係を把握しやすくするようにしたものである。
 以下の本実施形態の材料特性予測装置の説明では、実施形態1と異なる所を中心に説明する。
  先ず、図14を用い実施形態2の材料特性予測装置の構成について説明する。
  本実施形態の材料特性予測装置101は、実施形態1の図1に示した材料特性予測装置101に加えて、材料可視化背景テーブル1401が加わっている。そして、2D可視化部115がこの材料可視化背景テーブル1401を用いて画面を構成する。
 次に、図15を用いて材料可視化背景テーブル1401のデータ構造について説明する。
  材料可視化背景テーブル1401には、材料データ2D表示画面312の材料データ表示フレーム701の背景画像の画像データを格納するテーブルであり、図15に示されるように、左下X座標1601、左下Y座標1602、右上X座標1603、右上Y座標1604、背景画像データ1605のからなるレコードにより構成されるテーブルである。
 左下X座標1601、左下Y座標1602、右上X座標1603、右上Y座標1604は、それぞれ対応する背景画像データ1605の座標点を表している。
 次に、図16を用いて実施形態2の材料データ可視化処理について説明する。
  実施形態1との差異は、教師データなし次元圧縮部113によって材料パラメータの次元圧縮によって、材料データ点のX,Y座標が定まった後、材料可視化背景テーブル1401のデータを参照して座標原点と縮尺を整合させる処理(S110)がある点である。
 2D可視化部115は、材料可視化背景テーブル1401に画像データが格納された背景画像の座標の中央を求め、また、材料データ可視化テーブル250のX座標606、Y座標607の重心を求め、両者の差を計算する。この差を材料データ可視化テーブル250のX座標606、Y座標607から減算することで、背景画像の座標と材料データ可視化テーブル250が整合するようにできる。この補正の方法については、背景画像に適切に重なるような方法であれば、どのような方法を用いてもよい。
 次に、図17を用いて実施形態2の材料データ2D表示画面について説明する。
  本実施形態の材料データ2D表示画面の材料データ表示フレーム701には、背景画像として、日本地図が重ねて表示される。このように、利用者になじみのある直感的に捉えやすい背景画像を表示することにより、材料データの間の距離を直感的に把握しやすくできる。
101…材料特性予測装置
112…予測評価部
113…教師データなし次元圧縮部
115…2D可視化部
116…半教師データあり次元圧縮部
117…材料特性予測提示部
240…材料データテーブル
250…材料データ可視化テーブル
260…パラメータ重要度テーブル
270…材料・座標マッピングテーブル

Claims (12)

  1.  材料特性を予測して表示する材料特性予測装置であって、
     材料特性とその材料と関連付けられた材料パラメータとを格納する材料データテーブルと、
     前記材料パラメータの次元圧縮した情報を二次元座標として格納する材料データ可視化テーブルと、
     前記材料パラメータの各々に対応付けられたパラメータ重要度を格納するパラメータ重要度テーブルとを保持し、
     前記材料パラメータから次元圧縮により二次元座標として、前記材料データテーブルに格納する教師データなし次元圧縮部と、
     前記材料データ可視化テーブルに格納された二次元座標を材料データ点として、二次元表示し、前記材料データ点の位置変更を受け付ける2D可視化部と、
     受け付けた材料データ点の位置変更の情報に基づいて、回帰分析を行って、前記パラメータ重要度テーブルに格納されたパラメータ重要度を更新し、位置変更された材料データ点と位置変更されていない材料データ点の材料パラメータを次元圧縮して、前記材料データ可視化テーブルに格納される二次元座標として更新する半教師データあり次元圧縮部と、
     前記パラメータ重要度を各々の材料パラメータに加重した材料パラメータの類似度に基づいて、回帰分析を行って、材料特性を予測する予測評価部とを有することを特徴とする材料特性予測装置。
  2.  前記半教師データあり次元圧縮部と前記予測評価部が、共通の材料パラメータの類似度を用いて、回帰分析を行うことを特徴とする請求項1記載の材料特性予測装置。
  3.  材料パラメータの類似度として、次元ごとに加重係数をかけたユークリッド距離を用いることを特徴とする請求項1記載の材料特性予測装置。
  4.  前記予測評価部は、材料特性の予測精度を算出し、
     前記2D可視化部は、前記予測精度に関する情報を表示することを特徴とする請求項1記載の材料特性予測装置。
  5.  さらに、材料特性予測提示部を有し、
     前記材料特性予測提示部は、各々の材料特性に関する情報を表示することを特徴とする請求項1記載の材料特性予測装置。
  6.  さらに、前記材料データ点間の距離を評価するための背景画像を保持し
     前記2D可視化部は、前記材料データ点の背景に前記背景画像を表示することを特徴とする請求項1記載の材料特性予測装置。
  7.  材料特性装置により、材料特性を予測して表示する材料特性予測方法であって、
     前記材料特性装置は、
     材料特性とその材料と関連付けられた材料パラメータとを格納する材料テーブルと、
     前記材料パラメータの次元圧縮した情報を二次元座標として格納する材料データ可視化テーブルと、
     前記材料パラメータの各々に対応付けられたパラメータ重要度を格納するパラメータ重要度テーブルとを保持し、
     前記材料特性予測装置が、前記材料パラメータから次元圧縮により二次元座標として、前記材料データテーブルに格納する教師データなし次元圧縮ステップと、
     前記材料データ可視化テーブルに格納された二次元座標を材料データ点として、二次元表示し、前記材料データ点の位置変更を受け付ける2D可視化ステップと、
     受け付けた材料データ点の位置変更の情報に基づいて、回帰分析を行って、前記パラメータ重要度テーブルに格納されたパラメータ重要度を更新し、位置変更された材料データ点と位置変更されていない材料データ点の材料パラメータを次元圧縮して、前記材料データ可視化テーブルに格納される二次元座標として更新する半教師データあり次元圧縮ステップと、
     前記パラメータ重要度を各々の材料パラメータに加重した材料パラメータの類似度に基づいて、回帰分析を行って、材料特性を予測する予測評価ステップとを有することを特徴とする材料特性予測方法。
  8.  前記半教師データあり次元圧縮ステップと前記予測評価ステップとにおいて、共通の材料パラメータの類似度を用いて、回帰分析を行うことを特徴とする請求項7記載の材料特性予測方法。
  9.  材料パラメータの類似度として、次元ごとに加重係数をかけたユークリッド距離を用いることを特徴とする請求項7記載の材料特性予測方法。
  10.  前記予測評価ステップにおいて、材料特性の予測精度を算出し、
     前記2D可視化ステップにおいて、前記予測精度に関する情報を表示することを特徴とする請求項7記載の材料特性予測方法。
  11.  さらに、材料特性予測提示ステップを有し、
     前記材料特性予測提示ステップにおいて、各々の材料特性に関する情報を表示することを特徴とする請求項7記載の材料特性予測方法。
  12.  さらに、前記材料データ点間の距離を評価するための背景画像を保持し、
     前記2D可視化ステップにおいて、前記材料データ点の背景に前記背景画像を表示することを特徴とする請求項7記載の材料特性予測方法。
PCT/JP2020/002303 2019-02-12 2020-01-23 材料特性予測装置および材料特性予測方法 WO2020166299A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019022666A JP7330712B2 (ja) 2019-02-12 2019-02-12 材料特性予測装置および材料特性予測方法
JP2019-022666 2019-02-12

Publications (1)

Publication Number Publication Date
WO2020166299A1 true WO2020166299A1 (ja) 2020-08-20

Family

ID=72045024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002303 WO2020166299A1 (ja) 2019-02-12 2020-01-23 材料特性予測装置および材料特性予測方法

Country Status (2)

Country Link
JP (1) JP7330712B2 (ja)
WO (1) WO2020166299A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117321585A (zh) * 2021-05-18 2023-12-29 松下控股株式会社 信息提供装置、信息提供方法以及程序
US20240211457A1 (en) * 2021-06-23 2024-06-27 Uacj Corporation Data dimensionality reduction method, computer program, and data dimensionality reduction device
WO2023008449A1 (ja) 2021-07-28 2023-02-02 パナソニックIpマネジメント株式会社 情報表示方法、情報表示装置およびプログラム
WO2023008450A1 (ja) 2021-07-28 2023-02-02 パナソニックIpマネジメント株式会社 情報表示方法、情報表示装置およびプログラム
EP4379729A1 (en) 2021-07-28 2024-06-05 Panasonic Intellectual Property Management Co., Ltd. Information display method, information display device, and program
JPWO2023048009A1 (ja) * 2021-09-22 2023-03-30
CN118043896A (zh) * 2021-10-04 2024-05-14 株式会社力森诺科 组成搜索方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503546A (ja) * 1996-11-04 2001-03-13 3―ディメンショナル ファーマシューティカルズ インコーポレイテッド 化学データの可視化、並びに対話式に処理および分析するためのシステム、方法、およびコンピュータプログラム製品
JP2005506511A (ja) * 2000-08-09 2005-03-03 グラクソ グループ リミテッド 薬剤発見のための高処理量スクリーニングデータのセルベース分析
WO2018062398A1 (ja) * 2016-09-30 2018-04-05 株式会社Uacj アルミニウム製品の特性予測装置、アルミニウム製品の特性予測方法、制御プログラム、および記録媒体
WO2018168580A1 (ja) * 2017-03-13 2018-09-20 日本電気株式会社 関係性探索システム、情報処理装置、方法およびプログラム
WO2019172280A1 (ja) * 2018-03-09 2019-09-12 昭和電工株式会社 ポリマーの物性予測装置、記憶媒体、及びポリマーの物性予測方法
JP2020030638A (ja) * 2018-08-23 2020-02-27 パナソニックIpマネジメント株式会社 材料情報出力方法、材料情報出力装置、材料情報出力システム、及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503546A (ja) * 1996-11-04 2001-03-13 3―ディメンショナル ファーマシューティカルズ インコーポレイテッド 化学データの可視化、並びに対話式に処理および分析するためのシステム、方法、およびコンピュータプログラム製品
JP2005506511A (ja) * 2000-08-09 2005-03-03 グラクソ グループ リミテッド 薬剤発見のための高処理量スクリーニングデータのセルベース分析
WO2018062398A1 (ja) * 2016-09-30 2018-04-05 株式会社Uacj アルミニウム製品の特性予測装置、アルミニウム製品の特性予測方法、制御プログラム、および記録媒体
WO2018168580A1 (ja) * 2017-03-13 2018-09-20 日本電気株式会社 関係性探索システム、情報処理装置、方法およびプログラム
WO2019172280A1 (ja) * 2018-03-09 2019-09-12 昭和電工株式会社 ポリマーの物性予測装置、記憶媒体、及びポリマーの物性予測方法
JP2020030638A (ja) * 2018-08-23 2020-02-27 パナソニックIpマネジメント株式会社 材料情報出力方法、材料情報出力装置、材料情報出力システム、及びプログラム

Also Published As

Publication number Publication date
JP2020128962A (ja) 2020-08-27
JP7330712B2 (ja) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2020166299A1 (ja) 材料特性予測装置および材料特性予測方法
US8196066B1 (en) Collaborative gesture-based input language
US9299173B2 (en) Automatic selection of different visualizations for the organization of multivariate data
JP5988419B2 (ja) 予測方法、予測システムおよびプログラム
JP2004530967A (ja) 予測用モデルを展開する方法及び装置
US10019681B2 (en) Multidimensional recursive learning process and system used to discover complex dyadic or multiple counterparty relationships
JP4948607B2 (ja) 画像検索装置、画像分類装置及び方法並びにプログラム
US10353958B2 (en) Discriminative clustering
JPWO2018079225A1 (ja) 自動予測システム、自動予測方法および自動予測プログラム
KR20200048606A (ko) 사용자 입력의 패턴 분석을 이용한 후속 사용자 입력 추천 방법
JP2019082874A (ja) 設計支援装置及び設計支援システム
CN112783762A (zh) 软件质量的评估方法、装置及服务器
US20210182701A1 (en) Virtual data scientist with prescriptive analytics
WO2021236423A1 (en) Identifying claim complexity by integrating supervised and unsupervised learning
WO2023175921A1 (ja) モデル分析装置、モデル分析方法、及び、記録媒体
CN111340276B (zh) 一种生成预测数据的方法及系统
JP2022090206A (ja) 最適化支援装置および最適化支援方法
JP2022185927A (ja) 評価装置、評価方法、およびプログラム
JP7453895B2 (ja) 探索条件提示装置、探索条件提示方法、及び探索条件提示プログラム
WO2024147235A1 (ja) 情報処理プログラム、情報処理方法および情報処理装置
JP7479534B2 (ja) 情報処理装置、推定装置、分析装置、情報処理方法及びコンピュータープログラム
EP4451147A1 (en) Computer-implemented method for fast matching of entities from different datasets
US20240134361A1 (en) Use resource setting method and use resource setting device
WO2023181497A1 (ja) 評価装置、評価方法、およびプログラム
US20240355438A1 (en) Computer-implemented method for fast matching of entities from different datasets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755727

Country of ref document: EP

Kind code of ref document: A1