WO2020166160A1 - Solid-state imaging element, imaging device, and method for controlling solid-state imaging element - Google Patents

Solid-state imaging element, imaging device, and method for controlling solid-state imaging element Download PDF

Info

Publication number
WO2020166160A1
WO2020166160A1 PCT/JP2019/045399 JP2019045399W WO2020166160A1 WO 2020166160 A1 WO2020166160 A1 WO 2020166160A1 JP 2019045399 W JP2019045399 W JP 2019045399W WO 2020166160 A1 WO2020166160 A1 WO 2020166160A1
Authority
WO
WIPO (PCT)
Prior art keywords
read
circuit
bit
redundant
signal
Prior art date
Application number
PCT/JP2019/045399
Other languages
French (fr)
Japanese (ja)
Inventor
凌平 川崎
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2020166160A1 publication Critical patent/WO2020166160A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Definitions

  • the present technology relates to a solid-state imaging device, an imaging device, and a method for controlling the solid-state imaging device. More specifically, the present invention relates to a solid-state image sensor that converts an analog signal into a digital signal for each pixel, an image pickup apparatus, and a method for controlling the solid-state image sensor.
  • solid-state imaging devices that convert an analog signal into a digital signal for each pixel have been used in imaging devices and the like for the purpose of increasing the speed of AD (Analog to Digital) conversion.
  • a solid-state imaging device provided with a pixel circuit that generates a pixel signal, a storage unit that holds a time code when the comparison result of the pixel signal and the reference signal is inverted, and a transfer circuit that transfers the time code is proposed.
  • An analog pixel signal is converted into a digital time code for each pixel by the comparison unit and the storage unit.
  • the speed of AD conversion can be made faster than that for AD conversion for each column.
  • the circuit of the solid-state imaging device becomes complicated as compared with the configuration in which the AD conversion is performed for each column, and in addition to the photoelectric conversion element, the transfer transistor and the floating diffusion layer, as described above.
  • a storage unit, a transfer circuit, etc. are further required for each pixel. Therefore, when AD conversion is performed for each pixel, the probability of circuit failure is higher than when AD conversion is performed for each column.
  • the present technology was created in view of such circumstances, and it is an object of the present invention to prevent deterioration of image quality due to a circuit failure in a solid-state image sensor that performs AD conversion for each pixel.
  • the present technology has been made in order to solve the above-described problems, and a first aspect thereof is that an analog-to-digital conversion unit that converts an analog pixel signal into a digital signal and holds the digital pixel signal, and the digital signal is used.
  • a read circuit that reads any of the bits as a read bit
  • a redundant read circuit that reads any bit of the digital signal as a read bit
  • a failure detection unit that detects whether or not a failure has occurred in the read circuit, and the failure.
  • a solid-state image sensor, and a control method therefor are provided. is there. This brings about the effect that one of the read bits of the read circuit and the redundant read circuit is selected depending on whether or not a failure has occurred.
  • the read circuit is arranged in each of a plurality of repeaters, the plurality of repeaters are divided into a plurality of groups each including a predetermined number of repeaters, and the predetermined number of repeaters are
  • the read side selection unit may be shared. This brings about the effect that a predetermined number of repeaters share the read side selection unit.
  • the read circuit may be arranged in each of the plurality of repeaters, and all the plurality of repeaters may share the read side selection unit. This brings about the effect that all the repeaters share the read side selection unit.
  • a predetermined number of the read circuits and the redundant read circuits are arranged in a repeater, and the failure detection unit detects whether a failure has occurred in each of the predetermined number of read circuits. You may. This brings about the effect that the presence or absence of a failure in a predetermined number of read circuits is detected for each repeater.
  • a predetermined number of the redundant read circuits may be arranged in the repeater. This brings about an effect that it is possible to cope with a failure of a plurality of read transfer circuits.
  • a write circuit that supplies any bit of the digital signal to the analog-digital conversion unit as a write bit, and any bit of the digital signal to the analog-digital conversion unit.
  • a write side which supplies the digital signal by selecting either the write bit from the write circuit or the write bit from the redundant write circuit depending on whether or not the failure has occurred.
  • a selection unit may be further included, and the failure detection unit may detect whether or not a failure has occurred in at least one of the write circuit and the read circuit. This brings about the effect that either the write circuit or the redundant write circuit is selected depending on whether or not a failure has occurred.
  • the analog-digital conversion unit includes a latch unit that holds the digital signal and a redundant latch unit, and the read circuit and the redundant read circuit read the read bit from the latch unit. May be. As a result, the read bit is read from the redundant latch unit when a failure occurs.
  • the redundant latch unit includes a redundant write latch and a redundant read latch
  • the redundant write circuit supplies the write bit to the redundant write latch
  • the redundant read circuit The read bit may be read from the redundant read latch. This brings about the effect that the write bit is held in the redundant write latch and the read bit is read from the redundant read latch.
  • the pixel signal includes a reset level when the pixel is initialized and a signal level when the exposure is completed, and the read circuit and the redundant read circuit change the bit corresponding to the reset level to a reset level read bit. And the bit corresponding to the signal level is read as a signal level read bit, and the read side selection unit selects the reset level read bit from the read circuit and the redundant circuit from the redundant circuit depending on whether the failure occurs.
  • a reset level read side selection unit that selects one of the reset level read bits, the signal level read bit from the read circuit and the signal level read bit from the redundant circuit depending on whether the failure has occurred. And a signal level read side selection unit for selecting any one of the above. This brings about the effect that the read bits corresponding to the reset level and the signal level are read.
  • the redundant read latch includes a reset level redundant read latch and a signal level redundant read latch, and the redundant read circuit reads the reset level read bit from the reset level redundant read latch.
  • the signal level read bit may be read from the signal level redundant read latch. This brings about the effect that the reset level read bit is read from the reset level redundant read latch and the signal level read bit is read from the signal level redundant read latch.
  • the second aspect of the present technology is An analog-to-digital conversion unit that converts an analog pixel signal into a digital signal and holds the digital signal, a read circuit that reads any bit of the digital signal as a read bit, and a redundancy that reads any bit of the digital signal as a read bit.
  • a read circuit a failure detection unit that detects whether or not a failure has occurred in the read circuit, and either the read bit from the read circuit or the read bit from the redundant circuit depending on whether or not the failure has occurred.
  • the image pickup apparatus includes a read-side selection unit that selects and outputs the signal and a signal processing unit that processes the data output from the read-side selection unit. This brings about an effect that either read data or redundant data is processed depending on whether or not a failure has occurred.
  • First embodiment an example of selecting a redundant circuit when a failure occurs
  • Second embodiment an example in which a plurality of repeaters share a selection unit that selects a redundant circuit when a failure occurs
  • Third embodiment an example in which all repeaters share a selection unit that selects a redundant circuit when a failure occurs
  • FIG. 1 is a block diagram showing a configuration example of an imaging device 100 according to the first embodiment of the present technology.
  • the image pickup apparatus 100 is an apparatus for picking up image data, and includes an optical unit 110, a solid-state image pickup element 200, and a DSP (Digital Signal Processing) circuit 120. Furthermore, the image pickup apparatus 100 includes a display unit 130, an operation unit 140, a bus 150, a frame memory 160, a storage unit 170, and a power supply unit 180.
  • a digital camera such as a digital still camera, a smartphone having an imaging function, a personal computer, a vehicle-mounted camera, or the like is assumed.
  • the optical unit 110 collects light from a subject and guides it to the solid-state imaging device 200.
  • the solid-state imaging device 200 is to generate image data by photoelectric conversion in synchronization with the vertical synchronization signal VSYNC.
  • the vertical synchronization signal VSYNC is a periodic signal of a predetermined frequency that indicates the timing of image pickup.
  • the solid-state imaging device 200 supplies the generated image data to the DSP circuit 120 via the signal line 209.
  • the DSP circuit 120 executes predetermined signal processing on the image data from the solid-state image sensor 200.
  • the DSP circuit 120 outputs the processed image data to the frame memory 160 or the like via the bus 150.
  • the display unit 130 displays image data.
  • a liquid crystal panel or an organic EL (Electro Luminescence) panel is assumed.
  • the operation unit 140 generates an operation signal according to the operation of the user.
  • the bus 150 is a common path for the optical unit 110, the solid-state imaging device 200, the DSP circuit 120, the display unit 130, the operation unit 140, the frame memory 160, the storage unit 170, and the power supply unit 180 to exchange data with each other.
  • the frame memory 160 holds image data.
  • the storage unit 170 stores various data such as image data.
  • the power supply unit 180 supplies power to the solid-state imaging device 200, the DSP circuit 120, the display unit 130, and the like.
  • FIG. 2 is a diagram showing an example of a laminated structure of the solid-state imaging device 200 according to the first embodiment of the present technology.
  • the solid-state imaging device 200 includes a circuit chip 202 and a light receiving chip 201 stacked on the circuit chip 202. These chips are electrically connected via a connection part such as a via. In addition to vias, Cu-Cu bonding or bumps may be used for connection.
  • FIG. 3 is a plan view showing a configuration example of the light-receiving chip 201 according to the first embodiment of the present technology.
  • a pixel region 210, V drivers 231, 232, an H driver 233, and a DAC (Digital to Analog Converter) 234 are arranged on the light receiving chip 201.
  • a plurality of pixel blocks 211 are arranged in a two-dimensional grid pattern.
  • a plurality of pixels 220 are arranged in each pixel block 211.
  • the pixel block 211 has eight pixels 220 arranged in 2 rows ⁇ 4 columns. The number of pixels in the pixel block 211 is not limited to eight.
  • one H driver 233 and one DAC 234 are arranged, but the configuration is not limited to this.
  • the H driver 233 side may be the north side
  • one H driver and one DAC may be arranged on the north side.
  • the DAC 234 is arranged on the light receiving chip 201, it is not limited to this configuration. It is also possible to arrange the DAC 234 on the circuit chip 202 and connect it to the signal line for transmitting the lamp signal on the light receiving chip 201 by Cu-Cu connection or the like.
  • the pixel 220 is for generating an analog signal by photoelectric conversion.
  • the V drivers 231 and 232 drive the pixels 220 in the row to be read.
  • the V driver 231 drives an odd row
  • the V driver 232 drives an even row
  • the H driver 233 drives the pixels 220 in units of columns.
  • the rows driven by the V drivers 231 and 232 do not necessarily have to be divided into even rows and odd rows.
  • Vdrivers 231 and 232 could drive the same row for the purpose of faster settling.
  • the DAC 234 generates a ramp-shaped analog ramp signal as a reference signal by DA (Digital to Analog) conversion.
  • the DAC 234 supplies the generated reference signal to all pixels in the pixel area 210.
  • FIG. 4 is a block diagram showing a configuration example of the circuit chip 202 according to the first embodiment of the present technology.
  • V drivers 241 and 242, H drivers 251 and 252, logic circuits 260 and 270, an AD conversion circuit area 290, a time code generation section 280, and selection sections 600 and 601 are arranged. To be done.
  • a plurality of clusters 300 are arranged in a two-dimensional lattice in the AD conversion circuit area 290.
  • the cluster 300 is provided for each pixel block 211. If the number of pixel blocks 211 is B (B is an integer), B clusters 300 are also provided.
  • the pixel blocks 211 and the clusters 300 are connected one to one.
  • the cluster 300 converts an analog pixel signal from the corresponding pixel block 211 into a digital signal for each pixel and supplies the digital signal to the logic circuits 260 and 270 as pixel data.
  • the V drivers 241 and 242 drive the circuits in the cluster 300 to generate digital signals.
  • the V driver 241 drives a circuit corresponding to an odd row
  • the V driver 242 drives a circuit corresponding to an even row.
  • V drivers 241 and 242 drive the circuits in the same row.
  • the H drivers 251 and 252 drive the transfer circuit in the cluster 300 to transfer the digital signal to the logic circuits 260 and 270 as pixel data.
  • the H driver 251 drives a transfer circuit corresponding to an odd row of the cluster 300 to transfer a digital signal to the logic circuit 270.
  • the H driver 252 drives the transfer circuit corresponding to the even row of the cluster 300 to transfer the digital signal to the logic circuit 260.
  • the logic circuits 260 and 270 perform various signal processing such as CDS (Correlated Double Sampling) processing for each pixel on the transferred pixel data. Further, a mode signal MODE indicating the mode of the solid-state image sensor 200 is input to the logic circuits 260 and 270.
  • the modes of the solid-state imaging device 200 include a test mode and an imaging mode.
  • the test mode is a mode for detecting the presence/absence of a failure of a circuit in the AD conversion circuit area 290.
  • the image pickup mode is a mode for picking up image data without detecting a failure.
  • the test mode is set at the time of factory shipment, repair, or the like.
  • the logic circuits 260 and 270 detect the presence/absence of a circuit failure in the AD conversion circuit area 290 based on the pixel data.
  • the logic circuits 260 and 270 perform signal processing on the pixel data and supply image data composed of the processed pixel data to the DSP circuit 120.
  • the time code generator 280 generates a time code indicating the time within the period when the reference signal from the DAC 234 changes.
  • the time code generator 280 is realized by, for example, a counter.
  • As the counter for example, a Gray code counter is used, and the code format of the time code is, for example, Gray code.
  • Gray code By using the gray code, it is possible to reduce the power consumption of the transfer circuit in the AD conversion circuit area 290 as compared with the case where the binary code is used.
  • the time code generator 280 supplies the generated time code to the AD conversion circuit area 290 via the logic circuit 260.
  • the selection units 600 and 601 select a part of a plurality of main bit lines in the AD conversion circuit area 290 and connect them to the logic circuit 260, the logic circuit 270, and the time code generation unit 280. Details of the wiring method and connection method of the main bit lines will be described later.
  • FIG. 5 is a block diagram showing a configuration example of the cluster 300 according to the first embodiment of the present technology.
  • this cluster 300 a plurality of comparison units 310 and storage units 400 and 401 are arranged.
  • the comparison unit 310 is arranged for each pixel in the pixel block 211.
  • eight comparison units 310 are arranged.
  • a part of the differential input circuit in the comparison unit 310 is arranged in the light receiving chip 201 as illustrated in FIG. 12 described later.
  • the repeater 500 is arranged for each column of the cluster 300.
  • the number of columns of the cluster 300 is C (C is an integer)
  • C repeaters 500 are also arranged.
  • each of the eight comparison units 310 is connected to the eight pixels 220 in the pixel block 211 corresponding to the cluster 300 on a one-to-one basis.
  • the repeater 500 transfers the time code from the time code generation unit 280 to the cluster 300 via the selection units 600 and 601 and transfers the time code from the cluster 300 to the logic circuits 260 and 270 through the selection units 600 and 601. Is.
  • This time code is a digital signal indicating the time within the period in which the reference signal changes in a slope shape.
  • the comparison unit 310 compares the pixel signal from the corresponding pixel 220 and the reference signal.
  • the comparison unit 310 outputs the comparison result to the storage units 400 and 401.
  • the storage units 400 and 401 hold a time code (that is, a digital signal) as pixel data when the comparison result is inverted.
  • the storage unit 400 is connected to the four comparison units 310 on the left side and holds pixel data of four pixels corresponding to the comparison units 310.
  • the storage unit 401 is connected to the four comparison units 310 on the right side and holds pixel data of four pixels corresponding to the comparison units 310.
  • the analog pixel signal is converted into digital pixel data.
  • the storage units 400 and 401 output the held pixel data to the logic circuits 260 and 270 via the repeater 500.
  • FIG. 6 is a block diagram showing a configuration example of the repeater 500 according to the first embodiment of the present technology.
  • the repeater 500 includes a reset level read repeater 510, a signal level read repeater 520 and a write repeater 530.
  • the write repeater 530 transfers the time code from the selection unit 600 or 601 to the storage units 400 and 401 via the local bit line LBLW.
  • the reset level read repeater 510 reads the reset level from the storage units 400 and 401 in order via the local bit line LBLR and transfers it to the selection units 600 and 601.
  • the reset level is the level of the pixel signal when the pixel 220 is initialized.
  • the signal level read repeater 520 sequentially reads the signal levels from the storage units 400 and 401 via the local bit line LBLR and transfers the signal levels to the selection units 600 and 601.
  • the signal level is the level of the pixel signal when the exposure of the pixel 220 is completed.
  • FIG. 7 is a block diagram showing a configuration example of the write repeater 530 according to the first embodiment of the present technology.
  • the write repeater 530 includes a left side transfer control section 540, a right side transfer control section 550, and a plurality of write data transfer circuits 560. When each of storage units 400 and 401 holds four pixels, four write data transfer circuits 560 are arranged.
  • the left transfer control unit 540 controls the write data transfer circuit 560 and the write redundant data transfer circuit 580 to transfer the time code to the left storage unit 400.
  • the right side transfer control unit 550 controls the write data transfer circuit 560 and the write redundant data transfer circuit 580 to transfer the time code to the right side storage unit 401.
  • the write data transfer circuit 560 transfers the time code to the storage units 400 and 401 as write data.
  • the write data transfer circuit 560 is connected to the selection unit 600 or 601 via N+1 (N is an integer) main bit lines WB, where N is the number of bits of the time code and one bit is a redundant circuit described later. It
  • the logic circuits 260 and 270 detect, for each of the plurality of paths for transferring the time code, of the circuits in the AD conversion circuit area 290, whether or not a failure has occurred in the circuit on that path. To do. As described above, the time code is transferred to the storage units 400 and 401 by the write repeater 530 and held in them. Then, the reset level read repeater 510 and the signal level read repeater 520 read the time code from the storage units 400 and 401 and transfer it to the logic circuits 260 and 270. Therefore, when an abnormality occurs in the read time code, it can be estimated that a circuit on the path from the write repeater 530 to the reset level read repeater 510 and the signal level read repeater 520 has failed. If the time code is N bits, the time code is transferred via N routes. For each of these paths, the presence or absence of a fault in the circuit on that path is detected.
  • the driver such as the H driver 251 controls each of the four write data transfer circuits 560 to transfer the time code.
  • the driver transfers the time data via the remaining path except the path corresponding to the nth path and the redundant path. This allows the repeater 500 to transfer accurate time data even if a failure occurs in any of the N paths.
  • FIG. 8 is a circuit diagram showing a configuration example of a circuit in the write repeater 530 according to the first embodiment of the present technology.
  • the write data transfer circuit 560 includes a plurality of write bit transfer circuits 570 for each cluster 300. If the time code is N (N is an integer) bits, N write bit transfer circuits 570 and redundant write bit transfer circuit 570-1 are provided.
  • the N write bit transfer circuits 570 transfer the N-bit time code to the storage unit 400 or 401 under the control of the H drivers 251 and 252.
  • the bit from the n-th (n is an integer from 0 to N ⁇ 1) write bit transfer circuit 570 is transferred via the local bit line LBLW ⁇ n>.
  • the redundant write bit transfer circuit 570-1 transfers any bit in the time code to the storage unit 400 or 401 when a failure occurs in any of the N paths.
  • the left-side transfer control unit 540 includes a buffer 541, inverters 542 and 543, and a NAND (negative logical product) gate 544 for each of the N write bit transfer circuits 570 and the redundant write bit transfer circuit 570-1. That is, the buffer 541, the inverters 542 and 543, and the NAND gate 544 are provided by N+1 each.
  • the inverter 543 inverts the control signal and outputs it to the buffer 541 and the inverter 543.
  • the Nth inverter 543 inverts the control signal LENW to be transferred to the left storage unit 400.
  • the buffer 541 outputs a control signal.
  • the buffer 541 and the inverter 543 are alternately arranged in series along the vertical direction, and the buffer 541 outputs the signal from the inverter 543 in the previous stage to the inverter 543 in the subsequent stage.
  • the inverter 542 inverts the signal from the inverter 543 and outputs it to the corresponding circuit of the N write bit transfer circuits 570 and the redundant write bit transfer circuit 570-1.
  • the N NAND gates 544 are connected in series along the vertical direction.
  • the Nth NAND gate 544 outputs the NAND of the clock signal MCKIN and the control signal MCKEN for validating or invalidating the clock signal to the NAND gate 544 in the subsequent stage and the corresponding write bit transfer circuit 570. ..
  • the nth NAND gate 544 outputs the NAND of the clock signal from the previous stage and the control signal MCKEN to the NAND gate 544 in the subsequent stage and the corresponding write bit transfer circuit 570.
  • the right transfer controller 550 includes a buffer 551 and inverters 552 and 553 for each of the N write bit transfer circuits 570 and the redundant write bit transfer circuit 570-1. That is, the buffer 551 and N+1 inverters 552 and 553 are provided, respectively.
  • connection configuration of the buffer 551 and the inverters 552 and 553 is the same as that of the corresponding circuit in the left transfer control unit 540 except that the control signal RENW for transferring to the storage unit 401 on the right side is input instead of the control signal LENW. Is the same as.
  • the control signals LENW and RENW are supplied by the H driver 251 and the like.
  • FIG. 9 is a circuit diagram showing a configuration example of the write bit transfer circuit 570 in the first embodiment of the present technology.
  • the write bit transfer circuit 570 includes an AND (logical product) gate 571, inverters 572 and 576, buffers 573 and 577, a flip-flop 574, and an N-type transistor 575.
  • the AND gate 571 outputs the logical product of the inverted value of the clock signal from the NAND gate 544 and the control signal MCKEN to the clock terminal of the flip-flop 574.
  • the flip-flop 574 holds the corresponding bit in the time code.
  • the flip-flop 574 outputs the held bit from the output terminal Q.
  • the inverter 572 and the buffer 573 are connected in a loop.
  • the input terminal of the inverter 572 and the output terminal of the buffer 573 are commonly connected to the corresponding left local bit line LBLW ⁇ n>.
  • the output terminal of the inverter 572 and the input terminal of the buffer 573 are commonly connected to the output terminal Q of the flip-flop 574.
  • the inverter 572 inverts the input signal according to the inverted value of the control signal LENW.
  • the buffer 573 outputs the signal from the flip-flop 574 to the left local bit line LBLW ⁇ n> according to the control signal WEN instructing the writing.
  • the control signal WEN is supplied by the H driver 251 and the like.
  • the inverter 576 and the buffer 577 are connected in a loop.
  • the input terminal of the inverter 576 and the output terminal of the buffer 577 are commonly connected to the corresponding right local bit line LBLW ⁇ n>.
  • the output terminal of the inverter 576 and the input terminal of the buffer 577 are commonly connected to the output terminal Q of the flip-flop 574.
  • the inverter 576 inverts the input signal according to the inverted value of the control signal RENW.
  • the buffer 577 outputs the signal from the flip-flop 574 to the right local bit line LBLW ⁇ n> according to the control signal WEN.
  • the N-type transistor 575 is inserted between the output terminal Q of the flip-flop 574 and the terminal of a predetermined reference potential (ground potential or the like).
  • a MOS Metal-Oxide-Semiconductor
  • a control signal REPINI instructing initialization is input to the gate of the N-type transistor 575.
  • the control signal REPINI is supplied by the H driver 251 and the like.
  • the write bit transfer circuit 570 transfers bits to the left storage unit 400 according to the control signals WEN and LENW, and transfers bits to the right storage unit 401 according to the control signals WEN and RENW.
  • the circuit configuration of the redundant write bit transfer circuit 570-1 is similar to that of the write bit transfer circuit 570 illustrated in FIG.
  • FIG. 10 is a block diagram showing a configuration example of the reset level read repeater 510 according to the first embodiment of the present technology.
  • the reset level read repeater 510 includes a left transfer control unit 511, a plurality of reset level read data transfer circuits 512, and a right transfer control unit 514.
  • four reset level read data transfer circuits 512 are arranged for each repeater 500.
  • the configurations of the left transfer control unit 511 and the right transfer control unit 514 are the same as the left transfer control unit 540 and the right transfer control unit 550 in the write repeater 530.
  • the reset level read data transfer circuit 512 has the same configuration as the write data transfer circuit 560 in the write repeater 530.
  • the m-th reset level read data transfer circuit 512 is connected to the selection unit 600 or 601 via the local bit line PB ⁇ m>.
  • the reset level redundant data transfer circuit 513 is connected to the selection unit 600 or 601 via N+1 main bit lines PB.
  • FIG. 11 is a circuit diagram showing a configuration example of a circuit in the reset level read repeater 510 according to the first embodiment of the present technology.
  • this reset level read repeater 510 N reset level read bit transfer circuits 513 and redundant reset level read bit transfer circuit 513-1 are arranged in reset level read data transfer circuit 512.
  • the configuration of these circuits is similar to that of the write bit transfer circuit 570.
  • the H drivers 251 and 252 control the N reset level read bit transfer circuits 513 to read the reset level from one of the storage unit 400 and the storage unit 401, and then reset from the other. Read the level. Then, the reset level read data transfer circuit 512 transfers the data corresponding to the reset level to the logic circuit 260 or 270 via the selection unit 600 or 601. Hereinafter, the data transferred by the reset level read data transfer circuit 512 will be referred to as “reset level read data”.
  • the driver stops the transfer operation of the reset level redundant data transfer circuit 513.
  • the driver such as the H driver 251 stops the nth of the N reset level read bit transfer circuits 513, and resets the reset level read data to the remaining circuits. Of these, N-1 bits are transferred. Further, the driver controls the redundant reset level read data transfer circuit 513-1 to transfer the remaining 1 bit of the data corresponding to the reset level.
  • FIG. 12 is a block diagram showing a configuration example of the signal level read repeater 520 according to the first embodiment of the present technology.
  • the signal level read repeater 520 includes a left transfer control section 521, a plurality of signal level read data transfer circuits 522, and a right transfer control section 524.
  • four signal level read data transfer circuits 522 are arranged for each repeater 500.
  • the configurations of the left side transfer control unit 521 and the right side transfer control unit 524 are the same as the left side transfer control unit 540 and the right side transfer control unit 550 in the write repeater 530.
  • the configuration of the signal level read data transfer circuit 522 is similar to that of the write data transfer circuit 560 in the write repeater 530. That is, the signal level read data transfer circuit 522 is provided with N signal level read bit transfer circuits and redundant signal level read bit transfer circuits.
  • the m-th signal level read data transfer circuit 522 is connected to the selection unit 600 or 601 via the local bit line DB ⁇ m>.
  • the signal level redundant data transfer circuit 523 is connected to the selection unit 600 or 601 via the N+1 main bit lines DB.
  • the H drivers 251 and 252 control the four signal level read data transfer circuits 522 to read the signal level from one of the storage unit 400 and the storage unit 401, and then the other signal from the other. Read the level. Then, the signal level read data transfer circuit 522 transfers the data corresponding to the signal level to the logic circuit 260 or 270 via the selection unit 600 or 601. Hereinafter, the data transferred by the signal level read data transfer circuit 522 will be referred to as “signal level read data”.
  • the driver stops the transfer operation of the signal level redundant data transfer circuit 523.
  • the driver such as the H driver 251 stops the nth of the N signal level read bit transfer circuits and causes the remaining circuits to read the signal level read data. Transfer N-1 bits. Further, the driver controls the redundant signal level read bit transfer circuit to transfer the remaining 1 bit of the data corresponding to the signal level.
  • FIG. 13 is a circuit diagram illustrating a configuration example of the pixel 220 and the comparison unit 310 according to the first embodiment of the present technology.
  • the pixel 220 includes an emission transistor 222, a photodiode 223, a transfer transistor 224, a floating diffusion layer 225, and a reset transistor 226.
  • the comparison unit 310 includes a differential input circuit 320, a voltage conversion circuit 330, a control circuit 340, a NOR (negative logical sum) gate 350, and inverters 361 and 362.
  • the differential input circuit 320 includes differential transistors 227 and 228, a current source transistor 229, and P-type transistors 321 and 322.
  • the differential transistors 227 and 228 in the differential input circuit 320 and the current source transistor 229 are arranged in the light receiving chip 201, for example.
  • the circuits after the P-type transistors 321 and 322 are arranged in the circuit chip 202.
  • the photodiode 223 is to generate electric charge by photoelectric conversion.
  • the discharging transistor 222 discharges electric charges from the photodiode 223 when discharging is instructed by a drive signal OFG from a driver such as the V driver 231.
  • the transfer transistor 224 transfers the electric charge from the photodiode 223 to the floating diffusion layer 225 at the end of exposure when the transfer is instructed by the transfer signal TX from the driver.
  • the floating diffusion layer 225 accumulates the transferred charges and generates an analog pixel signal SIG having a voltage corresponding to the accumulated charge amount.
  • the reset transistor 226 initializes the floating diffusion layer 225 when initialization is instructed by the reset signal AZ from the driver.
  • the level of the pixel signal SIG when the pixel 220 is initialized corresponds to the reset level.
  • the level of the pixel signal SIG corresponding to the exposure amount at the end of exposure corresponds to the signal level.
  • the circuit of the pixel 220 is not limited to the circuit illustrated in the figure as long as it can generate the pixel signal SIG.
  • the drain transistor 222 may be omitted.
  • N-type MOS transistors are used as the differential transistors 227 and 228.
  • the drains of the differential transistors 227 and 228 are connected to the circuits in the circuit chip 202 via the signal lines 208 and 209.
  • the gate of the differential transistor 228 is connected to the floating diffusion layer 225, and the gate of the differential transistor 227 is connected to the DAC 234.
  • the sources of the differential transistors 227 and 228 are commonly connected to the current source transistor 229.
  • the current source transistor 229 supplies a constant current.
  • the current source transistor 229 for example, an N-type MOS transistor is used.
  • the current source transistor 229 is inserted between the common node of the differential transistors 227 and 228 and the terminal of a predetermined reference potential (ground potential or the like).
  • the P-type transistors 321 and 322 are connected in parallel to the terminal of the power supply voltage VDDH.
  • the gate of the P-type transistor 321 is connected to its drain and the gate of the P-type transistor 322.
  • the drain of the P-type transistor 321 is connected to the drain of the differential transistor 227 via the signal line 208.
  • the drain of the P-type transistor 322 is connected to the drain of the differential transistor 228 via the signal line 209, and is also connected to the voltage conversion circuit 330.
  • the circuit including the P-type transistors 321 and 322, the differential transistors 227 and 228, and the current source transistor 229 is a differential input circuit 320 that compares the analog pixel signal SIG with the reference signal RMP. Function as.
  • the voltage conversion circuit 330 converts the voltage of the output signal from the differential input circuit 320. By changing to a voltage of a lower system, the low breakdown voltage transistor can be used in the circuit in the subsequent stage. As a result, the area of the circuit in the subsequent stage can be reduced.
  • the voltage conversion circuit 330 supplies the converted signal to the control circuit 340.
  • the control circuit 340 accelerates the inversion transition of the output signal of the voltage conversion circuit 330.
  • the NOR gate 350 supplies the NAND of the signal from the control circuit 340 and the drive signal from the driver to the inverter 361.
  • the inverter 361 inverts the signal from the NOR gate 350 and supplies it as the comparison result XVCO to the inverter 362 and the storage units 400 and 401.
  • the inverter 362 inverts the comparison result XVCO and supplies it as the comparison result VCO to the storage unit 400 or 401.
  • the circuit composed of the control circuit 340, the NOR gate 350, and the inverters 361 and 362 functions as a positive feedback circuit that feeds back a part of the output to the input and accelerates the inverted transition of the comparison result VCO.
  • circuits in the subsequent stages of the P-type transistors 321 and 322 are arranged on the circuit chip 202 and the other circuits are arranged on the light receiving chip 201, the circuits arranged on the respective chips are not limited to this configuration.
  • the voltage conversion circuit 330 may be omitted. In this case, it is necessary to use high breakdown voltage transistors in the subsequent circuit.
  • FIG. 14 is a circuit diagram showing a configuration example of the voltage conversion circuit 330, the control circuit 340, and the NOR gate 350 according to the first embodiment of the present technology.
  • the voltage conversion circuit 330 includes a P-type transistor 331 and N-type transistors 332 and 333.
  • MOS transistors are used as these transistors.
  • the P-type transistor 331 is connected to the terminal of the power supply voltage VDDH in parallel with the P-type transistors 321 and 322.
  • the gate of the P-type transistor 331 is connected to the drain of the P-type transistor 322.
  • the N-type transistors 332 and 333 are connected in series between the drain of the P-type transistor 331 and the terminal of the reference potential (ground potential or the like).
  • the gate of the N-type transistor 332 is connected to the terminal of the power supply voltage VDDL lower than the power supply voltage VDDH, and the drive signal INI1 from the driver such as the V driver 241 is input to the gate of the N-type transistor 333.
  • the connection point of the N-type transistors 332 and 333 is connected to the control circuit 340 and the NOR gate 350.
  • the control circuit 340 also includes P-type transistors 341 and 342.
  • P-type transistors 341 and 342 are connected in series between the terminal of power supply voltage VDDL and the connection point of N-type transistors 332 and 333.
  • the drive signal INI2 from a driver such as the V driver 231 is input to the gate of the P-type transistor 341, and the feedback signal PFB from the NOR gate 350 is input to the gate of the P-type transistor 342.
  • the NOR gate 350 also includes P-type transistors 355 and 356 and N-type transistors 354 and 357.
  • P-type transistors 355 and 356 are connected in series to the terminal of power supply voltage VDDL.
  • N-type transistors 354 and 357 are connected in parallel between P-type transistor 356 and a terminal of a reference potential (ground potential or the like).
  • the gates of the N-type transistor 354 and the P-type transistor 355 are commonly connected to the control circuit 340.
  • a drive signal TESTVCO from a driver such as the V driver 241 is input to the gates of the N-type transistor 357 and the P-type transistor 356.
  • the drive signal TESTVCO is a signal for forcibly inverting the signal at the end of AD conversion and outputting the comparison result VCO.
  • the feedback signal PFB is output from the connection point of the N-type transistor 357 and the P-type transistor 356 to the control circuit 340.
  • circuit configurations of the voltage conversion circuit 330, the control circuit 340, and the NOR gate 350 are not limited to the circuits illustrated in FIG. 14 as long as the functions described in FIG. 13 can be realized.
  • FIG. 15 is a perspective view showing an example of a connection relationship between the pixel 220 and the comparison unit 310 according to the first embodiment of the present technology.
  • the coordinates of the pixel 220 in the X (X is an integer) row and the Y (Y is an integer) column in the pixel block 211 are (X, Y).
  • the four pixels of the coordinates (0,0), (0,1), (1,0) and (1,1) on the left side are connected to the four comparison units 310 on the left side.
  • the four pixels of the coordinates (0, 2), (0, 3), (1, 2), and (1, 3) on the right side are connected to the four comparison units 310 on the right side.
  • “CM” indicates the comparison unit 310
  • MCM indicates the storage units 400 and 401.
  • FIG. 16 is a block diagram showing a configuration example of the storage unit 400 according to the first embodiment of the present technology.
  • the storage unit 400 includes a plurality of latch units 410. When the number of comparison units 310 is four, four latch units 410 are provided.
  • the latch unit 410 holds the time code transferred by the repeater 500 via the local bit line LBLW as pixel data when the comparison result VCO of the corresponding comparison unit 310 is inverted. Further, the latch unit 410 outputs each of the reset level and the signal level in the held pixel data to the repeater 500 via the local bit line LBLR.
  • the configuration of the redundant latch unit 460 is similar to that of the latch unit 410.
  • the driver such as the V driver 241 supplies the control signal WORD ⁇ m> to the m-th latch unit 410 and the control signal WORD ⁇ 3> to the redundant latch unit 460. Further, the driver supplies N-bit control signals LATTRP and LATTRD to the three latch units 410 and the redundant latch unit 460.
  • the control signal WORD ⁇ m> is a signal for instructing the output of the data held in the m-th circuit (latch unit 410).
  • the control signal LATTRP includes N control signals LATTRP ⁇ n>, and the control signal LATTRP ⁇ n> is a signal instructing the output of the n-th bit in the reset level.
  • the control signal LATTRD includes N control signals LATTRD ⁇ n>, and the control signal LATTRD ⁇ n> is a signal instructing the output of the n-th bit in the signal level.
  • FIG. 17 is a block diagram showing a configuration example of the latch unit 410 according to the first embodiment of the present technology.
  • the latch unit 410 includes N latch circuits 420 and a redundant latch circuit 470.
  • the latch circuit 420 holds any bit in the time code.
  • the latch unit 410 is connected to the N local bit lines LBLW and the N local bit lines LBLR.
  • the n-th local bit line LBLW ⁇ n> and the n-th local bit line LBLR ⁇ n> are connected to the n-th latch circuit 420.
  • Each of the local bit lines LBLR ⁇ n> is not one, but includes a bit line for transferring a reset level and a bit line for transferring a signal level, as described later with reference to FIG.
  • control signals LATTRP ⁇ n> and LATTRD ⁇ n> are input to the nth latch circuit 420, and the control signal WORD ⁇ m> and the comparison result VCO ⁇ m> are input to the N latch circuits 420, respectively. To be done.
  • the N latch circuits 420 hold the N-bit time code from the repeater 500 when the comparison result VCO ⁇ m> is inverted. Then, these latch circuits 420 sequentially output the reset level and the signal level to the repeater 500.
  • the configuration of the redundant latch circuit 470 is similar to that of the latch circuit 420.
  • FIG. 18 is a block diagram showing a configuration example of the latch circuit 420 according to the first embodiment of the present technology.
  • the latch circuit 420 includes a write latch 430, a reset level read latch 440 and a signal level read latch 450.
  • the write latch 430 holds any bit in the time code (that is, write data) when the comparison result VCO ⁇ m> is inverted.
  • the write latch 430 includes inverters 431 to 434.
  • the inverter 431 inverts the bit transferred via the local bit line LBLW ⁇ n> when the comparison result VCO ⁇ m> is inverted from the low level to the high level.
  • the inverter 431 outputs the inverted bit to the inverter 432.
  • the inverter 432 inverts the bit from the inverter 431 and outputs it to the inverters 433 and 434.
  • the inverter 434 inverts the bit from the inverter 432 and outputs it to the inverter 432 when the comparison result XVCO ⁇ m> is at a high level.
  • the inverter 433 inverts the bit from the inverter 432 and outputs it to the reset level read latch 440 and the signal level read latch 450.
  • the circuit configuration of the write latch 430 is not limited to the circuit illustrated in the figure as long as it can hold a bit when the comparison result VCO ⁇ m> is inverted.
  • the reset level read latch 440 holds the bit from the write latch 430 under the control of the driver such as the V driver 241.
  • the driver causes the reset level read latch 440 to hold the bit in the time code (that is, the reset level) when the pixel 220 is initialized.
  • the local bit line LBLR ⁇ n> includes a local bit line LBLP ⁇ n> for transferring a reset level and a local bit line LBLD ⁇ n> for transferring a signal level.
  • the reset level read latch 440 outputs the bit to the repeater 500 via the local bit line LBLP ⁇ n>.
  • the signal level read latch 450 holds the bit from the write latch 430 under the control of the driver such as the V driver 241.
  • the driver causes the signal level read latch 450 to hold the bit in the time code (that is, the signal level) at the end of the exposure.
  • the signal level read latch 450 outputs the bit to the repeater 500 via the local bit line LBLD ⁇ n>.
  • FIG. 19 is a circuit diagram showing a configuration example of the reset level read latch 440 and the signal level read latch 450 according to the first embodiment of the present technology.
  • the reset level read latch 440 includes an N-type transistor 441, a P-type transistor 442, and inverters 443, 444 and 445.
  • the signal level read latch 450 includes an N-type transistor 451, a P-type transistor 452, and inverters 453, 454 and 455.
  • MOS transistors are used as the N-type transistor 441, the P-type transistor 442, the N-type transistor 451, and the P-type transistor 452, for example, MOS transistors are used.
  • the N-type transistor 441 and the P-type transistor 442 are connected in parallel between the output terminal of the write latch 430 and the input terminal of the inverter 443. Further, the control signal LATTRP ⁇ n> is input to the gate of the N-type transistor 441, and XLATTRP ⁇ n> which is the inverted control signal LATTRP ⁇ n> is input to the gate of the P-type transistor 442.
  • the inverter 443 inverts the input bit and outputs it to the inverter 444.
  • the inverter 444 inverts the bit from the inverter 443 when the control signal LATTRP ⁇ n> is at a high level, and outputs it to the inverters 443 and 445.
  • the inverter 445 inverts the bit from the inverter 444 when the control signal WORD ⁇ m> is at a high level and outputs the bit to the repeater 500 via the local bit line LBLP ⁇ n>.
  • the circuit configuration of the signal level read latch 450 is the same as that of the reset level read latch 440. However, the control signal LATTRD ⁇ n> is input to the signal level read latch 450, and the bit is output via the local bit line LBLD ⁇ n>.
  • circuit configurations of the reset level read latch 440 and the signal level read latch 450 are not limited to the configurations illustrated in the figure as long as they can hold bits in accordance with control signals.
  • FIG. 20 is a block diagram showing a configuration example of the redundant latch circuit 470 according to the first embodiment of the present technology.
  • the redundant latch circuit 470 includes a redundant write latch 471, a reset level redundant read latch 472 and a signal level redundant read latch 473.
  • the circuit configuration of the redundant write latch 471 is similar to that of the write latch 430 illustrated in FIG.
  • the circuit configurations of the reset level redundant read latch 472 and the signal level redundant read latch 473 are similar to those of the reset level read latch 440 and the signal level read latch 450 illustrated in FIG.
  • the circuit including the redundant read latch 472 and the signal level redundant read latch 473 is an example of the redundant read latch described in the claims.
  • FIG. 21 is a block diagram illustrating a configuration example of the selection units 600 and 601 according to the first embodiment of the present technology.
  • Each of the selection units 600 and 601 includes a writing side selection unit 610 and a reading side selection unit 620.
  • the selection unit 600 includes, for example, a writing-side selection unit 610 connected to the odd-numbered repeaters 500 and a reading-side selection unit 620 connected to the even-numbered repeaters 500.
  • the selection unit 601 includes a writing-side selection unit 610 connected to the even-numbered repeaters 500 and a reading-side selection unit 620 connected to the odd-numbered repeaters 500.
  • the odd-numbered write-side selection units 610 are arranged on the north side and the even-numbered write-side selection units 610 are arranged on the south side, but the configuration is not limited to this. It is also possible to arrange all the writing side selection units 610 on the north side or the south side. The same applies to the reading side selection unit 620.
  • the write side selection unit 610 selects N of the N write bit transfer circuits 570 and the redundant write bit transfer circuit 570-1 depending on whether or not a failure has occurred. When there is no failure, the write side selection unit 610 selects N write bit transfer circuits 570 and outputs the time code to those circuits. On the other hand, when a failure occurs in the nth path out of the N paths, the write side selection unit 610 causes the N ⁇ 1 write bit transfer circuits 570 and the redundant write bit transfer circuit 570 excluding the circuit corresponding to the nth path. -1 and are selected and the time code is output to those circuits.
  • the read side selection unit 620 selects N of N+1 routes depending on whether or not a failure has occurred.
  • the read side selection unit 620 includes a reset level read side selection unit 630 and a signal level read side selection unit 640.
  • the reset level read side selection unit 630 selects the reset level read data from the N reset level read bit transfer circuits 513 and transfers them to the logic circuit 260 or 270.
  • the reset level read side selection unit 630 is redundant with the N ⁇ 1 reset level read bit transfer circuits 513 excluding the circuit corresponding to the nth path.
  • the reset level read bit transfer circuit 513-1 is selected and the data from them is transferred to the logic circuit 260 or 270.
  • the signal level read side selection unit 640 selects the signal level read data from the N signal level read bit transfer circuits and transfers them to the logic circuit 260 or 270.
  • the signal level read side selection unit 640 determines the N-1 signal level read bit transfer circuits and the redundant signal except the circuit corresponding to the nth path. Select the level read bit transfer circuit and transfer the data from them to the logic circuit 260 or 270.
  • FIG. 22 is a circuit diagram showing a configuration example of the write side selection unit 610 according to the first embodiment of the present technology.
  • the writing side selection unit 610 includes N selectors 611. To simplify the description, consider four selectors 611 out of N.
  • the selector 611 selects one of the two output destinations according to the selection signal and outputs the time code to the selected output destination.
  • the time code generator 280 individually generates the time codes ⁇ 0> to ⁇ 3> and supplies them to the input terminals of the four selectors 611.
  • the selection signal is a signal instructing the output destination.
  • the time code ⁇ n> indicates the n-th bit of the time code.
  • the 0th selector 611 selects one of the main bit lines WB ⁇ 0> and WB ⁇ 1> according to the selection signal WSEL ⁇ 0>, and outputs the time code ⁇ 0> to the bit line.
  • the first selector 611 selects one of the main bit lines WB ⁇ 1> and WB ⁇ 2> according to the selection signal WSEL ⁇ 1> and outputs the time code ⁇ 1> to the bit line.
  • the second selector 611 selects one of the main bit lines WB ⁇ 2> and WB ⁇ 3> according to the selection signal WSEL ⁇ 2> and outputs the time code ⁇ 2> to the bit line.
  • the third selector 611 selects one of the main bit lines WB ⁇ 3> and WB ⁇ 4> according to the selection signal WSEL ⁇ 3> and outputs the time code ⁇ 3> to the bit line.
  • a write bit transfer circuit 570 is connected to each of the main bit lines WB ⁇ 0> to WB ⁇ 3>, and a redundant write bit transfer circuit 570-1 is connected to the main bit line WB ⁇ 4>.
  • the selector 611 is composed of, for example, N-type transistors 612 and 614 and P-type transistors 613 and 615.
  • MOS transistors are used as these transistors.
  • the N-type transistor 612 and the P-type transistor 613 are connected in parallel between the main bit line WB ⁇ 0> and the time code generator 280.
  • the N-type transistor 614 and the P-type transistor 615 are connected in parallel between the main bit line WB ⁇ 1> and the time code generator 280.
  • a corresponding selection signal (WSEL ⁇ 0> or the like) is input to the gate of the N-type transistor 612, and an inverted signal (XWSEL ⁇ 0> or the like) of the selection signal is input to the gate of the P-type transistor 613.
  • a signal (XWSEL ⁇ 0> or the like) obtained by inverting a corresponding selection signal is input to the gate of the N-type transistor 614, and a corresponding selection signal (WSEL ⁇ 0> or the like) is input to the gate of the P-type transistor 615.
  • the circuit configurations of the first and subsequent selectors 611 are the same as those of the zeroth selector.
  • the selection signal is supplied by the logic circuit 260 or 270 via a control line wired in the horizontal direction. It should be noted that this control line can be wired in the vertical direction. Further, instead of the logic circuit 260 or the like, a driver such as the H driver 251 can supply the selection signal.
  • the logic circuit 260 or 270 causes the main bit lines WB ⁇ 0> to WB ⁇ 3> to be selected by the selection signal, and the time codes ⁇ 0> to ⁇ 3> to be transmitted through the four write bits. Transfer to the transfer circuit 570.
  • the logic circuit 260 or the like causes the selection signal to select the four local bit lines except the nth path. Then, the logic circuit 260 or the like transfers the time codes ⁇ 0> to ⁇ 3> to the three write bit transfer circuits 570 and the redundant write bit transfer circuit 570-1 via these local bit lines.
  • FIG. 23 is a circuit diagram showing a configuration example of the reset level read side selection unit 630 according to the first embodiment of the present technology.
  • the reset level read side selection unit 630 includes N selectors 631. To simplify the explanation, consider four selectors 631 out of N.
  • the selector 631 selects one of the two input sources according to the selection signal and outputs the data from the selected input source to the logic circuit 260 or 270.
  • the selection signal is a signal indicating the input source.
  • the 0th selector 631 selects one of the main bit lines PB ⁇ 0> and PB ⁇ 1> according to the selection signal PSEL ⁇ 0> and outputs the data from the bit line.
  • the first selector 631 selects one of the main bit lines PB ⁇ 1> and PB ⁇ 2> according to the selection signal PSEL ⁇ 1> and outputs the data from the bit line.
  • the second selector 631 selects one of the main bit lines PB ⁇ 2> and PB ⁇ 3> according to the selection signal PSEL ⁇ 2> and outputs the data from the bit line.
  • the third selector 631 selects one of the main bit lines PB ⁇ 3> and PB ⁇ 4> according to the selection signal PSEL ⁇ 3> and outputs the data from the bit line.
  • a reset level read bit transfer circuit 513 is connected to each of the main bit lines PB ⁇ 0> to PB ⁇ 3>, and a redundant reset level read bit transfer circuit 513-1 is connected to the local bit line PB ⁇ 4>. To be done.
  • the circuit configuration of the selector 631 is similar to that of the selector 611.
  • the logic circuit 260 or 270 causes the selection signal to select the main bit lines PB ⁇ 0> to PB ⁇ 3> and transfers the reset level read bit from these bit lines to the logic circuit 260 or the like.
  • the logic circuit 260 or the like causes the selection signal to select the four main bit lines except the m-th path. Then, the logic circuit 260 or the like transfers the reset level read bits from those bit lines to the logic circuit 260 or the like.
  • FIG. 24 is a circuit diagram showing a configuration example of the signal level reading side selection unit 640 in the first embodiment of the present technology.
  • the signal level read side selection unit 640 includes N selectors 641. To simplify the description, consider four selectors 641 out of N.
  • the selector 641 selects one of the two input sources according to the selection signal and outputs the data from the selected input source to the logic circuit 260 or 270.
  • the selection signal is a signal indicating the input source.
  • the 0th selector 641 selects one of the main bit lines DB ⁇ 0> and DB ⁇ 1> according to the selection signal DSEL ⁇ 0>, and outputs the data from the bit line.
  • the first selector 641 selects one of the main bit lines DB ⁇ 1> and DB ⁇ 2> according to the selection signal DSEL ⁇ 1> and outputs the data from the bit line.
  • the second selector 641 selects one of the main bit lines DB ⁇ 2> and DB ⁇ 3> according to the selection signal DSEL ⁇ 2> and outputs the data from the bit line.
  • the third selector 641 selects one of the main bit lines PB ⁇ 3> and PB ⁇ 4> according to the selection signal DSEL ⁇ 3> and outputs the data from the bit line.
  • a signal level read bit transfer circuit is connected to each of the local bit lines DB ⁇ 0> to DB ⁇ 3>, and a redundant signal level read bit transfer circuit is connected to the local bit line PB ⁇ 4>.
  • the circuit configuration of the selector 641 is similar to that of the selector 611.
  • the logic circuit 260 or 270 causes the selection bit to select the main bit lines DB ⁇ 0> to DB ⁇ 3> and transfers the signal level read bit from these bit lines to the logic circuit 260 or the like.
  • the logic circuit 260 or the like causes the selection signal to select the four main bit lines except the nth path. Then, the logic circuit 260 or the like transfers the signal level read bits from those bit lines to the logic circuit 260 or the like.
  • FIG. 25 is a diagram illustrating an example of control of the reset level reading side selection unit 630 according to the first embodiment of the present technology.
  • a is a diagram showing an example of the state of the reset level read side selection unit 630 when there is no failure.
  • B in the figure is a diagram showing an example of the state of the reset level read side selection unit 630 when a failure occurs in the 0th path.
  • FIG. 7C is a diagram showing an example of the state of the reset level read side selection unit 630 when a failure occurs in the first path.
  • the logic circuit 260 or 270 causes the main bit lines PB ⁇ 0> to DB ⁇ 3> to be selected by the selection signal. As a result, the reset level read bit of 4 bits is read out through those main bit lines.
  • the logic circuit 260 or the like causes the main bit lines PB ⁇ 1> to DB ⁇ 4> to be selected by the selection signal.
  • the logic circuit 260 or the like causes the main bit lines PB ⁇ 1> to DB ⁇ 4> to be selected by the selection signal.
  • 3 bits of the reset level read data are read out through the main bit lines PB ⁇ 1> to PB ⁇ 3>, and the remaining bits are read out through the local bit line DB ⁇ 4>.
  • the logic circuit 260 or the like causes the selection signal to select the main bit lines PB ⁇ 0>, PB ⁇ 2>, PB ⁇ 3> and PB ⁇ 4>.
  • the logic circuit 260 or the like causes the selection signal to select the main bit lines PB ⁇ 0>, PB ⁇ 2>, PB ⁇ 3> and PB ⁇ 4>.
  • 3 bits of the reset level read data are read out through the main bit lines PB ⁇ 0>, PB ⁇ 2> and PB ⁇ 3>, and the remaining bits are read out through the main bit line PB ⁇ 4>. Read out.
  • the four lines except the main bit line corresponding to that route are selected. In this selection, the bit selections of the write data transfer circuit 560, the reset level read data transfer circuit 512, and the signal level read data transfer circuit 522 are synchronized.
  • the circuits whose failure is to be detected are the write bit transfer circuit 570 illustrated in FIG. 8, the reset level read bit transfer circuit 513 illustrated in FIG. 11, the signal level read bit transfer circuit (not shown), and the latch. And circuit.
  • the latch circuit is a circuit in the latch unit 410 illustrated in FIG.
  • the selection unit 600 selects a redundant circuit instead of the failed circuit and transfers the time data to the redundant circuit.
  • the redundant circuit includes a redundant write bit transfer circuit 570-1 illustrated in FIG. 8, a redundant reset level read bit transfer circuit 513-1 illustrated in FIG. 11, and a redundant signal level read bit transfer circuit (not shown).
  • a redundant latch circuit is a circuit in the redundant latch unit 460 illustrated in FIG.
  • FIG. 26 is a block diagram showing a configuration example of the logic circuit 270 according to the first embodiment of the present technology.
  • the logic circuit 270 includes a selector 271, a signal processing unit 272, a failure detection unit 273, and a selection control unit 274.
  • the configuration of the logic circuit 260 is similar to that of the logic circuit 270.
  • the signal processing unit 272 performs various kinds of signal processing such as CDS processing and demosaic processing for obtaining the difference between the reset level and the signal level for each pixel.
  • the signal processing unit 272 supplies each of the processed pixel data to the DSP circuit 120.
  • the selector 271 selects an output destination according to the mode signal MODE and outputs the pixel data of the selection unit 601.
  • the mode signal MODE indicates any one of a plurality of modes including an imaging mode and a test mode. In the test mode, the selector 271 outputs pixel data to the failure detection unit 273, and in the imaging mode, the selector 271 outputs pixel data to the signal processing unit 272.
  • the failure detection unit 273 detects whether or not there is a failure in a circuit (such as the reset level read bit transfer circuit 513) on the path for each time code transfer path.
  • a circuit such as the reset level read bit transfer circuit 513
  • the test mode for example, a predetermined test image provided with a known test pattern is captured. The pixel value of each pixel of this test image is input in advance to the failure detection unit 273 as an expected value.
  • the failure detection unit 273 compares the pixel data of the image data of the captured test image with the expected value for each pixel. Then, the failure detection unit 273 determines a pixel whose difference from the expected value exceeds a predetermined allowable value as a defective pixel, and determines that the circuit on the path corresponding to the defective pixel has a failure.
  • the time code is transferred via the four routes for each column of the cluster 300 (in other words, the repeater 500).
  • Two pixels at coordinates (0,0) and (0,3) in FIG. 14 are transferred via the 0th path.
  • Two pixels with coordinates (0,1) and (0,2) are transferred via the first path.
  • the two pixels with coordinates (1,0) and (1,3) are transferred via the second path.
  • the two pixels at coordinates (1,1) and (1,2) are transferred via the third path. Therefore, the failure detection unit 273 can identify the circuit in which the failure has occurred from the coordinates of the defective pixel. Then, the failure detection unit 273 supplies the detection result to the selection control unit 274 and the driver such as the V driver 241.
  • the selection control unit 274 controls the connection destinations of the selection units 600 and 601 by the selection signals WSEL, PSEL, and DSEL based on the failure detection result.
  • FIG. 27 is a diagram for explaining control on the writing side according to the first embodiment of the present technology. Although there are N paths for transferring the time code, only one path and only one write bit transfer circuit 570 are provided in the figure for the purpose of simplifying the description.
  • the time code generator 280 generates a digital time code and supplies it to the writing side selector 610.
  • the write bit transfer circuit 570 supplies the bit in the digital signal (that is, the time code) to the storage unit 400 in the cluster 300 as the write bit.
  • the write bit transfer circuit 570 is an example of the write circuit described in the claims.
  • the comparison unit 310 in the cluster 300 compares the analog pixel signal SIG with a predetermined reference signal RMP and supplies the comparison result VCO to the storage unit 400.
  • the N write latches 430 in the storage unit 400 hold write data (that is, time code) as pixel data when the comparison result VCO is inverted. As a result, the analog pixel signal SIG is converted into a digital signal (pixel data).
  • the cluster 300 is an example of the analog-digital conversion unit in the claims.
  • the failure detection unit 273 detects whether or not a failure has occurred in the path including the write bit transfer circuit 570 in the test mode. When a failure occurs, the write side selection unit 610 selects the redundant write bit transfer circuit 570-1 under the control of the selection control unit 274 and supplies any bit of the time data. Then, the redundant write bit transfer circuit 570-1 supplies the bit to the storage section 400.
  • the redundant write bit transfer circuit 570-1 is an example of the redundant write circuit described in the claims.
  • the redundant write latch 471 holds the bit from the redundant write bit transfer circuit 570-1 when the comparison result VCO is inverted.
  • FIG. 28 is a diagram for explaining control on the reading side in the first embodiment of the present technology. Although there are N paths for transferring the time code, only one path and only one reset level read bit transfer circuit 513-1 are shown in the figure for the purpose of simplifying the description.
  • the N reset level read latches 440 hold the time code corresponding to the reset level.
  • the reset level read bit transfer circuit 513 reads the bit in the digital signal (that is, the time code) as the reset level read bit and supplies it to the reset level read side selection unit 630.
  • the failure detection unit 273 detects whether or not a failure has occurred in the path including the reset level read bit transfer circuit 513 in the test mode. When a failure occurs, the reset level redundant read latch 472 holds any bit of the time code corresponding to the reset level.
  • the reset level redundant bit transfer circuit 513-1 reads the bit in the digital signal (time code) as the reset level read 0 bit and supplies it to the reset level read side selection unit 630.
  • the reset level read side selection unit 630 selects the bit from the redundant reset level read bit transfer circuit 513-1 according to the control of the selection control unit 274 and outputs it to the signal processing unit 271.
  • the signal level read control is the same as the reset level read control illustrated in FIG.
  • the reset level read bit transfer circuit 513-1 and the signal level read bit transfer circuit are examples of the read unit described in the claims.
  • the redundant reset level read bit transfer circuit 513-1 and the redundant signal level read bit transfer circuit are examples of the redundant read unit described in the claims.
  • the selection units 600 and 601 select a redundant circuit (such as the reset level redundant bit transfer circuit 513-1) and input/output data. As a result, the redundant circuit transfers the data instead of the failed circuit, so that the deterioration of the image quality due to the failure of the circuit can be prevented.
  • FIG. 29 is a flowchart showing an example of the operation of the solid-state imaging device 200 according to the first embodiment of the present technology.
  • the operation of the solid-state image sensor 200 is started, for example, when the test mode is set.
  • the solid-state imaging device 200 captures a test image (step S901), and the failure detection unit 273 in the solid-state imaging device 200 detects whether or not a failure has occurred in the circuit on the path for transferring the time code (step). S902).
  • the selection control unit 274 determines whether or not there is a failure (step S903). When there is a failure (step S903: Yes), the selection control unit 274 selects a redundant circuit (step S904).
  • step S903 If there is no failure (step S903: No), or after step S904, the solid-state imaging device 200 switches to the imaging mode and images the image data (step S905). After step S905, the solid-state imaging device 200 ends the operation for capturing an image.
  • the read side selection unit 620 uses the redundant reset level read bit transfer circuit 513-1 instead of the bit from the failed circuit. Select the bit of. As a result, it is possible to prevent data transfer by the circuit in which the failure has occurred. As a result, it is possible to prevent the image quality of the image data from being degraded by the circuit in which the failure has occurred.
  • a 1-bit redundant circuit (such as the reset level redundant bit transfer circuit 513-1) is arranged for each N-bit time code, and a failure occurs in any of the N paths. At that time, the redundant circuit transferred the time code.
  • the number of redundant circuits may be insufficient and the time code may be transferred by the failed circuit.
  • the solid-state image sensor 200 of the modified example of the first embodiment is different from that of the first embodiment in that a plurality of redundant circuits are arranged for each time code.
  • FIG. 30 is a circuit diagram showing a configuration example of the write side selection unit 610 in the modification example of the first embodiment of the present technology.
  • the write side selection unit 610 according to the modified example of the first embodiment includes switches 651 to 662.
  • the switches 651 to 653 form the 0th distribution circuit 650
  • the switches 654 to 656 form the 1st distribution circuit 650.
  • the switches 657 to 659 form a second distribution circuit 650
  • the switches 660 to 662 form a third distribution circuit 650.
  • two write redundant bit transfer circuits 570-1 are arranged for every N bits. Further, a main bit line WB ⁇ 5> is further wired on the write side. A redundant write bit transfer circuit 570-1 is connected to each of main bit lines WB ⁇ 4> and WB ⁇ 5>.
  • the distribution circuit 650 selects one of three output destinations according to a 3-bit selection signal and outputs a time code.
  • the 0th distribution circuit 650 outputs the time code ⁇ 0> to any of the main bit lines WB ⁇ 0> to WB ⁇ 2>.
  • the first distribution circuit 650 outputs the time code ⁇ 1> to any of the main bit lines WB ⁇ 1> to WB ⁇ 3>.
  • the second distribution circuit 650 outputs the time code ⁇ 2> to any of the main bit lines WB ⁇ 2> to WB ⁇ 4>.
  • the third distribution circuit 650 outputs the time code ⁇ 3> to any of the main bit lines WB ⁇ 3> to WB ⁇ 5>.
  • the distribution circuit 650 is composed of, for example, N-type transistors 671, 673 and 675 and P-type transistors 672, 674 and 676.
  • MOS transistors are used as these transistors.
  • the N-type transistor 671 and the P-type transistor 672 are connected in parallel between the main bit line WB ⁇ 0> and the time code generator 280.
  • N-type transistor 673 and P-type transistor 674 are connected in parallel between main bit line WB ⁇ 1> and time code generator 280.
  • N-type transistor 675 and P-type transistor 676 are connected in parallel between main bit line WB ⁇ 2> and time code generator 280.
  • the selection signal WSEL ⁇ 0> is input to the gate of the N-type transistor 671, and the selection signal WSEL ⁇ 1> is input to the gate of the P-type transistor 672.
  • the selection signal WSEL ⁇ 1> is input to the gate of the N-type transistor 673, and the selection signal WSEL ⁇ 2> is input to the gate of the P-type transistor 674.
  • the selection signal WSEL ⁇ 2> is input to the gate of the N-type transistor 675, and the selection signal WSEL ⁇ 0> is input to the gate of the P-type transistor 676.
  • the configuration of the first and subsequent distribution circuits 650 is the same as that of the zeroth distribution circuit 650.
  • the logic circuit 260 or 270 controls the distribution circuit 650 by setting one of the bits of the selection signals WSEL ⁇ 0> to ⁇ 2> to the high level and the rest to the low level, thereby controlling one of the three output destinations. To select. Similarly, for the switches 654 and thereafter, a 3-bit selection signal is input to each distribution circuit 650.
  • the logic circuit 260 or the like causes the 0th distribution circuit 650 to select the main bit line WB ⁇ 2> and causes the 1st distribution circuit 650 to select the main bit line WB ⁇ 2>. Select WB ⁇ 3>. Further, the logic circuit 260 or the like causes the third distribution circuit 650 to select the main bit line WB ⁇ 4> and the fourth distribution circuit 650 to select the main bit line WB ⁇ 5>.
  • the solid-state imaging device 200 can prevent data transfer by the circuit in which the failure has occurred, even when two of the four paths have a failure.
  • the redundant circuits after the redundant write bit transfer circuit 570-1 that is, the redundant reset level read bit transfer circuit 513-1, the redundant signal level read bit transfer circuit, and the redundant latch circuit illustrated in FIG. They are arranged one by one.
  • the redundant write side selection unit 610 four distribution circuits 650 are arranged in the reset level read side selection unit 630 and the signal level read side selection unit 640, and four of the six main bit lines are selected. And read the data.
  • two redundant circuits (such as the redundant write bit transfer circuit 570-1) are arranged for every N bits, so that two of the N paths are provided. Even if one of the circuits fails, it is possible to prevent data transfer by the circuit in which the failure has occurred.
  • the write-side selection unit 610 and the read-side selection unit 620 are arranged for each repeater 500, but the larger the number of repeaters 500, the write-side selection unit 610 and the read-side selection unit. The number of each of the 620 increases. As a result, the circuit scale of the solid-state image sensor 200 may increase.
  • the solid-state imaging device 200 of the second embodiment is different from that of the first embodiment in that a plurality of repeaters 500 share a set of a write-side selection unit 610 and a read-side selection unit 620.
  • FIG. 31 is a block diagram illustrating a configuration example of the selection units 600 and 601 according to the second embodiment of the present technology.
  • all the repeaters 500 are divided into a plurality of groups each including a plurality (eg, four) of repeaters 500.
  • the writing side selection unit 610 and the reading side selection unit 620 are arranged one by one for each group.
  • a plurality of (eg, four) repeaters 500 in the group are commonly connected to the write side selection unit 610, and these repeaters 500 share the write side selection unit 610.
  • the read side selection unit 620 is also commonly connected to a plurality of (for example, four) repeaters 500 in the group, and these repeaters 500 share the read side selection unit 620.
  • the redundant circuit described above is arranged for each repeater 500, and the bit line selection pattern is shared by the plurality of repeaters 500 sharing the write side selection unit 610 and the read side selection unit 620. It should be noted that although all the write side selection units 610 are arranged on the north side and all the read side selection units 620 are arranged on the south side, the present invention is not limited to this configuration.
  • All the write side selection units 610 may be arranged on the south side, and all the read side selection units 620 may be arranged on the north side. Further, the odd-numbered writing-side selection units 610 may be arranged on one of the south side and the north side (North side, etc.), and the even-numbered writing-side selection units 610 may be arranged on the other side (South side, etc.). The same applies to the reading side selection unit 620.
  • the plurality of repeaters 500 share the write side selection unit 610 and the read side selection unit 620.
  • the circuit scale of the solid-state imaging device 200 can be reduced as compared with the first embodiment in which the write side selection unit 610 and the read side selection unit 620 are arranged for each repeater 500.
  • the write side selection unit 610 and the read side selection unit 620 are arranged for each repeater 500. However, as the number of repeaters 500 increases, the write side selection unit 610 and the read side selection unit 620. The number of each of the 620 increases. As a result, the circuit scale of the solid-state image sensor 200 may increase.
  • the solid-state imaging device 200 according to the third embodiment is different from that according to the first embodiment in that all the repeaters 500 share a set of a write side selection unit 610 and a read side selection unit 620.
  • FIG. 32 is a block diagram showing a configuration example of the selection units 600 and 601 according to the third embodiment of the present technology.
  • the write-side selection unit 610 is commonly connected to all the repeaters 500, and these repeaters 500 share the write-side selection unit 610.
  • the read side selection unit 620 is commonly connected to all the repeaters 500, and these repeaters 500 share the read side selection unit 620.
  • the above-mentioned redundant circuit is arranged for each repeater 500, and the selection pattern of the bit line is shared by the repeaters 500. ..
  • all the repeaters 500 share the write side selection unit 610 and the read side selection unit 620.
  • the circuit scale of the solid-state imaging device 200 can be reduced as compared with the first embodiment in which the write side selection unit 610 and the read side selection unit 620 are arranged for each repeater 500.
  • the technology according to the present disclosure (this technology) can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. May be.
  • FIG. 33 is a block diagram showing a schematic configuration example of a vehicle control system that is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, a voice image output unit 12052, and an in-vehicle network I/F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a drive force generation device for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to wheels, and a steering angle of the vehicle. It functions as a steering mechanism for adjustment and a control device such as a braking device that generates a braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a winker, or a fog lamp.
  • the body system control unit 12020 may receive radio waves or signals of various switches transmitted from a portable device that substitutes for a key.
  • the body system control unit 12020 receives input of these radio waves or signals and controls the vehicle door lock device, power window device, lamp, and the like.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the imaging unit 12031 is connected to the vehicle outside information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the image capturing unit 12031 to capture an image of the vehicle exterior and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image or as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • a driver state detection unit 12041 that detects the state of the driver is connected.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
  • the microcomputer 12051 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the information on the inside and outside of the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or impact mitigation of a vehicle, follow-up traveling based on an inter-vehicle distance, vehicle speed maintenance traveling, a vehicle collision warning, or a vehicle lane departure warning. It is possible to perform cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generation device, the steering mechanism, the braking device, or the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's It is possible to perform cooperative control for the purpose of autonomous driving or the like that autonomously travels without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
  • the voice image output unit 12052 transmits an output signal of at least one of a voice and an image to an output device capable of visually or audibly notifying information to an occupant of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
  • FIG. 34 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the image pickup unit 12031 includes image pickup units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield inside the vehicle.
  • the image capturing unit 12101 provided on the front nose and the image capturing unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 included in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic signal, a traffic sign, a lane, or the like.
  • FIG. 34 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors
  • the imaging range 12114 indicates The imaging range of the imaging part 12104 provided in a rear bumper or a back door is shown.
  • a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the image capturing units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image capturing units 12101 to 12104 may be a stereo camera including a plurality of image capturing elements, or may be an image capturing element having pixels for phase difference detection.
  • the microcomputer 12051 based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object within the imaging range 12111 to 12114 and the temporal change of this distance (relative speed with respect to the vehicle 12100).
  • the closest three-dimensional object on the traveling path of the vehicle 12100 which travels in the substantially same direction as the vehicle 12100 at a predetermined speed (for example, 0 km/h or more), can be extracted as a preceding vehicle by determining it can.
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving or the like that autonomously travels without depending on the operation of the driver.
  • the microcomputer 12051 uses the distance information obtained from the imaging units 12101 to 12104 to convert three-dimensional object data regarding a three-dimensional object into another three-dimensional object such as a two-wheeled vehicle, an ordinary vehicle, a large vehicle, a pedestrian, and a utility pole. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles visible to the driver of the vehicle 12100 and obstacles difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or more than the set value and there is a possibility of collision, the microcomputer 12051 outputs the audio through the audio speaker 12061 and the display unit 12062. A driver can be assisted for avoiding a collision by outputting an alarm to the driver and performing forced deceleration or avoidance steering through the drive system control unit 12010.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the images captured by the imaging units 12101 to 12104.
  • the audio image output unit 12052 causes the recognized pedestrian to have a rectangular contour line for emphasis.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 to display an icon indicating a pedestrian or the like at a desired position.
  • the technology according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above.
  • the imaging device 100 of FIG. 1 can be applied to the imaging unit 12031.
  • the processing procedure described in the above-described embodiment may be regarded as a method having these series of procedures, or as a program for causing a computer to execute the series of procedures or a recording medium storing the program. You can catch it.
  • this recording medium for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
  • the present technology may have the following configurations.
  • An analog-digital converter that converts an analog pixel signal into a digital signal and holds the digital signal,
  • a read circuit that reads out any bit of the digital signal as a read bit;
  • a redundant read circuit for reading any bit of the digital signal as a read bit;
  • a failure detection unit that detects whether or not a failure has occurred in the read circuit,
  • a solid-state imaging device comprising: a read-side selection unit that selects and outputs either the read bit from the read circuit or the read bit from the redundant circuit depending on whether or not the failure has occurred.
  • the read circuit is arranged in each of a plurality of repeaters, The plurality of repeaters, each of which is divided into a plurality of groups of a predetermined number of repeaters, The solid-state imaging device according to (1), wherein the predetermined number of repeaters share the read side selection unit.
  • the read circuit is arranged in each of the plurality of repeaters, The solid-state imaging device according to (1), wherein all of the plurality of repeaters share the read side selection unit.
  • a predetermined number of the read circuits and the redundant read circuits are arranged in a repeater, The solid-state imaging device according to (1), wherein the failure detection unit detects whether or not a failure has occurred in each of the predetermined number of read circuits.
  • the solid-state imaging device in which a predetermined number of redundant read circuits are arranged in the repeater.
  • a write circuit that supplies any bit of the digital signal to the analog-digital conversion unit as a write bit
  • a redundant write circuit that supplies any bit of the digital signal to the analog-to-digital converter as a write bit; Further comprising a write side selection unit that selects one of the write bit from the write circuit and the write bit from the redundant write circuit to supply the digital signal, depending on whether or not the failure has occurred,
  • the solid-state imaging device according to any one of (1) to (5), wherein the failure detection unit detects whether or not a failure has occurred in at least one of the write circuit and the read circuit.
  • the analog-digital conversion unit includes a latch unit that holds the digital signal and a redundant latch unit,
  • the read circuit and the redundant read circuit are the solid-state imaging device according to (6), wherein the read bit is read from the latch unit.
  • the redundant latch unit includes a redundant write latch and a redundant read latch, The redundant write circuit supplies the write bit to the redundant write latch, The solid-state imaging device according to (7), wherein the redundant read circuit reads the read bit from the redundant read latch.
  • the pixel signal includes a reset level when the pixel is initialized and a signal level when the exposure is completed,
  • the read circuit and the redundant read circuit read the bit corresponding to the reset level as a reset level read bit, and read the bit corresponding to the signal level as a signal level read bit,
  • the read side selection unit A reset level read side selection unit that selects either the reset level read bit from the read circuit or the reset level read bit from the redundant circuit depending on whether or not the failure has occurred;
  • the above-mentioned (8) further comprising: a signal level read side selection unit that selects either the signal level read bit from the read circuit or the signal level read bit from the redundant circuit depending on whether or not the failure has occurred.
  • the redundant read latch includes a reset level redundant read latch and a signal level redundant read latch,
  • An analog-digital conversion unit that converts an analog pixel signal into a digital signal and holds the digital signal, A read circuit that reads out any bit of the digital signal as a read bit; A redundant read circuit for reading any bit of the digital signal as a read bit; A failure detection unit that detects whether or not a failure has occurred in the read circuit, A read side selection unit that selects and outputs either the read bit from the read circuit or the read bit from the redundant circuit depending on whether or not the failure has occurred, and data output from the read side selection unit. And an image pickup device including a signal processing unit that processes the image.
  • An analog-digital conversion procedure for converting an analog pixel signal into a digital signal and holding the digital signal, A read procedure in which the read circuit reads any bit of the digital signal as a read bit; A redundant read procedure in which the redundant read circuit reads any bit of the digital signal as a read bit; A failure detection procedure for detecting whether or not a failure has occurred in the read circuit, A method of controlling a solid-state imaging device, comprising: a read-side selection procedure for selecting and outputting either the read bit from the read circuit or the read bit from the redundant circuit depending on whether or not the failure has occurred.

Abstract

In a solid-state imaging element which performs AD conversion for each pixel, deterioration in image quality due to failure of a circuit is prevented. An analog to digital conversion unit converts an analog pixel signal to a digital signal and holds the converted signal. A read circuit reads any bit of the digital signal as a read bit. A redundant read circuit reads any bit of the digital signal as a read bit. A failure detection unit detects whether failure occurs in a data read circuit. A read side selection unit selects one of the bit from the read circuit and the bit from the redundant read circuit in accordance with whether the failure occurs, and outputs the selected bit.

Description

固体撮像素子、撮像装置、および、固体撮像素子の制御方法Solid-state imaging device, imaging device, and method for controlling solid-state imaging device
 本技術は、固体撮像素子、撮像装置、および、固体撮像素子の制御方法に関する。詳しくは、画素毎にアナログ信号をデジタル信号に変換する固体撮像素子、撮像装置、および、固体撮像素子の制御方法に関する。 The present technology relates to a solid-state imaging device, an imaging device, and a method for controlling the solid-state imaging device. More specifically, the present invention relates to a solid-state image sensor that converts an analog signal into a digital signal for each pixel, an image pickup apparatus, and a method for controlling the solid-state image sensor.
 従来より、撮像装置などにおいては、AD(Analog to Digital)変換の速度を速くする目的で、画素毎にアナログ信号をデジタル信号に変換する固体撮像素子が用いられている。例えば、画素信号を生成する画素回路と、画素信号と参照信号との比較結果が反転したときの時刻コードを保持する記憶部と、時刻コードを転送する転送回路とを設けた固体撮像素子が提案されている(例えば、特許文献1参照。)。これらの比較部および記憶部により、画素ごとにアナログの画素信号がデジタルの時刻コードに変換される。 Conventionally, solid-state imaging devices that convert an analog signal into a digital signal for each pixel have been used in imaging devices and the like for the purpose of increasing the speed of AD (Analog to Digital) conversion. For example, a solid-state imaging device provided with a pixel circuit that generates a pixel signal, a storage unit that holds a time code when the comparison result of the pixel signal and the reference signal is inverted, and a transfer circuit that transfers the time code is proposed. (For example, refer to Patent Document 1). An analog pixel signal is converted into a digital time code for each pixel by the comparison unit and the storage unit.
国際公開WO2018/037902号International publication WO2018/037902
 上述の従来技術では、画素毎にAD変換することにより、カラムごとにAD変換する場合よりもAD変換の速度を速くすることができる。しかしながら、画素毎にAD変換を行う構成では、カラムごとにAD変換を行う構成と比較して、固体撮像素子の回路が複雑となり、光電変換素子、転送トランジスタや浮遊拡散層の他、上述したように記憶部や転送回路などが画素毎にさらに必要となる。このため、画素毎にAD変換を行う場合、カラムごとにAD変換を行う場合よりも回路に故障が生じる確率が高くなる。例えば、初期不良や経年劣化により、上述の記憶部や転送回路に故障が生じると、正常な値の画素データが出力されなくなり、欠陥画素が生じる。この欠陥画素により撮像した画像の画質が低下するおそれがある。 In the above-mentioned conventional technology, by performing AD conversion for each pixel, the speed of AD conversion can be made faster than that for AD conversion for each column. However, in the configuration in which the AD conversion is performed for each pixel, the circuit of the solid-state imaging device becomes complicated as compared with the configuration in which the AD conversion is performed for each column, and in addition to the photoelectric conversion element, the transfer transistor and the floating diffusion layer, as described above. In addition, a storage unit, a transfer circuit, etc. are further required for each pixel. Therefore, when AD conversion is performed for each pixel, the probability of circuit failure is higher than when AD conversion is performed for each column. For example, when a failure occurs in the storage unit or the transfer circuit due to an initial failure or deterioration over time, pixel data having a normal value cannot be output and a defective pixel occurs. The image quality of the image picked up by this defective pixel may deteriorate.
 本技術はこのような状況に鑑みて生み出されたものであり、画素毎にAD変換を行う固体撮像素子において、回路の故障による画質の低下を防止することを目的とする。 The present technology was created in view of such circumstances, and it is an object of the present invention to prevent deterioration of image quality due to a circuit failure in a solid-state image sensor that performs AD conversion for each pixel.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、アナログの画素信号をデジタル信号に変換して保持するアナログデジタル変換部と、前記デジタル信号のいずれかのビットを読出しビットとして読み出す読出し回路と、前記デジタル信号のいずれかのビットを読出しビットとして読み出す冗長読出し回路と、前記読出し回路に故障が生じたか否かを検出する故障検出部と、前記故障が生じたか否かにより前記読出し回路からの前記読出しビットと前記冗長回路からの前記読出しビットといずれかを選択して出力する読出し側選択部とを具備する固体撮像素子、および、その制御方法である。これにより、故障が生じたか否かにより読出し回路および冗長読出し回路のいずれかの読出しビットが選択されるという作用をもたらす。 The present technology has been made in order to solve the above-described problems, and a first aspect thereof is that an analog-to-digital conversion unit that converts an analog pixel signal into a digital signal and holds the digital pixel signal, and the digital signal is used. A read circuit that reads any of the bits as a read bit, a redundant read circuit that reads any bit of the digital signal as a read bit, a failure detection unit that detects whether or not a failure has occurred in the read circuit, and the failure. According to whether or not the read bit from the read circuit and the read bit from the redundant circuit are selected and output, a solid-state image sensor, and a control method therefor are provided. is there. This brings about the effect that one of the read bits of the read circuit and the redundant read circuit is selected depending on whether or not a failure has occurred.
 また、この第1の側面において、上記読出し回路は、複数のリピータのそれぞれに配置され、上記複数のリピータは、それぞれが所定数のリピータからなる複数のグループに分割され、上記所定数のリピータは、上記読出し側選択部を共有してもよい。これにより、所定数のリピータが読出し側選択部を共有するという作用をもたらす。 Further, in the first aspect, the read circuit is arranged in each of a plurality of repeaters, the plurality of repeaters are divided into a plurality of groups each including a predetermined number of repeaters, and the predetermined number of repeaters are The read side selection unit may be shared. This brings about the effect that a predetermined number of repeaters share the read side selection unit.
 また、この第1の側面において、上記読出し回路は、複数のリピータのそれぞれに配置され、上記複数のリピータの全てが、上記読出し側選択部を共有してもよい。これにより、全てのリピータが読出し側選択部を共有するという作用をもたらす。 In the first aspect, the read circuit may be arranged in each of the plurality of repeaters, and all the plurality of repeaters may share the read side selection unit. This brings about the effect that all the repeaters share the read side selection unit.
 また、この第1の側面において、所定数の前記読出し回路と前記冗長読出し回路とがリピータに配置され、前記故障検出部は、前記所定数の読出し回路のそれぞれについて故障が生じたか否かを検出してもよい。これにより、リピータごとに所定数の読出し回路の故障の有無が検出されるという作用をもたらす。 Further, in the first aspect, a predetermined number of the read circuits and the redundant read circuits are arranged in a repeater, and the failure detection unit detects whether a failure has occurred in each of the predetermined number of read circuits. You may. This brings about the effect that the presence or absence of a failure in a predetermined number of read circuits is detected for each repeater.
 また、この第1の側面において、上記リピータには、所定数の上記冗長読出し回路が配置されてもよい。これにより、複数の読出し転送回路の故障に対応することができるという作用をもたらす。 Further, in the first aspect, a predetermined number of the redundant read circuits may be arranged in the repeater. This brings about an effect that it is possible to cope with a failure of a plurality of read transfer circuits.
 また、この第1の側面において、前記デジタル信号のいずれかのビットを前記アナログデジタル変換部に書込みビットとして供給する書込み回路と、前記デジタル信号のいずれかのビットを前記アナログデジタル変換部に書込みビットとして供給する冗長書込み回路と、前記故障が生じたか否かにより前記書込み回路からの前記書込みビットと前記冗長書込み回路からの前記書込みビットとのいずれかを選択して前記デジタル信号を供給する書込み側選択部とをさらに具備し、前記故障検出部は、前記書込み回路および前記読出し回路の少なくとも一方に故障が生じたか否かを検出してもよい。これにより、故障が生じたか否かにより書込み回路と冗長書込み回路とのいずれかが選択されるという作用をもたらす。 Also, in the first aspect, a write circuit that supplies any bit of the digital signal to the analog-digital conversion unit as a write bit, and any bit of the digital signal to the analog-digital conversion unit. And a write side which supplies the digital signal by selecting either the write bit from the write circuit or the write bit from the redundant write circuit depending on whether or not the failure has occurred. A selection unit may be further included, and the failure detection unit may detect whether or not a failure has occurred in at least one of the write circuit and the read circuit. This brings about the effect that either the write circuit or the redundant write circuit is selected depending on whether or not a failure has occurred.
 また、この第1の側面において、前記アナログデジタル変換部は、前記デジタル信号を保持するラッチ部および冗長ラッチ部を備え、前記読出し回路および前記冗長読出し回路は、前記ラッチ部から前記読出しビットを読み出してもよい。これにより、故障が生じた際に冗長ラッチ部から読み出しビットが読み出されるという作用をもたらす。 Further, in the first aspect, the analog-digital conversion unit includes a latch unit that holds the digital signal and a redundant latch unit, and the read circuit and the redundant read circuit read the read bit from the latch unit. May be. As a result, the read bit is read from the redundant latch unit when a failure occurs.
 また、この第1の側面において、前記冗長ラッチ部は、冗長ライトラッチと冗長リードラッチとを備え、前記冗長書込み回路は、前記冗長ライトラッチに前記書込みビットを供給し、前記冗長読出し回路は、前記冗長リードラッチから前記読出しビットを読み出してもよい。これにより、冗長ライトラッチに書込みビットが保持され、冗長リードラッチから読み出しビットが読み出されるという作用をもたらす。 Further, in the first aspect, the redundant latch unit includes a redundant write latch and a redundant read latch, the redundant write circuit supplies the write bit to the redundant write latch, and the redundant read circuit, The read bit may be read from the redundant read latch. This brings about the effect that the write bit is held in the redundant write latch and the read bit is read from the redundant read latch.
 また、この第1の側面において、
 前記画素信号は、画素を初期化したときのリセットレベルと露光が終了したときの信号レベルとを含み、前記読出し回路および前記冗長読出し回路は、前記リセットレベルに対応する前記ビットをリセットレベル読出しビットとして読み出し、前記信号レベルに対応する前記ビットを信号レベル読出しビットとして読み出し、前記読出し側選択部は、前記故障が生じたか否かにより前記読出し回路からの前記リセットレベル読出しビットと前記冗長回路からの前記リセットレベル読出しビットとのいずれかを選択するリセットレベル読出し側選択部と、前記故障が生じたか否かにより前記読出し回路からの前記信号レベル読出しビットと前記冗長回路からの前記信号レベル読出しビットとのいずれかを選択する信号レベル読出し側選択部とをを備えてもよい。これにより、リセットレベルおよび信号レベルのそれぞれに対応する読出しビットが読み出されるという作用をもたらす。
Moreover, in this 1st side surface,
The pixel signal includes a reset level when the pixel is initialized and a signal level when the exposure is completed, and the read circuit and the redundant read circuit change the bit corresponding to the reset level to a reset level read bit. And the bit corresponding to the signal level is read as a signal level read bit, and the read side selection unit selects the reset level read bit from the read circuit and the redundant circuit from the redundant circuit depending on whether the failure occurs. A reset level read side selection unit that selects one of the reset level read bits, the signal level read bit from the read circuit and the signal level read bit from the redundant circuit depending on whether the failure has occurred. And a signal level read side selection unit for selecting any one of the above. This brings about the effect that the read bits corresponding to the reset level and the signal level are read.
 また、この第1の側面において、前記冗長リードラッチは、リセットレベル冗長リードラッチおよび信号レベル冗長リードラッチを備え、前記冗長読出し回路は、前記リセットレベル冗長リードラッチから前記リセットレベル読出しビットを読み出し、前記信号レベル冗長リードラッチから前記信号レベル読出しビットを読み出してもよい。これにより、リセットレベル冗長リードラッチからリセットレベル読出しビットが読み出され、信号レベル冗長リードラッチから信号レベル読出しビットが読み出されるという作用をもたらす。 In the first aspect, the redundant read latch includes a reset level redundant read latch and a signal level redundant read latch, and the redundant read circuit reads the reset level read bit from the reset level redundant read latch. The signal level read bit may be read from the signal level redundant read latch. This brings about the effect that the reset level read bit is read from the reset level redundant read latch and the signal level read bit is read from the signal level redundant read latch.
 また、本技術の第2の側面は、
アナログの画素信号をデジタル信号に変換して保持するアナログデジタル変換部と、前記デジタル信号のいずれかのビットを読出しビットとして読み出す読出し回路と、前記デジタル信号のいずれかのビットを読出しビットとして読み出す冗長読出し回路と、前記読出し回路に故障が生じたか否かを検出する故障検出部と、前記故障が生じたか否かにより前記読出し回路からの前記読出しビットと前記冗長回路からの前記読出しビットといずれかを選択して出力する読出し側選択部と、上記読出し側選択部より出力されたデータを処理する信号処理部とを具備する撮像装置である。これにより、故障が生じたか否かにより読出しデータおよび冗長データのいずれかが処理されるという作用をもたらす。
The second aspect of the present technology is
An analog-to-digital conversion unit that converts an analog pixel signal into a digital signal and holds the digital signal, a read circuit that reads any bit of the digital signal as a read bit, and a redundancy that reads any bit of the digital signal as a read bit. A read circuit, a failure detection unit that detects whether or not a failure has occurred in the read circuit, and either the read bit from the read circuit or the read bit from the redundant circuit depending on whether or not the failure has occurred. The image pickup apparatus includes a read-side selection unit that selects and outputs the signal and a signal processing unit that processes the data output from the read-side selection unit. This brings about an effect that either read data or redundant data is processed depending on whether or not a failure has occurred.
本技術の第1の実施の形態における撮像装置の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of an imaging device in a 1st embodiment of this art. 本技術の第1の実施の形態における固体撮像素子の積層構造の一例を示す図である。It is a figure showing an example of a layered structure of a solid-state image sensing device in a 1st embodiment of this art. 本技術の第1の実施の形態における受光チップの一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a light sensing chip in a 1st embodiment of this art. 本技術の第1の実施の形態における回路チップの一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a circuit chip in a 1st embodiment of this art. 本技術の第1の実施の形態におけるクラスタの一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a cluster in a 1st embodiment of this art. 本技術の第1の実施の形態におけるリピータの一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a repeater in a 1st embodiment of this art. 本技術の第1の実施の形態における書込みリピータの一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a write repeater in a 1st embodiment of this art. 本技術の第1の実施の形態における書込みリピータ内の回路の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a circuit in a write repeater in a 1st embodiment of this art. 本技術の第1の実施の形態における書込みビット転送回路の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a write bit transfer circuit in a 1st embodiment of this art. 本技術の第1の実施の形態におけるリセットレベル読出しリピータの一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a reset level read repeater in a 1st embodiment of this art. 本技術の第1の実施の形態におけるリセットレベル読出しリピータ内の回路の一構成例を示す回路図である。It is a circuit diagram showing an example of composition of a circuit in a reset level read repeater in a 1st embodiment of this art. 本技術の第1の実施の形態における信号レベル読出しリピータの一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a signal level read repeater in a 1st embodiment of this art. 本技術の第1の実施の形態における画素および比較部の一構成例を示す回路図である。It is a circuit diagram showing an example of composition of a pixel and a comparison part in a 1st embodiment of this art. 本技術の第1の実施の形態における電圧変換回路、制御回路およびNORゲートの一構成例を示す回路図である。It is a circuit diagram showing an example of composition of a voltage conversion circuit, a control circuit, and a NOR gate in a 1st embodiment of this art. 本技術の第1の実施の形態における画素とクラスタ内の回路との接続関係の一例を示す図である。It is a figure which shows an example of the connection relation of the pixel and the circuit in a cluster in 1st Embodiment of this technique. 本技術の第1の実施の形態における記憶部の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a storage part in a 1st embodiment of this art. 本技術の第1の実施の形態におけるラッチ部の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a latch part in a 1st embodiment of this art. 本技術の第1の実施の形態におけるラッチ回路の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a latch circuit in a 1st embodiment of this art. 本技術の第1の実施の形態におけるリセットレベルリードラッチおよび信号レベルリードラッチの一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a reset level read latch and a signal level read latch in a 1st embodiment of this art. 本技術の第1の実施の形態における冗長ラッチ回路の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a redundant latch circuit in a 1st embodiment of this art. 本技術の第1の実施の形態における選択部の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a selection part in a 1st embodiment of this art. 本技術の第1の実施の形態における書込み側選択部の一構成例を示す回路図である。It is a circuit diagram showing an example of composition of a writing side selection part in a 1st embodiment of this art. 本技術の第1の実施の形態におけるリセットレベル読出し側選択部の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a reset level reading side selection part in a 1st embodiment of this art. 本技術の第1の実施の形態における信号レベル読出し側選択部の一構成例を示す回路図である。It is a circuit diagram showing an example of 1 composition of a signal level read side selection part in a 1st embodiment of this art. 本技術の第1の実施の形態におけるリセットレベル読出し側選択部の制御の一例を示す図である。It is a figure showing an example of control of a reset level read side selection part in a 1st embodiment of this art. 本技術の第1の実施の形態におけるロジック回路の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a logic circuit in a 1st embodiment of this art. 本技術の第1の実施の形態における書込み側の制御を説明するための図である。It is a figure for explaining control by the side of writing in a 1st embodiment of this art. 本技術の第1の実施の形態における読出し側の制御を説明するための図である。It is a figure for explaining control by the side of reading in a 1st embodiment of this art. 本技術の第1の実施の形態における固体撮像素子の動作の一例を示すフローチャートである。It is a flow chart which shows an example of operation of the solid-state image sensing device in a 1st embodiment of this art. 本技術の第1の実施の形態の変形例における書込み側選択部の一構成例を示す回路図である。It is a circuit diagram showing an example of composition of a writing side selection part in a modification of a 1st embodiment of this art. 本技術の第2の実施の形態における選択部の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a selection part in a 2nd embodiment of this art. 本技術の第3の実施の形態における選択部の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a selection part in a 3rd embodiment of this art. 車両制御システムの概略的な構成例を示すブロック図である。It is a block diagram showing a schematic example of composition of a vehicle control system. 撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of an imaging part.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(故障が生じると冗長回路を選択する例)
 2.第2の実施の形態(故障が生じると冗長回路を選択する選択部を複数のリピータが共有する例)
 3.第3の実施の形態(故障が生じると冗長回路を選択する選択部を全てのリピータが共有する例)
 4.移動体への応用例
Hereinafter, modes for carrying out the present technology (hereinafter, referred to as embodiments) will be described. The description will be given in the following order.
1. First embodiment (an example of selecting a redundant circuit when a failure occurs)
2. Second embodiment (an example in which a plurality of repeaters share a selection unit that selects a redundant circuit when a failure occurs)
3. Third embodiment (an example in which all repeaters share a selection unit that selects a redundant circuit when a failure occurs)
4. Application example to mobile
 <1.第1の実施の形態>
 [撮像装置の構成例]
 図1は、本技術の第1の実施の形態における撮像装置100の一構成例を示すブロック図である。この撮像装置100は、画像データを撮像するための装置であり、光学部110、固体撮像素子200およびDSP(Digital Signal Processing)回路120を備える。さらに撮像装置100は、表示部130、操作部140、バス150、フレームメモリ160、記憶部170および電源部180を備える。撮像装置100としては、例えば、デジタルスチルカメラなどのデジタルカメラの他、撮像機能を持つスマートフォンやパーソナルコンピュータ、車載カメラ等が想定される。
<1. First Embodiment>
[Example of configuration of imaging device]
FIG. 1 is a block diagram showing a configuration example of an imaging device 100 according to the first embodiment of the present technology. The image pickup apparatus 100 is an apparatus for picking up image data, and includes an optical unit 110, a solid-state image pickup element 200, and a DSP (Digital Signal Processing) circuit 120. Furthermore, the image pickup apparatus 100 includes a display unit 130, an operation unit 140, a bus 150, a frame memory 160, a storage unit 170, and a power supply unit 180. As the imaging device 100, for example, a digital camera such as a digital still camera, a smartphone having an imaging function, a personal computer, a vehicle-mounted camera, or the like is assumed.
 光学部110は、被写体からの光を集光して固体撮像素子200に導くものである。固体撮像素子200は、垂直同期信号VSYNCに同期して、光電変換により画像データを生成するものである。ここで、垂直同期信号VSYNCは、撮像のタイミングを示す所定周波数の周期信号である。固体撮像素子200は、生成した画像データをDSP回路120に信号線209を介して供給する。 The optical unit 110 collects light from a subject and guides it to the solid-state imaging device 200. The solid-state imaging device 200 is to generate image data by photoelectric conversion in synchronization with the vertical synchronization signal VSYNC. Here, the vertical synchronization signal VSYNC is a periodic signal of a predetermined frequency that indicates the timing of image pickup. The solid-state imaging device 200 supplies the generated image data to the DSP circuit 120 via the signal line 209.
 DSP回路120は、固体撮像素子200からの画像データに対して所定の信号処理を実行するものである。このDSP回路120は、処理後の画像データをバス150を介してフレームメモリ160などに出力する。 The DSP circuit 120 executes predetermined signal processing on the image data from the solid-state image sensor 200. The DSP circuit 120 outputs the processed image data to the frame memory 160 or the like via the bus 150.
 表示部130は、画像データを表示するものである。表示部130としては、例えば、液晶パネルや有機EL(Electro Luminescence)パネルが想定される。操作部140は、ユーザの操作に従って操作信号を生成するものである。 The display unit 130 displays image data. As the display unit 130, for example, a liquid crystal panel or an organic EL (Electro Luminescence) panel is assumed. The operation unit 140 generates an operation signal according to the operation of the user.
 バス150は、光学部110、固体撮像素子200、DSP回路120、表示部130、操作部140、フレームメモリ160、記憶部170および電源部180が互いにデータをやりとりするための共通の経路である。 The bus 150 is a common path for the optical unit 110, the solid-state imaging device 200, the DSP circuit 120, the display unit 130, the operation unit 140, the frame memory 160, the storage unit 170, and the power supply unit 180 to exchange data with each other.
 フレームメモリ160は、画像データを保持するものである。記憶部170は、画像データなどの様々なデータを記憶するものである。電源部180は、固体撮像素子200、DSP回路120や表示部130などに電源を供給するものである。 The frame memory 160 holds image data. The storage unit 170 stores various data such as image data. The power supply unit 180 supplies power to the solid-state imaging device 200, the DSP circuit 120, the display unit 130, and the like.
 [固体撮像素子の構成例]
 図2は、本技術の第1の実施の形態における固体撮像素子200の積層構造の一例を示す図である。この固体撮像素子200は、回路チップ202と、その回路チップ202に積層された受光チップ201とを備える。これらのチップは、ビアなどの接続部を介して電気的に接続される。なお、ビアの他、Cu-Cu接合やバンプにより接続することもできる。
[Configuration example of solid-state image sensor]
FIG. 2 is a diagram showing an example of a laminated structure of the solid-state imaging device 200 according to the first embodiment of the present technology. The solid-state imaging device 200 includes a circuit chip 202 and a light receiving chip 201 stacked on the circuit chip 202. These chips are electrically connected via a connection part such as a via. In addition to vias, Cu-Cu bonding or bumps may be used for connection.
 図3は、本技術の第1の実施の形態における受光チップ201の一構成例を示す平面図である。この受光チップ201には、画素領域210と、Vドライバ231および232と、Hドライバ233と、DAC(Digital to Analog Converter)234とが配置される。また、画素領域210には、複数の画素ブロック211が二次元格子状に配列される。それぞれの画素ブロック211には、複数の画素220が配列される。例えば、画素ブロック211には、2行×4列の8個の画素220が配列される。なお、画素ブロック211内の画素数は8個に限定されない。また、Hドライバ233およびDAC234を、1つずつ配置しているが、この構成に限定されない。例えば、Hドライバ233側を北側として、HドライバおよびDACを北側と南側とに1つずつ配置することもできる。また、DAC234を受光チップ201に配置しているが、この構成に限定されない。DAC234を回路チップ202に配置し、Cu-Cu接続などにより、受光チップ201上のランプ信号を伝送する信号線と接続することもできる。 FIG. 3 is a plan view showing a configuration example of the light-receiving chip 201 according to the first embodiment of the present technology. A pixel region 210, V drivers 231, 232, an H driver 233, and a DAC (Digital to Analog Converter) 234 are arranged on the light receiving chip 201. Further, in the pixel region 210, a plurality of pixel blocks 211 are arranged in a two-dimensional grid pattern. A plurality of pixels 220 are arranged in each pixel block 211. For example, the pixel block 211 has eight pixels 220 arranged in 2 rows×4 columns. The number of pixels in the pixel block 211 is not limited to eight. Further, one H driver 233 and one DAC 234 are arranged, but the configuration is not limited to this. For example, the H driver 233 side may be the north side, and one H driver and one DAC may be arranged on the north side. Further, although the DAC 234 is arranged on the light receiving chip 201, it is not limited to this configuration. It is also possible to arrange the DAC 234 on the circuit chip 202 and connect it to the signal line for transmitting the lamp signal on the light receiving chip 201 by Cu-Cu connection or the like.
 画素220は、光電変換によりアナログ信号を生成するものである。 The pixel 220 is for generating an analog signal by photoelectric conversion.
 Vドライバ231および232は、読み出す対象の行の画素220を駆動するものである。例えば、Vドライバ231は、奇数行を駆動し、Vドライバ232は、偶数行を駆動する。また、Hドライバ233は、列単位で画素220を駆動する。なお、Vドライバ231および232のそれぞれが駆動する行を必ずしも偶数行、奇数行などに分ける必要は無い。例えば、セトリングを速くする目的で、Vドライバ231および232が同じ行を駆動することもできる。 The V drivers 231 and 232 drive the pixels 220 in the row to be read. For example, the V driver 231 drives an odd row, and the V driver 232 drives an even row. Further, the H driver 233 drives the pixels 220 in units of columns. The rows driven by the V drivers 231 and 232 do not necessarily have to be divided into even rows and odd rows. For example, Vdrivers 231 and 232 could drive the same row for the purpose of faster settling.
 DAC234は、DA(Digital to Analog)変換により、スロープ状に変化するアナログのランプ信号を参照信号として生成するものである。このDAC234は、生成した参照信号を画素領域210内の全画素に供給する。 The DAC 234 generates a ramp-shaped analog ramp signal as a reference signal by DA (Digital to Analog) conversion. The DAC 234 supplies the generated reference signal to all pixels in the pixel area 210.
 図4は、本技術の第1の実施の形態における回路チップ202の一構成例を示すブロック図である。この回路チップ202には、Vドライバ241および242と、Hドライバ251および252と、ロジック回路260および270と、AD変換回路領域290と、時刻コード発生部280と、選択部600および601とが配置される。 FIG. 4 is a block diagram showing a configuration example of the circuit chip 202 according to the first embodiment of the present technology. On the circuit chip 202, V drivers 241 and 242, H drivers 251 and 252, logic circuits 260 and 270, an AD conversion circuit area 290, a time code generation section 280, and selection sections 600 and 601 are arranged. To be done.
 また、AD変換回路領域290には、複数のクラスタ300が二次元格子状に配列される。クラスタ300は、画素ブロック211ごとに設けられ、画素ブロック211の個数をB(Bは、整数)個とすると、クラスタ300もB個設けられる。画素ブロック211とクラスタ300とは、1対1で接続される。 A plurality of clusters 300 are arranged in a two-dimensional lattice in the AD conversion circuit area 290. The cluster 300 is provided for each pixel block 211. If the number of pixel blocks 211 is B (B is an integer), B clusters 300 are also provided. The pixel blocks 211 and the clusters 300 are connected one to one.
 クラスタ300は、対応する画素ブロック211からのアナログの画素信号を画素毎にデジタル信号に変換し、ロジック回路260や270に画素データとして供給するものである。 The cluster 300 converts an analog pixel signal from the corresponding pixel block 211 into a digital signal for each pixel and supplies the digital signal to the logic circuits 260 and 270 as pixel data.
 Vドライバ241および242は、クラスタ300内の回路を駆動してデジタル信号を生成させるものである。例えば、Vドライバ241は、奇数行に対応する回路を駆動し、Vドライバ242は、偶数行に対応する回路を駆動する。あるいは、Vドライバ241および242は、同じ行の回路を駆動する。 The V drivers 241 and 242 drive the circuits in the cluster 300 to generate digital signals. For example, the V driver 241 drives a circuit corresponding to an odd row, and the V driver 242 drives a circuit corresponding to an even row. Alternatively, V drivers 241 and 242 drive the circuits in the same row.
 また、Hドライバ251および252は、クラスタ300内の転送回路を駆動して、デジタル信号をロジック回路260や270へ画素データとして転送させるものである。例えば、Hドライバ251は、クラスタ300の奇数行に対応する転送回路を駆動してロジック回路270へデジタル信号を転送させる。一方、Hドライバ252は、クラスタ300の偶数行に対応する転送回路を駆動してロジック回路260へデジタル信号を転送させる。 The H drivers 251 and 252 drive the transfer circuit in the cluster 300 to transfer the digital signal to the logic circuits 260 and 270 as pixel data. For example, the H driver 251 drives a transfer circuit corresponding to an odd row of the cluster 300 to transfer a digital signal to the logic circuit 270. On the other hand, the H driver 252 drives the transfer circuit corresponding to the even row of the cluster 300 to transfer the digital signal to the logic circuit 260.
 ロジック回路260および270は、転送された画素データに対して画素毎にCDS(Correlated Double Sampling)処理などの各種の信号処理を行うものである。また、ロジック回路260および270には、固体撮像素子200のモードを示すモード信号MODEが入力される。固体撮像素子200のモードは、テストモードおよび撮像モードを含む。ここで、テストモードは、AD変換回路領域290内の回路の故障の有無を検出するモードである。一方、撮像モードは、故障検出を行わずに画像データを撮像するモードである。テストモードは、工場出荷時や修理時などにおいて設定される。 The logic circuits 260 and 270 perform various signal processing such as CDS (Correlated Double Sampling) processing for each pixel on the transferred pixel data. Further, a mode signal MODE indicating the mode of the solid-state image sensor 200 is input to the logic circuits 260 and 270. The modes of the solid-state imaging device 200 include a test mode and an imaging mode. Here, the test mode is a mode for detecting the presence/absence of a failure of a circuit in the AD conversion circuit area 290. On the other hand, the image pickup mode is a mode for picking up image data without detecting a failure. The test mode is set at the time of factory shipment, repair, or the like.
 テストモードにおいてロジック回路260および270は、画素データに基づいてAD変換回路領域290内の回路の故障の有無を検出する。一方、撮像モードにおいてロジック回路260および270は、画素データに対して信号処理を行い処理後の画素データからなる画像データをDSP回路120に供給する。 In the test mode, the logic circuits 260 and 270 detect the presence/absence of a circuit failure in the AD conversion circuit area 290 based on the pixel data. On the other hand, in the imaging mode, the logic circuits 260 and 270 perform signal processing on the pixel data and supply image data composed of the processed pixel data to the DSP circuit 120.
 時刻コード発生部280は、DAC234からの参照信号が変化する期間内の時刻を示す時刻コードを生成するものである。この時刻コード発生部280は、例えば、カウンタにより実現される。カウンタとしては、例えば、グレイコードカウンタが用いられ、時刻コードのコード形式は、例えば、グレイコードである。グレイコードを用いることにより、バイナリコードを用いる場合と比較してAD変換回路領域290内の転送回路の消費電力を低減することができる。時刻コード発生部280は、生成した時刻コードをロジック回路260を介してAD変換回路領域290に供給する。 The time code generator 280 generates a time code indicating the time within the period when the reference signal from the DAC 234 changes. The time code generator 280 is realized by, for example, a counter. As the counter, for example, a Gray code counter is used, and the code format of the time code is, for example, Gray code. By using the gray code, it is possible to reduce the power consumption of the transfer circuit in the AD conversion circuit area 290 as compared with the case where the binary code is used. The time code generator 280 supplies the generated time code to the AD conversion circuit area 290 via the logic circuit 260.
 選択部600および601は、AD変換回路領域290内の複数のメインビット線の一部を選択してロジック回路260、ロジック回路270や時刻コード発生部280と接続するものである。メインビット線の配線方法や接続方法の詳細については後述する。 The selection units 600 and 601 select a part of a plurality of main bit lines in the AD conversion circuit area 290 and connect them to the logic circuit 260, the logic circuit 270, and the time code generation unit 280. Details of the wiring method and connection method of the main bit lines will be described later.
 [クラスタの構成例]
 図5は、本技術の第1の実施の形態におけるクラスタ300の一構成例を示すブロック図である。このクラスタ300には、複数の比較部310と、記憶部400および401が配置される。比較部310は、画素ブロック211内の画素毎に配置される。画素ブロック211内の画素220が8個である場合には、8個の比較部310が配置される。なお、同図において、比較部310内の差動入力回路の一部は、後述する図12に例示するように受光チップ201に配置されている。
[Example of cluster configuration]
FIG. 5 is a block diagram showing a configuration example of the cluster 300 according to the first embodiment of the present technology. In this cluster 300, a plurality of comparison units 310 and storage units 400 and 401 are arranged. The comparison unit 310 is arranged for each pixel in the pixel block 211. When there are eight pixels 220 in the pixel block 211, eight comparison units 310 are arranged. In the figure, a part of the differential input circuit in the comparison unit 310 is arranged in the light receiving chip 201 as illustrated in FIG. 12 described later.
 また、AD変換回路領域290において、クラスタ300の列ごとに、リピータ500が配置される。クラスタ300の列数がC(Cは、整数)である場合、リピータ500もC個配置される。 Also, in the AD conversion circuit area 290, the repeater 500 is arranged for each column of the cluster 300. When the number of columns of the cluster 300 is C (C is an integer), C repeaters 500 are also arranged.
 また、8個の比較部310のそれぞれは、クラスタ300に対応する画素ブロック211内の8個の画素220と1対1で接続される。 Further, each of the eight comparison units 310 is connected to the eight pixels 220 in the pixel block 211 corresponding to the cluster 300 on a one-to-one basis.
 リピータ500は、時刻コード発生部280から選択部600や601を介してクラスタ300へ時刻コードを転送し、クラスタ300から選択部600や601を介してロジック回路260や270に時刻コードを転送するものである。この時刻コードは、参照信号がスロープ状に変化する期間内の時刻を示すデジタル信号である。 The repeater 500 transfers the time code from the time code generation unit 280 to the cluster 300 via the selection units 600 and 601 and transfers the time code from the cluster 300 to the logic circuits 260 and 270 through the selection units 600 and 601. Is. This time code is a digital signal indicating the time within the period in which the reference signal changes in a slope shape.
 比較部310は、対応する画素220からの画素信号と参照信号とを比較するものである。この比較部310は、比較結果を記憶部400や401に出力する。 The comparison unit 310 compares the pixel signal from the corresponding pixel 220 and the reference signal. The comparison unit 310 outputs the comparison result to the storage units 400 and 401.
 記憶部400および401は、比較結果が反転したときに時刻コード(すなわち、デジタル信号)を画素データとして保持するものである。記憶部400は、左側の4個の比較部310と接続され、それらの比較部310に対応する4画素の画素データを保持する。記憶部401は、右側の4個の比較部310と接続され、それらの比較部310に対応する4画素の画素データを保持する。これにより、アナログの画素信号は、デジタルの画素データに変換される。そして、記憶部400および401は、保持した画素データをリピータ500を介してロジック回路260や270に出力する。 The storage units 400 and 401 hold a time code (that is, a digital signal) as pixel data when the comparison result is inverted. The storage unit 400 is connected to the four comparison units 310 on the left side and holds pixel data of four pixels corresponding to the comparison units 310. The storage unit 401 is connected to the four comparison units 310 on the right side and holds pixel data of four pixels corresponding to the comparison units 310. As a result, the analog pixel signal is converted into digital pixel data. Then, the storage units 400 and 401 output the held pixel data to the logic circuits 260 and 270 via the repeater 500.
 [リピータの構成例]
 図6は、本技術の第1の実施の形態におけるリピータ500の一構成例を示すブロック図である。このリピータ500は、リセットレベル読出しリピータ510、信号レベル読出しリピータ520および書込みリピータ530を備える。
[Example of repeater configuration]
FIG. 6 is a block diagram showing a configuration example of the repeater 500 according to the first embodiment of the present technology. The repeater 500 includes a reset level read repeater 510, a signal level read repeater 520 and a write repeater 530.
 書込みリピータ530は、選択部600や601からの時刻コードをローカルビット線LBLWを介して記憶部400および401へ転送するものである。 The write repeater 530 transfers the time code from the selection unit 600 or 601 to the storage units 400 and 401 via the local bit line LBLW.
 リセットレベル読出しリピータ510は、ローカルビット線LBLRを介して記憶部400および401から順にリセットレベルを読み出し、選択部600や601へ転送するものである。ここで、リセットレベルは、画素220を初期化したときの画素信号のレベルである。 The reset level read repeater 510 reads the reset level from the storage units 400 and 401 in order via the local bit line LBLR and transfers it to the selection units 600 and 601. Here, the reset level is the level of the pixel signal when the pixel 220 is initialized.
 信号レベル読出しリピータ520は、ローカルビット線LBLRを介して記憶部400および401から順に信号レベルを読み出し、選択部600や601へ転送するものである。ここで、信号レベルは、画素220の露光が終了したときの画素信号のレベルである。 The signal level read repeater 520 sequentially reads the signal levels from the storage units 400 and 401 via the local bit line LBLR and transfers the signal levels to the selection units 600 and 601. Here, the signal level is the level of the pixel signal when the exposure of the pixel 220 is completed.
 [書込みリピータの構成例]
 図7は、本技術の第1の実施の形態における書込みリピータ530の一構成例を示すブロック図である。この書込みリピータ530は、左側転送制御部540と、右側転送制御部550と、複数の書込みデータ転送回路560と、を備える。記憶部400および401のそれぞれが4画素を保持する場合、4個の書込みデータ転送回路560が配置される。
[Example of write repeater configuration]
FIG. 7 is a block diagram showing a configuration example of the write repeater 530 according to the first embodiment of the present technology. The write repeater 530 includes a left side transfer control section 540, a right side transfer control section 550, and a plurality of write data transfer circuits 560. When each of storage units 400 and 401 holds four pixels, four write data transfer circuits 560 are arranged.
 左側転送制御部540は、書込みデータ転送回路560や書込み冗長データ転送回路580を制御して時刻コードを左側の記憶部400へ転送させるものである。右側転送制御部550は、書込みデータ転送回路560や書込み冗長データ転送回路580を制御して時刻コードを右側の記憶部401へ転送させるものである。 The left transfer control unit 540 controls the write data transfer circuit 560 and the write redundant data transfer circuit 580 to transfer the time code to the left storage unit 400. The right side transfer control unit 550 controls the write data transfer circuit 560 and the write redundant data transfer circuit 580 to transfer the time code to the right side storage unit 401.
 書込みデータ転送回路560は、時刻コードを記憶部400や401に書込みデータとして転送するものである。書込みデータ転送回路560は、時刻コードのビット数をNとし、後述する冗長回路を1ビット分として、N+1(Nは、整数)本のメインビット線WBを介して選択部600または601に接続される。 The write data transfer circuit 560 transfers the time code to the storage units 400 and 401 as write data. The write data transfer circuit 560 is connected to the selection unit 600 or 601 via N+1 (N is an integer) main bit lines WB, where N is the number of bits of the time code and one bit is a redundant circuit described later. It
 ここで、テストモードにおいてロジック回路260および270は、AD変換回路領域290内の回路のうち、時刻コードを転送する複数の経路のそれぞれについて、その経路上の回路に故障が生じたか否かを検出する。前述したように時刻コードは、書込みリピータ530により記憶部400および401へ転送され、それらに保持される。そして、リセットレベル読出しリピータ510および信号レベル読出しリピータ520により記憶部400および401から時刻コードが読み出されてロジック回路260および270へ転送される。このため、読み出された時刻コードに異常が生じた場合、書込みリピータ530からリセットレベル読出しリピータ510および信号レベル読出しリピータ520までの経路上の回路に故障が生じたと推定することができる。時刻コードをNビットとすると、時刻コードはN本の経路を介して転送される。これらの経路のそれぞれについて、その経路上の回路の故障の有無が検出される。 Here, in the test mode, the logic circuits 260 and 270 detect, for each of the plurality of paths for transferring the time code, of the circuits in the AD conversion circuit area 290, whether or not a failure has occurred in the circuit on that path. To do. As described above, the time code is transferred to the storage units 400 and 401 by the write repeater 530 and held in them. Then, the reset level read repeater 510 and the signal level read repeater 520 read the time code from the storage units 400 and 401 and transfer it to the logic circuits 260 and 270. Therefore, when an abnormality occurs in the read time code, it can be estimated that a circuit on the path from the write repeater 530 to the reset level read repeater 510 and the signal level read repeater 520 has failed. If the time code is N bits, the time code is transferred via N routes. For each of these paths, the presence or absence of a fault in the circuit on that path is detected.
 故障が生じていない場合にHドライバ251等のドライバは、4つの書込みデータ転送回路560のそれぞれを制御して時刻コードを転送させる。一方、N本の経路のうちn個目に故障が生じた場合、ドライバは、そのn個目に対応する経路を除く残りの経路と、冗長な経路とを介して時刻データを転送させる。これにより、リピータ500は、N本の経路のいずれかに故障が生じても、正確な時刻データを転送することができる。 When no failure occurs, the driver such as the H driver 251 controls each of the four write data transfer circuits 560 to transfer the time code. On the other hand, when a failure occurs in the nth path out of the N paths, the driver transfers the time data via the remaining path except the path corresponding to the nth path and the redundant path. This allows the repeater 500 to transfer accurate time data even if a failure occurs in any of the N paths.
 図8は、本技術の第1の実施の形態における書込みリピータ530内の回路の一構成例を示す回路図である。書込みデータ転送回路560は、クラスタ300ごとに、複数の書込みビット転送回路570とを備える。時刻コードをN(Nは、整数)ビットとすると、N個の書込みビット転送回路570と、冗長書込みビット転送回路570-1とが設けられる。 FIG. 8 is a circuit diagram showing a configuration example of a circuit in the write repeater 530 according to the first embodiment of the present technology. The write data transfer circuit 560 includes a plurality of write bit transfer circuits 570 for each cluster 300. If the time code is N (N is an integer) bits, N write bit transfer circuits 570 and redundant write bit transfer circuit 570-1 are provided.
 N個の書込みビット転送回路570は、Hドライバ251や252の制御に従って、Nビットの時刻コードを記憶部400または401へ転送するものである。n(nは、0乃至N-1の整数)番目の書込みビット転送回路570からのビットは、ローカルビット線LBLW<n>を介して転送される。一方、冗長書込みビット転送回路570-1は、N本の経路のいずれかに故障が生じた場合に、時刻コード内のいずれかのビットを記憶部400または401へ転送するものである。 The N write bit transfer circuits 570 transfer the N-bit time code to the storage unit 400 or 401 under the control of the H drivers 251 and 252. The bit from the n-th (n is an integer from 0 to N−1) write bit transfer circuit 570 is transferred via the local bit line LBLW<n>. On the other hand, the redundant write bit transfer circuit 570-1 transfers any bit in the time code to the storage unit 400 or 401 when a failure occurs in any of the N paths.
 左側転送制御部540は、N個の書込みビット転送回路570と冗長書込みビット転送回路570-1のそれぞれについて、バッファ541と、インバータ542および543と、NAND(否定論理積)ゲート544とを備える。すなわち、バッファ541と、インバータ542および543と、NANDゲート544とは、それぞれN+1個ずつ設けられる。 The left-side transfer control unit 540 includes a buffer 541, inverters 542 and 543, and a NAND (negative logical product) gate 544 for each of the N write bit transfer circuits 570 and the redundant write bit transfer circuit 570-1. That is, the buffer 541, the inverters 542 and 543, and the NAND gate 544 are provided by N+1 each.
 インバータ543は、制御信号を反転してバッファ541およびインバータ543に出力するものである。N番目のインバータ543は、左側の記憶部400へ転送させるための制御信号LENWを反転する。 The inverter 543 inverts the control signal and outputs it to the buffer 541 and the inverter 543. The Nth inverter 543 inverts the control signal LENW to be transferred to the left storage unit 400.
 バッファ541は、制御信号を出力するものである。バッファ541およびインバータ543は、垂直方向に沿って交互に直列に配列され、前段のインバータ543からの信号をバッファ541は、後段のインバータ543に出力する。 The buffer 541 outputs a control signal. The buffer 541 and the inverter 543 are alternately arranged in series along the vertical direction, and the buffer 541 outputs the signal from the inverter 543 in the previous stage to the inverter 543 in the subsequent stage.
 インバータ542は、インバータ543からの信号を反転し、N個の書込みビット転送回路570と冗長書込みビット転送回路570-1とのうち対応する回路へ出力するものである。 The inverter 542 inverts the signal from the inverter 543 and outputs it to the corresponding circuit of the N write bit transfer circuits 570 and the redundant write bit transfer circuit 570-1.
 N個のNANDゲート544は、垂直方向に沿って直列に接続される。N番目のNANDゲート544は、クロック信号MCKINと、そのクロック信号を有効または無効にするための制御信号MCKENとの否定論理積を後段のNANDゲート544と対応する書込みビット転送回路570とに出力する。n番目のNANDゲート544は、前段からのクロック信号と、制御信号MCKENとの否定論理積を後段のNANDゲート544と対応する書込みビット転送回路570とに出力する。 The N NAND gates 544 are connected in series along the vertical direction. The Nth NAND gate 544 outputs the NAND of the clock signal MCKIN and the control signal MCKEN for validating or invalidating the clock signal to the NAND gate 544 in the subsequent stage and the corresponding write bit transfer circuit 570. .. The nth NAND gate 544 outputs the NAND of the clock signal from the previous stage and the control signal MCKEN to the NAND gate 544 in the subsequent stage and the corresponding write bit transfer circuit 570.
 右側転送制御部550は、N個の書込みビット転送回路570と冗長書込みビット転送回路570-1とのそれぞれについて、バッファ551と、インバータ552および553とを備える。すなわち、バッファ551と、インバータ552および553は、それぞれN+1個ずつ設けられる。 The right transfer controller 550 includes a buffer 551 and inverters 552 and 553 for each of the N write bit transfer circuits 570 and the redundant write bit transfer circuit 570-1. That is, the buffer 551 and N+1 inverters 552 and 553 are provided, respectively.
 バッファ551と、インバータ552および553の接続構成は、右側の記憶部401へ転送させるための制御信号RENWが制御信号LENWの代わりに入力される点以外は、左側転送制御部540内の対応する回路と同様である。制御信号LENWおよびRENWは、Hドライバ251等により供給される。 The connection configuration of the buffer 551 and the inverters 552 and 553 is the same as that of the corresponding circuit in the left transfer control unit 540 except that the control signal RENW for transferring to the storage unit 401 on the right side is input instead of the control signal LENW. Is the same as. The control signals LENW and RENW are supplied by the H driver 251 and the like.
 [書込みビット転送回路の構成例]
 図9は、本技術の第1の実施の形態における書込みビット転送回路570の一構成例を示す回路図である。この書込みビット転送回路570は、AND(論理積)ゲート571と、インバータ572および576と、バッファ573および577と、フリップフロップ574と、N型トランジスタ575とを備える。
[Configuration example of write bit transfer circuit]
FIG. 9 is a circuit diagram showing a configuration example of the write bit transfer circuit 570 in the first embodiment of the present technology. The write bit transfer circuit 570 includes an AND (logical product) gate 571, inverters 572 and 576, buffers 573 and 577, a flip-flop 574, and an N-type transistor 575.
 ANDゲート571は、NANDゲート544からのクロック信号の反転値と、制御信号MCKENとの論理積をフリップフロップ574のクロック端子に出力するものである。 The AND gate 571 outputs the logical product of the inverted value of the clock signal from the NAND gate 544 and the control signal MCKEN to the clock terminal of the flip-flop 574.
 フリップフロップ574は、時刻コード内の対応するビットを保持するものである。このフリップフロップ574は、保持したビットを出力端子Qから出力する。 The flip-flop 574 holds the corresponding bit in the time code. The flip-flop 574 outputs the held bit from the output terminal Q.
 インバータ572およびバッファ573は、ループ状に接続される。また、インバータ572の入力端子とバッファ573の出力端子とは、対応する左側のローカルビット線LBLW<n>に共通に接続される。インバータ572の出力端子とバッファ573の入力端子とは、フリップフロップ574の出力端子Qに共通に接続される。インバータ572は、制御信号LENWの反転値に従って、入力された信号を反転するものである。バッファ573は、書込みを指示する制御信号WENに従ってフリップフロップ574からの信号を左側のローカルビット線LBLW<n>へ出力するものである。制御信号WENは、Hドライバ251等により供給される。 The inverter 572 and the buffer 573 are connected in a loop. The input terminal of the inverter 572 and the output terminal of the buffer 573 are commonly connected to the corresponding left local bit line LBLW<n>. The output terminal of the inverter 572 and the input terminal of the buffer 573 are commonly connected to the output terminal Q of the flip-flop 574. The inverter 572 inverts the input signal according to the inverted value of the control signal LENW. The buffer 573 outputs the signal from the flip-flop 574 to the left local bit line LBLW<n> according to the control signal WEN instructing the writing. The control signal WEN is supplied by the H driver 251 and the like.
 インバータ576およびバッファ577は、ループ状に接続される。また、インバータ576の入力端子とバッファ577の出力端子とは、対応する右側のローカルビット線LBLW<n>に共通に接続される。インバータ576の出力端子とバッファ577の入力端子とは、フリップフロップ574の出力端子Qに共通に接続される。インバータ576は、制御信号RENWの反転値に従って、入力された信号を反転するものである。バッファ577は、制御信号WENに従ってフリップフロップ574からの信号を右側のローカルビット線LBLW<n>へ出力するものである。 The inverter 576 and the buffer 577 are connected in a loop. The input terminal of the inverter 576 and the output terminal of the buffer 577 are commonly connected to the corresponding right local bit line LBLW<n>. The output terminal of the inverter 576 and the input terminal of the buffer 577 are commonly connected to the output terminal Q of the flip-flop 574. The inverter 576 inverts the input signal according to the inverted value of the control signal RENW. The buffer 577 outputs the signal from the flip-flop 574 to the right local bit line LBLW<n> according to the control signal WEN.
 N型トランジスタ575は、フリップフロップ574の出力端子Qと所定の基準電位(接地電位など)の端子との間に挿入される。N型トランジスタ575として、例えば、MOS(Metal-Oxide-Semiconductor)トランジスタが用いられる。また、N型トランジスタ575のゲートには、初期化を指示する制御信号REPINIが入力される。制御信号REPINIは、Hドライバ251等により供給される。 The N-type transistor 575 is inserted between the output terminal Q of the flip-flop 574 and the terminal of a predetermined reference potential (ground potential or the like). As the N-type transistor 575, for example, a MOS (Metal-Oxide-Semiconductor) transistor is used. A control signal REPINI instructing initialization is input to the gate of the N-type transistor 575. The control signal REPINI is supplied by the H driver 251 and the like.
 上述の接続構成により、書込みビット転送回路570は、制御信号WENおよびLENWに従って左側の記憶部400へビットを転送し、制御信号WENおよびRENWに従って右側の記憶部401へビットを転送する。 With the above connection configuration, the write bit transfer circuit 570 transfers bits to the left storage unit 400 according to the control signals WEN and LENW, and transfers bits to the right storage unit 401 according to the control signals WEN and RENW.
 なお、冗長書込みビット転送回路570-1の回路構成は、図9に例示した書込みビット転送回路570と同様である。 The circuit configuration of the redundant write bit transfer circuit 570-1 is similar to that of the write bit transfer circuit 570 illustrated in FIG.
 [リセットレベル読出しリピータの構成例]
 図10は、本技術の第1の実施の形態におけるリセットレベル読出しリピータ510の一構成例を示すブロック図である。このリセットレベル読出しリピータ510は、左側転送制御部511と、複数のリセットレベル読出しデータ転送回路512と、右側転送制御部514とを備える。記憶部400および401のそれぞれが4画素を保持する場合、リピータ500ごとに、4個のリセットレベル読出しデータ転送回路512が配置される。
[Configuration example of reset level read repeater]
FIG. 10 is a block diagram showing a configuration example of the reset level read repeater 510 according to the first embodiment of the present technology. The reset level read repeater 510 includes a left transfer control unit 511, a plurality of reset level read data transfer circuits 512, and a right transfer control unit 514. When each of storage units 400 and 401 holds four pixels, four reset level read data transfer circuits 512 are arranged for each repeater 500.
 左側転送制御部511および右側転送制御部514の構成は、書込みリピータ530内の左側転送制御部540および右側転送制御部550と同様である。リセットレベル読出しデータ転送回路512構成は、書込みリピータ530内の書込みデータ転送回路560と同様である。 The configurations of the left transfer control unit 511 and the right transfer control unit 514 are the same as the left transfer control unit 540 and the right transfer control unit 550 in the write repeater 530. The reset level read data transfer circuit 512 has the same configuration as the write data transfer circuit 560 in the write repeater 530.
 また、m個目のリセットレベル読出しデータ転送回路512は、ローカルビット線PB<m>を介して選択部600または601に接続される。リセットレベル冗長データ転送回路513は、N+1本のメインビット線PBを介して選択部600または601に接続される。 The m-th reset level read data transfer circuit 512 is connected to the selection unit 600 or 601 via the local bit line PB<m>. The reset level redundant data transfer circuit 513 is connected to the selection unit 600 or 601 via N+1 main bit lines PB.
 図11は、本技術の第1の実施の形態におけるリセットレベル読出しリピータ510内の回路の一構成例を示す回路図である。このリセットレベル読出しリピータ510において、リセットレベル読出しデータ転送回路512内にN個のリセットレベル読出しビット転送回路513と、冗長リセットレベル読出しビット転送回路513-1とが配置される。これらの回路の構成は、書込みビット転送回路570と同様である。 FIG. 11 is a circuit diagram showing a configuration example of a circuit in the reset level read repeater 510 according to the first embodiment of the present technology. In this reset level read repeater 510, N reset level read bit transfer circuits 513 and redundant reset level read bit transfer circuit 513-1 are arranged in reset level read data transfer circuit 512. The configuration of these circuits is similar to that of the write bit transfer circuit 570.
 故障が生じていない場合にHドライバ251や252は、N個のリセットレベル読出しビット転送回路513を制御して記憶部400および記憶部401の一方からリセットレベルを読み出させ、次に他方からリセットレベルを読み出させる。そして、それらのリセットレベル読出しデータ転送回路512は、リセットレベルに対応するデータを選択部600または601を介して、ロジック回路260または270へ転送する。以下、リセットレベル読出しデータ転送回路512が転送するデータを「リセットレベル読出しデータ」と称する。なお、ドライバは、リセットレベル冗長データ転送回路513の転送動作を停止させる。 When no failure occurs, the H drivers 251 and 252 control the N reset level read bit transfer circuits 513 to read the reset level from one of the storage unit 400 and the storage unit 401, and then reset from the other. Read the level. Then, the reset level read data transfer circuit 512 transfers the data corresponding to the reset level to the logic circuit 260 or 270 via the selection unit 600 or 601. Hereinafter, the data transferred by the reset level read data transfer circuit 512 will be referred to as “reset level read data”. The driver stops the transfer operation of the reset level redundant data transfer circuit 513.
 一方、n個目の経路に故障が生じた場合にHドライバ251等のドライバは、N個のリセットレベル読出しビット転送回路513のうちn個目を停止し、残りの回路にリセットレベル読出しデータのうちN-1ビットを転送させる。また、ドライバは、冗長リセットレベル読出しデータ転送回路513-1を制御してリセットレベルに対応するデータのうち残りの1ビットを転送させる。 On the other hand, when a failure occurs in the nth path, the driver such as the H driver 251 stops the nth of the N reset level read bit transfer circuits 513, and resets the reset level read data to the remaining circuits. Of these, N-1 bits are transferred. Further, the driver controls the redundant reset level read data transfer circuit 513-1 to transfer the remaining 1 bit of the data corresponding to the reset level.
 [信号レベル読出しリピータの構成例]
 図12は、本技術の第1の実施の形態における信号レベル読出しリピータ520の一構成例を示すブロック図である。この信号レベル読出しリピータ520は、左側転送制御部521と、複数の信号レベル読出しデータ転送回路522と、右側転送制御部524とを備える。記憶部400および401のそれぞれが4画素を保持する場合、リピータ500ごとに、4個の信号レベル読出しデータ転送回路522が配置される。
[Configuration example of signal level read repeater]
FIG. 12 is a block diagram showing a configuration example of the signal level read repeater 520 according to the first embodiment of the present technology. The signal level read repeater 520 includes a left transfer control section 521, a plurality of signal level read data transfer circuits 522, and a right transfer control section 524. When each of the storage units 400 and 401 holds four pixels, four signal level read data transfer circuits 522 are arranged for each repeater 500.
 左側転送制御部521および右側転送制御部524の構成は、書込みリピータ530内の左側転送制御部540および右側転送制御部550と同様である。信号レベル読出しデータ転送回路522の構成は、書込みリピータ530内の書込みデータ転送回路560と同様である。すなわち、信号レベル読出しデータ転送回路522には、N個の信号レベル読出しビット転送回路と、冗長信号レベル読出しビット転送回路とが設けられる。 The configurations of the left side transfer control unit 521 and the right side transfer control unit 524 are the same as the left side transfer control unit 540 and the right side transfer control unit 550 in the write repeater 530. The configuration of the signal level read data transfer circuit 522 is similar to that of the write data transfer circuit 560 in the write repeater 530. That is, the signal level read data transfer circuit 522 is provided with N signal level read bit transfer circuits and redundant signal level read bit transfer circuits.
 また、m個目の信号レベル読出しデータ転送回路522は、ローカルビット線DB<m>を介して選択部600または601に接続される。信号レベル冗長データ転送回路523は、N+1本のメインビット線DBを介して選択部600または601に接続される。 The m-th signal level read data transfer circuit 522 is connected to the selection unit 600 or 601 via the local bit line DB<m>. The signal level redundant data transfer circuit 523 is connected to the selection unit 600 or 601 via the N+1 main bit lines DB.
 故障が生じていない場合にHドライバ251や252は、4個の信号レベル読出しデータ転送回路522を制御して記憶部400および記憶部401の一方から信号レベルを読み出させ、次に他方から信号レベルを読み出させる。そして、それらの信号レベル読出しデータ転送回路522は、信号レベルに対応するデータを選択部600または601を介して、ロジック回路260または270へ転送する。以下、信号レベル読出しデータ転送回路522が転送するデータを「信号レベル読出しデータ」と称する。なお、ドライバは、信号レベル冗長データ転送回路523の転送動作を停止させる。 When no failure occurs, the H drivers 251 and 252 control the four signal level read data transfer circuits 522 to read the signal level from one of the storage unit 400 and the storage unit 401, and then the other signal from the other. Read the level. Then, the signal level read data transfer circuit 522 transfers the data corresponding to the signal level to the logic circuit 260 or 270 via the selection unit 600 or 601. Hereinafter, the data transferred by the signal level read data transfer circuit 522 will be referred to as “signal level read data”. The driver stops the transfer operation of the signal level redundant data transfer circuit 523.
 一方、n個目の経路に故障が生じた場合にHドライバ251等のドライバは、N個の信号レベル読出しビット転送回路のうちn個目を停止し、残りの回路に信号レベル読出しデータのうちN-1ビットを転送させる。また、ドライバは、冗長信号レベル読出しビット転送回路を制御して信号レベルに対応するデータのうち残りの1ビットを転送させる。 On the other hand, when a failure occurs in the nth path, the driver such as the H driver 251 stops the nth of the N signal level read bit transfer circuits and causes the remaining circuits to read the signal level read data. Transfer N-1 bits. Further, the driver controls the redundant signal level read bit transfer circuit to transfer the remaining 1 bit of the data corresponding to the signal level.
 [画素および比較部の構成例]
 図13は、本技術の第1の実施の形態における画素220および比較部310の一構成例を示す回路図である。画素220は、排出トランジスタ222、フォトダイオード223、転送トランジスタ224、浮遊拡散層225およびリセットトランジスタ226を備える。また、比較部310は、差動入力回路320と、電圧変換回路330、制御回路340およびNOR(否定論理和)ゲート350と、インバータ361および362とを備える。差動入力回路320は、差動トランジスタ227および228と、電流源トランジスタ229と、P型トランジスタ321および322とを備える。また、差動入力回路320内の差動トランジスタ227および228と、電流源トランジスタ229とは、例えば、受光チップ201内に配置される。P型トランジスタ321および322以降の回路は、回路チップ202内に配置される。
[Configuration Example of Pixel and Comparison Unit]
FIG. 13 is a circuit diagram illustrating a configuration example of the pixel 220 and the comparison unit 310 according to the first embodiment of the present technology. The pixel 220 includes an emission transistor 222, a photodiode 223, a transfer transistor 224, a floating diffusion layer 225, and a reset transistor 226. Further, the comparison unit 310 includes a differential input circuit 320, a voltage conversion circuit 330, a control circuit 340, a NOR (negative logical sum) gate 350, and inverters 361 and 362. The differential input circuit 320 includes differential transistors 227 and 228, a current source transistor 229, and P- type transistors 321 and 322. The differential transistors 227 and 228 in the differential input circuit 320 and the current source transistor 229 are arranged in the light receiving chip 201, for example. The circuits after the P- type transistors 321 and 322 are arranged in the circuit chip 202.
 フォトダイオード223は、光電変換により電荷を生成するものである。排出トランジスタ222は、Vドライバ231等のドライバからの駆動信号OFGにより排出が指示されるとフォトダイオード223から電荷を排出するものである。 The photodiode 223 is to generate electric charge by photoelectric conversion. The discharging transistor 222 discharges electric charges from the photodiode 223 when discharging is instructed by a drive signal OFG from a driver such as the V driver 231.
 転送トランジスタ224は、ドライバからの転送信号TXにより転送が指示されると、露光終了時にフォトダイオード223から浮遊拡散層225へ電荷を転送するものである。 The transfer transistor 224 transfers the electric charge from the photodiode 223 to the floating diffusion layer 225 at the end of exposure when the transfer is instructed by the transfer signal TX from the driver.
 浮遊拡散層225は、転送された電荷を蓄積して蓄積した電荷量に応じた電圧のアナログの画素信号SIGを生成するものである。 The floating diffusion layer 225 accumulates the transferred charges and generates an analog pixel signal SIG having a voltage corresponding to the accumulated charge amount.
 リセットトランジスタ226は、ドライバからのリセット信号AZにより初期化が指示されると、浮遊拡散層225を初期化するものである。 The reset transistor 226 initializes the floating diffusion layer 225 when initialization is instructed by the reset signal AZ from the driver.
 画素220が初期化された際の画素信号SIGのレベルがリセットレベルに該当する。また、露光終了時の露光量に応じた画素信号SIGのレベルが信号レベルに該当する。なお、画素220の回路は、画素信号SIGを生成することができるものであれば、同図に例示した回路に限定されない。例えば、排出トランジスタ222を削除した構成とすることもできる。 The level of the pixel signal SIG when the pixel 220 is initialized corresponds to the reset level. The level of the pixel signal SIG corresponding to the exposure amount at the end of exposure corresponds to the signal level. The circuit of the pixel 220 is not limited to the circuit illustrated in the figure as long as it can generate the pixel signal SIG. For example, the drain transistor 222 may be omitted.
 また、差動トランジスタ227および228として、例えば、N型のMOSトランジスタが用いられる。差動トランジスタ227および228のそれぞれのドレインは、信号線208および209を介して回路チップ202内の回路に接続される。差動トランジスタ228のゲートは、浮遊拡散層225に接続され、差動トランジスタ227のゲートは、DAC234に接続される。差動トランジスタ227および228のソースは、電流源トランジスタ229に共通に接続される。 Also, for example, N-type MOS transistors are used as the differential transistors 227 and 228. The drains of the differential transistors 227 and 228 are connected to the circuits in the circuit chip 202 via the signal lines 208 and 209. The gate of the differential transistor 228 is connected to the floating diffusion layer 225, and the gate of the differential transistor 227 is connected to the DAC 234. The sources of the differential transistors 227 and 228 are commonly connected to the current source transistor 229.
 電流源トランジスタ229は、一定の電流を供給するものである。この電流源トランジスタ229として、例えば、N型のMOSトランジスタが用いられる。また、電流源トランジスタ229は、差動トランジスタ227および228のコモンノードと所定の基準電位(接地電位など)の端子との間に挿入される。 The current source transistor 229 supplies a constant current. As the current source transistor 229, for example, an N-type MOS transistor is used. The current source transistor 229 is inserted between the common node of the differential transistors 227 and 228 and the terminal of a predetermined reference potential (ground potential or the like).
 P型トランジスタ321および322は、電源電圧VDDHの端子に並列に接続される。また、P型トランジスタ321のゲートは、自身のドレインとP型トランジスタ322のゲートとに接続される。また、P型トランジスタ321のドレインは、信号線208を介して差動トランジスタ227のドレインに接続される。P型トランジスタ322のドレインは、信号線209を介して差動トランジスタ228のドレインに接続され、また、電圧変換回路330にも接続される。 The P- type transistors 321 and 322 are connected in parallel to the terminal of the power supply voltage VDDH. The gate of the P-type transistor 321 is connected to its drain and the gate of the P-type transistor 322. The drain of the P-type transistor 321 is connected to the drain of the differential transistor 227 via the signal line 208. The drain of the P-type transistor 322 is connected to the drain of the differential transistor 228 via the signal line 209, and is also connected to the voltage conversion circuit 330.
 上述の接続構成により、P型トランジスタ321および322と、差動トランジスタ227および228と、電流源トランジスタ229とからなる回路は、アナログの画素信号SIGと参照信号RMPとを比較する差動入力回路320として機能する。 With the connection configuration described above, the circuit including the P- type transistors 321 and 322, the differential transistors 227 and 228, and the current source transistor 229 is a differential input circuit 320 that compares the analog pixel signal SIG with the reference signal RMP. Function as.
 電圧変換回路330は、差動入力回路320からの出力信号の電圧を変換するものである。より低い系統の電圧に乗り換えることにより、後段の回路において低耐圧トランジスタを用いることができる。これにより、後段の回路の面積を削減することができる。この電圧変換回路330は、変換後の信号を制御回路340に供給する。 The voltage conversion circuit 330 converts the voltage of the output signal from the differential input circuit 320. By changing to a voltage of a lower system, the low breakdown voltage transistor can be used in the circuit in the subsequent stage. As a result, the area of the circuit in the subsequent stage can be reduced. The voltage conversion circuit 330 supplies the converted signal to the control circuit 340.
 制御回路340は、電圧変換回路330の出力信号の反転遷移を加速させるものである。 The control circuit 340 accelerates the inversion transition of the output signal of the voltage conversion circuit 330.
 NORゲート350は、制御回路340からの信号と、ドライバからの駆動信号との否定論理積をインバータ361に供給するものである。 The NOR gate 350 supplies the NAND of the signal from the control circuit 340 and the drive signal from the driver to the inverter 361.
 インバータ361は、NORゲート350からの信号を反転し、比較結果XVCOとしてインバータ362および記憶部400や401に供給するものである。 The inverter 361 inverts the signal from the NOR gate 350 and supplies it as the comparison result XVCO to the inverter 362 and the storage units 400 and 401.
 インバータ362は、比較結果XVCOを反転し、比較結果VCOとして記憶部400や401に供給するものである。 The inverter 362 inverts the comparison result XVCO and supplies it as the comparison result VCO to the storage unit 400 or 401.
 上述の制御回路340と、NORゲート350と、インバータ361および362とからなる回路は、出力の一部を入力に帰還し、比較結果VCOの反転遷移を加速させる正帰還回路として機能する。 The circuit composed of the control circuit 340, the NOR gate 350, and the inverters 361 and 362 functions as a positive feedback circuit that feeds back a part of the output to the input and accelerates the inverted transition of the comparison result VCO.
 なお、P型トランジスタ321および322以降の後段の回路を回路チップ202に配置し、それ以外を受光チップ201に配置しているが、それぞれのチップに配置する回路は、この構成に限定されない。 It should be noted that although the circuits in the subsequent stages of the P- type transistors 321 and 322 are arranged on the circuit chip 202 and the other circuits are arranged on the light receiving chip 201, the circuits arranged on the respective chips are not limited to this configuration.
 また、より低い系統の電圧に乗り換えているが、後段の回路面積を削減する必要性に乏しい場合には、電圧変換回路330を配置しない構成とすることもできる。この場合の後段回路は高耐圧トランジスタを使用する必要がある。 Also, if the voltage of the system is changed to a lower system but there is little need to reduce the circuit area of the subsequent stage, the voltage conversion circuit 330 may be omitted. In this case, it is necessary to use high breakdown voltage transistors in the subsequent circuit.
 図14は、本技術の第1の実施の形態における電圧変換回路330、制御回路340およびNORゲート350の一構成例を示す回路図である。 FIG. 14 is a circuit diagram showing a configuration example of the voltage conversion circuit 330, the control circuit 340, and the NOR gate 350 according to the first embodiment of the present technology.
 電圧変換回路330は、P型トランジスタ331と、N型トランジスタ332および333とを備える。これらのトランジスタとして、例えば、MOSトランジスタが用いられる。 The voltage conversion circuit 330 includes a P-type transistor 331 and N- type transistors 332 and 333. For example, MOS transistors are used as these transistors.
 P型トランジスタ331は、P型トランジスタ321および322と並列に電源電圧VDDHの端子に接続される。また、P型トランジスタ331のゲートは、P型トランジスタ322のドレインに接続される。 The P-type transistor 331 is connected to the terminal of the power supply voltage VDDH in parallel with the P- type transistors 321 and 322. The gate of the P-type transistor 331 is connected to the drain of the P-type transistor 322.
 N型トランジスタ332および333は、P型トランジスタ331のドレインと基準電位(接地電位など)の端子との間において直列に接続される。また、N型トランジスタ332のゲートは、電源電圧VDDHより低い電源電圧VDDLの端子に接続され、N型トランジスタ333のゲートには、Vドライバ241等のドライバからの駆動信号INI1が入力される。また、N型トランジスタ332および333の接続点は、制御回路340およびNORゲート350に接続される。 The N- type transistors 332 and 333 are connected in series between the drain of the P-type transistor 331 and the terminal of the reference potential (ground potential or the like). The gate of the N-type transistor 332 is connected to the terminal of the power supply voltage VDDL lower than the power supply voltage VDDH, and the drive signal INI1 from the driver such as the V driver 241 is input to the gate of the N-type transistor 333. The connection point of the N- type transistors 332 and 333 is connected to the control circuit 340 and the NOR gate 350.
 また、制御回路340は、P型トランジスタ341および342を備える。これらのトランジスタとして、例えば、MOSトランジスタが用いられる。P型トランジスタ341および342は、電源電圧VDDLの端子と、N型トランジスタ332および333の接続点との間において直列に接続される。P型トランジスタ341のゲートには、Vドライバ231等のドライバからの駆動信号INI2が入力され、P型トランジスタ342のゲートには、NORゲート350からの帰還信号PFBが入力される。 The control circuit 340 also includes P- type transistors 341 and 342. For example, MOS transistors are used as these transistors. P- type transistors 341 and 342 are connected in series between the terminal of power supply voltage VDDL and the connection point of N- type transistors 332 and 333. The drive signal INI2 from a driver such as the V driver 231 is input to the gate of the P-type transistor 341, and the feedback signal PFB from the NOR gate 350 is input to the gate of the P-type transistor 342.
 また、NORゲート350は、P型トランジスタ355および356と、N型トランジスタ354および357とを備える。これらのトランジスタとして、例えば、MOSトランジスタが用いられる。P型トランジスタ355および356は、電源電圧VDDLの端子に直列に接続される。N型トランジスタ354および357は、P型トランジスタ356と基準電位(接地電位など)の端子との間において並列に接続される。 The NOR gate 350 also includes P- type transistors 355 and 356 and N- type transistors 354 and 357. For example, MOS transistors are used as these transistors. P- type transistors 355 and 356 are connected in series to the terminal of power supply voltage VDDL. N- type transistors 354 and 357 are connected in parallel between P-type transistor 356 and a terminal of a reference potential (ground potential or the like).
 また、N型トランジスタ354およびP型トランジスタ355のゲートは、制御回路340に共通に接続される。N型トランジスタ357およびP型トランジスタ356のゲートには、Vドライバ241等のドライバからの駆動信号TESTVCOが入力される。駆動信号TESTVCOは、AD変換終了時に強制的に信号を反転させ、比較結果VCOを出力させるための信号である。N型トランジスタ357およびP型トランジスタ356の接続点から制御回路340へは、帰還信号PFBが出力される。 The gates of the N-type transistor 354 and the P-type transistor 355 are commonly connected to the control circuit 340. A drive signal TESTVCO from a driver such as the V driver 241 is input to the gates of the N-type transistor 357 and the P-type transistor 356. The drive signal TESTVCO is a signal for forcibly inverting the signal at the end of AD conversion and outputting the comparison result VCO. The feedback signal PFB is output from the connection point of the N-type transistor 357 and the P-type transistor 356 to the control circuit 340.
 なお、電圧変換回路330、制御回路340およびNORゲート350の回路構成は、図13で説明した機能を実現することができるものであれば、図14に例示した回路に限定されない。 Note that the circuit configurations of the voltage conversion circuit 330, the control circuit 340, and the NOR gate 350 are not limited to the circuits illustrated in FIG. 14 as long as the functions described in FIG. 13 can be realized.
 図15は、本技術の第1の実施の形態における画素220と比較部310との間の接続関係の一例を示す斜視図である。 FIG. 15 is a perspective view showing an example of a connection relationship between the pixel 220 and the comparison unit 310 according to the first embodiment of the present technology.
 画素ブロック211内のX(Xは、整数)行、Y(Yは、整数)列の画素220の座標を(X、Y)とする。左側の座標(0、0)、(0、1)、(1、0)および(1、1)の4画素は、左側の4個の比較部310に接続される。また、右側の座標(0、2)、(0、3)、(1、2)および(1、3)の4画素は、右側の4個の比較部310に接続される。なお、同図において、「CM」は、比較部310を示し、「MEM」は、記憶部400および401を示す。 The coordinates of the pixel 220 in the X (X is an integer) row and the Y (Y is an integer) column in the pixel block 211 are (X, Y). The four pixels of the coordinates (0,0), (0,1), (1,0) and (1,1) on the left side are connected to the four comparison units 310 on the left side. Further, the four pixels of the coordinates (0, 2), (0, 3), (1, 2), and (1, 3) on the right side are connected to the four comparison units 310 on the right side. In the figure, “CM” indicates the comparison unit 310, and “MEM” indicates the storage units 400 and 401.
 [記憶部の構成例]
 図16は、本技術の第1の実施の形態における記憶部400の一構成例を示すブロック図である。この記憶部400は、複数のラッチ部410を備える。比較部310が4個である場合、4個のラッチ部410が設けられる。
[Example of configuration of storage unit]
FIG. 16 is a block diagram showing a configuration example of the storage unit 400 according to the first embodiment of the present technology. The storage unit 400 includes a plurality of latch units 410. When the number of comparison units 310 is four, four latch units 410 are provided.
 ラッチ部410は、対応する比較部310の比較結果VCOが反転したときに、ローカルビット線LBLWを介してリピータ500により転送された時刻コードを画素データとして保持するものである。また、ラッチ部410は、保持した画素データ内のリセットレベルおよび信号レベルのそれぞれを、ローカルビット線LBLRを介してリピータ500へ出力する。冗長ラッチ部460の構成は、ラッチ部410と同様である。 The latch unit 410 holds the time code transferred by the repeater 500 via the local bit line LBLW as pixel data when the comparison result VCO of the corresponding comparison unit 310 is inverted. Further, the latch unit 410 outputs each of the reset level and the signal level in the held pixel data to the repeater 500 via the local bit line LBLR. The configuration of the redundant latch unit 460 is similar to that of the latch unit 410.
 Vドライバ241等のドライバは、m番目のラッチ部410に制御信号WORD<m>を供給し、冗長ラッチ部460に制御信号WORD<3>を供給する。また、ドライバは、3個のラッチ部410と冗長ラッチ部460とにNビットの制御信号LATTRPおよびLATTRDを供給する。 The driver such as the V driver 241 supplies the control signal WORD<m> to the m-th latch unit 410 and the control signal WORD<3> to the redundant latch unit 460. Further, the driver supplies N-bit control signals LATTRP and LATTRD to the three latch units 410 and the redundant latch unit 460.
 制御信号WORD<m>は、m番目の回路(ラッチ部410)に保持したデータの出力を指示する信号である。制御信号LATTRPは、N個の制御信号LATTRP<n>を含み、制御信号LATTRP<n>は、リセットレベル内のnビット目の出力を指示する信号である。制御信号LATTRDは、N個の制御信号LATTRD<n>を含み、制御信号LATTRD<n>は、信号レベル内のnビット目の出力を指示する信号である。 The control signal WORD<m> is a signal for instructing the output of the data held in the m-th circuit (latch unit 410). The control signal LATTRP includes N control signals LATTRP<n>, and the control signal LATTRP<n> is a signal instructing the output of the n-th bit in the reset level. The control signal LATTRD includes N control signals LATTRD<n>, and the control signal LATTRD<n> is a signal instructing the output of the n-th bit in the signal level.
 [ラッチ部の構成例]
 図17は、本技術の第1の実施の形態におけるラッチ部410の一構成例を示すブロック図である。このラッチ部410は、N個のラッチ回路420と冗長ラッチ回路470とを備える。
[Latch section configuration example]
FIG. 17 is a block diagram showing a configuration example of the latch unit 410 according to the first embodiment of the present technology. The latch unit 410 includes N latch circuits 420 and a redundant latch circuit 470.
 ラッチ回路420は、時刻コード内のいずれかのビットを保持するものである。ここで、ラッチ部410は、N本のローカルビット線LBLWと、N本のローカルビット線LBLRとに接続される。n本目のローカルビット線LBLW<n>と、n本目のローカルビット線LBLR<n>とは、n番目のラッチ回路420に接続される。なお、ローカルビット線LBLR<n>のそれぞれは1本ではなく、図17で後述するように、リセットレベルを転送するためのビット線と信号レベルを転送するためのビット線とを含む。 The latch circuit 420 holds any bit in the time code. Here, the latch unit 410 is connected to the N local bit lines LBLW and the N local bit lines LBLR. The n-th local bit line LBLW<n> and the n-th local bit line LBLR<n> are connected to the n-th latch circuit 420. Each of the local bit lines LBLR<n> is not one, but includes a bit line for transferring a reset level and a bit line for transferring a signal level, as described later with reference to FIG.
 また、制御信号LATTRP<n>およびLATTRD<n>は、n番目のラッチ回路420に入力され、制御信号WORD<m>および比較結果VCO<m>は、N個のラッチ回路420のそれぞれに入力される。 Further, the control signals LATTRP<n> and LATTRD<n> are input to the nth latch circuit 420, and the control signal WORD<m> and the comparison result VCO<m> are input to the N latch circuits 420, respectively. To be done.
 N個のラッチ回路420は、比較結果VCO<m>が反転したときに、リピータ500からのNビットの時刻コードを保持する。そして、これらのラッチ回路420は、リセットレベルおよび信号レベルを順にリピータ500へ出力する。冗長ラッチ回路470の構成は、ラッチ回路420と同様である。 The N latch circuits 420 hold the N-bit time code from the repeater 500 when the comparison result VCO<m> is inverted. Then, these latch circuits 420 sequentially output the reset level and the signal level to the repeater 500. The configuration of the redundant latch circuit 470 is similar to that of the latch circuit 420.
 [ラッチ回路の構成例]
 図18は、本技術の第1の実施の形態におけるラッチ回路420の一構成例を示すブロック図である。このラッチ回路420は、ライトラッチ430、リセットレベルリードラッチ440および信号レベルリードラッチ450を備える。
[Latch circuit configuration example]
FIG. 18 is a block diagram showing a configuration example of the latch circuit 420 according to the first embodiment of the present technology. The latch circuit 420 includes a write latch 430, a reset level read latch 440 and a signal level read latch 450.
 ライトラッチ430は、時刻コード(すなわち、書込みデータ)内のいずれかのビットを、比較結果VCO<m>が反転したときに保持するものである。このライトラッチ430は、インバータ431乃至434を備える。 The write latch 430 holds any bit in the time code (that is, write data) when the comparison result VCO<m> is inverted. The write latch 430 includes inverters 431 to 434.
 インバータ431は、比較結果VCO<m>がローレベルからハイレベルに反転したときにおいて、ローカルビット線LBLW<n>を介して転送されたビットを、反転するものである。このインバータ431は、反転したビットをインバータ432へ出力する。 The inverter 431 inverts the bit transferred via the local bit line LBLW<n> when the comparison result VCO<m> is inverted from the low level to the high level. The inverter 431 outputs the inverted bit to the inverter 432.
 インバータ432は、インバータ431からのビットを反転してインバータ433および434へ出力するものである。 The inverter 432 inverts the bit from the inverter 431 and outputs it to the inverters 433 and 434.
 インバータ434は、比較結果XVCO<m>がハイレベルのときにおいて、インバータ432からのビットを反転してインバータ432に出力するものである。 The inverter 434 inverts the bit from the inverter 432 and outputs it to the inverter 432 when the comparison result XVCO<m> is at a high level.
 インバータ433は、インバータ432からのビットを反転してリセットレベルリードラッチ440および信号レベルリードラッチ450へ出力するものである。 The inverter 433 inverts the bit from the inverter 432 and outputs it to the reset level read latch 440 and the signal level read latch 450.
 なお、ライトラッチ430の回路構成は、比較結果VCO<m>が反転したときにビットを保持することができるものであれば、同図に例示した回路に限定されない。 Note that the circuit configuration of the write latch 430 is not limited to the circuit illustrated in the figure as long as it can hold a bit when the comparison result VCO<m> is inverted.
 リセットレベルリードラッチ440は、Vドライバ241等のドライバの制御に従って、ライトラッチ430からのビットを保持するものである。ドライバは、画素220を初期化した際の時刻コード(すなわち、リセットレベル)内のビットをリセットレベルリードラッチ440に保持させる。ここで、ローカルビット線LBLR<n>は、リセットレベルを転送するためのローカルビット線LBLP<n>と、信号レベルを転送するためのローカルビット線LBLD<n>とを含む。リセットレベルリードラッチ440は、ローカルビット線LBLP<n>を介してビットをリピータ500へ出力する。 The reset level read latch 440 holds the bit from the write latch 430 under the control of the driver such as the V driver 241. The driver causes the reset level read latch 440 to hold the bit in the time code (that is, the reset level) when the pixel 220 is initialized. Here, the local bit line LBLR<n> includes a local bit line LBLP<n> for transferring a reset level and a local bit line LBLD<n> for transferring a signal level. The reset level read latch 440 outputs the bit to the repeater 500 via the local bit line LBLP<n>.
 信号レベルリードラッチ450は、Vドライバ241等のドライバの制御に従って、ライトラッチ430からのビットを保持するものである。ドライバは、露光終了時の時刻コード(すなわち、信号レベル)内のビットを信号レベルリードラッチ450に保持させる。信号レベルリードラッチ450は、ローカルビット線LBLD<n>を介してビットをリピータ500へ出力する。 The signal level read latch 450 holds the bit from the write latch 430 under the control of the driver such as the V driver 241. The driver causes the signal level read latch 450 to hold the bit in the time code (that is, the signal level) at the end of the exposure. The signal level read latch 450 outputs the bit to the repeater 500 via the local bit line LBLD<n>.
 図19は、本技術の第1の実施の形態におけるリセットレベルリードラッチ440および信号レベルリードラッチ450の一構成例を示す回路図である。リセットレベルリードラッチ440は、N型トランジスタ441と、P型トランジスタ442と、インバータ443、444および445とを備える。一方、信号レベルリードラッチ450は、N型トランジスタ451と、P型トランジスタ452と、インバータ453、454および455とを備える。N型トランジスタ441、P型トランジスタ442、N型トランジスタ451およびP型トランジスタ452として、例えば、MOSトランジスタが用いられる。 FIG. 19 is a circuit diagram showing a configuration example of the reset level read latch 440 and the signal level read latch 450 according to the first embodiment of the present technology. The reset level read latch 440 includes an N-type transistor 441, a P-type transistor 442, and inverters 443, 444 and 445. On the other hand, the signal level read latch 450 includes an N-type transistor 451, a P-type transistor 452, and inverters 453, 454 and 455. As the N-type transistor 441, the P-type transistor 442, the N-type transistor 451, and the P-type transistor 452, for example, MOS transistors are used.
 N型トランジスタ441およびP型トランジスタ442は、ライトラッチ430の出力端子とインバータ443の入力端子との間において並列に接続される。また、N型トランジスタ441のゲートには、制御信号LATTRP<n>が入力され、P型トランジスタ442のゲートには、制御信号LATTRP<n>を反転したXLATTRP<n>が入力される。 The N-type transistor 441 and the P-type transistor 442 are connected in parallel between the output terminal of the write latch 430 and the input terminal of the inverter 443. Further, the control signal LATTRP<n> is input to the gate of the N-type transistor 441, and XLATTRP<n> which is the inverted control signal LATTRP<n> is input to the gate of the P-type transistor 442.
 インバータ443は、入力されたビットを反転してインバータ444へ出力するものである。 The inverter 443 inverts the input bit and outputs it to the inverter 444.
 インバータ444は、インバータ443からのビットを、制御信号LATTRP<n>がハイレベルの際に反転し、インバータ443および445へ出力するものである。 The inverter 444 inverts the bit from the inverter 443 when the control signal LATTRP<n> is at a high level, and outputs it to the inverters 443 and 445.
 インバータ445は、インバータ444からのビットを、制御信号WORD<m>がハイレベルの際に反転し、ローカルビット線LBLP<n>を介してリピータ500へ出力するものである。 The inverter 445 inverts the bit from the inverter 444 when the control signal WORD<m> is at a high level and outputs the bit to the repeater 500 via the local bit line LBLP<n>.
 信号レベルリードラッチ450の回路構成は、リセットレベルリードラッチ440と同様である。ただし、信号レベルリードラッチ450には、制御信号LATTRD<n>が入力され、ローカルビット線LBLD<n>を介してビットが出力される。 The circuit configuration of the signal level read latch 450 is the same as that of the reset level read latch 440. However, the control signal LATTRD<n> is input to the signal level read latch 450, and the bit is output via the local bit line LBLD<n>.
 なお、リセットレベルリードラッチ440および信号レベルリードラッチ450のそれぞれの回路構成は、制御信号に従ってビットを保持することができるものであれば、同図に例示した構成に限定されない。 Note that the circuit configurations of the reset level read latch 440 and the signal level read latch 450 are not limited to the configurations illustrated in the figure as long as they can hold bits in accordance with control signals.
 [冗長ラッチ回路の構成例]
 図20は、本技術の第1の実施の形態における冗長ラッチ回路470の一構成例を示すブロック図である。この冗長ラッチ回路470は、冗長ライトラッチ471、リセットレベル冗長リードラッチ472および信号レベル冗長リードラッチ473を備える。
[Configuration example of redundant latch circuit]
FIG. 20 is a block diagram showing a configuration example of the redundant latch circuit 470 according to the first embodiment of the present technology. The redundant latch circuit 470 includes a redundant write latch 471, a reset level redundant read latch 472 and a signal level redundant read latch 473.
 冗長ライトラッチ471の回路構成は、図18に例示したライトラッチ430と同様である。リセットレベル冗長リードラッチ472および信号レベル冗長リードラッチ473の回路構成は、図19に例示したリセットレベルリードラッチ440および信号レベルリードラッチ450と同様である。なお、冗長リードラッチ472および信号レベル冗長リードラッチ473からなる回路は、特許請求の範囲に記載の冗長リードラッチの一例である。 The circuit configuration of the redundant write latch 471 is similar to that of the write latch 430 illustrated in FIG. The circuit configurations of the reset level redundant read latch 472 and the signal level redundant read latch 473 are similar to those of the reset level read latch 440 and the signal level read latch 450 illustrated in FIG. The circuit including the redundant read latch 472 and the signal level redundant read latch 473 is an example of the redundant read latch described in the claims.
 [選択部の構成例]
 図21は、本技術の第1の実施の形態における選択部600および601の一構成例を示すブロック図である。選択部600および601のそれぞれは、書込み側選択部610および読出し側選択部620を備える。
[Example of configuration of selection unit]
FIG. 21 is a block diagram illustrating a configuration example of the selection units 600 and 601 according to the first embodiment of the present technology. Each of the selection units 600 and 601 includes a writing side selection unit 610 and a reading side selection unit 620.
 選択部600は、例えば、奇数番目のリピータ500に接続された書込み側選択部610と、偶数番目のリピータ500に接続された読出し側選択部620とを備える。一方、選択部601は、偶数番目のリピータ500に接続された書込み側選択部610と、奇数番目のリピータ500に接続された読出し側選択部620とを備える。なお、同図において、奇数番目の書込み側選択部610を北側に、偶数番目の書込み側選択部610を南側に配置しているが、この構成に限定されない。全ての書込み側選択部610を北側または南側に配置することもできる。読出し側選択部620についても同様である。 The selection unit 600 includes, for example, a writing-side selection unit 610 connected to the odd-numbered repeaters 500 and a reading-side selection unit 620 connected to the even-numbered repeaters 500. On the other hand, the selection unit 601 includes a writing-side selection unit 610 connected to the even-numbered repeaters 500 and a reading-side selection unit 620 connected to the odd-numbered repeaters 500. In the figure, the odd-numbered write-side selection units 610 are arranged on the north side and the even-numbered write-side selection units 610 are arranged on the south side, but the configuration is not limited to this. It is also possible to arrange all the writing side selection units 610 on the north side or the south side. The same applies to the reading side selection unit 620.
 書込み側選択部610は、故障が生じたか否かにより、N個の書込みビット転送回路570と冗長書込みビット転送回路570-1とのうちN個を選択するものである。故障が無い場合に書込み側選択部610は、N個の書込みビット転送回路570を選択し、それらの回路へ時刻コードを出力する。一方、N個の経路のうちn個目に故障が生じた場合に書込み側選択部610は、n個目に対応する回路を除くN-1の書込みビット転送回路570と冗長書込みビット転送回路570-1とを選択し、それらの回路へ時刻コードを出力する。 The write side selection unit 610 selects N of the N write bit transfer circuits 570 and the redundant write bit transfer circuit 570-1 depending on whether or not a failure has occurred. When there is no failure, the write side selection unit 610 selects N write bit transfer circuits 570 and outputs the time code to those circuits. On the other hand, when a failure occurs in the nth path out of the N paths, the write side selection unit 610 causes the N−1 write bit transfer circuits 570 and the redundant write bit transfer circuit 570 excluding the circuit corresponding to the nth path. -1 and are selected and the time code is output to those circuits.
 読出し側選択部620は、故障が生じたか否かにより、N+1本の経路のうちN本を選択するものである。この読出し側選択部620は、リセットレベル読出し側選択部630および信号レベル読出し側選択部640を備える。 The read side selection unit 620 selects N of N+1 routes depending on whether or not a failure has occurred. The read side selection unit 620 includes a reset level read side selection unit 630 and a signal level read side selection unit 640.
 故障が無い場合にリセットレベル読出し側選択部630は、N個のリセットレベル読出しビット転送回路513からのリセットレベル読出しデータを選択し、それらをロジック回路260または270へ転送する。一方、N本の経路のうちn個目に故障が生じた場合にリセットレベル読出し側選択部630は、n個目に対応する回路を除くN-1個のリセットレベル読出しビット転送回路513と冗長リセットレベル読出しビット転送回路513-1とを選択し、それらからのデータをロジック回路260または270へ転送する。 When there is no failure, the reset level read side selection unit 630 selects the reset level read data from the N reset level read bit transfer circuits 513 and transfers them to the logic circuit 260 or 270. On the other hand, when a failure occurs in the nth path of the N paths, the reset level read side selection unit 630 is redundant with the N−1 reset level read bit transfer circuits 513 excluding the circuit corresponding to the nth path. The reset level read bit transfer circuit 513-1 is selected and the data from them is transferred to the logic circuit 260 or 270.
 また、故障が無い場合に信号レベル読出し側選択部640は、N個の信号レベル読出しビット転送回路からの信号レベル読出しデータを選択し、それらをロジック回路260または270へ転送する。一方、N本の経路のうちn個目に故障が生じた場合に信号レベル読出し側選択部640は、n個目に対応する回路を除くN-1個の信号レベル読出しビット転送回路と冗長信号レベル読出しビット転送回路とを選択し、それらからのデータをロジック回路260または270へ転送する。 When there is no failure, the signal level read side selection unit 640 selects the signal level read data from the N signal level read bit transfer circuits and transfers them to the logic circuit 260 or 270. On the other hand, when a failure occurs in the nth path out of the N paths, the signal level read side selection unit 640 determines the N-1 signal level read bit transfer circuits and the redundant signal except the circuit corresponding to the nth path. Select the level read bit transfer circuit and transfer the data from them to the logic circuit 260 or 270.
 [書込み側選択部の構成例]
 図22は、本技術の第1の実施の形態における書込み側選択部610の一構成例を示す回路図である。この書込み側選択部610は、N個のセレクタ611を備える。説明を簡易にするため、N個のうち4つのセレクタ611について考える。
[Example of configuration of writing side selection unit]
FIG. 22 is a circuit diagram showing a configuration example of the write side selection unit 610 according to the first embodiment of the present technology. The writing side selection unit 610 includes N selectors 611. To simplify the description, consider four selectors 611 out of N.
 セレクタ611は、選択信号に従って、2つの出力先のいずれかを選択し、その選択した出力先に時刻コードを出力するものである。時刻コード発生部280は、時刻コード<0>乃至<3>を個別に生成し、4個のセレクタ611の入力端子に供給する。ここで、選択信号は、出力先を指示する信号である。ここで、時刻コード<n>は、時刻コードのnビット目を示す。 The selector 611 selects one of the two output destinations according to the selection signal and outputs the time code to the selected output destination. The time code generator 280 individually generates the time codes <0> to <3> and supplies them to the input terminals of the four selectors 611. Here, the selection signal is a signal instructing the output destination. Here, the time code <n> indicates the n-th bit of the time code.
 0番目のセレクタ611は、選択信号WSEL<0>に従って、メインビット線WB<0>およびWB<1>のいずれかを選択し、そのビット線へ時刻コード<0>を出力する。 The 0th selector 611 selects one of the main bit lines WB<0> and WB<1> according to the selection signal WSEL<0>, and outputs the time code <0> to the bit line.
 1番目のセレクタ611は、選択信号WSEL<1>に従って、メインビット線WB<1>およびWB<2>のいずれかを選択し、そのビット線へ時刻コード<1>を出力する。 The first selector 611 selects one of the main bit lines WB<1> and WB<2> according to the selection signal WSEL<1> and outputs the time code <1> to the bit line.
 2番目のセレクタ611は、選択信号WSEL<2>に従って、メインビット線WB<2>およびWB<3>のいずれかを選択し、そのビット線へ時刻コード<2>を出力する。 The second selector 611 selects one of the main bit lines WB<2> and WB<3> according to the selection signal WSEL<2> and outputs the time code <2> to the bit line.
 3番目のセレクタ611は、選択信号WSEL<3>に従って、メインビット線WB<3>およびWB<4>のいずれかを選択し、そのビット線へ時刻コード<3>を出力する。 The third selector 611 selects one of the main bit lines WB<3> and WB<4> according to the selection signal WSEL<3> and outputs the time code <3> to the bit line.
 また、メインビット線WB<0>乃至WB<3>のそれぞれには書込みビット転送回路570が接続され、メインビット線WB<4>には冗長書込みビット転送回路570-1が接続される。 A write bit transfer circuit 570 is connected to each of the main bit lines WB<0> to WB<3>, and a redundant write bit transfer circuit 570-1 is connected to the main bit line WB<4>.
 また、セレクタ611は、例えば、N型トランジスタ612および614と、P型トランジスタ613および615とから構成される。これらのトランジスタとして、例えば、MOSトランジスタが用いられる。 Further, the selector 611 is composed of, for example, N- type transistors 612 and 614 and P- type transistors 613 and 615. For example, MOS transistors are used as these transistors.
 0番目のセレクタ611においてN型トランジスタ612およびP型トランジスタ613は、メインビット線WB<0>と、時刻コード発生部280との間において並列に接続される。また、N型トランジスタ614およびP型トランジスタ615は、メインビット線WB<1>と、時刻コード発生部280との間において並列に接続される。 In the 0th selector 611, the N-type transistor 612 and the P-type transistor 613 are connected in parallel between the main bit line WB<0> and the time code generator 280. The N-type transistor 614 and the P-type transistor 615 are connected in parallel between the main bit line WB<1> and the time code generator 280.
 N型トランジスタ612のゲートには、対応する選択信号(WSEL<0>など)が入力され、P型トランジスタ613のゲートには、その選択信号を反転した信号(XWSEL<0>など)が入力される。N型トランジスタ614のゲートには、対応する選択信号を反転した信号(XWSEL<0>など)が入力され、P型トランジスタ615のゲートには、対応する選択信号(WSEL<0>など)が入力される。1番目以降のセレクタ611の回路構成は、0番目と同様である。 A corresponding selection signal (WSEL<0> or the like) is input to the gate of the N-type transistor 612, and an inverted signal (XWSEL<0> or the like) of the selection signal is input to the gate of the P-type transistor 613. It A signal (XWSEL<0> or the like) obtained by inverting a corresponding selection signal is input to the gate of the N-type transistor 614, and a corresponding selection signal (WSEL<0> or the like) is input to the gate of the P-type transistor 615. To be done. The circuit configurations of the first and subsequent selectors 611 are the same as those of the zeroth selector.
 また、選択信号は、水平方向に配線された制御線を介してロジック回路260または270により供給される。なお、この制御線を垂直方向に配線することもできる。また、ロジック回路260等の代わりにHドライバ251などのドライバが選択信号を供給することもできる。 Also, the selection signal is supplied by the logic circuit 260 or 270 via a control line wired in the horizontal direction. It should be noted that this control line can be wired in the vertical direction. Further, instead of the logic circuit 260 or the like, a driver such as the H driver 251 can supply the selection signal.
 故障が無い場合にロジック回路260または270は、選択信号によりメインビット線WB<0>乃至WB<3>を選択させ、それらを介して時刻コード<0>乃至<3>を4個の書込みビット転送回路570へ転送させる。 When there is no failure, the logic circuit 260 or 270 causes the main bit lines WB<0> to WB<3> to be selected by the selection signal, and the time codes <0> to <3> to be transmitted through the four write bits. Transfer to the transfer circuit 570.
 一方、n個目の経路に故障が生じた場合にロジック回路260等は、選択信号によりn個目を除く4つのローカルビット線を選択させる。そして、ロジック回路260等は、それらのローカルビット線を介して時刻コード<0>乃至<3>を3個の書込みビット転送回路570と冗長書込みビット転送回路570-1とに転送させる。 On the other hand, when a failure occurs in the nth path, the logic circuit 260 or the like causes the selection signal to select the four local bit lines except the nth path. Then, the logic circuit 260 or the like transfers the time codes <0> to <3> to the three write bit transfer circuits 570 and the redundant write bit transfer circuit 570-1 via these local bit lines.
 [リセットレベル読出し側選択部の構成例]
 図23は、本技術の第1の実施の形態におけるリセットレベル読出し側選択部630の一構成例を示す回路図である。このリセットレベル読出し側選択部630は、N個のセレクタ631を備える。説明を簡易にするため、N個のうち4つのセレクタ631について考える。
[Example of configuration of reset level read side selection unit]
FIG. 23 is a circuit diagram showing a configuration example of the reset level read side selection unit 630 according to the first embodiment of the present technology. The reset level read side selection unit 630 includes N selectors 631. To simplify the explanation, consider four selectors 631 out of N.
 セレクタ631は、選択信号に従って、2つの入力元のいずれかを選択し、その選択した入力元からのデータをロジック回路260または270に出力するものである。ここで、選択信号は、入力元を指示する信号である。 The selector 631 selects one of the two input sources according to the selection signal and outputs the data from the selected input source to the logic circuit 260 or 270. Here, the selection signal is a signal indicating the input source.
 0番目のセレクタ631は、選択信号PSEL<0>に従って、メインビット線PB<0>およびPB<1>のいずれかを選択し、そのビット線からのデータを出力する。 The 0th selector 631 selects one of the main bit lines PB<0> and PB<1> according to the selection signal PSEL<0> and outputs the data from the bit line.
 1番目のセレクタ631は、選択信号PSEL<1>に従って、メインビット線PB<1>およびPB<2>のいずれかを選択し、そのビット線からのデータを出力する。 The first selector 631 selects one of the main bit lines PB<1> and PB<2> according to the selection signal PSEL<1> and outputs the data from the bit line.
 2番目のセレクタ631は、選択信号PSEL<2>に従って、メインビット線PB<2>およびPB<3>のいずれかを選択し、そのビット線からのデータを出力する。 The second selector 631 selects one of the main bit lines PB<2> and PB<3> according to the selection signal PSEL<2> and outputs the data from the bit line.
 3番目のセレクタ631は、選択信号PSEL<3>に従って、メインビット線PB<3>およびPB<4>のいずれかを選択し、そのビット線からのデータを出力する。 The third selector 631 selects one of the main bit lines PB<3> and PB<4> according to the selection signal PSEL<3> and outputs the data from the bit line.
 また、メインビット線PB<0>乃至PB<3>のそれぞれにはリセットレベル読出しビット転送回路513が接続され、ローカルビット線PB<4>には冗長リセットレベル読出しビット転送回路513-1が接続される。セレクタ631の回路構成は、セレクタ611と同様である。 A reset level read bit transfer circuit 513 is connected to each of the main bit lines PB<0> to PB<3>, and a redundant reset level read bit transfer circuit 513-1 is connected to the local bit line PB<4>. To be done. The circuit configuration of the selector 631 is similar to that of the selector 611.
 故障が無い場合にロジック回路260または270は、選択信号によりメインビット線PB<0>乃至PB<3>を選択させ、それらのビット線からのリセットレベル読出しビットをロジック回路260等へ転送させる。 When there is no failure, the logic circuit 260 or 270 causes the selection signal to select the main bit lines PB<0> to PB<3> and transfers the reset level read bit from these bit lines to the logic circuit 260 or the like.
 一方、n個目の経路に故障が生じた場合にロジック回路260等は、選択信号によりm個目を除く4つのメインビット線を選択させる。そして、ロジック回路260等は、それらのビット線からのリセットレベル読出しビットをロジック回路260等へ転送させる。 On the other hand, when a failure occurs in the n-th path, the logic circuit 260 or the like causes the selection signal to select the four main bit lines except the m-th path. Then, the logic circuit 260 or the like transfers the reset level read bits from those bit lines to the logic circuit 260 or the like.
 [信号レベル読出し側選択部の構成例]
 図24は、本技術の第1の実施の形態における信号レベル読出し側選択部640の一構成例を示す回路図である。この信号レベル読出し側選択部640は、N個のセレクタ641を備える。説明を簡易にするため、N個のうち4つのセレクタ641について考える。
[Example of configuration of signal level reading side selection unit]
FIG. 24 is a circuit diagram showing a configuration example of the signal level reading side selection unit 640 in the first embodiment of the present technology. The signal level read side selection unit 640 includes N selectors 641. To simplify the description, consider four selectors 641 out of N.
 セレクタ641は、選択信号に従って、2つの入力元のいずれかを選択し、その選択した入力元からのデータをロジック回路260または270に出力するものである。ここで、選択信号は、入力元を指示する信号である。 The selector 641 selects one of the two input sources according to the selection signal and outputs the data from the selected input source to the logic circuit 260 or 270. Here, the selection signal is a signal indicating the input source.
 0番目のセレクタ641は、選択信号DSEL<0>に従って、メインビット線DB<0>およびDB<1>のいずれかを選択し、そのビット線からのデータを出力する。 The 0th selector 641 selects one of the main bit lines DB<0> and DB<1> according to the selection signal DSEL<0>, and outputs the data from the bit line.
 1番目のセレクタ641は、選択信号DSEL<1>に従って、メインビット線DB<1>およびDB<2>のいずれかを選択し、そのビット線からのデータを出力する。 The first selector 641 selects one of the main bit lines DB<1> and DB<2> according to the selection signal DSEL<1> and outputs the data from the bit line.
 2番目のセレクタ641は、選択信号DSEL<2>に従って、メインビット線DB<2>およびDB<3>のいずれかを選択し、そのビット線からのデータを出力する。 The second selector 641 selects one of the main bit lines DB<2> and DB<3> according to the selection signal DSEL<2> and outputs the data from the bit line.
 3番目のセレクタ641は、選択信号DSEL<3>に従って、メインビット線PB<3>およびPB<4>のいずれかを選択し、そのビット線からのデータを出力する。 The third selector 641 selects one of the main bit lines PB<3> and PB<4> according to the selection signal DSEL<3> and outputs the data from the bit line.
 また、ローカルビット線DB<0>乃至DB<3>のそれぞれには信号レベル読出しビット転送回路が接続され、ローカルビット線PB<4>には冗長信号レベル読出しビット転送回路が接続される。セレクタ641の回路構成は、セレクタ611と同様である。 A signal level read bit transfer circuit is connected to each of the local bit lines DB<0> to DB<3>, and a redundant signal level read bit transfer circuit is connected to the local bit line PB<4>. The circuit configuration of the selector 641 is similar to that of the selector 611.
 故障が無い場合にロジック回路260または270は、選択信号によりメインビット線DB<0>乃至DB<3>を選択させ、それらのビット線からの信号レベル読出しビットをロジック回路260等へ転送させる。 When there is no failure, the logic circuit 260 or 270 causes the selection bit to select the main bit lines DB<0> to DB<3> and transfers the signal level read bit from these bit lines to the logic circuit 260 or the like.
 一方、n個目の経路に故障が生じた場合にロジック回路260等は、選択信号によりn個目を除く4つのメインビット線を選択させる。そして、ロジック回路260等は、それらのビット線からの信号レベル読出しビットをロジック回路260等へ転送させる。 On the other hand, when a failure occurs in the nth path, the logic circuit 260 or the like causes the selection signal to select the four main bit lines except the nth path. Then, the logic circuit 260 or the like transfers the signal level read bits from those bit lines to the logic circuit 260 or the like.
 図25は、本技術の第1の実施の形態におけるリセットレベル読出し側選択部630の制御の一例を示す図である。同図におけるaは、故障の無い場合のリセットレベル読出し側選択部630の状態の一例を示す図である。同図におけるbは、0番目の経路に故障が生じた場合のリセットレベル読出し側選択部630の状態の一例を示す図である。同図におけるcは、1番目の経路に故障が生じた場合のリセットレベル読出し側選択部630の状態の一例を示す図である。 FIG. 25 is a diagram illustrating an example of control of the reset level reading side selection unit 630 according to the first embodiment of the present technology. In the figure, a is a diagram showing an example of the state of the reset level read side selection unit 630 when there is no failure. B in the figure is a diagram showing an example of the state of the reset level read side selection unit 630 when a failure occurs in the 0th path. FIG. 7C is a diagram showing an example of the state of the reset level read side selection unit 630 when a failure occurs in the first path.
 同図におけるaに例示するように、故障の無い場合にロジック回路260または270は、選択信号によりメインビット線PB<0>乃至DB<3>を選択させる。これにより、それらのメインビット線を介して4ビットのリセットレベル読出しビットが読み出される。 As illustrated in a in the figure, when there is no failure, the logic circuit 260 or 270 causes the main bit lines PB<0> to DB<3> to be selected by the selection signal. As a result, the reset level read bit of 4 bits is read out through those main bit lines.
 一方、0番目の経路に故障が生じた場合にロジック回路260等は、選択信号によりメインビット線PB<1>乃至DB<4>を選択させる。これにより、メインビット線PB<1>乃至PB<3>を介してリセットレベル読出しデータのうち3ビットが読み出され、ローカルビット線DB<4>を介して残りのビットが読み出される。 On the other hand, when a failure occurs in the 0th path, the logic circuit 260 or the like causes the main bit lines PB<1> to DB<4> to be selected by the selection signal. As a result, 3 bits of the reset level read data are read out through the main bit lines PB<1> to PB<3>, and the remaining bits are read out through the local bit line DB<4>.
 また、1番目の経路に故障が生じた場合にロジック回路260等は、選択信号によりメインビット線PB<0>、PB<2>、PB<3>およびPB<4>を選択させる。これにより、メインビット線PB<0>、PB<2>およびPB<3>を介してリセットレベル読出しデータのうち3ビットが読み出され、メインビット線PB<4>を介して残りのビットが読み出される。 When a failure occurs in the first path, the logic circuit 260 or the like causes the selection signal to select the main bit lines PB<0>, PB<2>, PB<3> and PB<4>. As a result, 3 bits of the reset level read data are read out through the main bit lines PB<0>, PB<2> and PB<3>, and the remaining bits are read out through the main bit line PB<4>. Read out.
 2番目や3番目の経路に故障が生じた場合も同様に、その経路に対応するメインビット線を除く4本が選択される。この選択では、書込みデータ転送回路560と、リセットレベル読出しデータ転送回路512と、信号レベル読出しデータ転送回路522とのそれぞれのビット選択が同期される。 Similarly, if a failure occurs in the second or third route, the four lines except the main bit line corresponding to that route are selected. In this selection, the bit selections of the write data transfer circuit 560, the reset level read data transfer circuit 512, and the signal level read data transfer circuit 522 are synchronized.
 時刻コードを転送する経路上の回路が故障すると、AD変換が正常に行われなくなり、異常な値の画素データが生成され、画像データの画質が低下するおそれがある。ここで、故障の検出対象の回路は、図8に例示した書込みビット転送回路570と、図11に例示したリセットレベル読出しビット転送回路513と、信号レベル読出しビット転送回路(不図示)と、ラッチ回路とを含む。ラッチ回路は、図17に例示したラッチ部410内の回路である。 If a circuit on the path that transfers the time code fails, AD conversion may not be performed normally, pixel data with an abnormal value may be generated, and the image quality of the image data may deteriorate. Here, the circuits whose failure is to be detected are the write bit transfer circuit 570 illustrated in FIG. 8, the reset level read bit transfer circuit 513 illustrated in FIG. 11, the signal level read bit transfer circuit (not shown), and the latch. And circuit. The latch circuit is a circuit in the latch unit 410 illustrated in FIG.
 そして、回路に故障が生じた際に、選択部600は、故障した回路の代わりに、冗長回路を選択して、その冗長回路に時刻データを転送させる。これにより、時刻データが故障の無い回路を介して転送され、画像データの画質低下を防止することができる。ここで、冗長回路は、図8に例示した冗長書込みビット転送回路570-1と、図11に例示した冗長リセットレベル読出しビット転送回路513-1と、冗長信号レベル読出しビット転送回路(不図示)と、冗長ラッチ回路とを含む。冗長ラッチ回路は、図17に例示した冗長ラッチ部460内の回路である。 Then, when a failure occurs in the circuit, the selection unit 600 selects a redundant circuit instead of the failed circuit and transfers the time data to the redundant circuit. As a result, the time data is transferred through the circuit having no failure, and the deterioration of the image quality of the image data can be prevented. Here, the redundant circuit includes a redundant write bit transfer circuit 570-1 illustrated in FIG. 8, a redundant reset level read bit transfer circuit 513-1 illustrated in FIG. 11, and a redundant signal level read bit transfer circuit (not shown). And a redundant latch circuit. The redundant latch circuit is a circuit in the redundant latch unit 460 illustrated in FIG.
 [ロジック回路の構成例]
 図26は、本技術の第1の実施の形態におけるロジック回路270の一構成例を示すブロック図である。このロジック回路270は、セレクタ271、信号処理部272、故障検出部273、および選択制御部274とを備える。なお、ロジック回路260の構成は、ロジック回路270と同様である。
[Example of logic circuit configuration]
FIG. 26 is a block diagram showing a configuration example of the logic circuit 270 according to the first embodiment of the present technology. The logic circuit 270 includes a selector 271, a signal processing unit 272, a failure detection unit 273, and a selection control unit 274. The configuration of the logic circuit 260 is similar to that of the logic circuit 270.
 信号処理部272は、リセットレベルと信号レベルとの差分を求めるCDS処理やデモザイク処理などの各種の信号処理を画素毎に行うものである。この信号処理部272は、処理後の画素データのそれぞれをDSP回路120に供給する。 The signal processing unit 272 performs various kinds of signal processing such as CDS processing and demosaic processing for obtaining the difference between the reset level and the signal level for each pixel. The signal processing unit 272 supplies each of the processed pixel data to the DSP circuit 120.
 セレクタ271は、モード信号MODEに従って、出力先を選択し、選択部601の画素データを出力するものである。モード信号MODEは、撮像モードおよびテストモードを含む複数のモードの何れかを示す。テストモードである場合にセレクタ271は、故障検出部273へ画素データを出力し、撮像モードである場合にセレクタ271は、信号処理部272へ画素データを出力する。 The selector 271 selects an output destination according to the mode signal MODE and outputs the pixel data of the selection unit 601. The mode signal MODE indicates any one of a plurality of modes including an imaging mode and a test mode. In the test mode, the selector 271 outputs pixel data to the failure detection unit 273, and in the imaging mode, the selector 271 outputs pixel data to the signal processing unit 272.
 故障検出部273は、テストモードにおいて、時刻コードを転送する経路毎に、その経路上の回路(リセットレベル読出しビット転送回路513など)の故障の有無を検出するものである。テストモードにおいては、例えば、既知のテストパターンを設けた所定のテスト画像が撮像される。このテスト画像のそれぞれの画素の画素値は、期待値として故障検出部273に予め入力される。 In the test mode, the failure detection unit 273 detects whether or not there is a failure in a circuit (such as the reset level read bit transfer circuit 513) on the path for each time code transfer path. In the test mode, for example, a predetermined test image provided with a known test pattern is captured. The pixel value of each pixel of this test image is input in advance to the failure detection unit 273 as an expected value.
 テストモードにおいて故障検出部273は、撮像されたテスト画像の画像データについて、画素毎に、画素データを期待値と比較する。そして故障検出部273は、期待値との差が所定の許容値を超える画素を欠陥画素とし、その欠陥画素に対応する経路上の回路に故障があると判断する。 In the test mode, the failure detection unit 273 compares the pixel data of the image data of the captured test image with the expected value for each pixel. Then, the failure detection unit 273 determines a pixel whose difference from the expected value exceeds a predetermined allowable value as a defective pixel, and determines that the circuit on the path corresponding to the defective pixel has a failure.
 例えば、クラスタ300内の回路同士の接続関係が図15に例示したものであると仮定する。この場合、クラスタ300の列(言い換えれば、リピータ500)ごとに、時刻コードが4つの経路を介して転送される。図14における座標(0,0)および(0,3)の2画素は、0番目の経路を介して転送される。座標(0,1)および(0,2)の2画素は、1番目の経路を介して転送される。また、座標(1,0)および(1,3)の2画素は、2番目の経路を介して転送される。また、座標(1,1)および(1,2)の2画素は、3番目の経路を介して転送される。このため、故障検出部273は、欠陥画素の座標から故障の生じた回路を特定することができる。そして、故障検出部273は、検出結果を選択制御部274と、Vドライバ241などのドライバとへ供給する。 For example, assume that the connection relationship between the circuits in the cluster 300 is as illustrated in FIG. In this case, the time code is transferred via the four routes for each column of the cluster 300 (in other words, the repeater 500). Two pixels at coordinates (0,0) and (0,3) in FIG. 14 are transferred via the 0th path. Two pixels with coordinates (0,1) and (0,2) are transferred via the first path. Further, the two pixels with coordinates (1,0) and (1,3) are transferred via the second path. Also, the two pixels at coordinates (1,1) and (1,2) are transferred via the third path. Therefore, the failure detection unit 273 can identify the circuit in which the failure has occurred from the coordinates of the defective pixel. Then, the failure detection unit 273 supplies the detection result to the selection control unit 274 and the driver such as the V driver 241.
 選択制御部274は、故障の検出結果に基づいて、選択信号WSEL、PSELおよびDSELにより、選択部600および601の接続先を制御するものである。 The selection control unit 274 controls the connection destinations of the selection units 600 and 601 by the selection signals WSEL, PSEL, and DSEL based on the failure detection result.
 図27は、本技術の第1の実施の形態における書込み側の制御を説明するための図である。時刻コードを転送する経路はN本であるが、同図においては、説明を簡易にする目的で、経路を1つのみとし、書込みビット転送回路570も1つのみとしている。 FIG. 27 is a diagram for explaining control on the writing side according to the first embodiment of the present technology. Although there are N paths for transferring the time code, only one path and only one write bit transfer circuit 570 are provided in the figure for the purpose of simplifying the description.
 時刻コード発生部280は、デジタルの時刻コードを生成して書込み側選択部610に供給する。書込みビット転送回路570は、そのデジタル信号(すなわち、時刻コード)内のビットを書込みビットとしてクラスタ300内の記憶部400に供給する。なお、書込みビット転送回路570は、特許請求の範囲に記載の書込み回路の一例である。 The time code generator 280 generates a digital time code and supplies it to the writing side selector 610. The write bit transfer circuit 570 supplies the bit in the digital signal (that is, the time code) to the storage unit 400 in the cluster 300 as the write bit. The write bit transfer circuit 570 is an example of the write circuit described in the claims.
 また、クラスタ300内の比較部310は、アナログの画素信号SIGと所定の参照信号RMPとを比較し、比較結果VCOを記憶部400に供給する。記憶部400内のN個のライトラッチ430は、その比較結果VCOが反転したときに、書込みデータ(すなわち、時刻コード)を画素データとして保持する。これにより、アナログの画素信号SIGがデジタル信号(画素データ)に変換される。なお、クラスタ300は、特許請求の範囲のアナログデジタル変換部の一例である。 Also, the comparison unit 310 in the cluster 300 compares the analog pixel signal SIG with a predetermined reference signal RMP and supplies the comparison result VCO to the storage unit 400. The N write latches 430 in the storage unit 400 hold write data (that is, time code) as pixel data when the comparison result VCO is inverted. As a result, the analog pixel signal SIG is converted into a digital signal (pixel data). The cluster 300 is an example of the analog-digital conversion unit in the claims.
 故障検出部273は、テストモードにおいて、書込みビット転送回路570を含む経路に故障が生じたか否かを検出する。故障が生じた場合に書込み側選択部610は、選択制御部274の制御に従って冗長書込みビット転送回路570-1を選択し、時刻データのいずれかのビットを供給する。そして、冗長書込みビット転送回路570-1は、そのビットを記憶部400に供給する。なお、冗長書込みビット転送回路570-1は、特許請求の範囲に記載の冗長書込み回路の一例である。 The failure detection unit 273 detects whether or not a failure has occurred in the path including the write bit transfer circuit 570 in the test mode. When a failure occurs, the write side selection unit 610 selects the redundant write bit transfer circuit 570-1 under the control of the selection control unit 274 and supplies any bit of the time data. Then, the redundant write bit transfer circuit 570-1 supplies the bit to the storage section 400. The redundant write bit transfer circuit 570-1 is an example of the redundant write circuit described in the claims.
 冗長ライトラッチ471は、比較結果VCOが反転したときに、冗長書込みビット転送回路570-1からのビットを保持する。 The redundant write latch 471 holds the bit from the redundant write bit transfer circuit 570-1 when the comparison result VCO is inverted.
 図28は、本技術の第1の実施の形態における読出し側の制御を説明するための図である。時刻コードを転送する経路はN本であるが、同図においては、説明を簡易にする目的で、経路を1つのみとし、リセットレベル読出しビット転送回路513-1も1つのみとしている。 FIG. 28 is a diagram for explaining control on the reading side in the first embodiment of the present technology. Although there are N paths for transferring the time code, only one path and only one reset level read bit transfer circuit 513-1 are shown in the figure for the purpose of simplifying the description.
 N個のリセットレベルリードラッチ440は、リセットレベルに対応する時刻コードを保持する。リセットレベル読出しビット転送回路513は、そのデジタル信号(すなわち、時刻コード)内のビットをリセットレベル読出しビットとして読み出し、リセットレベル読出し側選択部630へ供給する。 The N reset level read latches 440 hold the time code corresponding to the reset level. The reset level read bit transfer circuit 513 reads the bit in the digital signal (that is, the time code) as the reset level read bit and supplies it to the reset level read side selection unit 630.
 故障検出部273は、テストモードにおいて、リセットレベル読出しビット転送回路513を含む経路に故障が生じたか否かを検出する。故障が生じた場合にリセットレベル冗長リードラッチ472は、リセットレベルに対応する時刻コードのいずれかのビットを保持する。リセットレベル冗長ビット転送回路513-1は、そのデジタル信号(時刻コード)内のビットをリセットレベル読出し0ビットとして読み出し、リセットレベル読出し側選択部630へ供給する。 The failure detection unit 273 detects whether or not a failure has occurred in the path including the reset level read bit transfer circuit 513 in the test mode. When a failure occurs, the reset level redundant read latch 472 holds any bit of the time code corresponding to the reset level. The reset level redundant bit transfer circuit 513-1 reads the bit in the digital signal (time code) as the reset level read 0 bit and supplies it to the reset level read side selection unit 630.
 そして、リセットレベル読出し側選択部630は、選択制御部274の制御に従って冗長リセットレベル読出しビット転送回路513-1からのビットを選択して信号処理部271へ出力する。なお、信号レベルの読出し制御は、同図に例示したリセットレベルの読出し制御と同様である。 Then, the reset level read side selection unit 630 selects the bit from the redundant reset level read bit transfer circuit 513-1 according to the control of the selection control unit 274 and outputs it to the signal processing unit 271. The signal level read control is the same as the reset level read control illustrated in FIG.
 なお、リセットレベル読出しビット転送回路513-1および信号レベル読出しビット転送回路は、特許請求の範囲に記載の読出し部の一例である。また、冗長リセットレベル読出しビット転送回路513-1および冗長信号レベル読出しビット転送回路は、特許請求の範囲に記載の冗長読出し部の一例である。 The reset level read bit transfer circuit 513-1 and the signal level read bit transfer circuit are examples of the read unit described in the claims. The redundant reset level read bit transfer circuit 513-1 and the redundant signal level read bit transfer circuit are examples of the redundant read unit described in the claims.
 図27および図28に例示したように、書込みビット転送回路570から記憶部400を経由して、リセットレベル読出しビット転送回路513および信号レベル読出しビット転送回路までの経路に故障があるか否かが検出される。そして、故障が生じた場合には、選択部600および601は、冗長回路(リセットレベル冗長ビット転送回路513-1など)を選択して、データを入出力する。これにより、故障した回路の代わりに、冗長回路がデータを転送するため、回路の故障による画質低下を防止することができる。 As illustrated in FIGS. 27 and 28, whether or not there is a failure in the path from the write bit transfer circuit 570 to the reset level read bit transfer circuit 513 and the signal level read bit transfer circuit via the storage unit 400. To be detected. When a failure occurs, the selection units 600 and 601 select a redundant circuit (such as the reset level redundant bit transfer circuit 513-1) and input/output data. As a result, the redundant circuit transfers the data instead of the failed circuit, so that the deterioration of the image quality due to the failure of the circuit can be prevented.
 [固体撮像素子の動作例]
 図29は、本技術の第1の実施の形態における固体撮像素子200の動作の一例を示すフローチャートである。この固体撮像素子200の動作は、例えば、テストモードが設定されたときに開始される。
[Operation example of solid-state image sensor]
FIG. 29 is a flowchart showing an example of the operation of the solid-state imaging device 200 according to the first embodiment of the present technology. The operation of the solid-state image sensor 200 is started, for example, when the test mode is set.
 固体撮像素子200は、テスト画像を撮像し(ステップS901)、固体撮像素子200内の故障検出部273は、時刻コードを転送する経路上の回路に故障が生じたか否かの検出を行う(ステップS902)。 The solid-state imaging device 200 captures a test image (step S901), and the failure detection unit 273 in the solid-state imaging device 200 detects whether or not a failure has occurred in the circuit on the path for transferring the time code (step). S902).
 選択制御部274は、故障があったか否かを判断する(ステップS903)。故障があった場合(ステップS903:Yes)、選択制御部274は、冗長回路を選択する(ステップS904)。 The selection control unit 274 determines whether or not there is a failure (step S903). When there is a failure (step S903: Yes), the selection control unit 274 selects a redundant circuit (step S904).
 故障が無い場合(ステップS903:No)、または、ステップS904の後に固体撮像素子200は、撮像モードに切り替え、画像データを撮像する(ステップS905)。ステップS905の後に、固体撮像素子200は、画像を撮像するための動作を終了する。 If there is no failure (step S903: No), or after step S904, the solid-state imaging device 200 switches to the imaging mode and images the image data (step S905). After step S905, the solid-state imaging device 200 ends the operation for capturing an image.
 このように、本技術の第1の実施の形態では、故障が生じた際に読出し側選択部620が、故障が生じた回路からのビットの代わりに冗長リセットレベル読出しビット転送回路513-1からのビットを選択する。これにより、故障が生じた回路によるデータ転送を防止することができる。これにより、故障が生じた回路による画像データの画質低下を防止することができる。 As described above, in the first embodiment of the present technology, when a failure occurs, the read side selection unit 620 uses the redundant reset level read bit transfer circuit 513-1 instead of the bit from the failed circuit. Select the bit of. As a result, it is possible to prevent data transfer by the circuit in which the failure has occurred. As a result, it is possible to prevent the image quality of the image data from being degraded by the circuit in which the failure has occurred.
 [変形例]
 上述の第1の実施の形態では、Nビットの時刻コードごとに1ビット分の冗長回路(リセットレベル冗長ビット転送回路513-1など)を配置し、N本の経路のいずれかで故障が発生した際に、その冗長回路が時刻コードを転送していた。しかし、この構成では、N本の経路のうち2つ以上で故障が生じた際に、冗長回路の個数が足りずに、故障した回路により時刻コードが転送されるおそれがある。この第1の実施の形態の変形例の固体撮像素子200は、時刻コードごとに複数の冗長回路を配置した点において第1の実施の形態と異なる。
[Modification]
In the above-described first embodiment, a 1-bit redundant circuit (such as the reset level redundant bit transfer circuit 513-1) is arranged for each N-bit time code, and a failure occurs in any of the N paths. At that time, the redundant circuit transferred the time code. However, in this configuration, when a failure occurs in two or more of the N paths, the number of redundant circuits may be insufficient and the time code may be transferred by the failed circuit. The solid-state image sensor 200 of the modified example of the first embodiment is different from that of the first embodiment in that a plurality of redundant circuits are arranged for each time code.
 図30は、本技術の第1の実施の形態の変形例における書込み側選択部610の一構成例を示す回路図である。この第1の実施の形態の変形例の書込み側選択部610は、スイッチ651乃至662を備える。スイッチ651乃至653は、0番目の分配回路650を構成し、スイッチ654乃至656は、1番目の分配回路650を構成する。スイッチ657乃至659は、2番目の分配回路650を構成し、スイッチ660乃至662は、3番目の分配回路650を構成する。 FIG. 30 is a circuit diagram showing a configuration example of the write side selection unit 610 in the modification example of the first embodiment of the present technology. The write side selection unit 610 according to the modified example of the first embodiment includes switches 651 to 662. The switches 651 to 653 form the 0th distribution circuit 650, and the switches 654 to 656 form the 1st distribution circuit 650. The switches 657 to 659 form a second distribution circuit 650, and the switches 660 to 662 form a third distribution circuit 650.
 また、第1の実施の形態の変形例では、Nビットごとに、書込み冗長ビット転送回路570-1が2つ配置される。また、書込み側にメインビット線WB<5>がさらに配線される。メインビット線WB<4>およびWB<5>のそれぞれには、冗長書込みビット転送回路570-1が接続される。 Further, in the modification of the first embodiment, two write redundant bit transfer circuits 570-1 are arranged for every N bits. Further, a main bit line WB<5> is further wired on the write side. A redundant write bit transfer circuit 570-1 is connected to each of main bit lines WB<4> and WB<5>.
 分配回路650は、3ビットの選択信号に従って、3つの出力先のいずれかを選択し、時刻コードを出力するものである。 The distribution circuit 650 selects one of three output destinations according to a 3-bit selection signal and outputs a time code.
 0番目の分配回路650は、時刻コード<0>をメインビット線WB<0>乃至WB<2>のいずれかに出力する。1番目の分配回路650は、時刻コード<1>をメインビット線WB<1>乃至WB<3>のいずれかに出力する。2番目の分配回路650は、時刻コード<2>をメインビット線WB<2>乃至WB<4>のいずれかに出力する。3番目の分配回路650は、時刻コード<3>をメインビット線WB<3>乃至WB<5>のいずれかに出力する。 The 0th distribution circuit 650 outputs the time code <0> to any of the main bit lines WB<0> to WB<2>. The first distribution circuit 650 outputs the time code <1> to any of the main bit lines WB<1> to WB<3>. The second distribution circuit 650 outputs the time code <2> to any of the main bit lines WB<2> to WB<4>. The third distribution circuit 650 outputs the time code <3> to any of the main bit lines WB<3> to WB<5>.
 また、分配回路650は、例えば、N型トランジスタ671、673および675と、P型トランジスタ672、674および676とから構成される。これらのトランジスタとして、例えば、MOSトランジスタが用いられる。 The distribution circuit 650 is composed of, for example, N- type transistors 671, 673 and 675 and P- type transistors 672, 674 and 676. For example, MOS transistors are used as these transistors.
 0番目の分配回路650においてN型トランジスタ671およびP型トランジスタ672は、メインビット線WB<0>と、時刻コード発生部280との間において並列に接続される。N型トランジスタ673およびP型トランジスタ674は、メインビット線WB<1>と、時刻コード発生部280との間において並列に接続される。N型トランジスタ675およびP型トランジスタ676は、メインビット線WB<2>と、時刻コード発生部280との間において並列に接続される。 In the 0th distribution circuit 650, the N-type transistor 671 and the P-type transistor 672 are connected in parallel between the main bit line WB<0> and the time code generator 280. N-type transistor 673 and P-type transistor 674 are connected in parallel between main bit line WB<1> and time code generator 280. N-type transistor 675 and P-type transistor 676 are connected in parallel between main bit line WB<2> and time code generator 280.
 また、N型トランジスタ671のゲートには、選択信号WSEL<0>が入力され、P型トランジスタ672のゲートには、選択信号WSEL<1>が入力される。N型トランジスタ673のゲートには、選択信号WSEL<1>が入力され、P型トランジスタ674のゲートには、選択信号WSEL<2>が入力される。N型トランジスタ675のゲートには、選択信号WSEL<2>が入力され、P型トランジスタ676のゲートには、選択信号WSEL<0>が入力される。1番目以降の分配回路650の構成は、0番目と同様である。 The selection signal WSEL<0> is input to the gate of the N-type transistor 671, and the selection signal WSEL<1> is input to the gate of the P-type transistor 672. The selection signal WSEL<1> is input to the gate of the N-type transistor 673, and the selection signal WSEL<2> is input to the gate of the P-type transistor 674. The selection signal WSEL<2> is input to the gate of the N-type transistor 675, and the selection signal WSEL<0> is input to the gate of the P-type transistor 676. The configuration of the first and subsequent distribution circuits 650 is the same as that of the zeroth distribution circuit 650.
 ロジック回路260または270は、選択信号WSEL<0>乃至<2>のいずれかのビットをハイレベルに、残りをローレベルにすることにより、分配回路650を制御して3つの出力先のいずれかを選択させる。スイッチ654以降についても同様に、分配回路650ごとに3ビットの選択信号が入力される。 The logic circuit 260 or 270 controls the distribution circuit 650 by setting one of the bits of the selection signals WSEL<0> to <2> to the high level and the rest to the low level, thereby controlling one of the three output destinations. To select. Similarly, for the switches 654 and thereafter, a 3-bit selection signal is input to each distribution circuit 650.
 例えば、0番目および1番目の経路に故障が生じた場合にロジック回路260等は、0番目の分配回路650にメインビット線WB<2>を選択させ、1番目の分配回路650にメインビット線WB<3>を選択させる。また、ロジック回路260等は、3番目の分配回路650にメインビット線WB<4>を選択させ、4番目の分配回路650にメインビット線WB<5>を選択させる。これにより固体撮像素子200は、4つの経路のうち2つに故障が生じた場合であっても、故障が生じた回路によるデータ転送を防止することができる。 For example, when a failure occurs in the 0th and 1st paths, the logic circuit 260 or the like causes the 0th distribution circuit 650 to select the main bit line WB<2> and causes the 1st distribution circuit 650 to select the main bit line WB<2>. Select WB<3>. Further, the logic circuit 260 or the like causes the third distribution circuit 650 to select the main bit line WB<4> and the fourth distribution circuit 650 to select the main bit line WB<5>. As a result, the solid-state imaging device 200 can prevent data transfer by the circuit in which the failure has occurred, even when two of the four paths have a failure.
 なお、冗長書込みビット転送回路570-1以降の冗長回路、すなわち、図11に例示した冗長リセットレベル読出しビット転送回路513-1と、冗長信号レベル読出しビット転送回路と、冗長ラッチ回路とについても2つずつ配置される。また、リセットレベル読出し側選択部630および信号レベル読出し側選択部640にも、書込み側選択部610と同様に、4つの分配回路650が配置され、6本のメインビット線のうち4本を選択してデータを読み出す。 The redundant circuits after the redundant write bit transfer circuit 570-1, that is, the redundant reset level read bit transfer circuit 513-1, the redundant signal level read bit transfer circuit, and the redundant latch circuit illustrated in FIG. They are arranged one by one. Similarly to the write side selection unit 610, four distribution circuits 650 are arranged in the reset level read side selection unit 630 and the signal level read side selection unit 640, and four of the six main bit lines are selected. And read the data.
 このように、本技術の第1の実施の形態の変形例によれば、Nビットごとに冗長回路(冗長書込みビット転送回路570-1など)を2つ配置したため、N本の経路のうち2つが故障しても、故障が生じた回路によるデータ転送を防止することができる。 As described above, according to the modified example of the first embodiment of the present technology, two redundant circuits (such as the redundant write bit transfer circuit 570-1) are arranged for every N bits, so that two of the N paths are provided. Even if one of the circuits fails, it is possible to prevent data transfer by the circuit in which the failure has occurred.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、リピータ500ごとに書込み側選択部610および読出し側選択部620を配置していたが、リピータ500の個数が多くなるほど、書込み側選択部610および読出し側選択部620のそれぞれの個数が増大する。これにより、固体撮像素子200の回路規模が大きくなるおそれがある。この第2の実施の形態の固体撮像素子200は、複数のリピータ500が1組の書込み側選択部610および読出し側選択部620を共有する点において第1の実施の形態と異なる。
<2. Second Embodiment>
In the above-described first embodiment, the write-side selection unit 610 and the read-side selection unit 620 are arranged for each repeater 500, but the larger the number of repeaters 500, the write-side selection unit 610 and the read-side selection unit. The number of each of the 620 increases. As a result, the circuit scale of the solid-state image sensor 200 may increase. The solid-state imaging device 200 of the second embodiment is different from that of the first embodiment in that a plurality of repeaters 500 share a set of a write-side selection unit 610 and a read-side selection unit 620.
 図31は、本技術の第2の実施の形態における選択部600および601の一構成例を示すブロック図である。第2の実施の形態において全てのリピータ500は、それぞれが複数(4つなど)のリピータ500からなる複数のグループに分割される。書込み側選択部610および読出し側選択部620はグループごとに1つずつ配置される。 FIG. 31 is a block diagram illustrating a configuration example of the selection units 600 and 601 according to the second embodiment of the present technology. In the second embodiment, all the repeaters 500 are divided into a plurality of groups each including a plurality (eg, four) of repeaters 500. The writing side selection unit 610 and the reading side selection unit 620 are arranged one by one for each group.
 グループ内の複数(4つなど)のリピータ500は、書込み側選択部610に共通に接続され、これらのリピータ500は、その書込み側選択部610を共有する。また、読出し側選択部620も、グループ内の複数(4つなど)のリピータ500に共通に接続され、これらのリピータ500は、その読出し側選択部620を共有する。この構成においてリピータ500ごとに前述の冗長回路が配置され、ビット線の選択パターンは、書込み側選択部610および読出し側選択部620を共有する複数のリピータ500で共通化される。なお、北側に全ての書込み側選択部610を配置し、南側に全ての読出し側選択部620を配置しているが、この構成に限定されない。南側に全ての書込み側選択部610を配置し、北側に全ての読出し側選択部620を配置してもよい。また、奇数番目の書込み側選択部610を南側および北側の一方(北側など)に配置し、偶数番目の書込み側選択部610を他方(南側など)に配置してもよい。読出し側選択部620についても同様である。 A plurality of (eg, four) repeaters 500 in the group are commonly connected to the write side selection unit 610, and these repeaters 500 share the write side selection unit 610. The read side selection unit 620 is also commonly connected to a plurality of (for example, four) repeaters 500 in the group, and these repeaters 500 share the read side selection unit 620. In this configuration, the redundant circuit described above is arranged for each repeater 500, and the bit line selection pattern is shared by the plurality of repeaters 500 sharing the write side selection unit 610 and the read side selection unit 620. It should be noted that although all the write side selection units 610 are arranged on the north side and all the read side selection units 620 are arranged on the south side, the present invention is not limited to this configuration. All the write side selection units 610 may be arranged on the south side, and all the read side selection units 620 may be arranged on the north side. Further, the odd-numbered writing-side selection units 610 may be arranged on one of the south side and the north side (North side, etc.), and the even-numbered writing-side selection units 610 may be arranged on the other side (South side, etc.). The same applies to the reading side selection unit 620.
 このように、本技術の第2の実施の形態では、複数のリピータ500が書込み側選択部610や読出し側選択部620を共有する。これにより、リピータ500ごとに書込み側選択部610や読出し側選択部620を配置する第1の実施の形態と比較して、固体撮像素子200の回路規模を削減することができる。 As described above, in the second embodiment of the present technology, the plurality of repeaters 500 share the write side selection unit 610 and the read side selection unit 620. As a result, the circuit scale of the solid-state imaging device 200 can be reduced as compared with the first embodiment in which the write side selection unit 610 and the read side selection unit 620 are arranged for each repeater 500.
 <3.第3の実施の形態>
 上述の第1の実施の形態では、リピータ500ごとに書込み側選択部610および読出し側選択部620を配置していたが、リピータ500の個数が多くなるほど、書込み側選択部610および読出し側選択部620のそれぞれの個数が増大する。これにより、固体撮像素子200の回路規模が大きくなるおそれがある。この第3の実施の形態の固体撮像素子200は、全てのリピータ500が1組の書込み側選択部610および読出し側選択部620を共有する点において第1の実施の形態と異なる。
<3. Third Embodiment>
In the above-described first embodiment, the write side selection unit 610 and the read side selection unit 620 are arranged for each repeater 500. However, as the number of repeaters 500 increases, the write side selection unit 610 and the read side selection unit 620. The number of each of the 620 increases. As a result, the circuit scale of the solid-state image sensor 200 may increase. The solid-state imaging device 200 according to the third embodiment is different from that according to the first embodiment in that all the repeaters 500 share a set of a write side selection unit 610 and a read side selection unit 620.
 図32は、本技術の第3の実施の形態における選択部600および601の一構成例を示すブロック図である。第3の実施の形態の選択部600において、書込み側選択部610は、全てのリピータ500に共通に接続され、これらのリピータ500は、その書込み側選択部610を共有する。また、選択部601において読出し側選択部620は、全てのリピータ500に共通に接続され、これらのリピータ500は、その読出し側選択部620を共有する。この構成においてリピータ500ごとに前述の冗長回路が配置され、ビット線の選択パターンは、それらのリピータ500で共通化される。  FIG. 32 is a block diagram showing a configuration example of the selection units 600 and 601 according to the third embodiment of the present technology. In the selection unit 600 of the third embodiment, the write-side selection unit 610 is commonly connected to all the repeaters 500, and these repeaters 500 share the write-side selection unit 610. Further, in the selection unit 601, the read side selection unit 620 is commonly connected to all the repeaters 500, and these repeaters 500 share the read side selection unit 620. In this configuration, the above-mentioned redundant circuit is arranged for each repeater 500, and the selection pattern of the bit line is shared by the repeaters 500. ‥
 このように、本技術の第3の実施の形態では、全てのリピータ500が書込み側選択部610や読出し側選択部620を共有する。これにより、リピータ500ごとに書込み側選択部610や読出し側選択部620を配置する第1の実施の形態と比較して、固体撮像素子200の回路規模を削減することができる。 As described above, in the third embodiment of the present technology, all the repeaters 500 share the write side selection unit 610 and the read side selection unit 620. As a result, the circuit scale of the solid-state imaging device 200 can be reduced as compared with the first embodiment in which the write side selection unit 610 and the read side selection unit 620 are arranged for each repeater 500.
 <4.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<4. Application to mobiles>
The technology according to the present disclosure (this technology) can be applied to various products. For example, the technology according to the present disclosure is realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. May be.
 図33は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 33 is a block diagram showing a schematic configuration example of a vehicle control system that is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図33に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 33, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050. Further, as a functional configuration of the integrated control unit 12050, a microcomputer 12051, a voice image output unit 12052, and an in-vehicle network I/F (interface) 12053 are shown.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 includes a drive force generation device for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to wheels, and a steering angle of the vehicle. It functions as a steering mechanism for adjustment and a control device such as a braking device that generates a braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a winker, or a fog lamp. In this case, the body system control unit 12020 may receive radio waves or signals of various switches transmitted from a portable device that substitutes for a key. The body system control unit 12020 receives input of these radio waves or signals and controls the vehicle door lock device, power window device, lamp, and the like.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle exterior information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, the imaging unit 12031 is connected to the vehicle outside information detection unit 12030. The vehicle exterior information detection unit 12030 causes the image capturing unit 12031 to capture an image of the vehicle exterior and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of received light. The imaging unit 12031 can output the electric signal as an image or as distance measurement information. The light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects in-vehicle information. To the in-vehicle information detection unit 12040, for example, a driver state detection unit 12041 that detects the state of the driver is connected. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the information on the inside and outside of the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, and the drive system control unit. A control command can be output to 12010. For example, the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or impact mitigation of a vehicle, follow-up traveling based on an inter-vehicle distance, vehicle speed maintenance traveling, a vehicle collision warning, or a vehicle lane departure warning. It is possible to perform cooperative control for the purpose.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 In addition, the microcomputer 12051 controls the driving force generation device, the steering mechanism, the braking device, or the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's It is possible to perform cooperative control for the purpose of autonomous driving or the like that autonomously travels without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図33の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The voice image output unit 12052 transmits an output signal of at least one of a voice and an image to an output device capable of visually or audibly notifying information to an occupant of the vehicle or the outside of the vehicle. In the example of FIG. 33, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
 図34は、撮像部12031の設置位置の例を示す図である。 FIG. 34 is a diagram showing an example of the installation position of the imaging unit 12031.
 図34では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 34, the image pickup unit 12031 includes image pickup units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield inside the vehicle. The image capturing unit 12101 provided on the front nose and the image capturing unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 included in the side mirrors mainly acquire images of the side of the vehicle 12100. The imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100. The imaging unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic signal, a traffic sign, a lane, or the like.
 なお、図34には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 34 shows an example of the shooting range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, and the imaging range 12114 indicates The imaging range of the imaging part 12104 provided in a rear bumper or a back door is shown. For example, by overlaying image data captured by the image capturing units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the image capturing units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the image capturing units 12101 to 12104 may be a stereo camera including a plurality of image capturing elements, or may be an image capturing element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051, based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object within the imaging range 12111 to 12114 and the temporal change of this distance (relative speed with respect to the vehicle 12100). In particular, the closest three-dimensional object on the traveling path of the vehicle 12100, which travels in the substantially same direction as the vehicle 12100 at a predetermined speed (for example, 0 km/h or more), can be extracted as a preceding vehicle by determining it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving or the like that autonomously travels without depending on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 uses the distance information obtained from the imaging units 12101 to 12104 to convert three-dimensional object data regarding a three-dimensional object into another three-dimensional object such as a two-wheeled vehicle, an ordinary vehicle, a large vehicle, a pedestrian, and a utility pole. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles visible to the driver of the vehicle 12100 and obstacles difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or more than the set value and there is a possibility of collision, the microcomputer 12051 outputs the audio through the audio speaker 12061 and the display unit 12062. A driver can be assisted for avoiding a collision by outputting an alarm to the driver and performing forced deceleration or avoidance steering through the drive system control unit 12010.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the images captured by the imaging units 12101 to 12104. To recognize such a pedestrian, for example, a procedure for extracting a feature point in an image captured by the image capturing units 12101 to 12104 as an infrared camera, and a pattern matching process on a series of feature points indicating the contour of an object to determine whether or not the pedestrian is a pedestrian. Is performed by the procedure for determining. When the microcomputer 12051 determines that a pedestrian exists in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 causes the recognized pedestrian to have a rectangular contour line for emphasis. The display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 to display an icon indicating a pedestrian or the like at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、例えば、図1の撮像装置100は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、回路の故障に起因する画質低下を防止し、より見やすい撮影画像を得ることができるため、ドライバの疲労を軽減することが可能になる。 Above, an example of the vehicle control system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above. Specifically, for example, the imaging device 100 of FIG. 1 can be applied to the imaging unit 12031. By applying the technology according to the present disclosure to the image capturing unit 12031, it is possible to prevent image quality deterioration due to a circuit failure and obtain a more easily-viewed captured image, thus reducing driver fatigue.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 Note that the above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the matters specifying the invention in the claims have a correspondence relationship. Similarly, the matters specifying the invention in the claims and the matters having the same names in the embodiments of the present technology have a correspondence relationship. However, the present technology is not limited to the embodiments, and can be embodied by making various modifications to the embodiments without departing from the scope of the invention.
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。 Further, the processing procedure described in the above-described embodiment may be regarded as a method having these series of procedures, or as a program for causing a computer to execute the series of procedures or a recording medium storing the program. You can catch it. As this recording medium, for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples, and the effects are not limited, and there may be other effects.
 なお、本技術は以下のような構成もとることができる。
(1)アナログの画素信号をデジタル信号に変換して保持するアナログデジタル変換部と、
 前記デジタル信号のいずれかのビットを読出しビットとして読み出す読出し回路と、
 前記デジタル信号のいずれかのビットを読出しビットとして読み出す冗長読出し回路と、
 前記読出し回路に故障が生じたか否かを検出する故障検出部と、
 前記故障が生じたか否かにより前記読出し回路からの前記読出しビットと前記冗長回路からの前記読出しビットといずれかを選択して出力する読出し側選択部と
を具備する固体撮像素子。
(2)前記読出し回路は、複数のリピータのそれぞれに配置され、
 前記複数のリピータは、それぞれが所定数のリピータからなる複数のグループに分割され、
 前記所定数のリピータは、前記読出し側選択部を共有する
前記(1)記載の固体撮像素子。
(3)前記読出し回路は、複数のリピータのそれぞれに配置され、
 前記複数のリピータの全てが、前記読出し側選択部を共有する
前記(1)記載の固体撮像素子。
(4)所定数の前記読出し回路と前記冗長読出し回路とがリピータに配置され、
 前記故障検出部は、前記所定数の読出し回路のそれぞれについて故障が生じたか否かを検出する
前記(1)記載の固体撮像素子。
(5)前記リピータには、所定数の前記冗長読出し回路が配置される
前記(4)記載の固体撮像素子。
(6)前記デジタル信号のいずれかのビットを前記アナログデジタル変換部に書込みビットとして供給する書込み回路と、
 前記デジタル信号のいずれかのビットを前記アナログデジタル変換部に書込みビットとして供給する冗長書込み回路と、
 前記故障が生じたか否かにより前記書込み回路からの前記書込みビットと前記冗長書込み回路からの前記書込みビットとのいずれかを選択して前記デジタル信号を供給する書込み側選択部と
をさらに具備し、
 前記故障検出部は、前記書込み回路および前記読出し回路の少なくとも一方に故障が生じたか否かを検出する前記(1)乃至(5)のいずれかに記載の固体撮像素子。
(7)前記アナログデジタル変換部は、前記デジタル信号を保持するラッチ部および冗長ラッチ部を備え、
 前記読出し回路および前記冗長読出し回路は、前記ラッチ部から前記読出しビットを読み出す前記(6)記載の固体撮像素子。
(8)前記冗長ラッチ部は、冗長ライトラッチと冗長リードラッチとを備え、
 前記冗長書込み回路は、前記冗長ライトラッチに前記書込みビットを供給し、
 前記冗長読出し回路は、前記冗長リードラッチから前記読出しビットを読み出す前記(7)記載の固体撮像素子。
(9)前記画素信号は、画素を初期化したときのリセットレベルと露光が終了したときの信号レベルとを含み、
 前記読出し回路および前記冗長読出し回路は、前記リセットレベルに対応する前記ビットをリセットレベル読出しビットとして読み出し、前記信号レベルに対応する前記ビットを信号レベル読出しビットとして読み出し、
 前記読出し側選択部は、
 前記故障が生じたか否かにより前記読出し回路からの前記リセットレベル読出しビットと前記冗長回路からの前記リセットレベル読出しビットとのいずれかを選択するリセットレベル読出し側選択部と、
 前記故障が生じたか否かにより前記読出し回路からの前記信号レベル読出しビットと前記冗長回路からの前記信号レベル読出しビットとのいずれかを選択する信号レベル読出し側選択部と
を備える
前記(8)記載の固体撮像素子。
(10)前記冗長リードラッチは、リセットレベル冗長リードラッチおよび信号レベル冗長リードラッチを備え、
 前記冗長読出し回路は、前記リセットレベル冗長リードラッチから前記リセットレベル読出しビットを読み出し、前記信号レベル冗長リードラッチから前記信号レベル読出しビットを読み出す前記(9)記載の固体撮像素子。
(11)アナログの画素信号をデジタル信号に変換して保持するアナログデジタル変換部と、
 前記デジタル信号のいずれかのビットを読出しビットとして読み出す読出し回路と、
 前記デジタル信号のいずれかのビットを読出しビットとして読み出す冗長読出し回路と、
 前記読出し回路に故障が生じたか否かを検出する故障検出部と、
 前記故障が生じたか否かにより前記読出し回路からの前記読出しビットと前記冗長回路からの前記読出しビットといずれかを選択して出力する読出し側選択部と、 前記読出し側選択部より出力されたデータを処理する信号処理部と
を具備する撮像装置。
(12)アナログの画素信号をデジタル信号に変換して保持するアナログデジタル変換手順と、
 読出し回路が、前記デジタル信号のいずれかのビットを読出しビットとして読み出す読出し手順と、
 冗長読出し回路が、前記デジタル信号のいずれかのビットを読出しビットとして読み出す冗長読出し手順と、
 前記読出し回路に故障が生じたか否かを検出する故障検出手順と、
 前記故障が生じたか否かにより前記読出し回路からの前記読出しビットと前記冗長回路からの前記読出しビットといずれかを選択して出力する読出し側選択手順とを具備する固体撮像素子の制御方法。
In addition, the present technology may have the following configurations.
(1) An analog-digital converter that converts an analog pixel signal into a digital signal and holds the digital signal,
A read circuit that reads out any bit of the digital signal as a read bit;
A redundant read circuit for reading any bit of the digital signal as a read bit;
A failure detection unit that detects whether or not a failure has occurred in the read circuit,
A solid-state imaging device comprising: a read-side selection unit that selects and outputs either the read bit from the read circuit or the read bit from the redundant circuit depending on whether or not the failure has occurred.
(2) The read circuit is arranged in each of a plurality of repeaters,
The plurality of repeaters, each of which is divided into a plurality of groups of a predetermined number of repeaters,
The solid-state imaging device according to (1), wherein the predetermined number of repeaters share the read side selection unit.
(3) The read circuit is arranged in each of the plurality of repeaters,
The solid-state imaging device according to (1), wherein all of the plurality of repeaters share the read side selection unit.
(4) A predetermined number of the read circuits and the redundant read circuits are arranged in a repeater,
The solid-state imaging device according to (1), wherein the failure detection unit detects whether or not a failure has occurred in each of the predetermined number of read circuits.
(5) The solid-state imaging device according to (4), in which a predetermined number of redundant read circuits are arranged in the repeater.
(6) A write circuit that supplies any bit of the digital signal to the analog-digital conversion unit as a write bit,
A redundant write circuit that supplies any bit of the digital signal to the analog-to-digital converter as a write bit;
Further comprising a write side selection unit that selects one of the write bit from the write circuit and the write bit from the redundant write circuit to supply the digital signal, depending on whether or not the failure has occurred,
The solid-state imaging device according to any one of (1) to (5), wherein the failure detection unit detects whether or not a failure has occurred in at least one of the write circuit and the read circuit.
(7) The analog-digital conversion unit includes a latch unit that holds the digital signal and a redundant latch unit,
The read circuit and the redundant read circuit are the solid-state imaging device according to (6), wherein the read bit is read from the latch unit.
(8) The redundant latch unit includes a redundant write latch and a redundant read latch,
The redundant write circuit supplies the write bit to the redundant write latch,
The solid-state imaging device according to (7), wherein the redundant read circuit reads the read bit from the redundant read latch.
(9) The pixel signal includes a reset level when the pixel is initialized and a signal level when the exposure is completed,
The read circuit and the redundant read circuit read the bit corresponding to the reset level as a reset level read bit, and read the bit corresponding to the signal level as a signal level read bit,
The read side selection unit,
A reset level read side selection unit that selects either the reset level read bit from the read circuit or the reset level read bit from the redundant circuit depending on whether or not the failure has occurred;
(8) The above-mentioned (8), further comprising: a signal level read side selection unit that selects either the signal level read bit from the read circuit or the signal level read bit from the redundant circuit depending on whether or not the failure has occurred. Solid-state image sensor.
(10) The redundant read latch includes a reset level redundant read latch and a signal level redundant read latch,
The solid-state imaging device according to (9), wherein the redundant read circuit reads the reset level read bit from the reset level redundant read latch and reads the signal level read bit from the signal level redundant read latch.
(11) An analog-digital conversion unit that converts an analog pixel signal into a digital signal and holds the digital signal,
A read circuit that reads out any bit of the digital signal as a read bit;
A redundant read circuit for reading any bit of the digital signal as a read bit;
A failure detection unit that detects whether or not a failure has occurred in the read circuit,
A read side selection unit that selects and outputs either the read bit from the read circuit or the read bit from the redundant circuit depending on whether or not the failure has occurred, and data output from the read side selection unit. And an image pickup device including a signal processing unit that processes the image.
(12) An analog-digital conversion procedure for converting an analog pixel signal into a digital signal and holding the digital signal,
A read procedure in which the read circuit reads any bit of the digital signal as a read bit;
A redundant read procedure in which the redundant read circuit reads any bit of the digital signal as a read bit;
A failure detection procedure for detecting whether or not a failure has occurred in the read circuit,
A method of controlling a solid-state imaging device, comprising: a read-side selection procedure for selecting and outputting either the read bit from the read circuit or the read bit from the redundant circuit depending on whether or not the failure has occurred.
 100 撮像装置
 110 光学部
 120 DSP回路
 130 表示部
 140 操作部
 150 バス
 160 フレームメモリ
 170 記憶部
 180 電源部
 200 固体撮像素子
 201 受光チップ
 202 回路チップ
 210 画素領域
 211 画素ブロック
 220 画素
 222 排出トランジスタ
 223 フォトダイオード
 224 転送トランジスタ
 225 浮遊拡散層
 226 リセットトランジスタ
 227、228 差動トランジスタ
 229 電流源トランジスタ
 231、232、241、242 Vドライバ
 233、251、252 Hドライバ
 234 DAC
 260、270 ロジック回路
 271、611、631、641 セレクタ
 272 信号処理部
 273 故障検出部
 274 選択制御部
 280 時刻コード発生部
 290 AD変換回路領域
 300 クラスタ
 310 比較部
 320 差動入力回路
 321、322、331、341、342、355、356、442、452、613、615、672、674、676 P型トランジスタ
 330 電圧変換回路
 332、333、354、357、441、451、575、612、614、671、673、675 N型トランジスタ
 340 制御回路
 350 NOR(否定論理和)ゲート
 361、362、431~434、443~445、453~455、542、543、552、572、576 インバータ
 400、401 記憶部
 410 ラッチ部
 420 ラッチ回路
 430 ライトラッチ
 440 リセットレベルリードラッチ
 450 信号レベルリードラッチ
 470 冗長ラッチ回路
 471 冗長ライトラッチ
 472 リセットレベル冗長リードラッチ
 473 信号レベル冗長リードラッチ
 500 リピータ
 510 リセットレベル読出しリピータ
 511、521、540 左側転送制御部
 512 リセットレベル読出しデータ転送回路
 513 リセットレベル読出しビット転送回路
 513-1 冗長リセットレベル読出しビット転送回路
 514、524、550 右側転送制御部
 520 信号レベル読出しリピータ
 522 信号レベル読出しデータ転送回路
 530 書込みリピータ
 541、551、573、577 バッファ
 544 NAND(否定論理積)ゲート
 560 書込みデータ転送回路
 570 書込みビット転送回路
 570-1 冗長書込みビット転送回路
 571 AND(論理積)ゲート
 574 フリップフロップ
 600、601 選択部
 610 書込み側選択部
 620 読出し側選択部
 630 リセットレベル読出し側選択部
 640 信号レベル読出し側選択部
 650 分配回路
 651~662 スイッチ
 12031 撮像部
100 image pickup device 110 optical part 120 DSP circuit 130 display part 140 operation part 150 bus 160 frame memory 170 storage part 180 power supply part 200 solid-state image sensor 201 light receiving chip 202 circuit chip 210 pixel area 211 pixel block 220 pixel 222 discharge transistor 223 photodiode 224 Transfer transistor 225 Floating diffusion layer 226 Reset transistor 227, 228 Differential transistor 229 Current source transistor 231, 232, 241, 242 V driver 233, 251, 252 H driver 234 DAC
260, 270 Logic circuit 271, 611, 631, 641 Selector 272 Signal processing unit 273 Failure detection unit 274 Selection control unit 280 Time code generation unit 290 AD conversion circuit area 300 Cluster 310 Comparison unit 320 Differential input circuit 321, 322, 331 , 341, 342, 355, 356, 442, 452, 613, 615, 672, 674, 676 P-type transistor 330 voltage conversion circuit 332, 333, 354, 357, 441, 451, 575, 612, 614, 671, 673. , 675 N-type transistor 340 Control circuit 350 NOR gate 361, 362, 431-434, 443-445, 453-455, 542, 543, 552, 572, 576 Inverter 400, 401 Storage section 410 Latch section 420 latch circuit 430 write latch 440 reset level read latch 450 signal level read latch 470 redundant latch circuit 471 redundant write latch 472 reset level redundant read latch 473 signal level redundant read latch 500 repeater 510 reset level read repeater 511, 521, 540 left transfer Control unit 512 Reset level read data transfer circuit 513 Reset level read bit transfer circuit 513-1 Redundant reset level read bit transfer circuit 514, 524, 550 Right side transfer control unit 520 Signal level read repeater 522 Signal level read data transfer circuit 530 Write repeater 541, 551, 573, 577 Buffer 544 NAND (Negative AND) Gate 560 Write Data Transfer Circuit 570 Write Bit Transfer Circuit 570-1 Redundant Write Bit Transfer Circuit 571 AND (AND) Gate 574 Flip- Flop 600, 601 Selector 610 Write side selection unit 620 Read side selection unit 630 Reset level read side selection unit 640 Signal level read side selection unit 650 Distribution circuit 651 to 662 switch 12031 Imaging unit

Claims (12)

  1.  アナログの画素信号をデジタル信号に変換して保持するアナログデジタル変換部と、
     前記デジタル信号のいずれかのビットを読出しビットとして読み出す読出し回路と、
     前記デジタル信号のいずれかのビットを読出しビットとして読み出す冗長読出し回路と、
     前記読出し回路に故障が生じたか否かを検出する故障検出部と、
     前記故障が生じたか否かにより前記読出し回路からの前記読出しビットと前記冗長回路からの前記読出しビットといずれかを選択して出力する読出し側選択部と
    を具備する固体撮像素子。
    An analog-to-digital conversion unit that converts an analog pixel signal into a digital signal and holds the digital signal,
    A read circuit that reads out any bit of the digital signal as a read bit;
    A redundant read circuit for reading any bit of the digital signal as a read bit;
    A failure detection unit that detects whether or not a failure has occurred in the read circuit,
    A solid-state imaging device comprising: a read-side selection unit that selects and outputs either the read bit from the read circuit or the read bit from the redundant circuit depending on whether or not the failure has occurred.
  2.  前記読出し回路は、複数のリピータのそれぞれに配置され、
     前記複数のリピータは、それぞれが所定数のリピータからなる複数のグループに分割され、
     前記所定数のリピータは、前記読出し側選択部を共有する
    請求項1記載の固体撮像素子。
    The read circuit is arranged in each of the plurality of repeaters,
    The plurality of repeaters, each of which is divided into a plurality of groups of a predetermined number of repeaters,
    The solid-state imaging device according to claim 1, wherein the predetermined number of repeaters share the read side selection unit.
  3.  前記読出し回路は、複数のリピータのそれぞれに配置され、
     前記複数のリピータの全てが、前記読出し側選択部を共有する
    請求項1記載の固体撮像素子。
    The read circuit is arranged in each of the plurality of repeaters,
    The solid-state imaging device according to claim 1, wherein all of the plurality of repeaters share the read side selection unit.
  4.  所定数の前記読出し回路と前記冗長読出し回路とがリピータに配置され、
     前記故障検出部は、前記所定数の読出し回路のそれぞれについて故障が生じたか否かを検出する
    請求項1記載の固体撮像素子。
    A predetermined number of the read circuits and the redundant read circuit are arranged in a repeater,
    The solid-state imaging device according to claim 1, wherein the failure detection unit detects whether or not a failure has occurred in each of the predetermined number of read circuits.
  5.  前記リピータには、所定数の前記冗長読出し回路が配置される
    請求項4記載の固体撮像素子。
    The solid-state image sensor according to claim 4, wherein a predetermined number of the redundant read circuits are arranged in the repeater.
  6.  前記デジタル信号のいずれかのビットを前記アナログデジタル変換部に書込みビットとして供給する書込み回路と、
     前記デジタル信号のいずれかのビットを前記アナログデジタル変換部に書込みビットとして供給する冗長書込み回路と、
     前記故障が生じたか否かにより前記書込み回路からの前記書込みビットと前記冗長書込み回路からの前記書込みビットとのいずれかを選択して前記デジタル信号を供給する書込み側選択部と
    をさらに具備し、
     前記故障検出部は、前記書込み回路および前記読出し回路の少なくとも一方に故障が生じたか否かを検出する
    請求項1記載の固体撮像素子。
    A write circuit that supplies any bit of the digital signal to the analog-digital conversion unit as a write bit,
    A redundant write circuit that supplies any bit of the digital signal to the analog-to-digital converter as a write bit;
    Further comprising a write side selection unit that selects one of the write bit from the write circuit and the write bit from the redundant write circuit to supply the digital signal, depending on whether or not the failure has occurred,
    The solid-state image sensor according to claim 1, wherein the failure detection unit detects whether or not a failure has occurred in at least one of the write circuit and the read circuit.
  7.  前記アナログデジタル変換部は、前記デジタル信号を保持するラッチ部および冗長ラッチ部を備え、
     前記読出し回路および前記冗長読出し回路は、前記ラッチ部から前記読出しビットを読み出す
    請求項6記載の固体撮像素子。
    The analog-digital conversion unit includes a latch unit that holds the digital signal and a redundant latch unit,
    7. The solid-state image sensor according to claim 6, wherein the read circuit and the redundant read circuit read the read bit from the latch unit.
  8.  前記冗長ラッチ部は、冗長ライトラッチと冗長リードラッチとを備え、
     前記冗長書込み回路は、前記冗長ライトラッチに前記書込みビットを供給し、
     前記冗長読出し回路は、前記冗長リードラッチから前記読出しビットを読み出す
    請求項7記載の固体撮像素子。
    The redundant latch unit includes a redundant write latch and a redundant read latch,
    The redundant write circuit supplies the write bit to the redundant write latch,
    The solid-state imaging device according to claim 7, wherein the redundant read circuit reads the read bit from the redundant read latch.
  9.  前記画素信号は、画素を初期化したときのリセットレベルと露光が終了したときの信号レベルとを含み、
     前記読出し回路および前記冗長読出し回路は、前記リセットレベルに対応する前記ビットをリセットレベル読出しビットとして読み出し、前記信号レベルに対応する前記ビットを信号レベル読出しビットとして読み出し、
     前記読出し側選択部は、
     前記故障が生じたか否かにより前記読出し回路からの前記リセットレベル読出しビットと前記冗長回路からの前記リセットレベル読出しビットとのいずれかを選択するリセットレベル読出し側選択部と、
     前記故障が生じたか否かにより前記読出し回路からの前記信号レベル読出しビットと前記冗長回路からの前記信号レベル読出しビットとのいずれかを選択する信号レベル読出し側選択部と
    を備える
    請求項8記載の固体撮像素子。
    The pixel signal includes a reset level when the pixel is initialized and a signal level when the exposure is completed,
    The read circuit and the redundant read circuit read the bit corresponding to the reset level as a reset level read bit, and read the bit corresponding to the signal level as a signal level read bit,
    The read side selection unit,
    A reset level read side selection unit that selects either the reset level read bit from the read circuit or the reset level read bit from the redundant circuit depending on whether or not the failure has occurred;
    9. The signal level read side selection unit for selecting either the signal level read bit from the read circuit or the signal level read bit from the redundant circuit depending on whether or not the failure has occurred. Solid-state image sensor.
  10.  前記冗長リードラッチは、リセットレベル冗長リードラッチおよび信号レベル冗長リードラッチを備え、
     前記冗長読出し回路は、前記リセットレベル冗長リードラッチから前記リセットレベル読出しビットを読み出し、前記信号レベル冗長リードラッチから前記信号レベル読出しビットを読み出す
    請求項9記載の固体撮像素子。
    The redundant read latch comprises a reset level redundant read latch and a signal level redundant read latch,
    10. The solid-state imaging device according to claim 9, wherein the redundant read circuit reads the reset level read bit from the reset level redundant read latch and reads the signal level read bit from the signal level redundant read latch.
  11.  アナログの画素信号をデジタル信号に変換して保持するアナログデジタル変換部と、
     前記デジタル信号のいずれかのビットを読出しビットとして読み出す読出し回路と、
     前記デジタル信号のいずれかのビットを読出しビットとして読み出す冗長読出し回路と、
     前記読出し回路に故障が生じたか否かを検出する故障検出部と、
     前記故障が生じたか否かにより前記読出し回路からの前記読出しビットと前記冗長回路からの前記読出しビットといずれかを選択して出力する読出し側選択部と、 前記読出し側選択部より出力されたデータを処理する信号処理部と
    を具備する撮像装置。
    An analog-to-digital conversion unit that converts an analog pixel signal into a digital signal and holds the digital signal,
    A read circuit that reads out any bit of the digital signal as a read bit;
    A redundant read circuit for reading any bit of the digital signal as a read bit;
    A failure detection unit that detects whether or not a failure has occurred in the read circuit,
    A read side selection unit that selects and outputs either the read bit from the read circuit or the read bit from the redundant circuit depending on whether or not the failure has occurred, and data output from the read side selection unit. And an image pickup device including a signal processing unit that processes the image.
  12.  アナログの画素信号をデジタル信号に変換して保持するアナログデジタル変換手順と、
     読出し回路が、前記デジタル信号のいずれかのビットを読出しビットとして読み出す読出し手順と、
     冗長読出し回路が、前記デジタル信号のいずれかのビットを読出しビットとして読み出す冗長読出し手順と、
     前記読出し回路に故障が生じたか否かを検出する故障検出手順と、
     前記故障が生じたか否かにより前記読出し回路からの前記読出しビットと前記冗長回路からの前記読出しビットといずれかを選択して出力する読出し側選択手順と
    を具備する固体撮像素子の制御方法。
    An analog-digital conversion procedure for converting an analog pixel signal into a digital signal and holding it
    A read procedure in which the read circuit reads any bit of the digital signal as a read bit;
    A redundant read procedure in which the redundant read circuit reads any bit of the digital signal as a read bit;
    A failure detection procedure for detecting whether or not a failure has occurred in the read circuit,
    A method of controlling a solid-state imaging device, comprising: a read-side selection procedure for selecting and outputting either the read bit from the read circuit or the read bit from the redundant circuit depending on whether or not the failure has occurred.
PCT/JP2019/045399 2019-02-12 2019-11-20 Solid-state imaging element, imaging device, and method for controlling solid-state imaging element WO2020166160A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-022400 2019-02-12
JP2019022400A JP2020129774A (en) 2019-02-12 2019-02-12 Solid-state imaging element, imaging device, and method for controlling solid-state imaging element

Publications (1)

Publication Number Publication Date
WO2020166160A1 true WO2020166160A1 (en) 2020-08-20

Family

ID=72044797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045399 WO2020166160A1 (en) 2019-02-12 2019-11-20 Solid-state imaging element, imaging device, and method for controlling solid-state imaging element

Country Status (2)

Country Link
JP (1) JP2020129774A (en)
WO (1) WO2020166160A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037902A1 (en) * 2016-08-22 2018-03-01 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device, driving method therefor, and electronic apparatus
WO2018135319A1 (en) * 2017-01-19 2018-07-26 ソニーセミコンダクタソリューションズ株式会社 Imaging element, method for controlling imaging element, imaging device, and electronic device
JP2018186478A (en) * 2017-04-25 2018-11-22 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device, imaging apparatus and control method for solid-state imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037902A1 (en) * 2016-08-22 2018-03-01 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device, driving method therefor, and electronic apparatus
WO2018135319A1 (en) * 2017-01-19 2018-07-26 ソニーセミコンダクタソリューションズ株式会社 Imaging element, method for controlling imaging element, imaging device, and electronic device
JP2018186478A (en) * 2017-04-25 2018-11-22 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device, imaging apparatus and control method for solid-state imaging device

Also Published As

Publication number Publication date
JP2020129774A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
US11146751B2 (en) Solid-state imaging element, imaging apparatus, and control method of solid-state imaging element
US11838672B2 (en) Solid-state imaging element, imaging apparatus, and control method of solid-state imaging element
US11303833B2 (en) Image sensor and imaging device
EP3657776B1 (en) Analog-digital converter including miller capacitor, solid-state imaging element including said analog-digital converter, and control method for said analog-digital converter
JP2020072471A (en) Solid state image sensor, imaging apparatus, and control method of solid state image sensor
US11252367B2 (en) Solid-stage image sensor, imaging device, and method of controlling solid-state image sensor
US11743449B2 (en) Imaging device and electronic apparatus
US11563913B2 (en) Solid-state imaging element and imaging device
US20220264045A1 (en) Solid-state imaging element, imaging apparatus, and method of controlling solid-state imaging element
US11595601B2 (en) Solid-state imaging element, imaging device, and control method of solid-state imaging element
US11558571B2 (en) Solid-state imaging element and imaging device
WO2020166160A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2020255496A1 (en) Solid-state image sensor, imaging device, and method for controlling solid-state image sensor
WO2020090311A1 (en) Solid-state imaging element
WO2023074522A1 (en) Physical quantity detecting device and imaging device
WO2022209368A1 (en) Solid-state imaging element and solid-state imaging device
WO2022270109A1 (en) Imaging device and electronic apparatus
WO2023090211A1 (en) Imaging device and semiconductor storage device
WO2023085143A1 (en) Photodetector element
CN113169742A (en) Image pickup apparatus and image pickup system
JP2020043504A (en) Solid-state imaging device, imaging device, and method of controlling solid-state imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915148

Country of ref document: EP

Kind code of ref document: A1