WO2020166067A1 - Contactless snow removal system for solar panels - Google Patents

Contactless snow removal system for solar panels Download PDF

Info

Publication number
WO2020166067A1
WO2020166067A1 PCT/JP2019/005579 JP2019005579W WO2020166067A1 WO 2020166067 A1 WO2020166067 A1 WO 2020166067A1 JP 2019005579 W JP2019005579 W JP 2019005579W WO 2020166067 A1 WO2020166067 A1 WO 2020166067A1
Authority
WO
WIPO (PCT)
Prior art keywords
snow
solar panel
snow removal
contact
removal system
Prior art date
Application number
PCT/JP2019/005579
Other languages
French (fr)
Japanese (ja)
Inventor
高雄 伊藤
Original Assignee
株式会社エコ革
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エコ革 filed Critical 株式会社エコ革
Priority to PCT/JP2019/005579 priority Critical patent/WO2020166067A1/en
Priority to JP2019510718A priority patent/JP6755062B1/en
Publication of WO2020166067A1 publication Critical patent/WO2020166067A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • H02S40/12Means for removing snow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention uses the airflow emitted from an unmanned aerial vehicle (drone device) to deposit snow on the surface of a solar panel of a power plant using a solar panel such as a mega solar, a roof of a house, or a roof of a building.
  • a solar panel such as a mega solar, a roof of a house, or a roof of a building.
  • the present invention relates to a non-contact snow removal system for a solar panel that blows away snow accumulated on installations such as installed solar panels and snow accumulated on roofs of houses and roofs of buildings.
  • drone devices have been dramatically developed, and various types of drone devices have been put to practical use, including large size and long-term support. It also has a wide variety of uses, such as shooting, security, and moving cargo to remote areas. Furthermore, a field trial is underway in which a person is put on the drone device and a manned flight is carried out.
  • the environment for creating map information has improved dramatically, and it is now possible to easily and inexpensively create three-dimensional topographic data and three-dimensional map data on the ground.
  • snow removal has been a heavy burden especially in houses in the Hokuriku region, Tohoku, and Hokkaido, and in many homes, elderly people and women climbed onto the roof to remove snow manually.
  • the types of snow vary, and Hokkaido and other areas are relatively dry and easily blown away by the wind, but the snow in the Hokuriku region is a heavy snow that contains a lot of water, and its specific gravity is heavy and it easily adheres. The above may be reached.
  • the mass of 100 kg to 200 kg per 1 m 2 can reach the durability of roofs, houses, and solar panels for 1 m of snow.
  • Patent Documents 1 and 2 various automatic snow removal systems have been proposed to remove snow accumulated on the surface of solar panels. Furthermore, various automatic removal systems for removing snow accumulated on the roof of a house have been proposed (Patent Documents 3 and 4).
  • Patent Document 1 a snow sensor installed near a solar panel detects snowfall and moves a transparent sheet member covered on the solar panel to remove snow accumulated on the solar panel. There is.
  • Patent Document 2 a cutter frame that is a rectangular frame, a traveling device, and a slide plate are used, and the snow accumulated by the cutter frame and the traveling device is divided into rectangles while the snow is dropped by the slide plate.
  • snow removal is performed by rotating a snow removal spiral wing while using a snow removal robot composed of an engine as a power source, a ridge guide rail, a snow removal spiral wing, and the like.
  • Patent Document 4 it is composed of a fuel cell system, a hot water storage tank, a heater, an outdoor hot water pipe, a pump, etc., and the hot water of the hot water storage tank stored by utilizing the exhaust heat of the fuel cell system is pumped to the outdoor hot water pipe and the heater. Is used to melt the snow on the roof or slide down the snow on the roof.
  • a large-scale automatic snow removal system when removing snow accumulated on a solar panel in a large-scale solar power generation system, a large-scale automatic snow removal system is preliminarily provided around the solar panel or on the mount of the solar panel. Or, since it is necessary to install the related equipment, a huge initial cost is required and the investment payback period is significantly lengthened. In addition, a large load is applied to the solar panel and the pedestal due to the weight of the installed equipment, so that the solar panel may be deformed or damaged, or the pedestal may be deformed or collapsed. This is when the life and reliability of the product is affected.
  • the present invention has been made in view of such a situation, and is provided in advance around a solar power generation system and a solar power generation system, a roof of a building, a roof of a house, and a solar panel around the roof and the roof of the building. Since there is no need to install snow removal equipment and the system removes snow in a non-contact manner, there is no load due to equipment weight on the solar power generation system, solar panels, pedestals, houses, etc. Is unnecessary, the automatic snow removal system and solar power generation system are highly reliable, and snow removal work can be performed efficiently even in large-scale solar power generation systems and multiple houses, and it is necessary to leave the snow removal equipment outdoors. Since it does not exist, it provides a highly efficient, highly reliable, highly accurate and low cost snow removal system with excellent maintenance cost effectiveness.
  • the present inventor has diligently studied the conventional snow removal system such as the conventional solar power generation panel and the roof described in “Background Art”, and in the conventional automatic snow removal system, large-scale equipment is installed in advance around the snow removal target. It has become clear that the installation of the above is required, and that the construction period and large initial investment are required.
  • the exhaust flow discharged from the unmanned aerial vehicle (drone device) has sufficient flow rate and flow velocity to fly the accumulated snow, depending on the size and rotation speed of the propeller. Further, depending on the configuration, the flow velocity of the exhaust flow can be further increased. Further, the unmanned aerial vehicle (drone device) controls its flight attitude such as forward, backward, rotation, ascent, descent and hovering by the rotation angle and the number of rotations of the rotation axis of each propeller. Therefore, it came to the idea that an optimum automatic snow removal process can be constructed by combining the three-dimensional topography, the angle of the solar panel, the flight attitude of the unmanned aerial vehicle (drone device), and the effective flow velocity of the exhaust flow.
  • the inventors have found a configuration that realizes a high efficiency, high reliability, and low cost snow removal system, and arrived at the present invention.
  • the amount of snow and the timing of work it is possible to prevent snow from freezing on the surface of the solar panel, and to effectively remove snow so that the amount of power generation and power generation efficiency are not reduced.
  • An excellent non-contact snow remover was found.
  • a gantry and a solar panel installed on the ground, a snow amount detecting means for detecting the amount of snow on the surface of the solar panel, and a rotation drive unit.
  • It is composed of a plurality of lift generators connected to propellers and a rotation controller that controls the rotation of the rotation drive unit and controls the flight attitude by the lift and thrust generated by the rotation of the propeller.
  • It has an unmanned aerial vehicle such as a drone or a UAV, and a three-dimensional flight route instructing unit that presets a movement route of the unmanned aerial vehicle and issues an instruction to the rotation control unit, and when the amount of snow reaches a predetermined amount.
  • the snow accumulated on the solar panel is removed from the surface of the solar panel in a non-contact manner by the exhaust flow generated from the propeller of the unmanned air vehicle by flying based on the command of the three-dimensional flight route instruction unit. It is configured as a non-contact snow removal system for solar panels, which is characterized in that
  • a gantry and a solar panel installed on the ground or a solar panel installed on a roof, and a surface of the solar panel, a roof of a house, a roof of a building or a solar panel.
  • Snow amount detection means for detecting the amount of snow in the vicinity of the, a plurality of lift generation unit connected to the rotation drive unit and the propeller, the rotation control of the rotation drive unit to fly by the lift and thrust generated by the rotation of the propeller
  • An unmanned air vehicle such as a so-called drone or UAV that is composed of a rotation control unit that performs attitude control and moves in a three-dimensional space, and a three-dimensional flight route instruction that presets the movement route of the unmanned air vehicle and issues an instruction to the rotation control unit.
  • the air of the large-scale solar power generation system is generated by the exhaust flow generated from the propeller of the unmanned air vehicle by flying based on the command of the three-dimensional flight route instruction unit.
  • the amount of snow on the surface of the solar panel is detected by the amount of snow detection means, and when the snowfall starts and the amount of snow reaches a predetermined amount set in advance, or when the amount of snow has reached the predetermined amount.
  • an unmanned aerial vehicle such as a drone device or UAV consisting of a plurality of lift generators in which a rotary drive unit and a propeller are connected
  • the rotation speed of each propeller changes according to the flight attitude of an unmanned aerial vehicle such as a drone device or UAV, and the exhaust flow exhausted from each lift generation part is used for solar panels and pedestals. It is possible to remove the snow accumulated on the solar panel from the surface of the solar panel in a contactless manner without applying the load of the snow removal equipment.
  • a non-contact snow removal system for a solar panel according to a second aspect of the present invention is the configuration of the non-contact snow removal system for a solar panel according to the first aspect, wherein the rotation drive unit is composed of an engine and/or a motor.
  • the engine is driven by light oil or gasoline, and the motor is driven by a battery.
  • various power sources can be used and long-distance and long-time flight and snow removal work can be performed, and flight attitudes (forward, backward, hovering, etc.) and flight modes (climb, climb,
  • the output of the rotation drive unit is further increased by lowering, turning, etc.), and by increasing the number of revolutions of the propeller, the amount and flow rate of the exhaust flow generated from the propeller are greatly increased, and the solar panel is deposited.
  • a high-performance solar panel that can greatly improve the snow removal capacity, can be used for long hours of work, can fly a long distance, can handle various snow qualities and conditions, and has a large output exhaust flow.
  • the non-contact snow removing device can be realized.
  • a non-contact snow removal system for a solar panel according to a third aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first and second aspects, wherein the snow accumulation amount detecting means is a solar panel.
  • the amount of snow accumulated on the solar panel can be accurately captured according to the environment and the situation, and the operation accuracy is high and the cost of the solar panel is low, which has the effect of reducing the equipment installed in advance.
  • a contact snow removal device can be realized.
  • a non-contact snow removal system for a solar panel according to a fourth aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first to third aspects, wherein the solar panel is installed in a rectangular shape.
  • the three-dimensional flight algorithm is configured to gradually move along the short side from the end of the short side of the rectangular solar panel.
  • a non-contact snow removal system for a solar panel according to a fifth aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first to fourth aspects, wherein the solar panel is installed in a rectangular shape.
  • the three-dimensional flight algorithm is configured to gradually move along the short side from the end of the long side of the rectangular solar panel.
  • a non-contact snow removal system for a solar panel according to a sixth aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first to fifth aspects, wherein the solar panel has a constant inclination angle.
  • the unmanned aerial vehicle has a certain angle with respect to the rotation axis of the propeller so that the accumulated snow is blown off below the solar panel. It is configured to fly along.
  • a non-contact snow removal system for a solar panel according to a seventh aspect of the present invention is the configuration of the non-contact snow removal system for a solar panel according to the first to sixth aspects, wherein the movement path is a snow removal target.
  • the three-dimensional map around the solar panel and the information from the snow amount detecting means are set in advance, and the information on the snow amount from the snow amount detecting means during the snow removal work allows the unmanned air vehicle to fly over the solar panel.
  • the above-mentioned configuration it is possible to effectively use the three-dimensional map information, the inclination of the solar panel, the flight attitude of the unmanned aerial vehicle, and the fluctuation of the snow removal load on the snow cover portion due to the magnitude of the flow velocity of the exhaust flow from the propeller of the unmanned aerial vehicle.
  • the amount of snow accumulated on the surface of the solar panel can be removed efficiently from the surface of the solar panel in a shorter time, and the efficiency of the solar panel A contact snow removal device can be realized.
  • a non-contact snow removal system for a solar panel according to an eighth aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first to seventh aspects, except that the mass balance and the vertical direction of the unmanned air vehicle are different.
  • the mass balance holding part is located approximately in the center of the direction.
  • the mass balance is held or fixed by the mass balance holding part and the mass balance of different mass can be replaced.
  • the mass of the unmanned aerial vehicle can be adjusted by changing the mass balance according to the above, and by changing the rotation speed of each propeller during flight attitude control of the unmanned aerial vehicle It is configured to change the flow velocity significantly.
  • the solar panel or the surface of the solar panel when removing snow on the surface of the solar panel, the solar panel or the surface of the solar panel accumulates with a flight attitude such as ascending, descending, advancing, retracting, rotating, and hovering.
  • a flight attitude such as ascending, descending, advancing, retracting, rotating, and hovering.
  • the exhaust flow from the propeller While maintaining a certain distance from the surface of the snow, the exhaust flow from the propeller will be used to blow off around the solar panels for snow removal work, but the overall mass of the unmanned air vehicle will be changed by different mass balances. Therefore, the rotational speed of the propeller when performing each attitude control changes significantly, and the flow velocity of the exhaust flow can be changed significantly.
  • the flow velocity of the exhaust flow By increasing the flow velocity of the exhaust flow, if the amount of snow is large or the snow quality is heavy, the flow velocity is increased to make the work more efficient and accurate.
  • a snow removal device can be realized.
  • a non-contact snow removal system for a solar panel according to a ninth aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first to eighth aspects, and includes a compressor and a compressor for an unmanned air vehicle. It is equipped with an air nozzle that injects compressed air, and, according to the information from the snow cover detection means before and during snow removal work, the compressed air injected from the air nozzle is used to accumulate on the surface of the solar panel. It is designed to remove snow without contact.
  • a non-contact snow removal system for a solar panel according to a tenth aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first to ninth aspects, wherein the unmanned air vehicle and the solar panel are included. It is equipped with a relative distance measurement sensor that detects the distance to the surface of the snow accumulated in, and is configured to perform snow removal work while keeping the distance between the surface of the snow and the unmanned air vehicle at a predetermined value.
  • the flow rate of the exhaust flow from the unmanned aerial vehicle can be efficiently and effectively blown to the snow-covered portion without weakening, and the unmanned aerial vehicle can collide with the snow-covered portion. Therefore, it is possible to realize a solar panel non-contact snow removing device that can prevent the operation, and can achieve higher efficiency, higher accuracy and safety of work.
  • a non-contact snow removal system for a solar panel according to an eleventh aspect of the present invention performs snow removal work by an unmanned air vehicle in the configuration of the non-contact snow removal system for a solar panel according to the first to tenth aspects.
  • the timing is set such that the predetermined amount of snow is reached within a predetermined time from the time when the snow amount detection means determines that the snow has started, at the time of sunset, at early morning.
  • the amount of snow accumulated on the surface of the solar panel and the work capacity can be effectively controlled, and at the same time, the upper surface of the solar panel at night that prevents the snow accumulated at night from freezing and sticking. It is possible to remove snow that has accumulated and to effectively generate power during the day, and it is possible to realize a solar panel non-contact snow removal device that can further improve work efficiency and accuracy while maintaining power generation efficiency.
  • a non-contact snow removal system for a solar panel according to a twelfth aspect of the present invention is attached to an upper part of the mount in the configuration of the non-contact snow removal system for a solar photovoltaic panel according to the first to eleventh aspects.
  • the solar panel has a predetermined inclination angle, and when the snow on the upper surface of the solar panel is blown off by the exhaust flow from the unmanned air vehicle to remove snow, the snow removed is possible to the extent possible.
  • One row on the lower side of the inclined solar panels is blown off to the lower portion on the higher side of the inclined solar panels.
  • the surface of the solar panel can be snow-removed, and the amount of snow removed from the solar panel can be significantly reduced, greatly reducing the number of times of snow removal work on the passage. Therefore, it is possible to realize an inexpensive non-contact snow removal system for solar panels with low maintenance cost.
  • the non-contact snow removal system for solar panels is configured as described above, and snow removal equipment is installed in advance around the large-scale solar power generation system, the roof of the house, the roof of the building or the solar panel. There is no need to do so, and because it is a non-contact snow removal system that uses the exhaust flow generated from the propeller of an unmanned air vehicle, there is no load (equipment load) on the house or building and solar panels due to the equipment weight. Since the snow load is not applied in addition to the equipment load, it is highly reliable and does not require man-hours such as equipment construction, and it is possible to remove snow efficiently over the entire large-scale photovoltaic power generation system and multiple houses. It provides a snow removal system with excellent work efficiency, work accuracy, and investment efficiency.
  • FIG. 1 is a perspective view showing the configuration of an unmanned aerial vehicle according to the first embodiment.
  • 1 is a schematic cross-sectional view showing the configuration of an unmanned aerial vehicle according to the first embodiment.
  • 1 is a schematic diagram showing an example of the flight attitude of an unmanned aerial vehicle according to the first embodiment.
  • FIG. 3 is a schematic diagram showing the relationship between the rotational speed of a propeller and thrust in an unmanned aerial vehicle according to the first embodiment.
  • 5 is an example of a CFD (Computational Fluid Dynamics) calculation result showing the state of the exhaust flow generated by the rotation of the propeller in the unmanned aerial vehicle according to the first embodiment.
  • CFD Computer Fluid Dynamics
  • FIGS. 1 to 10 are schematic diagrams showing an example of the configuration of the solar panel non-contact snow removal device 1 according to the first embodiment.
  • FIG. 1 schematically shows a perspective view of a solar panel non-contact snow removing device 1 according to the first embodiment.
  • FIG. 2 shows a perspective view of the schematic configuration of the unmanned aerial vehicle 5 according to the first embodiment.
  • FIG. 3 shows a schematic cross-sectional view of the schematic configuration of the unmanned aerial vehicle 5 according to the first embodiment.
  • FIG. 4 is a schematic diagram showing an example in which various flight attitudes can be controlled by changing the number of revolutions of each propeller 8 of the unmanned aerial vehicle 5 according to the second embodiment and controlling the thrust of each propeller 8. It shows with.
  • FIG. 5 shows a schematic diagram of the relationship between the rotational speed of the propeller 8 of the unmanned aerial vehicle 5 and the thrust T according to the first embodiment.
  • FIG. 6 is a sample showing the state of the exhaust flow 17 generated by the rotation of the propeller 8 and is an example of the calculation of unsteady calculation using CFD (Computational Fluid Dynamics).
  • FIG. 7 schematically shows a perspective view of an example of the snow removal process of the solar panel non-contact snow removal device 1 according to the first embodiment.
  • FIGS. 8 to 10 show schematic views of an example of work of the non-contact snow removal system 1 for a solar panel according to the first embodiment.
  • a solar panel non-contact snow removing device 1 includes a solar power generation system 2, an unmanned aerial vehicle 5 such as a drone device, and an unmanned aerial vehicle control device 6 (not shown). Only three rows of the photovoltaic power generation system 2 are extracted, and the snow removal section 22 is set as the lowermost step, and a state in which the unmanned aerial vehicle 5 performs the snow removal work of the second and third steps of the snow accumulation section 20 (unworked area) is schematic. Is shown in.
  • the solar power generation system 2 includes a solar panel 4, a pedestal 3, and a snow sensor 15, and the pedestal 3 installed on the ground has the solar panel 4 mounted thereon.
  • a snow sensor 15 is installed around the solar panel 4 to detect the mass of snow accumulated per unit area by a pressure sensor or the like, or an optical sensor such as a laser or an LED or an ultrasonic wave.
  • the sensor is used to detect the amount of snow accumulated on the surface of the solar panel 4.
  • the unmanned aerial vehicle 5 performs snow removal work.
  • the snow sensor 15 may not be mounted, and the snow removal worker may judge the start of the snow removal work.
  • the snow accumulated on the upper surface of the solar panel 4 is several mm to several tens of centimeters in the snow accumulation part 20 of the solar panel 4, and the solar power generation system 2 has significantly reduced the amount of power generation and the solar panel 4 And the pedestal 3 is in a state of being heavily loaded.
  • the load applied by the snow accumulated on the solar panel 4 and the gantry 3 may cause the solar panel 4 to be deformed or cracked, or the gantry 3 may be deformed or collapsed. Therefore, leaving the snow on the upper surface of the solar panel 4 as it is becomes a large risk factor for the reliability of the solar power generation system 2, the life of the solar power generation system, and the maintenance of the power generation amount.
  • the snow sensor 15 is a pressure type, an optical type, an ultrasonic type, or the like, but any type can be used as long as it can detect the amount of snow.
  • the snow accumulation sensor 15 may not be mounted and a snow removal operator may recognize the snow accumulation amount.
  • passage 24 is provided between each solar panel 4 and the pedestal 3, but snow removal work on the passage 24 may occur regularly if snow removal snow blocks the passage 24.
  • the unmanned aerial vehicle 5 will fly along a preset flight route based on the map information of the snow removal work site in response to a command from the three-dimensional flight route instruction device 23.
  • there are various specifications for the ratio of operation intervention to the snow removal work of the snow removal worker whether to fly completely automatically according to a command of the three-dimensional flight route instruction device 23 or to fly by radio operation by the operation of the snow removal worker.
  • the work coordinate system (x, y, z) is used for the three-dimensional map information of the snow removal work site and the flight route
  • the airframe coordinate system (X, Y, Z) is used for the airframe attitude control of the unmanned air vehicle 5. They are used, and coordinate conversion is performed as needed.
  • the unmanned aerial vehicle 5 includes a frame 9, a battery 10 fixed to the frame 9, a motor-7 held by the frame 9, and a rotation shaft 18 of the motor-7.
  • the lift force (thrust) generating section is composed of a propeller 8 coupled with the relative distance sensor 16, and the snow accumulation sensor 19 mounted on the airframe.
  • the relative distance sensor 16 measures the relative distance between the unmanned aerial vehicle 5 and the surface of the snow cover 20 with ultrasonic waves, an LED, a laser, a camera, or the like.
  • the vehicle-mounted snow accumulation sensor 19 is composed of a camera, a communication unit, and the like, transmits an image of the image to the three-dimensional flight route instruction device 23, and the three-dimensional flight route instruction device 23 performs image processing and calculation for the surface of the solar panel 4. Recognizing the amount of snowfall of, the flight control of the unmanned aerial vehicle 5 and the snow removal work are performed.
  • the unmanned aerial vehicle 5 is equipped with a GPS and a gyro sensor and is used for checking the position of the unmanned aerial vehicle 5 and controlling the attitude of the aircraft.
  • the unmanned aerial vehicle 5 must be equipped with a receiver.
  • the three-dimensional flight route instruction device 23 shown by the broken line in FIG. 3 is used to issue a command to the motor 7 according to the flight route to the unmanned aerial vehicle control device 6, which is shown in FIG. like,
  • the snow removal worker may interrupt the instruction of the three-dimensional flight route instruction device 23 and directly operate the unmanned air vehicle control device 6.
  • the airframe-mounted snow sensor 19 is image-recognized by using a camera.
  • a sensor such as a laser or an ultrasonic wave.
  • the operator does not mount 19 and the operator recognizes it.
  • the rotating unit is the motor 7, but it may be a drive source such as an engine, and the battery 10 serving as a power source at that time may be fuel such as light oil or gasoline.
  • the thrusts (f1 to f4) are generated by the rotation of each propeller 8 according to the number of rotations of each motor 7 according to a command from the three-dimensional flight route instruction device 23 to the unmanned air vehicle control device 6, and the unmanned air vehicle 5 as a whole.
  • the thrust force T is generated, various attitudes of the machine body in the machine body coordinate system and the work coordinate system are maintained.
  • an exhaust flow 17 is generated downstream of the flow.
  • the flow velocity and flow rate of the exhaust flow 17 depend on the number of revolutions of the propeller, and as the number of revolutions increases, each thrust increases, and the flow rate and flow velocity of the exhaust flow 17 also greatly increase.
  • Fig. 4 shows an example of the relationship between the rotational speed of each propeller 8 and the flight attitude. It is possible to perform basic operations such as ascending, descending, hovering, left rotation, right rotation, left movement and right rotation, and combination operations thereof.
  • Fig. 5 is a schematic graph showing the relationship between the rotational speed of the propeller 8 and the thrust T.
  • the thrust force T increases in proportion to the square of the rotation speed (rotation speed).
  • the exhaust flow 17 also increases in proportion to the square of the rotational speed, and the flow velocity of the exhaust flow 17 has the same result.
  • the flow velocity and the flow rate at a place having a constant relative distance (L) from the airframe will decrease as the relative distance (L) increases. Therefore, when the snow removal work of the snow cover 20 is performed using the exhaust flow 17 of the unmanned aerial vehicle 5, the distance between the unmanned aerial vehicle 5 and the surface of the snow cover 20 is also an important factor, and the efficiency and accuracy of the snow removal work are improved. Will be greatly affected.
  • the unmanned aerial vehicle 5 includes a lower mass balance 11, a lower mass balance fixing portion 12 for fixing the lower mass balance 11 to the main frame 10 and an upper mass balance 13 at a substantially central portion in the vertical direction. Is fixed to the main frame 10 with an upper mass balance fixing portion 14.
  • the overall mass is increased, the rotation speed of the propeller 8 is increased, and the flow velocity and the flow rate of the exhaust flow 17 are increased, so that the snow removal work of the snow cover part is performed.
  • the number or mass of mass balances to be mounted on the unmanned aerial vehicle 5 when it is difficult to remove snow due to increased efficiency or freezing, or when snow removal is difficult due to the large specific gravity of the snow in the snow covered area. Is effective.
  • the mass of the unmanned aerial vehicle 5 is increased by the lower mass balance 11 and the upper mass balance 13 the consumption of the battery 10 or fuel (light oil, gasoline, etc.) mounted on the unmanned aerial vehicle 5 increases, and The time gets shorter. Therefore, the mass of the mass balance to be mounted is selected in consideration of work efficiency, work quality and work time.
  • the lower mass balance 11 and the upper mass balance 13 are mounted, but either one may be mounted, or both may not be mounted. Further, the lower mass balance fixing portion 12 and the upper mass balance fixing portion 14 may be configured in the unmanned air vehicle 5 as necessary, and there is no problem.
  • the unmanned aerial vehicle control device 6 is equipped with a relative distance sensor 16 and is configured to recognize the relative distance (L) between the surface of the snow cover 20 and the airframe of the unmanned aerial vehicle control device 6.
  • the snow removal operator does not mount the relative distance sensor 16 and the unmanned flight with the surface of the snow cover 20.
  • a method of recognizing the distance between the body control device 6 and the body may be used.
  • the three-dimensional flight route instruction device 23 is used, and the flight instruction is unmanned based on the information of the three-dimensional map information, the information of the snow cover sensor 15, the information of the on-body snow cover sensor 19, and the information of the relative distance sensor 16.
  • the configuration is such that the air vehicle control device is instructed, a configuration in which the three-dimensional flight route instruction device 23 is not mounted and the snow removing operator directly operates the unmanned air vehicle control device 6 or the radio control operator of the unmanned air vehicle 5 is also used. Good.
  • FIG. 6 is a part of the result showing the state of the exhaust flow 17 generated by the rotation of the propeller 8, and is an example of the calculation of unsteady calculation using CFD (Computational Fluid Dynamics).
  • the exhaust flow 17 is ejected in a wide range downstream of the propeller 8, and its area, flow velocity, and flow rate depend on the shape, size, and rotation speed of the propeller 8.
  • FIG. 7 is a diagram showing an example of a flight path in snow removal work of the unmanned aerial vehicle 5 with respect to the snow cover section 20.
  • a method of removing snow along the short side of the solar panel 4 and a method of removing snow along the long side of the solar panel 4 are shown, but work efficiency, work quality and work time are taken into consideration. Will be selected.
  • the snow removal work is performed along the short side, it is gradually moved in the left-right direction while repeatedly reciprocating in the vertical direction of the paper surface.
  • the snow is gradually moved in the vertical direction while repeating the reciprocation to the left and right of the paper surface.
  • FIG. 7 an example of the flight path is shown in FIG. 7, but there is no problem even if snow removal work is performed by a method other than these, and even if snow removal is performed by automatic flight, a worker operates with a radio control. But there is no problem.
  • FIG. 8 is a diagram showing an example of snow removal work by the unmanned aerial vehicle 5 with respect to the snow cover 20 (unworked region) and the snow cover 21 (snow removal work region) on the upper surface of the solar panel 4.
  • FIG. 9 is a diagram showing an example of snow removal work by the unmanned aerial vehicle 5 with respect to the snow-covered portion 20 (unworked area) and the snow-covered portion 21 (snow removing work area) on the upper surface of the solar panel 4, as in FIG. 8.
  • the flight path along the short side is optimal in the flight attitude shown in FIG. 6, but there is no problem even if the flight attitude is adjusted to form the flight path along the long side.
  • FIG. 10 is a diagram showing an example of snow removal work by the unmanned aerial vehicle 5 with respect to the snow-covered portion 20 (unworked area) and the snow-covered portion 21 (snow removing work area) on the upper surface of the solar panel 4, as in FIGS. 8 and 9. Is.
  • the unmanned aerial vehicle 5 By controlling the number of revolutions of each propeller 8 and keeping the rotating shaft 18 vertical so that the unmanned aerial vehicle 5 is substantially horizontal, it becomes easy to move horizontally and obliquely upward, and the exhaust flow 17 can be moved vertically. It is possible to efficiently remove snow from the solar panel 4 by injecting the snow.
  • the flight path along the long side is optimal in the flight attitude shown in FIG. 6, but there is no problem even if the flight attitude is adjusted and the flight path along the short side is used. There is no problem even if the method of intensively working a portion that is difficult to remove by changing the rotation speed of the propeller 8 and rotating the machine body.
  • the snow removing operator determines that the snow removing operation is necessary, when the value of the snow accumulation sensor 15 exceeds a preset value, At least one of sunset and early morning.
  • the number of propellers 8 and the number of motors 7 mounted on the unmanned aerial vehicle 5 is four, but it goes without saying that there is no problem with six or eight.
  • the second embodiment will be described with reference to FIG.
  • the difference from the first embodiment is that when removing snow on the upper surface of the solar panel 4, the exhaust flow 17 blows the snow around the solar panel 4, but at that time, the snow is inclined.
  • the structure is such that it is blown off to almost the lower part on the high side of the inclined solar panel 4 in the row adjacent to the low side of the solar panel 4.
  • the unmanned aerial vehicle 5 may have a substantially horizontal body attitude, may be inclined, may be hovering, may be rolling, or may be rotating.
  • the operation of the unmanned aerial vehicle 5 may be performed by a method in which the snow removing operator directly operates the unmanned aerial vehicle control device 6, or by a method of issuing a flight instruction to the unmanned aerial vehicle control device 6 by the three-dimensional flight route instruction device 23. Good.
  • the distance L between the unmanned aerial vehicle 5 and the surface of the snow cover 20 may be specified in advance or may fly at any height.
  • the air compressor 25, the air compressor holding portion 27, and the ejection nozzle 26 are mounted on the unmanned aerial vehicle 5, and the air compressor 25 and the ejection nozzle that ejects the compressed air from the air compressor 25. 26 is used to remove the snow from the snow-covered portion 20 and the snow-covered portion 21 that cannot be removed only by the exhaust flow 17. With this configuration, it is possible to further improve the work efficiency and work quality of snow removal work.
  • a non-contact snow removal device for a solar panel according to a twelfth aspect of the present invention is attached to an upper part of the pedestal 3 in the configuration of the non-contact snow removal system 1 for a solar photovoltaic panel according to the first to eleventh aspects.
  • the solar panel 4 thus formed has a predetermined inclination angle, and when the snow on the upper surface of the solar panel 4 is blown off by the exhaust flow 17 from the unmanned air vehicle 5 to remove the snow, the snow is removed to the extent possible.
  • one row of snow on the lower side of the solar panel 4 on which the snow is inclined is blown off to the lower portion on the high side of the inclined solar panel 4.
  • the unmanned air vehicle 5 removes snow accumulated on the upper surface of the solar panel 4 installed on the upper surface of the roof 29 of the house 28 of the house 28. .. With this configuration, it is possible to remove the snow accumulated on the roof 29 of a general house.
  • the snow cover on the upper surface of the solar panel 4 installed on the roof 29 of the house is removed.
  • it may be used to remove snow on a general roof without the solar panel 4.
  • the present invention compared to the conventional, by removing the snow on the surface of the solar panel in a non-contact manner and by making it possible to adjust the flow rate of the exhaust flow used for snow removal, it is possible to install snow removal equipment in the vicinity of the solar panel in advance. There is no installation cost, high efficiency, high accuracy, and low cost of snow removal work are achieved, and the amount of power generation reduction can be significantly reduced, resulting in reliability, workability, and power generation. Realizes an excellent non-contact snow removal system for solar panels.
  • the present invention is applicable to, for example, a non-contact automatic snow removal system for solar panels, snow removal for a roof of a house, snow removal for a solar panel installed on a roof of a house, and snow removal for a solar panel installed on a building. Available. Furthermore, it can be used for a cleaning device for the surface of a solar panel that removes sand accumulated on the surface of the solar panel installed in various places.

Abstract

The present invention addresses the problem of providing a contactless snow removal system for solar panels that contactlessly removes snow from the surface of solar panels efficiently and at low cost, without construction of equipment in advance or loading the weight of equipment onto the solar panels or onto frames. A contactless snow removal system (1) for solar panels that includes: frames (3) and solar panels (4) that are arranged on the ground; a snow accumulation sensor (15) that detects the amount of snow accumulated on the surface of the solar panels (4); an unmanned aircraft (5) such as a drone or a UAV that moves in three-dimensional space and is configured from a plurality of lift generation parts that comprise a motor and a propeller that is connected to the motor and an unmanned aircraft control device that performs rotational control of the motors and performs flight posture control on the basis of lift (thrust) that is generated by rotation of the propellers; and a three-dimensional flight path instruction part that sets a movement route for the unmanned aircraft (5) in advance and outputs instructions to a rotation control device. When the amount of snow accumulated has reached a prescribed amount, the snow that has accumulated on the solar panels (4) is contactlessly removed from the surface of the solar panels (4) by exhaust flows from the propellers as the unmanned aircraft (5) flies on the basis of commands from the three-dimensional flight path instruction part.

Description

太陽光パネル用非接触除雪システムNon-contact snow removal system for solar panels
 本発明は、無人飛行体(ドローン装置)から排出される気流を用い、メガソーラーなどの太陽光パネルを用いた発電所の太陽光パネルの表面に堆積した雪、住宅の屋根やビルの屋上に設置された太陽光パネルなどの設置物の上に積雪した雪、住宅の屋根やビルの屋上に堆積した雪を吹き飛ばして除雪を行う太陽光パネル用非接触除雪システムに関するものである。 The present invention uses the airflow emitted from an unmanned aerial vehicle (drone device) to deposit snow on the surface of a solar panel of a power plant using a solar panel such as a mega solar, a roof of a house, or a roof of a building. The present invention relates to a non-contact snow removal system for a solar panel that blows away snow accumulated on installations such as installed solar panels and snow accumulated on roofs of houses and roofs of buildings.
 近年、ドローン装置の開発は飛躍的に進んでおり、大型化、長時間対応も含め様々なタイプのドローン装置が実用化されている。またその用途も、撮影、警備、遠隔地への貨物移動など多岐にわたっている。さらには、ドローン装置に人を乗せ有人で飛行をする実証実験も進められている状況にある。地図情報作成環境も飛躍的に向上し、地上の3次元地形データおよび3次元地図データも安価にかつ容易に作成可能な状況となってきている。 In recent years, drone devices have been dramatically developed, and various types of drone devices have been put to practical use, including large size and long-term support. It also has a wide variety of uses, such as shooting, security, and moving cargo to remote areas. Furthermore, a field trial is underway in which a person is put on the drone device and a manned flight is carried out. The environment for creating map information has improved dramatically, and it is now possible to easily and inexpensively create three-dimensional topographic data and three-dimensional map data on the ground.
 また、太陽光パネルを大量に配置した大規模な発電システムの設置数は大幅に増加しており、積雪が発生する地域においてもメガソーラーと呼ばれる大規模な太陽光発電システムの設置が急速に増加している。しかしながら、降雪地域では冬の間に雪が太陽光パネルの表面に堆積し、太陽光パネルの表面に雪が堆積している間は光が遮断され発電量が大幅に低下する、積雪荷重により太陽光パネルが破損または太陽光パネルの架台ごと倒壊するという問題を有していた。 In addition, the number of large-scale power generation systems with a large number of solar panels installed has increased significantly, and the installation of large-scale solar power generation systems called megasolar has increased rapidly even in areas where snowfall occurs. doing. However, in the snowfall area, snow accumulates on the surface of the solar panel during the winter, and while the snow accumulates on the surface of the solar panel, light is blocked and the amount of power generation decreases significantly. Had a problem that it was damaged or collapsed together with the solar panel mount.
 また、太陽光パネルを用いた大規模発電システムにおいて、積雪を防止する構成として、発電量を犠牲として最適な傾斜角以上に傾斜を大きくする、発電効率の低下分を発電面積で補うように少し電も太陽光パネルの面積を大きくするといった暫定的な手段も検討されている。 In addition, in a large-scale power generation system that uses solar panels, as a configuration to prevent snow accumulation, increase the inclination above the optimal inclination angle at the expense of the amount of power generation, and slightly decrease the amount of power generation efficiency with the power generation area. Electricity is also being considered as a temporary measure to increase the area of solar panels.
 一方、近年では住宅の屋根に太陽光パネルを設置する家庭も大幅に増加している。しかしながら太陽光パネルの表面に雪が堆積した場合、発電量が大幅に減少してしまい、降雪期間は発電システムとしての機能を果たさないという課題を有している。 On the other hand, in recent years, the number of households that install solar panels on the roofs of their houses has increased significantly. However, when snow accumulates on the surface of the solar panel, the amount of power generation is significantly reduced, and there is a problem that it does not function as a power generation system during a snowfall period.
 また、以前より特に北陸地方や東北および北海道などの住宅では、除雪が大きな負担となっており、多くの家庭では高齢者や女性が屋根に上り、人力で除雪する状況となっていた。雪の種類もさまざまとなり、北海道などは比較的乾燥雪でさらさらとしており風で吹き飛ばしやすいが、北陸地方の雪は多くの水を含んだべた雪であり比重が重く付着しやすくほっておけば2m以上に達することもある。雪の種類にもよるが、べた雪の場合、1mの積雪に対して1m2あたり100kg~200kgの質量に達することもあり、屋根や住宅および太陽光パネルの耐久性に影響を及ぼすこともある。さらには、降雪作業による事故も多く発生しており、雪下ろし中の死亡者数が100名を超える年もある状況となっている。 Moreover, snow removal has been a heavy burden especially in houses in the Hokuriku region, Tohoku, and Hokkaido, and in many homes, elderly people and women climbed onto the roof to remove snow manually. The types of snow vary, and Hokkaido and other areas are relatively dry and easily blown away by the wind, but the snow in the Hokuriku region is a heavy snow that contains a lot of water, and its specific gravity is heavy and it easily adheres. The above may be reached. Depending on the type of snow, in the case of solid snow, the mass of 100 kg to 200 kg per 1 m 2 can reach the durability of roofs, houses, and solar panels for 1 m of snow. Furthermore, there are many accidents caused by snowfall work, and the number of fatalities during snow removal exceeds 100 in some years.
 このような背景のもと、太陽光パネルの表面に積雪した雪を除去する様々な自動除雪システムが提案されている(特許文献1、特許文献2)。さらには、住宅の屋根に堆積した雪を除去する様々な自動除去システムが提案されている(特許文献3、特許文献4)。 Against this background, various automatic snow removal systems have been proposed to remove snow accumulated on the surface of solar panels (Patent Documents 1 and 2). Furthermore, various automatic removal systems for removing snow accumulated on the roof of a house have been proposed (Patent Documents 3 and 4).
 特許文献1では、太陽光パネル付近に設置される雪センサにより降雪を感知し太陽光パネル上に覆われた透明なシート部材を移動することで太陽光パネル上に堆積した雪を除去する構成としている。 In Patent Document 1, a snow sensor installed near a solar panel detects snowfall and moves a transparent sheet member covered on the solar panel to remove snow accumulated on the solar panel. There is.
 特許文献2では、矩形の枠体であるカッターフレームと走行装置および滑落板を用い、カッターフレームと走行装置で堆積した雪を矩形に分割しながら滑落板で雪を落下させる構成としている。 In Patent Document 2, a cutter frame that is a rectangular frame, a traveling device, and a slide plate are used, and the snow accumulated by the cutter frame and the traveling device is divided into rectangles while the snow is dropped by the slide plate.
 特許文献3では、動力源となるエンジン、棟ガイドレール、除雪スパイラル羽などから構成された除雪ロボットを用い、除雪スパイラル羽を移動させながら回転することで降雪を行っている。 In Patent Document 3, snow removal is performed by rotating a snow removal spiral wing while using a snow removal robot composed of an engine as a power source, a ridge guide rail, a snow removal spiral wing, and the like.
 特許文献4では、燃料電池システムと貯湯タンクとヒーターと屋外温水配管とポンプなどから構成され、燃料電池システムの排熱を利用し貯蔵した貯湯タンクのお湯をポンプにより屋外温水配管に流すこととヒーターを用いることにより屋根に積もった雪を溶かしたり、屋根に積もった雪を滑落させたりする構成としている。 In Patent Document 4, it is composed of a fuel cell system, a hot water storage tank, a heater, an outdoor hot water pipe, a pump, etc., and the hot water of the hot water storage tank stored by utilizing the exhaust heat of the fuel cell system is pumped to the outdoor hot water pipe and the heater. Is used to melt the snow on the roof or slide down the snow on the roof.
特開2017-112699Japanese Patent Laid-Open No. 2017-112699 特開2018-61307Japanese Patent Laid-Open No. 2018-61307 特開2016-205108JP, 2016-205108, A 特開2001-262868Japanese Patent Laid-Open No. 2001-262868
 上述した従来の自動除雪システムでは、大規模な太陽光発電システムにおける太陽光パネル上に堆積した雪を除去する場合において、太陽光パネルの周辺または太陽光パネルの架台にあらかじめ大規模な自動除雪システムまたはその関連設備を設置する必要があるため膨大な初期コストが必要となり、投資回収期間が大幅に長くなる。また、設置した設備の重量により太陽光パネルおよび架台に大きな負荷(荷重)がかかるため、太陽光パネルの変形や破損、架台の変形および倒壊などが発生するとともに、太陽光パネルおよび太陽光発電システムの寿命や信頼性にも影響が及ぶとこことなる。 In the conventional automatic snow removal system described above, when removing snow accumulated on a solar panel in a large-scale solar power generation system, a large-scale automatic snow removal system is preliminarily provided around the solar panel or on the mount of the solar panel. Or, since it is necessary to install the related equipment, a huge initial cost is required and the investment payback period is significantly lengthened. In addition, a large load is applied to the solar panel and the pedestal due to the weight of the installed equipment, so that the solar panel may be deformed or damaged, or the pedestal may be deformed or collapsed. This is when the life and reliability of the product is affected.
 さらには、住宅の屋根や太陽光パネルの表面に設備を乗せた状態で強風や地震を受けると、大きな負荷により住宅や太陽光パネルの耐荷重を超えることとなり住宅の崩壊や太陽光パネルの破損にもつながることとなる。 Furthermore, if a strong wind or an earthquake occurs with the equipment on the roof of a house or the surface of a solar panel, the load on the house or solar panel will be exceeded by a large load, and the house will collapse or the solar panel will be damaged. It will also lead to.
 また、大規模な機械設備が屋外に常設されるこことなり、昼夜の温度差がありかつ、雪や雨と直接接触する屋外に長期間放置することとなり、設備のメンテナンスに多くの工数やコストを必要とするとともに、さびなどの発生により設備寿命を長期間とすることが困難となる。 In addition, since large-scale mechanical equipment will be permanently installed outdoors, it will be left outdoors for a long period of time because of the temperature difference between day and night and in direct contact with snow and rain, which will require a lot of man-hours and costs for equipment maintenance. It becomes necessary, and it becomes difficult to extend the service life of equipment due to the generation of rust.
 一方、住宅の屋根や、ビルおよび住宅の屋根に取り付けられた太陽光パネルの除雪を行う際にも同様にそれぞれのビルの屋上や住宅の屋根にあらかじめ大規模な設備を設置する必要があり、高額な初期投資を必要とすることになるとともに、家屋の耐荷重の観点で設置できる住宅にも制限が発生する。また、大規模な設備の重量が屋根にかかるため屋根および住宅の寿命にも影響することとなる。さらには、ビルの屋上や住宅の屋根に常設されるこことなるため、雪や雨と直接接触する屋外に長期間放置することとなり、設備のメンテナンスに多くの工数やコストを必要とするとともに、さびなどの発生もあり設備寿命を長期間とすることが困難となる。 On the other hand, when removing snow from the roofs of houses and solar panels installed on the roofs of buildings and houses, it is necessary to install large-scale equipment in advance on the roofs of the buildings and roofs of the houses, In addition to requiring a large amount of initial investment, there will be restrictions on the number of houses that can be installed in terms of the load capacity of the houses. In addition, the weight of a large-scale facility is applied to the roof, which affects the life of the roof and the house. Furthermore, since it is permanently installed on the roof of a building or roof of a house, it will be left outdoors for a long period of time in direct contact with snow and rain, and it will take a lot of man-hours and costs to maintain the equipment. Rust may also occur, making it difficult to extend the service life of the equipment.
 本発明は、このような状況を鑑みてなされたものであり、太陽光発電システムおよび太陽光発電システムの周辺、ビルの屋上、住宅の屋根や、屋根およびビルの屋上の太陽光パネル周辺にあらかじめ除雪設備を設置する必要がなく、かつ非接触で除雪するシステムとなるため太陽光発電システム、太陽光パネル、架台および家屋などへの設備重量による負荷が発生することがなく、設備工事などの工数が不要で、自動除雪システムや太陽光発電システムの信頼性に優れ、大規模な太陽光発電システムや複数の家屋においても効率よく除雪作業を行うことができ、屋外に除雪設備を放置する必要がないためメンテナンス費用効果に優れた、高効率、高信頼性、高精度かつ低コストの除雪システムを提供するものである。 The present invention has been made in view of such a situation, and is provided in advance around a solar power generation system and a solar power generation system, a roof of a building, a roof of a house, and a solar panel around the roof and the roof of the building. Since there is no need to install snow removal equipment and the system removes snow in a non-contact manner, there is no load due to equipment weight on the solar power generation system, solar panels, pedestals, houses, etc. Is unnecessary, the automatic snow removal system and solar power generation system are highly reliable, and snow removal work can be performed efficiently even in large-scale solar power generation systems and multiple houses, and it is necessary to leave the snow removal equipment outdoors. Since it does not exist, it provides a highly efficient, highly reliable, highly accurate and low cost snow removal system with excellent maintenance cost effectiveness.
 本発明を得るに至った経緯は以下のものである。 The circumstances that led to the present invention are as follows.
 即ち、本発明者は「背景技術」にて記載した従来の太陽光発電パネルおよび屋根などの自動除雪システムに関して鋭意研究したところ、従来の自動除雪システムでは、除雪対象の周辺にあらかじめ大規模な設備の設置が必須となり工事期間や大きな初期投資が必要となることが判明した。 That is, the present inventor has diligently studied the conventional snow removal system such as the conventional solar power generation panel and the roof described in “Background Art”, and in the conventional automatic snow removal system, large-scale equipment is installed in advance around the snow removal target. It has become clear that the installation of the above is required, and that the construction period and large initial investment are required.
 また、屋外に設置した電気機器および機械等設備のメンテナンスやさび対策等のメンテ工数が必要となる。設置した設備の一部の荷重が太陽光パネルや架台または屋根に付加するため、設備荷重および積雪荷重により変形、破損、倒壊などの被害により太陽光発電システムや自動除雪システムの信頼性や寿命への悪影響や多額の補修費用が発生する。 Also, maintenance man-hours such as maintenance of electric equipment and machinery installed outdoors and measures against rust are required. Part of the load of the installed equipment is added to the solar panel, pedestal or roof, so the equipment load and snow load may cause deformation, damage, collapse, etc., resulting in reliability and longevity of the solar power generation system and automatic snow removal system. The negative impact and large repair cost will occur.
 大規模な設備の荷重が太陽光パネルや架台に付加されるため、倒壊を防ぐためには太陽光パネルや架台の強度をさらに増やす必要があるため設備費が上昇する。といった多くの課題を有していることがわかった。あらかじめ設置する設備を準部することがなく、除雪設備の荷重負荷がなく、設備のメンテナンスが容易で、除雪効果の高い自動除雪システムを実現できないものかという課題に直面していた。 -Since the load of large-scale equipment is added to the solar panels and pedestals, it is necessary to further increase the strength of the solar panels and pedestals in order to prevent the equipment from collapsing, which increases equipment costs. It turned out that it has many problems. There was a problem of whether an automatic snow removal system with a high snow removal effect could be realized because there was no need to equip the equipment to be installed beforehand, there was no load on the snow removal equipment, maintenance of the equipment was easy.
 そこで、本発明者はこの問題点に関し検討を重ねた結果、以下の知見を得た。 Therefore, as a result of repeated studies on this problem, the present inventor has obtained the following knowledge.
 すなわち、無人飛行体(ドローン装置)から排出される排気流を効果的に用いるとともに、近年その精度が大きく進化した3次元土地情報を組み合せて自動飛行を行えば、メガソーラーなどの太陽光パネルを用いた発電所の太陽光パネルの表面に堆積した雪、住宅の屋根やビルの屋上に設置された太陽光パネルなどの設置物の上に積雪した雪、住宅の屋根やビルの屋上に堆積した雪を効果的かつ効率的に吹き飛ばし、太陽光パネルの表面などに堆積した雪の除去を行うドローン除雪システムを実現できるという考えに至った。また、完全な自動飛行を完成させるには時間はかかるが、当初はある程度の操縦は人が行ってもドローン除雪システムの効果は甚大であると考えた。 That is, if the exhaust flow emitted from an unmanned aerial vehicle (drone device) is used effectively, and if automatic flight is performed by combining three-dimensional land information, the accuracy of which has evolved significantly in recent years, solar panels such as mega solar can be used. Snow accumulated on the surface of the solar panel of the power plant used, snow accumulated on the installation such as the solar panel installed on the roof of the house or the roof of the building, the snow accumulated on the roof of the house and the roof of the building We have come up with the idea that we can realize a drone snow removal system that effectively and efficiently blows away snow and removes snow accumulated on the surface of solar panels. In addition, although it takes time to complete a fully automatic flight, at the beginning I thought that the drone snow removal system would have a great effect even if a person carried out some maneuvering.
 無人飛行体(ドローン装置)から排出される排気流は、プロペラの大きさや回転数にもよるが堆積した雪を飛ばすには十分な流量と流速を有している。また、構成次第ではその排気流の流速を一層増加させることが可能となる。さらに、無人飛行体(ドローン装置)は前進、後退、回転、上昇、下降およびホバーリングなどのその飛行姿勢をそれぞれのプロペラの回転軸の回転角度および回転数により制御している。したがって、3次元の地形、太陽光パネルの角度、無人飛行体(ドローン装置)の飛行姿勢、効果的な排気流の流速を組合すことで最適な自動除雪プロセスを構築できるという考えに至った。 The exhaust flow discharged from the unmanned aerial vehicle (drone device) has sufficient flow rate and flow velocity to fly the accumulated snow, depending on the size and rotation speed of the propeller. Further, depending on the configuration, the flow velocity of the exhaust flow can be further increased. Further, the unmanned aerial vehicle (drone device) controls its flight attitude such as forward, backward, rotation, ascent, descent and hovering by the rotation angle and the number of rotations of the rotation axis of each propeller. Therefore, it came to the idea that an optimum automatic snow removal process can be constructed by combining the three-dimensional topography, the angle of the solar panel, the flight attitude of the unmanned aerial vehicle (drone device), and the effective flow velocity of the exhaust flow.
 大規模太陽光発電システム周辺、住宅の屋根、ビルの屋上や太陽光パネル周辺にあらかじめ除雪用の設備を設置する必要がなく、かつ無人飛行体(ドローン装置)のプロペラから発生する排気流を用い、非接触で除雪するシステムとなるため家屋やビルおよび太陽光パネルへの設備重量による負荷が発生しないため、設備工事などの工数が不要でかつ信頼性に優れ、大規模太陽光発電システム全域や複数の家屋にわたり効率よく除雪作業を行うことができる高効率な除雪システムを提供するものである。また、設備を常設する必要がないため、メンテ工数を大幅に削減できるとともにさびなどの発生も防ぐことができ、信頼性および維持費の大幅な低減効果に優れた除雪システムを提供するものである。さらには、非接触で飛行しながら除雪作業をおこなうことができるため、設備を備えていない場所にも容易に移動および除雪作業をすることができるとともに、短時間で効率よく除雪作業を行うことができるため、高効率、高信頼性、低コストの除雪システムを実現する構成を見出し本発明に至った。また、積雪量や作業のタイミングを考慮することで、太陽光パネルの表面で雪が凍ることを防止し、かつ効果的に除雪することで発電量および発電効率を低下させることがない、発電効率に優れた非接触除雪装置を見出した。 There is no need to install equipment for snow removal around large-scale solar power generation systems, roofs of houses, rooftops of buildings and solar panels in advance, and exhaust flow generated from propellers of unmanned air vehicles (drone equipment) is used. Since it is a non-contact snow removal system, there is no load on the house or building and solar panels due to the weight of the equipment. It is intended to provide a highly efficient snow removal system capable of efficiently removing snow from a plurality of houses. In addition, since it is not necessary to permanently install equipment, it is possible to significantly reduce the maintenance man-hours and prevent the occurrence of rust, etc., and to provide a snow removal system that is highly effective in reducing reliability and maintenance costs. .. Furthermore, because it is possible to perform snow removal work while flying in a non-contact manner, it is possible to easily move and remove snow even to a place that is not equipped with equipment, and to perform snow removal work efficiently in a short time. Therefore, the inventors have found a configuration that realizes a high efficiency, high reliability, and low cost snow removal system, and arrived at the present invention. In addition, by considering the amount of snow and the timing of work, it is possible to prevent snow from freezing on the surface of the solar panel, and to effectively remove snow so that the amount of power generation and power generation efficiency are not reduced. An excellent non-contact snow remover was found.
 本発明にあっては、上記した課題を解決するために、地面に設置された架台および太陽光パネルと、前記太陽光パネルの表面の積雪量を検出する積雪量検出手段と、回転駆動部とプロペラが連結した複数の揚力発生部と、前記回転駆動部の回転制御を行い前記プロペラの回転により発生する揚力と推力により飛行姿勢制御を行う回転制御部から構成され3次元空間の移動を行ういわゆるドローンまたはUAVなどの無人飛行体と、前記無人飛行体の移動経路をあらかじめ設定し前記回転制御部に指示を出す3次元飛行経路指示部を有し、前記積雪量が所定量に達した場合に、前記3次元飛行経路指示部の指令に基づき飛行することで前記無人飛行体の前記プロペラから発生する排気流により前記太陽光パネルに蓄積した雪を非接触で前記太陽光パネルの表面から除去することを特徴とする太陽光パネル用非接触除雪システムとして構成したものである。 In the present invention, in order to solve the above problems, a gantry and a solar panel installed on the ground, a snow amount detecting means for detecting the amount of snow on the surface of the solar panel, and a rotation drive unit. It is composed of a plurality of lift generators connected to propellers and a rotation controller that controls the rotation of the rotation drive unit and controls the flight attitude by the lift and thrust generated by the rotation of the propeller. It has an unmanned aerial vehicle such as a drone or a UAV, and a three-dimensional flight route instructing unit that presets a movement route of the unmanned aerial vehicle and issues an instruction to the rotation control unit, and when the amount of snow reaches a predetermined amount. , The snow accumulated on the solar panel is removed from the surface of the solar panel in a non-contact manner by the exhaust flow generated from the propeller of the unmanned air vehicle by flying based on the command of the three-dimensional flight route instruction unit. It is configured as a non-contact snow removal system for solar panels, which is characterized in that
 本発明の第一の態様にあっては、地面に設置された架台および太陽光パネルまたは屋上に設置された太陽光パネルと、太陽光パネルの表面、住宅の屋根、ビルの屋上または太陽光パネルの周辺の積雪量を検出する積雪量検出手段と、回転駆動部とプロペラが連結した複数の揚力発生部と、前記回転駆動部の回転制御を行い前記プロペラの回転により発生する揚力と推力により飛行姿勢制御を行う回転制御部から構成され3次元空間の移動を行ういわゆるドローンまたはUAVなどの無人飛行体と、無人飛行体の移動経路をあらかじめ設定し回転制御部に指示を出す3次元飛行経路指示部を有し、積雪量が所定量に達した場合に、3次元飛行経路指示部の指令に基づき飛行することで無人飛行体の前記プロペラから発生する排気流により大規模太陽光発電システムの太陽光パネルの表面、住宅の屋根、住宅やビルの屋上に設置した太陽光パネルの表面に蓄積した雪を非接触で除去する構成としている。 In the first aspect of the present invention, a gantry and a solar panel installed on the ground or a solar panel installed on a roof, and a surface of the solar panel, a roof of a house, a roof of a building or a solar panel. Snow amount detection means for detecting the amount of snow in the vicinity of the, a plurality of lift generation unit connected to the rotation drive unit and the propeller, the rotation control of the rotation drive unit to fly by the lift and thrust generated by the rotation of the propeller An unmanned air vehicle such as a so-called drone or UAV that is composed of a rotation control unit that performs attitude control and moves in a three-dimensional space, and a three-dimensional flight route instruction that presets the movement route of the unmanned air vehicle and issues an instruction to the rotation control unit. When the amount of snowfall reaches a predetermined amount, the air of the large-scale solar power generation system is generated by the exhaust flow generated from the propeller of the unmanned air vehicle by flying based on the command of the three-dimensional flight route instruction unit. Non-contact removal of snow accumulated on the surface of optical panels, roofs of houses, and solar panels installed on the roofs of houses and buildings.
 上記した構成によると、太陽光パネルの表面の積雪量を積雪量検出手段で検出し、降雪が始まり積雪量があらかじめ設定していた所定量に達した場合あるいは積雪が所定量に達している場合、回転駆動部とプロペラが連結した複数の揚力発生部からなるドローン装置またはUAVなどの無人飛行体を用いて、3次元飛行経路指示部からのあらかじめ設定された飛行経路の指示に従って飛行時する際に、ドローン装置またはUAVなどの無人飛行体の飛行姿勢に応じて各々のプロペラの回転数が変化することとなりそれぞれの揚力発生部から排出される排気流を利用して、太陽光パネルや架台に除雪設備の負荷を印可することなく非接触で太陽光パネルに蓄積した雪を太陽光パネルの表面から除去することができる。 According to the above configuration, the amount of snow on the surface of the solar panel is detected by the amount of snow detection means, and when the snowfall starts and the amount of snow reaches a predetermined amount set in advance, or when the amount of snow has reached the predetermined amount. When using an unmanned aerial vehicle such as a drone device or UAV consisting of a plurality of lift generators in which a rotary drive unit and a propeller are connected, according to a preset flight route instruction from a three-dimensional flight route instruction unit In addition, the rotation speed of each propeller changes according to the flight attitude of an unmanned aerial vehicle such as a drone device or UAV, and the exhaust flow exhausted from each lift generation part is used for solar panels and pedestals. It is possible to remove the snow accumulated on the solar panel from the surface of the solar panel in a contactless manner without applying the load of the snow removal equipment.
 太陽光パネルや架台に負荷をかけないことで、設備荷重および積雪荷重にて太陽光パネルや架台の劣化、変形、倒壊を防ぐことができるとともに、あらかじめ除雪設備を設置する必要がないため除雪設備の準備工数や設置費用を大幅に削減することができるという効果を有する。また除雪設備を屋外に常設する必要がないため水や雪および太陽光の紫外線などによる設備の劣化やさびなどの劣化要因を低減することができるとともに除雪設備のメンテナンス工数を大幅に削減することが可能となる。 By not applying a load to the solar panels and pedestals, it is possible to prevent deterioration, deformation, and collapse of the solar panels and pedestals due to equipment loads and snow loads, and there is no need to install snow removal equipment in advance to remove snow. This has the effect of significantly reducing the preparation man-hours and installation costs. Also, because it is not necessary to permanently install snow removal equipment outdoors, it is possible to reduce deterioration factors such as equipment deterioration due to water, snow, and ultraviolet rays from the sun, as well as rust, and to significantly reduce the maintenance man-hours of snow removal equipment. It will be possible.
 さらには、太陽光パネルの傾斜と飛行経路と飛行姿勢の組合せにより、太陽光パネルの傾斜の下端側から徐々に傾斜の上端側に向けて効率的に除雪を行うことが可能となるという効果を有するとともに、太陽光パネルの除雪システムの信頼性、耐久性、高効率化および低コスト化を実現することができる。 Furthermore, by combining the inclination of the solar panel, the flight path, and the flight attitude, it is possible to efficiently remove snow from the lower end of the inclination of the solar panel toward the upper end of the inclination. Besides, it is possible to realize the reliability, durability, high efficiency and cost reduction of the snow removal system for the solar panel.
 また、本発明の第2の態様に係る太陽光パネル用非接触除雪システムは、第1の態様に係る太陽光パネル用非接触除雪システムの構成において、回転駆動部は、エンジンおよび/またはモータより構成され、エンジンの駆動エネルギーは軽油またはガソリンとし、モータの駆動エネルギーは電池とする構成としている。 Further, a non-contact snow removal system for a solar panel according to a second aspect of the present invention is the configuration of the non-contact snow removal system for a solar panel according to the first aspect, wherein the rotation drive unit is composed of an engine and/or a motor. The engine is driven by light oil or gasoline, and the motor is driven by a battery.
 上記した構成により、多様な動力源を用いることができ長距離かつ長時間の飛行および除雪作業を可能にすることができるとともに、飛行姿勢(前進、後退、ホバーリングなど)や飛行モード(上昇、下降、旋回など)により回転駆動部の出力をさらに増加させることとなり、プロペラの回転数を上げることでプロペラから発生する排気流の量および流速を大幅に増加させることにより、太陽光パネルに堆積した雪の除去能力を大幅に向上させることができ、長時間作業、長距離飛行に対応し、さまざまな雪の質や状態にも対応するとともに大出力の排気流を有した高性能な太陽光パネルの非接触除雪装置を実現できる。 With the above configuration, various power sources can be used and long-distance and long-time flight and snow removal work can be performed, and flight attitudes (forward, backward, hovering, etc.) and flight modes (climb, climb, The output of the rotation drive unit is further increased by lowering, turning, etc.), and by increasing the number of revolutions of the propeller, the amount and flow rate of the exhaust flow generated from the propeller are greatly increased, and the solar panel is deposited. A high-performance solar panel that can greatly improve the snow removal capacity, can be used for long hours of work, can fly a long distance, can handle various snow qualities and conditions, and has a large output exhaust flow. The non-contact snow removing device can be realized.
 また、本発明の第3の態様に係る太陽光パネル用非接触除雪システムは、第1および第2の態様に係る太陽光パネル用非接触除雪システムの構成において、積雪量検出手段は太陽光パネルの周辺または無人飛行体に設置され、単位面積あたりに蓄積した雪の質量または蓄積した雪の厚さを検出する積雪センサおよび/または前記無人飛行体に搭載した画像カメラにより撮影した積雪画像情報を基にする構成としている。 Further, a non-contact snow removal system for a solar panel according to a third aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first and second aspects, wherein the snow accumulation amount detecting means is a solar panel. Installed in the vicinity of or in an unmanned aerial vehicle to detect the mass of snow accumulated per unit area or the thickness of the accumulated snow and/or snow image information taken by an image camera mounted on the unmanned aerial vehicle. It is based on the configuration.
 上記した構成により、太陽光パネルに蓄積した積雪量を環境および状況に応じて正確にとらえることができるとともに、あらかじめ設置する設備を軽減する効果を有した作業精度が高く低コストな太陽光パネル非接触除雪装置を実現できる。 With the above-mentioned configuration, the amount of snow accumulated on the solar panel can be accurately captured according to the environment and the situation, and the operation accuracy is high and the cost of the solar panel is low, which has the effect of reducing the equipment installed in advance. A contact snow removal device can be realized.
 また、本発明の第4の態様に係る太陽光パネル用非接触除雪システムは、第1~第3の態様に係る太陽光パネル用非接触除雪システムの構成において、太陽光パネルは長方形状に設置されており、3次元飛行アルゴリズムは、長方形状の太陽光パネルの短辺の端から徐々に短辺に沿って移動する構成としている。 Further, a non-contact snow removal system for a solar panel according to a fourth aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first to third aspects, wherein the solar panel is installed in a rectangular shape. As described above, the three-dimensional flight algorithm is configured to gradually move along the short side from the end of the short side of the rectangular solar panel.
 上記した構成により、太陽光パネルの傾斜および無人飛行体の飛行姿勢を利用しながら、太陽光パネルの表面に蓄積した積雪量を効率よく太陽光パネルの表面から除去することができ、作業の高効率化を可能とした太陽光パネル非接触除雪装置を実現できる。 With the configuration described above, it is possible to efficiently remove the amount of snow accumulated on the surface of the solar panel from the surface of the solar panel while utilizing the inclination of the solar panel and the flight attitude of the unmanned air vehicle. It is possible to realize a solar panel non-contact snow removal device that can improve efficiency.
 また、本発明の第5の態様に係る太陽光パネル用非接触除雪システムは、第1~第4の態様に係る太陽光パネル用非接触除雪システムの構成において、太陽光パネルは長方形状に設置されており、3次元飛行アルゴリズムは、長方形状の前記太陽光パネルの長辺の端から徐々に短辺に沿って移動する構成としている。 Further, a non-contact snow removal system for a solar panel according to a fifth aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first to fourth aspects, wherein the solar panel is installed in a rectangular shape. The three-dimensional flight algorithm is configured to gradually move along the short side from the end of the long side of the rectangular solar panel.
 上記した構成により、太陽光パネルの傾斜および無人飛行体の飛行姿勢を利用しながら除雪作業を行うとともに無人飛行体の作業往復回数の少なくすることが可能となり、太陽光パネルの表面に蓄積した積雪量を効率よく、より短時間に太陽光パネルの表面から除去することができるため、作業の一層の高効率化を可能とした太陽光パネル非接触除雪装置を実現できる。 With the above configuration, it is possible to perform snow removal work while utilizing the inclination of the solar panel and the flight attitude of the unmanned air vehicle, and to reduce the number of reciprocating operations of the unmanned air vehicle, and the snow accumulated on the surface of the solar panel. Since the amount can be efficiently removed from the surface of the solar panel in a shorter time, it is possible to realize a solar panel non-contact snow removing device that can further improve work efficiency.
 また、本発明の第6の態様に係る太陽光パネル用非接触除雪システムは、第1~第5の態様に係る太陽光パネル用非接触除雪システムの構成において、太陽光パネルは一定の傾斜角度を有して設置されており、蓄積した雪が前記太陽光パネルの下方に吹き飛ばされるように無人飛行体がプロペラの回転軸に対して一定の角度を有して太陽光パネルの短辺または長辺に沿って飛行するする構成としている。 Further, a non-contact snow removal system for a solar panel according to a sixth aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first to fifth aspects, wherein the solar panel has a constant inclination angle. The unmanned aerial vehicle has a certain angle with respect to the rotation axis of the propeller so that the accumulated snow is blown off below the solar panel. It is configured to fly along.
 上記した構成により、太陽光パネルの傾斜と無人飛行体の飛行姿勢を利用しながら、太陽光パネルの表面に蓄積した積雪量を効率よく、より短時間に太陽光パネルの表面から除去することができ、作業のさらなる高効率化を可能とした太陽光パネル非接触除雪装置を実現できる。 With the configuration described above, it is possible to efficiently remove the amount of snow accumulated on the surface of the solar panel from the surface of the solar panel in a shorter time while utilizing the inclination of the solar panel and the flight attitude of the unmanned air vehicle. Therefore, it is possible to realize a solar panel non-contact snow removing device that can further improve work efficiency.
 また、本発明の第7の態様に係る太陽光パネル用非接触除雪システムは、第1~第6の態様に係る太陽光パネル用非接触除雪システムの構成において、移動経路は、除雪作業対象とする太陽光パネルの周辺の3次元地図および積雪量検出手段からの情報によりあらかじめ設定されるとともに、除雪作業中における積雪量検出手段からの積雪量の情報により、太陽光パネルの上空で無人飛行体が回転、傾斜さらには傾斜角度を周期的に変化させるローリングなどの付加動作を行い、無人飛行体のプロペラから発生する排気流により太陽光パネルの表面に蓄積した雪を非接触で除去する構成としている。 Further, a non-contact snow removal system for a solar panel according to a seventh aspect of the present invention is the configuration of the non-contact snow removal system for a solar panel according to the first to sixth aspects, wherein the movement path is a snow removal target. The three-dimensional map around the solar panel and the information from the snow amount detecting means are set in advance, and the information on the snow amount from the snow amount detecting means during the snow removal work allows the unmanned air vehicle to fly over the solar panel. Is designed to remove snow accumulated on the surface of the solar panel in a non-contact manner by performing additional operations such as rolling, tilting, and rolling that periodically changes the tilt angle, and the exhaust flow generated from the propeller of an unmanned air vehicle. There is.
 上記した構成により、3次元地図情報、太陽光パネルの傾斜、無人飛行体の飛行姿勢、無人飛行体のプロペラからの排気流の流速の大小による積雪部への除雪負荷変動を効果的に利用しながら、太陽光パネルの表面に蓄積した積雪量を効率よく、より短時間に太陽光パネルの表面から除去することができ、作業のさらなる高効率化と高精度化を可能とした太陽光パネル非接触除雪装置を実現できる。 With the above-mentioned configuration, it is possible to effectively use the three-dimensional map information, the inclination of the solar panel, the flight attitude of the unmanned aerial vehicle, and the fluctuation of the snow removal load on the snow cover portion due to the magnitude of the flow velocity of the exhaust flow from the propeller of the unmanned aerial vehicle. However, the amount of snow accumulated on the surface of the solar panel can be removed efficiently from the surface of the solar panel in a shorter time, and the efficiency of the solar panel A contact snow removal device can be realized.
 また、本発明の第8の態様に係る太陽光パネル用非接触除雪システムは、第1~第7の態様に係る太陽光パネル用非接触除雪システムの構成において、マスバランスと無人飛行体の鉛直方向の略中心部にマスバランス保持部を有し、マスバランスをマスバランス保持部で把持または固定するとともに、異なる質量のマスバランスを取換可能とし、太陽光パネルの表面の積雪量および雪質に応じてマスバランスの取換固定を行い前記無人飛行体の全体質量を調整可能な構成とすることで、無人飛行体の飛行姿勢制御の際のそれぞれのプロペラの回転数を変化させることで排気流の流速を大幅に変化させる構成としている。 A non-contact snow removal system for a solar panel according to an eighth aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first to seventh aspects, except that the mass balance and the vertical direction of the unmanned air vehicle are different. The mass balance holding part is located approximately in the center of the direction. The mass balance is held or fixed by the mass balance holding part and the mass balance of different mass can be replaced. The mass of the unmanned aerial vehicle can be adjusted by changing the mass balance according to the above, and by changing the rotation speed of each propeller during flight attitude control of the unmanned aerial vehicle It is configured to change the flow velocity significantly.
 上記した構成により、太陽光パネルの表面の雪を除去する際に、上昇、下降、前進、後退、回転、ホバーリング等の飛行姿勢を伴い、前記太陽光パネルまたは前記太陽光パネルの表面に蓄積した雪の表面と一定の距離を保ちながら、プロペラからの排気流を用いて太陽光パネルの周辺に吹き飛ばし除雪作業を行うことになるが、異なるマスバランスにより無人飛行体の全体質量を変化させることでそれぞれの姿勢制御を行う際のプロペラの回転数が大幅に変化することとなり、排気流の流速を大きく変化させることが可能となる。排気流の流速を上げることで、積雪量が大きい場合や重い雪質の場合には流速を上げる構成とすることで一層の作業の高効率化と高精度化を可能とした太陽光パネル非接触除雪装置を実現できる。 With the above structure, when removing snow on the surface of the solar panel, the solar panel or the surface of the solar panel accumulates with a flight attitude such as ascending, descending, advancing, retracting, rotating, and hovering. While maintaining a certain distance from the surface of the snow, the exhaust flow from the propeller will be used to blow off around the solar panels for snow removal work, but the overall mass of the unmanned air vehicle will be changed by different mass balances. Therefore, the rotational speed of the propeller when performing each attitude control changes significantly, and the flow velocity of the exhaust flow can be changed significantly. By increasing the flow velocity of the exhaust flow, if the amount of snow is large or the snow quality is heavy, the flow velocity is increased to make the work more efficient and accurate. A snow removal device can be realized.
 また、本発明の第9の態様に係る太陽光パネル用非接触除雪システムは、第1~第8の態様に係る太陽光パネル用非接触除雪システムの構成において、無人飛行体にコンプレッサーおよびコンプレッサーからの圧縮空気を噴射するエアーノズルとを搭載し、除雪作業前および除雪作業中の積雪検出手段からの情報に応じて、エアーノズルから噴射される圧縮空気を用いて太陽光パネルの表面に蓄積した雪を非接触で除去する構成としている。 Further, a non-contact snow removal system for a solar panel according to a ninth aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first to eighth aspects, and includes a compressor and a compressor for an unmanned air vehicle. It is equipped with an air nozzle that injects compressed air, and, according to the information from the snow cover detection means before and during snow removal work, the compressed air injected from the air nozzle is used to accumulate on the surface of the solar panel. It is designed to remove snow without contact.
 上記した構成により、排気流に併せて、エアーノズルからの圧縮空気を噴射することになるため積雪部への除雪負荷をさらに上げることができ、太陽光パネルの表面に蓄積した積雪量を効率よく、より短時間に太陽光パネルの表面から除去することができ、作業のさらなる高効率化と高精度化を可能とした太陽光パネル非接触除雪装置を実現できる。 With the above configuration, compressed air from the air nozzle will be injected in addition to the exhaust flow, so the snow removal load on the snow cover can be further increased, and the amount of snow accumulated on the surface of the solar panel can be efficiently used. Thus, it is possible to realize a solar panel non-contact snow removing device that can be removed from the surface of the solar panel in a shorter time, and that can further improve work efficiency and accuracy.
 また、本発明の第10の態様に係る太陽光パネル用非接触除雪システムは、第1~第9の態様に係る太陽光パネル用非接触除雪システムの構成において、前記無人飛行体と太陽光パネルに蓄積した雪の表面まで距離を検出する相対距離計測センサを搭載し、雪の表面と無人飛行体との距離をあらかじめ定められた値にしながら除雪作業を行う構成としている。 A non-contact snow removal system for a solar panel according to a tenth aspect of the present invention is the same as the non-contact snow removal system for a solar panel according to the first to ninth aspects, wherein the unmanned air vehicle and the solar panel are included. It is equipped with a relative distance measurement sensor that detects the distance to the surface of the snow accumulated in, and is configured to perform snow removal work while keeping the distance between the surface of the snow and the unmanned air vehicle at a predetermined value.
 上記した構成により、無人飛行体からの排気流の流速が弱まることなく積雪部に吹き付けられ効率的かつ効果的に除雪作業を行うことができるとともに、無人飛行体と積雪部とが衝突することを防止することが可能となり、作業のさらなる高効率化と高精度化と安全性を実現することを可能とした太陽光パネル非接触除雪装置を実現できる。 With the above configuration, the flow rate of the exhaust flow from the unmanned aerial vehicle can be efficiently and effectively blown to the snow-covered portion without weakening, and the unmanned aerial vehicle can collide with the snow-covered portion. Therefore, it is possible to realize a solar panel non-contact snow removing device that can prevent the operation, and can achieve higher efficiency, higher accuracy and safety of work.
 また、本発明の第11の態様に係る太陽光パネル用非接触除雪システムは、第1~第10の態様に係る太陽光パネル用非接触除雪システムの構成において、無人飛行体により除雪作業を行うタイミングは、積雪量検出手段により積雪がスタートしたと判断した時から所定時間内、所定の積雪量に達した時、日没時、早朝時とする構成としている。 A non-contact snow removal system for a solar panel according to an eleventh aspect of the present invention performs snow removal work by an unmanned air vehicle in the configuration of the non-contact snow removal system for a solar panel according to the first to tenth aspects. The timing is set such that the predetermined amount of snow is reached within a predetermined time from the time when the snow amount detection means determines that the snow has started, at the time of sunset, at early morning.
 上記した構成により、太陽光パネルの表面に蓄積する積雪量と作業能力と効果的にコントロールすることができるともに、夜間に蓄積した雪が凍結し固着することを防止する、夜間に太陽光パネルの上面降り積もった雪を取り除き日中に効果的に発電する、ことが可能となり、発電効率を維持しつつ作業のさらなる高効率化と高精度化を可能とした太陽光パネル非接触除雪装置を実現できる。 With the above configuration, the amount of snow accumulated on the surface of the solar panel and the work capacity can be effectively controlled, and at the same time, the upper surface of the solar panel at night that prevents the snow accumulated at night from freezing and sticking. It is possible to remove snow that has accumulated and to effectively generate power during the day, and it is possible to realize a solar panel non-contact snow removal device that can further improve work efficiency and accuracy while maintaining power generation efficiency.
 また、本発明の第12の態様に係る太陽光パネル用非接触除雪システムは、第1~第11の態様に係る太陽光太陽光パネル用非接触除雪システムの構成において、前記架台の上部に取り付けられた前記太陽光パネルは所定の傾斜角を有しており、前記無人飛行体からの前記排気流により前記太陽光パネルの上面の雪を吹き飛ばし除雪する際に、可能な範囲で除雪された雪が傾斜した前記太陽光パネルの低い側の1列横の傾斜した前記太陽光パネルの高い側の下部に吹き飛ばす構成としている。 Further, a non-contact snow removal system for a solar panel according to a twelfth aspect of the present invention is attached to an upper part of the mount in the configuration of the non-contact snow removal system for a solar photovoltaic panel according to the first to eleventh aspects. The solar panel has a predetermined inclination angle, and when the snow on the upper surface of the solar panel is blown off by the exhaust flow from the unmanned air vehicle to remove snow, the snow removed is possible to the extent possible. One row on the lower side of the inclined solar panels is blown off to the lower portion on the higher side of the inclined solar panels.
 上記した構成により、太陽光パネルの表面の除雪を行うとともに、除雪を行った雪が前記太陽光パネルの間の通路に落ちる量を大幅に低減することができ、前記通路の除雪作業の回数を大幅に削減することが可能となり、メンテナンスコストの安い安価な太陽光パネル用非接触除雪システムを実現できる。 With the above-described configuration, the surface of the solar panel can be snow-removed, and the amount of snow removed from the solar panel can be significantly reduced, greatly reducing the number of times of snow removal work on the passage. Therefore, it is possible to realize an inexpensive non-contact snow removal system for solar panels with low maintenance cost.
 本発明に係る太陽光パネル用非接触除雪システムは上記に説明したように構成され、大規模太陽光発電システム周辺、住宅の屋根、ビルの屋上や太陽光パネル周辺にあらかじめ除雪用の設備を設置する必要がなく、かつ無人飛行体のプロペラから発生する排気流を用い、非接触で除雪するシステムとなるため家屋やビルおよび太陽光パネルへの設備重量による負荷(設備荷重荷重)が発生しないため、設備荷重に加え積雪荷重が加わるようなことがないため信頼性に優れ設備工事などの工数が不要で、大規模太陽光発電システム全域や複数の家屋にわたり効率よく除雪作業を行うことが可能な作業効率、作業精度、投資効率に優れた除雪システムを提供するものである。また、設備を常設する必要がないため、メンテ工数を大幅に削減できるとともにさびなどの発生も防ぐことができ、信頼性および維持費の大幅な低減効果に優れた除雪システムを提供するものである。さらには、非接触で飛行しながら除雪作業を行うことができるため、あらかじめ設備を備えていない場所にも容易に移動および除雪作業をすることができるとともに、短時間で効率よく除雪作業を行うことができるため、高効率、高信頼性、低コストの除雪システムを実現できるという効果を奏する。 The non-contact snow removal system for solar panels according to the present invention is configured as described above, and snow removal equipment is installed in advance around the large-scale solar power generation system, the roof of the house, the roof of the building or the solar panel. There is no need to do so, and because it is a non-contact snow removal system that uses the exhaust flow generated from the propeller of an unmanned air vehicle, there is no load (equipment load) on the house or building and solar panels due to the equipment weight. Since the snow load is not applied in addition to the equipment load, it is highly reliable and does not require man-hours such as equipment construction, and it is possible to remove snow efficiently over the entire large-scale photovoltaic power generation system and multiple houses. It provides a snow removal system with excellent work efficiency, work accuracy, and investment efficiency. In addition, since it is not necessary to permanently install equipment, it is possible to significantly reduce the maintenance man-hours and prevent the occurrence of rust, etc., and to provide a snow removal system that is highly effective in reducing reliability and maintenance costs. .. Furthermore, since snow removal work can be performed while flying in a non-contact manner, it is possible to easily move to and remove snow from a place that is not equipped with equipment in advance, and to perform snow removal work efficiently in a short time. Therefore, it is possible to realize a snow removal system with high efficiency, high reliability, and low cost.
実施形態1に係る太陽光パネル用非接触除雪システムの概要を示した斜視図である。It is the perspective view which showed the outline of the non-contact snow removal system for solar panels which concerns on Embodiment 1. 実施形態1に係る無人飛行体の構成を示した斜視図である。1 is a perspective view showing the configuration of an unmanned aerial vehicle according to the first embodiment. 実施形態1に係る無人飛行体の構成を示した断面の略図である。1 is a schematic cross-sectional view showing the configuration of an unmanned aerial vehicle according to the first embodiment. 実施形態1に係る無人飛行体の飛行姿勢の一例を示した略図である。1 is a schematic diagram showing an example of the flight attitude of an unmanned aerial vehicle according to the first embodiment. 実施形態1に係る無人飛行体におけるプロペラの回転数と推力の関係を示した模式図である。FIG. 3 is a schematic diagram showing the relationship between the rotational speed of a propeller and thrust in an unmanned aerial vehicle according to the first embodiment. 実施形態1に係る無人飛行体におけるプロペラの回転により発生する排気流の状態を示したCFD(数値流体力学)の計算結果の一例である。5 is an example of a CFD (Computational Fluid Dynamics) calculation result showing the state of the exhaust flow generated by the rotation of the propeller in the unmanned aerial vehicle according to the first embodiment. 実施形態1に係る太陽光パネル用非接触除雪システムの除雪プロセスの一例を示した斜視図である。It is the perspective view which showed an example of the snow removal process of the non-contact snow removal system for solar panels which concerns on Embodiment 1. 実施形態1に係る太陽光パネル用非接触除雪システムの作業の一例を示した概略図である。It is the schematic which showed an example of the work of the non-contact snow removal system for solar panels which concerns on Embodiment 1. 実施形態1に係る太陽光パネル用非接触除雪システムの作業の一例を示した概略図である。It is the schematic which showed an example of the work of the non-contact snow removal system for solar panels which concerns on Embodiment 1. 実施形態1に係る太陽光パネル用非接触除雪システムの作業の一例を示した概略図である。It is the schematic which showed an example of the work of the non-contact snow removal system for solar panels which concerns on Embodiment 1. 実施形態2に係る太陽光パネル非接触除雪装置の作業の一例を示した概略図である。It is the schematic which showed an example of the work of the solar panel non-contact snow removal apparatus which concerns on Embodiment 2. 実施形態3に係る太陽光パネル非接触除雪装置の作業の一例を示した概略図である。It is the schematic which showed an example of the work of the solar panel non-contact snow removal apparatus which concerns on Embodiment 3. 実施形態4に係る太陽光パネル非接触除雪装置の作業の一例を示した概略図である。It is the schematic which showed an example of the work of the solar panel non-contact snow removal apparatus which concerns on Embodiment 4.
 以下、本発明の実施の形態を、図面を参照して説明する。なお、以下では全ての図を通じて同一又は対応する構成部材には同一の参照符号を付して、その説明については省略する。 Embodiments of the present invention will be described below with reference to the drawings. In the following, the same or corresponding components are denoted by the same reference symbols throughout all the drawings, and the description thereof will be omitted.
 (実施形態1)
 図1~図10を参照して実施の形態1に係る太陽光パネル非接触除雪装置1について説明する。図1~図10は、実施の形態1に係る太陽光パネル非接触除雪装置1の構成の一例を示した模式図である。図1では、実施の形態1に係る太陽光パネル非接触除雪装置1の斜視図を模式的に示している。図2では、実施形態1に係る無人飛行体5の概略構成の斜視図を示している。図3では、実施形態1に係る無人飛行体5の概略構成の断面の略図を示している。
(Embodiment 1)
A solar panel non-contact snow removal device 1 according to the first embodiment will be described with reference to FIGS. 1 to 10. 1 to 10 are schematic diagrams showing an example of the configuration of the solar panel non-contact snow removal device 1 according to the first embodiment. FIG. 1 schematically shows a perspective view of a solar panel non-contact snow removing device 1 according to the first embodiment. FIG. 2 shows a perspective view of the schematic configuration of the unmanned aerial vehicle 5 according to the first embodiment. FIG. 3 shows a schematic cross-sectional view of the schematic configuration of the unmanned aerial vehicle 5 according to the first embodiment.
 図4では、実施の形態2に係る無人飛行体5の各々のプロペラ8の回転数を変化させ、各々のプロペラ8の推力を制御することで様々な飛行姿勢制御が可能となる一例を模式図で示している。 FIG. 4 is a schematic diagram showing an example in which various flight attitudes can be controlled by changing the number of revolutions of each propeller 8 of the unmanned aerial vehicle 5 according to the second embodiment and controlling the thrust of each propeller 8. It shows with.
 図5では、実施の形態1に係る無人飛行体5のプロペラ8の回転数と推力Tの関係の略図を示している。 FIG. 5 shows a schematic diagram of the relationship between the rotational speed of the propeller 8 of the unmanned aerial vehicle 5 and the thrust T according to the first embodiment.
 図6では、プロペラ8の回転により発生する排気流17の状態を示したサンプルで、CFD(数値流体力学)を用いて非定常計算した計算の一例である。 FIG. 6 is a sample showing the state of the exhaust flow 17 generated by the rotation of the propeller 8 and is an example of the calculation of unsteady calculation using CFD (Computational Fluid Dynamics).
 図7では、実施の形態1に係る太陽光パネル非接触除雪装置1の除雪プロセスの一例の斜視図を模式的に示している。 FIG. 7 schematically shows a perspective view of an example of the snow removal process of the solar panel non-contact snow removal device 1 according to the first embodiment.
 図8~図10は実施の形態1に係る太陽光パネル用非接触除雪システム1の作業の一例の概略図を示してしている。 8 to 10 show schematic views of an example of work of the non-contact snow removal system 1 for a solar panel according to the first embodiment.
 図1に示すように、太陽光パネル非接触除雪装置1は、太陽光発電システム2とドローン装置のような無人飛行体5と無人飛行体制御装置6(図示せず)から構成されおり、太陽光発電システム2のうち3列のみを抜き出し、最下段は除雪部22とし、2段目および3段目の積雪部20(未作業領域)の除雪作業を無人飛行体5により行う状態を模式的に示している。太陽光発電システム2は太陽光パネル4と架台3、積雪センサ15より構成されており、地面に設置された架台3に太陽光パネル4を搭載した構成となっている。また、太陽光パネル4の周辺には積雪センサ15が設置されており、圧力センサなどにより単位面積あたりに蓄積した雪の質量を検出するか、あるいはレーザーやLEDなどの光学式センサや超音波などのセンサを用いて太陽光パネル4の表面に降り積もった積雪量を検出する構成としている。積雪センサ15により検出した積雪量や規定時間内の積雪量の増加があらかじめ指定した値を超えた場合に無人飛行体5により除雪作業を行う構成とする。 As shown in FIG. 1, a solar panel non-contact snow removing device 1 includes a solar power generation system 2, an unmanned aerial vehicle 5 such as a drone device, and an unmanned aerial vehicle control device 6 (not shown). Only three rows of the photovoltaic power generation system 2 are extracted, and the snow removal section 22 is set as the lowermost step, and a state in which the unmanned aerial vehicle 5 performs the snow removal work of the second and third steps of the snow accumulation section 20 (unworked area) is schematic. Is shown in. The solar power generation system 2 includes a solar panel 4, a pedestal 3, and a snow sensor 15, and the pedestal 3 installed on the ground has the solar panel 4 mounted thereon. A snow sensor 15 is installed around the solar panel 4 to detect the mass of snow accumulated per unit area by a pressure sensor or the like, or an optical sensor such as a laser or an LED or an ultrasonic wave. The sensor is used to detect the amount of snow accumulated on the surface of the solar panel 4. When the snowfall amount detected by the snowfall sensor 15 or the increase in the snowfall amount within a specified time exceeds a predesignated value, the unmanned aerial vehicle 5 performs snow removal work.
 尚この際、積雪センサ15を搭載せず、除雪作業者が除雪作業の開始を判断する構成としてもよい。 At this time, the snow sensor 15 may not be mounted, and the snow removal worker may judge the start of the snow removal work.
 太陽光パネル4の積雪部20には太陽光パネル4の上面に蓄積した雪が数mm~数十センチ積もっており、太陽光発電システム2は大幅な発電量低下となっているとともに太陽光パネル4および架台3には大きな負荷がかかっている状態となっている。 The snow accumulated on the upper surface of the solar panel 4 is several mm to several tens of centimeters in the snow accumulation part 20 of the solar panel 4, and the solar power generation system 2 has significantly reduced the amount of power generation and the solar panel 4 And the pedestal 3 is in a state of being heavily loaded.
 太陽光パネル4にはその表面にわずかでも積雪があると太陽光が遮られ発電効率が大幅に下がる。また、太陽光パネル4および架台3にかかる積雪による荷重負荷は、最悪の場合には太陽光パネル4の変形や割れに至ったり、架台3の変形や倒壊に至ることになる。したがって、太陽光パネル4の上面の積雪をそのまま放置することは太陽光発電システム2の信頼性、寿命および発電量の維持に対して大きなリスク要因となる。  If there is a little snow on the surface of the solar panel 4, the sunlight will be blocked and the power generation efficiency will drop significantly. In the worst case, the load applied by the snow accumulated on the solar panel 4 and the gantry 3 may cause the solar panel 4 to be deformed or cracked, or the gantry 3 may be deformed or collapsed. Therefore, leaving the snow on the upper surface of the solar panel 4 as it is becomes a large risk factor for the reliability of the solar power generation system 2, the life of the solar power generation system, and the maintenance of the power generation amount.
 尚、実施の形態1では、積雪センサ15は圧力式、光学式または超音波式などとしたが積雪量を検出できるものなら方式は問わない。また、積雪センサ15を搭載せず、除雪作業者の認識により積雪量を判断する方式でもよい。 In the first embodiment, the snow sensor 15 is a pressure type, an optical type, an ultrasonic type, or the like, but any type can be used as long as it can detect the amount of snow. Alternatively, the snow accumulation sensor 15 may not be mounted and a snow removal operator may recognize the snow accumulation amount.
 尚、それぞれの太陽光パネル4および架台3の間は通路24となるが、除雪した雪がこの通路24を塞ぐようであれば定期的に通路24の除雪作業が発生することもある。 Note that a passage 24 is provided between each solar panel 4 and the pedestal 3, but snow removal work on the passage 24 may occur regularly if snow removal snow blocks the passage 24.
 無人飛行体5は3次元飛行経路指示装置23からの指令により、除雪作業現場の地図情報をもとにあらかじめ設定された飛行経路を飛行することとなる。この際、3次元飛行経路指示装置23の指令により完全自動で飛行するか、除雪作業者の操作により無線操縦で飛行するかの除雪作業者の除雪作業への操作介入の割合は様々な仕様があるものとする。この際、除雪作業現場の3次元地図情報および飛行経路には作業座標系(x、y、z)を用い、無人飛行体5の機体姿勢制御には機体座標系(X,Y,Z)が用いられ、それぞれ必要に応じて座標変換が行われることとなる。 The unmanned aerial vehicle 5 will fly along a preset flight route based on the map information of the snow removal work site in response to a command from the three-dimensional flight route instruction device 23. At this time, there are various specifications for the ratio of operation intervention to the snow removal work of the snow removal worker, whether to fly completely automatically according to a command of the three-dimensional flight route instruction device 23 or to fly by radio operation by the operation of the snow removal worker. There is. At this time, the work coordinate system (x, y, z) is used for the three-dimensional map information of the snow removal work site and the flight route, and the airframe coordinate system (X, Y, Z) is used for the airframe attitude control of the unmanned air vehicle 5. They are used, and coordinate conversion is performed as needed.
 図2および図3は無人飛行体5を示したもので、無人飛行体5はフレーム9、フレーム9に固定された電池10、フレーム9に保持されたモータ-7、モータ-7の回転軸18と結合されたプロペラ8からなる揚力(推力)発生部、相対距離センサ16、機体搭載積雪センサ19より構成される。相対距離センサ16は超音波、LED、レーザーまたはカメラなどで無人飛行体5と積雪部20の表面との相対距離を計測する。機体搭載積雪センサ19はカメラと通信部などから構成されその映像を3次元飛行経路指示装置23に送信し、3次元飛行経路指示装置23で、画像処理および演算することにより太陽光パネル4の表面の積雪量を認識し、無人飛行体5の飛行制御および除雪作業を実施する。 2 and 3 show an unmanned aerial vehicle 5. The unmanned aerial vehicle 5 includes a frame 9, a battery 10 fixed to the frame 9, a motor-7 held by the frame 9, and a rotation shaft 18 of the motor-7. The lift force (thrust) generating section is composed of a propeller 8 coupled with the relative distance sensor 16, and the snow accumulation sensor 19 mounted on the airframe. The relative distance sensor 16 measures the relative distance between the unmanned aerial vehicle 5 and the surface of the snow cover 20 with ultrasonic waves, an LED, a laser, a camera, or the like. The vehicle-mounted snow accumulation sensor 19 is composed of a camera, a communication unit, and the like, transmits an image of the image to the three-dimensional flight route instruction device 23, and the three-dimensional flight route instruction device 23 performs image processing and calculation for the surface of the solar panel 4. Recognizing the amount of snowfall of, the flight control of the unmanned aerial vehicle 5 and the snow removal work are performed.
 機器搭載積雪センサ19、積雪センサ15、相対距離センサ16の情報は3次元飛行経路部指示装置23(地上に設置または無人飛行体5に搭載)に送信されるとともに、除雪作業を行う現場周辺の3次元地図情報と合わせて飛行経路を決定し、飛行経路に応じたモータ7の回転制御の指示が無人飛行体制御装置6(地上に設置または無人飛行体5に搭載)に送信される。この際、図3には図示していないが、無人飛行体5にはGPSおよびジャイロセンサーが搭載され、無人飛行体5の位置の確認および機体の姿勢制御に用いられていることは言うまでもない。 Information of the device-mounted snow accumulation sensor 19, the snow accumulation sensor 15, and the relative distance sensor 16 is transmitted to the three-dimensional flight route section indicating device 23 (installed on the ground or mounted on the unmanned aerial vehicle 5) and at the vicinity of the site where snow removal work is performed. The flight route is determined together with the three-dimensional map information, and an instruction to control the rotation of the motor 7 according to the flight route is transmitted to the unmanned aerial vehicle control device 6 (installed on the ground or mounted on the unmanned aerial vehicle 5). At this time, although not shown in FIG. 3, it goes without saying that the unmanned aerial vehicle 5 is equipped with a GPS and a gyro sensor and is used for checking the position of the unmanned aerial vehicle 5 and controlling the attitude of the aircraft.
 尚、実施の形態1において、3次元飛行経路部指示装置23および/または無人飛行体制御装置6を地上に設置した場合は無人飛行体5に受信機の搭載が必要となることは言うまでもない。 Needless to say, in the first embodiment, if the three-dimensional flight route section indicating device 23 and/or the unmanned aerial vehicle control device 6 is installed on the ground, the unmanned aerial vehicle 5 must be equipped with a receiver.
 尚、実施の形態1では図3の破線で示すような3次元飛行経路指示装置23を用い無人飛行体制御装置6へ飛行経路に応じたモータ7への指令を出したが、図3に示すように、
3次元飛行経路指示装置23の指示に割り込み除雪作業者が無人飛行体制御装置6を直接操作する構成としてもよい。
In the first embodiment, the three-dimensional flight route instruction device 23 shown by the broken line in FIG. 3 is used to issue a command to the motor 7 according to the flight route to the unmanned aerial vehicle control device 6, which is shown in FIG. like,
The snow removal worker may interrupt the instruction of the three-dimensional flight route instruction device 23 and directly operate the unmanned air vehicle control device 6.
 また、実施の形態1では、機体搭載積雪センサ19はカメラを用いた画像認識としたが、レーザ、超音波などのセンサを用いて積雪量を検出する方式としても問題はないし、機体搭載積雪センサ19を搭載せず、作業者が認識する方式でも問題はない。 Further, in the first embodiment, the airframe-mounted snow sensor 19 is image-recognized by using a camera. However, there is no problem in detecting snow amount using a sensor such as a laser or an ultrasonic wave. There is no problem in a method in which the operator does not mount 19 and the operator recognizes it.
 さらに、実施の形態1では回転部はモータ7としたがエンジンなどの駆動源でもよいし、その際の動力源となる電池10は軽油やガソリンなどの燃料でもよい。 Further, in the first embodiment, the rotating unit is the motor 7, but it may be a drive source such as an engine, and the battery 10 serving as a power source at that time may be fuel such as light oil or gasoline.
 3次元飛行経路指示装置23から無人飛行体制御装置6への指令による各モータ7の回転数により各プロペラ8が回転することでそれぞれの推力(f1~f4)が発生し、無人飛行体5全体の推力Tが発生すると同時に、機体座標系および作業座標系における様々な機体姿勢を維持することとなる。同時に各プロペラ8の回転により、その流れの下流には排気流17が発生する。この排気流17の流速および流量はプロペラの回転数に依存し、回転数が上がることでそれぞれの推力は増加するとともに、排気流17の流量および流速も大幅に上昇することとなる。 The thrusts (f1 to f4) are generated by the rotation of each propeller 8 according to the number of rotations of each motor 7 according to a command from the three-dimensional flight route instruction device 23 to the unmanned air vehicle control device 6, and the unmanned air vehicle 5 as a whole. At the same time that the thrust force T is generated, various attitudes of the machine body in the machine body coordinate system and the work coordinate system are maintained. At the same time, due to the rotation of each propeller 8, an exhaust flow 17 is generated downstream of the flow. The flow velocity and flow rate of the exhaust flow 17 depend on the number of revolutions of the propeller, and as the number of revolutions increases, each thrust increases, and the flow rate and flow velocity of the exhaust flow 17 also greatly increase.
 図4は、それぞれのプロペラ8の回転数の大小と飛行姿勢の関係の一例を示している。上昇、下降、ホバーリング、左回転、右回転、左移動および右回転などの基本動作およびそれぞれの組み合わせ動作などを行うことが可能となる。 Fig. 4 shows an example of the relationship between the rotational speed of each propeller 8 and the flight attitude. It is possible to perform basic operations such as ascending, descending, hovering, left rotation, right rotation, left movement and right rotation, and combination operations thereof.
 図5はプロペラ8の回転数と推力Tの関係を示した模式的なグラフです。回転数(回転速度)の2乗に比例して推力Tが増加することとなる。同時に排気流17も回転数の2乗に比例して増加することとなり、排気流17の流速も同様の結果となる。さらに、機体から一定の相対距離(L)を有した場所の流速および流量は相対距離(L)が増えるほど低下することとなる。したがって、無人飛行体5の排気流17を用いて積雪部20の除雪作業を実施する場合は、無人飛行体5と積雪部20の表面との距離も重要な要因となり、除雪作業の効率および精度に大きく影響することとなる。 Fig. 5 is a schematic graph showing the relationship between the rotational speed of the propeller 8 and the thrust T. The thrust force T increases in proportion to the square of the rotation speed (rotation speed). At the same time, the exhaust flow 17 also increases in proportion to the square of the rotational speed, and the flow velocity of the exhaust flow 17 has the same result. Furthermore, the flow velocity and the flow rate at a place having a constant relative distance (L) from the airframe will decrease as the relative distance (L) increases. Therefore, when the snow removal work of the snow cover 20 is performed using the exhaust flow 17 of the unmanned aerial vehicle 5, the distance between the unmanned aerial vehicle 5 and the surface of the snow cover 20 is also an important factor, and the efficiency and accuracy of the snow removal work are improved. Will be greatly affected.
 同時に、無人飛行体5の全体の質量と推力Tとのバランスにより飛行することが可能となるが、無人飛行体5の全体質量が大きいほどプロペラ8の回転数を上昇させることが必須となる。図2および図3に示すように、無人飛行体5はその鉛直方向の略中心部に下部マスバランス11、下部マスバランス11をメインフレーム10に固定する下部マスバランス固定部12および上部マスバランス13をメインフレーム10に固定する上部マスバランス固定部14を有した構成としている。下部マスバランス11および上部マスバランス13を無人飛行体5に搭載することで全体質量を増し、プロペラ8の回転数を増加させ排気流17の流速および流量を増加させることにより、積雪部の除雪作業効率を上げる、凍結などにより積雪部が除雪しにくくなっている場合、積雪部の雪の比重が大きく除雪作業が困難となっている場合などは無人飛行体5に搭載するマスバランスの個数または質量を増加させることが効果的となる。また、下部マスバランス11および上部マスバランス13により無人飛行体5の機体質量を増加させた場合は、無人飛行体5に搭載した電池10または燃料(軽油、ガソリンなど)の消費量が増大し作業時間が短くなる。したがって、搭載するマスバランスの質量は作業効率、作業品質および作業時間を考慮して選択することとなる。 At the same time, it is possible to fly with the balance of the total mass of the unmanned aerial vehicle 5 and the thrust T, but it is essential to increase the rotation speed of the propeller 8 as the total mass of the unmanned aerial vehicle 5 increases. As shown in FIGS. 2 and 3, the unmanned aerial vehicle 5 includes a lower mass balance 11, a lower mass balance fixing portion 12 for fixing the lower mass balance 11 to the main frame 10 and an upper mass balance 13 at a substantially central portion in the vertical direction. Is fixed to the main frame 10 with an upper mass balance fixing portion 14. By mounting the lower mass balance 11 and the upper mass balance 13 on the unmanned aerial vehicle 5, the overall mass is increased, the rotation speed of the propeller 8 is increased, and the flow velocity and the flow rate of the exhaust flow 17 are increased, so that the snow removal work of the snow cover part is performed. The number or mass of mass balances to be mounted on the unmanned aerial vehicle 5 when it is difficult to remove snow due to increased efficiency or freezing, or when snow removal is difficult due to the large specific gravity of the snow in the snow covered area. Is effective. Further, when the mass of the unmanned aerial vehicle 5 is increased by the lower mass balance 11 and the upper mass balance 13, the consumption of the battery 10 or fuel (light oil, gasoline, etc.) mounted on the unmanned aerial vehicle 5 increases, and The time gets shorter. Therefore, the mass of the mass balance to be mounted is selected in consideration of work efficiency, work quality and work time.
 尚、実施の形態1では下部マスバランス11および上部マスバランス13を搭載する構成としたが、どちらか一方のみの搭載でも構わないし、両方とも非搭載でも問題ない。さらに下部マスバランス固定部12および上部マスバランス固定部14は必要に応じ無人飛行体5に構成することで問題はない。 In the first embodiment, the lower mass balance 11 and the upper mass balance 13 are mounted, but either one may be mounted, or both may not be mounted. Further, the lower mass balance fixing portion 12 and the upper mass balance fixing portion 14 may be configured in the unmanned air vehicle 5 as necessary, and there is no problem.
 また、無人飛行体制御装置6には相対距離センサ16が搭載されており、積雪部20の表面と無人飛行体制御装置6の機体との相対距離(L)を認識する構成をしている。 Further, the unmanned aerial vehicle control device 6 is equipped with a relative distance sensor 16 and is configured to recognize the relative distance (L) between the surface of the snow cover 20 and the airframe of the unmanned aerial vehicle control device 6.
 尚、実施の形態1では、相対距離センサ16の測定結果を無人飛行体制御装置6に送信する構成としたが、相対距離センサ16を搭載せず除雪作業者が積雪部20の表面と無人飛行体制御装置6の機体との距離を認識する方式としてもよい。 Although the measurement result of the relative distance sensor 16 is transmitted to the unmanned aerial vehicle control device 6 in the first embodiment, the snow removal operator does not mount the relative distance sensor 16 and the unmanned flight with the surface of the snow cover 20. A method of recognizing the distance between the body control device 6 and the body may be used.
 また、実施の形態1では3次元飛行経路指示装置23を用い、3次元地図情報、積雪センサ15の情報、機体搭載積雪センサ19の情報、相対距離センサ16の情報をもとに飛行指示を無人飛行体制御装置に指令する構成としたが、3次元飛行経路指示装置23を搭載せず、除雪作業者が無人飛行体制御装置6または無人飛行体5のラジコン操作機などを直接操作する構成でもよい。 In addition, in the first embodiment, the three-dimensional flight route instruction device 23 is used, and the flight instruction is unmanned based on the information of the three-dimensional map information, the information of the snow cover sensor 15, the information of the on-body snow cover sensor 19, and the information of the relative distance sensor 16. Although the configuration is such that the air vehicle control device is instructed, a configuration in which the three-dimensional flight route instruction device 23 is not mounted and the snow removing operator directly operates the unmanned air vehicle control device 6 or the radio control operator of the unmanned air vehicle 5 is also used. Good.
 図6は、プロペラ8の回転により発生する排気流17の状態を示した結果の一部であり、CFD(数値流体力学)を用いて非定常計算した計算の一例である。排気流17はプロペラ8の下流に広範囲に噴出されるが、その領域、流速、流量はプロペラ8の形状、大きさ、回転数に依存する。 FIG. 6 is a part of the result showing the state of the exhaust flow 17 generated by the rotation of the propeller 8, and is an example of the calculation of unsteady calculation using CFD (Computational Fluid Dynamics). The exhaust flow 17 is ejected in a wide range downstream of the propeller 8, and its area, flow velocity, and flow rate depend on the shape, size, and rotation speed of the propeller 8.
 図7は、積雪部20に対する無人飛行体5の除雪作業における飛行経路の一例を示した図である。太陽光パネル4の短辺に沿って除雪作業を行う方法と、太陽光パネル4の長辺に沿って除雪作業を行う方法とを示しているが、作業効率、作業品質および作業時間を考慮して選択することとなる。短辺に沿って除雪作業を行う場合は紙面の上下方向への往復を繰り返しながら徐々に左右方向に移動することとなる。一方、長辺に沿って除雪作業をする場合ば、紙面の左右に往復を繰り返しながら徐々に上下方向へ移動することとなる。 FIG. 7 is a diagram showing an example of a flight path in snow removal work of the unmanned aerial vehicle 5 with respect to the snow cover section 20. A method of removing snow along the short side of the solar panel 4 and a method of removing snow along the long side of the solar panel 4 are shown, but work efficiency, work quality and work time are taken into consideration. Will be selected. When the snow removal work is performed along the short side, it is gradually moved in the left-right direction while repeatedly reciprocating in the vertical direction of the paper surface. On the other hand, in the case of removing snow along the long side, the snow is gradually moved in the vertical direction while repeating the reciprocation to the left and right of the paper surface.
 尚、実施の形態1では、飛行経路の一例を図7に示したが、これら以外の方法で除雪作業を行っても問題はないし、自動飛行で除雪しても、作業員がラジコンで操縦しても問題はない。 In the first embodiment, an example of the flight path is shown in FIG. 7, but there is no problem even if snow removal work is performed by a method other than these, and even if snow removal is performed by automatic flight, a worker operates with a radio control. But there is no problem.
 図8は、太陽光パネル4の上面の積雪部20(未作業領域)および積雪部21(除雪作業領域)に対する無人飛行体5による除雪作業の一例を示した図である。各プロペラ8の回転数を制御し回転軸18を傾斜させ無人飛行体5を傾斜させることで移動方向を斜め上にすることが可能となるとともに、排気流17を斜め下方向に噴射させることで、効率よく積雪を太陽光パネル4から除去することが可能となる。この際、相対距離(L)を効果的な距離に保つことは重要であり、作業効率、作業精度および作業時間に大きく影響することとなるため、相対距離(L)はそれらの要因を考慮しながら決定することとなる。尚、この飛行姿勢で除雪作業を行う場合は、図8における飛行姿勢では短辺に沿った飛行経路が最適だが、飛行姿勢を調整し長辺に沿った飛行経路としても問題ない。 FIG. 8 is a diagram showing an example of snow removal work by the unmanned aerial vehicle 5 with respect to the snow cover 20 (unworked region) and the snow cover 21 (snow removal work region) on the upper surface of the solar panel 4. By controlling the number of revolutions of each propeller 8 and inclining the rotating shaft 18 to incline the unmanned aerial vehicle 5, it is possible to make the moving direction obliquely upward, and at the same time, to inject the exhaust flow 17 obliquely downward. Therefore, it becomes possible to efficiently remove snow from the solar panel 4. At this time, it is important to keep the relative distance (L) at an effective distance, which greatly affects work efficiency, work accuracy, and work time. Therefore, the relative distance (L) takes these factors into consideration. While making decisions. When performing snow removal work in this flight attitude, the flight path along the short side is optimal in the flight attitude shown in FIG. 8, but there is no problem even if the flight attitude is adjusted to form the flight path along the long side.
 また、除雪作業の状況において移動方向は、前後左右行ったり来たり動きながら徐々に進むことも考えられる。 Also, in the snow removal work situation, it is possible that the direction of movement gradually moves forward and backward and back and forth.
 図9は、図8と同様に太陽光パネル4の上面の積雪部20(未作業領域)および積雪部21(除雪作業領域)に対する無人飛行体5による除雪作業の一例を示した図である。各プロペラ8の回転数を制御し回転軸18を傾斜させ無人飛行体5を傾斜させることで移動方向を斜め下にすることが可能となるとともに、排気流17を斜め上方向に噴射させることで、効率よく積雪を太陽光パネル4から除去することが可能となる。尚、この飛行姿勢で除雪作業を行う場合は、図6における飛行姿勢では短辺に沿った飛行経路が最適だが、飛行姿勢を調整し長辺に沿った飛行経路としても問題ない。 FIG. 9 is a diagram showing an example of snow removal work by the unmanned aerial vehicle 5 with respect to the snow-covered portion 20 (unworked area) and the snow-covered portion 21 (snow removing work area) on the upper surface of the solar panel 4, as in FIG. 8. By controlling the number of revolutions of each propeller 8 and inclining the rotary shaft 18 to incline the unmanned aerial vehicle 5, it is possible to make the moving direction obliquely downward, and by ejecting the exhaust flow 17 obliquely upward. Therefore, it becomes possible to efficiently remove snow from the solar panel 4. When performing snow removal work in this flight attitude, the flight path along the short side is optimal in the flight attitude shown in FIG. 6, but there is no problem even if the flight attitude is adjusted to form the flight path along the long side.
 また、除雪作業の状況において移動方向は、前後左右行ったり来たり動きながら徐々に進むことも考えられる。 Also, in the snow removal work situation, it is possible that the direction of movement gradually moves forward and backward and back and forth.
 図10は、図8および図9と同様に太陽光パネル4の上面の積雪部20(未作業領域)および積雪部21(除雪作業領域)に対する無人飛行体5による除雪作業の一例を示した図である。各プロペラ8の回転数を制御し回転軸18を垂直に保ち無人飛行体5を略水平とすることで水平方向への移動および斜め上への移動が容易となるとともに、排気流17を鉛直方向に噴射させることで、効率よく積雪を太陽光パネル4から除去することが可能となる。尚、この飛行姿勢で除雪作業を行う場合は、図6における飛行姿勢では長辺に沿った飛行経路が最適だが、飛行姿勢を調整し短辺に沿った飛行経路としても問題ないし、ホバーリングまたはプロペラ8の回転数を変動させ機体を回動させることにより除去しにくい個所を集中的に作業する方式としても問題ない。 FIG. 10 is a diagram showing an example of snow removal work by the unmanned aerial vehicle 5 with respect to the snow-covered portion 20 (unworked area) and the snow-covered portion 21 (snow removing work area) on the upper surface of the solar panel 4, as in FIGS. 8 and 9. Is. By controlling the number of revolutions of each propeller 8 and keeping the rotating shaft 18 vertical so that the unmanned aerial vehicle 5 is substantially horizontal, it becomes easy to move horizontally and obliquely upward, and the exhaust flow 17 can be moved vertically. It is possible to efficiently remove snow from the solar panel 4 by injecting the snow. When performing snow removal work in this flight attitude, the flight path along the long side is optimal in the flight attitude shown in FIG. 6, but there is no problem even if the flight attitude is adjusted and the flight path along the short side is used. There is no problem even if the method of intensively working a portion that is difficult to remove by changing the rotation speed of the propeller 8 and rotating the machine body.
 また、除雪作業の状況において移動方向は、前後左右行ったり来たり動きながら徐々に進むことも考えられる。 Also, in the snow removal work situation, it is possible that the direction of movement gradually moves forward and backward and back and forth.
 尚、実施の形態1では、無人飛行体5による除雪作業を行うタイミングとしては、除雪作業者が除雪作業を必要と判断した場合、積雪センサ15の値があらかじめ設定した設定値を超えた場合、日没時、早朝時のうちいずれか一つ以上としている。これらのタイミングでの除雪作業により、一層高効率、高精度かつ低コストの太陽光パネルの非接触除雪装置を実現できる In the first embodiment, when the snow removing operator determines that the snow removing operation is necessary, when the value of the snow accumulation sensor 15 exceeds a preset value, At least one of sunset and early morning. By performing snow removal work at these timings, it is possible to realize a non-contact snow removal device for solar panels with higher efficiency, higher accuracy, and lower cost.
 尚、実施の形態1では、無人飛行体5に搭載するプロペラ8およびモータの7の数は4つとしたが、6つとしても8つとしても問題ないことは言うまでもない。 In the first embodiment, the number of propellers 8 and the number of motors 7 mounted on the unmanned aerial vehicle 5 is four, but it goes without saying that there is no problem with six or eight.
 このように、実施の形態1の構成により、作業効率、作業品質、作業時間および投資コストなどに優れた太陽光パネル用非接触除雪システムを実現できる。 In this way, with the configuration of the first embodiment, it is possible to realize a non-contact snow removal system for solar panels that is excellent in work efficiency, work quality, work time, and investment cost.
 次に、実施の形態2について図11を用いて説明する。実施の形態1との相違点は、太陽光パネル4の上面の雪を除雪する場合、排気流17にて太陽光パネル4の周辺に雪を吹き飛ばす方式とするが、その際その雪を傾斜した太陽光パネル4の低い側の隣の列の傾斜した太陽光パネル4の高い側の略下部に吹き飛ばす構成とした点である。 Next, the second embodiment will be described with reference to FIG. The difference from the first embodiment is that when removing snow on the upper surface of the solar panel 4, the exhaust flow 17 blows the snow around the solar panel 4, but at that time, the snow is inclined. The point is that the structure is such that it is blown off to almost the lower part on the high side of the inclined solar panel 4 in the row adjacent to the low side of the solar panel 4.
 この構成により通路へ落下する雪の量を大幅に低減することができ、通路の除雪作業の回数を大幅に削減することが可能となり、メンテナンスコストが安い低コストな太陽光パネル用非接触除雪システムを実現できる。 With this configuration, the amount of snow falling into the aisle can be significantly reduced, the number of snow removal work in the aisle can be significantly reduced, and the maintenance cost is low. Can be realized.
 尚、実施の形態2では無人飛行体5の機体姿勢は略水平でもよいし、傾いていてもよいし、ホバーリングしてもよいし、ローリングしてもよいし、回転してもよい。 In the second embodiment, the unmanned aerial vehicle 5 may have a substantially horizontal body attitude, may be inclined, may be hovering, may be rolling, or may be rotating.
 また、飛行経路は短辺に沿って移動しても、長辺に沿って移動してもあるいは任意の経路を移動する除雪プロセスであっても問題ない。 Also, there is no problem even if the flight route moves along the short side, the long side, or even the snow removal process of moving on any route.
 さらに、無人飛行体5の操縦は、除雪作業者が無人飛行体制御装置6を直接操作する方式でもよいし、3次元飛行経路指示装置23により無人飛行体制御装置6に飛行指示を出す方式でもよい。 Further, the operation of the unmanned aerial vehicle 5 may be performed by a method in which the snow removing operator directly operates the unmanned aerial vehicle control device 6, or by a method of issuing a flight instruction to the unmanned aerial vehicle control device 6 by the three-dimensional flight route instruction device 23. Good.
 また、無人飛行体5と積雪部20の表面との距離Lはあらかじめ規定してもよいし任意の高さで飛行してもよい。 The distance L between the unmanned aerial vehicle 5 and the surface of the snow cover 20 may be specified in advance or may fly at any height.
 次に、実施の形態3について図12を用いて説明する。実施の形態1および2との相違点は、エアーコンプレッサー25、エアーコンプレッサー保持部27、噴出ノズル26を無人飛行体5に搭載し、エアーコンプレッサー25およびエアーコンプレッサー25からの圧縮空気を噴出する噴出ノズル26を用い、排気流17のみでは除去できない積雪部20および積雪部21の除雪作業を行う構成としたことである。この構成により、一層除雪作業の作業効率および作業品質を向上させることが可能となる。 Next, a third embodiment will be described with reference to FIG. The difference from the first and second embodiments is that the air compressor 25, the air compressor holding portion 27, and the ejection nozzle 26 are mounted on the unmanned aerial vehicle 5, and the air compressor 25 and the ejection nozzle that ejects the compressed air from the air compressor 25. 26 is used to remove the snow from the snow-covered portion 20 and the snow-covered portion 21 that cannot be removed only by the exhaust flow 17. With this configuration, it is possible to further improve the work efficiency and work quality of snow removal work.
 本発明の第12の態様に係る太陽光パネル用非接触除雪装置は、第1~第11の態様に係る太陽光太陽光パネル用非接触除雪システム1の構成において、前記架台3の上部に取り付けられた前記太陽光パネル4は所定の傾斜角を有しており、無人飛行体5からの排気流17により前記太陽光パネル4の上面の雪を吹き飛ばし除雪する際に、可能な範囲で除雪された雪が傾斜した前記太陽光パネル4の低い側の1列横の傾斜した前記太陽光パネル4の高い側の下部に吹き飛ばす構成としている。 A non-contact snow removal device for a solar panel according to a twelfth aspect of the present invention is attached to an upper part of the pedestal 3 in the configuration of the non-contact snow removal system 1 for a solar photovoltaic panel according to the first to eleventh aspects. The solar panel 4 thus formed has a predetermined inclination angle, and when the snow on the upper surface of the solar panel 4 is blown off by the exhaust flow 17 from the unmanned air vehicle 5 to remove the snow, the snow is removed to the extent possible. In addition, one row of snow on the lower side of the solar panel 4 on which the snow is inclined is blown off to the lower portion on the high side of the inclined solar panel 4.
 従って、上記した構成により、太陽光パネル4表面の除雪を行うとともに、除雪を行った雪が前記太陽光パネル4の間の通路に落ちる量を大幅に低減することができ、前記通路24の除雪作業の回数を大幅に削減することが可能となり、メンテナンスコストの安い安価な太陽光パネル用非接触除雪システムを実現できる。 Therefore, with the above-described configuration, it is possible to remove the snow from the surface of the solar panel 4, and to significantly reduce the amount of the removed snow in the passage between the solar panels 4, and to remove the snow from the passage 24. It is possible to significantly reduce the number of times, and it is possible to realize an inexpensive non-contact snow removal system for solar panels with low maintenance costs.
 次に、実施の形態4について図13を用いて説明する。実施の形態1および実施の形態2との相違点は住宅28の住宅の屋根29の上面に設置された太陽光パネル4の上面に蓄積した雪の除去を無人飛行体5で実施することである。この構成により、一般の住宅の屋根29に降り積もった雪の除去を実現することが可能となる。 Next, a fourth embodiment will be described with reference to FIG. The difference from the first and second embodiments is that the unmanned air vehicle 5 removes snow accumulated on the upper surface of the solar panel 4 installed on the upper surface of the roof 29 of the house 28 of the house 28. .. With this configuration, it is possible to remove the snow accumulated on the roof 29 of a general house.
 尚、実施の形態4では、住宅の屋根29の上に設置された太陽光パネル4の上面の積雪の除去としたが、太陽光パネル4が無い一般の屋根の雪の除雪に用いても問題ないことは言うまでもない。 In the fourth embodiment, the snow cover on the upper surface of the solar panel 4 installed on the roof 29 of the house is removed. However, it may be used to remove snow on a general roof without the solar panel 4. Needless to say
 上記説明から、当業者にとって、本発明の多くの改良や他の実施形態が明らかである。 From the above description, many improvements and other embodiments of the present invention will be apparent to those skilled in the art.
 従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。 Accordingly, the above description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Details of its structure and/or function may be changed substantially without departing from the spirit of the invention.
 本発明は、従来に比べ、非接触で太陽光パネルの表面の雪を除去する構成と除雪に利用する排気流の流速を調整可能とすることで、あらかじめ太陽光パネルの周辺に除雪用設備を設置する費用がなく、かつ除雪作業の高効率化、高精度化、低コスト化を実現するとともに、発電量の低減量を大幅に削減可能とすることより、信頼性、作業性、発電量に優れた太陽光パネルの非接触除雪システムを実現する。よって、本発明は、例えば、太陽光パネルの非接触自動除雪システム、住宅の屋根の除雪、住宅の屋根に設置された太陽光パネルの除雪、ビルの上に設置された太陽光パネルの除雪に利用できる。さらには、様々な場所に設置された太陽光パネルの表面に蓄積した砂を除去する太陽光パネルの表面の清掃装置にも利用できる。 The present invention, compared to the conventional, by removing the snow on the surface of the solar panel in a non-contact manner and by making it possible to adjust the flow rate of the exhaust flow used for snow removal, it is possible to install snow removal equipment in the vicinity of the solar panel in advance. There is no installation cost, high efficiency, high accuracy, and low cost of snow removal work are achieved, and the amount of power generation reduction can be significantly reduced, resulting in reliability, workability, and power generation. Realizes an excellent non-contact snow removal system for solar panels. Therefore, the present invention is applicable to, for example, a non-contact automatic snow removal system for solar panels, snow removal for a roof of a house, snow removal for a solar panel installed on a roof of a house, and snow removal for a solar panel installed on a building. Available. Furthermore, it can be used for a cleaning device for the surface of a solar panel that removes sand accumulated on the surface of the solar panel installed in various places.
1 太陽光パネル非接触除雪装置
2 太陽光発電システム
3 架台
4 太陽光パネル
5 無人飛行体
6 無人飛行体制御装置(図示せず)
7 モータ(またはエンジン)
8 プロペラ
9 フレーム
10 電池(または燃料)
11 下部マスバランス
12 下部マスバランス固定部
13 上部マスバランス
14 上部マスバランス固定部
15 積雪センサ
16 相対距離センサ
17 排気流
18 回転軸
19 機体搭載積雪センサ
20 積雪部(未作業領域)
21 積雪部(除雪作業領域)
22 除雪部(除雪作業実施領域)
23 3次元飛行経路指示装置
24 通路
25 エアーコンプレッサー
26 噴出ノズル
27 エアーコンプレッサー保持部
28 住宅
29 住宅の屋根
1 solar panel non-contact snow removal device 2 solar power generation system 3 stand 4 solar panel 5 unmanned aerial vehicle 6 unmanned aerial vehicle control device (not shown)
7 Motor (or engine)
8 Propeller 9 Frame 10 Battery (or fuel)
11 Lower Mass Balance 12 Lower Mass Balance Fixing Part 13 Upper Mass Balance 14 Upper Mass Balance Fixing Part 15 Snow Cover Sensor 16 Relative Distance Sensor 17 Exhaust Flow 18 Rotating Shaft 19 Aircraft Mounted Snow Cover Sensor 20 Snow Cover Part (Unworked Area)
21 Snow cover (snow removal area)
22 Snow removal section (snow removal work area)
23 three-dimensional flight route indicator 24 passage 25 air compressor 26 jet nozzle 27 air compressor holder 28 house 29 roof of house

Claims (12)

  1.  地面に設置された架台および太陽光パネルと、前記太陽光パネルの表面の積雪量を検出する積雪量検出手段と、回転駆動部とプロペラが連結した複数の揚力発生部と、前記回転駆動部の回転制御を行い前記プロペラの回転により発生する揚力と推力により飛行姿勢制御を行う回転制御部から構成され3次元空間の移動を行ういわゆるドローンまたはUAVなどの無人飛行体と、前記無人飛行体の移動経路をあらかじめ設定し前記回転制御部に指示を出す3次元飛行経路指示部を有し、前記積雪量が所定量に達した場合に、前記3次元飛行経路指示部の指令に基づき飛行することで前記無人飛行体の前記プロペラから発生する排気流により前記太陽光パネルに蓄積した雪を非接触で前記太陽光パネルの表面から除去することを特徴とする太陽光パネル用非接触除雪システム。 A gantry and a solar panel installed on the ground, a snow amount detecting means for detecting the amount of snow on the surface of the solar panel, a plurality of lift generating units in which a rotation drive unit and a propeller are connected, and the rotation drive unit. An unmanned aerial vehicle such as a so-called drone or UAV that moves in a three-dimensional space and is composed of a rotation control unit that controls a flight attitude by lift and thrust generated by rotation of the propeller and movement of the unmanned air vehicle. By having a three-dimensional flight route instruction unit that sets a route in advance and issues an instruction to the rotation control unit, and when the amount of snow reaches a predetermined amount, by flying based on a command of the three-dimensional flight route instruction unit A non-contact snow removal system for a solar panel, wherein the snow accumulated on the solar panel is removed from the surface of the solar panel in a non-contact manner by an exhaust flow generated from the propeller of the unmanned air vehicle.
  2.  前記回転駆動部は、エンジンおよび/またはモータより構成され、前記エンジンの駆動エネルギーは軽油またはガソリンとし、前記モータの駆動エネルギーは電池とすることを特徴とする請求項1記載の太陽光パネル用非接触除雪システム。 2. The non-solar panel for a solar panel according to claim 1, wherein the rotation drive unit includes an engine and/or a motor, the drive energy of the engine is light oil or gasoline, and the drive energy of the motor is a battery. Contact snow removal system.
  3.  前記積雪量検出手段は、前記太陽光パネルの周辺または前記無人飛行体に設置され、単位面積あたりに蓄積した雪の質量または蓄積した雪の厚さを検出する積雪センサおよび/または前記無人飛行体に搭載した画像カメラにより撮影した積雪画像情報を基にすることを特徴とする請求項1から請求項2記載の太陽光パネル用非接触除雪システム。 The snow amount detection means is installed around the solar panel or in the unmanned air vehicle, and detects the mass of snow accumulated per unit area or the thickness of accumulated snow and/or the unmanned air vehicle. The non-contact snow removal system for a solar panel according to claim 1, which is based on snow cover image information taken by an image camera mounted on.
  4.  前記太陽光パネルは長方形状に設置されており、3次元飛行アルゴリズムは、長方形状の前記太陽光パネルの短辺の端から徐々に短辺に沿って移動することを特徴とする請求項1から請求項3記載の太陽光パネル用非接触除雪システム。 The solar panel is installed in a rectangular shape, and the three-dimensional flight algorithm gradually moves along the short side from the end of the short side of the rectangular solar panel. The non-contact snow removal system for a solar panel according to claim 3.
  5.  前記太陽光パネルは長方形状に設置されており、3次元飛行アルゴリズムは、長方形状の前記太陽光パネルの長辺の端から徐々に短辺に沿って移動することを特徴とする請求項1から請求項3記載の太陽光パネル用非接触除雪システム。 The solar panel is installed in a rectangular shape, and the three-dimensional flight algorithm gradually moves along the short side from the end of the long side of the rectangular solar panel. The non-contact snow removal system for a solar panel according to claim 3.
  6.  前記太陽光パネルは一定の傾斜角度を有して設置されており、蓄積した雪が前記太陽光パネルの下方に吹き飛ばされるように前記無人飛行体が前記プロペラの回転軸に対して一定の角度を有して前記太陽光パネルの短辺または長辺に沿って飛行することを特徴とする請求項1から請求項5記載の太陽光パネル用非接触除雪システム。 The solar panel is installed with a constant inclination angle, and the unmanned aerial vehicle has a constant angle with respect to the rotation axis of the propeller so that accumulated snow is blown off below the solar panel. The non-contact snow removal system for a solar panel according to claim 1, wherein the solar panel is fly along a short side or a long side of the solar panel.
  7.  前記移動経路は、除雪作業対象とする前記太陽光パネルの周辺の3次元地図および前記積雪量検出手段からの情報によりあらかじめ設定されるとともに、除雪作業中における前記積雪量検出手段からの積雪量の情報により、前記太陽光パネルの上空で前記無人飛行体が回転、傾斜さらには傾斜角度を周期的に変化させるローリングなどの付加動作を行い、前記無人飛行体の前記プロペラから発生する排気流により前記太陽光パネルの表面に蓄積した雪を非接触で除去することを特徴とする請求項1から請求項6記載の太陽光パネル用非接触除雪システム。 The movement route is set in advance by a three-dimensional map around the solar panel to be subjected to snow removal work and information from the snowfall amount detection means, and also indicates the snowfall amount from the snowfall amount detection means during snow removal work. According to the information, the unmanned aerial vehicle rotates above the solar panel, performs an additional operation such as a tilt and a rolling that periodically changes the tilt angle, and the exhaust flow generated from the propeller of the unmanned aerial vehicle causes The non-contact snow removal system for a solar panel according to claim 1, wherein snow accumulated on the surface of the solar panel is removed in a non-contact manner.
  8.  マスバランスと前記無人飛行体の鉛直方向の略中心部にマスバランス保持部を有し、前記マスバランスを前記マスバランス保持部で把持または固定するとともに、異なる質量の前記マスバランスを取換可能とし、前記太陽光パネルの表面の積雪量および雪質に応じて前記マスバランスの取換固定を行い前記無人飛行体の全体質量を調整可能な構成とし、前記無人飛行体の前記飛行姿勢制御の際のそれぞれの前記プロペラの回転数を変化させることで前記排気流の流速を大幅に変化させることを特徴とする請求項1から請求項7記載の太陽光パネル用非接触除雪システム。 A mass balance and a mass balance holding portion in a substantially central portion in the vertical direction of the unmanned air vehicle, while holding or fixing the mass balance with the mass balance holding portion, it is possible to replace the mass balance of different mass In the case of controlling the flight attitude of the unmanned aerial vehicle, the mass balance is exchanged and fixed according to the amount of snow and the snow quality on the surface of the solar panel to adjust the total mass of the unmanned aerial vehicle. The non-contact snow removal system for a solar panel according to any one of claims 1 to 7, wherein the flow velocity of the exhaust flow is significantly changed by changing the number of revolutions of each of the propellers.
  9.  前記無人飛行体に、コンプレッサーおよび前記コンプレッサーからの圧縮空気を噴射するエアーノズルとを搭載し、除雪作業前および除雪作業中の前記積雪検出手段からの情報に応じて、前記エアーノズルから噴射される圧縮空気を用いて前記太陽光パネルの表面に蓄積した雪を非接触で除去することを特徴とする請求項1から請求項8記載の太陽光パネル用非接触除雪システム。 The unmanned aerial vehicle is equipped with a compressor and an air nozzle for injecting compressed air from the compressor, and is ejected from the air nozzle according to information from the snow cover detecting means before and during snow removal work. The non-contact snow removal system for a solar panel according to claim 1, wherein the snow accumulated on the surface of the solar panel is removed in a non-contact manner by using compressed air.
  10.  前記無人飛行体と太陽光パネルに蓄積した雪の表面まで距離を検出する相対距離計測センサを搭載し、雪の表面と無人飛行体との距離をあらかじめ定められた値にしながら除雪作業を行うことを特徴とする請求項1から請求項9記載の太陽光パネル用非接触除雪システム。 Equipped with a relative distance measurement sensor that detects the distance to the surface of snow accumulated on the unmanned aerial vehicle and the solar panel, and performing snow removal work while keeping the distance between the surface of the snow and the unmanned aerial vehicle at a predetermined value. The non-contact snow removal system for a solar panel according to claim 1, wherein:
  11.  前記無人飛行体により除雪作業を行うタイミングは、それぞれ前記積雪量検出手段により積雪がスタートしたと判断した時から所定時間内、日没時、早朝時とすることを特徴とする請求項1から請求項10記載の太陽光パネル用非接触除雪システム。 The timing for performing snow removal work by the unmanned aerial vehicle is within a predetermined time from the time when the snow amount detection means determines that snow has started, at sunset, or in the early morning. Item 10. A non-contact snow removal system for a solar panel according to Item 10.
  12.  前記架台の上部に取り付けられた前記太陽光パネルは所定の傾斜角を有しており、前記無人飛行体からの前記排気流により前記太陽光パネルの上面の雪を吹き飛ばし除雪する際に、可能な範囲で除雪された雪が傾斜した前記太陽光パネルの低い側の1列横の傾斜した前記太陽光パネルの高い側の下部に吹き飛ばす構成としたことを特徴とする請求項1~請求項11記載の太陽光パネル用非接触除雪システム。 The solar panel attached to the upper portion of the gantry has a predetermined inclination angle, and is possible when the snow on the upper surface of the solar panel is blown away by the exhaust flow from the unmanned air vehicle to remove snow. 12. The structure in which the snow removed in a range is blown off to the lower side of the solar panel inclined one row in a row on the lower side of the solar panel inclined to the high side. Non-contact snow removal system for solar panels.
PCT/JP2019/005579 2019-02-15 2019-02-15 Contactless snow removal system for solar panels WO2020166067A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/005579 WO2020166067A1 (en) 2019-02-15 2019-02-15 Contactless snow removal system for solar panels
JP2019510718A JP6755062B1 (en) 2019-02-15 2019-02-15 Non-contact snow removal system for solar panels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005579 WO2020166067A1 (en) 2019-02-15 2019-02-15 Contactless snow removal system for solar panels

Publications (1)

Publication Number Publication Date
WO2020166067A1 true WO2020166067A1 (en) 2020-08-20

Family

ID=72044489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005579 WO2020166067A1 (en) 2019-02-15 2019-02-15 Contactless snow removal system for solar panels

Country Status (2)

Country Link
JP (1) JP6755062B1 (en)
WO (1) WO2020166067A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6858295B1 (en) * 2020-08-27 2021-04-14 秋夫 湯田 A roof snow unloading device that uses a drone.
JP7076114B1 (en) 2021-05-14 2022-05-27 学校法人 芝浦工業大学 Work support system and work support method
JP7244036B2 (en) * 2021-05-14 2023-03-22 学校法人 芝浦工業大学 Work support system and work support method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148981A (en) * 1984-08-17 1986-03-10 Nec Corp Snow removing system
JPH08260638A (en) * 1995-03-20 1996-10-08 Misawa Homes Co Ltd Roof with solar cell and solar cell panel for roof
JP2002198553A (en) * 2000-12-27 2002-07-12 Akihiro Fujimura Patterned solar cell system
JP2015117003A (en) * 2013-01-23 2015-06-25 国立大学法人 名古屋工業大学 Land (and, possibly, water) traveling flight body with protect frame and automatic charging device
CN105080873A (en) * 2015-09-18 2015-11-25 施侃超 Flying photovoltaic-panel snow cleaning device provided with umbrella-shaped objects and powered up by external power supply
CN205427622U (en) * 2015-09-18 2016-08-03 邱玉燕 Remote control flight ware hypervelocity cleaning device
KR20170089588A (en) * 2016-01-27 2017-08-04 양응석 Unmanned air vehicle for the fog dissipated and snow removing
WO2017154473A1 (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 Flying object
CN107458591A (en) * 2017-07-19 2017-12-12 深圳市雷凌广通技术研发有限公司 A kind of unmanned plane of taking photo by plane of raising security performance for snow scenes shooting
JP2018174888A (en) * 2017-04-21 2018-11-15 国立研究開発法人農業・食品産業技術総合研究機構 Weeder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148981A (en) * 1984-08-17 1986-03-10 Nec Corp Snow removing system
JPH08260638A (en) * 1995-03-20 1996-10-08 Misawa Homes Co Ltd Roof with solar cell and solar cell panel for roof
JP2002198553A (en) * 2000-12-27 2002-07-12 Akihiro Fujimura Patterned solar cell system
JP2015117003A (en) * 2013-01-23 2015-06-25 国立大学法人 名古屋工業大学 Land (and, possibly, water) traveling flight body with protect frame and automatic charging device
CN105080873A (en) * 2015-09-18 2015-11-25 施侃超 Flying photovoltaic-panel snow cleaning device provided with umbrella-shaped objects and powered up by external power supply
CN205427622U (en) * 2015-09-18 2016-08-03 邱玉燕 Remote control flight ware hypervelocity cleaning device
KR20170089588A (en) * 2016-01-27 2017-08-04 양응석 Unmanned air vehicle for the fog dissipated and snow removing
WO2017154473A1 (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 Flying object
JP2018174888A (en) * 2017-04-21 2018-11-15 国立研究開発法人農業・食品産業技術総合研究機構 Weeder
CN107458591A (en) * 2017-07-19 2017-12-12 深圳市雷凌广通技术研发有限公司 A kind of unmanned plane of taking photo by plane of raising security performance for snow scenes shooting

Also Published As

Publication number Publication date
JP6755062B1 (en) 2020-09-16
JPWO2020166067A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2020166067A1 (en) Contactless snow removal system for solar panels
CN106537274B (en) Method for controlling a cleaning surface of an aircraft
EP3126067B1 (en) Agcfds: automated glass cleaning flying drone system
KR101984202B1 (en) Cleaning system for solar panel using drone
CN109379038A (en) Cleaning systems and clean method
US11370538B2 (en) Fully automated launch and recovery platform for unmanned aerial vehicle
EP2366964A1 (en) Solar field cleaning system and cleaning method used by said system
WO2020253614A1 (en) Solar floating parking apron and matching single-blade unmanned aerial vehicle
CN110813836B (en) Photovoltaic board cleaning robot of crawling based on vortex ring fluidic technology
CN114301386A (en) Photovoltaic panel cleaning device and cleaning method
CN102441541B (en) Solar panel array surface dust removal system and method
JP6409252B2 (en) Solar panel cleaning device
CN205499327U (en) Aerial robot system of photovoltaic board monitoring clearance
CN112727115A (en) Separated wall construction device and construction method
CN216331266U (en) Health detection and maintenance robot for bridge pier tower
CN116674712A (en) Cabin cleaning and hull rust removing robot based on high-pressure water jet flight
WO1980001705A1 (en) Energy system
RU2678381C1 (en) Launching container
KR101503736B1 (en) Atmosphere heat exchange system and atmosphere heat exchange system using thermal exchange method
KR20220151054A (en) Mooring type ultra-light aerial vehicle
US20240025576A1 (en) Landing facility, landing method
AU2020321531B2 (en) Hybrid power generation system
CN212530079U (en) Rescue unmanned aerial vehicle based on artificial intelligence
KR20210011115A (en) Cleaning Robot for Solarcell Panel Capabel of Flying
CN218288151U (en) Novel aerial monitored control system that mooring floating wing platform carried on

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019510718

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915101

Country of ref document: EP

Kind code of ref document: A1