WO2020164602A1 - 模式控制方法、终端和网络侧设备 - Google Patents

模式控制方法、终端和网络侧设备 Download PDF

Info

Publication number
WO2020164602A1
WO2020164602A1 PCT/CN2020/075319 CN2020075319W WO2020164602A1 WO 2020164602 A1 WO2020164602 A1 WO 2020164602A1 CN 2020075319 W CN2020075319 W CN 2020075319W WO 2020164602 A1 WO2020164602 A1 WO 2020164602A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
mode
resource allocation
secondary link
link resource
Prior art date
Application number
PCT/CN2020/075319
Other languages
English (en)
French (fr)
Inventor
梁敬
郑倩
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020164602A1 publication Critical patent/WO2020164602A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a mode control method, terminal and network side equipment.
  • LTE-V2X Long Term Evolution-Vehicle to Everything
  • LTE-V2X New Radio Evolution-Vehicle to Everything
  • UE User Equipment
  • the resource information can come from a broadcast message or pre-configuration from the network side device.
  • the UE can work in mode 1 or mode 2.
  • the working mode of the UE generally remains unchanged, which easily leads to problems such as failure of QoS parameter negotiation between UEs or failure to guarantee the QoS of subsequent services due to reasons such as excessive load.
  • the car networking system in the related technology has the problem of poor flexibility in the mode control of the UE operation.
  • the embodiments of the present disclosure provide a mode control method, a terminal, and a network-side device, so as to solve the problem of poor flexibility in the mode control of the UE working in the car networking system.
  • embodiments of the present disclosure provide a mode control method applied to a first terminal, and the method includes:
  • the target parameter includes at least one of the following: target PC5 QoS parameter, load of the secondary link PC5, load of Uu; the target PC5 QoS parameter includes some or all of the PC5 QoS parameters requested by the second terminal .
  • embodiments of the present disclosure also provide a mode control method applied to a second terminal, and the method includes:
  • the secondary link resource allocation mode of the second terminal is changed.
  • the embodiments of the present disclosure also provide a mode control method, which is applied to a network side device, and the method includes:
  • the target terminal Sending a response message to the target terminal, wherein the response message carries at least one of configuration information and indication information, and the indication information is used to indicate whether the target terminal is allowed to change the secondary link resource allocation mode.
  • the embodiments of the present disclosure also provide a terminal.
  • the terminal is a first terminal, and the first terminal includes:
  • a changing module configured to change the secondary link resource allocation mode of the first terminal when the target parameter meets a preset condition
  • the target parameter includes at least one of the following: target PC5 QoS parameter, load of the secondary link PC5, load of Uu; the target PC5 QoS parameter includes some or all of the PC5 QoS parameters requested by the second terminal .
  • the embodiments of the present disclosure also provide a terminal.
  • the terminal is a second terminal, and the second terminal includes:
  • the first sending module is used to send the requested PC5 QoS parameters to the first terminal;
  • the receiving module is configured to receive the PC5 QoS parameter accepted by the first terminal; wherein the accepted PC5 QoS parameter includes part or all of the requested PC5 QoS parameter;
  • the changing module is configured to change the secondary link resource allocation mode of the second terminal when the accepted PC5 QoS parameters meet preset conditions.
  • the embodiments of the present disclosure also provide a network side device.
  • the network side equipment includes:
  • a receiving module configured to receive a mode change request sent by a target terminal, wherein the mode change request is used to request to change the secondary link resource allocation mode of the target terminal;
  • a sending module configured to send a response message to the target terminal, where the response message carries at least one of configuration information and indication information, and the indication information is used to indicate whether the target terminal is allowed to change the secondary link Resource allocation model.
  • the embodiments of the present disclosure also provide a terminal, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • a terminal including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the embodiments of the present disclosure also provide a terminal, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • a terminal including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the computer program is executed by the processor, The steps of the mode control method provided in the second aspect are implemented.
  • embodiments of the present disclosure also provide a network side device, including a processor, a memory, and a computer program stored on the memory and running on the processor, and the computer program is used by the processor When executed, the steps of the mode control method provided in the third aspect are realized.
  • embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored thereon, and when the computer program is executed by a processor, the mode control method provided in the first aspect is implemented , Or implement the steps of the mode control method provided by the second aspect, or implement the steps of the mode control method provided by the third aspect.
  • the secondary link resource allocation mode of the first terminal is changed when the target parameter meets the preset condition; wherein, the target parameter includes at least one of the following: target PC5 QoS parameter, so
  • the load of the secondary link PC5 is the load of Uu; the target PC5 QoS parameters include part or all of the PC5 QoS parameters requested by the second terminal. It can improve the flexibility of the mode control of the UE in the Internet of Vehicles system, and can reduce the probability of problems such as failure of QoS parameter negotiation between UEs or failure to guarantee the QoS of subsequent services due to excessive load.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure
  • Figure 2 is a flowchart of a mode control method provided by an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a mode control method provided by another embodiment of the present disclosure.
  • Figure 5 is a structural diagram of a first terminal provided by an embodiment of the present disclosure.
  • FIG. 6 is a structural diagram of a second terminal provided by an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of a network side device provided by an embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of a first terminal provided by another embodiment of the present disclosure.
  • FIG. 9 is a structural diagram of a second terminal according to another embodiment of the present disclosure.
  • FIG. 10 is a structural diagram of a network side device provided by another embodiment of the present disclosure.
  • LTE Long Term Evolution
  • UE User Equipment
  • the UE sends the Sidelink Control Information (SCI) through the Physical Sidelink Control Channel (PSCCH), and schedules the transmission of the Physical Sidelink Shared Channel (PSSCH) to send data .
  • SCI Sidelink Control Information
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the transmission is in the form of broadcast, and the receiving end does not feed back to the sending end whether the reception is successful.
  • the LTE secondary link design supports two resource allocation modes, namely, scheduled resource allocation (that is, Scheduled Resource Allocation) mode and autonomous resource selection (Autonomous Resource Selection) mode.
  • scheduled resource allocation that is, Scheduled Resource Allocation
  • autonomous resource selection Autonomous Resource Selection
  • LTE supports Carrier Aggregation (CA).
  • CA Carrier Aggregation
  • the CA and Uu interfaces of the LTE secondary link ie, the downlink (ie Downlink) and the uplink (ie Uplink)) are different.
  • PCC Primary Component Carrier
  • SCC Secondary Component Carrier
  • the UE in the autonomous resource selection mode independently performs resource sensing (ie Sensing) and resource reservation on each CC.
  • the above Uu interface refers to the air interface from the user equipment to the network side equipment, and the data transmitted between the vehicle and the infrastructure and the vehicle to the vehicle need to be forwarded by the network side equipment (for example, the base station) to achieve communication.
  • the design of the LTE secondary link can be applied to specific public safety affairs (for example, emergency communications in fire sites or disaster sites such as earthquakes), or vehicle to everything (V2X) communications.
  • IoV communications can include various services, such as basic security communications, autonomous driving, formation, sensor expansion, and so on. Since the LTE secondary link only supports broadcast communications, it is mainly used for basic security communications, and other advanced V2X services will be supported through the New Radio (NR) secondary link.
  • NR New Radio
  • the 5G NR system can be used in the working frequency band above 6GHz that LTE does not support, and supports larger working bandwidth.
  • the current version of the NR system only supports the interface between the network side device and the terminal, and does not support the secondary link for direct communication between the terminals. Road interface.
  • the secondary link transmission of the LTE system is based on broadcast.
  • the UE does not establish a point-to-point connection at the physical layer, and there is no feedback mechanism.
  • the receiving end does not feed back to the sending end whether the reception is successful, nor can it perform channel measurement and feed back the measurement result.
  • the V2X of the NR system can support multiple transmission methods, including unicast, multicast and broadcast, for example.
  • Unicast is also one-to-one (that is, one-to-one) transmission
  • multicast is also one-to-many (that is, one-to-many) transmission.
  • Broadcasting is also a one-to-many (that is, one to many) transmission, but broadcasting does not have the concept that UEs belong to the same group.
  • the establishment of unicast connection can consider two options (Option) and their respective influences. One is realized only by the upper layer (Upper Layer), and the other is the establishment of unicast connection at the access layer (Access Stratum, AS). need.
  • V2X mode 1 ie Mode1
  • mode 2 ie Mode2
  • NR V2X defines two secondary link resource allocation modes (i.e. Mode), one is Mode 1 (i.e. Mode1), the network side device (i.e. base station) schedules resources, the other is Mode 2 (i.e. Mode2), UE Decide what resource to use for transmission.
  • the resource information may come from a broadcast message or pre-configuration of the network side device. If the UE is working within the range of the network-side device and has a radio resource control (RRC) connection with the network-side device, it can be in mode 1 and/or mode 2. If the UE is working in the range of the network-side device but is connected to the network side The device does not have an RRC connection and can only work in mode 2. If the UE is outside the range of the network side device, it can only work in mode 2, and perform V2X transmission according to the pre-configured information.
  • RRC radio resource control
  • mode 2 may include sub-modes, specifically, the following sub-modes may be included:
  • Mode 2a UE independently selects secondary link resources for transmission
  • Mode 2b UE assists other UEs in selecting secondary link resources
  • Mode 2c (ie Mode2c): The UE is configured with an NR configuration authorization for secondary link transmission (such as type 1);
  • Mode 2d (ie Mode2d): The UE schedules the secondary link transmission of other UEs.
  • Mode 2b may not be used as a separate mode, but as a part of other modes.
  • V2X service quality of service Quality of Service (Quality of Service, QoS) requirements
  • PPPP is used to indicate the priority of data packet transmission.
  • PPPR is used to indicate the degree of demand for reliability (ie, Reliability) during data packet transmission.
  • the performance requirements of NR advanced (ie Advanced) V2X services mainly include the following parameters, and these indicators can be identified by the fifth-generation quality of service identifier (5G QoS Identifier, 5QI).
  • 5G QoS Identifier 5G QoS Identifier
  • Payload (bytes), also known as Payload (Bytes);
  • Transmission rate (message/sec), that is, Transmission Rate (Message/Sec);
  • Mbps Data Rate
  • Mbps Data Rate
  • the minimum required communication range (meters), that is, Minimum Required Communication Range (meters).
  • 5QI can be understood as an index (namely Index), and a 5QI corresponds to a set of QoS parameter indicators.
  • index namely Index
  • 5QI corresponds to a set of QoS parameter indicators.
  • Table 1 the specific definition can be as shown in Table 1:
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure. As shown in FIG. 1, it includes a first terminal 11, a second terminal 12, and a network side device 13, where the first terminal 11 And the second terminal 12 can be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), a personal digital assistant (Personal Digital Assistant, PDA), a mobile Internet device (Mobile Internet Device, MID) or a wearable It should be noted that the specific types of the first terminal 11 and the second terminal 12 mentioned above are not limited in the embodiments of the present disclosure.
  • the network side equipment 13 may be a base station, such as a macro station, LTE eNB, 5G NR NB, gNB, etc.; the network side equipment 13 may also be a small station, such as low power node (LPN) pico, femto, etc. Or, the network side device 13 may be an access point (Access Point, AP); the base station may also be a network node composed of a central unit (Central Unit, CU) and multiple TRPs managed and controlled by it. It should be noted that the specific type of the network side device 13 is not limited in the embodiment of the present disclosure.
  • FIG. 2 is a flowchart of a mode control method provided by an embodiment of the present disclosure. As shown in FIG. 2, it includes the following steps:
  • Step 201 When the target parameter meets a preset condition, change the secondary link resource allocation mode of the first terminal;
  • the target parameter includes at least one of the following: target PC5 QoS parameter, load of the secondary link PC5, load of Uu; the target PC5 QoS parameter includes some or all of the PC5 QoS parameters requested by the second terminal .
  • the above-mentioned PC5 may refer to the interface between the terminal and the terminal, and the direct transmission of data between the terminals can be realized through the PC5.
  • the above Uu may refer to the air interface from the terminal to the network-side device, and data transmission between the terminal and the infrastructure and between the terminal and the terminal needs to be forwarded by the network-side device to achieve communication.
  • PC5 QoS parameters may include one or more of QoS parameter indicators (for example, delay and reliability, etc.), 5QI and VQI (that is, V2X 5QI), etc.
  • QoS parameter indicators for example, delay and reliability, etc.
  • 5QI and VQI that is, V2X 5QI
  • the PC5 QoS parameters requested above may include one set or at least two sets of QoS parameters.
  • one or more VQIs may be included. It should be noted that each VQI or 5QI can represent a set of QoS parameters.
  • the aforementioned target PC5 QoS parameters may include part or all of the aforementioned requested PC5 QoS parameters.
  • the above-mentioned target PC5 QoS parameters may be the requested PC5 QoS parameters.
  • the above-mentioned target PC5 The QoS parameter may be one of at least two sets of QoS parameters.
  • the above-mentioned target PC5 QoS parameter may be a PC5 QoS parameter acceptable to the first terminal.
  • the requested PC5 QoS parameter includes the first VQI and the second VQI
  • the above-mentioned target PC5 QoS parameter is the first VQI
  • the above-mentioned target PC5 QoS parameter is the second VQI .
  • the size of the load of the secondary link PC5 may be determined by the size of the measurement result of the measurement quantity of the reference signal used for the secondary link, the received signal strength indication of the channel or subchannel transmitted by the secondary link (Received Signal Strength Indication, One or more of the measurement result of RSSI and the measurement result of the channel busy ratio (CBR) of the secondary link transmission are measured.
  • the size of the Uu load can be determined by the number of received asynchronous indications for the Uu link, whether the Uu link has a radio link failure, and the number of radio link control (RLC) retransmissions during Uu transmission. One or more of the items are measured.
  • RLC radio link control
  • the secondary link resource allocation mode of the first terminal can be changed, so that the working mode of the first terminal is more reasonable.
  • the secondary link resource allocation mode of the first terminal may be changed to increase the probability of successful QoS parameter negotiation; or
  • the load of the secondary link PC5 is large, if the secondary link resource allocation mode of the first terminal is mode 2, then the secondary link resource allocation mode of the first terminal is changed to mode 1, or increase mode 1 At this time, the first terminal works in mode 1 and mode 2 at the same time, so that the QoS of the service can be improved.
  • the mode control method provided by the embodiment of the present disclosure changes the secondary link resource allocation mode of the first terminal when the target parameter satisfies a preset condition; wherein, the target parameter includes at least one of the following: target PC5 QoS parameters, the load of the secondary link PC5, the load of Uu; the target PC5 QoS parameters include part or all of the PC5 QoS parameters requested by the second terminal, which can improve the flexibility of the UE working mode control in the car networking system It can reduce the probability of problems such as failure of QoS parameter negotiation between UEs or failure to guarantee the QoS of subsequent services due to excessive load.
  • changing the secondary link resource allocation mode of the first terminal may include:
  • the first secondary link resource allocation mode currently working by the first terminal is converted to the second secondary link resource allocation mode, or the resource allocation mode for working on the first secondary link
  • the first terminal in the mode adds a second secondary link resource allocation mode.
  • the first secondary link resource allocation mode currently working by the first terminal may be converted to the second secondary link resource allocation mode. For example, if the first terminal is currently working in mode 1, the first terminal can be converted to working in mode 2.
  • a second secondary link resource allocation mode may be added to the first terminal working in the first secondary link resource allocation mode.
  • a terminal simultaneously works in the first secondary link resource allocation mode and the second secondary link resource allocation mode. For example, if the first terminal is currently working in mode 1, then mode 2 may be added to the first terminal. At this time, the first terminal is working in mode 1 and mode 2 at the same time.
  • the embodiment of the present disclosure converts the first secondary link resource allocation mode currently working by the first terminal to the second secondary link resource allocation mode under the condition that the target parameter meets the preset condition, or to work in the first secondary link resource allocation mode. Adding a second secondary link resource allocation mode to the first terminal in the secondary link resource allocation mode can improve the flexibility of mode control.
  • the second secondary link resource allocation mode is the second mode
  • the second secondary link resource allocation mode is the first mode or the second sub-mode in the second mode. Mode, wherein the second mode includes at least two sub-modes.
  • the foregoing first mode that is, the foregoing mode 1 (ie, Mode 1)
  • resources are scheduled by a network-side device (for example, a base station).
  • the second mode is the mode 2 (ie Mode2), and the UE determines the transmission resource.
  • the foregoing first sub-mode may be any one of the foregoing mode 2a (ie Mode2a), mode 2c (ie Mode2c), and mode 2d (ie Mode2d), and the foregoing second submode may be the foregoing mode 2a (ie Mode2a) or mode 2c. (Ie Mode2c) and Mode 2d (ie Mode2d) which is different from the first sub-mode.
  • the second secondary link resource allocation mode is the second mode.
  • the first terminal when the first terminal is currently working in mode 1, the first terminal can be converted to working in mode 2, or mode 2 can be added to the first terminal. At this time, the first terminal is working in both mode 1 and Mode 2.
  • the second secondary link resource allocation mode may be the first mode or the second sub-mode in the second mode.
  • the first terminal when the first terminal is currently working in mode 2a, the first terminal can be converted to working in mode 1, or mode 1 can be added to the first terminal. At this time, the first terminal is working in both mode 1 and mode. 2a; You can also convert the first terminal to work in mode 2c, or add mode 2c to the first terminal. At this time, the first terminal works in both mode 2a and mode 2c; you can also convert the first terminal to work in Mode 2d, or add mode 2d to the first terminal, at this time, the first terminal works in mode 2a and mode 2d at the same time.
  • the target parameter meeting a preset condition may include at least one of the following:
  • the target PC5 QoS parameter is greater than a first threshold, and the secondary link resource allocation mode currently working by the first terminal cannot guarantee the target PC5 QoS parameter;
  • the target PC5 QoS parameter is less than a second threshold, and a mode other than the secondary link resource allocation mode currently working by the first terminal can guarantee the target PC5 QoS parameter;
  • the secondary link resource allocation mode corresponding to the target PC5 QoS parameter is different from the secondary link resource allocation mode currently working by the first terminal.
  • the above-mentioned first threshold and second threshold can be set reasonably according to actual conditions.
  • the target PC5 QoS parameter greater than the first threshold in the case that the target PC5 QoS parameter includes only one set of QoS parameters, the set of QoS parameters may be greater than the first threshold; the target PC5 QoS parameter includes at least two sets of QoS parameters In the case of at least two sets of QoS parameters, each set of QoS parameters is greater than the first threshold.
  • the target PC5 QoS parameter is less than the second threshold
  • the target PC5 QoS parameter includes only one set of QoS parameters
  • the set of QoS parameters may be less than the second threshold
  • the target PC5 QoS parameter includes at least two sets of QoS parameters In the case of at least two sets of QoS parameters, each set of QoS parameters is less than the first threshold.
  • each 5QI or VQI can be understood as a set of QoS parameters, that is, multiple 5QIs can be understood as multiple sets of QoS parameters.
  • the target PC5 QoS parameter has at least two sets of QoS parameters, if some of the at least two sets of QoS parameters are greater than the first threshold, and some of the QoS parameters are less than the first threshold, then the chain can be triggered
  • the link resource allocation mode change may also not trigger the link resource allocation mode change, which is not limited in this embodiment.
  • the target PC5 has at least two sets of QoS parameters for QoS parameters, if some of the at least two sets of QoS parameters are less than the second threshold, and some QoS parameters are greater than the second threshold, link resources can be triggered at this time
  • the allocation mode change may not trigger the link resource allocation mode change, which is not limited in this embodiment.
  • the target PC5 QoS parameters include at least two sets of QoS parameters
  • the target parameters satisfying preset conditions include at least one of the following:
  • At least one set of QoS parameters is greater than a first threshold, and the secondary link resource allocation mode currently working by the first terminal cannot guarantee the at least one set of PC5 QoS parameters;
  • At least one set of QoS parameters is less than a second threshold, and a mode other than the secondary link resource allocation mode currently working by the first terminal can guarantee the at least one set of QoS parameters.
  • the target PC5 QoS parameters include at least two sets of QoS parameters
  • the secondary link resource allocation mode is triggered to change.
  • the target PC5 QoS parameters include the first 5QI and the second 5QI, where the first 5QI is greater than the first threshold, the second 5QI is less than the first threshold, and the current secondary link resource allocation mode of the first terminal cannot guarantee the first 5QI. If the PC5 QoS parameter accepted by the first terminal is the first 5QI, the secondary link resource allocation mode change can be triggered. It should be noted that if the PC5 QoS parameter accepted by the first terminal is the second 5QI, the secondary link resource allocation mode change may not be triggered.
  • the target PC5 QoS parameters include at least two sets of QoS parameters
  • the target PC5 QoS parameters include a first 5QI and a second 5QI, where the first 5QI is less than the second threshold, the second 5QI is greater than the second threshold, and the first terminal is currently working outside the secondary link resource allocation mode
  • the model can guarantee the first 5QI. If the PC5 QoS parameter accepted by the first terminal is the first 5QI, the secondary link resource allocation mode change can be triggered. It should be noted that if the PC5 QoS parameter accepted by the first terminal is the second 5QI, the secondary link resource allocation mode change may not be triggered.
  • the secondary link resource allocation mode corresponding to the target PC5 QoS parameter is determined according to the mapping rule between the PC5 QoS parameter and the secondary link resource allocation mode, and the mapping rule is pre-configuration, network-side device configuration , Protocol predefinition, operator configuration, the second terminal configuration, or the first terminal implementation.
  • the method may further include:
  • the PC5 QoS parameter accepted above may be the PC5 QoS parameter accepted by the second terminal.
  • the above-mentioned accepted PC5 QoS parameters may be one set of the multiple sets of QoS parameters; in the case where the target PC5 QoS parameters only include one set of QoS parameters, the above The accepted PC5 QoS parameters are the target PC5 QoS parameters.
  • the first terminal after receiving the requested PC5 QoS parameters sent by the second terminal, the first terminal can directly send the accepted PC5 QoS parameters to the second terminal based on service information, etc.
  • the mode change process and the QoS negotiation process are Independent; it can also send the accepted PC5 QoS parameters to the second terminal after the mode switch is triggered or when it is determined that the accepted PC5 QoS parameters can be guaranteed.
  • the sending the accepted PC5 QoS parameters to the second terminal may include:
  • the second terminal In the case that the secondary link resource allocation mode of the first terminal is successfully changed, and/or the first terminal determines that at least one set of PC5 QoS parameters in the target PC5 QoS parameters can be guaranteed, the second terminal Send the accepted PC5 QoS parameters.
  • the The second terminal sends the accepted PC5 QoS parameters, so as to ensure that the negotiated target PC5 QoS parameters can be guaranteed.
  • the method may further include:
  • a second message is sent to the second terminal, where the second message is used to indicate that the QoS negotiation fails.
  • the second terminal when the secondary link resource allocation mode of the first terminal fails to change or the first terminal determines that the target PC5 QoS parameters cannot be guaranteed, the second terminal is indicated to the second terminal that the QoS negotiation fails, which is convenient for the first terminal. The second terminal quickly performs processing after the QoS negotiation fails.
  • the Methods can also include:
  • the changing the secondary link resource allocation mode of the first terminal when the target parameter meets a preset condition includes:
  • the AS layer of the first terminal changes the secondary link resource allocation mode of the first terminal when it is determined that the QoS parameters of the target PC5 meet a preset condition.
  • the upper layer of the first terminal after receiving the requested PC5 QoS parameter sent by the second terminal, the upper layer of the first terminal sends the target PC5 QoS parameter to the AS layer of the first terminal, where the target PC5 QoS parameter may be the first terminal
  • the upper layer determines the guaranteed PC5 QoS parameters based on the service and/or contract status.
  • the AS layer of the first terminal may determine whether to trigger the change of the secondary link resource allocation mode of the first terminal based on the target PC5 QoS parameters.
  • the AS layer of the first terminal changes the secondary link resource allocation mode of the first terminal when it determines that the QoS parameters of the target PC5 meet a preset condition.
  • the related content of changing the secondary link resource allocation mode of the first terminal refer to the foregoing description, which will not be repeated here.
  • the method may further include at least one of the following:
  • the AS layer of the first terminal sends to at least one of the upper layer of the first terminal and the AS layer of the second terminal A first notification message; wherein the first notification message is used to notify the first terminal that the secondary link resource allocation mode has been successfully changed;
  • the AS layer of the first terminal determines that at least one set of PC5 QoS parameters of the target PC5 QoS parameters can be guaranteed
  • the AS layer of the first terminal reports to the upper layer of the first terminal and the second At least one of the AS layers of the terminal sends a second notification message; wherein the second notification message is used to notify the target PC5 that the QoS parameters can be guaranteed and/or the at least one set of PC5 QoS parameters can be guaranteed;
  • the AS layer of the first terminal transmits to at least one of the upper layer of the first terminal and the AS layer of the second terminal The third notification message; wherein the third notification message is used to notify the first terminal that the secondary link resource allocation mode change fails;
  • the AS layer of the first terminal determines that at least one set of PC5 QoS parameters of the target PC5 QoS parameters cannot be guaranteed
  • the AS layer of the first terminal reports to the upper layer of the first terminal and the second At least one of the AS layers of the terminal sends a fourth notification message; wherein the fourth notification message is used to notify the target PC5 that the QoS parameters cannot be guaranteed and/or the at least one set of PC5 QoS parameters cannot be guaranteed.
  • the AS layer of the first terminal can report to at least one of the upper layer of the first terminal and the AS layer of the second terminal. 1. Notifying the first terminal that the change of the secondary link resource allocation mode has failed.
  • the AS layer of the first terminal may report to the upper layer of the first terminal and the second At least one of the AS layers of the two terminals notifies the target PC5 of the guaranteed and/or guaranteed QoS parameters of the PC5.
  • the QoS parameters of the target PC5 include the first VQI and the second VQI. If the AS layer of the first terminal determines that the first VQI can be guaranteed, the AS layer of the first terminal can report to the upper layer of the first terminal and the second VQI. At least one of the AS layers of the terminal informs the PC5 that the QoS parameter can guarantee at least one of the first VQI.
  • the AS layer of the first terminal notifies at least one of the upper layer of the first terminal and the AS layer of the second terminal The secondary link resource allocation mode of the first terminal failed to change.
  • the AS layer of the first terminal may report to the upper layer of the first terminal and the second At least one of the AS layers of the two terminals informs the target PC5 that the QoS parameters cannot be guaranteed and the PC5 QoS parameters that cannot be guaranteed.
  • the QoS parameters of the target PC5 include the first VQI and the second VQI. If the AS layer of the first terminal determines that the second VQI cannot be guaranteed, the AS layer of the first terminal can report to the upper layer of the first terminal and the second VQI. At least one of the AS layers of the terminal informs the PC5 that at least one of the QoS parameter cannot be guaranteed and the second VQI.
  • the target PC5 QoS parameters include only one set of QoS parameters
  • the above-mentioned at least one set of PC5 QoS parameters only includes one set of QoS parameters
  • the target PC5 QoS parameters include at least two sets of QoS parameters
  • the above At least one set of PC5 QoS parameters may include one set or multiple sets of QoS parameters.
  • the flexibility of communication between the two terminals can be improved by feeding back the QoS negotiation result to the second terminal by the first terminal.
  • the changing the secondary link resource allocation mode of the first terminal when the target parameter meets a preset condition may include at least one of the following:
  • the load of the secondary link PC5 does not meet the first condition, and/or the load of the Uu does not meet the second condition, if the current secondary link resource allocation mode of the first terminal is the first mode , Then change the secondary link resource allocation mode of the first terminal.
  • the secondary link resource allocation of the first terminal can be changed mode.
  • the secondary link resource allocation mode of the first terminal may be changed.
  • the load of the secondary link PC5 satisfies the first condition, which may include at least one of the following:
  • the measurement result of the measurement quantity of the reference signal used for the secondary link is less than the first sub-threshold
  • the received signal strength of the P channels or sub-channels transmitted by the secondary link indicates that the RSSI measurement result is greater than the second sub-threshold, where P is a positive integer;
  • the channel busy rate CBR measurement result of the secondary link transmission is greater than the third sub-threshold
  • N asynchronous indications (ie Out-of-sync Indications) for the secondary link, where N is a positive integer;
  • a link failure occurs on the secondary link
  • the number of retransmissions of the radio link control RLC in the secondary link transmission is greater than M, where M is a positive integer.
  • first sub-threshold, second sub-threshold, and third sub-threshold can all be set reasonably according to actual conditions.
  • the above values of P, N, and M can also be set reasonably according to actual conditions.
  • the above-mentioned measurement quantities may include reference signal received power (RSRP), reference signal received quality (Reference Signal Received Quality, RSRQ, and signal-to-noise and interference ratio (SINR)) At least one of the others.
  • RSRP reference signal received power
  • RSRQ Reference Signal Received Quality
  • SINR signal-to-noise and interference ratio
  • the load of Uu satisfies the second condition, which may include at least one of the following:
  • the first indication information indicates that the load of the Uu satisfies the second condition, or instructs the first terminal to change the secondary link resource allocation mode; wherein the first indication information is the indication information received from the network side device;
  • R asynchronous indications (ie Out-of-sync Indications) for the Uu link, where R is a positive integer;
  • the Uu link has a wireless link failure
  • the number of radio link control RLC retransmissions in the Uu transmission is greater than S times, where S is a positive integer.
  • the first terminal may determine whether the load of Uu satisfies the second condition based on the instruction of the network side device. Specifically, the network-side device may send first indication information to the first terminal to indicate that the load of Uu meets the second condition, such as indicating that the load of Uu is high, or the first terminal needs to change the secondary link resource allocation mode.
  • the process of changing the secondary link resource allocation mode may be implemented by the first terminal itself, or the first terminal may request the base station to change the secondary link resource allocation mode.
  • the changing the secondary link resource allocation mode of the first terminal when the target parameter meets a preset condition may include:
  • Receive response information sent by the network-side device where the response message carries at least one of configuration information and second indication information, and the second indication information is used to indicate whether to allow the target terminal to change the secondary link Road resource allocation mode;
  • the secondary link resource allocation mode of the first terminal is changed.
  • the above-mentioned configuration information may be configuration information used when the first terminal works in a converted mode, and may include configuration information such as resources or resource pools.
  • the first terminal requests the network side device to change the secondary link resource allocation mode, for example, through a radio resource control (Radio Resource Control, RRC) message or MAC CE ( Medium Access Control Control Element (Media Access Control Element) sends a mode change request.
  • a radio resource control Radio Resource Control, RRC
  • MAC CE Medium Access Control Control Element (Media Access Control Element) sends a mode change request.
  • the first terminal may change the secondary link resource allocation mode of the first terminal based on the response information. For example, when the second indication information indicates that the target terminal is allowed to change the secondary link resource allocation mode, the first terminal changes the secondary link resource allocation mode; or in the case that the response message carries configuration information, the secondary link may be changed based on the configuration information. Link resource allocation mode.
  • the embodiments of the present disclosure request the network side device to change the secondary link resource allocation mode, which can improve the flexibility of the secondary link resource allocation mode change.
  • the sending a mode change request to the network side device may include at least one of the following:
  • the mode change request is sent to the network side device through an RRC message.
  • the mode change request when the first terminal is in the RRC idle state, the mode change request may be sent through the RRC message during the RRC connection establishment process, or the mode change request may be sent through the RRC message after the RRC connection is established. .
  • the mode change request may be sent through the RRC message in the RRC connection recovery process, or the mode change request may be sent through the RRC message after the RRC connection is recovered.
  • FIG. 3 is a flowchart of a mode control method provided by another embodiment of the present disclosure. As shown in FIG. 3, it includes the following steps:
  • Step 301 Send the requested PC5 QoS parameters to the first terminal.
  • the aforementioned PC5 QoS parameters may include one or more of QoS parameter indicators (for example, delay and reliability, etc.), 5QI, and VQI (that is, V2X 5QI).
  • QoS parameter indicators for example, delay and reliability, etc.
  • 5QI for example, delay and reliability, etc.
  • VQI that is, V2X 5QI
  • the PC5 QoS parameters requested above may include one set or at least two sets of QoS parameters, for example, may include one or more VQIs. It should be noted that each VQI or 5QI can represent a set of QoS parameters.
  • Step 302 Receive the PC5 QoS parameter accepted by the first terminal; wherein the accepted PC5 QoS parameter includes part or all of the requested PC5 QoS parameter.
  • the above-mentioned accepted PC5 QoS parameters may be the requested PC5 QoS parameters.
  • the requested PC5 QoS parameters include at least two sets of QoS parameters
  • the above-mentioned PC5 QoS parameters accepted can be one of at least two sets of QoS parameters.
  • Step 303 When the received PC5 QoS parameter meets a preset condition, change the secondary link resource allocation mode of the second terminal.
  • the secondary link resource allocation mode of the second terminal can be changed, so that the working mode of the second terminal is more reasonable.
  • the secondary link resource allocation mode of the second terminal may be changed to increase the probability of successful QoS parameter negotiation.
  • the mode control method sends the requested PC5 QoS parameter to the first terminal; receives the PC5 QoS parameter accepted by the first terminal; wherein the accepted PC5 QoS parameter includes the requested PC5 QoS Part or all of the parameters; when the accepted PC5 QoS parameters meet the preset conditions, changing the secondary link resource allocation mode of the second terminal can improve the flexibility of the mode control of the UE and reduce The probability of failure of QoS parameter negotiation between UEs.
  • the changing the secondary link resource allocation mode of the second terminal in the case that the accepted PC5 QoS parameters meet a preset condition includes:
  • the third secondary link resource allocation mode currently working by the second terminal is converted to the fourth secondary link resource allocation mode, or the second terminal A fourth secondary link resource allocation mode is added to the third secondary link resource allocation mode currently working by the terminal.
  • the third secondary link resource allocation mode currently working by the second terminal may be converted to the fourth secondary link resource allocation mode. For example, if the second terminal is currently working in mode 1, the second terminal can be converted to working in mode 2.
  • a fourth secondary link resource allocation mode can be added to the second terminal working in the third secondary link resource allocation mode.
  • the second terminal simultaneously works in the third secondary link resource allocation mode and the fourth secondary link resource allocation mode. For example, if the second terminal is currently working in mode 1, mode 2 can be added to the second terminal. At this time, the second terminal is working in mode 1 and mode 2 at the same time.
  • the embodiment of the present disclosure converts the third secondary link resource allocation mode currently working by the second terminal to the fourth secondary link resource allocation mode when the accepted PC5 QoS parameters meet preset conditions, or A fourth secondary link resource allocation mode is added on the basis of the third secondary link resource allocation mode currently working by the second terminal to improve the flexibility of mode control.
  • the fourth secondary link resource allocation mode is the second mode
  • the fourth secondary link resource allocation mode is the first mode or the fourth sub-mode in the second mode. Mode; wherein the second mode includes at least two sub-modes.
  • the foregoing third mode namely the foregoing mode 1 (ie Mode 1), is used to schedule resources by a network side device (for example, a base station).
  • the fourth mode is the above mode 2 (ie Mode2), and the UE determines the transmission resource.
  • the foregoing first sub-mode may be any one of the foregoing mode 2a (ie Mode2a), mode 2c (ie Mode2c), and mode 2d (ie Mode2d), and the foregoing second submode may be the foregoing mode 2a (ie Mode2a) or mode 2c. (Ie Mode2c) and Mode 2d (ie Mode2d) which is different from the first sub-mode.
  • the second secondary link resource allocation mode is the fourth mode.
  • the second terminal when the second terminal is currently working in mode 1, the second terminal can be converted to working in mode 2, or mode 2 can be added to the second terminal. At this time, the second terminal works in both mode 1 and Mode 2.
  • the second secondary link resource allocation mode may be the third mode or the second sub-mode in the fourth mode.
  • the second terminal when the second terminal is currently working in mode 2a, the second terminal can be converted to work in mode 1, or mode 1 can be added to the second terminal. At this time, the second terminal works in both mode 1 and mode. 2a; You can also convert the second terminal to work in mode 2c, or add mode 2c to the second terminal. At this time, the second terminal works in mode 2a and mode 2c at the same time; you can also convert the second terminal to work in mode 2a and mode 2c. Mode 2d, or add mode 2d to the second terminal, at this time, the second terminal works in mode 2a and mode 2d at the same time.
  • the accepted PC5 QoS parameters satisfying preset conditions include at least one of the following:
  • the accepted PC5 QoS parameter is greater than a third threshold, and the current secondary link resource allocation mode of the second terminal cannot guarantee the accepted PC5 QoS parameter;
  • the accepted PC5 QoS parameter is less than the fourth threshold, and a mode other than the current secondary link resource allocation mode of the second terminal can guarantee the accepted PC5 QoS parameter;
  • the secondary link resource allocation mode corresponding to the accepted PC5 QoS parameter is different from the current secondary link resource allocation mode of the second terminal.
  • the third threshold and the fourth threshold can be set reasonably according to actual conditions.
  • the above-mentioned accepted PC5 QoS parameters may include a set of QoS parameters, for example, the accepted PC5 QoS parameter is the first 5QI.
  • the secondary link resource allocation mode corresponding to the received PC5 QoS parameter is determined according to the mapping rule between the PC5 QoS parameter and the secondary link resource allocation mode, and the mapping rule is a pre-configured, network-side device Configuration, protocol pre-definition, operator configuration, the first terminal configuration or the second terminal implementation.
  • the changing the secondary link resource allocation mode of the second terminal in the case that the accepted PC5 QoS parameters meet a preset condition may include:
  • the secondary link resource allocation mode of the second terminal is changed.
  • the above-mentioned configuration information may be configuration information needed for the second terminal to work in the converted mode, and may include configuration information such as resources or resource pools.
  • the second terminal requests the network side device to change the secondary link resource allocation mode, for example, through a radio resource control (Radio Resource Control, RRC) message or MAC CE sending Mode change request.
  • RRC Radio Resource Control
  • the second terminal may change the secondary link resource allocation mode of the second terminal based on the response information. For example, when the second indication information indicates that the accepted terminal is allowed to change the secondary link resource allocation mode, the second terminal changes the secondary link resource allocation mode; or in the case that the response message carries configuration information, it can be changed based on the configuration information Secondary link resource allocation mode.
  • the embodiments of the present disclosure request the network side device to change the secondary link resource allocation mode, which can improve the flexibility of the secondary link resource allocation mode change.
  • the sending a mode change request to the network side device includes at least one of the following:
  • the mode change request is sent to the network side device through an RRC message.
  • the mode change request when the first terminal is in the RRC idle state, the mode change request may be sent through the RRC message during the RRC connection establishment process, or the mode change request may be sent through the RRC message after the RRC connection is established. .
  • the mode change request may be sent through the RRC message in the RRC connection recovery process, or the mode change request may be sent through the RRC message after the RRC connection is recovered.
  • the embodiment of the present disclosure provides a mode control method, which is applied to a network side device.
  • FIG. 4 is a flowchart of a mode control method provided by another embodiment of the present disclosure. As shown in FIG. 3, it includes the following steps:
  • Step 401 Receive a mode change request sent by the target terminal, where the mode change request is used to request to change the secondary link resource allocation mode of the target terminal.
  • Step 402 Send a response message to the target terminal, where the response message carries at least one of configuration information and indication information, and the indication information is used to indicate whether the target terminal is allowed to change the secondary link resource allocation mode.
  • the aforementioned target terminal may be the first terminal or the second terminal.
  • the foregoing configuration information may be configuration information that is needed when the target terminal works in the converted mode, and may include configuration information such as resources or resource pools.
  • the embodiments of the present disclosure receive a mode change request sent by a target terminal, where the mode change request is used to request to change the secondary link resource allocation mode of the target terminal, and send a response message to the target terminal, wherein the The response message carries at least one of configuration information and indication information.
  • the indication information is used to indicate whether the target terminal is allowed to change the secondary link resource allocation mode, which can improve the flexibility of changing the secondary link resource allocation mode.
  • Example 1 The upper layer performs QoS negotiation between UEs.
  • the receiving end first triggers the mode change process, and then completes the negotiation process, which can specifically include the following steps:
  • Step a1 UE1 sends the requested PC5 QoS parameters to UE2.
  • Step a2 The upper layer of UE2 informs the AS layer of UE2 of the target PC5 QoS parameters according to the PC5 QoS parameters sent by UE1.
  • the above-mentioned target PC5 QoS parameter may be part or all of the above-mentioned requested PC5 QoS parameter.
  • the aforementioned target PC5 QoS parameter may be a PC5 QoS parameter that the upper layer of the UE2 may consider acceptable based on the service and/or subscription conditions.
  • Step a3 The AS layer of UE2 triggers the mode change process based on the target PC5 QoS parameters, including one of the following:
  • an additional mode different from the current working mode is added, that is, working in two modes at the same time.
  • the switching to a mode different from the current working mode or adding an additional mode different from the current working mode may include at least one of the following:
  • Mode 2 ie Mode2
  • Mode 1 ie Mode1
  • UE2 switches from mode 1 to mode 2 (for example, it may be mode 2a, mode 2c, or mode 2d) or additionally adds mode 2 (for example, it may be mode 2a, mode 2c, or mode 2d);
  • UE2 switches from one sub-mode in mode 2 to another sub-mode in mode 2 or additionally adds another sub-mode in mode 2.
  • mode conversion or additional mode addition process can be implemented by the UE itself, or it can send an RRC message to the base station to request a mode conversion or additional mode addition.
  • UE2 needs to switch from mode 1 to mode 2. Next, you can request the base station to switch to mode 2 or add mode 2 by sending an RRC message.
  • the RRC connection establishment process can be triggered to request the base station for mode conversion or additional modes. For example, when UE2 needs to switch from mode 2 to mode 1 or add mode 1, it can trigger the RRC connection establishment process and request the base station to switch to mode 1 or add mode 1.
  • the RRC connection recovery process can be triggered to request mode conversion or additional modes to the base station.
  • a mode switch request can be sent through an RRC message or MAC CE to request a mode switch or additional modes to the base station.
  • the AS layer of the UE2 triggers the mode conversion process based on the target QoS parameter information, and the trigger condition may include at least one of the following:
  • UE2 determines that the mode corresponding to the QoS parameter of the target PC5 is different from the current working mode of UE2 based on the mapping rule between the QoS parameters and modes of the target PC5;
  • the UE2 finds that the QoS parameter of the target PC5 is higher than the first threshold, and its current working mode cannot be satisfied;
  • the target PC5 QoS parameters include multiple sets of PC5 QoS parameters, and its current working mode can only guarantee some of the lower-required PC5 QoS parameters, and cannot guarantee the highest-required PC5 QoS parameters;
  • the UE2 finds that the QoS parameter of the target PC5 is lower than the second threshold, which can also be guaranteed in another working mode (such as mode 2).
  • the current working mode of UE2 can be used for non-UE1 services.
  • mapping rules between the PC5 QoS parameters and modes can be configured by the network side or configured by the operator or pre-configured or stipulated by the protocol, configured by the UE1 or implemented by the UE2 itself.
  • the mode corresponding to the QoS parameter of the target PC5 is different from the current working mode of the UE2, and may include at least one of the following:
  • the mode corresponding to the QoS parameters of the target PC5 is mode 2, and the current working mode of UE2 is mode 1;
  • the mode corresponding to the QoS parameters of the target PC5 is mode 1, and the current working mode of UE2 is mode 2;
  • the mode corresponding to the QoS parameters of the target PC5 is a sub-mode in mode 2, and the current working mode of UE2 is another sub-mode in mode 2.
  • step 4a the UE2 mode conversion is successful or the UE2 AS layer finds that the target PC5 QoS parameters can be guaranteed, then the UE2 AS layer informs the upper layer of UE2. The upper layer of UE2 sends the accepted PC5 QoS parameters to UE1.
  • Step 5a If the UE2 mode conversion fails or the UE2 AS layer finds that the target PC5 QoS parameters cannot be guaranteed, the UE2 AS layer informs UE2 that the upper layer QoS parameters cannot be guaranteed. The upper layer of UE2 sends a rejection message or negotiation failure message to UE1.
  • PC5 QoS parameters in steps a1 to a5 may include at least one of the following:
  • Specific QoS parameter indicators can be one set or multiple sets;
  • 5QI can be one or more
  • VQI (that is, V2X 5QI) can be one or more.
  • Example 2 The upper layer conducts QoS negotiation between the UEs.
  • the receiving end triggers the mode change process and the QoS negotiation process is independent, and it can specifically include the following steps:
  • Step b1 UE1 sends the requested PC5 QoS parameters to UE2.
  • Step b2 The upper layer of UE2 replies the target PC5 QoS parameters to UE1 according to the PC5 QoS parameters sent by UE1.
  • the above-mentioned target PC5 QoS parameter may be part or all of the above-mentioned requested PC5 QoS parameter.
  • the aforementioned target PC5 QoS parameter may be a PC5 QoS parameter that the upper layer of the UE2 may consider acceptable based on the service and/or subscription conditions.
  • Step b3 The upper layer of UE2 informs the AS layer of UE2 of the target PC5 QoS parameters according to the PC5 QoS parameters sent by UE1.
  • steps b2 and b3 can be executed in parallel or serially. That is, the above step b2 and step b3 may be performed simultaneously, or the above step b2 may be performed first, and then the above step b3 may be performed, or the above step b3 may be performed first, and then the step b2 may be performed.
  • Step b4 The AS layer of UE2 triggers the mode change process based on the target PC5 QoS parameters.
  • This step can be the same as step a3 above, and to avoid repetition, it will not be repeated here.
  • step b5 the UE2 mode conversion is successful or the UE2 AS layer finds that the target PC5 QoS parameters can be guaranteed, then the UE2 AS layer notifies the UE2 upper layer and/or the UE2 AS layer notifies the UE1 AS layer.
  • Step b6 If the UE2 mode conversion fails or the UE2 AS layer finds that the target PC5 QoS parameters cannot be guaranteed, the UE2 AS layer informs the UE2 upper layer and/or the UE2 AS layer informs the UE1 AS layer.
  • Example 3 The upper layer performs QoS negotiation between UEs.
  • the sender triggers the mode change process, which can specifically include the following steps:
  • Step c1 UE1 sends the requested PC5 QoS parameters to UE2.
  • Step c2 The upper layer of UE2 replies the target PC5 QoS parameters to UE1 according to the PC5 QoS parameters sent by UE1.
  • the above-mentioned target PC5 QoS parameter may be part or all of the above-mentioned requested PC5 QoS parameter.
  • the aforementioned target PC5 QoS parameter may be a PC5 QoS parameter that the upper layer of the UE2 may consider acceptable based on the service and/or subscription conditions.
  • Step c3 The AS layer of UE1 triggers the mode change process based on the target QoS parameter information.
  • Example 4 Based on the load situation of the secondary link (ie Sidelink) PC5 and/or the load situation of the Uu, the UE triggers a mode switch.
  • the secondary link ie Sidelink
  • the foregoing load-based mode conversion may include at least one of the following:
  • the UE working in mode 2 triggers the mode change process
  • the UE working in mode 1 triggers the mode change process.
  • the triggering mode change process of the UE working in mode 2 may include at least one of the following:
  • the UE switches from working in mode 2a to mode 1 or mode 2c or mode 2d;
  • the UE adds a working mode of mode 1 or mode 2c or mode 2d from working in mode 2a;
  • the UE switches from working in mode 2 (for example, mode 2a, mode 2c, or mode 2d) to mode 1 or an additional working mode of mode 1;
  • working in mode 2 for example, mode 2a, mode 2c, or mode 2d
  • the UE switches from working in mode 2c to mode 2d or additionally increases the working mode of mode 2d;
  • the UE switches from working in mode 2d to mode 2c or additionally increases the working mode of mode 2c.
  • the triggering of the mode change process by the UE working in mode 1 may include at least one of the following:
  • the UE switches from mode 1 to mode 2 (for example, mode 2a, mode 2c, or mode 2d);
  • the UE additionally adds mode 2 from mode 1 (for example, mode 2a, mode 2c, or mode 2d).
  • mode 1 for example, mode 2a, mode 2c, or mode 2d.
  • the load of the secondary link PC5 satisfies the first condition, which may include at least one of the following:
  • the measurement result of the measurement quantity of the reference signal used for the secondary link is lower than the first sub-threshold, where the measurement quantity may include at least one of RSRP, RSRQ, SINR, etc.;
  • the RSSI or CBR measurement result transmitted by the secondary link is higher than the second sub-threshold
  • the number of RLC retransmissions in the secondary link transmission exceeds M times.
  • the load of Uu satisfies the second condition, which may include at least one of the following:
  • the network side equipment indicates that the Uu load is too high, or directly instructs the UE to perform mode conversion
  • Uu link has a wireless link failure
  • the number of RLC retransmissions in Uu transmission exceeds S times.
  • Example 5 Unicast connection and QoS negotiation are established between UEs through the PC5 RRC process.
  • the receiving end triggers the mode change process, which can specifically include the following steps:
  • Step d1 UE1 sends a unicast connection establishment request (such as an RRC message) to UE2, where the connection establishment request may include direct communication request information.
  • a unicast connection establishment request such as an RRC message
  • the aforementioned direct communication request information may include the requested PC5 QoS parameters.
  • Step d2 authentication and security establishment process between UE2 and UE1.
  • Step d3 UE2 triggers the mode conversion process according to the PC5 QoS parameters sent by UE1.
  • the upper layer of UE2 can inform the AS layer of UE2 of the accepted PC5 QoS parameters according to the PC5 QoS parameters sent by UE1, where the accepted PC5 QoS parameters may include some or all of the requested PC5 QoS parameters. .
  • the AS layer of UE2 can trigger the mode switching process based on the received PC5 QoS parameters.
  • the AS layer of the UE2 is based on the received PC5 QoS parameters, and the trigger mode conversion process can be the same as the above step a3. To avoid repetition, details are not described here.
  • the UE2 may perform the above step d3 when the requested PC5 QoS parameters are discovered and can be guaranteed based on the wireless resource conditions.
  • step d4 if the UE2 finds the requested PC5 QoS parameters and cannot be guaranteed based on the radio resource conditions, it can directly send a unicast connection rejection message and/or a direct communication rejection message to the UE1.
  • Step d5 UE2 replies a unicast connection establishment message to UE1, where the unicast connection establishment message may include direct communication acceptance information.
  • the above-mentioned direct communication acceptance information may include the accepted PC5 QoS parameters.
  • Example 6 Unicast connection and QoS negotiation are established between UEs through the upper layer (ie Upper Layer).
  • the receiving end triggers the mode change process, which can specifically include the following steps:
  • Step e1 UE1 sends direct communication request information to UE2.
  • the aforementioned direct communication request information may include the requested PC5 QoS parameters.
  • Step e2 authentication and security establishment process between UE2 and UE1.
  • Step e3 UE2 triggers the mode change process according to the PC5 QoS parameter information sent by UE1.
  • the upper layer of UE2 can inform the AS layer of UE2 of the accepted PC5 QoS parameters according to the PC5 QoS parameters sent by UE1, where the accepted PC5 QoS parameters may include some or all of the requested PC5 QoS parameters. .
  • the AS layer of UE2 can trigger the mode switching process based on the received PC5 QoS parameters.
  • the AS layer of the UE2 is based on the received PC5 QoS parameters, and the trigger mode conversion process can be the same as the above step a3. To avoid repetition, details are not described here.
  • the UE2 may perform the above step e3 when the requested PC5 QoS parameters are discovered and the wireless resource conditions can be guaranteed.
  • Step e4 If UE2 finds the requested PC5 QoS parameters, which cannot be guaranteed based on the radio resource conditions, it can directly send a unicast connection rejection message and/or direct communication rejection message to UE1.
  • Step e5 UE2 sends direct communication acceptance information to UE1.
  • the above-mentioned direct communication acceptance information may include the accepted PC5 QoS parameters.
  • Example 7 Unicast connection and QoS negotiation are established between UEs through the upper layer (ie Upper Layer).
  • the sender triggers the change process, which can specifically include the following steps:
  • Step f1 UE1 sends direct communication request information to UE2.
  • the aforementioned direct communication request information may include the requested PC5 QoS parameters.
  • Step f2 authentication and security establishment process between UE2 and UE1.
  • Step f3 UE2 sends direct communication acceptance information to UE1.
  • the above-mentioned direct communication acceptance information may include the accepted PC5 QoS parameters.
  • Step f4 UE1 triggers the mode change process according to the received PC5 QoS parameters sent by UE2.
  • the aforementioned mode change may include at least one of the following:
  • the switching to a mode different from the current working mode or adding an additional mode different from the current working mode may include at least one of the following:
  • Mode 2 ie Mode2
  • Mode 1 ie Mode1
  • UE1 switches from mode 1 to mode 2 (for example, it may be mode 2a, mode 2c, or mode 2d) or additionally adds mode 2 (for example, it may be mode 2a, mode 2c, or mode 2d);
  • UE1 switches from one sub-mode in mode 2 to another sub-mode in mode 2 or additionally adds another sub-mode in mode 2.
  • mode conversion or additional mode can be implemented by the UE itself, or it can send an RRC message to the base station to request a mode conversion or additional mode.
  • UE1 needs to switch from mode 1 to mode 2.
  • you can request the base station to switch to mode 2 or add mode 2 by sending an RRC message.
  • the RRC connection establishment process can be triggered to request the base station for mode conversion or additional modes. For example, when UE1 needs to switch from mode 2 to mode 1 or add mode 1, it can trigger the RRC connection establishment process and request the base station to switch to mode 1 or add mode 1.
  • the RRC connection recovery process can be triggered to request mode conversion or additional modes to the base station.
  • a mode switch request can be sent through an RRC message or MAC CE to request a mode switch or additional modes to the base station.
  • the AS layer of the UE1 triggers the mode conversion process based on the received QoS parameter information, and the trigger condition may include at least one of the following:
  • UE1 determines that the mode corresponding to the accepted PC5 QoS parameter is different from the current working mode of UE1 based on the mapping rule between the accepted PC5 QoS parameter and the mode;
  • UE1 finds that the PC5 QoS parameter requirement requested by UE2 is higher than the first threshold, and its current working mode cannot be satisfied;
  • the UE1 finds that the PC5 QoS parameters requested by UE2 include multiple sets of PC5 QoS parameters, and its current working mode can only guarantee some of the PC5 QoS parameters with lower requirements, and cannot guarantee the highest PC5 QoS parameters;
  • UE1 finds that the QoS parameter requirement of PC5 requested by UE2 is lower than the second threshold, which can also be guaranteed in another working mode (such as mode 2).
  • the current working mode of UE1 can be used for non-UE2 services.
  • mapping rules between the PC5 QoS parameters and modes can be configured by the network side or configured by the operator or pre-configured or stipulated by the agreement or implemented by the UE1 itself.
  • the mode corresponding to the received PC5 QoS parameter is different from the current working mode of UE1, and may include at least one of the following:
  • the mode corresponding to the received PC5 QoS parameter is mode 2, and the current working mode of UE1 is mode 1;
  • the mode corresponding to the received PC5 QoS parameter is mode 1, and the current working mode of UE1 is mode 2.
  • the mode corresponding to the received PC5 QoS parameter is a sub-mode in mode 2, and the current working mode of UE1 is another sub-mode in mode 2.
  • Example 8 The UE establishes a unicast connection through the upper layer (ie Upper Layer), and negotiates related parameters and configuration through the AS layer.
  • the receiving end triggers the mode change process, which can specifically include the following steps:
  • Step g1, UE1 and UE2 perform an upper-layer connection establishment process, and perform QoS negotiation.
  • Step g2 UE1 sends a PC5 RRC message to UE2.
  • the aforementioned PC5 RRC message may include at least one of the following:
  • Step g3 UE2 triggers the mode change process according to the PC5 QoS parameter information sent by UE1.
  • This step is the same as the above step e3, in order to avoid repetition, it will not be repeated here.
  • the UE2 can trigger the mode change when it finds that the negotiated PC5 QoS parameters sent by the UE1 do not meet the above-mentioned trigger condition for the trigger mode change.
  • Step g4 If UE2 finds that the negotiated QoS parameter sent by UE1 does not meet the triggering condition of the trigger mode change, it can directly send a rejection message to UE1.
  • Step g5 UE2 sends a PC5 RRC complete message to UE1.
  • FIG. 5 is a structural diagram of a first terminal provided by an embodiment of the present disclosure. As shown in FIG. 5, the first terminal 500 includes:
  • the changing module 501 is configured to change the secondary link resource allocation mode of the first terminal when the target parameter meets the preset condition;
  • the target parameter includes at least one of the following: target PC5 QoS parameter, load of the secondary link PC5, load of Uu; the target PC5 QoS parameter includes some or all of the PC5 QoS parameters requested by the second terminal .
  • the change module is specifically used for:
  • the first secondary link resource allocation mode currently working by the first terminal is converted to the second secondary link resource allocation mode, or the first secondary link resource allocation mode currently working by the first terminal A second link resource allocation mode is added to the first link resource allocation mode.
  • the second secondary link resource allocation mode is the second mode
  • the second secondary link resource allocation mode is the first mode or the second sub-mode in the second mode. Mode, wherein the second mode includes at least two sub-modes.
  • the target parameter meeting a preset condition includes at least one of the following:
  • the target PC5 QoS parameter is greater than a first threshold, and the secondary link resource allocation mode currently working by the first terminal cannot guarantee the target PC5 QoS parameter;
  • the target PC5 QoS parameter is less than a second threshold, and a mode other than the secondary link resource allocation mode currently working by the first terminal can guarantee the target PC5 QoS parameter;
  • the secondary link resource allocation mode corresponding to the target PC5 QoS parameter is different from the secondary link resource allocation mode currently working by the first terminal.
  • the secondary link resource allocation mode corresponding to the target PC5 QoS parameter is determined according to the mapping rule between the PC5 QoS parameter and the secondary link resource allocation mode, and the mapping rule is pre-configuration, network-side device configuration , Protocol predefinition, operator configuration, the second terminal configuration, or the first terminal implementation.
  • the target PC5 QoS parameters include at least two sets of QoS parameters
  • the target parameters satisfying preset conditions include at least one of the following:
  • At least one set of QoS parameters is greater than a first threshold, and the secondary link resource allocation mode currently working by the first terminal cannot guarantee the at least one set of PC5 QoS parameters;
  • At least one set of QoS parameters is smaller than the second threshold, and a mode other than the secondary link resource allocation mode currently working by the first terminal can guarantee the at least one set of QoS parameters.
  • the terminal when the target parameter includes the target PC5 QoS parameter, the terminal further includes:
  • the first sending module is configured to send the accepted PC5 QoS parameters to the second terminal, where the accepted PC5 QoS parameters include part or all of the target PC5 QoS parameters.
  • the first sending module is specifically configured to:
  • the secondary link resource allocation mode of the first terminal is successfully changed, and/or the first terminal determines that the target PC5 QoS parameter can be guaranteed, send the accepted PC5 QoS parameter to the second terminal.
  • the terminal further includes:
  • the second sending module is configured to send a first message to the second terminal when the secondary link resource allocation mode of the first terminal fails to be changed, where the first message is used to indicate that the QoS negotiation fails ;
  • the third sending module is configured to send a second message to the second terminal when the first terminal determines that at least one set of PC5 QoS parameters in the target PC5 QoS parameters cannot be guaranteed, wherein the second terminal The message is used to indicate the failure of QoS negotiation.
  • the terminal when the target parameter includes the target PC5 QoS parameter, the terminal further includes:
  • the fourth sending module is configured to communicate to the first terminal through the upper layer of the first terminal before changing the secondary link resource allocation mode of the first terminal when the target parameter meets the preset condition.
  • the AS layer of the access layer sends the target PC5 QoS parameters;
  • the change module is specifically used for:
  • the AS layer of the first terminal changes the secondary link resource allocation mode of the first terminal when it is determined that the QoS parameters of the target PC5 meet a preset condition.
  • the terminal further includes a fifth sending module, and the fifth sending module is used for at least one of the following:
  • the AS layer of the first terminal sends to at least one of the upper layer of the first terminal and the AS layer of the second terminal A first notification message; wherein the first notification message is used to notify the first terminal that the secondary link resource allocation mode has been successfully changed;
  • the AS layer of the first terminal determines that at least one set of PC5 QoS parameters of the target PC5 QoS parameters can be guaranteed
  • the AS layer of the first terminal reports to the upper layer of the first terminal and the second At least one of the AS layers of the terminal sends a second notification message; wherein the second notification message is used to notify the target PC5 that the QoS parameters can be guaranteed and/or the at least one set of PC5 QoS parameters can be guaranteed;
  • the AS layer of the first terminal transmits to at least one of the upper layer of the first terminal and the AS layer of the second terminal The third notification message; wherein the third notification message is used to notify the first terminal that the secondary link resource allocation mode change fails;
  • the AS layer of the first terminal determines that at least one set of PC5 QoS parameters of the target PC5 QoS parameters cannot be guaranteed
  • the AS layer of the first terminal reports to the upper layer of the first terminal and the second At least one of the AS layers of the terminal sends a fourth notification message; wherein the fourth notification message is used to notify the target PC5 that the QoS parameters cannot be guaranteed and/or the at least one set of PC5 QoS parameters cannot be guaranteed.
  • the change module is specifically used for at least one of the following:
  • the load of the secondary link PC5 does not meet the first condition, and/or the load of the Uu does not meet the second condition, if the current secondary link resource allocation mode of the first terminal is the first mode , Then change the secondary link resource allocation mode of the first terminal.
  • the load of the secondary link PC5 satisfies the first condition, including at least one of the following:
  • the measurement result of the measurement quantity of the reference signal used for the secondary link is less than the first sub-threshold
  • the received signal strength of the P channels or sub-channels transmitted by the secondary link indicates that the measurement result of the RSSI is greater than the second sub-threshold, where P is a positive integer;
  • the channel busy rate CBR measurement result of the secondary link transmission is greater than the third sub-threshold
  • N is a positive integer
  • a link failure occurs on the secondary link
  • the number of retransmissions of the radio link control RLC in the secondary link transmission is greater than M, where M is a positive integer.
  • the load of the Uu satisfies the second condition, including at least one of the following:
  • the first indication information indicates that the load of the Uu satisfies the second condition, or instructs the first terminal to change the secondary link resource allocation mode; wherein the first indication information is the indication information received from the network side device;
  • the Uu link has a wireless link failure
  • the number of radio link control RLC retransmissions in the Uu transmission is greater than S times, where S is a positive integer.
  • the change module includes:
  • a sending unit configured to send a mode change request to the network side device when the target parameter meets a preset condition, where the mode change request is used to request to change the secondary link resource allocation mode of the first terminal;
  • the receiving unit is configured to receive response information sent by the network-side device, wherein the response message carries at least one of configuration information and second indication information, and the second indication information is used to indicate whether to allow the The target terminal changes the secondary link resource allocation mode;
  • the changing unit is configured to change the secondary link resource allocation mode of the first terminal according to the response information.
  • the sending unit is specifically used for at least one of the following:
  • the mode change request is sent to the network side device through an RRC message.
  • the first terminal 500 provided in the embodiments of the present disclosure can implement the various processes implemented by the first terminal in the foregoing method embodiments. To avoid repetition, details are not described herein again.
  • the changing module 501 is configured to change the secondary link resource allocation mode of the first terminal when the target parameter meets the preset condition; wherein, the target parameter includes at least the following One item: the target PC5 QoS parameters, the load of the secondary link PC5, and the Uu load; the target PC5 QoS parameters include part or all of the PC5 QoS parameters requested by the second terminal.
  • It can improve the flexibility of the mode control of the UE in the Internet of Vehicles system, and can reduce the probability that QOS parameter negotiation between UEs fails or the QOS of subsequent services cannot be guaranteed due to reasons such as too large load.
  • FIG. 6 is a structural diagram of a second terminal provided by an embodiment of the present disclosure. As shown in FIG. 6, the second terminal 600 includes:
  • the first sending module 601 is configured to send the requested PC5 QoS parameters to the first terminal;
  • the receiving module 602 is configured to receive the PC5 QoS parameter accepted by the first terminal; wherein the accepted PC5 QoS parameter includes part or all of the requested PC5 QoS parameter;
  • the changing module 603 is configured to change the secondary link resource allocation mode of the second terminal when the accepted PC5 QoS parameters meet a preset condition.
  • the change module is specifically used for:
  • the third secondary link resource allocation mode currently working by the second terminal is converted to the fourth secondary link resource allocation mode, or the second terminal A fourth secondary link resource allocation mode is added to the third secondary link resource allocation mode currently working by the terminal.
  • the fourth secondary link resource allocation mode is the second mode
  • the fourth secondary link resource allocation mode is the first mode or the fourth sub-mode in the second mode. Mode; wherein the second mode includes at least two sub-modes.
  • the accepted PC5 QoS parameters satisfying preset conditions include at least one of the following:
  • the accepted PC5 QoS parameter is greater than a third threshold, and the current secondary link resource allocation mode of the second terminal cannot guarantee the accepted PC5 QoS parameter;
  • the accepted PC5 QoS parameter is less than the fourth threshold, and a mode other than the current secondary link resource allocation mode of the second terminal can guarantee the accepted PC5 QoS parameter;
  • the secondary link resource allocation mode corresponding to the accepted PC5 QoS parameter is different from the current secondary link resource allocation mode of the second terminal.
  • the secondary link resource allocation mode corresponding to the received PC5 QoS parameter is determined according to the mapping rule between the PC5 QoS parameter and the secondary link resource allocation mode, and the mapping rule is a pre-configured, network-side device Configuration, protocol pre-definition, operator configuration, the second terminal configuration or the first terminal implementation.
  • the change module includes:
  • the sending unit is configured to send a mode change request to the network side device when the accepted PC5 QoS parameters meet preset conditions, where the mode change request is used to request to change the secondary link of the second terminal Resource allocation model;
  • the receiving unit is configured to receive response information sent by the network-side device, where the response message carries at least one of configuration information and indication information, and the indication information is used to indicate whether the second terminal is allowed to change Secondary link resource allocation mode;
  • the changing unit is configured to change the secondary link resource allocation mode of the second terminal according to the response information.
  • the sending unit is specifically used for at least one of the following:
  • the mode change request is sent to the network side device through an RRC message.
  • the second terminal 600 provided in the embodiment of the present disclosure can implement each process implemented by the second terminal in the foregoing method embodiment, and to avoid repetition, details are not described herein again.
  • the first sending module 601 is used to send the requested PC5 QoS parameters to the first terminal;
  • the receiving module 602 is used to receive the PC5 QoS parameters accepted by the first terminal; where The accepted PC5 QoS parameters include part or all of the requested PC5 QoS parameters;
  • the change module 603 is configured to change the secondary terminal of the second terminal when the accepted PC5 QoS parameters meet preset conditions.
  • Link resource allocation mode The flexibility of the mode control of UE work can be improved.
  • the network side device 700 includes:
  • the receiving module 701 is configured to receive a mode change request sent by a target terminal, where the mode change request is used to request to change the secondary link resource allocation mode of the target terminal;
  • the sending module 702 is configured to send a response message to the target terminal, where the response message carries at least one of configuration information and indication information, and the indication information is used to indicate whether the target terminal is allowed to change the secondary link Road resource allocation mode.
  • the network-side device 700 provided in the embodiments of the present disclosure can implement the various processes implemented by the network-side device in the foregoing method embodiments. To avoid repetition, details are not described herein.
  • the network side device 700 the receiving module 701, is configured to receive a mode change request sent by the target terminal, where the mode change request is used to request to change the secondary link resource allocation mode of the target terminal; the sending module 702, configured to send a response message to the target terminal, where the response message carries at least one of configuration information and indication information, and the indication information is used to indicate whether the target terminal is allowed to change secondary link resources Distribution mode.
  • the flexibility of changing the resource allocation mode of the secondary link can be improved.
  • FIG. 8 is a structural diagram of a first terminal provided by another embodiment of the present disclosure.
  • the first first terminal 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, processor 810, and power supply 811.
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the processor 810 is configured to change the secondary link resource allocation mode of the first terminal when the target parameter meets the preset condition; wherein, the target parameter includes at least one of the following: target PC5 QoS Parameter, the load of the secondary link PC5, the load of Uu; the target PC5 QoS parameter includes part or all of the PC5 QoS parameter requested by the second terminal.
  • the embodiments of the present disclosure can improve the flexibility of the mode control of the UE in the Internet of Vehicles system, and can reduce the probability that QOS parameter negotiation between UEs fails or the QOS of subsequent services cannot be guaranteed due to excessive load.
  • processor 810 is further configured to:
  • the first secondary link resource allocation mode currently working by the first terminal is converted to the second secondary link resource allocation mode, or the first secondary link resource allocation mode currently working by the first terminal A second link resource allocation mode is added to the first link resource allocation mode.
  • the second secondary link resource allocation mode is the second mode
  • the second secondary link resource allocation mode is the first mode or the second sub-mode in the second mode Mode, wherein the second mode includes at least two sub-modes.
  • the target parameter meeting a preset condition includes at least one of the following:
  • the target PC5 QoS parameter is greater than a first threshold, and the secondary link resource allocation mode currently working by the first terminal cannot guarantee the target PC5 QoS parameter;
  • the target PC5 QoS parameter is less than a second threshold, and a mode other than the secondary link resource allocation mode currently working by the first terminal can guarantee the target PC5 QoS parameter;
  • the secondary link resource allocation mode corresponding to the target PC5 QoS parameter is different from the secondary link resource allocation mode currently working by the first terminal.
  • the secondary link resource allocation mode corresponding to the target PC5 QoS parameter is determined according to the mapping rule between the PC5 QoS parameter and the secondary link resource allocation mode, and the mapping rule is pre-configuration, network-side device configuration , Protocol predefinition, operator configuration, the second terminal configuration, or the first terminal implementation.
  • the target PC5 QoS parameters include at least two sets of QoS parameters
  • the target parameters satisfying preset conditions include at least one of the following:
  • At least one set of QoS parameters is greater than a first threshold, and the secondary link resource allocation mode currently working by the first terminal cannot guarantee the at least one set of PC5 QoS parameters;
  • At least one set of QoS parameters is smaller than the second threshold, and a mode other than the secondary link resource allocation mode currently working by the first terminal can guarantee the at least one set of QoS parameters.
  • processor 810 is further configured to:
  • the target parameter includes the target PC5 QoS parameter
  • processor 810 is further configured to:
  • the secondary link resource allocation mode of the first terminal is successfully changed, and/or the first terminal determines that the accepted PC5 QoS parameters can be guaranteed, send the accepted PC5 to the second terminal QoS parameters.
  • processor 810 is further configured to:
  • a second message is sent to the second terminal, where the second message is used to indicate that the QoS negotiation fails.
  • processor 810 is further configured to:
  • the target parameter includes the target PC5 QoS parameter
  • the target parameter when the target parameter satisfies a preset condition, before changing the secondary link resource allocation mode of the first terminal, pass the first terminal Send the target PC5 QoS parameter to the AS layer of the access layer of the first terminal;
  • processor 810 is further configured to:
  • the AS layer of the first terminal changes the secondary link resource allocation mode of the first terminal when it is determined that the QoS parameters of the target PC5 meet a preset condition.
  • the processor 810 is further used for at least one of the following:
  • the AS layer of the first terminal sends to at least one of the upper layer of the first terminal and the AS layer of the second terminal A first notification message; wherein the first notification message is used to notify the first terminal that the secondary link resource allocation mode has been successfully changed;
  • the AS layer of the first terminal determines that at least one set of PC5 QoS parameters of the target PC5 QoS parameters can be guaranteed
  • the AS layer of the first terminal reports to the upper layer of the first terminal and the second At least one of the AS layers of the terminal sends a second notification message; wherein the second notification message is used to notify the target PC5 that the QoS parameters can be guaranteed and/or the at least one set of PC5 QoS parameters can be guaranteed;
  • the AS layer of the first terminal transmits to at least one of the upper layer of the first terminal and the AS layer of the second terminal The third notification message; wherein the third notification message is used to notify the first terminal that the secondary link resource allocation mode change fails;
  • the AS layer of the first terminal determines that at least one set of PC5 QoS parameters of the target PC5 QoS parameters cannot be guaranteed
  • the AS layer of the first terminal reports to the upper layer of the first terminal and the second At least one of the AS layers of the terminal sends a fourth notification message; wherein the fourth notification message is used to notify the target PC5 that the QoS parameters cannot be guaranteed and/or the at least one set of PC5 QoS parameters cannot be guaranteed.
  • the processor 810 is further configured to at least one of the following:
  • the load of the secondary link PC5 does not meet the first condition, and/or the load of the Uu does not meet the second condition, if the current secondary link resource allocation mode of the first terminal is the first mode , Then change the secondary link resource allocation mode of the first terminal.
  • the load of the secondary link PC5 satisfies the first condition, including at least one of the following:
  • the measurement result of the measurement quantity of the reference signal used for the secondary link is less than the first sub-threshold
  • the received signal strength of the P channels or sub-channels transmitted by the secondary link indicates that the RSSI measurement result is greater than the second sub-threshold, where P is a positive integer;
  • the channel busy rate CBR measurement result of the secondary link transmission is greater than the third sub-threshold
  • N is a positive integer
  • a link failure occurs on the secondary link
  • the number of retransmissions of the radio link control RLC in the secondary link transmission is greater than M, where M is a positive integer.
  • the load of the Uu satisfies the second condition, including at least one of the following:
  • the first indication information indicates that the load of the Uu satisfies the second condition, or instructs the first terminal to change the secondary link resource allocation mode; wherein the first indication information is the indication information received from the network side device;
  • the Uu link has a wireless link failure
  • the number of radio link control RLC retransmissions in the Uu transmission is greater than S times, where S is a positive integer.
  • processor 810 is further configured to:
  • Receive response information sent by the network-side device where the response message carries at least one of configuration information and second indication information, and the second indication information is used to indicate whether to allow the target terminal to change the secondary link Road resource allocation mode;
  • the secondary link resource allocation mode of the first terminal is changed.
  • processor 810 is further configured to:
  • the mode change request is sent to the network side device through an RRC message.
  • the radio frequency unit 801 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 810; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 801 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 802, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 803 can convert the audio data received by the radio frequency unit 801 or the network module 802 or stored in the memory 809 into audio signals and output them as sounds. Moreover, the audio output unit 803 may also provide audio output related to a specific function performed by the first terminal 800 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 803 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 804 is used to receive audio or video signals.
  • the input unit 804 may include a graphics processing unit (GPU) 8041 and a microphone 8042.
  • the graphics processor 8041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in the video capture mode or the image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 806.
  • the image frame processed by the graphics processor 8041 may be stored in the memory 809 (or other storage medium) or sent via the radio frequency unit 801 or the network module 802.
  • the microphone 8042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 801 for output in the case of a telephone call mode.
  • the first terminal 800 also includes at least one sensor 805, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 8061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 8061 when the first terminal 800 is moved to the ear. And/or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 805 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 806 is used to display information input by the user or information provided to the user.
  • the display unit 806 may include a display panel 8061, and the display panel 8061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 807 can be used to receive inputted number or character information and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072.
  • the touch panel 8071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 8071 or near the touch panel 8071. operating).
  • the touch panel 8071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 810, the command sent by the processor 810 is received and executed.
  • the touch panel 8071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 807 may also include other input devices 8072.
  • other input devices 8072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 8071 can cover the display panel 8061.
  • the touch panel 8071 detects a touch operation on or near it, it transmits it to the processor 810 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 8061.
  • the touch panel 8071 and the display panel 8061 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 8071 and the display panel 8061 can be integrated. Realize the input and output functions of the terminal, which are not limited here.
  • the interface unit 808 is an interface for connecting an external device with the first terminal 800.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 808 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the first terminal 800 or can be used to connect to the first terminal 800 Transfer data between and external devices.
  • the memory 809 can be used to store software programs and various data.
  • the memory 809 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 809 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 810 is the control center of the terminal. It uses various interfaces and lines to connect the various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 809, and calling data stored in the memory 809. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 810 may include one or more processing units; preferably, the processor 810 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface and application programs, etc., the modem The processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 810.
  • the first terminal 800 may also include a power source 811 (such as a battery) for supplying power to various components.
  • a power source 811 such as a battery
  • the power source 811 may be logically connected to the processor 810 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the first terminal 800 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present disclosure further provides a first terminal, including a processor 810, a memory 809, a computer program stored in the memory 809 and running on the processor 810, and the computer program is executed by the processor 810
  • a first terminal including a processor 810, a memory 809, a computer program stored in the memory 809 and running on the processor 810, and the computer program is executed by the processor 810
  • FIG. 9 is a structural diagram of a second terminal provided by another embodiment of the present disclosure.
  • the second terminal 900 includes: at least one processor 901, a memory 902, at least one network interface 904, and a user Interface 903.
  • the components in the second terminal 900 are coupled together through the bus system 905.
  • the bus system 905 is used to implement connection and communication between these components.
  • the bus system 905 also includes a power bus, a control bus, and a status signal bus.
  • the memory 902 stores the following elements, executable modules or data structures, or their subsets, or their extended sets: operating system 9021 and application programs 9022.
  • the operating system 9021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application 9022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • the program for implementing the method of the embodiments of the present disclosure may be included in the application 9022.
  • the second terminal 900 further includes: a computer program stored in the memory 902 and running on the processor 901, specifically, it may be a computer program in the application program 9022, and the computer program is executed by the processor 901 The following steps are implemented during execution:
  • the secondary link resource allocation mode of the second terminal is changed.
  • the third secondary link resource allocation mode currently working by the second terminal is converted to the fourth secondary link resource allocation mode, or the second terminal A fourth secondary link resource allocation mode is added to the third secondary link resource allocation mode currently working by the terminal.
  • the fourth secondary link resource allocation mode is the second mode
  • the fourth secondary link resource allocation mode is the first mode or the fourth sub-mode in the second mode. Mode; wherein the second mode includes at least two sub-modes.
  • the accepted PC5 QoS parameters satisfying preset conditions include at least one of the following:
  • the accepted PC5 QoS parameter is greater than a third threshold, and the current secondary link resource allocation mode of the second terminal cannot guarantee the accepted PC5 QoS parameter;
  • the accepted PC5 QoS parameter is less than the fourth threshold, and a mode other than the current secondary link resource allocation mode of the second terminal can guarantee the accepted PC5 QoS parameter;
  • the secondary link resource allocation mode corresponding to the accepted PC5 QoS parameter is different from the current secondary link resource allocation mode of the second terminal.
  • the secondary link resource allocation mode corresponding to the received PC5 QoS parameter is determined according to the mapping rule between the PC5 QoS parameter and the secondary link resource allocation mode, and the mapping rule is a pre-configured, network-side device Configuration, protocol pre-definition, operator configuration, the first terminal configuration or the second terminal implementation.
  • the secondary link resource allocation mode of the second terminal is changed.
  • the computer program is also used for at least one of the following when being executed by the processor 901:
  • the mode change request is sent to the network side device through an RRC message.
  • the network side device 1000 includes: a processor 1001, a memory 1002, a bus interface 1003, and a transceiver 1004, where the processor 1001, the memory 1002, and the transceiver 1004 are all connected to the bus interface 1003.
  • the network side device 1000 further includes: a computer program stored in the memory 1002 and capable of running on the processor 1001.
  • the transceiver 1004 is used to:
  • the target terminal Sending a response message to the target terminal, wherein the response message carries at least one of configuration information and indication information, and the indication information is used to indicate whether the target terminal is allowed to change the secondary link resource allocation mode.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the computer program is executed by a processor, each process of the above-mentioned mode control method embodiment is realized, and the same technology can be achieved. The effect, in order to avoid repetition, will not be repeated here.
  • the computer readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk) )
  • a storage medium such as ROM/RAM, magnetic disk, optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Abstract

本公开提供一种模式控制方法、终端和网络侧设备,该方法包括:在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式;其中,所述目标参数包括如下至少一项:目标PC5 QoS参数,所述副链路PC5的负载,Uu的负载;所述目标PC5 QoS参数包括第二终端请求的PC5 QoS参数中的部分或全部。

Description

模式控制方法、终端和网络侧设备
相关申请的交叉引用
本申请主张在2019年2月15日在中国提交的中国专利申请号No.201910118062.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种模式控制方法、终端和网络侧设备。
背景技术
目前,一些车联网系统(例如,长期演进车联网(Long Term Evolution-Vehicleto Everything,LTE-V2X)或是新空口车联网(New Radio Evolution-Vehicle to Everything,LTE-V2X)等)可以支持副链路(即Sidelink),用户设备(User Equipment,UE)(也可称为终端)之间基于该副链路可以不通过网络设备直接传输数据。
对于上述副链路,可以存在两种副链路资源分配模式,一种是模式1(即Mode1),由网络侧设备调度资源,一种是模式2(即Mode2),UE自身决定使用什么资源进行传输,此时资源信息可以来自网络侧设备的广播消息或者预配置。UE可以工作在模式1,也可以工作在模式2。然而,在相关技术中,UE工作的模式通常保持不变,容易导致UE之间QoS参数协商失败或因负载太大等原因不能保证后续业务的QoS等问题。
可见,相关技术中的车联网系统存在UE工作的模式控制灵活性较差的问题。
发明内容
本公开实施例提供一种模式控制方法、终端和网络侧设备,以解决车联网系统中UE工作的模式控制灵活性较差的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种模式控制方法,应用于第一终端,该方法包括:
在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式;
其中,所述目标参数包括如下至少一项:目标PC5 QoS参数,所述副链路PC5的负载,Uu的负载;所述目标PC5 QoS参数包括第二终端请求的PC5 QoS参数中的部分或全部。
第二方面,本公开实施例还提供了一种模式控制方法,应用于第二终端,该方法包括:
向第一终端发送请求的PC5 QoS参数;
接收所述第一终端接受的PC5 QoS参数;其中,所述接受的PC5 QoS参数包括所述请求的PC5 QoS参数中的部分或全部;
在所述接受的PC5 QoS参数满足预设条件的情况下,变更所述第二终端的副链路资源分配模式。
第三方面,本公开实施例还提供了一种模式控制方法,应用于网络侧设备,该方法包括:
接收目标终端发送的模式变更请求,其中,所述模式变更请求用于请求变更所述目标终端的副链路资源分配模式;
向所述目标终端发送响应消息,其中,所述响应消息携带有配置信息和指示信息中的至少之一,所述指示信息用于指示是否允许所述目标终端变更副链路资源分配模式。
第四方面,本公开实施例还提供一种终端。该终端为第一终端,所述第一终端包括:
变更模块,用于在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式;
其中,所述目标参数包括如下至少一项:目标PC5 QoS参数,所述副链路PC5的负载,Uu的负载;所述目标PC5 QoS参数包括第二终端请求的PC5 QoS参数中的部分或全部。
第五方面,本公开实施例还提供一种终端。该终端为第二终端,所述第 二终端包括:
第一发送模块,用于向第一终端发送请求的PC5 QoS参数;
接收模块,用于接收所述第一终端接受的PC5 QoS参数;其中,所述接受的PC5 QoS参数包括所述请求的PC5 QoS参数中的部分或全部;
变更模块,用于在所述接受的PC5 QoS参数满足预设条件的情况下,变更所述第二终端的副链路资源分配模式。
第六方面,本公开实施例还提供一种网络侧设备。该网络侧设备包括:
接收模块,用于接收目标终端发送的模式变更请求,其中,所述模式变更请求用于请求变更所述目标终端的副链路资源分配模式;
发送模块,用于向所述目标终端发送响应消息,其中,所述响应消息携带有配置信息和指示信息中的至少之一,所述指示信息用于指示是否允许所述目标终端变更副链路资源分配模式。
第七方面,本公开实施例还提供一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第一方面提供的模式控制方法的步骤。
第八方面,本公开实施例还提供一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第二方面提供的模式控制方法的步骤。
第九方面,本公开实施例还提供一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第三方面提供的模式控制方法的步骤。
第十方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面提供的模式控制方法的步骤,或者实现上述第二方面提供的模式控制方法的步骤,或者实现上述第三方面提供的模式控制方法的步骤。
本公开实施例中,通过在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式;其中,所述目标参数包括如下至少一项:目标PC5 QoS参数,所述副链路PC5的负载,Uu的负载;所述目标PC5 QoS参数包括第二终端请求的PC5 QoS参数中的部分或全部。可以提高车联网系统 中UE工作的模式控制的灵活性,可以减少UE之间QoS参数协商失败或因负载太大等原因不能保证后续业务的QoS等问题发生的概率。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例可应用的一种网络系统的结构图;
图2是本公开实施例提供的模式控制方法的流程图;
图3是本公开又一实施例提供的模式控制方法的流程图;
图4是本公开又一实施例提供的模式控制方法的流程图;
图5是本公开实施例提供的第一终端的结构图;
图6是本公开实施例提供的第二终端的结构图;
图7是本公开实施例提供的网络侧设备的结构图;
图8是本公开又一实施例提供的第一终端的结构图;
图9是本公开又一实施例提供的第二终端的结构图;
图10是本公开又一实施例提供的网络侧设备的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤 或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。
为了便于理解,以下将本公开实施例相关的一些内容进行说明:
一、副链路(即Sidelink)介绍
长期演进(Long Term Evolution,LTE)系统从第12个发布版本开始支持副链路(也可称为侧链路,边链路等),用于用户设备(User Equipment,UE)(也可称为终端)之间不通过网络设备直接进行数据传输。
UE通过物理副链路控制信道(Physical Sidelink Control Channel,PSCCH)发送副链路控制信息(Sidelink Control Information,SCI),调度物理副链路共享信道(Physical Sidelink Shared Channel,PSSCH)的传输以发送数据。该传输是以广播形式进行,接收端并不向发送端反馈接收是否成功。
LTE副链路设计支持两种资源分配模式,分别是调度资源分配(也即Scheduled Resource Allocation)模式与自主资源选择(Autonomous Resource Selection)模式。前者由网络侧设备控制并为每个UE分配资源,后者由UE自主选择资源。
从第15个发布版本开始,LTE支持副链路载波集合(Carrier Aggregation,CA)。LTE副链路的CA与Uu接口(即下行链路(即Downlink)与上行链路(即Uplink))不同,没有主载波(Primary Component Carrier,PCC)与辅载波(Secondary Component Carrier,SCC)之分。自主资源选择模式的UE在每个CC上独立进行资源感知(即Sensing)与资源预留。其中,上述Uu接口是指用户设备到网络侧设备的空中接口,车辆与基础设施以及车辆与车辆之间传输数据需要经过网络侧设备(例如,基站)进行转发来实现通信。
LTE副链路的设计可适用于特定的公共安全事务(例如,火灾场所或地震等灾难场所进行紧急通讯),或车联网(Vehicle to Everything,V2X)通 信等。车联网通信可以包括各种业务,例如,基本安全类通信,自动驾驶,编队,传感器扩展等等。由于LTE副链路只支持广播通信,因此主要用于基本安全类通信,其他高级V2X业务将通过新空口(New Radio,NR)副链路支持。
5G NR系统可用于LTE所不支持的6GHz以上工作频段,支持更大的工作带宽,但目前版本的NR系统只支持网络侧设备与终端间的接口,尚不支持终端之间直接通信的副链路接口。
二、副链路与单播或组播链路
LTE系统的副链路传输是基于广播进行的,UE在物理层并没有建立点对点连接,也不存在反馈机制。接收端并不向发送端反馈接收是否成功,也不能进行信道测量并反馈测量结果。
NR系统的V2X可以支持多种传输方式,例如,包括单播、组播和广播。单播也即一对一(即One to One)的传输,组播也即一对多(即One to Many)的传输。广播也是一对多(即One to Many)的传输,但是广播并没有UE属于同一个组的概念。
三、单播连接建立
单播连接建立可以考虑两种选择(即Option)和各自的影响,一种是只由上层(即Upper Layer)来实现,一种是接入层(Access Stratum,AS)的单播连接建立同样需要。
四、V2X模式1(即Mode1)和模式2(即Mode2)
NR V2X定义了两种副链路资源分配模式(即Mode),一种是模式1(即Mode1),由网络侧设备(例如,基站)调度资源,一种是模式2(即Mode2),UE决定使用什么资源进行传输,此时资源信息可能来自网络侧设备的广播消息或者预配置。UE如果工作在网络侧设备范围内并且与网络侧设备有无线资源控制(Radio Resource Control,RRC)连接,可以是模式1和/或模式2,UE如果工作在网络侧设备范围内但与网络侧设备没有RRC连接,只能工作在模式2。如果UE在网络侧设备范围外,那么只能工作在模式2,根据预配置的信息来进行V2X传输。
需要说明的是,上述模式2可以包括子模式,具体的,可以包括如下子 模式:
模式2a(即Mode2a):UE自主选择副链路资源进行传输;
模式2b(即Mode2b):UE协助其他UE的副链路资源选择;
模式2c(即Mode2c):UE配置有用于副链路传输的NR配置授权(如类型1);
模式2d(即Mode2d):UE调度其他UE的副链路传输。
其中,上述模式2b(即Mode2b)可不作为一种单独的模式,而作为其他模式的一部分。
五、V2X服务服务质量(Quality of Service,QoS)需求
LTE V2X服务:
应用层需要向AS层发送V2X消息(或者V2X数据包)时,会携带在PC5接口上传输该V2X消息时的每一数据包优先级(ProSe Per-Packet Priority,PPPP)和每一数据包可靠性(ProSe Per-Packet Reliability,PPPR)信息。其中,PPPP用于指示数据包传输时的优先级,PPPP的优先级越高,数据包时延要求越高。PPPR用于指示对数据包传输时的可靠性(即Reliability)的需求程度。
对于不同的V2X服务,可以有不同的性能要求。目前NR高级(即Advanced)V2X服务的性能要求的指标主要包括以下参数,并且这些指标可以通过第五代服务质量标识(5G QoS Identifier,5QI)来标识。
具体,使用以下参数指定新的性能KPI:
有效载荷(字节),也即Payload(Bytes);
传输速率(消息/秒),也即Transmission Rate(Message/Sec);
最大端到端延迟(ms),也即Maximum end-to-end Latency(ms);
可靠性(%),也即Reliability(%);
数据速率(Mbps),也即Data Rate(Mbps);
所需的最低通信范围(米),也即Minimum Required Communication Range(meters)。
需要说明的是,同一组服务要求适用于基于PC5的V2X通信和基于Uu的V2X通信。
六、5QI
5QI可以理解为一个索引(即Index),一个5QI就对应着一整套QoS参数指标。例如,具体定义可以如表1所示:
表1
Figure PCTCN2020075319-appb-000001
参见图1,图1是本公开实施例可应用的一种网络系统的结构图,如图1所示,包括第一终端11、第二终端12和网络侧设备13,其中,第一终端11和第二终端12可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)或车载设备等用户侧设备,需要说明的是,在本公开实施例中并不限定上述第一终端11和第二终端12的具体类型。网络侧设备13可以是基站,例如:宏站、LTE eNB、5G NR NB、gNB等;网络侧设备13也可以是小站,如低功率节点(Low Power Node,LPN)pico、femto等小站,或者网络侧设备13可以接入点(Access Point,AP);基站也可以是中央单元(Central Unit,CU)与其管理是和控制的多个TRP共同组成的网络节点。需要说明的是,在本公开实施例中并不限定网络侧设备13的具体类型。
本公开实施例提供一种模式控制方法,应用于第一终端。参见图2,图2是本公开实施例提供的模式控制方法的流程图,如图2所示,包括以下步骤:
步骤201、在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式;
其中,所述目标参数包括如下至少一项:目标PC5 QoS参数,所述副链路PC5的负载,Uu的负载;所述目标PC5 QoS参数包括第二终端请求的PC5 QoS参数中的部分或全部。
本公开实施例中,上述PC5可以是指终端至终端之间的接口,通过PC5 可以实现终端之间数据的直接传输。上述Uu可以是指终端到网络侧设备的空中接口,终端与基础设施以及终端与终端之间传输数据需要经过网络侧设备进行转发来实现通信。
上述PC5 QoS参数可以包括QoS参数指标(例如,时延和可靠性等)、5QI和VQI(也即V2X 5QI)等中的一项或是多项。
上述请求的PC5 QoS参数可以包括一套或是至少两套QoS参数。例如,可以包括一个或是多个VQI。需要说明的是,其中,每个VQI或是5QI均可以表示一套QoS参数。
上述目标PC5 QoS参数可以包括上述请求的PC5 QoS参数中的部分或是全部。例如,在请求的PC5 QoS参数仅包括一套QoS参数的情况下,上述目标PC5 QoS参数可以是请求的PC5 QoS参数,在请求的PC5 QoS参数包括至少两套QoS参数的情况下,上述目标PC5 QoS参数可以是至少两套QoS参数中的一套。
实际应用中,上述目标PC5 QoS参数可以是第一终端可接受的PC5 QoS参数,例如,在上述请求的PC5 QoS参数包括第一VQI和第二VQI的情况下,若第一终端基于服务和/或签约情况等认为第一VQI可接受,则上述目标PC5QoS参数为第一VQI,若第一终端基于服务和/或签约情况等认为第二VQI可接受,则上述目标PC5 QoS参数为第二VQI。
上述副链路PC5的负载的大小可以通过用于上述副链路的参考信号的测量量的测量结果的大小、上述副链路传输的信道或子信道的接收信号强度指示(Received Signal Strength Indication,RSSI)的测量结果的大小和上述副链路传输的信道繁忙率(Channel Busy Ratio,CBR)的测量结果的大小等中的一项或多项进行衡量。
上述Uu的负载的大小可以通过收到的用于Uu链路的非同步指示的数量、Uu链路是否发生无线链路失败和Uu传输中无线链路控制(Radio Link Control,RLC)重传次数等中的一项或是多项进行衡量。
本实施例中,在目标参数满足预设条件的情况下,可以变更所述第一终端的副链路资源分配模式,使得第一终端工作的模式更为合理。
例如,可以在第一终端当前工作的副链路资源分配模式不能保证目标PC5 QoS参数的情况下,变更所述第一终端的副链路资源分配模式,以提高QoS参数协商成功的概率;或是在副链路PC5的负载较大的情况下,若第一终端的副链路资源分配模式为模式2,则转换第一终端的副链路资源分配模式为模式1,或是增加模式1,此时第一终端同时工作在模式1和模式2上,从而可以提高业务的QoS。
本公开实施例提供的模式控制方法,通过在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式;其中,所述目标参数包括如下至少一项:目标PC5 QoS参数,所述副链路PC5的负载,Uu的负载;所述目标PC5 QoS参数包括第二终端请求的PC5 QoS参数中的部分或全部,可以提高车联网系统中UE工作的模式控制的灵活性,可以减少UE之间QoS参数协商失败或因负载太大等原因不能保证后续业务的QoS等问题发生的概率。
可选的,上述步骤201,也即所述在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式,可以包括:
在目标参数满足预设条件的情况下,将所述第一终端当前工作的第一副链路资源分配模式转换为第二副链路资源分配模式,或者为工作于第一副链路资源分配模式的所述第一终端增加第二副链路资源分配模式。
在一实施方式中,在目标参数满足预设条件的情况下,可以将所述第一终端当前工作的第一副链路资源分配模式转换为第二副链路资源分配模式。例如,第一终端当前工作在模式1,则可以将第一终端转换为工作在模式2。
在另一实施方式中,在目标参数满足预设条件的情况下,可以为工作于第一副链路资源分配模式的所述第一终端增加第二副链路资源分配模式,此时,第一终端同时工作在第一副链路资源分配模式和第二副链路资源分配模式。例如,第一终端当前工作在模式1,则可以为第一终端增加模式2,此时,第一终端同时工作在模式1和模式2。
本公开实施例通过在目标参数满足预设条件的情况下,将所述第一终端当前工作的第一副链路资源分配模式转换为第二副链路资源分配模式,或者为工作于第一副链路资源分配模式的所述第一终端增加第二副链路资源分配模式,可以提高模式控制的灵活性。
可选的,在所述第一副链路资源分配模式为第一模式的情况下,所述第 二副链路资源分配模式为第二模式;或者
在所述第一副链路资源分配模式为第二模式中的第一子模式的情况下,所述第二副链路资源分配模式为第一模式或者所述第二模式中的第二子模式,其中,所述第二模式包括至少两个子模式。
本实施例中,上述第一模式也即上述模式1(即Mode1),通过网络侧设备(例如,基站)调度资源。上述第二模式也即上述模式2(即Mode2),由UE决定传输资源。
上述第一子模式可以是上述模式2a(即Mode2a)、模式2c(即Mode2c)和模式2d(即Mode2d)中的任一个,上述第二子模式可以是上述模式2a(即Mode2a)、模式2c(即Mode2c)和模式2d(即Mode2d)中与第一子模式不同的任一个。
本实施例中,在第一副链路资源分配模式为第一模式的情况下,所述第二副链路资源分配模式为第二模式。例如,在第一终端当前工作在模式1的情况下,可以将将第一终端转换为工作在模式2,或是为第一终端增加模式2,此时,第一终端同时工作在模式1和模式2。
在所述第一副链路资源分配模式为第二模式中的第一子模式的情况下,所述第二副链路资源分配模式可以为第一模式或者所述第二模式中的第二子模式,其中,所述第二模式包括至少两个子模式。
例如,在第一终端当前工作在模式2a的情况下,可以将第一终端转换为工作在模式1,或是为第一终端增加模式1,此时,第一终端同时工作在模式1和模式2a;也可以将第一终端转换为工作在模式2c,或是为第一终端增加模式2c,此时,第一终端同时工作在模式2a和模式2c;也可以将第一终端转换为工作在模式2d,或是为第一终端增加模式2d,此时,第一终端同时工作在模式2a和模式2d。
可选的,在所述目标参数包括所述目标PC5 QoS参数的情况下,所述目标参数满足预设条件可以包括如下至少一项:
所述目标PC5 QoS参数大于第一阈值,且所述第一终端当前工作的副链路资源分配模式不能保证所述目标PC5 QoS参数;
所述目标PC5 QoS参数小于第二阈值,且所述第一终端当前工作的副链 路资源分配模式之外的模式能保证所述目标PC5 QoS参数;
所述目标PC5 QoS参数对应的副链路资源分配模式与所述第一终端当前工作的副链路资源分配模式不同。
本实施例中,上述第一阈值和第二阈值均可以根据实际情况进行合理设置。
具体的,对于目标PC5 QoS参数大于第一阈值,在目标PC5 QoS参数仅包括一套QoS参数的情况下,可以为该套QoS参数大于第一阈值;在目标PC5 QoS参数包括至少两套QoS参数的情况下,可以是至少两套QoS参数中每套QoS参数均大于第一阈值。
同样的,对于目标PC5 QoS参数小于第二阈值,在目标PC5 QoS参数仅包括一套QoS参数的情况下,可以为该套QoS参数小于第二阈值;在目标PC5 QoS参数包括至少两套QoS参数的情况下,可以是至少两套QoS参数中每套QoS参数均小于第一阈值。
需要说明的是,每个5QI或是VQI可以理解为一套QoS参数,也即多个5QI理解为多套QoS参数。
需要说明的是,在目标PC5 QoS参数至少两套QoS参数的情况下,若至少两套QoS参数中存在部分QoS参数大于第一阈值,存在部分QoS参数小于第一阈值,此时,可以触发链路资源分配模式变更,也可以不触发链路资源分配模式变更,本实施例对此不做限定。
同样的,在目标PC5 QoS参数至少两套QoS参数的情况下,若至少两套QoS参数中存在部分QoS参数小于第二阈值,存在部分QoS参数大于第二阈值,此时,可以触发链路资源分配模式变更,也可以不触发链路资源分配模式变更,本实施例对此不做限定。
可选的,在所述目标PC5 QoS参数包括至少两套QoS参数的情况下,所述目标参数满足预设条件包括如下至少一项:
所述至少两套QoS参数中存在至少一套QoS参数大于第一阈值,且所述第一终端当前工作的副链路资源分配模式不能保证所述至少一套PC5 QoS参数;
所述至少两套QoS参数中存在至少一套QoS参数小于第二阈值,且所述 第一终端当前工作的副链路资源分配模式之外的模式能保证所述至少一套QoS参数。
本实施例中,在所述目标PC5 QoS参数包括至少两套QoS参数的情况下,可以在至少两套QoS参数中存在部分QoS参数大于第一阈值,且所述第一终端当前工作的副链路资源分配模式不能保证的情况下,触发副链路资源分配模式变更。
例如,目标PC5 QoS参数包括第一5QI和第二5QI,其中,第一5QI大于第一阈值,第二5QI小于第一阈值,且第一终端当前工作的副链路资源分配模式不能保证第一5QI。若第一终端接受的PC5 QoS参数为第一5QI,则可以触发副链路资源分配模式变更。需要说明的是,若第一终端接受的PC5 QoS参数为第二5QI,则可以不触发副链路资源分配模式变更。
同样的,在所述目标PC5 QoS参数包括至少两套QoS参数的情况下,可以在至少两套QoS参数中存在部分QoS参数小于第二阈值,且且所述第一终端当前工作的副链路资源分配模式之外的模式能保证的情况下,触发副链路资源分配模式变更。
例如,目标PC5 QoS参数包括第一5QI和第二5QI,其中,第一5QI小于第二阈值,第二5QI大于第二阈值,且所述第一终端当前工作的副链路资源分配模式之外的模式能保证第一5QI。若第一终端接受的PC5 QoS参数为第一5QI,则可以触发副链路资源分配模式变更。需要说明的是,若第一终端接受的PC5 QoS参数为第二5QI,则可以不触发副链路资源分配模式变更。
可选的,所述目标PC5 QoS参数对应的副链路资源分配模式是根据PC5 QoS参数和副链路资源分配模式之间的映射规则确定的,所述映射规则为预配置、网络侧设备配置、协议预定义、运营商配置、所述第二终端配置或是所述第一终端实现。
可选的,在所述目标参数包括所述目标PC5 QoS参数的情况下,所述方法还可以包括:
向所述第二终端发送接受的PC5 QoS参数,其中,所述接受的PC5 QoS参数包括所述目标PC5 QoS参数中的部分或全部。
本实施例中,上述接受的PC5 QoS参数可以是第二终端接受的PC5 QoS 参数。具体的,在目标PC5 QoS参数包括多套QoS参数的情况下,上述接受的PC5 QoS参数可以是多套QoS参数中的一套;在目标PC5 QoS参数仅包括一套QoS参数的情况下,上述接受的PC5 QoS参数即为目标PC5 QoS参数。
实际应用中,第一终端可以在接收到第二终端发送的请求的PC5 QoS参数之后,可以直接基于服务信息等向第二终端发送接受的PC5 QoS参数,此时模式变更过程和QoS协商过程是独立的;也可以是在触发模式转换之后或是确定接受的PC5 QoS参数能保证的情况下,向第二终端发送接受的PC5 QoS参数。
可选的,所述向所述第二终端发送接受的PC5 QoS参数,可以包括:
在所述第一终端的副链路资源分配模式变更成功,和/或所述第一终端确定所述目标PC5 QoS参数中至少一套PC5 QoS参数能保证的情况下,向所述第二终端发送接受的PC5 QoS参数。
本实施例中,在所述第一终端的副链路资源分配模式变更成功,和/或所述第一终端确定所述目标PC5 QoS参数中至少一套PC5 QoS参数能保证的情况下,向所述第二终端发送接受的PC5 QoS参数,从而可以保证协商后的目标PC5 QoS参数能够保证。
可选的,所述方法还可以包括:
在所述第一终端的副链路资源分配模式变更失败的情况下,向所述第二终端发送第一消息,其中,所述第一消息用于指示QoS协商失败;
或者
在所述第一终端确定所述目标PC5 QoS参数不能保证的情况下,向所述第二终端发送第二消息,其中,所述第二消息用于指示QoS协商失败。
本公开实施例中,在第一终端的副链路资源分配模式变更失败或是所述第一终端确定所述目标PC5 QoS参数不能保证的情况下,向第二终端指示QoS协商失败,便于第二终端快速进行QoS协商失败后的处理。
可选的,在所述目标参数包括所述目标PC5 QoS参数的情况下,所述在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式之前,所述方法还可以包括:
所述第一终端的上层向所述第一终端的接入层AS层发送所述目标PC5 QoS参数;
所述在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式,包括:
所述第一终端的AS层在确定所述目标PC5 QoS参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式。
本实施例中,在接收到第二终端发送的请求的PC5 QoS参数后,第一终端的上层向第一终端的AS层发送目标PC5 QoS参数,其中,上述目标PC5 QoS参数可以是第一终端的上层基于服务和/或签约情况等确定可保证的PC5 QoS参数。第一终端的AS层可以基于目标PC5 QoS参数,确定是否触发第一终端的副链路资源分配模式的变更。
具体的,第一终端的AS层在确定所述目标PC5 QoS参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式。其中,变更所述第一终端的副链路资源分配模式的相关内容可以参见前述描述,在此不做赘述。
可选的,所述方法还可以包括如下至少一项:
在所述第一终端的副链路资源分配模式变更成功的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第一通知消息;其中,所述第一通知消息用于通知所述第一终端的副链路资源分配模式变更成功;
在所述第一终端的AS层确定所述目标PC5 QoS参数中至少一套PC5 QoS参数能保证的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第二通知消息;其中,所述第二通知消息用于通知所述目标PC5 QoS参数能保证和/或能保证的所述至少一套PC5 QoS参数;
在所述第一终端的副链路资源分配模式变更失败的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第三通知消息;其中,所述第三通知消息用于通知所述第一终端的副链路资源分配模式变更失败;
在所述第一终端的AS层确定所述目标PC5 QoS参数中至少一套PC5 QoS参数不能保证的情况下,所述第一终端的AS层向所述第一终端的上层和所述 第二终端的AS层中的至少之一发送第四通知消息;其中,所述第四通知消息用于通知所述目标PC5 QoS参数不能保证和/或不能保证的所述至少一套PC5 QoS参数。
本实施例中,在第一终端的副链路资源分配模式变更成功的情况下,第一终端的AS层可以向所述第一终端的上层和所述第二终端的AS层中的至少之一通知第一终端的副链路资源分配模式变更失败。
在所述第一终端的AS层确定所述目标PC5 QoS参数中至少一套PC5 QoS参数能保证的情况下,所述第一终端的AS层可以向所述第一终端的上层和所述第二终端的AS层中的至少之一通知所述目标PC5 QoS参数能保证和/或能保证的PC5 QoS参数。例如,目标PC5 QoS参数包括第一VQI和第二VQI,若第一终端的AS层确定第一VQI能够保证,则第一终端的AS层可以向所述第一终端的上层和所述第二终端的AS层中的至少之一通知PC5 QoS参数能保证和第一VQI中的至少之一。
在所述第一终端的副链路资源分配模式变更失败的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一通知第一终端的副链路资源分配模式变更失败。
在所述第一终端的AS层确定所述目标PC5 QoS参数中至少一套PC5 QoS参数不能保证的情况下,所述第一终端的AS层可以向所述第一终端的上层和所述第二终端的AS层中的至少之一通知所述目标PC5 QoS参数不能保证,以及不能保证的PC5 QoS参数。例如,目标PC5 QoS参数包括第一VQI和第二VQI,若第一终端的AS层确定第二VQI不能保证,则第一终端的AS层可以向所述第一终端的上层和所述第二终端的AS层中的至少之一通知PC5 QoS参数不能保证和第二VQI中的至少之一。
需要说明的是,在目标PC5 QoS参数仅包括一套QoS参数的情况下,上述至少一套PC5 QoS参数仅包括一套QoS参数,在目标PC5 QoS参数包括至少两套QoS参数的情况下,上述至少一套PC5 QoS参数可以包括一套或是多套QoS参数。
本公开实施例中,通过第一终端向第二终端反馈QoS协商结果,可以提高两终端之间通信的灵活性。
可选的,所述在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式,可以包括如下至少一项:
在所述副链路PC5的负载满足第一条件和/或所述Uu的负载不满足第二条件的情况下,若所述第一终端当前的副链路资源分配模式为第二模式,则变更所述第一终端的副链路资源分配模式;
在所述副链路PC5的负载不满足第一条件,和/或所述Uu的负载不满足第二条件的情况下,若所述第一终端当前的副链路资源分配模式为第一模式,则变更所述第一终端的副链路资源分配模式。
实际应用中,可以在副链路PC5的负载较高和/或Uu的负载较低的情况下,若第一终端工作于第二模式,则可以变更所述第一终端的副链路资源分配模式。在可以在副链路PC5的负载较低和/或Uu的负载较高的情况下,若第一终端工作于第一模式,则可以变更所述第一终端的副链路资源分配模式。
可选的,所述副链路PC5的负载满足第一条件,可以包括如下至少一项:
用于所述副链路的参考信号的测量量的测量结果小于第一子阈值;
所述副链路传输的P个信道或子信道的接收信号强度指示RSSI的测量结果大于第二子阈值,其中,P为正整数;
所述副链路传输的信道繁忙率CBR测量结果大于第三子阈值;
收到N个用于所述副链路的非同步指示(即Out-of-sync Indications),其中,N为正整数;
所述副链路发生了链路失败;
所述副链路传输中无线链路控制RLC重传次数大于M次,其中,M为正整数。
本实施例中,上述第一子阈值、第二子阈值和第三子阈值均可以根据实际情况进行合理设置。上述P、N、M的取值也可以根据实际情况进行合理设置。
上述测量量可以包括可以包括参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ和信号与干扰加噪声比(Signal-to-Noise and Interference Ratio,SINR)等中的至少之一。
可选的,所述Uu的负载满足第二条件,可以包括如下至少一项:
第一指示信息指示所述Uu的负载满足第二条件,或者指示所述第一终端进行副链路资源分配模式变更;其中,所述第一指示信息为从网络侧设备接收的指示信息;
收到R个用于所述Uu链路的非同步指示(即Out-of-sync Indications),其中,R为正整数;
所述Uu链路发生了无线链路失败;
所述Uu传输中无线链路控制RLC重传次数大于S次,其中,S为正整数。
本实施例中,上述R、S的取值可以根据实际情况进行合理设置。
需要说明的是,本实施例中第一终端可以基于网络侧设备的指示确定Uu的负载是否满足第二条件。具体的,网络侧设备可以向第一终端发送第一指示信息,以指示Uu的负载满足第二条件,如指示Uu的负载较高,或是第一终端进行副链路资源分配模式需要变更。
需要说明的是,在上述各个实施例中,对于副链路资源分配模式变更的过程,可以由第一终端自身实现,也可以是第一终端向基站请求副链路资源分配模式变更。
可选的,所述在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式,可以包括:
在目标参数满足预设条件的情况下,向网络侧设备发送模式变更请求,其中,所述模式变更请求用于请求变更所述第一终端的副链路资源分配模式;
接收所述网络侧设备发送的响应信息,其中,所述响应消息携带有配置信息和第二指示信息中的至少之一,所述第二指示信息用于指示是否允许所述目标终端变更副链路资源分配模式;
根据所述响应信息,变更所述第一终端的副链路资源分配模式。
本实施例中,上述配置信息可以是用于第一终端在转换后的模式下工作时需要用到的配置信息,可以包括资源或资源池等配置信息。
具体的,在目标参数满足预设条件的情况下,第一终端向网络侧设备请求进行副链路资源分配模式变更,例如,通过无线资源控制(Radio Resource Contro l,RRC)消息或MAC CE(Medium Access Control Control Element, 媒体接入控制控制单元)发送模式变更请求。
第一终端在接收到网络侧设备恢复的响应信息之后,可以基于响应信息,变更所述第一终端的副链路资源分配模式。例如,在第二指示信息指示允许所述目标终端变更副链路资源分配模式,第一终端变更副链路资源分配模式;或者在响应消息携带有配置信息的情况下,可以基于配置信息变更副链路资源分配模式。
本公开实施例向网络侧设备请求进行副链路资源分配模式变更,可以提高副链路资源分配模式变更的灵活性。
可选的,所述向网络侧设备发送模式变更请求,可以包括如下至少一项:
在所述第一终端处于RRC空闲态的情况下,触发RRC连接建立过程,并通过RRC消息向网络侧设备发送模式变更请求;
在所述第一终端处于RRC非激活态的情况下,触发RRC连接恢复过程,并通过RRC消息向网络侧设备发送模式变更请求;
在所述第一终端处于RRC连接态的情况下,通过RRC消息向网络侧设备发送模式变更请求。
本公开实施例中,在所述第一终端处于RRC空闲态的情况下,可以通过RRC连接建立过程中的RRC消息发送模式变更请求,也可以是通过RRC连接建立后的RRC消息发送模式变更请求。
在所述第一终端处于RRC空闲态的情况下,可以通过RRC连接恢复过程中的RRC消息发送模式变更请求,也可以是通过RRC连接恢复后的RRC消息发送模式变更请求。
本公开实施例提供一种模式控制方法,应用于第二终端。参见图3,图3是本公开又一实施例提供的模式控制方法的流程图,如图3所示,包括以下步骤:
步骤301、向第一终端发送请求的PC5 QoS参数。
本实施例中,上述PC5 QoS参数可以包括QoS参数指标(例如,时延和可靠性等)、5QI和VQI(也即V2X 5QI)等中的一项或是多项。
上述请求的PC5 QoS参数可以包括一套或是至少两套QoS参数,例如,可以包括一个或是多个VQI。需要说明的是,其中,每个VQI或是5QI均可 以表示一套QoS参数。
步骤302、接收所述第一终端接受的PC5 QoS参数;其中,所述接受的PC5 QoS参数包括所述请求的PC5 QoS参数中的部分或全部。
本实施例中,在请求的PC5 QoS参数仅包括一套QoS参数的情况下,上述接受的PC5 QoS参数可以是请求的PC5 QoS参数,在请求的PC5 QoS参数包括至少两套QoS参数的情况下,上述接受的PC5 QoS参数可以是至少两套QoS参数中的一套。
步骤303、在所述接受的PC5 QoS参数满足预设条件的情况下,变更所述第二终端的副链路资源分配模式。
本实施例中,在接受的PC5 QoS参数满足预设条件的情况下,可以变更所述第二终端的副链路资源分配模式,使得第二终端工作的模式更为合理。
例如,可以在第二终端当前工作的副链路资源分配模式不能保证接受的PC5 QoS参数的情况下,变更所述第二终端的副链路资源分配模式,以提高QoS参数协商成功的概率。
本公开实施例提供的模式控制方法,通过向第一终端发送请求的PC5 QoS参数;接收所述第一终端接受的PC5 QoS参数;其中,所述接受的PC5 QoS参数包括所述请求的PC5 QoS参数中的部分或全部;在所述接受的PC5 QoS参数满足预设条件的情况下,变更所述第二终端的副链路资源分配模式,可以提高UE工作的模式控制的灵活性,可以减少UE之间QoS参数协商失败发生的概率。
可选的,所述在所述接受的PC5 QoS参数满足预设条件的情况下,变更所述第二终端的副链路资源分配模式,包括:
在所述接受的PC5 QoS参数满足预设条件的情况下,将所述第二终端当前工作的第三副链路资源分配模式转换为第四副链路资源分配模式,或者在所述第二终端当前工作的第三副链路资源分配模式的基础上增加第四副链路资源分配模式。
在一实施方式中,在接受的PC5 QoS参数满足预设条件的情况下,可以将所述第二终端当前工作的第三副链路资源分配模式转换为第四副链路资源分配模式。例如,第二终端当前工作在模式1,则可以将第二终端转换为工 作在模式2。
在另一实施方式中,在接受的PC5 QoS参数满足预设条件的情况下,可以为工作于第三副链路资源分配模式的第二终端增加第四副链路资源分配模式,此时,第二终端同时工作在第三副链路资源分配模式和第四副链路资源分配模式。例如,第二终端当前工作在模式1,则可以为第二终端增加模式2,此时,第二终端同时工作在模式1和模式2。
本公开实施例通过在所述接受的PC5 QoS参数满足预设条件的情况下,将所述第二终端当前工作的第三副链路资源分配模式转换为第四副链路资源分配模式,或者在所述第二终端当前工作的第三副链路资源分配模式的基础上增加第四副链路资源分配模式,以提高模式控制的灵活性。
可选的,在所述第三副链路资源分配模式为第一模式的情况下,所述第四副链路资源分配模式为第二模式;
或者
在所述第三副链路资源分配模式为第二模式中的第三子模式的情况下,所述第四副链路资源分配模式为第一模式或者所述第二模式中的第四子模式;其中,所述第二模式包括至少两个子模式。
本实施例中,上述第三模式也即上述模式1(即Mode1),通过网络侧设备(例如,基站)调度资源。上述第四模式也即上述模式2(即Mode2),由UE决定传输资源。
上述第一子模式可以是上述模式2a(即Mode2a)、模式2c(即Mode2c)和模式2d(即Mode2d)中的任一个,上述第二子模式可以是上述模式2a(即Mode2a)、模式2c(即Mode2c)和模式2d(即Mode2d)中与第一子模式不同的任一个。
本实施例中,在第一副链路资源分配模式为第三模式的情况下,所述第二副链路资源分配模式为第四模式。例如,在第二终端当前工作在模式1的情况下,可以将将第二终端转换为工作在模式2,或是为第二终端增加模式2,此时,第二终端同时工作在模式1和模式2。
在所述第一副链路资源分配模式为第四模式中的第一子模式的情况下,所述第二副链路资源分配模式可以为第三模式或者所述第四模式中的第二子 模式,其中,所述第四模式包括至少两个子模式。
例如,在第二终端当前工作在模式2a的情况下,可以将第二终端转换为工作在模式1,或是为第二终端增加模式1,此时,第二终端同时工作在模式1和模式2a;也可以将第二终端转换为工作在模式2c,或是为第二终端增加模式2c,此时,第二终端同时工作在模式2a和模式2c;也可以将第二终端转换为工作在模式2d,或是为第二终端增加模式2d,此时,第二终端同时工作在模式2a和模式2d。
可选的,所述接受的PC5 QoS参数满足预设条件包括如下至少一项:
所述接受的PC5 QoS参数大于第三阈值,且所述第二终端当前的副链路资源分配模式不能保证所述接受的PC5 QoS参数;
所述接受的PC5 QoS参数小于第四阈值,且所述第二终端当前的副链路资源分配模式之外的模式能保证所述接受的PC5 QoS参数;
所述接受的PC5 QoS参数对应的副链路资源分配模式与所述第二终端当前的副链路资源分配模式不同。
本实施例中,上述第三阈值和第四阈值均可以根据实际情况进行合理设置。上述接受的PC5 QoS参数可以包括一套QoS参数,例如,接受的PC5 QoS参数为第一5QI。
可选的,所述接受的PC5 QoS参数对应的副链路资源分配模式是根据PC5 QoS参数和副链路资源分配模式之间的映射规则确定的,所述映射规则为预配置、网络侧设备配置、协议预定义、运营商配置、所述第一终端配置或是所述第二终端实现。
可选的,所述在所述接受的PC5 QoS参数满足预设条件的情况下,变更所述第二终端的副链路资源分配模式,可以包括:
在所述接受的PC5 QoS参数满足预设条件的情况下,向网络侧设备发送模式变更请求,其中,所述模式变更请求用于请求变更所述第二终端的副链路资源分配模式;
接收所述网络侧设备发送的响应信息,其中,所述响应消息携带有配置信息和指示信息中的至少之一,所述指示信息用于指示是否允许所述第二终端变更副链路资源分配模式;
根据所述响应信息,变更所述第二终端的副链路资源分配模式。
本实施例中,上述配置信息可以是用于第二终端在转换后的模式下工作时需要用到的配置信息,可以包括资源或资源池等配置信息。
具体的,在接受的参数满足预设条件的情况下,第二终端向网络侧设备请求进行副链路资源分配模式变更,例如,通过无线资源控制(Radio Resource Control,RRC)消息或MAC CE发送模式变更请求。
第二终端在接收到网络侧设备恢复的响应信息之后,可以基于响应信息,变更所述第二终端的副链路资源分配模式。例如,在第二指示信息指示允许所述接受的终端变更副链路资源分配模式,第二终端变更副链路资源分配模式;或者在响应消息携带有配置信息的情况下,可以基于配置信息变更副链路资源分配模式。
本公开实施例向网络侧设备请求进行副链路资源分配模式变更,可以提高副链路资源分配模式变更的灵活性。
可选的,所述向网络侧设备发送模式变更请求,包括如下至少一项:
在所述第二终端处于无线资源控制RRC空闲态的情况下,触发RRC连接建立过程,并通过RRC消息向网络侧设备发送模式变更请求;
在所述第二终端处于RRC非激活态的情况下,触发RRC连接恢复过程,并通过RRC消息向网络侧设备发送模式变更请求;
在所述第二终端处于RRC连接态的情况下,通过RRC消息向网络侧设备发送模式变更请求。
本公开实施例中,在所述第一终端处于RRC空闲态的情况下,可以通过RRC连接建立过程中的RRC消息发送模式变更请求,也可以是通过RRC连接建立后的RRC消息发送模式变更请求。
在所述第一终端处于RRC空闲态的情况下,可以通过RRC连接恢复过程中的RRC消息发送模式变更请求,也可以是通过RRC连接恢复后的RRC消息发送模式变更请求。
本公开实施例提供一种模式控制方法,应用于网络侧设备。参见图4,图4是本公开又一实施例提供的模式控制方法的流程图,如图3所示,包括以下步骤:
步骤401、接收目标终端发送的模式变更请求,其中,所述模式变更请求用于请求变更所述目标终端的副链路资源分配模式。
步骤402、向所述目标终端发送响应消息,其中,所述响应消息携带有配置信息和指示信息中的至少之一,所述指示信息用于指示是否允许所述目标终端变更副链路资源分配模式。
本实施例中,上述目标终端可以是第一终端,也可是第二终端。上述配置信息可以是用于目标终端在转换后的模式下工作时需要用到的配置信息,可以包括资源或资源池等配置信息。
本公开实施例通过接收目标终端发送的模式变更请求,其中,所述模式变更请求用于请求变更所述目标终端的副链路资源分配模式,向所述目标终端发送响应消息,其中,所述响应消息携带有配置信息和指示信息中的至少之一,所述指示信息用于指示是否允许所述目标终端变更副链路资源分配模式,可以提高副链路资源分配模式变更的灵活性。
以下结合示例对本公开实施例进行说明:
示例一:UE间上层进行QoS协商,在此过程中,接收端先触发模式变更过程,再完成协商过程,具体可以包括如下步骤:
步骤a1、UE1发送请求的PC5 QoS参数给UE2。
步骤a2、UE2的上层根据UE1发送的PC5 QoS参数,将目标PC5 QoS参数告诉UE2的AS层。
其中,上述目标PC5 QoS参数可以是上述请求的PC5 QoS参数中的部分或是全部。具体的,上述目标PC5 QoS参数可以是UE2的上层可以基于服务和/或签约情况认为可接受的PC5 QoS参数。
步骤a3、UE2的AS层基于目标PC5 QoS参数,触发模式变更过程,包括以下之一:
由当前工作模式转换到一个与当前工作模式不同的模式;
由当前工作模式,额外增加一个与当前工作模式不同的模式,即同时工作在两个模式下。
可选的,所述转换到一个与当前工作模式不同的模式或额外增加一个与当前工作模式不同的模式可以包括以下至少之一:
UE2由模式2(即Mode2)(例如,可以为模式2a、模式2c或模式2d),转换到模式1(即Mode1)或额外增加模式1;
UE2由模式1转换到模式2(例如,可以为模式2a、模式2c或模式2d)或者额外增加模式2(例如,可以为模式2a、模式2c或模式2d);
UE2由模式2中的一种子模式转换到模式2中的另一种子模式或者额外增加mode2中的另一种子模式。
需要说明的是,上述模式转换或额外增加模式的过程,可以由UE自身实现,也可以是发送RRC消息向基站请求转换模式或额外增加模式,例如,UE2需要由模式1转换到模式2的情况下,可以通过发送RRC消息向基站请求转换为模式2或者额外增加模式2。
具体的,对于处于RRC空闲态的UE,可以触发RRC连接建立过程,向基站请求模式转换或额外增加模式。例如,当UE2需要由模式2转换到模式1或额外增加模式1时,可以触发RRC连接建立过程,向基站请求转换为模式1或额外增加模式1。
对于处于RRC非激活态的UE,可以触发RRC连接恢复过程,向基站请求模式转换或额外增加模式。
对于处于RRC连接态的UE,可以通过RRC消息或MAC CE发送模式转换请求,向基站请求模式转换或额外增加模式。
可选的,所述UE2的AS层基于目标QoS参数信息,触发模式转换过程,其触发条件可以包括以下至少一项:
UE2基于目标PC5 QoS参数与模式之间的映射规则,确定所目标PC5 QoS参数对应的模式与UE2当前工作的模式不同;
UE2发现目标PC5 QoS参数高于第一阈值,其当前工作的模式无法满足;
UE2发现目标PC5 QoS参数包括多组PC5 QoS参数,其当前工作的模式只能保证其中部分要求较低的PC5 QoS参数,不能保证最高要求的PC5 QoS参数;
UE2发现目标PC5 QoS参数低于第二阈值,用另一种工作模式(如模式2)也可保证。
需要说明的是,在UE2发现目标PC5 QoS参数低于第二阈值,用另一种 工作模式也可保证的情况下,UE2当前工作模式可用于非UE1的业务。
需要说明的是,上述PC5 QoS参数与模式之间的映射规则,可以由网络侧配置或运营商配置或预配置或协议规定或UE1配置或是UE2自己实现。
其中,所述目标PC5 QoS参数对应的模式与UE2当前工作的模式不同,可以包括以下至少之一:
目标PC5 QoS参数对应的模式为模式2,UE2当前工作的模式为模式1;
目标PC5 QoS参数对应的模式为模式1,UE2当前工作的模式为模式2;
目标PC5 QoS参数对应的模式为模式2中的一种子模式,UE2当前工作的模式为模式2中的另一种子模式。
步骤4a、UE2模式转换成功或UE2 AS层发现目标PC5 QoS参数可以保证,则由UE2 AS层通知UE2上层。UE2上层发送接受的PC5 QoS参数给UE1。
步骤5a、若UE2模式转换失败或UE2 AS层发现目标PC5 QoS参数不能保证,由UE2 AS层通知UE2上层QoS参数不能保证。UE2上层发送拒绝消息或协商失败消息等给UE1。
需要说明的是,上述步骤a1至步骤a5中的PC5 QoS参数,可以包括如下至少之一:
具体的QoS参数指标(例如,时延、可靠性等),可以为一套或多套;
5QI,可以为一个或多个;
VQI(也即V2X 5QI),可以为一个或多个。
示例二:UE间上层进行QoS协商,在此过程中,接收端触发模式变更过程与QoS协商过程独立,具体可以包括如下步骤:
步骤b1、UE1发送请求的PC5 QoS参数给UE2。
步骤b2、UE2的上层根据UE1发送的PC5 QoS参数,将目标PC5 QoS参数回复给UE1。
其中,上述目标PC5 QoS参数可以是上述请求的PC5 QoS参数中的部分或是全部。具体的,上述目标PC5 QoS参数可以是UE2的上层可以基于服务和/或签约情况认为可接受的PC5 QoS参数。
步骤b3、UE2的上层根据UE1发送的PC5 QoS参数,将目标PC5 QoS参数告诉UE2的AS层。
需要说明的是,上述步骤b2和步骤b3可以并行执行,也可以串行执行。也即,可以同时执行上述步骤b2和步骤b3,也可以先执行上述步骤b2,再执行上述步骤b3,也可以先执行上述步骤步骤b3,再执行步骤b2。
步骤b4、UE2的AS层基于目标PC5 QoS参数,触发模式变更过程。
该步骤可以同上述步骤步骤a3,为避免重复,在此不做赘述。
步骤b5、UE2模式转换成功或UE2 AS层发现目标PC5 QoS参数可以保证,则由UE2 AS层通知UE2上层和/或UE2 AS层通知UE1 AS层。
步骤b6、若UE2模式转换失败或UE2 AS层发现目标PC5 QoS参数不能保证,则由UE2 AS层通知UE2上层和/或UE2 AS层通知UE1 AS层。
示例三:UE间上层进行QoS协商,在此过程中,发送端触发模式变更过程,具体可以包括如下步骤:
步骤c1、UE1发送请求的PC5 QoS参数给UE2。
步骤c2、UE2的上层根据UE1发送的PC5 QoS参数,将目标PC5 QoS参数回复给UE1。
其中,上述目标PC5 QoS参数可以是上述请求的PC5 QoS参数中的部分或是全部。具体的,上述目标PC5 QoS参数可以是UE2的上层可以基于服务和/或签约情况认为可接受的PC5 QoS参数。
步骤c3、UE1的AS层基于目标QoS参数信息,触发模式变更过程。
需要说明的是,上述步骤c3中的模式转换过程相关内容可以参见上述步骤a3,为避免重复,在此不做赘述。
示例四:基于副链路(即Side link)PC5的负载情况和/或Uu的负载情况,UE触发模式转换。
具体的,上述基于负载的模式转换,可以包括如下至少之一:
当副链路PC5的负载满足第一条件和/或Uu的负载不满足第二条件,则工作在模式2的UE触发模式变更过程;
当副链路PC5的负载不满足第一条件和/或Uu的负载满足第二条件,则工作在模式1的UE触发模式变更过程。
可选的,上述工作在模式2的UE触发模式变更过程可以包括如下至少之一:
UE从工作在模式2a转换到模式1或模式2c或模式2d;
UE从工作在模式2a额外增加模式1或模式2c或模式2d的工作模式;
UE从工作在模式2(例如,模式2a、模式2c或模式2d)转换到模式1或额外增加模式1的工作模式;
UE从工作在模式2c转换到模式2d或额外增加模式2d的工作模式;
UE从工作在模式2d转换到模式2c或额外增加模式2c的工作模式。
可选的,上述工作在模式1的UE触发模式变更过程,可以包括如下至少之一:
UE从模式1转换到模式2(例如,模式2a、模式2c或模式2d);
UE从模式1额外增加模式2(例如,模式2a、模式2c或模式2d)。
可选的,所述副链路PC5的负载满足第一条件,可以包括如下至少之一:
用于副链路的参考信号的测量量的测量结果低于第一子阈值,其中,所述测量量可以包括RSRP、RSRQ和SINR等中的至少之一;
副链路传输的RSSI或CBR测量结果高于第二子阈值;
收到了N个用于副链路链路的非同步指示(即Out-of-sync Indications);
副链路链路发生了链路失败;
副链路传输中RLC重传次数超过M次。
可选的,所述Uu的负载满足第二条件,可以包括如下至少之一:
网络侧设备指示Uu负载过高,或直接指示UE进行模式转换;
收到了R个用于Uu链路的非同步指示(即Out-of-sync Indications);
Uu链路发生了无线链路失败;
Uu传输中RLC重传次数超过S次。
以下以单播连接为例对本公开实施例提供的模式控制方式进行说明:
示例五:UE间通过PC5 RRC过程建立单播连接和QoS协商,在此过程中接收端触发模式模式变更过程,具体可以包括如下步骤:
步骤d1、UE1发送单播连接建立请求(如RRC消息)给UE2,其中,该连接建立请求可以包括直接通信请求信息。
需要说明的是,上述直接通信请求信息可以包括请求的PC5 QoS参数。
步骤d2、UE2与UE1之间进行鉴权和安全建立过程。
步骤d3、UE2根据UE1发送的PC5 QoS参数,触发模式转换过程。
该步骤中,UE2的上层可以根据UE1发送的PC5 QoS参数,将接受的PC5 QoS参数告诉UE2的AS层,其中,上述接受的PC5 QoS参数可以包括上述请求的PC5 QoS参数中的部分或是全部。UE2的AS层可以基于接受的PC5 QoS参数,触发模式转换过程。其中,上述UE2的AS层基于接受的PC5 QoS参数,触发模式转换过程可以同上述步骤a3,为避免重复,在此不做赘述。
需要说明的是,UE2可以在发现请求的PC5 QoS参数,基于无线资源情况能保证的情况下,执行上述步骤d3。
步骤d4、UE2若发现请求的PC5 QoS参数,基于无线资源情况不能保证时,可以直接发送单播连接拒绝消息和/或直接通信拒绝消息给UE1。
步骤d5、UE2回复单播连接建立消息给UE1,其中,该单播连接建立消息可以包括直接通信接受信息。
其中,上述直接通信接受信息可以包括接受的PC5 QoS参数。
示例六:UE间通过上层(即Upper Layer)建立单播连接和QoS协商,在此过程中,接收端触发模式变更过程,具体可以包括以下步骤:
步骤e1、UE1发送直接通信请求信息给UE2。
该步骤中,上述直接通信请求信息可以包括请求的PC5 QoS参数。
步骤e2、UE2与UE1之间进行鉴权和安全建立过程。
步骤e3、UE2根据UE1发送的PC5 QoS参数信息,触发模式变更过程。
该步骤中,UE2的上层可以根据UE1发送的PC5 QoS参数,将接受的PC5 QoS参数告诉UE2的AS层,其中,上述接受的PC5 QoS参数可以包括上述请求的PC5 QoS参数中的部分或是全部。UE2的AS层可以基于接受的PC5 QoS参数,触发模式转换过程。其中,上述UE2的AS层基于接受的PC5 QoS参数,触发模式转换过程可以同上述步骤a3,为避免重复,在此不做赘述。
需要说明的是,UE2可以在发现请求的PC5 QoS参数,基于无线资源情况能保证的情况下,执行上述步骤e3。
步骤e4、UE2若发现请求的PC5 QoS参数,基于无线资源情况不能保证,可以直接发送单播连接拒绝消息和/或直接通信拒绝消息给UE1。
步骤e5、UE2发送直接通信接受信息给UE1。
其中,上述直接通信接受信息可以包括接受的PC5 QoS参数。
示例七:UE间通过上层(即Upper Layer)建立单播连接和QoS协商,在此过程中,发送端触发变更过程,具体可以包括以下步骤:
步骤f1、UE1发送直接通信请求信息给UE2。
该步骤中,上述直接通信请求信息可以包括请求的PC5 QoS参数。
步骤f2、UE2与UE1之间进行鉴权和安全建立过程。
步骤f3、UE2发送直接通信接受信息给UE1。
其中,上述直接通信接受信息可以包括接受的PC5 QoS参数。
步骤f4、UE1根据UE2发送的接受的PC5 QoS参数,触发模式变更过程。
可选的,上述模式变更可以包括如下至少之一:
由当前工作的模式转换到另一个与当前工作模式不同的工作模式;
由当前工作的模式,额外增加另一个与当前工作模式不同的工作模式,即同时工作在两个模式下。
可选的,所述转换到一个与当前工作模式不同的模式或额外增加一个与当前工作模式不同的模式可以包括以下至少之一:
UE1由模式2(即Mode2)(例如,可以为模式2a、模式2c或模式2d),转换到模式1(即Mode1)或额外增加模式1;
UE1由模式1转换到模式2(例如,可以为模式2a、模式2c或模式2d)或者额外增加模式2(例如,可以为模式2a、模式2c或模式2d);
UE1由模式2中的一种子模式转换到模式2中的另一种子模式或者额外增加mode2中的另一种子模式。
需要说明的是,上述模式转换或额外增加模式的过程,可以由UE自身实现,也可以是发送RRC消息向基站请求转换模式或额外增加模式,例如,UE1需要由模式1转换到模式2的情况下,可以通过发送RRC消息向基站请求转换为模式2或者额外增加模式2。
具体的,对于处于RRC空闲态的UE,可以触发RRC连接建立过程,向基站请求模式转换或额外增加模式。例如,当UE1需要由模式2转换到模式1或额外增加模式1时,可以触发RRC连接建立过程,向基站请求转换为模式1或额外增加模式1。
对于处于RRC非激活态的UE,可以触发RRC连接恢复过程,向基站请求模式转换或额外增加模式。
对于处于RRC连接态的UE,可以通过RRC消息或MAC CE发送模式转换请求,向基站请求模式转换或额外增加模式。
可选的,所述UE1的AS层基于接受的QoS参数信息,触发模式转换过程,其触发条件可以包括以下至少一项:
UE1基于接受的PC5 QoS参数与模式之间的映射规则,确定所述接受的PC5 QoS参数对应的模式与UE1当前工作的模式不同;
UE1发现UE2请求的PC5 QoS参数要求高于第一阈值,其当前工作的模式无法满足;
UE1发现UE2请求的PC5 QoS参数包括多组PC5 QoS参数,其当前工作的模式只能保证其中部分要求较低的PC5 QoS参数,不能保证最高要求的PC5 QoS参数;
UE1发现UE2请求的PC5 QoS参数要求低于第二阈值,用另一种工作模式(如模式2)也可保证。
需要说明的是,在UE1发现UE2请求的PC5 QoS参数要求低于第二阈值,用另一种工作模式也可保证的情况下,UE1当前工作模式可用于非UE2的业务。
需要说明的是,上述PC5 QoS参数与模式之间的映射规则,可以由网络侧配置或运营商配置或预配置或协议规定或UE1自己实现。
其中,所述接受的PC5 QoS参数对应的模式与UE1当前工作的模式不同,可以包括以下至少之一:
接受的PC5 QoS参数对应的模式为模式2,UE1当前工作的模式为模式1;
接受的PC5 QoS参数对应的模式为模式1,UE1当前工作的模式为模式2
接受的PC5 QoS参数对应的模式为模式2中的一种子模式,UE1当前工作的模式为模式2中的另一种子模式。
示例八:UE间通过上层(即Upper Layer)建立单播连接,通过AS层进行相关参数和配置协商,在此过程中接收端触发模式变更过程,具体可以包括如下步骤:
步骤g1、UE1与UE2进行上层连接建立过程,并进行QoS协商。
步骤g2、UE1发送PC5 RRC消息给UE2。
上述PC5 RRC消息可以包括以下至少之一:
协商后的PC5 QoS参数;
AS层的相关配置;
UE能力。
步骤g3、UE2根据UE1发送的PC5 QoS参数信息,触发模式变更过程。
该步骤同上述步骤e3,为避免重复,在此不做赘述。
需要说明的是,UE2可以在发现UE1发送的协商后的PC5 QoS参数,不满足上述触发模式变更的触发条件的情况下,触发模式变更。
步骤g4、若UE2发现UE1发送的协商后的QoS参数,不满足上述触发模式变更的触发条件,可以直接发送拒绝消息给UE1。
步骤g5、UE2发送PC5 RRC完成消息给UE1。
参见图5,图5是本公开实施例提供的第一终端的结构图。如图5所示,第一终端500包括:
变更模块501,用于在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式;
其中,所述目标参数包括如下至少一项:目标PC5 QoS参数,所述副链路PC5的负载,Uu的负载;所述目标PC5 QoS参数包括第二终端请求的PC5 QoS参数中的部分或全部。
可选的,所述变更模块具体用于:
在目标参数满足预设条件的情况下,将所述第一终端当前工作的第一副链路资源分配模式转换为第二副链路资源分配模式,或者在所述第一终端当前工作的第一副链路资源分配模式的基础上增加第二副链路资源分配模式。
可选的,在所述第一副链路资源分配模式为第一模式的情况下,所述第二副链路资源分配模式为第二模式;或者
在所述第一副链路资源分配模式为第二模式中的第一子模式的情况下,所述第二副链路资源分配模式为第一模式或者所述第二模式中的第二子模式,其中,所述第二模式包括至少两个子模式。
可选的,在所述目标参数包括所述目标PC5 QoS参数的情况下,所述目标参数满足预设条件包括如下至少一项:
所述目标PC5 QoS参数大于第一阈值,且所述第一终端当前工作的副链路资源分配模式不能保证所述目标PC5 QoS参数;
所述目标PC5 QoS参数小于第二阈值,且所述第一终端当前工作的副链路资源分配模式之外的模式能保证所述目标PC5 QoS参数;
所述目标PC5 QoS参数对应的副链路资源分配模式与所述第一终端当前工作的副链路资源分配模式不同。
可选的,所述目标PC5 QoS参数对应的副链路资源分配模式是根据PC5 QoS参数和副链路资源分配模式之间的映射规则确定的,所述映射规则为预配置、网络侧设备配置、协议预定义、运营商配置、所述第二终端配置或是所述第一终端实现。
可选的,在所述目标PC5 QoS参数包括至少两套QoS参数的情况下,所述目标参数满足预设条件包括如下至少一项:
所述至少两套QoS参数中存在至少一套QoS参数大于第一阈值,且所述第一终端当前工作的副链路资源分配模式不能保证所述至少一套PC5 QoS参数;
所述至少两套QoS参数中存在至少一套QoS参数小于第二阈值,且所述第一终端当前工作的副链路资源分配模式之外的模式能保证所述至少一套QoS参数。
可选的,在所述目标参数包括所述目标PC5 QoS参数的情况下,所述终端还包括:
第一发送模块,用于向所述第二终端发送接受的PC5 QoS参数,其中,所述接受的PC5 QoS参数包括所述目标PC5 QoS参数中的部分或全部。
可选的,所述第一发送模块具体用于:
在所述第一终端的副链路资源分配模式变更成功,和/或所述第一终端确定所述目标PC5 QoS参数能保证的情况下,向所述第二终端发送接受的PC5 QoS参数。
可选的,所述终端还包括:
第二发送模块,用于在所述第一终端的副链路资源分配模式变更失败的情况下,向所述第二终端发送第一消息,其中,所述第一消息用于指示QoS协商失败;
或者
第三发送模块,用于在所述第一终端确定所述目标PC5 QoS参数中至少一套PC5 QoS参数不能保证的情况下,向所述第二终端发送第二消息,其中,所述第二消息用于指示QoS协商失败。
可选的,在所述目标参数包括所述目标PC5 QoS参数的情况下,所述终端还包括:
第四发送模块,用于所述在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式之前,通过所述第一终端的上层向所述第一终端的接入层AS层发送所述目标PC5 QoS参数;
所述变更模块具体用于:
所述第一终端的AS层在确定所述目标PC5 QoS参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式。
可选的,所述终端还包括第五发送模块,所述第五发送模块用于如下至少一项:
在所述第一终端的副链路资源分配模式变更成功的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第一通知消息;其中,所述第一通知消息用于通知所述第一终端的副链路资源分配模式变更成功;
在所述第一终端的AS层确定所述目标PC5 QoS参数中至少一套PC5 QoS参数能保证的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第二通知消息;其中,所述第二通知消息用于通知所述目标PC5 QoS参数能保证和/或能保证的所述至少一套PC5 QoS参数;
在所述第一终端的副链路资源分配模式变更失败的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第三通知消息;其中,所述第三通知消息用于通知所述第一终端的副链路资 源分配模式变更失败;
在所述第一终端的AS层确定所述目标PC5 QoS参数中至少一套PC5 QoS参数不能保证的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第四通知消息;其中,所述第四通知消息用于通知所述目标PC5 QoS参数不能保证和/或不能保证的所述至少一套PC5 QoS参数。
可选的,所述变更模块具体用于如下至少一项:
在所述副链路PC5的负载满足第一条件和/或所述Uu的负载不满足第二条件的情况下,若所述第一终端当前的副链路资源分配模式为第二模式,则变更所述第一终端的副链路资源分配模式;
在所述副链路PC5的负载不满足第一条件,和/或所述Uu的负载不满足第二条件的情况下,若所述第一终端当前的副链路资源分配模式为第一模式,则变更所述第一终端的副链路资源分配模式。
可选的,所述副链路PC5的负载满足第一条件,包括如下至少一项:
用于所述副链路的参考信号的测量量的测量结果小于第一子阈值;
所述副链路传输的P个信道或子信道的接收信号强度指示RSS I的测量结果大于第二子阈值,其中,P为正整数;
所述副链路传输的信道繁忙率CBR测量结果大于第三子阈值;
收到N个用于所述副链路的非同步指示,其中,N为正整数;
所述副链路发生了链路失败;
所述副链路传输中无线链路控制RLC重传次数大于M次,其中,M为正整数。
可选的,所述Uu的负载满足第二条件,包括如下至少一项:
第一指示信息指示所述Uu的负载满足第二条件,或者指示所述第一终端进行副链路资源分配模式变更;其中,所述第一指示信息为从网络侧设备接收的指示信息;
收到R个用于所述Uu链路的非同步指示,其中,R为正整数;
所述Uu链路发生了无线链路失败;
所述Uu传输中无线链路控制RLC重传次数大于S次,其中,S为正整数。
可选的,所述变更模块包括:
发送单元,用于在目标参数满足预设条件的情况下,向网络侧设备发送模式变更请求,其中,所述模式变更请求用于请求变更所述第一终端的副链路资源分配模式;
接收单元,用于接收所述网络侧设备发送的响应信息,其中,所述响应消息携带有配置信息和第二指示信息中的至少之一,所述第二指示信息用于指示是否允许所述目标终端变更副链路资源分配模式;
变更单元,用于根据所述响应信息,变更所述第一终端的副链路资源分配模式。
可选的,所述发送单元具体用于如下至少一项:
在所述第一终端处于无线资源控制RRC空闲态的情况下,触发RRC连接建立过程,并通过RRC消息向网络侧设备发送模式变更请求;
在所述第一终端处于RRC非激活态的情况下,触发RRC连接恢复过程,并通过RRC消息向网络侧设备发送模式变更请求;
在所述第一终端处于RRC连接态的情况下,通过RRC消息向网络侧设备发送模式变更请求。
本公开实施例提供的第一终端500能够实现上述方法实施例中第一终端实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的第一终端500,变更模块501,用于在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式;其中,所述目标参数包括如下至少一项:目标PC5 QoS参数,所述副链路PC5的负载,Uu的负载;所述目标PC5 QoS参数包括第二终端请求的PC5 QoS参数中的部分或全部。
可以提高车联网系统中UE工作的模式控制的灵活性,可以减少UE之间QOS参数协商失败或因负载太大等原因不能保证后续业务的QOS等问题发生的概率。
参见图6,图6是本公开实施例提供的第二终端的结构图。如图6所示,第二终端600包括:
第一发送模块601,用于向第一终端发送请求的PC5 QoS参数;
接收模块602,用于接收所述第一终端接受的PC5 QoS参数;其中,所述接受的PC5 QoS参数包括所述请求的PC5 QoS参数中的部分或全部;
变更模块603,用于在所述接受的PC5 QoS参数满足预设条件的情况下,变更所述第二终端的副链路资源分配模式。
可选的,所述变更模块具体用于:
在所述接受的PC5 QoS参数满足预设条件的情况下,将所述第二终端当前工作的第三副链路资源分配模式转换为第四副链路资源分配模式,或者在所述第二终端当前工作的第三副链路资源分配模式的基础上增加第四副链路资源分配模式。
可选的,在所述第三副链路资源分配模式为第一模式的情况下,所述第四副链路资源分配模式为第二模式;
或者
在所述第三副链路资源分配模式为第二模式中的第三子模式的情况下,所述第四副链路资源分配模式为第一模式或者所述第二模式中的第四子模式;其中,所述第二模式包括至少两个子模式。
可选的,所述接受的PC5 QoS参数满足预设条件包括如下至少一项:
所述接受的PC5 QoS参数大于第三阈值,且所述第二终端当前的副链路资源分配模式不能保证所述接受的PC5 QoS参数;
所述接受的PC5 QoS参数小于第四阈值,且所述第二终端当前的副链路资源分配模式之外的模式能保证所述接受的PC5 QoS参数;
所述接受的PC5 QoS参数对应的副链路资源分配模式与所述第二终端当前的副链路资源分配模式不同。
可选的,所述接受的PC5 QoS参数对应的副链路资源分配模式是根据PC5 QoS参数和副链路资源分配模式之间的映射规则确定的,所述映射规则为预配置、网络侧设备配置、协议预定义、运营商配置、所述第二终端配置或是所述第一终端实现。
可选的,所述变更模块包括:
发送单元,用于在所述接受的PC5 QoS参数满足预设条件的情况下,向网络侧设备发送模式变更请求,其中,所述模式变更请求用于请求变更所述 第二终端的副链路资源分配模式;
接收单元,用于接收所述网络侧设备发送的响应信息,其中,所述响应消息携带有配置信息和指示信息中的至少之一,所述指示信息用于指示是否允许所述第二终端变更副链路资源分配模式;
变更单元,用于根据所述响应信息,变更所述第二终端的副链路资源分配模式。
可选的,所述发送单元具体用于如下至少一项:
在所述第二终端处于无线资源控制RRC空闲态的情况下,触发RRC连接建立过程,并通过RRC消息向网络侧设备发送模式变更请求;
在所述第二终端处于RRC非激活态的情况下,触发RRC连接恢复过程,并通过RRC消息向网络侧设备发送模式变更请求;
在所述第二终端处于RRC连接态的情况下,通过RRC消息向网络侧设备发送模式变更请求。
本公开实施例提供的第二终端600能够实现上述方法实施例中第二终端实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的第二终端600,第一发送模块601,用于向第一终端发送请求的PC5 QoS参数;接收模块602,用于接收所述第一终端接受的PC5 QoS参数;其中,所述接受的PC5 QoS参数包括所述请求的PC5 QoS参数中的部分或全部;变更模块603,用于在所述接受的PC5 QoS参数满足预设条件的情况下,变更所述第二终端的副链路资源分配模式。可以提高UE工作的模式控制的灵活性。
参见图7,图7是本公开实施例提供的网络侧设备的结构图。如图7所示,网络侧设备700包括:
接收模块701,用于接收目标终端发送的模式变更请求,其中,所述模式变更请求用于请求变更所述目标终端的副链路资源分配模式;
发送模块702,用于向所述目标终端发送响应消息,其中,所述响应消息携带有配置信息和指示信息中的至少之一,所述指示信息用于指示是否允许所述目标终端变更副链路资源分配模式。
本公开实施例提供的网络侧设备700能够实现上述方法实施例中网络侧 设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的网络侧设备700,接收模块701,用于接收目标终端发送的模式变更请求,其中,所述模式变更请求用于请求变更所述目标终端的副链路资源分配模式;发送模块702,用于向所述目标终端发送响应消息,其中,所述响应消息携带有配置信息和指示信息中的至少之一,所述指示信息用于指示是否允许所述目标终端变更副链路资源分配模式。可以提高副链路资源分配模式变更的灵活性。
图8是本公开又一实施例提供的第一终端的结构图。参见图8,该第一第一终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、处理器810、以及电源811等部件。本领域技术人员可以理解,图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,所述处理器810,用于在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式;其中,所述目标参数包括如下至少一项:目标PC5 QoS参数,所述副链路PC5的负载,Uu的负载;所述目标PC5 QoS参数包括第二终端请求的PC5 QoS参数中的部分或全部。
本公开实施例可以提高车联网系统中UE工作的模式控制的灵活性,可以减少UE之间QOS参数协商失败或因负载太大等原因不能保证后续业务的QOS等问题发生的概率。
可选的,所述处理器810还用于:
在目标参数满足预设条件的情况下,将所述第一终端当前工作的第一副链路资源分配模式转换为第二副链路资源分配模式,或者在所述第一终端当前工作的第一副链路资源分配模式的基础上增加第二副链路资源分配模式。
可选的,在所述第一副链路资源分配模式为第一模式的情况下,所述第二副链路资源分配模式为第二模式;或者
在所述第一副链路资源分配模式为第二模式中的第一子模式的情况下, 所述第二副链路资源分配模式为第一模式或者所述第二模式中的第二子模式,其中,所述第二模式包括至少两个子模式。
可选的,在所述目标参数包括所述目标PC5 QoS参数的情况下,所述目标参数满足预设条件包括如下至少一项:
所述目标PC5 QoS参数大于第一阈值,且所述第一终端当前工作的副链路资源分配模式不能保证所述目标PC5 QoS参数;
所述目标PC5 QoS参数小于第二阈值,且所述第一终端当前工作的副链路资源分配模式之外的模式能保证所述目标PC5 QoS参数;
所述目标PC5 QoS参数对应的副链路资源分配模式与所述第一终端当前工作的副链路资源分配模式不同。
可选的,所述目标PC5 QoS参数对应的副链路资源分配模式是根据PC5 QoS参数和副链路资源分配模式之间的映射规则确定的,所述映射规则为预配置、网络侧设备配置、协议预定义、运营商配置、所述第二终端配置或是所述第一终端实现。
可选的,在所述目标PC5 QoS参数包括至少两套QoS参数的情况下,所述目标参数满足预设条件包括如下至少一项:
所述至少两套QoS参数中存在至少一套QoS参数大于第一阈值,且所述第一终端当前工作的副链路资源分配模式不能保证所述至少一套PC5 QoS参数;
所述至少两套QoS参数中存在至少一套QoS参数小于第二阈值,且所述第一终端当前工作的副链路资源分配模式之外的模式能保证所述至少一套QoS参数。
可选的,可选的,所述处理器810还用于:
在所述目标参数包括所述目标PC5 QoS参数的情况下,向所述第二终端发送接受的PC5 QoS参数,其中,所述接受的PC5 QoS参数包括所述目标PC5 QoS参数中的部分或全部。
可选的,所述处理器810还用于:
在所述第一终端的副链路资源分配模式变更成功,和/或所述第一终端确定所述接受的PC5 QoS参数能保证的情况下,向所述第二终端发送所述接受 的PC5 QoS参数。
可选的,所述处理器810还用于:
在所述第一终端的副链路资源分配模式变更失败的情况下,向所述第二终端发送第一消息,其中,所述第一消息用于指示QoS协商失败;
或者
在所述第一终端确定所述目标PC5 QoS参数不能保证的情况下,向所述第二终端发送第二消息,其中,所述第二消息用于指示QoS协商失败。
可选的,所述处理器810还用于:
在所述目标参数包括所述目标PC5 QoS参数的情况下,所述在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式之前,通过所述第一终端的上层向所述第一终端的接入层AS层发送所述目标PC5 QoS参数;
响应的,所述处理器810还用于:
通过所述第一终端的AS层在确定所述目标PC5 QoS参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式。
所述处理器810还用于如下至少之一:
在所述第一终端的副链路资源分配模式变更成功的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第一通知消息;其中,所述第一通知消息用于通知所述第一终端的副链路资源分配模式变更成功;
在所述第一终端的AS层确定所述目标PC5 QoS参数中至少一套PC5 QoS参数能保证的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第二通知消息;其中,所述第二通知消息用于通知所述目标PC5 QoS参数能保证和/或能保证的所述至少一套PC5 QoS参数;
在所述第一终端的副链路资源分配模式变更失败的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第三通知消息;其中,所述第三通知消息用于通知所述第一终端的副链路资源分配模式变更失败;
在所述第一终端的AS层确定所述目标PC5 QoS参数中至少一套PC5 QoS参数不能保证的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第四通知消息;其中,所述第四通知消息用于通知所述目标PC5 QoS参数不能保证和/或不能保证的所述至少一套PC5 QoS参数。
所述处理器810还用于如下至少一项:
在所述副链路PC5的负载满足第一条件和/或所述Uu的负载不满足第二条件的情况下,若所述第一终端当前的副链路资源分配模式为第二模式,则变更所述第一终端的副链路资源分配模式;
在所述副链路PC5的负载不满足第一条件,和/或所述Uu的负载不满足第二条件的情况下,若所述第一终端当前的副链路资源分配模式为第一模式,则变更所述第一终端的副链路资源分配模式。
可选的,所述副链路PC5的负载满足第一条件,包括如下至少一项:
用于所述副链路的参考信号的测量量的测量结果小于第一子阈值;
所述副链路传输的P个信道或子信道的接收信号强度指示RSSI的测量结果大于第二子阈值,其中,P为正整数;
所述副链路传输的信道繁忙率CBR测量结果大于第三子阈值;
收到N个用于所述副链路的非同步指示,其中,N为正整数;
所述副链路发生了链路失败;
所述副链路传输中无线链路控制RLC重传次数大于M次,其中,M为正整数。
可选的,所述Uu的负载满足第二条件,包括如下至少一项:
第一指示信息指示所述Uu的负载满足第二条件,或者指示所述第一终端进行副链路资源分配模式变更;其中,所述第一指示信息为从网络侧设备接收的指示信息;
收到R个用于所述Uu链路的非同步指示,其中,R为正整数;
所述Uu链路发生了无线链路失败;
所述Uu传输中无线链路控制RLC重传次数大于S次,其中,S为正整数。
可选的,所述处理器810还用于:
在目标参数满足预设条件的情况下,向网络侧设备发送模式变更请求,其中,所述模式变更请求用于请求变更所述第一终端的副链路资源分配模式;
接收所述网络侧设备发送的响应信息,其中,所述响应消息携带有配置信息和第二指示信息中的至少之一,所述第二指示信息用于指示是否允许所述目标终端变更副链路资源分配模式;
根据所述响应信息,变更所述第一终端的副链路资源分配模式。
可选的,所述处理器810还用于:
在所述第一终端处于无线资源控制RRC空闲态的情况下,触发RRC连接建立过程,并通过RRC消息向网络侧设备发送模式变更请求;
在所述第一终端处于RRC非激活态的情况下,触发RRC连接恢复过程,并通过RRC消息向网络侧设备发送模式变更请求;
在所述第一终端处于RRC连接态的情况下,通过RRC消息向网络侧设备发送模式变更请求。
应理解的是,本公开实施例中,射频单元801可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器810处理;另外,将上行的数据发送给基站。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元801还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块802为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元803可以将射频单元801或网络模块802接收的或者在存储器809中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元803还可以提供与第一终端800执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元803包括扬声器、蜂鸣器以及受话器等。
输入单元804用于接收音频或视频信号。输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单 元806上。经图形处理器8041处理后的图像帧可以存储在存储器809(或其它存储介质)中或者经由射频单元801或网络模块802进行发送。麦克风8042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元801发送到移动通信基站的格式输出。
第一终端800还包括至少一种传感器805,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板8061的亮度,接近传感器可在第一终端800移动到耳边时,关闭显示面板8061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器805还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元806用于显示由用户输入的信息或提供给用户的信息。显示单元806可包括显示面板8061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板8061。
用户输入单元807可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板8071上或在触控面板8071附近的操作)。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器810,接收处理器810发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板8071。除了触 控面板8071,用户输入单元807还可以包括其他输入设备8072。具体地,其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板8071可覆盖在显示面板8061上,当触控面板8071检测到在其上或附近的触摸操作后,传送给处理器810以确定触摸事件的类型,随后处理器810根据触摸事件的类型在显示面板8061上提供相应的视觉输出。虽然在图8中,触控面板8071与显示面板8061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板8071与显示面板8061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元808为外部装置与第一终端800连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元808可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到第一终端800内的一个或多个元件或者可以用于在第一终端800和外部装置之间传输数据。
存储器809可用于存储软件程序以及各种数据。存储器809可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器810是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器809内的软件程序和/或模块,以及调用存储在存储器809内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器810可包括一个或多个处理单元;优选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
第一终端800还可以包括给各个部件供电的电源811(比如电池),优选的,电源811可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,第一终端800包括一些未示出的功能模块,在此不再赘述。
优选的,本公开实施例还提供一种第一终端,包括处理器810,存储器809,存储在存储器809上并可在所述处理器810上运行的计算机程序,该计算机程序被处理器810执行时实现上述模式控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图9,图9是本公开又一实施例提供的第二终端的结构图,如图9所示,第二终端900包括:至少一个处理器901、存储器902、至少一个网络接口904和用户接口903。第二终端终端900中的各个组件通过总线系统905耦合在一起。可理解,总线系统905用于实现这些组件之间的连接通信。总线系统905除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
在一些实施方式中,存储器902存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统9021和应用程序9022。
其中,操作系统9021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序9022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序9022中。
在本公开实施例中,第二终端900还包括:存储在存储器902上并可在处理器901上运行的计算机程序,具体地,可以是应用程序9022中的计算机程序,计算机程序被处理器901执行时实现如下步骤:
向第一终端发送请求的PC5 QoS参数;
接收所述第一终端接受的PC5 QoS参数;其中,所述接受的PC5 QoS参数包括所述请求的PC5 QoS参数中的部分或全部;
在所述接受的PC5 QoS参数满足预设条件的情况下,变更所述第二终端 的副链路资源分配模式。
可选的,计算机程序被处理器901执行时还用于:
在所述接受的PC5 QoS参数满足预设条件的情况下,将所述第二终端当前工作的第三副链路资源分配模式转换为第四副链路资源分配模式,或者在所述第二终端当前工作的第三副链路资源分配模式的基础上增加第四副链路资源分配模式。
可选的,在所述第三副链路资源分配模式为第一模式的情况下,所述第四副链路资源分配模式为第二模式;
或者
在所述第三副链路资源分配模式为第二模式中的第三子模式的情况下,所述第四副链路资源分配模式为第一模式或者所述第二模式中的第四子模式;其中,所述第二模式包括至少两个子模式。
可选的,所述接受的PC5 QoS参数满足预设条件包括如下至少一项:
所述接受的PC5 QoS参数大于第三阈值,且所述第二终端当前的副链路资源分配模式不能保证所述接受的PC5 QoS参数;
所述接受的PC5 QoS参数小于第四阈值,且所述第二终端当前的副链路资源分配模式之外的模式能保证所述接受的PC5 QoS参数;
所述接受的PC5 QoS参数对应的副链路资源分配模式与所述第二终端当前的副链路资源分配模式不同。
可选的,所述接受的PC5 QoS参数对应的副链路资源分配模式是根据PC5 QoS参数和副链路资源分配模式之间的映射规则确定的,所述映射规则为预配置、网络侧设备配置、协议预定义、运营商配置、所述第一终端配置或是所述第二终端实现。
可选的,计算机程序被处理器901执行时还用于:
在所述接受的PC5 QoS参数满足预设条件的情况下,向网络侧设备发送模式变更请求,其中,所述模式变更请求用于请求变更所述第二终端的副链路资源分配模式;
接收所述网络侧设备发送的响应信息,其中,所述响应消息携带有配置信息和指示信息中的至少之一,所述指示信息用于指示是否允许所述第二终 端变更副链路资源分配模式;
根据所述响应信息,变更所述第二终端的副链路资源分配模式。
可选的,计算机程序被处理器901执行时还用于如下至少一项:
在所述第二终端处于无线资源控制RRC空闲态的情况下,触发RRC连接建立过程,并通过RRC消息向网络侧设备发送模式变更请求;
在所述第二终端处于RRC非激活态的情况下,触发RRC连接恢复过程,并通过RRC消息向网络侧设备发送模式变更请求;
在所述第二终端处于RRC连接态的情况下,通过RRC消息向网络侧设备发送模式变更请求。
参见图10,图10是本公开又一实施例提供的网络侧设备的结构图。如图10所示,网络侧设备1000包括:处理器1001、存储器1002、总线接口1003和收发机1004,其中,处理器1001、存储器1002和收发机1004均连接至总线接口1003。
其中,在本公开实施例中,网络侧设备1000还包括:存储在存储器1002上并可在处理器1001上运行的计算机程序。
在本公开实施例中,所述收发机1004用于:
接收目标终端发送的模式变更请求,其中,所述模式变更请求用于请求变更所述目标终端的副链路资源分配模式;
向所述目标终端发送响应消息,其中,所述响应消息携带有配置信息和指示信息中的至少之一,所述指示信息用于指示是否允许所述目标终端变更副链路资源分配模式。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述模式控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或 者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (38)

  1. 一种模式控制方法,应用于第一终端,包括:
    在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式;
    其中,所述目标参数包括如下至少一项:目标PC5 QoS参数,所述副链路PC5的负载,Uu的负载;所述目标PC5 QoS参数包括第二终端请求的PC5 QoS参数中的部分或全部。
  2. 根据权利要求1所述的方法,其中,所述在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式,包括:
    在目标参数满足预设条件的情况下,将所述第一终端当前工作的第一副链路资源分配模式转换为第二副链路资源分配模式,或者在所述第一终端当前工作的第一副链路资源分配模式的基础上增加第二副链路资源分配模式。
  3. 根据权利要求2所述的方法,其中:
    在所述第一副链路资源分配模式为第一模式的情况下,所述第二副链路资源分配模式为第二模式;或者
    在所述第一副链路资源分配模式为第二模式中的第一子模式的情况下,所述第二副链路资源分配模式为第一模式或者所述第二模式中的第二子模式,其中,所述第二模式包括至少两个子模式。
  4. 根据权利要求1所述的方法,其中,在所述目标参数包括所述目标PC5 QoS参数的情况下,所述目标参数满足预设条件包括如下至少一项:
    所述目标PC5 QoS参数大于第一阈值,且所述第一终端当前工作的副链路资源分配模式不能保证所述目标PC5 QoS参数;
    所述目标PC5 QoS参数小于第二阈值,且所述第一终端当前工作的副链路资源分配模式之外的模式能保证所述目标PC5 QoS参数;
    所述目标PC5 QoS参数对应的副链路资源分配模式与所述第一终端当前工作的副链路资源分配模式不同。
  5. 根据权利要求4所述的方法,其中,所述目标PC5 QoS参数对应的副链路资源分配模式是根据PC5 QoS参数和副链路资源分配模式之间的映射规 则确定的,所述映射规则为预配置、网络侧设备配置、协议预定义、运营商配置、所述第二终端配置或是所述第一终端实现。
  6. 根据权利要求1所述的方法,其中,在所述目标PC5 QoS参数包括至少两套QoS参数的情况下,所述目标参数满足预设条件包括如下至少一项:
    所述至少两套QoS参数中存在至少一套QoS参数大于第一阈值,且所述第一终端当前工作的副链路资源分配模式不能保证所述至少一套PC5 QoS参数;
    所述至少两套QoS参数中存在至少一套QoS参数小于第二阈值,且所述第一终端当前工作的副链路资源分配模式之外的模式能保证所述至少一套QoS参数。
  7. 根据权利要求1所述的方法,其中,在所述目标参数包括所述目标PC5 QoS参数的情况下,所述方法还包括:
    向所述第二终端发送接受的PC5 QoS参数,其中,所述接受的PC5 QoS参数包括所述目标PC5 QoS参数中的部分或全部。
  8. 根据权利要求7所述的方法,其中,所述向所述第二终端发送接受的PC5 QoS参数,包括:
    在所述第一终端的副链路资源分配模式变更成功,和/或所述第一终端确定所述接受的PC5 QoS参数能保证的情况下,向所述第二终端发送所述接受的PC5 QoS参数。
  9. 根据权利要求1至8中任一项所述的方法,还包括:
    在所述第一终端的副链路资源分配模式变更失败的情况下,向所述第二终端发送第一消息,其中,所述第一消息用于指示QoS协商失败;
    或者
    在所述第一终端确定所述目标PC5 QoS参数不能保证的情况下,向所述第二终端发送第二消息,其中,所述第二消息用于指示QoS协商失败。
  10. 根据权利要求1至8中任一项所述的方法,其中,在所述目标参数包括所述目标PC5 QoS参数的情况下,所述在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式之前,所述方法还包括:
    所述第一终端的上层向所述第一终端的接入层AS层发送所述目标PC5 QoS参数;
    所述在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式,包括:
    所述第一终端的AS层在确定所述目标PC5 QoS参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式。
  11. 根据权利要求10所述的方法,还包括如下至少一项:
    在所述第一终端的副链路资源分配模式变更成功的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第一通知消息;其中,所述第一通知消息用于通知所述第一终端的副链路资源分配模式变更成功;
    在所述第一终端的AS层确定所述目标PC5 QoS参数中至少一套PC5 QoS参数能保证的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第二通知消息;其中,所述第二通知消息用于通知所述目标PC5 QoS参数能保证和/或能保证的所述至少一套PC5 QoS参数;
    在所述第一终端的副链路资源分配模式变更失败的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第三通知消息;其中,所述第三通知消息用于通知所述第一终端的副链路资源分配模式变更失败;
    在所述第一终端的AS层确定所述目标PC5 QoS参数中至少一套PC5 QoS参数不能保证的情况下,所述第一终端的AS层向所述第一终端的上层和所述第二终端的AS层中的至少之一发送第四通知消息;其中,所述第四通知消息用于通知所述目标PC5 QoS参数不能保证和/或不能保证的所述至少一套PC5QoS参数。
  12. 根据权利要求1所述的方法,其中,所述在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式,包括如下至少一项:
    在所述副链路PC5的负载满足第一条件和/或所述Uu的负载不满足第二条件的情况下,若所述第一终端当前的副链路资源分配模式为第二模式,则变更所述第一终端的副链路资源分配模式;
    在所述副链路PC5的负载不满足第一条件,和/或所述Uu的负载不满足第二条件的情况下,若所述第一终端当前的副链路资源分配模式为第一模式,则变更所述第一终端的副链路资源分配模式。
  13. 根据权利要求12所述的方法,其中,所述副链路PC5的负载满足第一条件,包括如下至少一项:
    用于所述副链路的参考信号的测量量的测量结果小于第一子阈值;
    所述副链路传输的P个信道或子信道的接收信号强度指示RSS I的测量结果大于第二子阈值,其中,P为正整数;
    所述副链路传输的信道繁忙率CBR测量结果大于第三子阈值;
    收到N个用于所述副链路的非同步指示,其中,N为正整数;
    所述副链路发生了链路失败;
    所述副链路传输中无线链路控制RLC重传次数大于M次,其中,M为正整数。
  14. 根据权利要求12所述的方法,其中,所述Uu的负载满足第二条件,包括如下至少一项:
    第一指示信息指示所述Uu的负载满足第二条件,或者指示所述第一终端进行副链路资源分配模式变更;其中,所述第一指示信息为从网络侧设备接收的指示信息;
    收到R个用于所述Uu链路的非同步指示,其中,R为正整数;
    所述Uu链路发生了无线链路失败;
    所述Uu传输中无线链路控制RLC重传次数大于S次,其中,S为正整数。
  15. 根据权利要求1所述的方法,其中,所述在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式,包括:
    在目标参数满足预设条件的情况下,向网络侧设备发送模式变更请求,其中,所述模式变更请求用于请求变更所述第一终端的副链路资源分配模式;
    接收所述网络侧设备发送的响应信息,其中,所述响应消息携带有配置信息和第二指示信息中的至少之一,所述第二指示信息用于指示是否允许所述目标终端变更副链路资源分配模式;
    根据所述响应信息,变更所述第一终端的副链路资源分配模式。
  16. 根据权利要求15所述的方法,其中,所述向网络侧设备发送模式变更请求,包括如下至少一项:
    在所述第一终端处于无线资源控制RRC空闲态的情况下,触发RRC连接建立过程,并通过RRC消息向网络侧设备发送模式变更请求;
    在所述第一终端处于RRC非激活态的情况下,触发RRC连接恢复过程,并通过RRC消息向网络侧设备发送模式变更请求;
    在所述第一终端处于RRC连接态的情况下,通过RRC消息向网络侧设备发送模式变更请求。
  17. 一种模式控制方法,应用于第二终端,包括:
    向第一终端发送请求的PC5 QoS参数;
    接收所述第一终端接受的PC5 QoS参数;其中,所述接受的PC5 QoS参数包括所述请求的PC5 QoS参数中的部分或全部;
    在所述接受的PC5 QoS参数满足预设条件的情况下,变更所述第二终端的副链路资源分配模式。
  18. 根据权利要求17所述的方法,其中,所述在所述接受的PC5 QoS参数满足预设条件的情况下,变更所述第二终端的副链路资源分配模式,包括:
    在所述接受的PC5 QoS参数满足预设条件的情况下,将所述第二终端当前工作的第三副链路资源分配模式转换为第四副链路资源分配模式,或者在所述第二终端当前工作的第三副链路资源分配模式的基础上增加第四副链路资源分配模式。
  19. 根据权利要求18所述的方法,其中:
    在所述第三副链路资源分配模式为第一模式的情况下,所述第四副链路资源分配模式为第二模式;
    或者
    在所述第三副链路资源分配模式为第二模式中的第三子模式的情况下,所述第四副链路资源分配模式为第一模式或者所述第二模式中的第四子模式;其中,所述第二模式包括至少两个子模式。
  20. 根据权利要求17所述的方法,其中,所述接受的PC5 QoS参数满足预设条件包括如下至少一项:
    所述接受的PC5 QoS参数大于第三阈值,且所述第二终端当前的副链路资源分配模式不能保证所述接受的PC5 QoS参数;
    所述接受的PC5 QoS参数小于第四阈值,且所述第二终端当前的副链路资源分配模式之外的模式能保证所述接受的PC5 QoS参数;
    所述接受的PC5 QoS参数对应的副链路资源分配模式与所述第二终端当前的副链路资源分配模式不同。
  21. 根据权利要求20所述的方法,其中,所述接受的PC5 QoS参数对应的副链路资源分配模式是根据PC5 QoS参数和副链路资源分配模式之间的映射规则确定的,所述映射规则为预配置、网络侧设备配置、协议预定义、运营商配置、所述第一终端配置或是所述第二终端实现。
  22. 根据权利要求17所述的方法,其中,所述在所述接受的PC5 QoS参数满足预设条件的情况下,变更所述第二终端的副链路资源分配模式,包括:
    在所述接受的PC5 QoS参数满足预设条件的情况下,向网络侧设备发送模式变更请求,其中,所述模式变更请求用于请求变更所述第二终端的副链路资源分配模式;
    接收所述网络侧设备发送的响应信息,其中,所述响应消息携带有配置信息和指示信息中的至少之一,所述指示信息用于指示是否允许所述第二终端变更副链路资源分配模式;
    根据所述响应信息,变更所述第二终端的副链路资源分配模式。
  23. 根据权利要求22所述的方法,其中,所述向网络侧设备发送模式变更请求,包括如下至少一项:
    在所述第二终端处于无线资源控制RRC空闲态的情况下,触发RRC连接建立过程,并通过RRC消息向网络侧设备发送模式变更请求;
    在所述第二终端处于RRC非激活态的情况下,触发RRC连接恢复过程,并通过RRC消息向网络侧设备发送模式变更请求;
    在所述第二终端处于RRC连接态的情况下,通过RRC消息向网络侧设备发送模式变更请求。
  24. 一种模式控制方法,应用于网络侧设备,包括:
    接收目标终端发送的模式变更请求,其中,所述模式变更请求用于请求 变更所述目标终端的副链路资源分配模式;
    向所述目标终端发送响应消息,其中,所述响应消息携带有配置信息和指示信息中的至少之一,所述指示信息用于指示是否允许所述目标终端变更副链路资源分配模式。
  25. 一种终端,其中,所述终端为第一终端,所述第一终端包括:
    变更模块,用于在目标参数满足预设条件的情况下,变更所述第一终端的副链路资源分配模式;
    其中,所述目标参数包括如下至少一项:目标PC5 QoS参数,所述副链路PC5的负载,Uu的负载;所述目标PC5 QoS参数包括第二终端请求的PC5 QoS参数中的部分或全部。
  26. 根据权利要求25所述的终端,其中,所述变更模块具体用于:
    在目标参数满足预设条件的情况下,将所述第一终端当前工作的第一副链路资源分配模式转换为第二副链路资源分配模式,或者在所述第一终端当前工作的第一副链路资源分配模式的基础上增加第二副链路资源分配模式。
  27. 根据权利要求26所述的终端,其中:
    在所述第一副链路资源分配模式为第一模式的情况下,所述第二副链路资源分配模式为第二模式;或者
    在所述第一副链路资源分配模式为第二模式中的第一子模式的情况下,所述第二副链路资源分配模式为第一模式或者所述第二模式中的第二子模式,其中,所述第二模式包括至少两个子模式。
  28. 根据权利要求25所述的终端,其中,在所述目标参数包括所述目标PC5 QoS参数的情况下,所述目标参数满足预设条件包括如下至少一项:
    所述目标PC5 QoS参数大于第一阈值,且所述第一终端当前工作的副链路资源分配模式不能保证所述目标PC5 QoS参数;
    所述目标PC5 QoS参数小于第二阈值,且所述第一终端当前工作的副链路资源分配模式之外的模式能保证所述目标PC5 QoS参数;
    所述目标PC5 QoS参数对应的副链路资源分配模式与所述第一终端当前工作的副链路资源分配模式不同。
  29. 根据权利要求25所述的终端,其中,所述变更模块具体用于如下至 少一项:
    在所述副链路PC5的负载满足第一条件和/或所述Uu的负载不满足第二条件的情况下,若所述第一终端当前的副链路资源分配模式为第二模式,则变更所述第一终端的副链路资源分配模式;
    在所述副链路PC5的负载不满足第一条件,和/或所述Uu的负载不满足第二条件的情况下,若所述第一终端当前的副链路资源分配模式为第一模式,则变更所述第一终端的副链路资源分配模式。
  30. 一种终端,其中,所述终端为第二终端,所述第二终端包括:
    第一发送模块,用于向第一终端发送请求的PC5 QoS参数;
    接收模块,用于接收所述第一终端接受的PC5 QoS参数;其中,所述接受的PC5 QoS参数包括所述请求的PC5 QoS参数中的部分或全部;
    变更模块,用于在所述接受的PC5 QoS参数满足预设条件的情况下,变更所述第二终端的副链路资源分配模式。
  31. 根据权利要求30所述的终端,其中,所述变更模块具体用于:
    在所述接受的PC5 QoS参数满足预设条件的情况下,将所述第二终端当前工作的第三副链路资源分配模式转换为第四副链路资源分配模式,或者在所述第二终端当前工作的第三副链路资源分配模式的基础上增加第四副链路资源分配模式。
  32. 根据权利要求31所述的终端,其中:
    在所述第三副链路资源分配模式为第一模式的情况下,所述第四副链路资源分配模式为第二模式;
    或者
    在所述第三副链路资源分配模式为第二模式中的第三子模式的情况下,所述第四副链路资源分配模式为第一模式或者所述第二模式中的第四子模式;其中,所述第二模式包括至少两个子模式。
  33. 根据权利要求30所述的终端,其中,所述接受的PC5 QoS参数满足预设条件包括如下至少一项:
    所述接受的PC5 QoS参数大于第三阈值,且所述第二终端当前的副链路资源分配模式不能保证所述接受的PC5 QoS参数;
    所述接受的PC5 QoS参数小于第四阈值,且所述第二终端当前的副链路资源分配模式之外的模式能保证所述接受的PC5 QoS参数;
    所述接受的PC5 QoS参数对应的副链路资源分配模式与所述第二终端当前的副链路资源分配模式不同。
  34. 一种网络侧设备,包括:
    接收模块,用于接收目标终端发送的模式变更请求,其中,所述模式变更请求用于请求变更所述目标终端的副链路资源分配模式;
    发送模块,用于向所述目标终端发送响应消息,其中,所述响应消息携带有配置信息和指示信息中的至少之一,所述指示信息用于指示是否允许所述目标终端变更副链路资源分配模式。
  35. 一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至16中任一项所述的模式控制方法的步骤。
  36. 一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求17至23中任一项所述的模式控制方法的步骤。
  37. 一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求24所述的模式控制方法的步骤。
  38. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述程序被处理器执行时实现如权利要求1至16中任一项所述的模式控制方法的步骤,或者实现如权利要求17至23中任一项所述的模式控制方法的步骤,或者实现如权利要求24所述的模式控制方法的步骤。
PCT/CN2020/075319 2019-02-15 2020-02-14 模式控制方法、终端和网络侧设备 WO2020164602A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910118062.5A CN111436139B (zh) 2019-02-15 2019-02-15 一种模式控制方法、终端和网络侧设备
CN201910118062.5 2019-02-15

Publications (1)

Publication Number Publication Date
WO2020164602A1 true WO2020164602A1 (zh) 2020-08-20

Family

ID=71581033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075319 WO2020164602A1 (zh) 2019-02-15 2020-02-14 模式控制方法、终端和网络侧设备

Country Status (2)

Country Link
CN (1) CN111436139B (zh)
WO (1) WO2020164602A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022016439A1 (zh) * 2020-07-23 2022-01-27 华为技术有限公司 侧行链路通信方法和通信装置
CN116210322A (zh) * 2020-08-07 2023-06-02 Oppo广东移动通信有限公司 数据传输方法和终端设备
CN114258011B (zh) * 2020-09-21 2023-06-16 维沃移动通信有限公司 信息发送方法、信息接收方法、装置及终端
CN113271561B (zh) * 2020-09-29 2022-05-20 大唐移动通信设备有限公司 通信方式的确定方法、装置及存储介质
CN113852926B (zh) * 2021-09-09 2024-01-23 上海移远通信技术股份有限公司 通信方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797534A (zh) * 2014-10-14 2017-05-31 Lg电子株式会社 无线通信系统中的用户设备的装置对装置(d2d)操作方法和使用该方法的用户设备
WO2018031169A1 (en) * 2016-08-11 2018-02-15 Qualcomm Incorporated Autonomous resource selection for vehicle-to-vehicle communications
CN107995605A (zh) * 2016-10-27 2018-05-04 工业和信息化部电信研究院 一种移动通信系统及终端直通单播发送控制方法
CN108112087A (zh) * 2016-11-23 2018-06-01 普天信息技术有限公司 一种v2x网络资源信息指示方法及基站

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664700A (zh) * 2014-09-25 2017-05-10 夏普株式会社 对于副链路通信中的模式切换的延迟减少
EP3198959B1 (en) * 2014-09-26 2020-11-25 Telefonaktiebolaget LM Ericsson (publ) A method and device of resource allocations for scheduling assignments in device to device communications
KR102571193B1 (ko) * 2015-01-23 2023-08-25 타이사 리서치 엘엘씨 D2d 통신 시스템에서 d2d 단말을 위한 사이드링크 그랜트를 선택하는 방법 및 그 장치
CN104703224B (zh) * 2015-04-09 2018-05-15 宇龙计算机通信科技(深圳)有限公司 用于d2d通信的资源配置方法、装置和终端
CN105764061B (zh) * 2016-01-28 2018-12-04 电子科技大学 一种无线蜂窝网络中的d2d通信资源分配方法
KR20180108589A (ko) * 2016-01-29 2018-10-04 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 사이드링크 데이터 전송을 위한 방법 및 단말기
WO2017173579A1 (zh) * 2016-04-05 2017-10-12 华为技术有限公司 QoS生成方法、设备以及系统
CN107347215B (zh) * 2016-05-06 2019-11-08 普天信息技术有限公司 在v2x网络中资源的分配方法及终端
CN108810906A (zh) * 2017-05-04 2018-11-13 株式会社Ntt都科摩 资源配置和调度方法、基站以及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797534A (zh) * 2014-10-14 2017-05-31 Lg电子株式会社 无线通信系统中的用户设备的装置对装置(d2d)操作方法和使用该方法的用户设备
WO2018031169A1 (en) * 2016-08-11 2018-02-15 Qualcomm Incorporated Autonomous resource selection for vehicle-to-vehicle communications
CN107995605A (zh) * 2016-10-27 2018-05-04 工业和信息化部电信研究院 一种移动通信系统及终端直通单播发送控制方法
CN108112087A (zh) * 2016-11-23 2018-06-01 普天信息技术有限公司 一种v2x网络资源信息指示方法及基站

Also Published As

Publication number Publication date
CN111436139B (zh) 2023-07-04
CN111436139A (zh) 2020-07-21

Similar Documents

Publication Publication Date Title
WO2020164602A1 (zh) 模式控制方法、终端和网络侧设备
CN110324859B (zh) 副链路的传输资源选择方法、配置方法、终端和网络设备
WO2020192670A1 (zh) 资源分配方法、释放方法、终端及网络设备
US11838803B2 (en) Resource reserving method and device
KR102628455B1 (ko) 전송 처리 방법, 단말 및 제어 노드
WO2020088586A1 (zh) 副链路的连接控制方法、终端及网络侧设备
WO2020088585A1 (zh) 副链路连接建立、资源分配方法、终端及网络侧设备
US20230026021A1 (en) Relay ue determining method and device
WO2021012928A1 (zh) 载波聚合参数配置方法、设备及系统
WO2020057335A1 (zh) 传输方法及相关设备
WO2020063327A1 (zh) 副链路传输资源的选择方法、配置方法及设备
JP7373570B2 (ja) 接続確立方法、端末機器及びネットワーク機器
WO2020063852A1 (zh) 终端设备能力信息处理方法、终端设备及网络侧设备
US20210250960A1 (en) Data processing method and device
KR20220104826A (ko) 데이터 처리 방법 및 장치, 통신 기기 및 저장 매체
WO2021155821A1 (zh) Csi传输方法、触发csi传输的方法及相关设备
WO2021147719A1 (zh) 资源选择方法及终端
AU2020342206B2 (en) Message transmission method and terminal
WO2021088981A1 (zh) 信息处理方法及终端
WO2021088908A1 (zh) 传输处理方法和终端
CN111800832B (zh) 数据发送方法、用户设备ue及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755135

Country of ref document: EP

Kind code of ref document: A1