WO2020164168A1 - 一种基于轴距的轴流泵叶轮设计方法 - Google Patents

一种基于轴距的轴流泵叶轮设计方法 Download PDF

Info

Publication number
WO2020164168A1
WO2020164168A1 PCT/CN2019/077064 CN2019077064W WO2020164168A1 WO 2020164168 A1 WO2020164168 A1 WO 2020164168A1 CN 2019077064 W CN2019077064 W CN 2019077064W WO 2020164168 A1 WO2020164168 A1 WO 2020164168A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
impeller
correction coefficient
airfoil
specific speed
Prior art date
Application number
PCT/CN2019/077064
Other languages
English (en)
French (fr)
Inventor
吴贤芳
田骁
谈明高
刘厚林
王凯
王勇
董亮
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2012612.4A priority Critical patent/GB2593558B/en
Publication of WO2020164168A1 publication Critical patent/WO2020164168A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • F04D3/005Axial-flow pumps with a conventional single stage rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/181Axial flow rotors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids

Definitions

  • the invention belongs to the field of fluid machinery design, and particularly relates to a design method of an axial flow pump impeller based on a wheelbase.
  • Pumping stations and sluices are important components of water conservancy, environmental protection, urban water supply and drainage, and corporate water affairs. Pumps are irrigation and drainage equipment, and sluices are low-head hydraulic structures that regulate water levels and control flow.
  • Traditional pump gate construction usually uses a combination of axial flow pumps and sluices, that is, along the cross-section of the river, a gate is arranged in the middle, and a pump is arranged on each side of the gate.
  • the separation design of the pump and the gate of this kind of pump gate results in the traditional pump gate displacement being much lower than actual needs.
  • Flood seasons are often unable to carry out flood drainage in time and effectively, and the efficiency of river water exchange and pollution control is far lower than the ideal value.
  • the layout also restricts the cross-section of the river, slows down the flow of the river, is unfavorable to the water exchange and water circulation of the inland river, cannot meet the requirements of the inland river water ecological environment, and weakens the river's self-purification ability.
  • the new integrated pump gate the pump unit is directly arranged on the gate.
  • the gate is not only the water retaining structure but also the foundation of the pump support, so that the gate and the pump station are combined into one.
  • the integrated pump gate has the following advantages: (1) The pump is installed vertically on the gate, and no additional pump chamber is required. When the gate is lifted, the flow area of the river can be increased by more than double, and the gate is dropped. The time pump can significantly increase the drainage speed; (2) Only the power distribution room, water pump, gate and flapping door are needed. The main workshop is not built, and there is no auxiliary oil, water, and gas system.
  • the area is small, and the construction is convenient and fast, thereby reducing The investment in civil engineering and electromechanical equipment of the pumping station is improved; (3) By installing auxiliary facilities such as the liquid level control system and the automatic gate control system, the entire system can be linked and controlled, truly unattended and automatic control, which greatly reduces the late stage of the pump gate. Personnel maintenance costs.
  • the design of integrated pump gates mostly focuses on optimizing the gate structure and improving the flow conditions of the front and rear pools; axial flow pumps, as the key power equipment of integrated pump gates, are generally directly selected from existing products.
  • the integrated pump gate due to the limitation of gate thickness, the integrated pump gate requires the axial length of the axial flow pump to be as short as possible. If the axial length of the axial flow pump is too large and the gate is thicker, the design, manufacturing, operation and maintenance costs of the integrated pump gate will be greatly increased, and the response speed of the gate will also be greatly reduced. This makes the existing axial flow pump products unable to well meet the structure and performance requirements of the integrated pump gate.
  • the present invention provides a design method of axial flow pump impeller based on wheelbase.
  • the purpose of the present invention is to provide a design method of axial flow pump impeller based on wheelbase, which includes the following steps:
  • L 1 is the axial length required by the design; the axial length of the outermost section of L w ; select the axial flow pump impeller parameter airfoil chord length l, blade chord placement angle ⁇ L is the reference parameter to determine the impeller diameter D, hub diameter d h , and pitch t;
  • step S1 the airfoil chord length l and the blade placement angle ⁇ L are determined by the flow Q, the head H, and the rotation speed n.
  • the calculation method is as follows:
  • the airfoil chord length l c is determined by the airfoil chord length l w of the outermost section;
  • the outermost section is section 6; when the impeller section number is 5, the outermost section is section 5; when the impeller section number is 4, the outermost section is section 4;
  • a is the correction coefficient, and the value method is as follows;
  • chord length l c of the airfoil section is determined by the following general formula:
  • a 1 is the proportional coefficient, and the specific values are shown in the following table:
  • the blade setting angle ⁇ Lc of the airfoil section is determined by the outermost blade setting angle ⁇ Lw ;
  • V m1 inlet axial velocity; V m2 outlet axial velocity; u circumferential velocity; V u2 rotational speed; ⁇ 1 blade inlet angle; blade outlet angle; b is the correction coefficient, which is determined by the specific speed;
  • the airfoil section blade placement angle ⁇ Lc is determined by the following general formula:
  • b 1 is the proportional coefficient, and the specific values are shown in the following table:
  • L 1 is the axial length required by the design
  • L w is the axial length of the outermost section
  • step (2) If L 1 ⁇ L and the error is greater than 5%, return to step (2) to reduce the value of correction coefficient a, or return to step (3) to reduce the value of correction coefficient b.
  • step S2 the impeller diameter D, the hub diameter d h and the pitch t are determined by the airfoil chord length l and the blade placement angle ⁇ L ;
  • the impeller diameter D c of each section is determined by the following general formula:
  • the maximum diameter of the impeller D w is determined by the following general formula
  • c is the proportional coefficient
  • K is the correction coefficient
  • specific values are shown in the table below;
  • D w is the maximum diameter of the impeller, and the hub ratio Determined by specific speed n s +3.87 ⁇ sin ⁇ L ;
  • step S3 select the 791 airfoil thickness change rule to thicken the blade
  • the thickness of the 791 airfoil is used for thickening;
  • the thickness change of the 791 airfoil is shown in the following table;
  • x is the distance from the left edge of the airfoil, and
  • is the airfoil thickness ;
  • the established design method based on the wheelbase axial flow pump impeller can provide a way to solve the development bottleneck of the integrated pump gate
  • Fig. 1 is an axial sectional view of the impeller of embodiment 1.
  • Figure 2 A sectional view of the blade.
  • FIG. 1 Schematic diagram of airfoil thickening.
  • FIG. 4 is a flowchart of the present invention.
  • l is the chord length of the airfoil
  • ⁇ L is the blade angle
  • D impeller diameter
  • d h is the hub diameter
  • t is the pitch
  • section 1 is a section of 2,3 to 1,2 3,4 to section Sections 4 and 5 are section 5
  • x is the distance from the left edge of the airfoil
  • is the thickness of the airfoil
  • ⁇ max is the maximum thickness of the airfoil.
  • the error range is less than 5%, which meets the design requirements
  • the thickness of the 791 airfoil is used for thickening

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种基于轴距的轴流泵叶轮设计方法包括以下步骤:(1)以轴流泵叶轮轴向长度L设计函数L=l×sinβ L为基础,根据给定的轴流泵设计流量Q、扬程H、转速n、比转速n s设计参数,从叶轮轮毂至叶轮外缘等间距划分断面,通过比转速n s确定断面数和叶片数;然后确定轴流泵叶轮的翼型弦长l和叶片安放角β L;(2)以翼型弦长l和叶片安放角β L为基准系数,确定叶轮直径D,轮毂直径d h,节距t;(3)选择791翼型厚度变化规律进行叶片加厚。该方法可有效控制轴流泵叶轮的轴向长度。

Description

一种基于轴距的轴流泵叶轮设计方法 技术领域
本发明属于流体机械设计领域,特指涉及一种基于轴距的轴流泵叶轮设计方法。
背景技术
泵站和水闸是水利、环保、城市供排水及企业水务等工程的重要组成部分,其中泵是排灌设备,闸是调节水位、控制流量的低水头水工建筑物。传统泵闸建设通常采用轴流式水泵和水闸相结合的方式,即沿着河道横截面处,在中间布置一扇闸门,闸门两边各布置一台水泵的形式。这种泵闸的泵、闸分离设计导致传统泵闸排水量远低于实际需要,汛期往往不能及时有效的进行疏洪,进行河流换水治污的效率也远远低于理想值,同时这种布置方式也限制了河道的过水断面,减缓了河流流动,对内河的水量交换和水体循环不利,不能满足内河水生态环境的要求,弱化了河流的自净能力。
新型一体化泵闸,将泵组直接布置在闸门上,闸门既是挡水结构又是水泵支承的基础,使水闸和泵站合二为一。与传统泵闸相比,一体化泵闸具有如下优点:(1)泵垂直安装于闸门上,不需要额外的泵室,升闸时可使河流的过流面积增大1倍以上,落闸时泵可明显提高排水速度;(2)只需要配电室、水泵、闸门和拍门,不建主厂房,没有辅助油、水、气系统,占地面积小,施工方便、快捷,从而减少了泵站的土建和机电设备投资;(3)通过安装液位控制系统和闸门自动控制系统等辅助设施,可以使整个系统联动控制,真正实现无人值守,自动控制,大幅降低了泵闸后期人员维护费用。
目前关于一体化泵闸的设计多集中在优化闸门结构和与改善前后水池流动状态的研究;轴流泵作为一体化泵闸的关键动力设备一般都是从现有产品中直接选型。事实上,由于闸门厚度的限制,一体化泵闸要求轴流泵的轴向长度要尽可能的短。轴流泵轴向长度过大,闸门越厚,导致一体化泵闸的设计、制造、运行和维护成本都会大幅提升,同时闸门的响应速度也会大幅下降。这就使得现有轴流泵产品并不能很好的满足一体化泵闸的结构和性能要求。因此,迫切需要发展一种简单实用的基于轴距的轴流泵叶轮设计方法,使得其既能保证轴流泵水力性能,又能根据实际需要有效控制轴流泵叶轮的轴向长度。
为此,提出一种基于轴距的轴流泵叶轮设计方法,该方法以L=l×sinβ L为基础,通过流量Q、扬程H和转速n并基于实际需要,确定轴流泵叶轮翼型弦长l和叶片安放角β L的取值;并以叶轮翼型弦长l和叶片安放角β L为基础,确定叶轮其余设计参数叶轮直径D、轮毂直径d h和节距t。最后,选择791翼型厚度变化规律进行叶片加厚。
迄今为止,尚未见一种基于轴向长度的轴流泵叶轮设计方法公开报道,本发明提供了一 种基于轴距的轴流泵叶轮设计方法。
发明内容
本发明的目的是提供一种基于轴距的轴流泵叶轮设计方法,包括如下步骤:
S1:以轴流泵轴向距离L=l×sinβ L为基础,根据给定的轴流泵设计流量Q、扬程H、转速n、比转速n s设计参数,从叶轮轮毂至叶轮外缘等间距划分断面,通过比转速n s确定断面数和叶片数;然后确定轴流泵叶轮轴向长度L的翼型弦长l和叶片安放角β L
S2:当L 1/L w=0.95~1;其中,L 1为设计要求轴向长度;L w最外侧断面的轴向长度;选取轴流泵叶轮参数翼型弦长l,叶弦安放角β L为基准参数,确定叶轮直径D,轮毂直径d h,节距t;
S3:以翼型弦长l为基准,选择791翼型厚度变化规律进行叶片加厚。
本发明的技术方案为:
步骤S1中,通过流量Q、扬程H、转速n确定翼型弦长l和叶片安放角β L,计算方法如下:
(1)确定叶轮设计断面数量和叶片数
将轴流泵叶轮分为4~6个断面,从叶轮轮毂至叶轮外缘等间距划分断面;断面数和叶片数通过比转速n s确定;
比转速n s n s≤450 450≤n s≤800 800≤n s
叶轮断面数 4 5 6
比转速n s n s≤600 600≤n s≤850 850≤n s≤1500
叶片数 5 4 3
(2)根据升力法计算翼型弦长l
翼型弦长l c通过最外侧断面翼型弦长l w确定;
当叶轮断面数为6时,最外侧断面即为断面6;当叶轮断面数为5时,最外侧断面即为断面5;当叶轮断面数为4时,最外侧断面即为断面4;
Figure PCTCN2019077064-appb-000001
其中,a为修正系数,取值方法如下所示;
叶片数z 3 4 5
修正系数a(6个断面) 4.2~6.3 6.3~8.9 8.9~10.2
修正系数a(5个断面) 3.4~5.8 5.8~7.6 7.6~9.4
修正系数a(4个断面) 2.8~5.5 5.5~7.3 7.3~8.9
翼型断面翼型弦长l c通过以下通式确定:
l c=a 1×l w
其中,a 1为比例系数,具体取值如下表所示:
Figure PCTCN2019077064-appb-000002
(3)根据升力法计算叶片安放角β L
翼型断面叶片安放角β Lc通过最外侧叶片安放角β Lw确定;
最外侧断面叶片安放角β Lw的计算方法如下所示:
Figure PCTCN2019077064-appb-000003
Figure PCTCN2019077064-appb-000004
Figure PCTCN2019077064-appb-000005
Figure PCTCN2019077064-appb-000006
Figure PCTCN2019077064-appb-000007
Figure PCTCN2019077064-appb-000008
其中,V m1进口轴面速度;V m2出口轴面速度;u圆周速度;V u2旋转分速度;β 1叶片进口角;叶片出口角;b为修正系数,通过比转速确定;
比转速n s 0~380 380~610 610~930 930~1500
修正系数b(6个断面) 0.21~0.28 0.16~0.21 0.12~0.16 0.05~0.12
修正系数b(5个断面) 0.19~0.24 0.13~0.19 0.08~0.13 0.03~0.08
修正系数b(4个断面) 0.16~0.22 0.13~0.16 0.07~0.13 0.03~0.07
翼型断面叶片安放角β Lc通过以下通式确定:
β Lc=b 1×β Lw
其中,b 1为比例系数,具体取值如下表所示:
Figure PCTCN2019077064-appb-000009
(4)轴向长度L
通过L=l×sinβ L确定轴流泵叶轮的轴向长度;L 1为设计要求轴向长度;L w最外侧断面的轴向长度;设计误差允许范围为5%,即L 1/L=0.95~1;
若L 1>L且误差大于5%,则返回步骤(2)增大修正系数a的取值,或者返回步骤(3)增加修正系数b的取值;
若L 1<L且误差大于5%,则返回步骤(2)减小修正系数a的取值,或者返回步骤(3)减小修正系数b的取值。
步骤S2中,通过翼型弦长l和叶片安放角β L确定叶轮直径D,轮毂直径d h,节距t;
(1)叶轮直径D
各断面的叶轮直径D c通过以下通式确定;
Figure PCTCN2019077064-appb-000010
叶轮最大直径D w通过以下通式确定
Figure PCTCN2019077064-appb-000011
其中,c为比例系数,K为修正系数,具体取值如下表所示;
Figure PCTCN2019077064-appb-000012
断面数 4 5 6
修正系数K 19.3~22.45 17.8~20.14 15.8~19.6
(2)叶轮轮毂直径d h
Figure PCTCN2019077064-appb-000013
其中,D w为叶轮最大直径,轮毂比
Figure PCTCN2019077064-appb-000014
通过比转速n s+3.87×sinβ L确定;
当n s+3.87×sinβ L≤470,
Figure PCTCN2019077064-appb-000015
当470≤n s+3.87×sinβ L≤720,
Figure PCTCN2019077064-appb-000016
当720≤n s+3.87×sinβ L≤940,
Figure PCTCN2019077064-appb-000017
当940≤n s+3.87×sinβ L≤1200,
Figure PCTCN2019077064-appb-000018
当1200≤n s+3.87×sinβ L≤1500,
Figure PCTCN2019077064-appb-000019
(3)节距t
各断面节距t c通过以下通式确定;
Figure PCTCN2019077064-appb-000020
步骤S3中,选择791翼型厚度变化规律进行叶片加厚;
(1)翼型最大厚度δ max
Figure PCTCN2019077064-appb-000021
(2)以翼型弦长l为基准,采用791翼型厚度变化规律进行加厚;791翼型厚度变化规律如下表所示;x为距翼型左侧边缘的距离,δ为翼型厚度;
x/l 0 0.05 0.075 0.1 0.2 0.3 0.4 0.5 0.6
δ/δ max 0 0.296 0.405 0.489 0.778 0.92 0.978 1.0 0.883
x/l 0.7 0.8 0.9 0.95 1.0
δ/δ max 0.756 0.544 0.356 0.2 0
(3)加厚时,以型线为工作面向背面加厚。
本发明的有益效果为:
(1)采用基于轴距轴流泵叶轮设计方法,可实现与较短轴向长度的一体化泵闸的完美配合;
(2)相比于通过相似模型换算的传统设计方法,不仅效率低而且适应性差,本方法给定了快速确定轴流泵叶轮尺寸的公式,具有适应性好,计算快,效率高的优点;
(3)现有的轴流泵水力设计方法大多以保证流量扬程为主,并导致轴流泵轴向长度过长,本设计方法可在保证流量扬程的同时控制轴流泵轴向长度;
(4)建立的基于轴距轴流泵叶轮设计方法具有建造周期短、建造成本低的优点;
(5)建立的基于轴距轴流泵叶轮设计方法可为解决一体化泵闸的发展瓶颈提供出路;
(6)随着国家水力工程的建设,国家大型和中小型泵站的更新换代,对于轴流泵各参数的要求将越来越高,因此本发明将会取得较高的经济效益和社会效益。
附图说明
图1为实施例1叶轮轴向剖视图。
图2叶片剖视图。
图3翼型加厚示意图。
图4为本发明的流程图。
图中,l为翼型弦长、β L为叶片安放角、D为叶轮直径、d h为轮毂直径、t为节距,1为断面1,2为断面2,3为断面3,4为断面4,5为断面5,x为距翼型左侧边缘的距离,δ为翼型厚度,δ max为翼型最大厚度。
具体实施方式
实施例:
轴流泵设计流量Q=0.35m 3/s,扬程H=6.72m,转速n=1450r/min,设计轴向长度L 1=26mm。下面对本发明做进一步的说明:
1.通过流量Q、扬程H、转速n确定翼型弦长l和叶片安放角β L,计算方法如下:
(1)确定叶轮设计断面数量和叶片数
Figure PCTCN2019077064-appb-000022
根据下表,取叶轮断面数为5
比转速n s n s≤450 450≤n s≤800 800≤n s
叶轮断面数 4 5 6
根据下表,取z=4;
比转速n s 0~600 600~850 850~1500
叶片数z 3 4 5
(2)翼型弦长l
断面5的翼型弦长l 5
根据下表,取a=6;
叶片数z 3 4 5
修正系数a 3.4~5.8 5.8~7.6 7.6~9.4
所以
Figure PCTCN2019077064-appb-000023
断面4的翼型弦长l 4
根据l 4=a 1×l 5=(0.931~0.963)×l 5,取l 4=0.951×l 5=0.951×79.2=75.3mm
断面3的翼型弦长l 3
根据l 3=a 1×l 5=(0.826~0.894)×l 5,取l 3=0.842×l 5=0.842×79.2=66.7mm
断面2的翼型弦长l 2
根据l 2=a 1×l 5=(0.712~0.787)×l 5,取l 2=0.762×l 5=0.762×79.2=60.4mm
断面1的翼型弦长l 1
根据l 1=a 1×l 5=(0.623~0.685)×l 5,取l 1=0.651×l 5=0.651×79.2=51.6mm
(3)叶片安放角β L
断面5的叶片安放角β L5
因为n s=750,根据下表,取b=0.1;
比转速n s 0~380 380~610 610~930 930~1500
修正系数b 0.19~0.24 0.13~0.19 0.08~0.13 0.03~0.08
Figure PCTCN2019077064-appb-000024
Figure PCTCN2019077064-appb-000025
Figure PCTCN2019077064-appb-000026
Figure PCTCN2019077064-appb-000027
Figure PCTCN2019077064-appb-000028
Figure PCTCN2019077064-appb-000029
断面4的叶片安放角β L4
根据β L4=b 1×β Lw=(1.06~1.15)×β L5,取β L4=1.12×β L5=1.12×19.29=21.60°;
断面3的叶片安放角β L3
根据β L3=b 1×β Lw=(1.22~1.34)×β L5,取β L3=1.31×β L5=1.31×19.29=25.27°;
断面2的叶片安放角β L2
根据β L2=b 1×β Lw=(1.43~1.68)×β L5,取β L2=1.53×β L5=1.53×19.29=29.51°;
断面1的叶片安放角β L2
根据β L1=b 1×β Lw=(1.84~2.18)×β L5,取β L1=2.02×β L5=2.02×19.29=38.97°;
(4)轴向长度L
L w=l×sinβ Lw=79.2×sin19.29°=26.16mm
Figure PCTCN2019077064-appb-000030
误差范围小于5%,满足设计要求;
2.通过翼型弦长l和叶片安放角β L确定叶轮直径D,轮毂直径d h和节距t,计算方法如下:
(1)叶轮直径D
断面5的叶轮直径D 5
Figure PCTCN2019077064-appb-000031
断面4的叶轮直径D 4
Figure PCTCN2019077064-appb-000032
断面3的叶轮直径D 3
Figure PCTCN2019077064-appb-000033
断面2的叶轮直径D 2
Figure PCTCN2019077064-appb-000034
断面1的叶轮直径D 1
Figure PCTCN2019077064-appb-000035
(2)叶轮轮毂直径d h
因为n s+3.87×sinβ L=750+3.87×sin38.58°=752,根据下表,取
Figure PCTCN2019077064-appb-000036
Figure PCTCN2019077064-appb-000037
Figure PCTCN2019077064-appb-000038
(3)节距t
断面5的节距t 5
Figure PCTCN2019077064-appb-000039
断面4的节距t 4
Figure PCTCN2019077064-appb-000040
断面3的节距t 3
Figure PCTCN2019077064-appb-000041
断面2的节距t 2
Figure PCTCN2019077064-appb-000042
断面1的节距t 1
Figure PCTCN2019077064-appb-000043
3.以翼型弦长l为基准,采用791翼型厚度变化规律进行加厚;
(1)断面5的翼型厚度
A.翼型最大厚度δ max
根据
Figure PCTCN2019077064-appb-000044
Figure PCTCN2019077064-appb-000045
Figure PCTCN2019077064-appb-000046
B.以翼型弦长l为基准,采用791翼型厚度变化规律进行加厚;
其对应翼型厚度为下表所示:
x/l 0 0.05 0.075 0.1 0.2 0.3 0.4 0.5 0.6
δ 0 4.017 5.496 6.636 10.557 12.484 13.271 13.57 11.982
x/l 0.7 0.8 0.9 0.95 1.0
δ 10.259 7.382 4.831 2.714 0
(2)断面4的翼型厚度
A.翼型最大厚度δ max
根据
Figure PCTCN2019077064-appb-000047
Figure PCTCN2019077064-appb-000048
Figure PCTCN2019077064-appb-000049
B.以翼型弦长l为基准,采用791翼型厚度变化规律进行加厚;791翼型厚度变化规律如下表所示;
x/l 0 0.05 0.075 0.1 0.2 0.3 0.4 0.5 0.6
δ 0 3.514 4.807 5.804 9.235 10.920 11.609 11.87 10.481
x/l 0.7 0.8 0.9 0.95 1.0
δ 8.974 6.457 4.226 2.374 0
(3)断面3的翼型厚度
A.翼型最大厚度δ max
根据
Figure PCTCN2019077064-appb-000050
Figure PCTCN2019077064-appb-000051
Figure PCTCN2019077064-appb-000052
B.以翼型弦长l为基准,采用791翼型厚度变化规律进行加厚;791翼型厚度变化规律如下表所示;
x/l 0 0.05 0.075 0.1 0.2 0.3 0.4 0.5 0.6
δ 0 3.001 4.114 4.968 7.904 9.347 9.936 10.16 8.971
x/l 0.7 0.8 0.9 0.95 1.0
δ 7.112 8.128 9.144 9.652 10.16
(4)断面2的翼型厚度
A.翼型最大厚度δ max
根据
Figure PCTCN2019077064-appb-000053
Figure PCTCN2019077064-appb-000054
Figure PCTCN2019077064-appb-000055
B.以翼型弦长l为基准,采用791翼型厚度变化规律进行加厚;791翼型厚度变化规律如下表所示;
x/l 0 0.05 0.075 0.1 0.2 0.3 0.4 0.5 0.6
δ 0 2.504 3.426 4.137 6.582 7.783 8.274 8.46 7.470
x/l 0.7 0.8 0.9 0.95 1.0
δ 5.922 6.768 7.614 8.037 8.46
(5)断面1的翼型厚度
A.翼型最大厚度δ max
根据
Figure PCTCN2019077064-appb-000056
Figure PCTCN2019077064-appb-000057
Figure PCTCN2019077064-appb-000058
B.以翼型弦长l为基准,采用791翼型厚度变化规律进行加厚;791翼型厚度变化规律如下表所示;
x/l 0 0.05 0.075 0.1 0.2 0.3 0.4 0.5 0.6
δ 0 0.648 0.887 1.071 1.704 2.015 2.142 2.19 1.934
x/l 0.7 0.8 0.9 0.95 1.0
δ 1.533 1.752 1.971 2.081 2.19
(6)加厚时,以型线为工作面向背面加厚。

Claims (4)

  1. 一种基于轴距的轴流泵叶轮设计方法,其特征在于,包含以下具体步骤:
    (S1)以轴流泵叶轮轴向长度L设计函数L=l×sinβ L为设计基础,根据给定的轴流泵设计流量Q、扬程H、转速n、比转速n s设计参数,从叶轮轮毂至叶轮外缘等间距划分断面,通过比转速n s确定断面数和叶片数;然后确定轴流泵叶轮轴向长度L的翼型弦长l和叶片安放角β L
    (S2)当L 1/L w=0.95~1;其中,L 1为设计要求轴向长度;L w最外侧断面的轴向长度;
    选取轴流泵叶轮参数翼型弦长l,叶片安放角β L为基准参数,确定叶轮直径D,轮毂直径d h,节距t;
    (S3)以翼型弦长l为基准,选择791翼型厚度变化规律进行加厚。
  2. 根据权利要求1所述的一种基于轴距的轴流泵叶轮设计方法,其特征在于:步骤S1中,通过流量Q、扬程H、转速n确定翼型弦长l和叶片安放角β L,计算方法如下:
    (1)根据比转速n s确定叶轮设计断面数量和叶片数:
    将轴流泵叶轮分为4~6个断面,从叶轮轮毂至叶轮外缘等间距划分断面;断面数和叶片数通过比转速n s确定;
    当比转速n s≤450时,叶轮断面数为4;
    当比转速450≤n s≤800时,叶轮断面数为5;
    当比转速800≤n s时,叶轮断面数为6;
    当比转速n s≤600时,叶片数为5;
    当比转速600≤n s≤850时,叶片数为4;
    当比转速850≤n s≤1500时,叶片数为3;
    (2)根据升力法计算翼型弦长l,
    翼型断面翼型弦长l c通过最外侧断面翼型弦长l w确定;
    当叶轮断面数为6时,最外侧断面即为断面6;当叶轮断面数为5时,最外侧断面即为断面5;当叶轮断面数为4时,最外侧断面即为断面4;
    Figure PCTCN2019077064-appb-100001
    其中,a为修正系数,取值方法如下所示;
    当断面数为6,叶片数z为3时,修正系数a=4.2~6.3,
    当断面数为6,叶片数z为4时,修正系数a=6.3~8.9,
    当断面数为6,叶片数z为5时,修正系数a=8.9~10.2,
    当断面数为5,叶片数z为3时,修正系数a=3.4~5.8,
    当断面数为5,叶片数z为4时,修正系数a=5.8~7.6,
    当断面数为5,叶片数z为5时,修正系数a=7.6~9.4,
    当断面数为4,叶片数z为3时,修正系数a=2.8~5.5,
    当断面数为4,叶片数z为4时,修正系数a=5.5~7.3,
    当断面数为4,叶片数z为5时,修正系数a=7.3~8.9,
    翼型断面翼型弦长l c通过以下通式确定:
    l c=a 1×l w
    其中,a 1为比例系数,具体取值如下所示:
    当断面数为4时,断面1的a 1为0.651~0.728,断面2的a 1为0.793~0.873,断面3的a 1为0.894~0.981,断面4的a 1为1,
    当断面数为5时,断面1的a 1为0.623~0.685,断面2的a 1为0.712~0.787,断面3的a 1为0.826~0.894,断面4的a 1为0.931~0.963,断面5的a 1为1,
    当断面数为6时,断面1的a 1为0.489~0.553,断面2的a 1为0.586~0.653,断面3的a 1为0.705~0.781,断面4的a 1为0.793~0.842,断面5的a 1为0.856~0.925,断面6的a 1为1;
    (3)根据升力法计算叶片安放角β L
    翼型断面叶片安放角β Lc通过最外侧断面叶片安放角β Lw确定;
    最外侧断面叶片安放角β Lw的计算方法如下所示:
    Figure PCTCN2019077064-appb-100002
    Figure PCTCN2019077064-appb-100003
    Figure PCTCN2019077064-appb-100004
    Figure PCTCN2019077064-appb-100005
    Figure PCTCN2019077064-appb-100006
    Figure PCTCN2019077064-appb-100007
    其中,V m1进口轴面速度;V m2出口轴面速度;u圆周速度;V u2旋转分速度;β 1叶片进口角;叶片出口角;b为修正系数,通过比转速确定;
    在断面数为6的情况下,当比转速n s为0~380时,修正系数b为0.21~0.28;
    当比转速n s为380~610时,修正系数b为0.16~0.21;
    当比转速n s为610~930时,修正系数b为0.12~0.16;
    当比转速n s为930~1500时,修正系数b为0.05~0.12;
    在断面数为5的情况下,当比转速n s为0~380时,修正系数b为0.19~0.24;
    当比转速n s为380~610时,修正系数b为0.13~0.19;
    当比转速n s为610~930时,修正系数b为0.08~0.13;
    当比转速n s为930~1500时,修正系数b为0.03~0.08;
    在断面数为4的情况下,当比转速n s为0~380时,修正系数b为0.16~0.22;
    当比转速n s为380~610时,修正系数b为0.13~0.16;
    当比转速n s为610~930时,修正系数b为0.07~0.13;
    当比转速n s为930~1500时,修正系数b为0.03~0.07;
    翼型断面叶片安放角β Lc通过以下通式确定:
    β Lc=b 1×β Lw
    其中,b 1为比例系数,具体取值如下所示:
    当断面数为4时,断面1的b 1为1.92~2.24,断面2的b 1为1.52~1.73,断面3的b 1为1.36~1.56,断面4的b 1为1,
    当断面数为5时,断面1的b 1为1.84~2.18,断面2的b 1为1.43~1.68,断面3的b 1为1.22~1.34,断面4的b 1为1.06~1.15,断面5的b 1为1,
    当断面数为6时,断面1的b 1为1.72~2.06,断面2的b 1为1.21~1.53,断面3的b 1为1.17~1.42,断面4的b 1为0.97~1.21,断面5的b 1为0.83~0.92,断面6的b 1为1。
    (4)通过L=l×sinβ L确定轴流泵叶轮的轴向长度;L 1为设计要求轴向长度;L w最外侧断面的轴向长度;设计误差允许范围为5%,即L 1/L w=0.95~1;
    若L 1>Lw且误差大于5%,则返回步骤(2)增大修正系数a的取值,或者返回步骤(3)增加修正系数b的取值;
    若L 1<Lw且误差大于5%,则返回步骤(2)减小修正系数a的取值,或者返回步骤(3)减小修正系数b的取值。
  3. 根据权利要求1或2所述的一种基于轴距的轴流泵叶轮设计方法,其特征在于:步骤S2中,通过翼型弦长l和叶片安放角β L确定叶轮直径D,轮毂直径d h,节距t,计算方法如下:
    (1)叶轮直径D
    各断面的叶轮直径D c通过以下通式确定;
    Figure PCTCN2019077064-appb-100008
    叶轮最大直径D w通过以下通式确定
    Figure PCTCN2019077064-appb-100009
    其中,c为比例系数,K为修正系数,具体取值如下所示;
    当断面数为4时,修正系数K为19.3~22.45;断面1的比例系数c为0.5,断面2的比例系数c为0.64,断面3的比例系数c为0.76,断面4的比例系数c为0.98;
    当断面数为5时,修正系数K为17.8~20.14;断面1的比例系数c为0.5,断面2的比例系数c为0.61,断面3的比例系数c为0.73,断面4的比例系数c为0.85,断面5的比例系数c为0.97;
    当断面数为6时,修正系数K为15.8~19.6;断面1的比例系数c为0.5,断面2的比例系数c为0.53,断面3的比例系数c为0.57,断面4的比例系数c为0.69,断面5的比例系数c为0.82,断面6的比例系数c为0.93;
    (2)叶轮轮毂直径d h
    Figure PCTCN2019077064-appb-100010
    其中,D w为叶轮最大直径,轮毂比
    Figure PCTCN2019077064-appb-100011
    通过比转速n s+3.87×sinβ L确定;
    当n s+3.87×sinβ L≤470,
    Figure PCTCN2019077064-appb-100012
    当470≤n s+3.87×sinβ L≤720,
    Figure PCTCN2019077064-appb-100013
    当720≤n s+3.87×sinβ L≤940,
    Figure PCTCN2019077064-appb-100014
    当940≤n s+3.87×sinβ L≤1200,
    Figure PCTCN2019077064-appb-100015
    当1200≤n s+3.87×sinβ L≤1500,
    Figure PCTCN2019077064-appb-100016
    (3)节距t
    各断面节距t c通过以下通式确定;
    Figure PCTCN2019077064-appb-100017
  4. 根据权利要求1所述的一种基于轴距的轴流泵叶轮设计方法,其特征在于:步骤S3中,选择791翼型厚度变化规律进行加厚;
    (1)最大翼型厚度δ max
    Figure PCTCN2019077064-appb-100018
    (2)以翼型弦长l为基准,采用791翼型厚度变化规律进行加厚;791翼型厚度变化规律如下所示;x为距翼型左侧边缘的距离,δ为翼型厚度;
    当x/l为0时,δ/δ max为0;
    当x/l为0.05时,δ/δ max为0.296;
    当x/l为0.075时,δ/δ max为0.405;
    当x/l为0.1时,δ/δ max为0.489;
    当x/l为0.2时,δ/δ max为0.778;
    当x/l为0.3时,δ/δ max为0.92;
    当x/l为0.4时,δ/δ max为0.978;
    当x/l为0.5时,δ/δ max为1.0;
    当x/l为0.6时,δ/δ max为0.883;
    当x/l为0.7时,δ/δ max为0.756;
    当x/l为0.8时,δ/δ max为0.544;
    当x/l为0.9时,δ/δ max为0.356;
    当x/l为0.95时,δ/δ max为0.2;
    当x/l为1.0时,δ/δ max为0;
    (3)加厚时,以型线为工作面向背面加厚。
PCT/CN2019/077064 2019-02-13 2019-03-06 一种基于轴距的轴流泵叶轮设计方法 WO2020164168A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2012612.4A GB2593558B (en) 2019-02-13 2019-03-06 Method for designing axial-flow pump impeller based on axial distance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910113073.4A CN109763995B (zh) 2019-02-13 2019-02-13 一种基于轴距的轴流泵叶轮设计方法
CN201910113073.4 2019-02-13

Publications (1)

Publication Number Publication Date
WO2020164168A1 true WO2020164168A1 (zh) 2020-08-20

Family

ID=66454770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077064 WO2020164168A1 (zh) 2019-02-13 2019-03-06 一种基于轴距的轴流泵叶轮设计方法

Country Status (3)

Country Link
CN (1) CN109763995B (zh)
GB (1) GB2593558B (zh)
WO (1) WO2020164168A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113935126A (zh) * 2021-09-10 2022-01-14 南京磁谷科技股份有限公司 一种磁悬浮风机工作效率优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103994095A (zh) * 2014-04-29 2014-08-20 江苏大学 一种多相混输轴流泵叶轮的设计方法
CN105805043A (zh) * 2016-04-07 2016-07-27 西安理工大学 一种具有长短叶片特征的不可调轴流泵叶轮的设计方法
RU2606290C1 (ru) * 2015-10-22 2017-01-10 Владимир Николаевич Кудеяров Центростремительный лопастной насос для перекачивания подогретых неоднородных по плотности жидкостей
CN108223424A (zh) * 2017-11-30 2018-06-29 河海大学 一种立式轴流泵泵段
CN109236726A (zh) * 2018-07-31 2019-01-18 江苏大学镇江流体工程装备技术研究院 一种高比转速轴流泵叶轮出口角和厚度设计方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201539437U (zh) * 2009-06-23 2010-08-04 江苏大学 一种高效轴流泵叶轮
CN101629583A (zh) * 2009-06-23 2010-01-20 江苏大学 一种轴流泵叶轮叶片型线计算及加厚方法
CN103696983B (zh) * 2013-12-31 2017-03-01 江苏大学 一种双向轴流泵叶轮优化设计方法
CN103925234B (zh) * 2014-04-10 2016-05-25 江苏大学 一种耐磨损轴流泵叶轮设计方法
CN104005983B (zh) * 2014-05-07 2016-08-31 江苏大学 一种高比转速轴流泵叶轮三工况点设计方法
CN204061320U (zh) * 2014-07-28 2014-12-31 北京新安特风机有限公司 一种轴流风机单板叶片结构
CN105443433A (zh) * 2015-12-08 2016-03-30 合肥工业大学 一种抗空化轴流泵叶轮设计方法
CN105626574B (zh) * 2015-12-25 2018-01-30 江苏大学 一种高扬程轴流泵叶轮水力设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103994095A (zh) * 2014-04-29 2014-08-20 江苏大学 一种多相混输轴流泵叶轮的设计方法
RU2606290C1 (ru) * 2015-10-22 2017-01-10 Владимир Николаевич Кудеяров Центростремительный лопастной насос для перекачивания подогретых неоднородных по плотности жидкостей
CN105805043A (zh) * 2016-04-07 2016-07-27 西安理工大学 一种具有长短叶片特征的不可调轴流泵叶轮的设计方法
CN108223424A (zh) * 2017-11-30 2018-06-29 河海大学 一种立式轴流泵泵段
CN109236726A (zh) * 2018-07-31 2019-01-18 江苏大学镇江流体工程装备技术研究院 一种高比转速轴流泵叶轮出口角和厚度设计方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113935126A (zh) * 2021-09-10 2022-01-14 南京磁谷科技股份有限公司 一种磁悬浮风机工作效率优化方法
CN113935126B (zh) * 2021-09-10 2023-03-07 南京磁谷科技股份有限公司 一种磁悬浮风机工作效率优化方法

Also Published As

Publication number Publication date
GB202012612D0 (zh) 2020-09-30
CN109763995A (zh) 2019-05-17
CN109763995B (zh) 2020-08-28
GB2593558A (en) 2021-09-29
GB2593558B (en) 2022-08-10

Similar Documents

Publication Publication Date Title
CN103291653B (zh) 一种低比转数叶轮及其叶片设计方法
CN107642448A (zh) 低水头大流量川渠水轮机
CN101881284A (zh) 高比转数轴流泵导叶体
WO2020164168A1 (zh) 一种基于轴距的轴流泵叶轮设计方法
CN104989653B (zh) 基于叶轮名义平均流速的低扬程泵装置水泵选型方法
CN109058128B (zh) 一种微扬程回转刮片泵性能试验装置
CN101982620A (zh) 供水工程节能控制方法
CN102182690A (zh) 复合式贯流泵装置
CN106971019B (zh) 一种高比转速轴流泵导叶水力设计方法
CN206360924U (zh) 一种离心泵叶轮
CN209115344U (zh) 一种新型微扬程回转刮片泵性能试验装置
CN210530427U (zh) 一种火电厂主厂房布置结构
CN209278153U (zh) 一种反铲式叶片微扬程泵装置
CN112301962B (zh) 一种不影响正常供水的大型引调水工程过流能力提升方法
CN208917917U (zh) 一体化轴流泵站
CN109162966B (zh) 一种高效潜水式抗洪抢险泵导叶
CN105485053A (zh) 一种水力性能优异的前置型卧式泵装置出水流道及应用方法
CN205954578U (zh) 一种叠梁闸门结构
CN206111672U (zh) 一种新型双向竖井贯流泵流道结构
CN206054314U (zh) 一种高效节能的建筑工地用自吸泵
CN205533286U (zh) 立式轴流泵用清水润滑装置
CN220790004U (zh) 一种截流设施
CN109083108B (zh) 一种变立面角及平面角首级过渡阶梯掺气结构及消能方法
CN107724347B (zh) 一种变角度挑坎及百叶窗式消力池尾坎联合消能结构及其使用方法
CN106951592A (zh) 一种泵站用簸箕型进水流道的设计方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202012612

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190306

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914836

Country of ref document: EP

Kind code of ref document: A1