WO2020164605A1 - 传输方法和通信装置 - Google Patents

传输方法和通信装置 Download PDF

Info

Publication number
WO2020164605A1
WO2020164605A1 PCT/CN2020/075331 CN2020075331W WO2020164605A1 WO 2020164605 A1 WO2020164605 A1 WO 2020164605A1 CN 2020075331 W CN2020075331 W CN 2020075331W WO 2020164605 A1 WO2020164605 A1 WO 2020164605A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
control information
serving cell
dci
terminal device
Prior art date
Application number
PCT/CN2020/075331
Other languages
English (en)
French (fr)
Inventor
酉春华
黄曲芳
郭英昊
娄崇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021547514A priority Critical patent/JP7299329B2/ja
Priority to CA3129474A priority patent/CA3129474C/en
Priority to AU2020220935A priority patent/AU2020220935B2/en
Priority to KR1020217028021A priority patent/KR102657442B1/ko
Priority to EP20755939.4A priority patent/EP3914010A4/en
Publication of WO2020164605A1 publication Critical patent/WO2020164605A1/zh
Priority to US17/403,649 priority patent/US20210378007A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication, and more specifically, to a transmission method and communication device.
  • wireless communication systems can transmit data in unlicensed frequency bands.
  • Communication equipment such as terminal equipment or network equipment, needs to complete the channel access process before data transmission (or in other words, listen before talk (listen) before talk, LBT)) to access the channel.
  • the channel access process includes the channel access process based on a fixed duration and the channel access process based on the fallback.
  • the communication device can use the channel for a period of time, which is called the channel occupation time (channel occupancy time, COT).
  • the terminal equipment Before the terminal equipment transmits the hybrid automatic repeat request (HARQ) feedback of downlink data in an unlicensed cell, it needs to perform a back-off-based channel access process to obtain the channel to transmit the downlink data.
  • HARQ feedback the process is more complicated to implement.
  • the present application provides a transmission method and a communication device, which simplify the LBT behavior of the terminal device before HARQ feedback and reduce the implementation complexity.
  • a transmission method is provided, which may be executed by a terminal device, or may also be executed by a chip configured in the terminal device.
  • the method includes: receiving first downlink control information (downlink control information, DCI), where the first DCI is used to indicate or activate a downlink transmission resource; receiving downlink data on the downlink transmission resource; receiving a second DCI, which is used for Indicate uplink transmission resources, which are used to transmit feedback information of downlink data; send the feedback information on the uplink transmission resources.
  • DCI downlink control information
  • the network device first configures the dynamically scheduled downlink transmission resource or activates the semi-persistent scheduled downlink transmission resource through the first DCI, and then after completing the channel access process, sends the second DCI to the terminal device to indicate The uplink transmission resource for HARQ feedback of downlink data.
  • the network equipment uses DCI to indicate resource allocation twice, and the network equipment will listen before talk (LBT) (or call it detection before sending) when it allocates resources, which is equivalent to network equipment
  • LBT listen before talk
  • the COT corresponding to the uplink transmission resource is shared with the terminal device.
  • the terminal device obtains the resource in two times and shares the LBT effect of the network device.
  • the terminal device is allowed to perform the first type of channel access process or the terminal device is allowed to not perform channel access. In this way, the terminal can send feedback information on the uplink resource without performing the second-type channel access process, thereby simplifying the behavior of the terminal device and reducing the implementation complexity.
  • the channel access process of the first type may also be referred to as a channel access process based on a fixed duration
  • the channel access process of the second type may also be referred to as a channel access process based on fallback.
  • the first DCI may further include a HARQ process (identifier, ID).
  • the terminal device can perform HARQ feedback according to the HARQ process ID.
  • the receiving the second DCI includes: monitoring the downlink control channel within a target time period to obtain the second DCI, discontinuous reception (DRX)
  • DRX discontinuous reception
  • the activation time of includes the target time period, or the activation time of discontinuous reception of DRX does not include the target time period.
  • the terminal device monitors the physical downlink control channel (PDCCH) of all activated serving cells within the target time period. If the DRX activation time does not include the target time period, the terminal device monitors the PDCCH of the specific activated serving cell within the target time period, that is, the PDCCH of the serving cell capable of transmitting the second DCI. In this case, compared to the terminal device monitoring the PDCCHs of all activated serving cells within the target time period, the terminal device is simpler to implement.
  • PDCCH physical downlink control channel
  • the start time of the target time period is determined according to the end position of the first DCI or the end position of the downlink data, or the start time of the target time period is the network Equipment configuration.
  • the end time of the target time period is the time when the second DCI is received, or the end time of the target time period is configured by the network device.
  • the first DCI includes time zone indication information, the time zone indication information is used to indicate a time zone, and the time zone is a time zone where the terminal device expects to receive the second DCI.
  • the terminal device can only monitor the second DCI in the time zone where the second DCI is expected to be received, and does not need to monitor the second DCI all the time, thereby saving power consumption.
  • the second DCI is used to indicate that the type of the channel access process of the terminal device is the first type, or the second DCI is used to indicate that the terminal device does not perform channel access. Into the process.
  • the terminal device in the case of receiving the second DCI, can perform the channel access process of the first type, and after the channel access process of the first type is completed, the uplink transmission resource can be used to send feedback information .
  • the terminal device may not perform the first type of channel access process, and may use the uplink transmission resource to send feedback information. Therefore, the terminal device may not perform the second type of channel access process, which can simplify the behavior of the terminal device and reduce the implementation complexity.
  • the downlink transmission resource and the uplink transmission resource belong to different channel occupation time COTs in the time domain.
  • the second DCI further includes at least one of the following:
  • the network device can indicate which terminal device the second DCI is for through the ID information of the terminal device in the second DCI.
  • the second DCI may not include the ID information of the terminal device, and the second DCI may be broadcast or multicast.
  • the first serving cell is a cell corresponding to the downlink transmission resource carrying the first DCI.
  • the second DCI can indicate that the uplink transmission resource indicated by the second DCI is used to perform HARQ feedback on the downlink transmission resource of which cell. If the second DCI does not include the ID information of the first serving cell, the terminal device can determine that the second DCI is the first DCI for that cell according to the cell corresponding to the resource for transmitting the second DCI, that is, the third serving cell.
  • the uplink transmission resource indicated by the second DCI is located in the second serving cell.
  • the ID information of the second serving cell By carrying the ID information of the second serving cell in the second DCI, it is possible to indicate to the terminal device which serving cell the serving cell where the uplink transmission resource is located in. If the second DCI does not include the ID information of the second serving cell, it can be considered that the second serving cell and the downlink transmission resource correspond to the same serving cell.
  • the HARQ process is the HARQ process corresponding to the second DCI. That is to say, which HARQ process the uplink transmission resource indicated by the second DCI performs HARQ feedback.
  • the HARQ process ID information is not included in the second DCI, the HARQ process corresponding to the second DCI can be determined in three other ways.
  • Manner 1 The network device sends configuration information to the terminal device, and the configuration information is used to indicate which HARQ processes the terminal device performs HARQ feedback on the uplink transmission resource indicated by the second DCI. That is, the network device is pre-configured with these HARQ processes ID, and the terminal device uses the uplink transmission resources configured by the second DCI to send the HARQ feedback of the HARQ processes corresponding to the HARQ processes ID to the network device.
  • the HARQ process corresponding to the second DCI is all HARQ processes. That is, after receiving the second DCI, the terminal device sends feedback information of all HARQ processes to the network device. It should be understood that the downlink data scheduled by the first DCI may correspond to one or more of all HARQ processes.
  • Method 3 The network device configures the maximum number of HARQ processes that can be fed back.
  • the terminal device informs the network device which HARQ process or processes the feedback information is for.
  • the uplink BWP is the BWP to which the uplink transmission resource belongs.
  • the uplink BWP ID indicates on which BWP the uplink transmission resource configured by the second DCI is located. If the uplink BWP indicated by the second DCI is not the currently activated uplink BWP, the terminal device executes the uplink BWP switching process to switch the activated uplink BWP to the indicated uplink BWP. If the second DCI does not include uplink BWP ID information, the uplink transmission resources configured by the second DCI are on the currently activated UL BWP.
  • the subband is the subband to which the uplink transmission resource belongs.
  • the subband ID is used to indicate which subband the uplink transmission resource is located on.
  • the terminal device sends feedback information to the network device on the indicated subband.
  • the second DCI does not include subband ID information, it can be considered that the uplink transmission resource and the downlink transmission resource correspond to the same subband.
  • one or more of the above (1) to (6) may be included in the second DCI, or the second DCI may not include any of the above.
  • the cyclic redundancy check (CRC) of the first DCI is scrambled by the first radio network temporary identity (RNTI), And, the CRC of the second DCI is scrambled by the second RNTI, and the first RNTI and the second RNTI are the same or different.
  • RNTI radio network temporary identity
  • the first DCI and the second DCI may include an indicator bit, and the indicator bit is used to distinguish the first DCI from the second DCI.
  • the first serving cell that transmits the first DCI corresponds to the third serving cell; and receiving the second DCI includes: monitoring the downlink control channel in the third serving cell To obtain the second DCI.
  • the corresponding relationship between the first serving cell and the third serving cell is configured by the network device to the terminal device; or, the corresponding relationship between the first serving cell and the third serving cell is preset.
  • the terminal device can determine the third serving cell according to the correspondence between the first serving cell and the third serving cell, and then monitor the downlink control channel in the third serving cell to obtain the second DCI.
  • the method may include: when there is no running random access process or the ongoing random access process is completed, starting or restarting the bandwidth part BWP inactive timing Device ((bwp-inactivitytimer)); and/or, start or restart the secondary cell deactivation timer (scell-deactivationtimer); among them, the BWP inactivity timer is used for BWP handover, and the secondary cell deactivation timer is used for deactivating the secondary cell .
  • Bwp-inactivitytimer bandwidth part BWP inactive timing Device
  • scell-deactivationtimer start or restart the secondary cell deactivation timer
  • the BWP inactivity timer is used for BWP handover
  • the secondary cell deactivation timer is used for deactivating the secondary cell .
  • the BWP activation time can be extended, so that the BWP can be used for data transmission.
  • the activation time of the secondary cell can be extended by starting or restarting the secondary cell deactivation timer, so that the SCell can be used for data transmission.
  • a transmission method is provided, which may be executed by a network device, or may also be executed by a chip configured in the network device.
  • the method includes: sending a first DCI, where the first DCI is used to indicate or activate a downlink transmission resource; sending downlink data on a downlink transmission resource; sending a second DCI, where the second DCI is used to indicate uplink transmission resources, and the uplink transmission resource is used for Transmit feedback information of downlink data; receive feedback information on uplink transmission resources.
  • the network device first configures the dynamically scheduled downlink transmission resource or activates the semi-persistent scheduled downlink transmission resource through the first DCI, and then after completing the channel access process, sends the second DCI to the terminal device to indicate The uplink transmission resource for HARQ feedback of downlink data.
  • the network equipment uses DCI to indicate resource allocation twice, and the network equipment will listen before talk (LBT) (or call it detection before sending) when it allocates resources, which is equivalent to network equipment
  • LBT listen before talk
  • the COT corresponding to the uplink transmission resource is shared with the terminal device.
  • the terminal device obtains the resource in two times and shares the LBT effect of the network device.
  • the terminal device is allowed to perform the first type of channel access process or the terminal device is allowed to not perform channel access. In this way, the terminal can send feedback information on the uplink resource without performing the second-type channel access process, thereby simplifying the behavior of the terminal device and reducing the implementation complexity.
  • the first DCI includes time zone indication information
  • the time zone indication information is used to indicate a time zone
  • the time zone is a time zone in which the terminal device expects to receive the second DCI.
  • the second DCI is used to indicate that the type of the channel access process of the terminal device is the first type, or the second DCI is used to indicate that the terminal device does not perform channel access. Into the process.
  • the downlink transmission resource and the uplink transmission resource belong to different channel occupation time COTs in the time domain.
  • the second DCI further includes at least one of the following:
  • the first serving cell is the cell corresponding to the downlink transmission resource carrying the first DCI
  • the HARQ process is the HARQ process corresponding to the second DCI
  • the uplink BWP is the BWP to which the uplink transmission resource belongs;
  • the subband is the subband to which the uplink transmission resource belongs.
  • the cyclic redundancy check CRC of the first DCI is scrambled by the first wireless network temporary identification RNTI
  • the CRC of the second DCI is scrambled by the second RNTI
  • the first RNTI and the second RNTI are the same or different.
  • the first RNTI is the same as the second RNTI, and the first DCI and the second DCI include indicator bits, and the indicator bits are used to distinguish the first DCI from the second DCI.
  • the first serving cell that transmits the first DCI corresponds to the third serving cell, and the third serving cell is the cell where the second DCI is located.
  • the corresponding relationship between the first serving cell and the third serving cell is configured by the network device to the terminal device; or, the corresponding relationship between the first serving cell and the third serving cell Is preset.
  • the present application provides a notification device that has the function of realizing the behavior of the terminal device in any aspect of the foregoing method, and includes a unit or component corresponding to the steps or functions described in the foregoing method of the first aspect. ).
  • the steps or functions can be realized by software, or by hardware, or by a combination of hardware and software.
  • the present application provides a communication device that has the function of realizing the behavior of the network device in any aspect of the foregoing method, and includes a unit or component corresponding to the steps or functions described in the method of the foregoing second aspect. ).
  • the steps or functions can be realized by software, or by hardware, or by a combination of hardware and software.
  • the present application provides a communication device, including a processor, configured to be connected to a memory, and the processor is configured to read and execute a program stored in the memory to implement the method provided in the above first aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending a configuration message may be a process of outputting indication information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the processed output data may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the device in the above fifth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software At this time, the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • the present application provides a communication device, including a processor, configured to connect to a memory, and the processor is configured to read and execute a program stored in the memory to implement the method provided in the second aspect above.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending a configuration message may be a process of outputting indication information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the processed output data may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the device in the above sixth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, integrated circuit, etc.; when implemented by software At this time, the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • the present application provides a communication device including a processor and an interface circuit, the processor is configured to communicate with other devices through the interface circuit, and execute the method provided in the above first aspect.
  • processors there are one or more processors and one or more memories.
  • the present application provides a communication device, including a processor and an interface circuit, the processor is configured to communicate with other devices through the interface circuit, and execute the method provided in the second aspect above.
  • processors there are one or more processors and one or more memories.
  • this application provides a program, which is used to execute the method provided in the above first aspect or the second aspect when the program is executed by a processor.
  • this application provides a program product, such as a computer-readable storage medium, including the program of the ninth aspect.
  • the network device instructs resource allocation through two DCIs, and the network device performs LBT during resource allocation, which is equivalent to that the network device shares the COT corresponding to the uplink transmission resource to the terminal device, and the terminal device obtains the resource in two times If the LBT effect of the network device is shared, the terminal device is allowed to perform the channel access process of the first type or the terminal device is allowed not to perform the channel access process, so that the terminal can access the channel without performing the channel access process of the second type.
  • the feedback information is sent on the uplink resource, which can simplify the behavior of the terminal device and reduce the implementation complexity.
  • the uplink transmission resources can be flexibly allocated through the second DCI, the network equipment can flexibly schedule the uplink and downlink resources, thereby improving resource utilization.
  • FIG. 1 is a schematic diagram of a communication system suitable for an embodiment of the present application
  • Figure 2 is a schematic diagram of a network architecture suitable for an embodiment of the present application
  • FIG. 3 is another schematic diagram of a network architecture applicable to an embodiment of the present application.
  • Figure 4 is a schematic interaction diagram of a transmission method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of uplink and downlink transmission according to the method provided in this application.
  • Figure 6 shows a schematic diagram of the target time period in a dynamic scheduling scenario
  • FIG. 7 shows another schematic diagram of the target time period in a dynamic scheduling scenario
  • FIG. 8 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • NB-IoT narrowband-internet of things
  • GSM global system of mobile communication
  • CDMA Code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • long term evolution long term evolution
  • LTE LTE
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX Worldwide interoperability for microwave access
  • WiMAX Worldwide interoperability for microwave access
  • 5G future 5th generation
  • NR new radio
  • Fig. 1 shows a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the terminal 130 accesses a wireless network to obtain services from an external network (such as the Internet) through the wireless network, or communicate with other terminals through the wireless network.
  • the wireless network includes a RAN 110 and a central network (CN) 120.
  • the RAN 110 is used to connect the terminal 130 to the wireless network
  • the CN 120 is used to manage the terminal 130 and provide a gateway for communication with an external network.
  • the terminal also known as terminal equipment, user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • voice/data connectivity Devices such as handheld devices with wireless connectivity, or in-vehicle devices.
  • some examples of terminals are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality, AR) equipment, industrial control (industrial control) wireless terminals, unmanned driving (self-driving) wireless terminals, remote medical surgery (remote medical surgery) wireless terminals, smart grid (smart grid)
  • the network device is a device in a wireless network, for example, a radio access network (RAN) node that connects a terminal to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit) , BBU), or wireless fidelity (Wifi) access point (AP), etc.
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • Fig. 2 shows a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the network architecture includes core network (CN) equipment and RAN equipment.
  • the RAN equipment includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or by multiple nodes.
  • the radio frequency device can be implemented separately from the baseband device, or integrated into the baseband device, or partially remote Integrated in the baseband device.
  • the RAN equipment (eNB) includes a baseband device and a radio frequency device, where the radio frequency device can be arranged remotely relative to the baseband device, such as a remote radio unit (RRU) arranged remotely relative to the BBU .
  • RRU remote radio unit
  • the control plane protocol layer structure may include radio resource control (RRC) layer, packet data convergence protocol (PDCP) layer, radio link control (RLC) layer, media interface Access control (media access control, MAC) layer and physical layer and other protocol layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media interface Access control
  • the user plane protocol layer structure can include the functions of the PDCP layer, the RLC layer, the MAC layer, and the physical layer; in one implementation, the PDCP layer can also include a service data adaptation protocol (SDAP) layer .
  • SDAP service data adaptation protocol
  • the RAN device can include a centralized unit (CU) and a distributed unit (DU), Multiple DUs can be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layers of the wireless network. For example, the functions of the PDCP layer and above protocol layers are set in the CU, and the protocol layers below the PDCP, such as the RLC layer and MAC layer, are set in the DU.
  • RAN equipment can implement radio resource control (RRC), packet data convergence protocol (PDCP), radio link control (RLC), and media access control ( Media Access Control, MAC) and other protocol layer functions; or multiple nodes can implement these protocol layer functions; for example, in an evolution structure, RAN equipment may include a centralized unit (CU) and a distributed unit ( Distributed unit, DU), multiple DUs can be centrally controlled by one CU. As shown in Figure 2, CU and DU can be divided according to the protocol layers of the wireless network. For example, the functions of the PDCP layer and above protocol layers are set in the CU, and the protocol layers below the PDCP, such as the RLC layer and MAC layer, are set in the DU.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • MAC Media Access Control
  • This type of protocol layer division is just an example, it can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and above protocol layers are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU; Or, in a certain protocol layer, for example, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it can also be divided in other ways, for example, by time delay, and functions that need to meet the delay requirement for processing time are set in the DU, and functions that do not need to meet the delay requirement are set in the CU.
  • the radio frequency device can be remote, not placed in the DU, can also be integrated in the DU, or part of the remote part is integrated in the DU, and there is no restriction here.
  • FIG. 3 shows another schematic diagram of a network architecture applicable to the embodiments of the present application.
  • the control plane (CP) and the user plane (UP) of the CU can also be separated and realized by dividing them into different entities, namely the control plane CU entity (CU-CP entity) and the user plane CU entity (CU-UP entity).
  • CU-CP entity control plane CU entity
  • CU-UP entity user plane CU entity
  • the signaling generated by the CU can be sent to the terminal through the DU, or the signaling generated by the terminal can be sent to the CU through the DU.
  • the DU may directly pass the protocol layer encapsulation without analyzing the signaling and transparently transmit it to the terminal or CU. If the following embodiments involve the transmission of such signaling between the DU and the terminal, at this time, the sending or receiving of the signaling by the DU includes this scenario.
  • RRC or PDCP layer signaling will eventually be processed as PHY layer signaling and sent to the terminal, or converted from received PHY layer signaling. Under this architecture, the RRC or PDCP layer signaling can also be considered to be sent by the DU, or sent by the DU and radio frequency.
  • the CU is divided into network equipment on the RAN side.
  • the CU can also be divided into network equipment on the CN side, which is not limited here.
  • the devices in the following embodiments of the present application may be located in terminals or network devices according to the functions they implement.
  • the network device may be a CU node, or a DU node, or a RAN device including a CU node and a DU node.
  • NR-U radio-unlicensed
  • Scenario A Carrier aggregation (CA) between NR-U cell and NR cell
  • the NR-U cell serves as a secondary cell (secondary cell, SCell), the NR cell serves as a primary cell (primary cell, PCell), and the NR cell works in a licensed frequency band.
  • NR-U can perform uplink transmission and downlink transmission, or can only perform downlink transmission.
  • the core network that NR-U connects to is the 5G central network (5G-CN).
  • Scenario B dual connectivity (DC) between NR-U cell and LTE cell
  • the NR-U cell serves as the primary and secondary cell (Primary SCG Cell, PSCell), the LTE cell serves as the PCell, and the LTE cell works in a licensed frequency band.
  • the core network to which the LTE PCell is connected is an evolved packet core (EPC), or the LTE PCell can be connected to the EPC or 5G-CN, and the LTE PCell can be connected to the 5G-CN first.
  • EPC evolved packet core
  • Scenario C Independent NR-U, that is, both uplink and downlink are unlicensed frequency bands
  • NR-U can work independently, and the connected core network is 5G-CN.
  • Scenario D Independent NR-U cell, that is, the uplink is a licensed frequency band, and the downlink is an unlicensed frequency band
  • the core network that NR-U connects to is 5G-CN.
  • Scenario E Dual connection between NR and NR-U.
  • the NR-U cell serves as a primary and secondary cell (Primary SCG Cell, PSCell), the NR cell serves as a PCell, and the NR cell operates in a licensed frequency band.
  • PCell's core network is 5G-CN.
  • the primary cell PCell: a master cell group (MCG) cell, which works on the main frequency band, and is used by the UE to perform the initial connection establishment process or the connection reestablishment process.
  • MCG master cell group
  • SCell If the UE is configured with a CA function, it is a cell that provides additional radio resources in addition to a special cell (SC).
  • the special cell For dual connectivity operation, the special cell refers to the primary cell of MCG or the primary and secondary cell of SCG, otherwise, the special cell is the primary cell.
  • Primary and secondary cell For dual connectivity operations, the primary and secondary cell refers to the cell that sends random access when the UE performs synchronous reconfiguration.
  • Secondary cell group For a UE configured with dual connectivity, a subset of serving cells that includes the PSCell and other secondary cells.
  • the serving cells For UEs in RRC_CONNECTED state, if CA/DC is not configured, there is only one serving cell. If CA/DC is configured, the serving cells include special cells and all secondary cells.
  • LBT listen before talk
  • LBT is performed at the granularity of channels (for example, 20 MHz).
  • a signal for example, a data signal
  • a certain channel for example, the first channel
  • this detection process can be called a clear channel assessment (CCA) or a channel access process.
  • CCA clear channel assessment
  • the channel access process of the first type can be: energy detection based on a fixed duration, for a certain bandwidth, such as 20MHz, a communication device (the communication device can be a terminal device, It can also be a network device) if the signal energy received within a fixed period of time is less than or equal to the first preset threshold, the channel is considered to be idle, so that the communication device can use the idle channel to transmit data; otherwise, the channel is considered busy, and the communication device Do not use the busy channel to transmit data.
  • a communication device can be a terminal device, It can also be a network device
  • the second type of channel access process can be: energy detection based on the back-off mechanism, for a certain bandwidth, a window is defined that defines the number of time slots to be detected
  • the communication device randomly selects a value A from the window (or value range). After the communication device detects at least A free energy detection time slots, it considers the channel to be idle, so that the communication device can use the idle
  • the channel transmits data; otherwise, the channel is considered busy, so the communication device does not use the busy channel to transmit data.
  • idle energy detection means that the signal energy received within a fixed period of time is less than or equal to the second preset threshold.
  • the first preset threshold and the second preset threshold may be predefined, for example, predefined by the protocol, which is not limited.
  • the protocol which is not limited.
  • there is no restriction relationship between the first preset threshold and the second preset threshold and may be the same , It can be different.
  • the channel access process is completed and the channel access process is not completed.
  • a network device can simultaneously indicate a resource used to transmit downlink data and a resource used to perform HARQ feedback on the downlink data through one DCI.
  • the terminal device performs the second type of channel access process for HARQ feedback, and the implementation process is more complicated.
  • this application provides a transmission method.
  • the network device first configures a dynamically scheduled downlink transmission resource or activates a semi-persistent downlink transmission resource through the first DCI, and then sends to the terminal device after completing the channel access process
  • the second DCI indicates an uplink transmission resource used for HARQ feedback on downlink data.
  • the network equipment instructs resource allocation through two DCIs, and the network equipment performs LBT during resource allocation, which is equivalent to the network equipment sharing the COT corresponding to the uplink transmission resource to the terminal equipment, and the terminal equipment obtains it in two times Resources, sharing the LBT effect of the network equipment, allow the terminal equipment to perform the first type of channel access process or allow the terminal equipment not to perform the channel access process, so that the terminal may not perform the second type of channel access process.
  • the feedback information is sent on the uplink resource, thereby simplifying the behavior of the terminal device and reducing the implementation complexity.
  • the uplink transmission resources/downlink transmission resources in this application may include resources in the time domain and resources in the frequency domain.
  • the time-frequency resource in the time domain, may include one or more time domain units (or, it may also be referred to as a time unit), and in the frequency domain, the time-frequency resource may include one or more frequency domain units.
  • a time domain unit (also called a time unit) can be a symbol, or a mini-slot, or a slot, or a subframe, where one subframe
  • the duration of a frame in the time domain can be 1 millisecond (ms)
  • a slot consists of 7 or 14 symbols
  • a mini slot can include at least one symbol (for example, 2 symbols or 7 symbols or 14 symbols). Symbol, or any number of symbols less than or equal to 14 symbols).
  • the above-mentioned time-domain unit sizes are only for the convenience of understanding the solutions of the application, and should not be understood as limiting the present invention. It is understandable that the above-mentioned time-domain unit sizes may be other values, which are not limited in this application.
  • a frequency domain unit can be a physical resource block (PRB), a resource block (resource block, RB), or a resource block group (RBG), or a predefined subband (subband). ).
  • PRB physical resource block
  • RB resource block
  • RBG resource block group
  • subband predefined subband
  • the first, second, third, fourth, and various numerical numbers are only for easy distinction for description, and are not used to limit the scope of the embodiments of the present application. For example, distinguish different DCIs, the order of different serving cells, and so on.
  • the "protocol" in the embodiments of the present application may refer to a standard protocol in the communication field, for example, may include the NR protocol and related protocols applied to future communication systems, which is not limited in this application.
  • “multiple” refers to two or more, and other quantifiers are similar.
  • “And/or” describes the association relationship of the associated object, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • a and/or B which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • a device means to one or more such devices.
  • at least one (at least one of) means one or any combination of subsequent associated objects, for example, "at least one of A, B and C" includes A, B, C, AB, AC, BC, or ABC.
  • the communication method provided in this application can be applied to a wireless communication system, for example, the wireless communication system 100 shown in FIG. 1.
  • the terminal device in the embodiment of this application can communicate with one or more network devices at the same time.
  • the network device in the embodiment of this application can correspond to the network device 110 in FIG. 1, and the terminal device in the embodiment of this application can correspond to ⁇ terminal equipment 130.
  • the terminal device may be any terminal device in a wireless communication system that has a wireless connection relationship with one or more network devices. It is understandable that any terminal device in the wireless communication system can implement wireless communication based on the same technical solution. This application does not limit this.
  • FIG. 4 is a schematic flowchart of an uplink transmission method 200 according to an embodiment of the present application, shown from the perspective of device interaction.
  • the method 400 shown in FIG. 4 may include S410 to S440, and each step is described in detail below. It should be understood that the description of the method 400 only takes the terminal device and the network device as the execution subject.
  • the terminal device can be replaced with a chip configured in the terminal device
  • the network device can be replaced with a chip configured in the network device. chip.
  • S410 The network device sends the first DCI to the terminal device.
  • the terminal device receives the first DCI sent by the network device.
  • the first DCI is used to indicate or activate downlink transmission resources.
  • the downlink transmission resource can be used for the first transmission or retransmission of downlink data.
  • the resource for transmitting the first DCI and the downlink transmission resource may be located in the same or different serving cell (serving cell) or BWP or subband (subband).
  • serving cell serving cell
  • BWP subband
  • subband subband
  • the first DCI can perform dynamic scheduling or semi-persistent scheduling.
  • the two scenarios are described below.
  • the first DCI is used to indicate downlink transmission resources.
  • the downlink transmission resources are, for example, physical downlink shared channel (PDSCH) resources. That is, the first DCI may include PDSCH time-frequency resource information.
  • the device can determine the downlink transmission resource or PDSCH resource according to the time-frequency resource information.
  • PDSCH physical downlink shared channel
  • the first DCI may further include a HARQ process (identifier, ID).
  • ID HARQ process
  • the terminal device can perform HARQ feedback according to the HARQ process ID.
  • the first DCI may further include time zone indication information, and the terminal device can determine the time zone according to the indication information.
  • the time zone is the time zone in which the terminal device expects to receive the second DCI.
  • the time zone indication information may indicate the start time and end time of the time zone, and the terminal device determines the time zone according to the start time and end time.
  • the time zone indication information may indicate the start time and duration (duration) of the time zone, and the terminal device determines the time zone according to the start time and duration.
  • the time zone indication information may indicate the duration, and the terminal device determines the time zone according to the receiving time of the first DCI and the duration.
  • the time zone is the time zone in which the terminal device expects to receive the second DCI.
  • the terminal device monitors the downlink control channel in the target time period to obtain the second DCI, and the target time period may be the time region or a part of the time region. That is, the terminal device may monitor the downlink control channel in the time zone indicated by the first DCI, or may expect to receive the second DCI within the time zone indicated by the first DCI, and monitor the downlink control during part of the time zone in combination with other information. Channel to obtain the second DCI.
  • the start time and end time of the target time period will be described in detail later and will not be repeated here.
  • the network device may also send configuration information to the terminal device.
  • the first DCI may include frequency domain information of the downlink transmission resource, and the configuration information may configure time domain information of the downlink transmission resource.
  • the first DCI is used to activate the downlink transmission resource, and the configuration information may include time domain information and frequency domain information of the downlink transmission resource.
  • the configuration information may be carried by a radio resource control (radio resource control, RRC) message, but this embodiment of the application does not limit this.
  • RRC radio resource control
  • the downlink transmission resource in the semi-persistent scheduling scenario may be periodic, for example, the downlink transmission resource recurs every N subframes, and the semi-persistent scheduling period is N subframes, where N is a positive integer. This period is only an example, and it can also be set in other time domain units. It should be understood that the downlink transmission resource in the semi-persistent scheduling scenario may not be periodic, which is not limited in this application.
  • the relationship between different semi-persistent scheduling resources and HARQ process ID can be pre-defined by the agreement.
  • the protocol may predefine the HARQ process corresponding to subframe 0, the HARQ process corresponding to subframe 10, and the HARQ process corresponding to subframe 20.
  • Both the network equipment and the terminal equipment can determine the HARQ process ID corresponding to the downlink data transmission in different semi-persistent scheduling resources according to the pre-defined rules of the protocol.
  • S420 The network device transmits downlink data on the downlink transmission resource.
  • the terminal device receives the downlink data on the downlink transmission resource.
  • the terminal device receives the downlink data on the downlink transmission resource, decodes the downlink data, and obtains the decoding result: acknowledgement (ACK) or negative acknowledgement (NACK), and saves the decoding of the downlink data Correspondence between the results and HARQ process.
  • ACK indicates that the terminal device decoded correctly
  • NACK indicates that the terminal device did not decode correctly.
  • ACK and NACK may be at the transport block (TB) level or at the codebook block (CB) level, and one TB may include multiple CBs.
  • S430 The network device sends the second DCI to the terminal device.
  • the terminal device receives the second DCI sent by the network device.
  • the network device After the network device completes the channel access process of the first type or the second type, it sends the second DCI to the terminal device and notifies the terminal device of the uplink transmission resource, which is equivalent to sharing the corresponding COT with the terminal device.
  • the second DCI is used to indicate uplink transmission resources
  • the uplink transmission resources are used to transmit HARQ feedback information (referred to as feedback information for short) of the downlink data.
  • the uplink resource may be a physical uplink share channel (PUSCH) resource or a physical uplink control channel (PUCCH) resource, which is not limited in this application.
  • the second DCI may indicate that the terminal device is allowed to perform the channel access process of the first type, or the second DCI may indicate that the terminal device is allowed not to perform the channel access process.
  • the terminal device can decide whether to perform the channel access process of the first type or whether to perform the channel access process.
  • the second DCI may explicitly indicate that the terminal device is allowed to perform the channel access procedure of the first type.
  • the second DCI may carry an indication information indicating that the terminal device is allowed to perform the channel access process of the first type.
  • the second DCI may also implicitly indicate that the terminal device is allowed to perform the channel access process of the first type.
  • the second DCI itself indicates that the terminal device is allowed to perform the channel access procedure of the first type.
  • the "second DCI itself" includes the DCI format and/or the RNTI that scrambles the CRC of the second DCI.
  • the terminal device receives DCI in a specific (or dedicated) DCI format, or the CRC uses DCI scrambled by a specific RNTI, it can determine that the network device allows itself to perform the first type of channel access process.
  • the specific DCI format and/or RNTI may be configured by a network device, for example, the network device may be configured through an RRC message.
  • the second DCI may explicitly or implicitly indicate that the terminal device is not allowed to perform the channel access process.
  • the second DCI instructing the terminal device to allow the first type of channel access process, which will not be repeated here.
  • the terminal device may perform the channel access process of the first type, and after the channel access process of the first type is completed, the uplink transmission resource may be used to send feedback information. Or, in the case of receiving the second DCI, the terminal device may not perform the first type of channel access process, and may use the uplink transmission resource to send feedback information.
  • the bandwidth of a channel may be 20 MHz, but the allocated uplink resources may only occupy part of the 20 MHz bandwidth.
  • the channel access process performed by the terminal device is performed at the granularity of the channel, that is, 20 MHz.
  • the serving cell for transmitting the first DCI or the serving cell where the resources for transmitting the first DCI is located may be the same cell as the serving cell for transmitting the second DCI or the serving cell where the resources for the second DCI are located. , It can also be a different cell.
  • the serving cell that transmits the first DCI is recorded as: the first serving cell.
  • the serving cell where the uplink transmission resource is located is recorded as: the second serving cell.
  • the serving cell that transmits the second DCI is recorded as: the third serving cell.
  • the first serving cell corresponds to the third serving cell, or the two are related. Further, in order to achieve the purpose of enabling the terminal device to know which serving cell to receive the second DCI, the network device may configure the correspondence between the first serving cell and the third serving cell, or may preset the first serving cell and the third serving cell. Correspondence between serving cells. For example, the network device can configure the correspondence between the first serving cell and the third serving cell through an RRC message or through the first DCI. For another example, the correspondence between the first serving cell and the third serving cell may be stipulated in an agreement.
  • the second serving cell and the third serving cell may be the same cell or different cells.
  • the resource for transmitting the second DCI and the uplink transmission resource allocated by the second DCI may be located in the same or different BWP or subband.
  • the second DCI further includes at least one of the following information:
  • the ID may be a cell radio network temporary identifier (C-RNTI), which is used to identify a terminal device. That is, the network device can indicate which terminal device the second DCI is for through the ID information of the terminal device in the second DCI.
  • C-RNTI cell radio network temporary identifier
  • the second DCI may not include the ID information of the terminal device, and the second DCI may be broadcast or multicast.
  • the network device indicates to which cell or cells the second DCI is the first DCI, that is, the uplink transmission resource indicated by the second DCI is used for the downlink transmission resource to which cell Perform HARQ feedback. If the second DCI does not include the ID information of the first serving cell, the terminal device can determine that the second DCI is the first DCI for that cell according to the cell corresponding to the resource for transmitting the second DCI, that is, the third serving cell. As mentioned above, the correspondence between the first cell and the third cell can be configured through an RRC message or specified through an agreement, so the terminal device can determine the first serving cell according to the third serving cell.
  • the second DCI does not include the ID information of the second serving cell, it can be considered that the second serving cell and the downlink transmission resource correspond to the same serving cell.
  • the HARQ process is the HARQ process corresponding to the second DCI. That is to say, which HARQ process the uplink transmission resource indicated by the second DCI performs HARQ feedback.
  • a serving cell may include multiple HARQ processes, then the network device indicates which HARQ process or processes the second DCI is for. In this case, the terminal device may perform HARQ feedback according to the HARQ process corresponding to the downlink data scheduled by the first DCI.
  • the HARQ process ID information is not included in the second DCI, the HARQ process corresponding to the second DCI can be determined in three other ways.
  • the network device sends configuration information to the terminal device, where the configuration information is used to indicate which HARQ processes the terminal device performs HARQ feedback on the uplink transmission resource indicated by the second DCI. That is, the network device is pre-configured with these HARQ processes ID, and the terminal device uses the uplink transmission resources configured by the second DCI to send the HARQ feedback of the HARQ processes corresponding to the HARQ processes ID to the network device. For example, the network device configures HARQ process 1/2/3 through RRC signaling. When the terminal device receives the second DCI, it sends feedback of HARQ process 1/2/3 to the network device on the uplink transmission resources configured by the second DCI. information. It should be understood that the downlink data scheduled by the first DCI may correspond to one or more of HARQ process 1/2/3.
  • the HARQ processes corresponding to the second DCI are all HARQ processes.
  • the terminal device after receiving the second DCI, the terminal device sends feedback information of all HARQ processes to the network device. It should be understood that the downlink data scheduled by the first DCI may correspond to one or more of all HARQ processes.
  • the network device configures the maximum number of HARQ processes that can be fed back.
  • the terminal device informs the network device which HARQ process or processes the feedback information is for.
  • the uplink BWP is the BWP to which the uplink transmission resource belongs.
  • the uplink BWP ID indicates on which BWP the uplink transmission resource configured by the second DCI is located. If the uplink BWP indicated by the second DCI is not the currently activated uplink BWP, the terminal device executes the uplink BWP switching process to switch the activated uplink BWP to the indicated uplink BWP. For example, the terminal device is configured with four BWPs, BWP1/2/3/4, and the current active BWP is BWP1. If the upstream BWP ID indicated by the network device is BWP2, then the currently active BWP is switched to BWP2.
  • the uplink transmission resources configured by the second DCI are on the currently activated UL BWP.
  • the subband is the subband to which the uplink transmission resource belongs.
  • the subband ID is used to indicate which subband the uplink transmission resource is located on.
  • the terminal device sends feedback information to the network device on the indicated subband.
  • the second DCI does not include subband ID information, it can be considered that the uplink transmission resource and the downlink transmission resource correspond to the same subband.
  • one or more of the above (1) to (6) may be included in the second DCI, or the second DCI may not include any of the above.
  • the terminal device when the terminal device receives the second DCI, if there is no running random access procedure or the ongoing random access procedure is completed, the terminal device starts or restarts the BWP inactivity timer (bwp-inactivitytimer). Further, when the bwp-inactivitytimer timer expires, the activated downlink BWP will switch to the initial downlink BWP or the default downlink BWP.
  • the initial downlink BWP is used to initiate the initial access BWP, and the default downlink BWP is indicated by the network device.
  • the BWP activation time can be extended, so that the BWP can be used for data transmission.
  • the terminal device starts or restarts a secondary cell deactivation timer (scell-deactivation timer) when receiving the second DCI. If the scell-deactivationtimer timer expires, deactivate the SCell of the secondary cell. This timer is maintained for the secondary cell.
  • scell-deactivation timer secondary cell deactivation timer
  • the SCell activation time can be extended by starting or restarting the secondary cell deactivation timer, so that the SCell can be used for data transmission.
  • the CRC of the first DCI may be scrambled by the first RNTI
  • the CRC of the second DCI may be scrambled by the second RNTI.
  • the first RNTI and the second RNTI may be the same or different, which is not limited in this application.
  • the first RNTI and the second RNTI may be dedicated RNTIs and may uniquely identify the terminal equipment.
  • the first DCI and the second DCI may both include an indicator bit, which is used to distinguish the first DCI from the second DCI .
  • the DCI includes an indicator bit.
  • the value of the indicator bit is 0, which indicates that the DCI where it is located is the first DCI
  • the value of the indicator bit is 1, which indicates that the DCI where it is located is the second DCI. It is also possible to reverse the meaning of the value of the indicator bit, which is not limited in this application.
  • the second RNTI may be any of the following: C-RNTI, configured scheduling radio network temporary identifier (CS-RNTI), interruption radio network temporary identifier, INT-RNTI), slot format radio network temporary identifier (SFI-RNTI), semi-persistent CSI radio network temporary identifier (SP-CSI-RNTI), transmission Power control-physical uplink control channel-wireless network temporary identification (transmission power control-physical uplink control channel-radio network temporary identifier, TPC-PUCCH-RNTI), transmission power control-physical uplink shared channel-wireless network temporary identification (transmission power) control-physical uplink share channel-radio network temporary identifier, TPC-PUSCH-RNTI), transmission power control-sounding reference signal-wireless network temporary identification (transmission power control-sounding reference signal-radio network temporary identifier, TPC-SRS-RNTI) ) And modulation and coding strategy (modulation and coding scheme-radio network temporary identifier, MCS-RNTI).
  • CS-RNTI configured scheduling radio
  • the second RNTI may also be a newly introduced RNTI, for example, it may be an RNTI that may be introduced in a future protocol.
  • the first RNTI may also be any one of the foregoing RNTIs.
  • S440 The terminal device sends feedback information of the downlink data on the uplink transmission resource.
  • the network device receives the feedback information of the downlink data on the uplink transmission resource.
  • the terminal device may send the stored feedback information including the decoding result (ACK or NACK) of the downlink data to the network device according to the indication of the second DCI.
  • the terminal device can perform the channel access process of the first type according to the instructions of the second DCI, and after the channel access process of the first type is completed, send the stored decoding result (ACK or NACK) including the downlink data to the network device Feedback information.
  • the terminal device does not perform the channel access process, and directly sends the stored feedback information including the decoding result (ACK or NACK) of the downlink data to the network device.
  • the network device indicates resource allocation through two DCIs, and the network device performs LBT when performing resource allocation, which is equivalent to the network device sharing the COT corresponding to the uplink transmission resource to the terminal device, and the terminal device is divided into two Obtain resources and share the LBT effect of the network equipment, then allow the terminal equipment to perform the first type of channel access process or allow the terminal equipment not to perform the channel access process, so that the terminal may not perform the second type of channel access process
  • Sending feedback information on the uplink resource can simplify the behavior of the terminal device and reduce the implementation complexity.
  • the uplink transmission resources can be flexibly allocated through the second DCI, the network equipment can flexibly schedule the uplink and downlink resources, thereby improving resource utilization.
  • the uplink transmission resource and the downlink transmission resource may belong to different COTs.
  • the downlink transmission resource may belong to COT#1
  • the uplink transmission resource may belong to COT#2. Not limited.
  • FIG. 5 shows a schematic diagram of uplink and downlink transmission according to the method provided in an embodiment of the present application.
  • the first DCI is sent on serving cell #1 (that is, an example of the first serving cell).
  • the resources of downlink data that is, downlink transmission resources, are on serving cell #2.
  • the uplink transmission resource indicated by the second DCI sent on serving cell #3 ie, an example of the third serving cell
  • serving cell #4 ie, an example of the second serving cell.
  • the network device needs to perform a channel access process before sending the first DCI, and send the first DCI and downlink data in the corresponding COT after completing the channel access.
  • the time point when the terminal device receives the downlink data corresponds to COT1 of serving cell #4.
  • COT1 Since COT1 is about to end, HARQ feedback cannot be performed in COT1, and feedback can only be performed in subsequent COTs, such as COT2.
  • the network device After the network device completes the second type of channel access process, it shares COT2 with the terminal device, thus achieving cross-COT HARQ feedback.
  • the network device After the network device completes the second type of channel access process, it shares COT2 with the terminal device, thus achieving cross-COT HARQ feedback.
  • the network device After the network device completes the second type of channel access process, it shares COT2 with the terminal device, thus achieving cross-COT HARQ feedback.
  • the first DCI and downlink data may be in COT1
  • the second DCI and HARQ feedback ie, feedback information in this application
  • the transmission method provided in this application can realize cross-COT HARQ feedback.
  • S430 The specific implementation of S430 is exemplified below.
  • the terminal device can obtain DCI by monitoring the downlink control channel in the target time period.
  • the media access control (MAC) entity of the terminal device can obtain the DCI by monitoring the downlink control channel in the target time period.
  • the time zone in which the terminal device expects to receive the second DCI can be defined.
  • the time zone can be configured by the network device, such as indicated by the first DCI as above, or configured by the network device through other signaling, such as RRC signaling. make.
  • the time information configured by the network device can include the start time and end time of the time zone, or include the start time and duration, or include the end time and duration, or include the duration.
  • the start time and end time can be preset or passed other
  • the signaling configuration or the terminal is determined by other methods, and the determining method will be exemplified in the following embodiments.
  • This time zone can be used as an activation time.
  • this activation time is the same as that of other existing DRX activation times, that is, the terminal device monitors the PDCCHs of all activated serving cells in this time zone; or as a redefined Activation time. In this time zone, the terminal device only monitors the PDCCH of the specific activated serving cell, that is, the PDCCH of the serving cell capable of transmitting the second DCI, such as the third serving cell.
  • the activation time of DRX includes the target time period, or the activation time of DRX does not include the target time period.
  • the target time period belongs to the activation time of DRX, or the target time period does not belong to the activation time of DRX.
  • the terminal device monitors the PDCCHs of all activated serving cells within the target time period. If the DRX activation time does not include the target time period, the terminal device monitors the PDCCH of the specific activated serving cell within the target time period, that is, the PDCCH of the serving cell capable of transmitting the second DCI, such as the third serving cell.
  • the MAC entity is not in the activation time (the activation time of DRX).
  • the terminal device specifically, the MAC entity of the terminal device
  • the terminal device will monitor the PDCCH in the corresponding serving cell in order to receive The second DCI of the dedicated RNTI.
  • the MAC entity shall monitor the PDCCH for 2nd DCI addressed to dedicated RNTI on the corresponding serving cell even if the MAC entity is not in Active Time when such is expected.
  • the above-mentioned “corresponding serving cell” is the "first serving cell” herein.
  • the first serving cell refers to a serving cell that transmits the second DCI.
  • the "second DCI for the dedicated RNTI” means that the CRC of the second DCI is scrambled by the dedicated RNTI.
  • the dedicated RNTI corresponds to the second RNTI above. For details, please refer to the above description, which will not be repeated here.
  • the start time of the target time period may be determined according to the position of the first DCI or the position of the downlink data.
  • the start time of the target time period may be the end position of the first DCI or the end position of the downlink data or any of the above
  • the Xth symbol after the end position, X is a positive integer.
  • the start time of the target time period may be configured by the network device.
  • the end time (or called the end time) of the target time period may be the time when the second DCI is received, or may be configured by the network device.
  • the network device may pre-configure the start time and/or end time of the time zone. For example, the network device may pre-configure the start time and/or end time of the time zone through an RRC message. Alternatively, the network device configures the start time and/or end time of the time zone through the first DCI. It should be understood that the network device can configure the time zone by configuring start time + duration, end time + duration, start time + end time, etc. The specific configuration method is not limited in this application.
  • the time zone is the time zone in which the terminal device expects to receive the second DCI.
  • the terminal device monitors the downlink control channel in the target time period to obtain the second DCI, and the target time period may be the time region or a part of the time region.
  • the terminal device may monitor the downlink control channel in the time zone indicated by the first DCI, or may expect to receive the second DCI within the time zone indicated by the first DCI, and monitor the downlink control during part of the time zone in combination with other information.
  • Channel to obtain the second DCI.
  • the first DCI may carry time zone indication information.
  • the time zone indication information indicates or includes the start time of the time zone and the end time of the time zone.
  • the terminal device determines according to the start time of the time zone and the end time of the time zone.
  • the time zone indicates or includes the start time and duration of the time zone, and the terminal device determines the time zone according to the start time and duration of the time zone.
  • the time zone indication information indicates or includes the time length, and the terminal determines the time zone according to the receiving time of the first DCI and the time length indicated by the first DCI.
  • the value of X can be pre-defined by the protocol or can be pre-configured by the network device. For example, the network device can configure the value of X through an RRC message.
  • the end time of the target time period can be determined in many ways. For example, if the terminal device receives the second DCI in the time zone, the end time of the target time period may be the time when the second DCI is received. For another example, if the terminal device does not receive the second DCI in the time zone, the end time of the target time period is the end time of the time zone. In a possible implementation manner, if the terminal device has not monitored the second DCI until the end time of the time zone, the terminal device can also start the retransmission timer (drx-RetransmissionTimer) after the end time, and then retransmit During the running of the timer, by monitoring the PDCCH, the DCI for downlink retransmission sent by the network device is received.
  • drx-RetransmissionTimer retransmissionTimer
  • FIG. 6 shows a schematic diagram of the start time and the end time of the target time period in a dynamic scheduling scenario.
  • the terminal device monitors the PDCCH transmitting the second DCI from the start time, and the terminal device uses the time when the second DCI is monitored as the end time of the target time period. After monitoring the second DCI, the terminal device can perform HARQ feedback on the uplink transmission resources.
  • Fig. 7 shows another schematic diagram of the start time and end time of the target time period in a dynamic scheduling scenario.
  • the terminal device monitors the PDCCH for transmitting the second DCI from the start time.
  • the terminal device has not monitored the second DCI, and the terminal device starts the retransmission timer.
  • the network device configures the time length of the time zone, and the start time of the time zone can be determined by the method for determining the start time of the target time period in scenario one above. At this time, the start time of the target time period is the same as the start time of the time zone. The determination of the end time of the target time period is the same as the description of scenario one above, and will not be repeated here.
  • the network device is configured with a semi-static scheduling time zone, the start time and duration of the network device configuration time zone, or the start time and end time of the time zone, or the end time and duration of the time zone.
  • the start time and end time of the target time period are determined in the same way as in scenario one above. I will not repeat them here.
  • FIG. 8 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the device 500 may include: a transceiver unit 510 and a processing unit 520.
  • the apparatus 500 may be the terminal device in the above method 400, for example, it may be a terminal device or a chip configured in the terminal device.
  • the transceiver unit 510 is configured to receive first downlink control information, the first downlink control information is used to indicate or activate a downlink transmission resource; to receive downlink data on the downlink transmission resource; to receive a second downlink Control information, the second downlink control information is used to indicate uplink transmission resources, and the uplink transmission resources are used to transmit feedback information of the downlink data; the feedback information is sent on the uplink transmission resources.
  • the transceiving unit 510 is specifically configured to monitor the downlink control channel in a target time period to obtain second downlink control information, and the activation time of discontinuous reception of DRX includes the target time period, or the activation time of discontinuous reception of DRX Does not include the target time period.
  • the start time of the target time period is determined according to the end position of the first downlink control information or the end position of the downlink data, or the start time of the target time period is configured by the network device.
  • the end time of the target time period is the time when the second downlink control information is received, or the end time of the target time period is configured by the network device.
  • the first downlink control information includes time zone indication information, the time zone indication information is used to indicate a time zone, and the time zone is a time zone in which the terminal device expects to receive the second downlink control information.
  • the second downlink control information is used to indicate that the type of the channel access process of the terminal device is the first type, or the second downlink control information is used to indicate that the terminal device does not perform the channel access process.
  • the downlink transmission resource and the uplink transmission resource belong to different channel occupation time COTs in the time domain.
  • the second downlink control information further includes at least one of the following:
  • Identification information of the first serving cell where the first serving cell is a cell corresponding to the downlink transmission resource that carries the first downlink control information
  • Identification information of the second serving cell, and uplink transmission resources are located on the second serving cell;
  • Identification information of the HARQ process where the HARQ process is the HARQ process corresponding to the second downlink control information;
  • the cyclic redundancy check CRC of the first downlink control information is scrambled by the first wireless network temporary identification RNTI
  • the CRC of the second downlink control information is scrambled by the second RNTI, the first RNTI and the second RNTI is the same or different.
  • the first RNTI is the same as the second RNTI, and the first downlink control information and the second downlink control information include indicator bits, and the indicator bits are used to distinguish the first downlink control information from the second downlink control information.
  • the first serving cell that transmits the first downlink control information corresponds to the third serving cell; and the transceiving unit 510 is specifically configured to monitor the downlink control channel in the third serving cell to obtain the second downlink control information.
  • the corresponding relationship between the first serving cell and the third serving cell is configured by the network device to the terminal device; or, the corresponding relationship between the first serving cell and the third serving cell is preset.
  • the processing unit 520 is configured to: when there is no running random access process or the ongoing random access process is completed, start or restart the bandwidth part BWP inactivity timer; and/or,
  • the BWP inactivity timer is used for BWP handover, and the secondary cell deactivation timer is used to deactivate the secondary cell.
  • the apparatus 500 may correspond to a terminal device in the method 400 according to an embodiment of the present application, and the apparatus 500 may include a unit for executing the method executed by the terminal device in the method 400.
  • each unit in the device 500 and other operations and/or functions described above are used to implement the corresponding process of the method 400, respectively.
  • the transceiver unit 510 in the device 500 may be an input/output interface.
  • the apparatus 500 may be the network device in the above method 400, for example, it may be a network device or a chip configured in the network device.
  • the transceiver unit 510 is configured to send first downlink control information, the first downlink control information is used to indicate or activate downlink transmission resources; to send downlink data on the downlink transmission resources; to send the second downlink Control information, the second downlink control information is used to indicate uplink transmission resources, and the uplink transmission resources are used to transmit feedback information of downlink data; the feedback information is received on the uplink transmission resources.
  • the first downlink control information includes time zone indication information, the time zone indication information is used to indicate a time zone, and the time zone is a time zone in which the terminal device expects to receive the second downlink control information.
  • the second downlink control information is used to indicate that the type of the channel access process of the terminal device is the first type, or the second downlink control information is used to indicate that the terminal device does not perform the channel access process.
  • the downlink transmission resource and the uplink transmission resource belong to different channel occupation time COTs in the time domain.
  • the second downlink control information further includes at least one of the following:
  • Identification information of the first serving cell where the first serving cell is a cell corresponding to the downlink transmission resource that carries the first downlink control information
  • Identification information of the second serving cell, and uplink transmission resources are located on the second serving cell;
  • Identification information of the HARQ process of the hybrid automatic repeat request where the HARQ process is the HARQ process corresponding to the second downlink control information;
  • the identification information of the BWP of the uplink bandwidth part, and the uplink BWP is the BWP to which the uplink transmission resource belongs;
  • the identification information of the subband, and the subband is the subband to which the uplink transmission resource belongs.
  • the cyclic redundancy check CRC of the first downlink control information is scrambled by the first wireless network temporary identification RNTI
  • the CRC of the second downlink control information is scrambled by the second RNTI, the first RNTI and the second RNTI is the same or different.
  • the first RNTI is the same as the second RNTI, and the first downlink control information and the second downlink control information include indicator bits, and the indicator bits are used to distinguish the first downlink control information from the second downlink control information.
  • the first serving cell that transmits the first downlink control information corresponds to the third serving cell
  • the third serving cell is the cell where the second downlink control information is located.
  • the corresponding relationship between the first serving cell and the third serving cell is configured by the network device to the terminal device; or, the corresponding relationship between the first serving cell and the third serving cell is preset.
  • the apparatus 500 may correspond to a network device in the method 400 according to an embodiment of the present application, and the apparatus 500 may include a unit for executing the method executed by the network device in the method 400.
  • each unit in the device 500 and other operations and/or functions described above are used to implement the corresponding process of the method 400, respectively.
  • the transceiver unit 510 in the device 500 may be an input/output interface.
  • each unit in the device can be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the units can be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element described here can also become a processor, which can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (Field Programmable Gate Arrays, FPGAs), or a combination of at least two of these integrated circuits.
  • ASIC application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • Fig. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application. It may be the terminal device in the above embodiment, and is used to implement the operation of the terminal device in the above embodiment.
  • the terminal device includes: an antenna 810, a radio frequency part 820, and a signal processing part 830.
  • the antenna 810 is connected to the radio frequency part 820.
  • the radio frequency part 820 receives the information sent by the network device through the antenna 810, and sends the information sent by the network device to the signal processing part 830 for processing.
  • the signal processing part 830 processes the information of the terminal equipment and sends it to the radio frequency part 820
  • the radio frequency part 820 processes the information of the terminal equipment and sends it to the network equipment through the antenna 810.
  • the signal processing part 830 may include a modem subsystem, which is used to process data at various communication protocol layers; it may also include a central processing subsystem, which is used to process terminal equipment operating systems and application layers; in addition, it may also Including other subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to control the terminal device camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separate chip.
  • the above apparatus for terminal equipment may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 831, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 832 and an interface circuit 833.
  • the storage element 832 is used to store data and programs, but the program used to execute the method executed by the terminal device in the above method may not be stored in the storage element 832, but stored in a memory outside the modem subsystem.
  • the modem subsystem is loaded and used.
  • the interface circuit 833 is used to communicate with other subsystems.
  • the above apparatus for terminal equipment may be located in a modem subsystem, which may be implemented by a chip.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to perform any of the above terminal equipment executions.
  • the interface circuit is used to communicate with other devices.
  • the unit for the terminal device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the terminal device in the above method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program for executing the method executed by the terminal device in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads a program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal device in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the modem subsystem, where the processing elements may be integrated circuits, For example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal device that implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC), and the SOC chip is used to implement the above method.
  • SOC system-on-a-chip
  • the chip can integrate at least one processing element and a storage element, and the processing element can call the stored program of the storage element to implement the method executed by the above terminal device; or, the chip can integrate at least one integrated circuit to implement the above terminal The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for terminal equipment may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the methods performed by the terminal equipment provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the terminal device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the terminal device are executed in a manner; of course, part or all of the steps executed by the terminal device can also be executed in combination with the first manner and the second manner.
  • the processing element here is the same as the above description, and may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of this application, which is a schematic structural diagram of a network device provided by an embodiment of this application. Used to implement the operation of the network device in the above embodiment.
  • the network equipment includes: an antenna 901, a radio frequency device 902, and a baseband device 903.
  • the antenna 901 is connected to the radio frequency device 902.
  • the radio frequency device 902 receives the information sent by the terminal through the antenna 901, and sends the information sent by the terminal to the baseband device 903 for processing.
  • the baseband device 903 processes the terminal information and sends it to the radio frequency device 902, and the radio frequency device 902 processes the terminal information and sends it to the terminal via the antenna 901.
  • the baseband device 903 may include one or more processing elements 9031, for example, a main control CPU and other integrated circuits.
  • the baseband device 903 may also include a storage element 9032 and an interface 9033.
  • the storage element 9032 is used to store programs and data; the interface 9033 is used to exchange information with the radio frequency device 902.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above apparatus for network equipment may be located in the baseband apparatus 903.
  • the above apparatus for network equipment may be a chip on the baseband apparatus 903.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the baseband device.
  • the processing elements here may be integrated circuits, such as one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing element and storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above network device; or, at least one integrated circuit can be integrated in the chip to implement the above network The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for a network device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method executed by the network device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the network device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the network device are executed in the method; of course, part or all of the steps executed by the network device can be executed in combination with the first method and the second method.
  • the processing element here is the same as the above description, and may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the transmission method in the foregoing method embodiment.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer executes the steps shown in FIGS. 4 to 7 The method of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in FIGS. 4 to 7 The method of any one of the embodiments is shown.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • the network equipment in the above-mentioned device embodiments completely corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or In the sending step, other steps except sending and receiving can be executed by the processing unit (processor).
  • the processing unit processor
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component may be based on, for example, a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输方法和通信装置,简化终端设备能够HARQ反馈前的LBT行为,降低实现复杂度。该方法包括:接收第一DCI,第一用于指示或激活下行传输资源;在下行传输资源上接收下行数据;接收第二DCI,第二DCI用于指示上行传输资源,上行传输资源用于传输下行数据的反馈信息;在上行传输资源上发送所述反馈信息。

Description

传输方法和通信装置
本申请要求于2019年02月15日提交中国专利局、申请号为201910118182.5、申请名称为“传输方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输方法和通信装置。
背景技术
为了提高频谱利用率,无线通信系统可以在非授权频段中传输数据,通信设备,例如终端设备或网络设备,在进行数据传输之前,需要完成信道接入过程(或者说,先听后说(listen before talk,LBT))以接入信道。信道接入过程包括基于固定时长的信道接入过程和基于回退的信道接入过程,在完成信道接入过程之后,通信设备才可以在一段时间内使用信道,这一段时间称作信道占用时间(channel occupancy time,COT)。
当前技术中,终端设备在非授权小区传输下行数据的混合自动重传请求(hybrid automatic repeat request,HARQ)反馈之前,需要进行基于回退的信道接入过程获取信道,以传输对该下行数据的HARQ反馈,该过程实现较复杂。
发明内容
本申请提供一种传输方法和通信装置,简化终端设备能够HARQ反馈前的LBT行为,降低实现复杂度。
第一方面,提供了一种传输方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片执行。
该方法包括:接收第一下行控制信息(downlink control information,DCI),第一DCI用于指示或激活下行传输资源;在下行传输资源上接收下行数据;接收第二DCI,第二DCI用于指示上行传输资源,上行传输资源用于传输下行数据的反馈信息;在上行传输资源上发送所述反馈信息。
本申请提供的传输方法,网络设备首先通过第一DCI配置动态调度的下行传输资源或者激活半静态调度的下行传输资源,然后在完成信道接入过程后,向终端设备发送第二DCI,指示用于对下行数据进行HARQ反馈的上行传输资源。相对于现有技术,网络设备通过两次DCI指示资源分配,且网络设备进行资源分配时会进行先听后说(listen before talk,LBT)(或者称,先检测后发送),相当于网络设备将上行传输资源对应的COT分享给了终端设备,终端设备分两次获取资源,共享了网络设备的LBT效果,则允许终端设备进行第一类型的信道接入过程或者允许终端设备不进行信道接入过程,从而终端可以不进行第二类型的信道接入过程就可以在该上行资源上发送反馈信息,从而能够简化终端 设备的行为,降低实现复杂度。
其中,第一类型的信道接入过程也可以称为基于固定时长的信道接入过程,第二类型的信道接入过程也可以称为基于回退的信道接入过程,具体可以参见具体实施例中的描述,这里不再赘述。
结合第一方面,在第一方面的某些实现方式中,第一DCI还可以包括HARQ进程(process)标识(identifier,ID)。
通过在第一DCI中携带HARQ process ID,终端设备可以根据该HARQ process ID进行HARQ反馈。
结合第一方面,在第一方面的某些实现方式中,该接收第二DCI,包括:在目标时间段内监听下行控制信道以获取所述第二DCI,非连续接收(discontinuous reception,DRX)的激活时间包括所述目标时间段,或者,非连续接收DRX的激活时间不包括所述目标时间段。
若DRX的激活时间包括目标时间段,则终端设备在目标时间段内监听所有激活的服务小区的物理下行控制信道(physical downlink control channel,PDCCH)。若DRX的激活时间不包括目标时间段则终端设备在目标时间段内监听特定的激活的服务小区的PDCCH,即,能够传输第二DCI的服务小区的PDCCH。在此情况下,相比于终端设备在目标时间段内监听所有激活的服务小区的PDCCH,终端设备实现更简单。
结合第一方面,在第一方面的某些实现方式中,目标时间段的起始时间是根据第一DCI的结束位置或者下行数据的结束位置确定的,或者目标时间段的起始时间是网络设备配置的。
结合第一方面,在第一方面的某些实现方式中,目标时间段的结束时间为接收到第二DCI的时间,或者目标时间段的结束时间为网络设备配置的。
结合第一方面,在第一方面的某些实现方式中,第一DCI包括时间区域指示信息,时间区域指示信息用于指示时间区域,时间区域为终端设备期望接收到第二DCI的时间区域。
基于上述技术方案,终端设备可以只在期望接收到第二DCI的时间区域监听第二DCI,而不需要一直监听第二DCI,从而能够节省功耗。
结合第一方面,在第一方面的某些实现方式中,第二DCI用于指示终端设备的信道接入过程的类型为第一类型,或者,第二DCI用于指示终端设备不进行信道接入过程。
基于上述技术方案,在接收到第二DCI的情况下,终端设备可以进行第一类型的信道接入过程,在第一类型的信道接入过程完成后,就可以使用该上行传输资源发送反馈信息。或者,在接收到第二DCI的情况下,终端设备可以不进行第一类型的信道接入过程,就可以使用该上行传输资源发送反馈信息。因此,终端设备可以不进行第二类型的信道接入过程,从而能够简化终端设备的行为,降低实现复杂度。
结合第一方面,在第一方面的某些实现方式中,下行传输资源与上行传输资源在时域上归属于不同的信道占用时间COT。
结合第一方面,在第一方面的某些实现方式中,第二DCI还包括下述中的至少一项:
(1)终端设备的ID信息。
网络设备可以通过第二DCI中的终端设备的ID信息,指示该第二DCI是针对哪个终 端设备的。第二DCI可以不包括终端设备的ID信息,则第二DCI可以是广播或者多播的。
(2)第一服务小区的ID信息。第一服务小区为承载第一DCI的下行传输资源所对应的小区。
第二DCI通过携带第一服务小区的ID信息,可以指示第二DCI所指示的上行传输资源用于对哪个小区的下行传输资源进行HARQ反馈。如果第二DCI中没有包括第一服务小区的ID信息,那么终端设备根据传输第二DCI的资源对应的小区,即第三服务小区,可以确定第二DCI是针对那个小区的第一DCI。
(3)第二服务小区的ID信息。其中,第二DCI指示的上行传输资源位于所述第二服务小区。
通过在第二DCI中携带第二服务小区的ID信息,可以向终端设备指示该上行传输资源所在的服务小区在哪个服务小区。若第二DCI不包括第二服务小区的ID信息,可以认为第二服务小区与下行传输资源对应同一服务小区。
(4)HARQ process ID信息。
该HARQ process为第二DCI所对应的HARQ process。也就是说,该第二DCI所指示的该上行传输资源对哪些HARQ process进行HARQ反馈。
若第二DCI中不包括HARQ process ID信息,则可以通过另外三种方式确定第二DCI所对应的HARQ process。
方式一:网络设备向终端设备发送配置信息,该配置信息用于指示哪些HARQ processes是终端设备在第二DCI所指示的上行传输资源上进行HARQ反馈的。即,网络设备预先配置了这些HARQ processes ID,终端设备采用第二DCI配置的上行传输资源向网络设备发送这些HARQ processes ID对应的HARQ processes的HARQ反馈。
方式二:第二DCI所对应的HARQ process为所有HARQ processes。即,终端设备接收到第二DCI后,向网络设备发送所有HARQ processes的反馈信息。应理解,第一DCI所调度的下行数据可以对应所有HARQ processes中的一个或多个。
方式三:网络设备配置最多可以反馈的HARQ process的数量。终端设备告知网络设备反馈信息是针对哪个或哪些HARQ process的。
(5)上行(band width part,BWP)的ID信息,该上行BWP为该上行传输资源所属的BWP。
也就是说,该上行BWP ID指示第二DCI所配置的上行传输资源位于哪个BWP上。如果第二DCI指示的上行BWP不是当前激活的上行BWP,那么终端设备执行上行BWP切换过程,将激活上行BWP切换到指示的上行BWP。若第二DCI不包括上行BWP ID信息,第二DCI所配置的上行传输资源在当前激活的UL BWP上。
(6)子带(subband)ID的信息,该subband为该上行传输资源所属的subband。
换句话说,该subband ID用于指示上行传输资源位于那个subband上。终端设备在指示的subband上,向网络设备发送反馈信息。
若第二DCI不包括subband ID信息,可以认为上行传输资源与下行传输资源对应同一subband上。
综上,上述(1)至(6)中的一项或多项可包含于第二DCI中,或者第二DCI可以不包括上述任一项。
结合第一方面,在第一方面的某些实现方式中,第一DCI的循环冗余校验(cyclic redundancy check,CRC)通过第一无线网络临时标识(radio network tempory identity,RNTI)加扰,以及,第二DCI的CRC通过第二RNTI加扰,第一RNTI与第二RNTI相同或不同。
比如,若第一RNTI与第二RNTI相同,第一DCI和第二DCI可以包括指示位,指示位用于区分第一DCI和第二DCI。
结合第一方面,在第一方面的某些实现方式中,传输第一DCI的第一服务小区与第三服务小区对应;以及,接收第二DCI,包括:在第三服务小区监听下行控制信道以获取第二DCI。
进一步地,第一服务小区与第三服务小区的对应关系由网络设备配置给终端设备;或者,第一服务小区与第三服务小区的对应关系是预设的。
基于上述技术方案,终端设备可以根据第一服务小区与第三服务小区的对应关系,确定第三服务小区,进而在第三服务小区监听下行控制信道以获取第二DCI。
结合第一方面,在第一方面的某些实现方式中,该方法可以包括:当不存在正在运行的随机接入过程或正在进行的随机接入过程完成,启动或重启带宽部分BWP非活动定时器((bwp-inactivitytimer));和/或,启动或重启辅小区去激活定时器(scell-deactivationtimer);其中,BWP非活动定时器用于BWP切换,辅小区去激活定时器用于去激活辅小区。
通过启动或重启BWP非活动定时,可以延长BWP激活时间,从而该BWP可以用于数据传输。可以通过启动或重启辅小区去激活定时器,延长辅小区(secondary cell,SCell)激活时间,从而该SCell可用于数据传输。
第二方面,提供了一种传输方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行。
该方法包括:发送第一DCI,第一DCI用于指示或激活下行传输资源;在下行传输资源上发送下行数据;发送第二DCI,第二DCI用于指示上行传输资源,上行传输资源用于传输下行数据的反馈信息;在上行传输资源上接收反馈信息。
本申请提供的传输方法,网络设备首先通过第一DCI配置动态调度的下行传输资源或者激活半静态调度的下行传输资源,然后在完成信道接入过程后,向终端设备发送第二DCI,指示用于对下行数据进行HARQ反馈的上行传输资源。相对于现有技术,网络设备通过两次DCI指示资源分配,且网络设备进行资源分配时会进行先听后说(listen before talk,LBT)(或者称,先检测后发送),相当于网络设备将上行传输资源对应的COT分享给了终端设备,终端设备分两次获取资源,共享了网络设备的LBT效果,则允许终端设备进行第一类型的信道接入过程或者允许终端设备不进行信道接入过程,从而终端可以不进行第二类型的信道接入过程就可以在该上行资源上发送反馈信息,从而能够简化终端设备的行为,降低实现复杂度。
结合第二方面,在第二方面的某些实现方式中,第一DCI包括时间区域指示信息,时间区域指示信息用于指示时间区域,时间区域为终端设备期望接收到第二DCI的时间区域。
结合第二方面,在第二方面的某些实现方式中,第二DCI用于指示终端设备的信道接入过程的类型为第一类型,或者,第二DCI用于指示终端设备不进行信道接入过程。
结合第二方面,在第二方面的某些实现方式中,下行传输资源与上行传输资源在时域上归属于不同的信道占用时间COT。
结合第二方面,在第二方面的某些实现方式中,第二DCI还包括下述中的至少一项:
终端设备的ID信息;
第一服务小区的ID信息,第一服务小区为承载第一DCI的下行传输资源所对应的小区;
第二服务小区的ID信息,上行传输资源位于第二服务小区上;
混合自动重传请求HARQ进程的ID信息,HARQ进程为第二DCI所对应的HARQ进程;
上行带宽部分BWP的ID信息,上行BWP为上行传输资源所属的BWP;
子带的ID信息,子带为上行传输资源所属的子带。
结合第二方面,在第二方面的某些实现方式中,第一DCI的循环冗余校验CRC通过第一无线网络临时标识RNTI加扰,以及,第二DCI的CRC通过第二RNTI加扰,第一RNTI与第二RNTI相同或不同。
结合第二方面,在第二方面的某些实现方式中,第一RNTI与第二RNTI相同,且第一DCI和第二DCI包括指示位,指示位用于区分第一DCI和第二DCI。
结合第二方面,在第二方面的某些实现方式中,传输第一DCI的第一服务小区与第三服务小区对应,第三服务小区为第二DCI所在的小区。
结合第二方面,在第二方面的某些实现方式中,第一服务小区与第三服务小区的对应关系由网络设备配置给终端设备;或者,第一服务小区与第三服务小区的对应关系是预设的。
第三方面,本申请提供一种通知装置,具有实现上述方法任意方面中终端设备行为的功能,其包括用于执行上述第一方面的方法所描述的步骤或功能相对应的单元或部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
第四方面,本申请提供一种通信装置,具有实现上述方法任意方面中网络设备行为的功能,其包括用于执行上述第二方面的方法所描述的步骤或功能相对应的单元或部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
第五方面,本申请提供一种通信装置,包括处理器,用于与存储器相连,所述处理器用于读取并执行所述存储器中存储的程序,以实现以上第一方面提供的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送配置消息可以为从处理器输出指示信息的过 程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第五方面中的装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第六方面,本申请提供一种通信装置,包括处理器,用于与存储器相连,所述处理器用于读取并执行所述存储器中存储的程序,以实现以上第二方面提供的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送配置消息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第六方面中的装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第七方面,本申请提供一种通信装置,包括处理器和接口电路,所述处理器用于通过所述接口电路与其它装置通信,并执行以上第一方面提供的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
第八方面,本申请提供一种通信装置,包括处理器和接口电路,所述处理器用于通过所述接口电路与其它装置通信,并执行以上第二方面提供的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
第九方面,本申请提供一种程序,该程序在被处理器执行时,用于执行以上第一方面或第二方面提供的方法。
第十方面,本申请提供一种程序产品,例如计算机可读存储介质,包括第九方面的程序。
基于上述技术方案,网络设备通过两次DCI指示资源分配,且网络设备进行资源分配时会进行LBT,相当于网络设备将上行传输资源对应的COT分享给了终端设备,终端设备分两次获取资源,共享了网络设备的LBT效果,则允许终端设备进行第一类型的信道接入过程或者允许终端设备不进行信道接入过程,从而终端可以不进行第二类型的信道接入过程就可以在该上行资源上发送反馈信息,从而能够简化终端设备的行为,降低实现复 杂度。并且,由于可以通过第二DCI灵活分配上行传输资源,因此网络设备可以灵活调度上下行资源,提高资源利用率。
附图说明
图1是适用于本申请实施例的通信系统的一示意图;
图2是适用于本申请实施例的网络架构的一示意图;
图3是适用于本申请实施例的网络架构的又一示意图;
图4是本申请实施例提供的传输方法的示意性交互图;
图5根据本申请提供方法进行上下行传输的一个示意图;
图6示出了动态调度场景下目标时间段的一个示意图;
图7示出了动态调度场景下目标时间段的另一示意图;
图8是本申请实施例提供的通信装置的示意性框图;
图9是本申请实施例提供的终端设备的结构示意图;
图10是本申请实施例提供的网络设备的一结构示意图;
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如但不限于,窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
图1示出了适用于本申请实施例的通信系统100的示意图。如图1所示,终端130接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端通信。该无线网络包括RAN110和核心网(central network,CN)120,其中RAN110用于将终端130接入到无线网络,CN120用于对终端130进行管理并提供与外网通信的网关。
其中,终端,又称之为终端设备、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、或车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中 的无线终端、或智慧家庭(smart home)中的无线终端等。
其中,网络设备是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
图2示出了本申请实施例提供的一种网络架构的示意图。如图2所示,该网络架构包括核心网(core network,CN)设备和RAN设备。其中RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。例如,在LTE通信系统中,RAN设备(eNB)包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)相对于BBU拉远布置。
RAN设备和终端之间的通信遵循一定的协议层结构。例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能。用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
这些协议层的功能可以由一个节点实现,或者可以由多个节点实现;例如,在一种演进结构中,RAN设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
RAN设备可以由一个节点实现无线资源控制(radio resource control,RRC)、分组数据汇聚层协议(packet data convergence protocol,PDCP)、无线链路控制(radio link control,RLC)、和媒体接入控制(Media Access Control,MAC)等协议层的功能;或者可以由多个节点实现这些协议层的功能;例如,在一种演进结构中,RAN设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在 CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
图3示出了适用于本申请实施例的网络架构的又一示意图。相对于图2所示的架构,还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端,或者终端产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端或CU。以下实施例中如果涉及这种信令在DU和终端之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频发送的。
在以上实施例中CU划分为RAN侧的网络设备,此外,也可以将CU划分为CN侧的网络设备,在此不做限制。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端或网络设备。当采用以上CU-DU的结构时,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的RAN设备。
应理解,上述图1至图3仅是示例性说明,不应对本申请构成任何限定。
本申请的方案可以应用于新无线非授权(new radio-unlicensed,NR-U)小区中,但本申请对此不作限定。NR-U可以满足下述场景中的任一种:
场景A:NR-U小区和NR小区之间进行载波聚合(carrier aggregation,CA)
在该场景下,NR-U小区作为辅小区(secondary cell,SCell),NR小区作为主小区(primary cell,PCell),NR小区工作于授权频段。NR-U可以进行上行传输和下行传输,或者仅能够进行下行传输。NR-U连接的核心网是5G核心网(5G central network,5G-CN)。
场景B:NR-U小区和LTE小区之间进行双连接(dual connectivity,DC)
在该场景下,NR-U小区作为主辅小区(Primary SCG Cell,PSCell),LTE小区作为PCell,LTE小区工作于授权频段。LTE PCell连接的核心网是演进分组核心网(evolved packet core,EPC),或者LTE PCell既可以连接EPC,也可以连接5G-CN,则LTE PCell可以优先连接到5G-CN。
场景C:独立的NR-U,即上行和下行都是非授权频段
在这种情况下,NR-U可以独立工作,连接的核心网是5G-CN。
场景D:独立的NR-U小区,即上行是授权频段,下行是非授权频段
在这种情况下,NR-U连接的核心网是5G-CN。
场景E:NR和NR-U之间的双连接。
在这种情况下,在该场景下,NR-U小区作为主辅小区(Primary SCG Cell,PSCell),NR小区作为PCell,NR小区工作于授权频段。PCell的核心网是5G-CN。
应理解,场景A至E仅是示例性说明,并不应对本申请构成任何限定。
上述中,主小区(PCell):主小区组(master cell group,MCG)小区,工作在主频段上,UE用来执行初始连接建立过程或者连接重建过程。
辅小区(SCell):如果UE配置了CA功能,在特殊小区(special cell,SC)之外提供额外的无线资源的小区。
特殊小区:对于双连接操作,特殊小区指MCG的主小区或者SCG的主辅小区,否则,特殊小区为主小区。
主辅小区(PSCell):对于双连接操作,主辅小区指UE执行同步重配时发送随机接入的小区。
辅小区组(secondary cell group,SCG):对于配置了双连接的UE,一个包含PSCell和其他辅小区的服务小区的子集。
服务小区(serving cell):对于RRC_CONNECTED状态的UE,如果没有配置CA/DC,只有一个服务小区。如果配置了CA/DC,服务小区包括特殊小区和所有辅小区。
在NR-U小区,各通信设备,例如终端设备或者网络设备可以采用先听后说(listen before talk,LBT)(或者称,先检测后发送)机制竞争使用非授权频段的资源。
一般地,LBT是以信道(例如20MHz)的粒度进行的。通信设备在某个信道(例如记作第一信道)上发送信号(例如,数据信号)之前,可以先检测该第一信道是否空闲,例如,是否检测到附近的通信设备正在占用该第一信道发送信号,这一检测过程可以称为空闲信道评估(clear channel assessment,CCA)或者称为信道接入过程。
本申请实施例中,至少存在两种信道接入过程,记作第一类型的信道接入过程和第二类型的信道接入过程。
第一类型的信道接入过程(也可以称为基于固定时长的信道接入过程)可以是:基于固定时长的能量检测,针对一定带宽,例如20MHz,通信设备(该通信设备可以是终端设备,也可以是网络设备)在固定时长内接收到的信号能量小于或等于第一预设门限,则认为信道空闲,从而通信设备可以使用该空闲的信道传输数据;否则,认为信道忙碌,从而通信设备不使用该忙碌的信道传输数据。
第二类型的信道接入过程(也可以称为基于回退的信道接入过程)可以是:基于回退机制的能量检测,针对一定带宽,定义一个窗口,该窗口定义了检测的时隙数量的范围,通信设备从该窗口(或取值范围)内,随机选择一个数值A,通信设备检测了至少A个空闲的能量检测的时隙之后,则认为信道空闲,从而通信设备可以使用该空闲的信道传输数据;否则,认为信道忙碌,从而通信设备不使用该忙碌的信道传输数据。其中,空闲的能量检测是指在固定时长内接收到的信号能量小于或等于第二预设门限。其中,第一预设门限和第二预设门限可以是预定义的,例如协议预定义的,对此不作限定,此外第一预设门限和第二预设门限之间没有限制关系,可以相同,也可以不相同。
在执行信道接入过程时可以得到两种结果:信道接入过程完成和信道接入过程未完成。其中,在用于数据传输的时频资源中有多个时域起始位置,在任意时域起始位置之前确定信道空闲,则可以认为信道接入过程完成;在所有时域起始位置之前都确定信道忙碌,则可以认为信道接入过程未完成。
当前技术中,网络设备可通过一个DCI同时指示用于传输下行数据的资源和用于对该下行数据进行HARQ反馈的资源。但是,若该用于对该下行数据进行HARQ反馈的资源 与传输下行数据的资源不在一个COT,则终端设备针对HARQ反馈进行第二类型的信道接入过程,实现过程较复杂。
有鉴于此,本申请提供了一种传输方法,网络设备首先通过第一DCI配置动态调度的下行传输资源或者激活半静态调度的下行传输资源,然后在完成信道接入过程后,向终端设备发送第二DCI,指示用于对下行数据进行HARQ反馈的上行传输资源。相对于现有技术,网络设备通过两次DCI指示资源分配,且网络设备进行资源分配时会进行LBT,相当于网络设备将上行传输资源对应的COT分享给了终端设备,终端设备分两次获取资源,共享了网络设备的LBT效果,则允许终端设备进行第一类型的信道接入过程或者允许终端设备不进行信道接入过程,从而终端可以不进行第二类型的信道接入过程就可以在该上行资源上发送反馈信息,从而能够简化终端设备的行为,降低实现复杂度。
下面将结合附图详细说明本申请实施例。
为了便于理解本申请实施例,在介绍本申请实施例之前,先作出以下几点说明。
本申请中的上行传输资源/下行传输资源可以包括时域上的资源和频域上的资源。其中,在时域上,时频资源可以包括一个或多个时域单位(或者,也可以称为时间单位),在频域上,时频资源可以包括一个或多个频域单位。
其中,一个时域单位(也可称为时间单元)可以是一个符号,或者一个迷你时隙(Mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时间可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个符号(例如,2个符号或7个符号或者14个符号,或者小于等于14个符号的任意数目符号)。列举的上述时域单位大小仅仅是为了方便理解本申请的方案,不应理解对本发明的限定,可以理解的是,上述时域单位大小可以为其它值,本申请不做限定。
一个频域单位可以是一个物理资源块(physical resource block,PRB)、一个资源块(resource block,RB),或者一个资源块组(resource block group,RBG),或者一个预定义的子带(subband)。
在本申请实施例中,第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的DCI、不同的服务小区的顺序等。
本申请实施例中的“协议”可以是指通信领域的标准协议,例如可以包括NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
在本申请实施例中,“多个”是指两个或两个以上,其它量词与之类似。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。再者,至少一个(at least one of).......”意味着后续关联对象中的一个或任意组合,例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC,或ABC。
应理解,本申请提供的通信方法可适用于无线通信系统,例如,图1中所示的无线通信系统100。本申请实施例中的终端设备可以同时与一个或多个网络设备通信,例如,本 申请实施例中的网络设备可对应于图1中的网络设备110,本申请实施例中的终端设备可对应于终端设备130。
以下,不失一般性,以一个终端设备与一个网络设备之间的交互过程为例详细说明本申请实施例。该终端设备可以为处于无线通信系统中与一个或多个网络设备具有无线连接关系的任意终端设备。可以理解的是,处于该无线通信系统中的任意一个终端设备均可以基于相同的技术方案实现无线通信。本申请对此不做限定。
图4是从设备交互的角度示出的本申请实施例提供的一种上行传输的方法200的示意性流程图。如图4所示,图4中所示的方法400可以包括S410至S440,下面详细介绍各个步骤。应理解,方法400中仅以终端设备和网络设备作为执行主体进行描述,在具体实现时,该终端设备可以替换为配置于终端设备中的芯片,该网络设备可以替换为配置于网络设备中的芯片。
S410,网络设备向终端设备发送第一DCI。相应地,终端设备接收网络设备发送的第一DCI。
其中,第一DCI用于指示或激活下行传输资源。该下行传输资源可以用于下行数据的首次传输或者重传。
需要说明的是,传输第一DCI的资源与该下行传输资源可以位于相同或不同的服务小区(serving cell)或BWP或子带(subband)。其中,一个小区包括至少一个载波,一个载波包括至少一个BWP,一个BWP包括至少一个subband(子带)。
本申请中,第一DCI可以进行动态调度也可以进行半静态调度。下面分别对这两种场景进行说明。
场景1:动态调度
在动态调度场景下,第一DCI用于指示下行传输资源,该下行传输资源例如为下行共享物理信道(physical downlink shared channel,PDSCH)资源,即第一DCI可以包括PDSCH的时频资源信息,终端设备根据该时频资源信息,可以确定下行传输资源或者说确定PDSCH资源。
在一种实现方式中,第一DCI还可以包括HARQ进程(process)标识(identifier,ID)。终端设备可以根据该HARQ process ID进行HARQ反馈。
在一种实现方式中,第一DCI还可以包括时间区域指示信息,根据该指示信息终端设备可以确定时间区域。其中,该时间区域为终端设备期望接收到第二DCI的时间区域。
比如,时间区域指示信息可以指示时间区域的起始时间和结束时间,终端设备根据该起始时间和结束时间,确定该时间区域。或者,时间区域指示信息可以指示时间区域的起始时间和时长(duration),终端设备根据该起始时间和时长,确定时间区域。或者,时间区域指示信息可以指示时长,终端设备根据第一DCI的接收时间和该时长,确定该时间区域。
该时间区域为终端设备期望接收到第二DCI的时间区域。终端设备在目标时间段内监听下行控制信道以获取第二DCI,该目标时间段可以为该时间区域,也可以为时间区域内的一部分。即,终端设备可以在第一DCI指示的时间区域内监听下行控制信道,或者可以在第一DCI指示的时间区域内期望接收到第二DCI,结合其它信息在时间区域内的部分时间监听下行控制信道以获取第二DCI。关于目标时间段的起始时间和结束时间,将在后面 详细描述,在此不再赘述。
场景2:半静态调度
在半静态调度场景下,在S410之前,网络设备还可以向终端设备发送配置信息。一种实现方式中,第一DCI可以包括该下行传输资源的频域信息,该配置信息可以配置该下行传输资源的时域信息。另外一种实现方式中,第一DCI用于激活该下行传输资源,该配置信息可以包括该下行传输资源的时域信息和频域信息。该配置信息可以通过无线资源控制(radio resource control,RRC)消息携带,但本申请实施例对此不作限定。
作为一种实现方式,半静态调度场景下的该下行传输资源可以是周期性的,比如每隔N个子帧该下行传输资源重复出现,半静态调度周期为N个子帧,其中N为正整数。该周期仅为举例,也可以以其他时域单位进行设置。应理解,半静态调度场景下的该下行传输资源也可以不是周期性的,本申请对此不作限定。
不同半静态调度资源与HARQ process ID之间的关系可以由协议预先规定。比如,协议可以预先规定子帧0对应的HARQ process,子帧10对应的HARQ process,子帧20对应的HARQ process等。网络设备和终端设备都可以根据协议预先规定的规则确定不同半静态调度资源内的下行数据传输对应的HARQ process ID。
S420,网络设备在该下行传输资源上传输下行数据。相应地,终端设备在该下行传输资源上接收该下行数据。
终端设备在该下行传输资源上接收到该下行数据,并对该下行数据进行解码,得到解码结果:肯定应答(acknowledgement,ACK)或否定应答(negative acknowledgement,NACK),并保存该下行数据的解码结果与HARQ process的对应关系。其中,ACK表示终端设备正确解码,NACK表示终端设备未正确解码。需说明的是ACK和NACK可以是传输块(transport block,TB)级的,或编码块(codebook block,CB)级的,一个TB可以包括多个CB。
S430,网络设备向终端设备发送第二DCI。相应地,终端设备接收网络设备发送的第二DCI。
具体地,网络设备完成第一类型或第二类型的信道接入过程后,向终端设备发送第二DCI,将该上行传输资源通知给终端设备,相当于将对应的COT分享给终端设备。其中,第二DCI用于指示上行传输资源,该上行传输资源用于传输该下行数据的HARQ反馈信息(简称为反馈信息)。该上行资源可以是物理上行共享信道(physical uplink share channel,PUSCH)资源或物理上行控制信道(physical uplink control channel,PUCCH)资源,本申请对此不作限定。
本申请中,第二DCI可以指示允许终端设备进行第一类型的信道接入过程,或者,第二DCI可以指示允许终端设备不进行信道接入过程。终端设备是否进行第一类型的信道接入过程或者是否进行信道接入过程,可以自行决定。
第二DCI可以显式指示允许终端设备进行第一类型的信道接入过程。例如,第二DCI可以携带一个指示信息,该指示信息指示允许终端设备进行第一类型的信道接入过程。第二DCI也可以隐式指示允许终端设备进行第一类型的信道接入过程。比如,第二DCI本身指示允许终端设备进行第一类型的信道接入过程。“第二DCI本身”包括DCI格式(format)和/或加扰第二DCI的CRC的RNTI。也就是说,终端设备若接收到特定(或 者说专用)DCI格式的DCI,或者CRC采用特定RNTI加扰的DCI,则可以确定网络设备允许自己进行第一类型的信道接入过程。该特定DCI格式和/或RNTI可以由网络设备配置,比如,网络设备可以通过RRC消息配置。
与第二DCI指示允许终端设备进行第一类型的信道接入过程的方式类似,第二DCI可以显式或隐式的指示允许终端设备不进行信道接入过程。具体可以参见上文中对第二DCI指示终端设备允许进行第一类型的信道接入过程所作的说明,这里不再赘述。
在接收到第二DCI的情况下,终端设备可以进行第一类型的信道接入过程,在第一类型的信道接入过程完成后,就可以使用该上行传输资源发送反馈信息。或者,在接收到第二DCI的情况下,终端设备可以不进行第一类型的信道接入过程,就可以使用该上行传输资源发送反馈信息。需要说明的是,一个信道的带宽可以是20MHz,但是分配的上行资源可能只占20MHz的部分带宽,终端设备执行信道接入过程是以信道为粒度的进行的,也就是20MHz。
还需要说明的是,传输第一DCI的服务小区或者说传输第一DCI的资源所在的服务小区,与传输第二DCI的服务小区或者说第二DCI的资源所在的服务小区,可以是同一小区,也可以是不同小区。
本文中,为便于理解,将传输第一DCI的服务小区记作:第一服务小区。将该上行传输资源所在的服务小区记作:第二服务小区。将传输第二DCI的服务小区,记作:第三服务小区。
第一服务小区和第三服务小区对应,或者说二者关联。进一步地,为达到使终端设备获知在哪个服务小区接收第二DCI的目的,网络设备可以配置第一服务小区和第三服务小区之间的对应关系,或者可以预设第一服务小区和第三服务小区之间的对应关系。比如,网络设备可以通过RRC消息,或者通过第一DCI,配置第一服务小区和第三服务小区之间的对应关系。又如,第一服务小区和第三服务小区之间的对应关系可以是协议规定的。
应理解,第二服务小区和第三服务小区可以是同一小区,也可以是不同的小区。传输第二DCI的资源与第二DCI分配的上行传输资源可以位于相同或不同的BWP或subband。
此外,在一种实现方式中,该第二DCI还包括下述信息中的至少一项:
(1)终端设备的ID信息。比如,该ID可以是小区无线网络临时标识(cell radio network temporary identifier,C-RNTI),用于标识终端设备。即,网络设备可以通过第二DCI中的终端设备的ID信息,指示该第二DCI是针对哪个终端设备的。
第二DCI可以不包括终端设备的ID信息,则第二DCI可以是广播或者多播的。
(2)第一服务小区的ID信息。
如果终端设备被配置了多个服务小区,那么网络设备指示该第二DCI是针对哪个或哪些服务小区的第一DCI,即第二DCI所指示的上行传输资源用于对哪个小区的下行传输资源进行HARQ反馈。如果第二DCI中没有包括第一服务小区的ID信息,那么终端设备根据传输第二DCI的资源对应的小区,即第三服务小区,可以确定第二DCI是针对那个小区的第一DCI。如前文所述,第一小区与第三小区的对应关系可以通过RRC消息配置或者通过协议规定,因此终端设备可以根据第三服务小区确定第一服务小区。
(3)第二服务小区的ID信息。
通过在第二DCI中携带第二服务小区的ID信息,可以向终端设备指示该上行传输资 源所在的服务小区在哪个服务小区。
若第二DCI不包括第二服务小区的ID信息,可以认为第二服务小区与下行传输资源对应同一服务小区。
(4)HARQ process的ID信息。
该HARQ process为第二DCI所对应的HARQ process。也就是说,该第二DCI所指示的该上行传输资源对哪些HARQ process进行HARQ反馈。
一个服务小区可以包括多个HARQ process,那么网络设备指示该第二DCI是针对哪个或哪些HARQ process的。在此情况下,终端设备可以根据第一DCI所调度的下行数据对应的HARQ process,进行HARQ反馈。
若第二DCI中不包括HARQ process ID信息,则可以通过另外三种方式确定第二DCI所对应的HARQ process。
方式一
网络设备向终端设备发送配置信息,该配置信息用于指示哪些HARQ processes是终端设备在第二DCI所指示的上行传输资源上进行HARQ反馈的。即,网络设备预先配置了这些HARQ processes ID,终端设备采用第二DCI配置的上行传输资源向网络设备发送这些HARQ processes ID对应的HARQ processes的HARQ反馈。比如,网络设备通过RRC信令配置了HARQ process 1/2/3,当终端设备接收到第二DCI,在第二DCI所配置的上行传输资源上向网络设备发送HARQ process1/2/3的反馈信息。应理解,第一DCI所调度的下行数据可以对应HARQ process1/2/3中的一个或多个。
方式二
第二DCI所对应的HARQ process为所有HARQ processes。
即,终端设备接收到第二DCI后,向网络设备发送所有HARQ processes的反馈信息。应理解,第一DCI所调度的下行数据可以对应所有HARQ processes中的一个或多个。
方式三
网络设备配置最多可以反馈的HARQ process的数量。终端设备告知网络设备反馈信息是针对哪个或哪些HARQ process的。
(5)上行BWP的ID信息,该上行BWP为该上行传输资源所属的BWP。
也就是说,该上行BWP ID指示第二DCI所配置的上行传输资源位于哪个BWP上。如果第二DCI指示的上行BWP不是当前激活的上行BWP,那么终端设备执行上行BWP切换过程,将激活上行BWP切换到指示的上行BWP。例如,终端设备了配置四个BWP,BWP1/2/3/4,当前的激活BWP为BWP1,如果网络设备指示的上行BWP ID为BWP2,那么将当前激活的BWP切换到BWP2。
若第二DCI不包括上行BWP ID信息,第二DCI所配置的上行传输资源在当前激活的UL BWP上。
(6)subband的ID信息,该subband为该上行传输资源所属的subband。
换句话说,该subband ID用于指示上行传输资源位于那个subband上。终端设备在指示的subband上,向网络设备发送反馈信息。
若第二DCI不包括subband ID信息,可以认为上行传输资源与下行传输资源对应同一subband上。
综上,上述(1)至(6)中的一项或多项可包含于第二DCI中,或者第二DCI可以不包括上述任一项。
可选地,作为本申请一个实施例,终端设备在接收到第二DCI时,如果没有正在运行的随机接入过程或正在进行的随机接入过程完成,终端设备启动或重启BWP非活动定时器(bwp-inactivitytimer)。进一步地,bwp-inactivitytimer定时器超时时,激活下行BWP将切换到初始下行BWP或默认下行BWP。初始下行BWP用于发起初始接入的BWP,默认下行BWP是由网络设备指示的。
通过启动或重启BWP非活动定时,可以延长BWP激活时间,从而该BWP可以用于数据传输。
可选地,作为本申请一个实施例,终端设备在接收到第二DCI时,启动或重启辅小区去激活定时器(scell-deactivationtimer)。若scell-deactivationtimer定时器超时,去激活该辅小区SCell,这个timer是针对辅小区维护的。
可以通过启动或重启辅小区去激活定时器,延长SCell激活时间,从而该SCell可用于数据传输。
作为本申请一个实施例,第一DCI的CRC可以通过第一RNTI加扰,第二DCI的CRC可以通过第二RNTI加扰。第一RNTI和第二RNTI可以相同,也可以不同,本申请对此不作限定。第一RNTI和第二RNTI可以是专用RNTI,可以唯一标识终端设备。
在第一RNTI与第二RNTI相同的情况下,为区分第一RNTI和第二RNTI,第一DCI和第二DCI可以都包括一个指示位,该指示位用于区分第一DCI和第二DCI。例如DCI包括指示位,该指示位的取值为0,则指示其所在的DCI为第一DCI,该指示位取值为1,则指示其所在的DCI为第二DCI。也可以将指示位取值的含义反过来,本申请不做限制。
进一步地,第二RNTI可以是下述中任一种:C-RNTI、配置调度无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI)、中断无线电网络临时标识(interruption radio network temporary identifier,INT-RNTI)、时隙格式无线电网络临时标识(slot format radio network temporary identifier,SFI-RNTI)、半持久CSI无线电网络临时标识(semi-persistent CSI radio network temporary identifier,SP-CSI-RNTI)、传输功率控制-物理上行控制信道-无线网络临时标识(transmission power control-physical uplink control channel-radio network temporary identifier,TPC-PUCCH-RNTI)、传输功率控制-物理上行共享信道-无线网络临时标识(transmission power control-physical uplink share channel-radio network temporary identifier,TPC-PUSCH-RNTI)、传输功率控制-探测参考信号-无线网络临时标识(transmission power control-sounding reference signal-radio network temporary identifier,TPC-SRS-RNTI)和调制与编码策略(modulation and coding scheme-radio network temporary identifier,MCS-RNTI)。上述各RNTI的具体含义可以参见现有技术,这里不再赘述。另外,第二RNTI也可以是新引入的RNTI,比如可以是以后协议中可能引入的RNTI。
应理解,第一RNTI也可以是上述RNTI中的任一种。
S440,终端设备在该上行传输资源上发送该下行数据的反馈信息。相应地,网络设备在该上行传输资源上接收该下行数据的反馈信息。
终端设备可以根据第二DCI的指示,向网络设备发送保存的包括该下行数据的解码结 果(ACK或NACK)的反馈信息。终端设备可以根据第二DCI的指示,进行第一类型的信道接入过程,在第一类型的信道接入过程完成后,向网络设备发送保存的包括该下行数据的解码结果(ACK或NACK)的反馈信息。或者,终端设备在接收到第二DCI后,不进行信道接入过程,直接向网络设备发送保存的包括该下行数据的解码结果(ACK或NACK)的反馈信息。
本申请提供的传输方法,网络设备通过两次DCI指示资源分配,且网络设备进行资源分配时会进行LBT,相当于网络设备将上行传输资源对应的COT分享给了终端设备,终端设备分两次获取资源,共享了网络设备的LBT效果,则允许终端设备进行第一类型的信道接入过程或者允许终端设备不进行信道接入过程,从而终端可以不进行第二类型的信道接入过程就可以在该上行资源上发送反馈信息,从而能够简化终端设备的行为,降低实现复杂度。并且,由于可以通过第二DCI灵活分配上行传输资源,因此网络设备可以灵活调度上下行资源,提高资源利用率。
作为本申请一个实施例,该上行传输资源和该下行传输资源可以归属于不同的COT,比如,该下行传输资源可以属于COT#1,该上行传输资源可以属于COT#2,但本申请对此不作限定。
示例性的,图5示出了根据本申请实施例提供方法进行上下行传输的一个示意图。参见图5,第一DCI是在服务小区#1(即,第一服务小区的一个示例)上发送的,下行数据的资源,即下行传输资源,在服务小区#2上,第二DCI是在服务小区#3(即,第三服务小区的一个示例)上发送的,第二DCI指示的上行传输资源在服务小区#4(即,第二服务小区的一个示例)。网络设备在发送第一DCI前需要进行信道接入过程,在完成接入信道后在相应的COT内发送第一DCI和下行数据。终端设备接收下行数据的时间点对应到服务小区#4的COT1内,由于COT1快结束了,不能在COT1进行HARQ反馈,只能在后续的COT,例如COT2内反馈。网络设备在完成第二类型的信道接入过程后,将COT2分享给终端设备,这样就实现了跨COT的HARQ反馈。应理解,如果图中的四个小区是同一个小区,那么第一DCI和下行数据可以在COT1中,第二DCI和HARQ反馈(即,本申请中的反馈信息)可以在COT2中。
综上,本申请提供的传输方法,能够实现跨COT的HARQ反馈。
以下对S430的具体实现方式进行示例性说明。
作为S430的一种具体实现方式,终端设备可以通过在目标时间段内监听下行控制信道以获取DCI。
具体地,终端设备的媒体接入控制(media access control,MAC)实体可以通过在目标时间段内监听下行控制信道以获取DCI。
在一种实现中,可以定义终端设备期望接收到第二DCI的时间区域,该时间区域可以由网络设备配置,例如同上由第一DCI指示,或者由网络设备通过其他信令配置,例如RRC信令。网络设备配置的时间信息可以包括该时间区域的起始时间和结束时间,或者包括起始时间和时长,或者包括结束时间和时长,或者包括时长,起始时间和结束时间可以预设或者通过其它信令配置或者终端通过其它方式确定,确定方式将在下面实施例中举例。该时间区域可以作为一种激活时间,该激活时间的含义同现有其它DRX激活时间的含义相同,即终端设备在该时间区域内监听所有激活的服务小区的PDCCH;或者作为一 种重新定义的激活时间,该时间区域内终端设备仅监听特定的激活的服务小区的PDCCH,即,能够传输第二DCI的服务小区的PDCCH,例如第三服务小区。
此时,DRX的激活时间包括目标时间段,或者,DRX的激活时间不包括目标时间段。或者说,目标时间段属于DRX的激活时间,或者,目标时间段不属于DRX的激活时间。应理解,若DRX的激活时间包括目标时间段,则终端设备在目标时间段内监听所有激活的服务小区的PDCCH。若DRX的激活时间不包括目标时间段则终端设备在目标时间段内监听特定的激活的服务小区的PDCCH,即,能够传输第二DCI的服务小区的PDCCH,例如第三服务小区。
可见,MAC实体不处于激活时间(DRX的激活时间),当第一DCI被期望接收时,终端设备(具体可以是终端设备的MAC实体)将在相应地服务小区监听PDCCH,以便接收用于针对专用RNTI的第二DCI。(The MAC entity shall monitor the PDCCH for 2nd DCI addressed to dedicated RNTI on the corresponding serving cell even if the MAC entity is not in Active Time when such is expected.)
“when such is expected”指上述的时间区域或目标时间段。
上述“相应地服务小区”是本文中的“第一服务小区”。第一服务小区是指传输第二DCI的服务小区。关于第一服务小区具体可以参见上文的描述,这里不再赘述。
所述“针对专用RNTI的第二DCI”是指,第二DCI的CRC通过专用的RNTI加扰。专用的RNTI对应上文中的第二RNTI,具体可以参见上文的描述,这里不再赘述。
进一步地,目标时间段的起始时间可以根据第一DCI的位置或者下行数据的位置确定,例如目标时间段的起始时间可以是第一DCI的结束位置或者下行数据的结束位置或以上任一结束位置之后的第X个符号,X为正整数。或者,目标时间段的起始时间可以由网络设备配置。
目标时间段的结束时间(或称为终止时间)可以是接收到第二DCI的时间,或者是网络设备配置的。
其中,网络设备可以预先配置时间区域的起始时间和/或结束时间,比如,网络设备可以通过RRC消息预先配置时间区域的起始时间和/或结束时间。或者,网络设备通过第一DCI配置时间区域的起始时间和/或结束时间。应理解,网络设备可以通过配置起始时间+时长、结束时间+时长、起始时间+结束时间等方式配置时间区域,具体通过哪种方式配置,本申请对此不作限定。该时间区域为终端设备期望接收到第二DCI的时间区域。终端设备在目标时间段内监听下行控制信道以获取第二DCI,该目标时间段可以为该时间区域,也可以为时间区域内的一部分。即,终端设备可以在第一DCI指示的时间区域内监听下行控制信道,或者可以在第一DCI指示的时间区域内期望接收到第二DCI,结合其它信息在时间区域内的部分时间监听下行控制信道以获取第二DCI。以下,结合两种场景,即动态调度和半静态调度两种场景进行举例说明。
场景一:动态调度
第一DCI可以携带时间区域指示信息,该时间区域指示信息指示或包括时间区域的起始时间和时间区域的结束时间,终端设备根据该时间区域的起始时间和该时间区域的结束时间,确定该时间区域。或者,时间区域指示信息指示或包括时间区域的起始时间和时长,终端设备根据该时间区域的起始时间和时长,确定该时间区域。或者,时间区域指示信息 指示或包括时长,终端根据第一DCI的接收时间和第一DCI指示的时长,确定该时间区域。
目标时间段的起始时间可以根据第一DCI的结束位置或下行数据的结束位置确定,例如,第一DCI的结束位置或者下行数据的结束位置之后的第X个符号,X≥0,X为整数,其中X=0即为第一DCI的结束位置或下行数据的结束位置。X的值可以由协议预先定义或者可以由网络设备预先配置。比如,网络设备可以通过RRC消息配置X的值。
目标时间段的结束时间可以有多种方式确定。例如,终端设备在时间区域内接收到第二DCI,则目标时间段的结束时间可以是接收到第二DCI的时间。再如,终端设备在时间区域内没有接收到第二DCI,则目标时间段的结束时间是时间区域的结束时间。在一种可能的实现方式中,如果直到时间区域的结束时间,终端设备还没有监听到第二DCI,那么终端设备还可以在结束时间之后启动重传定时器(drx-RetransmissionTimer),在重传定时器运行期间,通过监听PDCCH,接收网络设备发送的用于下行重传的DCI。
示例性的,图6示出了动态调度场景下,目标时间段的起始时间和结束时间的一个示意图。参见图6,终端设备从起始时间开始监听传输第二DCI的PDCCH,终端设备以监听到第二DCI的时间作为目标时间段的结束时间。在监听到第二DCI后,终端设备可以在上行传输资源上进行HARQ反馈。
图7示出了动态调度场景下,目标时间段的起始时间和结束时间的另一示意图。参见图7,终端设备从起始时间开始监听传输第二DCI的PDCCH,在时间区域的结束时间到来时终端设备还没有监听到第二DCI,则终端设备启动重传定时器。
场景二:半静态调度
在一种实现中,网络设备配置时间区域的时长,时间区域的起始时间可以采用以上场景一中目标时间段的起始时间的确定方法来确定。此时,目标时间段的起始时间同该时间区域的起始时间。目标时间段的结束时间的确定同以上场景一的描述,在此不再赘述。
在另一种实现中,网络设备配置半静态调度的时间区域,网络设备配置时间区域的起始时间和时长,或,时间区域的起始时间和结束时间,或时间区域的结束时间和时长。目标时间段的起始时间和结束时间的确定方式同以上场景一。在此不再赘述。
上文中结合图4至图7对本申请实施例的传输方法做了详细说明。以下,结合图8至图10对本申请实施例的装置进行详细说明。
图8是本申请实施例提供的通信装置的示意性框图。如图8所示,该装置500可以包括:收发单元510和处理单元520。
在一种可能的设计中,该装置500可以为上述方法400中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
一种可能的实施方式,该收发单元510用于接收第一下行控制信息,第一下行控制信息用于指示或激活下行传输资源;在该下行传输资源上接收下行数据;接收第二下行控制信息,第二下行控制信息用于指示上行传输资源,上行传输资源用于传输该下行数据的反馈信息;在该上行传输资源上发送反馈信息。
可选地,该收发单元510具体用于:在目标时间段内监听下行控制信道以获取第二下行控制信息,非连续接收DRX的激活时间包括目标时间段,或者,非连续接收DRX的激活时间不包括目标时间段。
可选地,目标时间段的起始时间是根据第一下行控制信息的结束位置或者下行数据的结束位置确定的,或者目标时间段的起始时间是网络设备配置的。
可选地,目标时间段的结束时间为接收到第二下行控制信息的时间,或者目标时间段的结束时间为网络设备配置的。
可选地,第一下行控制信息包括时间区域指示信息,时间区域指示信息用于指示时间区域,时间区域为终端设备期望接收到第二下行控制信息的时间区域。
可选地,第二下行控制信息用于指示终端设备的信道接入过程的类型为第一类型,或者,第二下行控制信息用于指示终端设备不进行信道接入过程。
可选地,下行传输资源与上行传输资源在时域上归属于不同的信道占用时间COT。
可选地,第二下行控制信息还包括下述中的至少一项:
终端设备的标识信息;
第一服务小区的标识信息,第一服务小区为承载第一下行控制信息的下行传输资源所对应的小区;
第二服务小区的标识信息,上行传输资源位于第二服务小区上;
HARQ进程的标识信息,该HARQ进程为第二下行控制信息所对应的HARQ进程;
上行带宽部分BWP的标识信息,该上行BWP为上行传输资源所属的BWP;
子带的标识信息,该子带为所述上行传输资源所属的子带。
可选地,第一下行控制信息的循环冗余校验CRC通过第一无线网络临时标识RNTI加扰,以及,第二下行控制信息的CRC通过第二RNTI加扰,第一RNTI与第二RNTI相同或不同。
可选地,第一RNTI与第二RNTI相同,且第一下行控制信息和第二下行控制信息包括指示位,指示位用于区分第一下行控制信息和第二下行控制信息。
可选地,传输第一下行控制信息的第一服务小区与第三服务小区对应;以及,该收发单元510具体用于:在第三服务小区监听下行控制信道以获取第二下行控制信息。
可选地,第一服务小区与第三服务小区的对应关系由网络设备配置给终端设备;或者,第一服务小区与第三服务小区的对应关系是预设的。
可选地,处理单元520用于:当不存在正在运行的随机接入过程或正在进行的随机接入过程完成,启动或重启带宽部分BWP非活动定时器;和/或,
启动或重启辅小区去激活定时器;
其中,BWP非活动定时器用于BWP切换,辅小区去激活定时器用于去激活辅小区。
应理解,装置500可对应于根据本申请实施例的方法400中的终端设备,该装置500可以包括用于执行方法400中的终端设备执行的方法的单元。并且,该装置500中的各单元和上述其他操作和/或功能分别为了实现方法400的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图4至图7的方法实施例的描述,为了简洁,这里不再赘述。
还应理解,该装置500为配置于终端设备中的芯片时,该装置500中的收发单元510可以为输入/输出接口。
在另一种可能的设计中,该装置500可以为上述方法400中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
一种可能的实施方式,该收发单元510用于,发送第一下行控制信息,第一下行控制信息用于指示或激活下行传输资源;在下行传输资源上发送下行数据;发送第二下行控制信息,第二下行控制信息用于指示上行传输资源,上行传输资源用于传输下行数据的反馈信息;在上行传输资源上接收反馈信息。
可选地,第一下行控制信息包括时间区域指示信息,时间区域指示信息用于指示时间区域,时间区域为终端设备期望接收到第二下行控制信息的时间区域。
可选地,第二下行控制信息用于指示终端设备的信道接入过程的类型为第一类型,或者,第二下行控制信息用于指示终端设备不进行信道接入过程。
可选地,下行传输资源与上行传输资源在时域上归属于不同的信道占用时间COT。
可选地,第二下行控制信息还包括下述中的至少一项:
终端设备的标识信息;
第一服务小区的标识信息,第一服务小区为承载第一下行控制信息的下行传输资源所对应的小区;
第二服务小区的标识信息,上行传输资源位于第二服务小区上;
混合自动重传请求HARQ进程的标识信息,HARQ进程为第二下行控制信息所对应的HARQ进程;
上行带宽部分BWP的标识信息,上行BWP为上行传输资源所属的BWP;
子带的标识信息,子带为上行传输资源所属的子带。
可选地,第一下行控制信息的循环冗余校验CRC通过第一无线网络临时标识RNTI加扰,以及,第二下行控制信息的CRC通过第二RNTI加扰,第一RNTI与第二RNTI相同或不同。
可选地,第一RNTI与第二RNTI相同,且第一下行控制信息和第二下行控制信息包括指示位,指示位用于区分第一下行控制信息和第二下行控制信息。
可选地,传输第一下行控制信息的第一服务小区与第三服务小区对应,第三服务小区为第二下行控制信息所在的小区。
可选地,第一服务小区与第三服务小区的对应关系由网络设备配置给终端设备;或者,第一服务小区与第三服务小区的对应关系是预设的。
应理解,装置500可对应于根据本申请实施例的方法400中的网络设备,该装置500可以包括用于执行方法400中的网络设备执行的方法的单元。并且,该装置500中的各单元和上述其他操作和/或功能分别为了实现方法400的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图4至图7的方法实施例的描述,为了简洁,这里不再赘述。
还应理解,该装置500为配置于网络设备中的芯片时,该装置500中的收发单元510可以为输入/输出接口。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器 中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
图9是本申请实施例提供的终端设备的结构示意图。其可以为以上实施例中的终端设备,用于实现以上实施例中终端设备的操作。如图9所示,该终端设备包括:天线810、射频部分820、信号处理部分830。天线810与射频部分820连接。在下行方向上,射频部分820通过天线810接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分830进行处理。在上行方向上,信号处理部分830对终端设备的信息进行处理,并发送给射频部分820,射频部分820对终端设备的信息进行处理后经过天线810发送给网络设备。
信号处理部分830可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端设备操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端设备相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。可选的,以上用于终端设备的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件831,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件832和接口电路833。存储元件832用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件832中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路833用于与其它子系统通信。以上用于终端设备的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理 元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
图10是本申请实施例提供的网络设备的结构示意图,其为本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图10所示,该网络设备包括:天线901、射频装置902、基带装置903。天线901与射频装置902连接。在上行方向上,射频装置902通过天线901接收终端发送的信息,将终端发送的信息发送给基带装置903进行处理。在下行方向上,基带装置903对终端的信息进行处理,并发送给射频装置902,射频装置902对终端的信息进行处理后经过天线901发送给终端。
基带装置903可以包括一个或多个处理元件9031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置903还可以包括存储元件9032和接口9033,存储元件9032用于存储程序和数据;接口9033用于与射频装置902交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置903,例如,以上用于网络设备的装置可以为基带装置903上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元 件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述方法实施例中的传输方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软 件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图4至图7所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图4至图7所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等 数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而 前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种传输方法,其特征在于,包括:
    接收第一下行控制信息,所述第一下行控制信息用于指示或激活下行传输资源;
    在所述下行传输资源上接收下行数据;
    接收第二下行控制信息,所述第二下行控制信息用于指示上行传输资源,所述上行传输资源用于传输所述下行数据的反馈信息;
    在所述上行传输资源上发送所述反馈信息。
  2. 如权利要求1所述的方法,其特征在于,所述接收第二下行控制信息,包括:
    在目标时间段内监听下行控制信道以获取所述第二下行控制信息,非连续接收DRX的激活时间包括所述目标时间段,或者,非连续接收DRX的激活时间不包括所述目标时间段。
  3. 如权利要求2所述的方法,其特征在于,所述目标时间段的起始时间是根据所述第一下行控制信息的结束位置或者所述下行数据的结束位置确定的,或者所述目标时间段的起始时间是网络设备配置的。
  4. 如权利要求2或3所述的方法,其特征在于,所述目标时间段的结束时间为接收到所述第二下行控制信息的时间,或者所述目标时间段的结束时间为网络设备配置的。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述第一下行控制信息包括时间区域指示信息,所述时间区域指示信息用于指示时间区域,所述时间区域为终端设备期望接收到所述第二下行控制信息的时间区域。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述第二下行控制信息用于指示终端设备的信道接入过程的类型为第一类型,或者,所述第二下行控制信息用于指示终端设备不进行信道接入过程。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述下行传输资源与所述上行传输资源在时域上归属于不同的信道占用时间COT。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述第二下行控制信息还包括下述中的至少一项:
    终端设备的标识信息;
    第一服务小区的标识信息,所述第一服务小区为承载所述第一下行控制信息的下行传输资源所对应的小区;
    第二服务小区的标识信息,所述上行传输资源位于所述第二服务小区;
    混合自动重传请求HARQ进程的标识信息,所述HARQ进程为所述第二下行控制信息所对应的HARQ进程;
    上行带宽部分BWP的标识信息,所述上行BWP为所述上行传输资源所属的BWP;
    子带的标识信息,所述子带为所述上行传输资源所属的子带。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述第一下行控制信息的循环冗余校验CRC通过第一无线网络临时标识RNTI加扰,以及,所述第二下行控制信息的CRC通过第二RNTI加扰,所述第一RNTI与所述第二RNTI相同或不同。
  10. 如权利要求9所述的方法,其特征在于,所述第一RNTI与所述第二RNTI相同,且所述第一下行控制信息和所述第二下行控制信息包括指示位,所述指示位用于区分所述第一下行控制信息和所述第二下行控制信息。
  11. 如权利要求1至10中任一项所述的方法,其特征在于,传输所述第一下行控制信息的第一服务小区与第三服务小区对应;
    以及,所述接收第二下行控制信息,包括:
    在所述第三服务小区监听下行控制信道以获取所述第二下行控制信息。
  12. 如权利要求11所述的方法,其特征在于,所述第一服务小区与所述第三服务小区的对应关系由网络设备配置给终端设备;或者,
    所述第一服务小区与所述第三服务小区的对应关系是预设的。
  13. 如权利要求1至12中任一项所述的方法,其特征在于,还包括:
    当不存在正在运行的随机接入过程或正在进行的随机接入过程完成,启动或重启带宽部分BWP非活动定时器;和/或,
    启动或重启辅小区去激活定时器;
    其中,所述BWP非活动定时器用于BWP切换,所述辅小区去激活定时器用于去激活辅小区。
  14. 一种传输方法,其特征在于,包括:
    发送第一下行控制信息,所述第一下行控制信息用于指示或激活下行传输资源;
    在所述下行传输资源上发送下行数据;
    发送第二下行控制信息,所述第二下行控制信息用于指示上行传输资源,所述上行传输资源用于传输所述下行数据的反馈信息;
    在所述上行传输资源上接收所述反馈信息。
  15. 如权利要求14所述的方法,其特征在于,所述第一下行控制信息包括时间区域指示信息,所述时间区域指示信息用于指示时间区域,所述时间区域为终端设备期望接收到所述第二下行控制信息的时间区域。
  16. 如权利要求14或15所述的方法,其特征在于,所述第二下行控制信息用于指示终端设备的信道接入过程的类型为第一类型,或者,所述第二下行控制信息用于指示终端设备不进行信道接入过程。
  17. 如权利要求14至16中任一项所述的方法,其特征在于,所述下行传输资源与所述上行传输资源在时域上归属于不同的信道占用时间COT。
  18. 如权利要求14至17中任一项所述的方法,其特征在于,所述第二下行控制信息还包括下述中的至少一项:
    终端设备的标识信息;
    第一服务小区的标识信息,所述第一服务小区为承载所述第一下行控制信息的下行传输资源所对应的小区;
    第二服务小区的标识信息,所述上行传输资源位于所述第二服务小区上;
    混合自动重传请求HARQ进程的标识信息,所述HARQ进程为所述第二下行控制信息所对应的HARQ进程;
    上行带宽部分BWP的标识信息,所述上行BWP为所述上行传输资源所属的BWP;
    子带的标识信息,所述子带为所述上行传输资源所属的子带。
  19. 如权利要求14至18中任一项所述的方法,其特征在于,所述第一下行控制信息的循环冗余校验CRC通过第一无线网络临时标识RNTI加扰,以及,所述第二下行控制信息的CRC通过第二RNTI加扰,所述第一RNTI与所述第二RNTI相同或不同。
  20. 如权利要求19所述的方法,其特征在于,其特征在于,所述第一RNTI与所述第二RNTI相同,且所述第一下行控制信息和所述第二下行控制信息包括指示位,所述指示位用于区分所述第一下行控制信息和所述第二下行控制信息。
  21. 如权利要求14至20中任一项所述的方法,其特征在于,传输所述第一下行控制信息的第一服务小区与第三服务小区对应,所述第三服务小区为所述第二下行控制信息所在的小区。
  22. 如权利要求21所述的方法,其特征在于,所述第一服务小区与所述第三服务小区的对应关系由网络设备配置给终端设备;或者,
    所述第一服务小区与所述第三服务小区的对应关系是预设的。
  23. 一种通信装置,其特征在于,包括用于执行如权利要求1至13中任一项所述的方法的各步骤的单元。
  24. 一种通信装置,其特征在于,包括处理器和接口电路,
    所述处理器用于通过所述接口电路与网络设备通信,并执行如权利要求1至13中任一项所述的方法。
  25. 一种通信装置,其特征在于,包括处理器,用于与存储器相连,读取并执行所述存储器中存储的程序,以实现如权利要求1至13中任一项所述的方法。
  26. 一种终端设备,其特征在于,包括如权利要求23至25中任一项所述的装置。
  27. 一种通信装置,其特征在于,包括用于执行如权利要求14至22中任一项所述的方法的各步骤的单元。
  28. 一种通信装置,其特征在于,包括处理器和接口电路,
    所述处理器用于通过所述接口电路与终端设备通信,并执行如权利要求14至22中任一项所述的方法。
  29. 一种通信装置,其特征在于,包括处理器,用于与存储器相连,读取并执行所述存储器中存储的程序,以实现如权利要求14至22中任一项所述的方法。
  30. 一种网络设备,其特征在于,包括如权利要求27至29中任一项所述的装置。
  31. 一种计算机可读介质,其特征在于,包括计算机程序,当所述计算机程序在处理器上运行时,使得所述处理器执行如权利要求1至22中任一项所述的方法。
PCT/CN2020/075331 2019-02-15 2020-02-14 传输方法和通信装置 WO2020164605A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021547514A JP7299329B2 (ja) 2019-02-15 2020-02-14 送信方法および通信装置
CA3129474A CA3129474C (en) 2019-02-15 2020-02-14 Transmission method and communications apparatus
AU2020220935A AU2020220935B2 (en) 2019-02-15 2020-02-14 Transmission method and communications apparatus
KR1020217028021A KR102657442B1 (ko) 2019-02-15 2020-02-14 송신 방법 및 통신 장치
EP20755939.4A EP3914010A4 (en) 2019-02-15 2020-02-14 TRANSMISSION METHOD AND COMMUNICATION APPARATUS
US17/403,649 US20210378007A1 (en) 2019-02-15 2021-08-16 Transmission method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910118182.5 2019-02-15
CN201910118182.5A CN111585730B (zh) 2019-02-15 2019-02-15 传输方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/403,649 Continuation US20210378007A1 (en) 2019-02-15 2021-08-16 Transmission method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020164605A1 true WO2020164605A1 (zh) 2020-08-20

Family

ID=72045000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075331 WO2020164605A1 (zh) 2019-02-15 2020-02-14 传输方法和通信装置

Country Status (8)

Country Link
US (1) US20210378007A1 (zh)
EP (1) EP3914010A4 (zh)
JP (1) JP7299329B2 (zh)
KR (1) KR102657442B1 (zh)
CN (1) CN111585730B (zh)
AU (1) AU2020220935B2 (zh)
CA (1) CA3129474C (zh)
WO (1) WO2020164605A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022082107A1 (en) * 2020-10-16 2022-04-21 Hua Zhou Bandwidth part for multicast and broadcast services

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162019A (ja) * 2019-03-27 2020-10-01 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
CN110547029B (zh) * 2019-07-23 2023-06-27 北京小米移动软件有限公司 信息配置及上报方法及装置、基站和用户设备
CN114389767A (zh) * 2020-10-16 2022-04-22 展讯通信(上海)有限公司 信息传输方法及装置
CN114374496B (zh) * 2020-10-19 2024-06-07 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质
CN114026810A (zh) * 2021-09-29 2022-02-08 北京小米移动软件有限公司 一种混合自动重传请求进程号的确定方法及其装置
WO2023123381A1 (zh) * 2021-12-31 2023-07-06 Oppo广东移动通信有限公司 一种资源分配指示域的确定方法及终端设备、网络设备
CN117460057A (zh) * 2022-07-14 2024-01-26 华为技术有限公司 通信方法、装置、设备以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107332646A (zh) * 2016-04-29 2017-11-07 中兴通讯股份有限公司 Harq-ack的发送方法及装置
CN107347002A (zh) * 2016-05-06 2017-11-14 北京三星通信技术研究有限公司 一种harq-ack反馈信息的传输方法和设备
US10177875B2 (en) * 2016-02-01 2019-01-08 Ofinno Technologies, Llc Downlink control signaling for uplink transmission in a wireless network

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158976B (zh) * 2011-04-02 2013-06-26 电信科学技术研究院 一种调度和接收数据的方法、系统及设备
WO2014000214A1 (zh) * 2012-06-28 2014-01-03 华为技术有限公司 下行数据的反馈信息的传输方法及终端、基站
CN103873212A (zh) * 2012-12-12 2014-06-18 北京三星通信技术研究有限公司 一种上行ack/nack绑定传输的方法、终端及基站
CN104243108B (zh) * 2013-06-08 2019-06-14 中兴通讯股份有限公司 上行混合自动重传请求反馈方法、装置和系统
CN105634689B (zh) * 2014-11-06 2019-02-05 电信科学技术研究院 一种harq确认信息的反馈方法及装置
CN108353417A (zh) * 2015-11-04 2018-07-31 交互数字专利控股公司 对具有不同tti持续时间的传输进行复用的设备及方法
WO2017083388A1 (en) * 2015-11-10 2017-05-18 Idac Holdings, Inc. Methods and apparatuses directed to cooperative communications
EP3451567B1 (en) * 2016-07-29 2021-08-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method of feeding back ack/nack information, terminal equipment, and network equipment
JP7320948B2 (ja) 2016-12-22 2023-08-04 三菱電機株式会社 通信システム、基地局装置および通信端末装置
CN108633016B (zh) * 2017-03-23 2023-10-13 华为技术有限公司 一种下行控制信息的收发方法及装置
WO2019028917A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 一种上行数据反馈的方法和装置
CN113228541B (zh) * 2018-12-21 2023-02-28 中兴通讯股份有限公司 无线通信方法、装置及计算机可读程序存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177875B2 (en) * 2016-02-01 2019-01-08 Ofinno Technologies, Llc Downlink control signaling for uplink transmission in a wireless network
CN107332646A (zh) * 2016-04-29 2017-11-07 中兴通讯股份有限公司 Harq-ack的发送方法及装置
CN107347002A (zh) * 2016-05-06 2017-11-14 北京三星通信技术研究有限公司 一种harq-ack反馈信息的传输方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "HARQ Enhancements for NR-U", 3GPP DRAFT; R1-1812406, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 4, XP051478606 *
HUAWEI; HISILICON: "Feature Lead Summary of HARQ Enhancement in NR-U", 3GPP DRAFT; R1-1814146, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 15, XP051494603 *
See also references of EP3914010A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022082107A1 (en) * 2020-10-16 2022-04-21 Hua Zhou Bandwidth part for multicast and broadcast services

Also Published As

Publication number Publication date
JP2022521712A (ja) 2022-04-12
AU2020220935B2 (en) 2023-02-02
KR20210119522A (ko) 2021-10-05
AU2020220935A1 (en) 2021-09-09
EP3914010A1 (en) 2021-11-24
CA3129474C (en) 2023-12-19
CN111585730A (zh) 2020-08-25
KR102657442B1 (ko) 2024-04-16
CN111585730B (zh) 2021-10-15
US20210378007A1 (en) 2021-12-02
EP3914010A4 (en) 2022-03-30
JP7299329B2 (ja) 2023-06-27
CA3129474A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
WO2020164605A1 (zh) 传输方法和通信装置
US11438898B2 (en) Beam indication method, apparatus and system
US11924907B2 (en) Method for discontinuous transmission and terminal device
US20210084650A1 (en) Communication method and communications apparatus
JP2020502940A (ja) 低レイテンシ通信のためのセミパーシステントスケジューリング
EP3832939B1 (en) Communication method and device
WO2020057404A1 (zh) 发送和接收上行控制信息的方法以及通信装置
WO2020135105A1 (zh) 上行传输的方法、上行传输的装置、以及终端设备
US20220150922A1 (en) System and Method for Scheduling Control Channel Information
US20220353921A1 (en) Communication method and apparatus
JP2024503648A (ja) リソース選択方法、装置及びシステム
CN113826341A (zh) 用于上行链路传输的方法、终端设备和网络节点
WO2019148443A1 (zh) 确定竞争窗口的方法和设备
WO2020220337A1 (zh) Harq信息反馈的方法和设备
WO2017206056A1 (zh) 一种基于非授权频带的通信方法、相关设备及系统
US20170280427A1 (en) Methods and nodes for controlling uplink transmissions
WO2021097648A1 (zh) 检测物理下行控制信道pdcch的方法以及装置
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
US20240057153A1 (en) System and method for scheduling an uplink transmission assignment
WO2020221248A1 (zh) 上行传输方法和通信装置
RU2800007C2 (ru) Способ передачи и аппаратура связи
EP3846567A1 (en) Communication method, terminal device, and network device
WO2023011240A1 (zh) 数据传输方法、装置、网络侧设备及终端
US20240031857A1 (en) Method for determining drx parameter, terminal device and storage medium
WO2022041138A1 (zh) 一种通信的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3129474

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021547514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217028021

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020755939

Country of ref document: EP

Effective date: 20210818

ENP Entry into the national phase

Ref document number: 2020220935

Country of ref document: AU

Date of ref document: 20200214

Kind code of ref document: A