WO2020164154A1 - 传输信号的方法及设备 - Google Patents

传输信号的方法及设备 Download PDF

Info

Publication number
WO2020164154A1
WO2020164154A1 PCT/CN2019/075295 CN2019075295W WO2020164154A1 WO 2020164154 A1 WO2020164154 A1 WO 2020164154A1 CN 2019075295 W CN2019075295 W CN 2019075295W WO 2020164154 A1 WO2020164154 A1 WO 2020164154A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
downlink
network device
subbands
supplementary link
Prior art date
Application number
PCT/CN2019/075295
Other languages
English (en)
French (fr)
Inventor
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/075295 priority Critical patent/WO2020164154A1/zh
Priority to CN201980071735.4A priority patent/CN112997556B/zh
Publication of WO2020164154A1 publication Critical patent/WO2020164154A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to methods and devices for transmitting signals.
  • the New Radio (NR) system can support data transmission on unlicensed frequency bands, and network devices can use resources on unlicensed frequency bands to communicate with terminal devices.
  • the embodiments of the present application provide a signal transmission method and device, which can provide a solution for unlicensed spectrum pairing with licensed spectrum.
  • a signal transmission method including: sending a downlink signal to a terminal device on a downlink supplementary supplementary carrier link of an unlicensed spectrum; receiving the terminal device on an uplink supplementary link carrier of a licensed spectrum The sent uplink signal for the downlink signal.
  • a signal transmission method wherein one carrier of the unlicensed spectrum is configured with at least one bandwidth part BWP, one BWP includes at least one subband, and the bandwidth of one subband is an integer multiple of 20MHz, or Any value greater than 20 MHz, the method includes: scheduling channel resources of at least one subband of the unlicensed spectrum; and sending a downlink signal to the terminal device on the scheduled channel resources.
  • a network device which can execute the foregoing first aspect or any optional implementation method of the first aspect.
  • the network device may include a functional module for executing the foregoing first aspect or any possible implementation of the first aspect.
  • a network device which can execute the foregoing second aspect or any optional implementation of the second aspect.
  • the network device may include a functional module for executing the foregoing second aspect or any possible implementation manner of the second aspect.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned second aspect or the method in any possible implementation of the second aspect.
  • a chip for implementing the foregoing first aspect or any possible implementation method of the first aspect.
  • the chip includes a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the method in the first aspect or any possible implementation of the first aspect.
  • a chip for implementing the foregoing second aspect or any possible implementation of the second aspect.
  • the chip includes a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the method in the second aspect or any possible implementation manner of the second aspect.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method in the foregoing second aspect or any possible implementation of the second aspect.
  • a computer program product including computer program instructions that cause a computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a computer program product including computer program instructions that cause a computer to execute the foregoing second aspect or any possible implementation of the second aspect.
  • a computer program which, when run on a computer, causes the computer to execute the method in the first aspect or any possible implementation of the first aspect.
  • a computer program which when running on a computer, causes the computer to execute the above-mentioned second aspect or any possible implementation of the second aspect.
  • a communication system including network equipment and terminal equipment.
  • the network device is configured to: send a downlink signal to the terminal device on the downlink supplementary supplementary carrier link of the unlicensed spectrum; receive the downlink signal sent by the terminal device on the uplink supplementary supplementary link carrier of the licensed spectrum Upstream signal of the signal.
  • This application provides a pairing method for the uplink of the licensed spectrum and the downlink of the unlicensed spectrum.
  • the SUL of the licensed spectrum can be paired with the SDL link of the unlicensed spectrum, so as to achieve flexibility for the unlicensed spectrum. use.
  • Fig. 1 is a schematic diagram of a possible wireless communication system applied by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a channel access method provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a signal transmission manner provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a resource scheduling method provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of another resource scheduling method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another resource scheduling method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another signal transmission manner provided by an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of another network device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a chip of an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NR NR system evolution system
  • LTE on unlicensed frequency bands LTE-based access to unlicensed spectrum, LTE-U
  • NR NR-based access to unlicensed spectrum, NR-U
  • UMTS Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX Wireless Local Area Networks
  • WLAN Wireless Fidelity
  • WiFi next-generation communication systems or other communication systems, etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to scenarios such as carrier aggregation (CA), dual connectivity (DC), and standalone (SA) networking.
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone networking
  • the wireless communication system 100 may include a network device 110.
  • the network device 110 may be a device that communicates with terminal devices.
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the network side device in the NR system, or the wireless controller in the Cloud Radio Access Network (CRAN), or the network device can be a relay station or Entry points, in-vehicle devices, wearable devices, network-side devices in next-generation networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved Node B
  • eNodeB evolved base station
  • the network side device in the NR system
  • the network device can be a relay station or Entry points
  • the wireless communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the terminal device 120 may be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication Equipment, user agent or user device.
  • UE user equipment
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or terminal devices in the future evolved PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • D2D direct terminal
  • the network device 110 may provide services for a cell, and the terminal device 120 communicates with the network device 110 through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be the network device 110 (for example, a base station)
  • the corresponding cell the cell can belong to a macro base station or a base station corresponding to a small cell (Small cell).
  • the small cell here can include, for example, a metro cell, a micro cell, and a pico cell. Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The application embodiment does not limit this.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • Unlicensed spectrum is the spectrum that can be used for radio equipment communication divided by the country and region. This spectrum is usually considered to be a shared spectrum, that is, the communication equipment in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. To use this spectrum, there is no need to apply for a proprietary spectrum authorization from the government.
  • MCOT Maximum Channel Occupancy Time
  • COT Channel Occupancy Time
  • Base station channel occupancy time also called COT initiated by the base station, which refers to a channel occupancy time obtained by the base station after successful LBT.
  • the channel occupation time of the base station can not only be used for downlink transmission, but also can be used for UE for uplink transmission under certain conditions.
  • UE-initiated COT also called UE-initiated COT, it refers to a channel occupation time obtained by the UE after successful LBT.
  • Downlink (DL) opportunity a group of downlink transmissions performed by a base station (that is, one or more downlink transmissions), the group of downlink transmissions is continuous transmission (that is, there is no gap between multiple downlink transmissions), or the group of downlink transmissions There is a gap in the transmission but the gap is less than or equal to 16 ⁇ s. If the gap between two downlink transmissions performed by the base station is greater than 16 ⁇ s, then the two downlink transmissions are considered to be two downlink transmission opportunities.
  • Uplink transmission (uplink, UL) opportunity a group of uplink transmissions performed by a UE (that is, one or more uplink transmissions), the group of uplink transmissions is continuous transmission (that is, there is no gap between multiple uplink transmissions), or the group There is a gap in the uplink transmission but the gap is less than or equal to 16 ⁇ s. If the gap between two uplink transmissions performed by the UE is greater than 16 ⁇ s, then the two uplink transmissions are considered to be two uplink transmission opportunities.
  • the communication equipment can have the following four types of channel access methods when performing LBT:
  • the communication device can determine that CWS is CW P , where CW P can be a fixed value.
  • Communication device may generate a random number CW P based on the value of N.
  • the communication device performs channel detection on the unlicensed spectrum, and performs signal transmission after the channel detection succeeds in all N time slots.
  • the communication device can determine that CWS is CW P , where CW P can be a variable value.
  • Communication device may generate a random number CW P based on the value of N.
  • the communication device performs channel detection on the unlicensed spectrum, and performs signal transmission after the channel detection succeeds in all N time slots.
  • the difference between the third access method and the fourth access method is only whether the CWS is a fixed value or a variable value.
  • the third access method and the fourth access method can further distinguish the priority of the channel access scheme according to the priority of the transmission service.
  • the commonly used channel access methods are the first, second and fourth channel access schemes.
  • the channel access methods used in different transmission scenarios are different, and the channel access solutions for different signals or channels are also different.
  • different access schemes can be selected according to different target signals.
  • the target signal may include at least one of the following: discovery reference signal (DRS), open system interconnection (OSI) signal, paging, random access response (random access response) , RAR), physical downlink control channel (PDCCH), physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH), physical uplink control channel (physical downlink) control channel (PUCCH), channel sounding reference signal (sounding reference signal, SRS), random access channel (random access channel, RACH), scheduling request (scheduling request, SR), channel state information (channel state information, CSI), Hybrid automatic repeat request (HARQ) and acknowledgement (acknowledgment, ACK).
  • DRS discovery reference signal
  • OSI open system interconnection
  • RAR resource uplink control channel
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • Table 1 specifies the channel access methods in different situations.
  • the channel access priority is determined according to the lowest priority data among the multiple priorities.
  • the resources in the COT can be used for the UE for uplink transmission.
  • the UE can immediately perform the uplink transmission; if the COT of the base station If there is no downlink transmission opportunity after the uplink transmission opportunity, the UE can perform the second channel access method before transmission; if the gap between any two adjacent transmissions is less than or equal to 25 ⁇ s in the COT of the base station, The UE can perform the second channel access method. as shown in picture 2.
  • Table 2 specifies channel access methods in different situations.
  • LAA licensed-assisted access
  • LAA is mainly based on a carrier aggregation or dual-connection working mode. In these two modes, the unlicensed spectrum is only used for the user plane, all control plane traffic is carried by the licensed carrier, and the operating network simultaneously controls the resources of the licensed frequency band and the unlicensed frequency band.
  • unlicensed spectrum is generally located in a high frequency band, it cannot be used for macro cells to provide wide coverage, and the interference is uncontrollable, and cannot provide services with high reliability requirements. Therefore, unlicensed spectrum is usually combined with LTE in the manner of LAA as a carrier aggregation scenario
  • LTE Long Term Evolution
  • 3GPP 3rd generation partnership project
  • Scenario 1 Carrier aggregation between the licensed spectrum macro cell and the unlicensed spectrum micro cell.
  • Scenario 2 In the area covered by the unlicensed spectrum macro cell, carrier aggregation between the licensed spectrum micro cell and the unlicensed spectrum micro cell.
  • Scenario 3 In an area covered by a licensed spectrum macro cell, carrier aggregation between the licensed spectrum micro cell and the unlicensed spectrum micro cell.
  • Scenario 4 In the area covered by the authorized macro cell F1, carrier aggregation between the authorized spectrum micro cell F2 and the unlicensed spectrum micro cell F3.
  • carrier aggregation between the macro cell, the licensed spectrum micro cell and the unlicensed spectrum micro cell can be realized. If the network allows, the terminal device can access the macro cell and the micro cell at the same time.
  • carrier aggregation is used as a basic operation method to aggregate the carriers on the licensed spectrum and the carriers on the unlicensed spectrum.
  • the NR system can also support data transmission on unlicensed spectrum.
  • NR-U as an unlicensed spectrum technology for 5G, is similar to LTE-LAA. It can also aggregate carriers on licensed spectrum with carriers on licensed spectrum.
  • NR-U proposes a new scenario in the working mode, namely scenario D: independently deployed NR cell, using unlicensed spectrum for downlink transmission and licensed spectrum for uplink transmission.
  • scenario D independently deployed NR cell, using unlicensed spectrum for downlink transmission and licensed spectrum for uplink transmission.
  • this mode may have great deployment value for certain operating networks. Therefore, it is necessary to consider a feasible carrier pairing scheme suitable for this scenario to guide terminal equipment and Network equipment to coordinate the NR-U system and the NR system's uplink and downlink transmission spectrum allocation problem or scheduling problem.
  • Table 3 shows the frequency spectrum of NR, including time division duplex (TDD) frequency band, frequency division duplex (FDD) frequency band, SDL frequency band, and SUL frequency band.
  • TDD time division duplex
  • FDD frequency division duplex
  • SDL uplink supplementary bands
  • SUL uplink supplementary bands
  • Table 3 shows the frequency spectrum of NR, including time division duplex (TDD) frequency band, frequency division duplex (FDD) frequency band, SDL frequency band, and SUL frequency band.
  • Table 3 also shows the frequency band serial number of each frequency band, the frequency band information of the uplink frequency band, the frequency band information of the downlink frequency band, and the working mode of the frequency band.
  • SDL indicates that only downlink transmission can be performed in this frequency band, such as the n75 frequency band and the n76 frequency band;
  • SUL indicates that only uplink transmission can be performed in this frequency band, such as the n80-n86 frequency band.
  • the embodiment of the present application provides a signal transmission method, which provides a pairing method for the NR-U carrier and the NR carrier. As shown in Figure 3, the method includes steps 310-320.
  • the network device sends a downlink signal to the terminal device on the downlink supplementary link of the unlicensed spectrum.
  • the terminal device sends an uplink signal for the downlink signal to the network device on the uplink supplementary link of the authorized spectrum.
  • the downlink supplementary link of the unlicensed spectrum can be paired with the uplink supplementary link of the licensed spectrum, and the network equipment and terminal equipment can be on the SDL frequency band of the unlicensed spectrum and the SUL frequency band of the licensed spectrum. Communicate with each other.
  • the network device may send a downlink signal on the SDL of the unlicensed spectrum, and the terminal device may send the uplink signal of the downlink signal on the SUL of the licensed spectrum.
  • the terminal device may send an uplink signal on the SUL of the licensed spectrum, and the network device may send a downlink signal for the uplink signal on the SDL of the unlicensed spectrum.
  • the uplink and downlink signals may be data, or other reference signals or signaling.
  • the embodiment of the present application may also pair the downlink supplementary link of the licensed spectrum with the uplink supplementary link of the unlicensed spectrum.
  • any frequency band of the unlicensed spectrum can also be paired with any frequency band of the licensed spectrum to meet the working requirements of scenario D. As shown in Table 4.
  • the frequency band information of the unlicensed spectrum and the frequency band information of the licensed spectrum in Table 4 can be queried from the tables defined in the agreement.
  • the frequency band information of the authorized frequency band can be queried from Table 3.
  • U1 represents any TDD frequency band of NR-U
  • U2 represents any SDL frequency band of NR-U
  • U3 represents any FDD frequency band of NR-U.
  • the n86 frequency band is only an example of the NR SUL frequency band, and the n86 frequency band can also be replaced with other NR SUL frequency bands, such as any one of the n80-n84 frequency bands.
  • the n1 frequency band is only an example of the NR FDD frequency band, and the n1 frequency band can also be replaced with other NR FDD frequency bands.
  • the n75 frequency band is only an example of NR's TDD frequency band, and the n75 frequency band can also be replaced with other NR frequency bands.
  • DL_n86_U1 For DL_n86_U1, it means that the SUL frequency band of NR can be paired with the TDD frequency band of NR-U.
  • the network device can only use this frequency band to transmit downlink signals. For example, no signal may be transmitted when uplink transmission is required, or downlink transmission may be performed at the time when uplink transmission is originally required, so as to meet the working requirements of scenario D.
  • DC_n86_U2 it means that the SUL frequency band of NR can be paired with the SDL frequency band of NR-U.
  • DC_n1(/n78)_U1 there can be three cases: DC_n1_U1, DC_n78_U1, and DC_n1_n78_U1, which means that the FDD and/or TDD frequency band of NR can be paired with the TDD frequency band of NR-U.
  • n1 frequency band or n78 frequency band of NR is in FDD or TDD duplex mode, it is only used for uplink transmission in this combined frequency band.
  • U1 frequency band of NR-U is in TDD duplex mode, it is In this frequency band combination, it is only used for downlink transmission, thus meeting the working requirements of scenario D.
  • this frequency band combination if it is the combination of DC_n1_n78_U1, it means that one frequency band of NR-U can correspond to multiple frequency bands of NR, that is, the U1 frequency band of NR-U can correspond to the n1 frequency band and the n78 frequency band of NR.
  • DC_n1(/n78)_U2 there can be three cases: DC_n1_U2, DC_n78_U2, and DC_n1_n78_U2, which means that the FDD frequency band and/or TDD frequency band of NR can be paired with the SDL frequency band of NR-U.
  • n1 frequency band or n78 frequency band of NR is in FDD or TDD duplex mode, in this combination frequency band, it is only used for uplink transmission, and the U2 frequency band of NR-U is only used for downlink transmission, thus meeting the scenario D’s job requirements.
  • this frequency band combination if it is the combination of DC_n1_n78_U2, it means that one frequency band of NR-U can correspond to multiple frequency bands of NR, that is, the U2 frequency band of NR-U can correspond to the n1 frequency band and the n78 frequency band of NR.
  • the SUL frequency band of NR can be paired with the FDD frequency band of NR-U.
  • the n86 frequency band of NR is only used for uplink transmission.
  • the U3 frequency band of NR-U is in FDD duplex mode, in this combination, it is only used for downlink transmission, thereby meeting the working requirements of scenario D.
  • DC_n1(/n78)_U3 there can be three cases: DC_n1_U3, DC_n78_U3, and DC_n1_n78_U3, which means that the FDD or TDD frequency band of NR can be paired with the FDD frequency band of NR-U.
  • n1 frequency band or n78 frequency band of NR is in FDD or TDD duplex mode, it is only used for uplink transmission.
  • U3 frequency band of NR-U is in TDD duplex mode, it is In this frequency band combination, it is only used for downlink transmission, thus meeting the working requirements of scenario D.
  • this frequency band combination if it is the combination of DC_n1_n78_U3, it means that one frequency band of NR-U can correspond to multiple frequency bands of NR, that is, the U3 frequency band of NR-U can correspond to the n1 frequency band and the n78 frequency band of NR.
  • the SDL frequency band of NR can be paired with the SUL frequency band of NR-U.
  • the n75 frequency band of NR is only used for downlink transmission, and the U2 frequency band of NR-U is only used for uplink transmission.
  • the FDD frequency band of NR can be paired with the TDD or FDD frequency band of NR-U.
  • n1 frequency band of NR is in FDD duplex mode
  • U1 frequency band or U3 frequency band of NR-U is in TDD or FDD duplex mode
  • multiple frequency bands representing NR-U can correspond to one frequency band of NR.
  • the embodiments of this application are mainly aimed at the following DC combinations: the combination of the TDD frequency band and/or SDL frequency band of NR-U and the SUL frequency band of NR or LTE.
  • the embodiments of the present application may also use the following frequency band combination information, for example, DC DL_n103/UL_n84, and DC DL_n101/UL_n84_n101.
  • n103 is an example of the SDL frequency band of the unlicensed frequency band, and the n103 frequency band is only used for downlink transmission.
  • n101 is an example of the TDD or FDD frequency band in the unlicensed frequency band. The n101 frequency band can be used for both uplink transmission and downlink transmission.
  • DC DL_n103/UL_n84 means that the downlink transmits on the n103 frequency band, and the uplink transmits on the n84 frequency band.
  • DC DL_n101/UL_n84_n101 which means that the downlink transmits on the n101 frequency band, and the uplink transmits on the n84 frequency band and the n101 frequency band.
  • multiple frequency bands of NR-U can also be combined and paired with multiple frequency bands of NR.
  • the terminal device may send report information to the network device, and the report information may at least be used to indicate the frequency band information of the uplink of the licensed spectrum and/or the frequency band information of the downlink of the unlicensed spectrum.
  • the report information may at least be used to indicate the frequency band information of the uplink of the licensed spectrum and/or the frequency band information of the downlink of the unlicensed spectrum.
  • the frequency band information of SUL and the frequency band information of SDL can be reported to the network device.
  • the frequency band information of the SUL may include the lowest uplink frequency and the highest uplink frequency in the frequency band.
  • the frequency band information of the SDL may include the lowest downlink frequency and the highest downlink frequency of the frequency band.
  • the terminal device can report the frequency band combination information to the network device.
  • the reported signaling can also include NR-U frequency band indication information and NR/LTE frequency band indication information, such as NR-U SDL and The frequency band sequence number of NR SUL is reported to the network equipment.
  • the uplink frequency band information and the downlink frequency band information can be obtained by looking up the table. This reporting method is suitable for DC or CA deployment scenarios.
  • the frequency band combination information may be CA frequency band combination information or DC frequency band combination information.
  • a new frequency band can be defined for NR-U, and the terminal device can report the frequency band sequence number of the new frequency band to the network device.
  • This method is suitable for independent deployment scenarios of NR-U.
  • the reported signaling can also include the uplink and downlink frequency band information of the new NR-U frequency band.
  • the uplink frequency band range of the new NR-U frequency band can be the same as NR-U SDL, and the downlink frequency band range can be the same as NR/LTE SUL. the same.
  • the frequency band sequence number of the new frequency band can be used to indicate the frequency band information of the uplink and the downlink.
  • the frequency band number of the new frequency band can be used to indicate the frequency band information of the SDL of the unlicensed frequency band and the frequency band information of the SUL of the licensed frequency band. Specifically, as shown in Table 5.
  • new frequency bands can be defined for NR-U, such as Y1 frequency band, Y2 frequency band, X1 frequency band and X2 frequency band.
  • Y1 frequency band Y2 frequency band
  • X1 frequency band X2 frequency band
  • X2 frequency band X2 frequency band
  • the frequency band information defined NR-U downlink including the minimum and maximum downlink frequency M2_ low frequency downlink M2_ high.
  • the Y1 frequency band is the SDL frequency band.
  • the uplink frequency band information defined NR-U comprising minimum and maximum uplink frequency M1_ low uplink frequency M1_ high.
  • the Y2 frequency band is the SUL frequency band.
  • NR-U uplink frequency band information and downlink frequency band information are defined.
  • the downlink frequency band can use the Y1 frequency band
  • the uplink frequency band can use the original NR n86 frequency band (frequency band re-cultivation).
  • the new frequency band after this combination can work in FDD working mode.
  • NR-U uplink frequency band information and downlink frequency band information are defined.
  • the uplink frequency band can use the Y2 frequency band
  • the uplink frequency band can use the n75 frequency band of the original NR.
  • the new frequency band after this combination can work in FDD working mode.
  • the terminal device When the terminal device reports to the network device, it can directly report the frequency band serial number of the new frequency band to the network device.
  • the X1 frequency band can be directly reported to the network device, and the X1 frequency band includes the frequency band combination information supported by NR-U. In this way, the network device can determine that the Y1 frequency band of NR-U is paired with the n86 frequency band of NR.
  • the new frequency band may include asymmetrical frequencies, the uplink frequency band is a frequency band in the LTE or NR spectrum, and the downlink frequency band is a frequency band in the NR-U spectrum.
  • the serial number of the new frequency band is n104
  • the downlink frequency band included is 5150MHz–5925MHz
  • the uplink frequency band is 1920MHz–1980MHz.
  • the embodiment of this application also provides a NR-U frequency band channel/bandwidth part (bandwidth part, BWP)/subband allocation method, which can support more flexible bandwidth on the basis of the existing spectrum allocation scheme .
  • BWP bandwidth part
  • a frequency band of NR-U can be allocated/called at least one carrier. According to the relevant regulations of the current NR system, the maximum bandwidth of a carrier in the NR system can reach 100MHz. Therefore, the maximum bandwidth of a carrier of NR-U can reach 100MHz.
  • At least one BWP can be configured for one carrier of NR-U, and the bandwidth of the BWP is smaller than the bandwidth of the carrier. Further, in the embodiment of the present application, the bandwidth of the BWP may also be configured as at least one subband. In this way, the network equipment can schedule the subbands of the BWP, making resource scheduling more flexible and improving system capacity and user rate.
  • the embodiment of the present application may also configure at least one subband for one carrier of NR-U.
  • the network equipment directly schedules the subbands in the carrier, which makes resource scheduling more flexible and can improve system capacity and user rate.
  • the bandwidth of a carrier of NR-U is greater than 20MHz
  • the bandwidth of a BWP may also be greater than 20MHz. Therefore, in order to be compatible with the wifi bandwidth of 20MHz, the BWP bandwidth can be further allocated, and there can be multiple specific allocation methods.
  • the subband of the minimum unit bandwidth or its integer multiple of bandwidth may be used for scheduling.
  • each subband can be fixed at 20MHz, and a frequency band can have up to 5 20MHz subbands. If channel access is performed in a frequency division multiplexing (FDM) manner, a maximum of 5 channels can be simultaneously accessed.
  • FDM frequency division multiplexing
  • the subband can support continuous or discontinuous spectrum aggregation, and the bandwidth of the subband can be different in different scheduling times.
  • the embodiments of the present application may support subband bandwidths of any size, in addition to subband bandwidths of integer multiples of 20 MHz, for example, subband bandwidths of 30 MHz or 50 MHz.
  • the bandwidths of multiple subbands in a frequency band may be the same or different.
  • the bandwidth of any two subbands may be the same, or the bandwidth of any two subbands may be different.
  • a frequency band includes two subbands, one of which may have a bandwidth of 40 MHz, and the other subband may have a bandwidth of 30 MHz.
  • the method of allocating subbands in the embodiment of the present application is also applicable to BWP.
  • one BWP can be allocated to multiple subbands in the above-mentioned manner, and the bandwidth of one subband can be an integer multiple of 20 MHz, or any value greater than 20 MHz.
  • the bandwidth of a BWP is 45 MHz
  • the BWP can be allocated as a 20 MHz subband and a 15 MHz subband
  • the network device can implement flexible scheduling of the BWP. For example, one BWP can be scheduled at a time, or one subband in the BWP can be scheduled, or two subbands in the BWP can be scheduled at the same time.
  • the embodiment of the present application does not specifically limit the pairing manner of the licensed spectrum and the unlicensed spectrum.
  • it may be at least one carrier of at least one licensed frequency band and at least one carrier of at least one unlicensed frequency band.
  • At least one carrier can belong to the same licensed frequency band or different licensed frequency bands.
  • At least one carrier of the unlicensed frequency band may belong to the same licensed frequency band, or may belong to different licensed frequency bands.
  • the SUL of the licensed spectrum may include at least one carrier.
  • the carrier may represent one carrier frequency band
  • the SDL of the unlicensed frequency band may include at least one carrier.
  • the network device may send an uplink signal to the terminal device on at least one carrier of the unlicensed spectrum, and the terminal device may send an uplink signal for the uplink signal to the network device on at least one carrier of the licensed spectrum.
  • an embodiment of the present application provides a method for scheduling spectrum resources by a network device, which can increase the utilization rate of unlicensed spectrum.
  • two or more uplink carrier frequency bands of the licensed spectrum may correspond to one downlink carrier frequency band of the unlicensed spectrum.
  • the uplink carrier frequency band of the licensed spectrum includes the first frequency band and the second frequency band
  • the downlink carrier frequency band of the unlicensed spectrum includes frequency band X.
  • the first frequency band and the second frequency band may belong to the same operating network, or may belong to different operating networks.
  • the uplink frequency band may be the frequency band of the uplink supplementary link of the licensed spectrum
  • the downlink frequency band may be the frequency band of the downlink supplementary link of the unlicensed spectrum
  • the network equipment can schedule the channel resources of the unlicensed spectrum through time-division multiplexing (TDM) and/or FDM.
  • TDM time-division multiplexing
  • FDM frequency-division multiplexing
  • FIG. 4 shows the solution of Embodiment 1.
  • the first frequency band and the second frequency band belong to resource scheduling situations of different operating networks.
  • the network devices corresponding to user A and user B are different.
  • a operating network first frequency band + frequency band X;
  • B operating network second frequency band + frequency band X.
  • the network equipment can schedule channel resources of the same subband on one carrier of the downlink frequency band by means of TDM, and send downlink signals to the terminal equipment on the scheduled resources.
  • User A sends an uplink signal a to the network device on the first frequency band
  • user B sends an uplink signal b to the network device on the second frequency band.
  • the network device needs to be in the unlicensed frequency band X Reply on.
  • the network device can schedule channel resources for user A and user B on subband X1 of frequency band X in a TDM manner. For example, as shown in Figure 4, the network device can schedule the resources at time 1, 2, 6, and 7 on subband X1 for user A, and schedule the resources at time 3, 4, and 5 on subband X1 for user B. Resources.
  • the network device can schedule channel resources of different subbands for user A and user B on frequency band X by means of FDM. For example, as shown in FIG. 4, the network device may schedule channel resources of subband X3 for user A, and schedule channel resources of subband X1 for user B.
  • the channel resources of the different subbands may be channel resources of different subbands in one BWP.
  • the channel resources of the different subbands may be channel resources of different subbands on one carrier. This description also applies to the different subbands mentioned below.
  • the network device can also schedule channel resources of different subbands for user A and user B on frequency band X through TDM+FDM. For example, as shown in FIG. 4, the network device may schedule the channel resources at the second, fourth, and fifth time on the subband X1, and the channel resources at the sixth and seventh time on the subband X2 and the subband 3 for the user A. The network device schedules the channel resources at the first and second times on the subband X1 and the channel resources at the first, second, third, fourth, and fifth time on the subband X2 for the user B.
  • the network equipment can schedule resources for user A and user B in a time division multiplexing manner on subband X-1, and in the third, fourth, and fifth time, it can be based on frequency division multiplexing.
  • User A and user B schedule resources.
  • bandwidths of multiple subbands on frequency band X may be the same or different.
  • the bandwidths of the subband X1, the subband X2, and the subband X3 may all be the same.
  • the bandwidths of the subband X1, the subband X2, and the subband X3 are all different, or the bandwidth of the two subbands of the subband X1, the subband X2, and the subband X3 are the same, but different from the bandwidth of the remaining one subband.
  • the bandwidth of the subbands may also be different.
  • the subband X1, the subband X2, and the subband X3 may be continuous or discontinuous in the frequency domain.
  • the network device may also use the method shown in FIG. 4 to schedule resources for user A and user B.
  • a operating network first frequency band / second frequency band + frequency band X, or first frequency band + second frequency band + frequency band X.
  • the network equipment can use TDM to compete for the channel resources of frequency band X.
  • the network equipment can schedule the channel resources of one subband in frequency band X in time sharing, and schedule the first frequency band or the first frequency band for users. Channel resources in the second frequency band.
  • the network equipment can use FDM to compete for access to the channel resources of frequency band X, the network equipment can frequency-divide and schedule the channel resources of different subbands occupying frequency band X, and schedule the first frequency band and/or for users Resources in the second frequency band.
  • the network equipment can use TDM+FDM to compete for the channel resources of frequency band X, and the network equipment can occupy the channel resources of different subbands in frequency band X for time-sharing and/or frequency-division scheduling. Scheduling channel resources of the first frequency band and/or the second frequency band.
  • the scheduled channel resource may be a collection of one or more subbands. Among them, the set of subbands may be continuous or discontinuous subbands, and the channel bandwidths of the subbands may be different in different scheduling times.
  • the first frequency band and the second frequency band allocated to at least one user are scheduled through the same operating network.
  • the capability (UE capability) signaling of the frequency band combination supported by the UE is also different from that in Embodiment 1. Since both the first frequency band and the second frequency band belong to the same operating network, when the terminal device reports the frequency band combination capability, it will report the support capability for the first frequency band and/or the second frequency band. However, in Embodiment 1, since the first frequency band and the second frequency band belong to different operating networks, the terminal device only reports the support capability of one of the frequency bands.
  • the network device can simultaneously schedule resources on the first frequency band and the second frequency band for a user. As shown in FIG. 5, the network device simultaneously schedules resources on the first frequency band and the second frequency band for user A, and user A can send uplink signals to the network device on the first frequency band and the second frequency band.
  • the network device can send a downlink signal to user A on frequency band X of the unlicensed frequency band. For example, in case 1, the network device may send downlink signals to user A on multiple subbands of frequency band X (subband 1, subband 2, and subband 3), or in case 2, the network device may transmit downlink signals to user A in one subband of frequency band X. (Subband X2) Send a downlink signal to user A.
  • first frequency band and the second frequency band belong to the same operating network
  • the network equipment when the network equipment schedules resources for users, it can include the following scheduling situations: first frequency band + subband X1 + subband X2, second frequency band + subband X1+subband X2, first frequency band+second frequency band+subband X1, first frequency band+second frequency band+subband X2, first frequency band+second frequency band+subband X1+subband X2.
  • the difference from Embodiment 1 is that all the above frequency band combinations can be scheduled for the same user.
  • the multiple subbands may be continuous or discontinuous subbands.
  • the bandwidths of the multiple subbands may be the same or different.
  • the bandwidths of the subband X1 and the subband X2 may be the same or different.
  • the bandwidth of the subband may also be different. Therefore, the solution of the embodiment of the present application can realize flexible scheduling of unlicensed spectrum resources.
  • the same licensed frequency band can also be paired with 2 or more unlicensed frequency bands.
  • Example 3 as shown in Figure 6. Assume that the uplink frequency band includes the first frequency band, and the downlink frequency band includes the third frequency band and the fourth frequency band.
  • the uplink frequency band may be the frequency band of the uplink supplementary link of the licensed spectrum
  • the downlink frequency band may be the frequency band of the downlink supplementary link of the unlicensed spectrum
  • the network device may use TDM and/or FDM to schedule channel resources of at least one subband of the third frequency band or the fourth frequency band, and send a downlink signal to the terminal device on the scheduled channel resources.
  • the network device can perform channel access in a TDM manner, and the network device can schedule subband resources in the third frequency band or the fourth frequency band, and channel resources in the first frequency band for the user.
  • both user A and user B send uplink signals to the network equipment on the first frequency band, and the network equipment can schedule the subbands X3-2 and the fourth frequency band of the third frequency band for user A and user B through TDM.
  • Channel resources on subband X4-1 of the frequency band are examples of the frequency band.
  • user A can send an uplink signal to the network device at the 5th and 6th time of the n1-1 spectrum of the first frequency band, and the network device can schedule the subband X3-2 of the third frequency band and the subband X3-2 of the fourth frequency band for user A.
  • Channel resources at the 5th and 6th time on subband X4-1 and send downlink signals to user A on the scheduled subband resources.
  • User B can send uplink signals to the network device at times 1, 2, 3, 4, and 7 of the n1-2 spectrum of the first frequency band, and the network device can schedule the subband X3-2 and the first frequency band of the third frequency band for user B.
  • the network device can perform channel access through FDM, and the network device can schedule different subband resources in the third frequency band or the fourth frequency band, and channel resources in the first frequency band for the user.
  • both user A and user B send uplink signals to the network equipment on the first frequency band, and the network equipment can schedule subbands X3-2 and the first frequency band of the third frequency band for user A and user B through FDM.
  • user A may send an uplink signal to the network device on the n1-1 spectrum of the first frequency band, and the network device may schedule channel resources on the subband X3-2 of the third frequency band for user A.
  • User B can send an uplink signal to the network device on the n1-2 spectrum of the first frequency band, and the network device can schedule channel resources on the subband X4-1 of the fourth frequency band for user B.
  • the network device can perform channel access through TDM+FDM, and the network device can schedule different subband resources in the third frequency band or the fourth frequency band, and channel resources in the first frequency band for the user.
  • both user A and user B send uplink signals to the network device on the first frequency band, and the network device can schedule channel resources on different subbands for user A and user B through TDM+FDM.
  • user A can send uplink signals to the network device at times 1, 2, 3, 4, 5, and 6 on the n1-1 spectrum of the first frequency band, and the network device can schedule the sub-bands of the third frequency band for user A.
  • User B can send uplink signals to the network device at times 1, 2, 3, 4, and 7 on the n1-2 spectrum of the first frequency band, and the network device can schedule user B on subband X4-1 of the fourth frequency band The channel resources on the first 1, 2, 3, 4, and 7 of the frequency band, and the channel resources on the seventh time on the subband X3-2 of the third frequency band.
  • the scheduling may be performed in a carrier aggregation or dual connection manner.
  • the network device may schedule at least one BWP channel resource or at least one subband channel resource.
  • the channel resource of the at least one subband may be the channel resource of at least one subband in one BWP, or the channel resource of at least one subband in multiple BWPs.
  • the scheduling may be performed in a time division multiplexing and/or frequency division multiplexing manner.
  • the network device can schedule channel resources of different BWPs in one carrier for at least two terminal devices in a time division multiplexing manner. For example, the network device may schedule the channel resources on the first BWP on one carrier for the terminal device a at the first time, and schedule the channel resources on the second BWP on the same carrier for the terminal device b at the second time.
  • Manner 2 The subband allocation method described above can be used, and the bandwidth of the BWP can be further allocated.
  • One BWP may include at least two subbands, and the network device may schedule channel resources of different subbands in the same BWP for at least two terminal devices by means of time division multiplexing and/or frequency division multiplexing.
  • the BWP may include 4 subbands of 20 MHz.
  • the network equipment can schedule the channel resources of one of the subbands for the terminal equipment through time division multiplexing, or the network equipment can schedule the channel resources of different subbands in a BWP for the terminal equipment at the same time through frequency division multiplexing, or , The network equipment can simultaneously schedule the channel resources of different subbands in a BWP for the terminal equipment by means of time division multiplexing and frequency division multiplexing.
  • Mode 1 can only schedule one BWP at a time, that is, only one terminal device can schedule downlink resources at the same time. However, after the BWP resources are allocated to multiple subband resources, the network device can schedule multiple subband resources in one BWP more flexibly. For example, frequency division multiplexing can be used to schedule different subband resources for different terminal devices at the same time, which can increase the spectrum utilization rate and provide a feasible solution for new NR-U scenarios.
  • the embodiments of this application allow the use of asymmetric spectrum pairing methods. Compared with the original FDD symmetrical frequency band pairing or the uplink and downlink scheduling methods of TDD frequency bands, the downlink rate can be increased, and new possibilities for large bandwidth services are improved. Exploit the scope and scenarios of use of authorized spectrum for operating networks.
  • the way for the network equipment to schedule the channel resources of the unlicensed spectrum may be competitive access through the LBT method.
  • the specific access mode may be any of the four channel access modes described above.
  • the embodiment of the present application also provides another signal transmission method.
  • the method includes steps S710-S720.
  • the terminal equipment and network equipment in the method can transmit signals on licensed spectrum and unlicensed spectrum, where one carrier of the unlicensed spectrum is configured with at least one BWP, one BWP can include at least one subband, and the bandwidth of one subband can be It is an integer multiple of 20MHz, or can be any value greater than 20MHz.
  • the bandwidth of one subband can also be any value less than 20 MHz.
  • the bandwidth of one subband included in one BWP is 15 MHz.
  • the network device schedules channel resources of at least one subband of the unlicensed spectrum.
  • the network device sends a downlink signal to the terminal device on the scheduled channel resource.
  • the carrier of the unlicensed spectrum may be a carrier on the FDD frequency band, may also be a carrier on the FDD frequency band, or may also be a carrier on the SUL frequency band.
  • one BWP may include at least two subbands, wherein the bandwidths of any two subbands are the same, or the bandwidths of any two subbands are different.
  • the embodiment of the present application provides a spectrum allocation method, which can allocate one carrier of the unlicensed spectrum to multiple BWPs, and can further allocate one BWP to multiple subbands.
  • a network device schedules resources on an unlicensed spectrum, it can schedule resources on a subband.
  • the scheduling method is more flexible and can improve spectrum utilization.
  • FIG. 8 is a schematic block diagram of a network device 800 provided by an embodiment of the present application.
  • the network device 800 shown in FIG. 8 may be the network device in the method embodiment.
  • the network device may include a communication unit 810.
  • the communication unit 810 is configured to send a downlink signal to the terminal device on the downlink supplementary carrier link of the unlicensed spectrum.
  • the communication unit 810 is further configured to receive the uplink signal for the downlink signal sent by the terminal device on the uplink supplementary link of the licensed spectrum.
  • the communication unit 810 is further configured to receive report information sent by the terminal device, where the report information is used to indicate frequency band information of the uplink supplementary link and frequency band information of the downlink supplementary link.
  • the reported information includes frequency band information of the downlink supplementary link of the unlicensed frequency band, and frequency band combination information of the uplink supplementary link and the downlink supplementary link.
  • the frequency band combination information includes carrier aggregation frequency band combination information or dual-connection frequency band combination information.
  • the reported information includes a frequency band sequence number of the unlicensed spectrum, and the frequency band sequence number is used to indicate frequency band information of the uplink supplementary link and frequency band information of the downlink supplementary link.
  • one carrier of the downlink supplemental link is configured with at least one bandwidth part BWP, one BWP includes at least one subband, and the bandwidth of one subband is an integer multiple of 20 MHz, or any value greater than 20 MHz.
  • one BWP includes at least two subbands, and the bandwidths of any two subbands are the same, or the bandwidths of any two subbands are different.
  • the uplink supplemental link includes at least one frequency band
  • the downlink supplementary link includes at least one frequency band
  • the uplink supplemental link includes a first licensed frequency band and a second licensed frequency band
  • the downlink supplementary link includes an unlicensed frequency band
  • the network device further includes a processing unit, and the processing unit is configured to:
  • Scheduling channel resources of one subband on one carrier of the downlink supplementary link by means of time division multiplexing; or,
  • Scheduling channel resources of different subbands on one carrier of the downlink supplementary link by means of time division multiplexing and frequency division multiplexing;
  • the downlink signal is sent on the channel resource of the scheduled downlink supplementary link.
  • the processing unit is further configured to schedule channel resources of at least one BWP or at least one subband by means of carrier aggregation or dual connectivity.
  • the processing unit is further configured to:
  • Scheduling channel resources of different subbands in the same BWP for the at least two terminal devices by means of time division multiplexing and/or frequency division multiplexing.
  • the first frequency band and the second frequency band belong to the same operating network, or the first frequency band and the second frequency band belong to different operating networks.
  • the communication unit is further configured to:
  • a first downlink signal is sent in one or more subbands of the downlink supplementary link, where the first downlink signal is sent for receiving the terminal device in the first frequency band or the second frequency band Downstream signal for upstream signal.
  • the uplink supplementary link includes a frequency band
  • the downlink supplementary link includes a third frequency band and a fourth frequency band
  • the network device further includes a processing unit configured to perform time division multiplexing and/ Or frequency division multiplexing schedules channel resources of at least one subband of the third frequency band or the fourth frequency band, wherein the downlink signal is sent on the scheduled channel resource of the downlink supplementary link.
  • the network device 800 can perform the corresponding operations performed by the network device in the foregoing method, and for the sake of brevity, details are not described herein again.
  • FIG. 9 is a schematic block diagram of another network device 900 according to an embodiment of the present application.
  • the network device 900 shown in FIG. 9 may be the network device in the method embodiment.
  • the network device can schedule unlicensed spectrum and channel resources on licensed spectrum. Among them, one carrier of the unlicensed spectrum is configured with at least one bandwidth part BWP, one BWP includes at least one subband, and the bandwidth of one subband is an integer multiple of 20MHz , Or any value greater than 20MHz.
  • the network device 900 may include a processing unit 910 and a communication unit 920.
  • the processing unit 910 is configured to schedule channel resources of at least one subband of the unlicensed spectrum.
  • the communication unit 920 is configured to send a downlink signal to the terminal device on the scheduled channel resource.
  • one BWP includes at least two subbands, and the bandwidths of any two subbands are the same, or the bandwidths of any two subbands are different.
  • the network device 900 can perform the corresponding operations performed by the network device in the foregoing method, and for brevity, details are not described herein again.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1000 may further include a memory 1020.
  • the processor 1010 can call and run a computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or it may be integrated in the processor 1010.
  • the communication device 1000 may further include a transceiver 1030, and the processor 1010 may control the transceiver 1030 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1030 may include a transmitter and a receiver.
  • the transceiver 1030 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1000 may specifically be a terminal device of an embodiment of the present application, and the communication device 1000 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 1000 may specifically be a network device of an embodiment of the application, and the communication device 1000 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For brevity, details are not repeated here .
  • FIG. 11 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1100 may further include a memory 1120.
  • the processor 1111 may call and run a computer program from the memory 1120 to implement the method in the embodiment of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated in the processor 1110.
  • the chip 1100 may further include an input interface 1130.
  • the processor 1110 can control the input interface 1130 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1100 may further include an output interface 1140.
  • the processor 1110 can control the output interface 1140 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • chips mentioned in the embodiments of the present application may also be referred to as system-level chips, system-on-chips, system-on-chips, or system-on-chips.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (Static RAM, SRAM), a dynamic random access memory (Dynamic RAM, DRAM), Synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (Synch Link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 12 is a schematic block diagram of a communication system 1200 according to an embodiment of the present application. As shown in FIG. 12, the communication system 1200 includes a network device 1210 and a terminal device 1220.
  • the network device 1210 is configured to: send a downlink signal to a terminal device on the downlink supplementary link of the unlicensed spectrum; receive an uplink signal for the downlink signal sent by the terminal device on the uplink supplementary link of the licensed spectrum .
  • the terminal device 1220 is configured to: receive a downlink signal sent by a network device on the downlink supplementary link of the unlicensed spectrum; and send an uplink signal for the downlink signal to the network device on the uplink supplementary link of the licensed spectrum.
  • the network device 1210 can be used to implement the corresponding functions implemented by the network device in the foregoing method, and the composition of the network device 1210 can be as shown in the network device in FIG. 8 or FIG. 9. For simplicity, here No longer.
  • the terminal device 1220 may be used to implement corresponding functions implemented by the terminal device in the foregoing method.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For brevity, here No longer.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • B corresponding (corresponding) to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B can also be determined according to A and/or other information.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the unit is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输信号的方法及设备为非授权频谱提供了一种与授权频谱配对的方案,能够提高非授权频谱的使用灵活性。该方法包括:在非授权频谱的下行补充链路上向终端设备发送下行信号;接收所述终端设备在授权频谱的上行补充链路上发送的针对所述下行信号的上行信号。

Description

传输信号的方法及设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及传输信号的方法及设备。
背景技术
新无线(New Radio,NR)系统可以支持非授权频谱(unlicensed frequency bands)上的数据传输,网络设备可以使用非授权频谱上的资源与终端设备进行通信。
但是网络设备如何利用非授权频谱上的资源与终端设备进行通信称为亟需解决的问题。
发明内容
本申请实施例提供了一种传输信号的方法及设备,能够为非授权频谱提供一种与授权频谱配对的方案。
第一方面,提供了一种传输信号的方法,包括:在非授权频谱的下行补充辅助载波链路上向终端设备发送下行信号;接收所述终端设备在授权频谱的上行补充辅助链路载波上发送的针对所述下行信号的上行信号。
第二方面,提供了一种传输信号的方法,其中,非授权频谱的一个载波配置有至少一个带宽部分BWP,一个BWP包括至少一个子带,一个子带的带宽为20MHz的整数倍,或者为大于20MHz的任意值,该方法包括:调度所述非授权频谱的至少一个子带的信道资源;在调度的信道资源上向终端设备发送下行信号。
第三方面,提供了一种网络设备,该网络设备可以执行上述第一方面或第一方面的任意可选的实现方式中的方法。具体地,该网络设备可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,该网络设备可以执行上述第二方面或第二方面的任意可选的实现方式中的方法。具体地,该网络设备可以包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的功能模块。
第五方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种芯片,用于实现上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十一方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十四方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十五方面,提供了一种通信系统,包括网络设备和终端设备。
其中,所述网络设备用于:在非授权频谱的下行补充辅助载波链路上向终端设备发送下行信号; 接收所述终端设备在授权频谱的上行补充辅助链路载波上发送的针对所述下行信号的上行信号。
本申请提供了一种授权频谱的上行链路和非授频谱的下行链路的配对方式,可以将授权频谱的SUL与非授权频谱的SDL链路进行配对,从而能够实现对非授权频谱的灵活使用。
附图说明
图1是本申请实施例应用的一种可能的无线通信系统的示意图。
图2是本申请实施例提供的一种信道接入方式的示意图。
图3是本申请实施例提供的一种传输信号的方式的示意图。
图4是本申请实施例提供的一种资源调度方式的示意图。
图5是本申请实施例提供的另一种资源调度方式的示意图。
图6是本申请实施例提供的又一种资源调度方式的示意图。
图7是本申请实施例提供的另一种传输信号的方式的示意图。
图8是本申请实施例的网络设备的示意性框图。
图9是本申请实施例的另一种网络设备的示意性框图。
图10是本申请实施例的通信设备的示意性结构图。
图11是本申请实施例的芯片的示意性结构图。
图12是本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)、双连接(Dual Connectivity,DC)、独立(Standalone,SA)组网等场景中。
示例性的,本申请实施例应用的通信系统100如图1所示。该无线通信系统100可以包括网络设备110。网络设备110可以是与终端设备通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是NR系统中的网络侧设备,或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、下一代网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或者固定的。可选地,终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant, PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。其中,可选地,终端设备120之间也可以进行终端直连(Device to Device,D2D)通信。
网络设备110可以为小区提供服务,终端设备120通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备110进行通信,该小区可以是网络设备110(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括例如城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。此外,该无线通信系统100例如还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。
为了让使用非授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用非授权频谱必须满足的法规要求。例如,通信设备遵循“先听后说(listen before talk,LBT)”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在非授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(maximum channel occupancy time,MCOT)。
最大信道占用时间(MCOT):指LBT成功后允许使用非授权频谱的信道进行信号传输的最大时间长度,不同信道接入优先级下有不同的MCOT。当前MCOT的最大取值为10ms。应理解,该MCOT为信号传输占用的时间。
信道占用时间(COT):指LBT成功后使用非授权频谱的信道进行信号传输的时间长度,该时间长度内信号占用信道可以是不连续的。其中,一次COT最长不能超过20ms,并且,该COT内的信号传输占用的时间长度不超过MCOT。
基站的信道占用时间(gNB-initiated COT):也称为基站发起的COT,指基站LBT成功后获得的一次信道占用时间。基站的信道占用时间内除了可以用于下行传输,也可以在满足一定条件下用于UE进行上行传输。
UE的信道占用时间(UE-initiated COT):也称为UE发起的COT,指UE LBT成功后获得的一次信道占用时间。
下行传输(downlink,DL)机会:基站进行的一组下行传输(即包括一个或多个下行传输),该组下行传输为连续传输(即多个下行传输之间没有空隙),或该组下行传输中有空隙但空隙小于或等于16μs。如果基站进行的两个下行传输之间的空隙大于16μs,那么认为该两个下行传输属于两次下行传输机会。
上行传输(uplink,UL)机会:一个UE进行的一组上行传输(即包括一个或多个上行传输),该组上行传输为连续传输(即多个上行传输之间没有空隙),或该组上行传输中有空隙但空隙小于或等于16μs。如果该UE进行的两个上行传输之间的空隙大于16μs,那么认为该两个上行传输属于两次上行传输机会。
通信设备进行LBT时可以有以下四种类型的信道接入方式:
1)、切换空隙结束后立即传输数据。这种方式仅适用于一个COT内,且从收到发的切换空隙不超过16μs。
2)、单时隙检测,或称为没有随机回退的LBT。单次检测时间内信道空闲则可以进行信号发送,信道被占用则不能进行信号发送。
3)、基于固定竞争窗口大小(contention window size,CWS)的随机回退的LBT。通信设备可以确定CWS为CW P,其中,CW P可以为固定值。通信设备可以根据CW P的取值生成随机数N。通信设备在非授权频谱上进行信道检测,并在N个时隙都信道检测成功后进行信号的传输。
4)、基于可变CWS的随机回退的LBT。通信设备可以确定CWS为CW P,其中,CW P可以为可变值。通信设备可以根据CW P的取值生成随机数N。通信设备在非授权频谱上进行信道检测,并在N个时隙都信道检测成功后进行信号的传输。
由上述描述可知,第3种接入方式和第4种接入方式的区别仅在于CWS是固定值还是可变值。另 外,第3种接入方式和第4种接入方式可以根据传输业务的优先级进一步区分信道接入方案的优先级。目前常用的信道接入方式是第1种、第2种和第4种信道接入方案。
不同传输场景下应用的信道接入方式不同,不同信号或信道应用的信道接入方案也不同。本申请实施例可以根据目标信号的不同,选择不同的接入方案。目标信号可以包括以下中的至少一种:发现参考信号(discovery reference signal,DRS)、开放式系统互联(open system interconnection,OSI)中信号、寻呼(paging)、随机接入响应(random access response,RAR)、物理下行控制信道(physical downlink control channel,PDCCH)和物理下行共享信道(physical downlink shared channel,PDSCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical downlink control channel,PUCCH)、信道探测参考信号(sounding reference signal,SRS)、随机接入信道(random access channel,RACH)、调度请求(scheduling request,SR)、信道状态信息(channel state information,CSI)、混合自动重传请求(hybrid automatic repeat request,HARQ)和应答(acknowledgment,ACK)。
例如,当基站发起COT时,表1规定了不同情况下的信道接入方式。
表1
Figure PCTCN2019075295-appb-000001
应理解,当业务中包括多种优先级的数据复用传输时,信道接入优先级按该多种优先级中最低优先级的数据确定。
又例如,当基站发起COT后,可以将该COT内的资源用于UE进行上行传输。在基站的COT内发生的上行传输机会,如果该上行传输机会的起始位置和下行传输机会的结束位置之间的空隙小于或等于16μs,UE可以立即进行该上行传输;如果在该基站的COT内,该上行传输机会后面没有下行传输机会,UE在传输前可以进行第2种信道接入方式;如果在该基站的COT内,任意两次相邻的传输之间的空隙小于或等于25μs,UE可以进行第2种信道接入方式。如图2所示。
又例如,当UE发起COT时,表2规定了不同情况下的信道接入方式。
表2
Figure PCTCN2019075295-appb-000002
LTE系统在非授权频谱的基础上提出了授权辅助接入(licensed-assisted access,LAA)的部署场景,LAA主要是基于载波聚合或双连接的工作模式。在这两种模式中,非授权频谱都仅用于用户面,所有控制面的流量都由授权载波承载,运营网络对授权频段和非授权频段的资源同时进行控制。
因为非授权频谱一般位于高频段,不能用于宏小区提供广覆盖,且干扰不可控,无法提供高可靠性要求的业务,因此通常将非授权频谱以LAA的方式与LTE结合,作为载波聚合场景中的一个辅载波。第三代合作伙伴计划(3rd generation partnership project,3GPP)规范定义了4种LAA的部署场景。
场景1:授权频谱宏小区和非授权频谱微小区之间载波聚合。
场景2:在无授权频谱宏小区覆盖的区域,授权频谱微小区和非授权频谱微小区之间载波聚合。
场景3:在有授权频谱宏小区覆盖的区域,授权频谱微小区和非授权频谱微小区之间载波聚合。
场景4:在有授权宏小区F1覆盖的区域,授权频谱微小区F2和非授权频谱微小区F3之间载波聚合。当宏小区和微小区之间有理想的回传网络时,可实现宏小区、授权频谱微小区和非授权频谱微小区之间的载波聚合。如果网络允许,终端设备可同时接入宏小区和微小区。
上述场景中,载波聚合被作为一种基本的操作方式,来聚合授权频谱上的载波和非授权频谱上的载波。
NR系统也可以支持在非授权频谱上进行数据传输,NR-U作为5G的非授权频谱技术,与LTE-LAA类似,也可以将授权频谱的上的载波与授权频谱上的载波进行载波聚合。
与LAA不同的是,NR-U在工作模式中提出了一种新的场景,即场景D:独立部署的NR小区,使用非授权频谱进行下行传输和使用授权频谱进行上行传输。这种模式作为一种非授权频谱+授权频谱的全新应用场景,对于某些运营网络可能具有很大的部署价值,因而需要考虑适用于该场景的可行的载波配对的方案,以指引终端设备和网络设备来协同解决NR-U系统与NR系统上下行传输的频谱分配问题或调度问题。
目前,尚无明确的频谱组合方式,来满足NR-U应用场景中的需求,尤其是对场景D这种新的应用场景。
其中,特别地,NR的频谱中新引入了下行补充频段(downlink supplementary bands,SDL)频段和上行补充频段(downlink supplementary bands,SUL)频段,对于这些频段,如何与非授权频谱进行配对成为亟需解决的问题。表3示出了NR的频谱,包括时分双工(time division duplex,TDD)频段、频分双工(frequency division duplex,FDD)频段、SDL频段和SUL频段。此外,表3还示出了每个频段的频段序号、上行频段的频段信息、下行频段的频段信息,以及该频段的工作模式。
表3
NR频段序号 上行频段 下行频段 双工模式
n1 1920MHz–1980MHz 2110MHz–2170MHz FDD
n2 1850MHz–1910MHz 1930MHz–1990MHz FDD
n3 1710MHz–1785MHz 1805MHz–1880MHz FDD
n5 824MHz–849MHz 869MHz–894MHz FDD
n7 2500MHz–2570MHz 2620MHz–2690MHz FDD
n8 880MHz–915MHz 925MHz–960MHz FDD
n12 699MHz–716MHz 729MHz–746MHz FDD
n20 832MHz–862MHz 791MHz–821MHz FDD
n25 1850MHz–1915MHz 1930MHz–1995MHz FDD
n28 703MHz–748MHz 758MHz–803MHz FDD
n34 2010MHz–2025MHz 2010MHz–2025MHz TDD
n38 2570MHz–2620MHz 2570MHz–2620MHz TDD
n39 1880MHz–1920MHz 1880MHz–1920MHz TDD
n40 2300MHz–2400MHz 2300MHz–2400MHz TDD
n41 2496MHz–2690MHz 2496MHz–2690MHz TDD
n51 1427MHz–1432MHz 1427MHz–1432MHz TDD
n66 1710MHz–1780MHz 2110MHz–2200MHz FDD
n70 1695MHz–1710MHz 1995MHz–2020MHz FDD
n71 663MHz–698MHz 617MHz–652MHz FDD
n75 N/A 1432MHz–1517MHz SDL
n76 N/A 1427MHz–1432MHz SDL
n77 3300MHz–4200MHz 3300MHz–4200MHz TDD
n78 3300MHz–3800MHz 3300MHz–3800MHz TDD
n79 4400MHz–5000MHz 4400MHz–5000MHz TDD
n80 1710MHz–1785MHz N/A SUL
n81 880MHz–915MHz N/A SUL
n82 832MHz–862MHz N/A SUL
n83 703MHz–748MHz N/A SUL
n84 1920MHz–1980MHz N/A SUL
n86 1710MHz–1780MHz N/A SUL
SDL表示在该频段内只能进行下行传输,如n75频段和n76频段;SUL表示在该频段内只能进行上行传输,如n80-n86频段。
鉴于此,本申请实施例提供了一种传输信号的方法,为NR-U的载波与NR的载波提供了一种配对方式。如图3所示,该方法包括步骤310-320。
S310、网络设备在非授权频谱的下行补充链路上向终端设备发送下行信号。
S320、终端设备在授权频谱的上行补充链路上向网络设备发送针对该下行信号的上行信号。
在本申请实施例中,可以将非授权频谱的下行补充链路与授权频谱的上行补充链路进行配对,网络 设备和终端设备可以在该非授权频谱的SDL频段上和授权频谱的SUL频段上相互通信。
举例说明,网络设备可以在非授权频谱的SDL上发送一个下行信号,终端设备可以在授权频谱的SUL上进行发送该下行信号的上行信号。或者,终端设备可以在授权频谱的SUL上发送一个上行信号,网络设备可以在非授权频谱的SDL上发送针对该上行信号的下行信号。
其中,该上下行信号可以是数据,也可以是其他参考信号或信令等。
当然,本申请实施例还可以将授权频谱的下行补充链路与非授权频谱的上行补充链路进行配对。
除了上述配对方式之外,非授权频谱的任意频段也可以和授权频谱的任意频段进行配对,以满足场景D的工作需求。如表4所示。
表4
Figure PCTCN2019075295-appb-000003
表4中的非授权频谱的频段信息和授权频谱的频段信息可以从协议中已定义的表格中查询。例如,授权频段的频段信息可以从表3中查询。
表4中列举了所有的可能的频段组合的情况。其中U1表示NR-U的任意TDD频段,U2表示NR-U的任意SDL频段,U3表示NR-U的任意FDD频段。
n86频段仅是NR的SUL频段的一个示例,n86频段也可以替换为NR的其他SUL频段,例如n80-n84中的任意一个频段。n1频段仅是NR的FDD频段的一个示例,n1频段也可替换为NR的其他FDD频段。n75频段仅是NR的TDD频段的一个示例,n75频段也可替换为NR的其他频段。
对于DL_n86_U1,表示可以将NR的SUL频段与NR-U的TDD频段进行配对。
在该频段组合中,由于U1频段采用的是TDD工作模式,在应用到场景D中时,网络设备可以仅用该频段传输下行信号。例如,可以在需要进行上行传输的时刻不传输任何信号,或者在原本需要进行上行传输的时刻进行下行传输,从而满足场景D的工作需求。
对于DC_n86_U2,表示可以将NR的SUL频段与NR-U的SDL频段进行配对。
在该频段组合中,由于n86频段本身仅用于上行传输,U2也仅用于上行传输,因此,采用该频段组合实现场景D的需求时,可以不用对频段原本的工作模式进行处理。
对于DC_n1(/n78)_U1,可以包括DC_n1_U1、DC_n78_U1和DC_n1_n78_U1三种情况,表示可以将NR的FDD和/或TDD频段与NR-U的TDD频段进行配对。
在该频段组合中,NR的n1频段或n78频段虽然是FDD或TDD双工模式,但是在该组合频段中,仅用于上行传输,NR-U的U1频段虽然是TDD双工模式,但是在该频段组合中,仅用于下行传输,从而满足场景D的工作需求。
在该频段组合中,如果是DC_n1_n78_U1这种组合情况,表示NR-U的一个频段可以与NR的多个频段对应,即NR-U的U1频段可以与NR的n1频段和n78频段对应。
对于DC_n1(/n78)_U2,可以包括DC_n1_U2、DC_n78_U2和DC_n1_n78_U2三种情况,表示可以将NR的FDD频段和/或TDD频段与NR-U的SDL频段进行配对。
在该频段组合中,NR的n1频段或n78频段虽然是FDD或TDD双工模式,但是在该组合频段中,仅用于上行传输,NR-U的U2频段仅用于下行传输,从而满足场景D的工作需求。
在该频段组合中,如果是DC_n1_n78_U2这种组合情况,表示NR-U的一个频段可以与NR的多个频段对应,即NR-U的U2频段可以与NR的n1频段和n78频段对应。
对于DC_n86_U3,可以将NR的SUL频段与NR-U的FDD频段进行配对。
在该频段组合中,NR的n86频段仅用于上行传输,NR-U的U3频段虽然是FDD双工模式,但是在该组合中,仅用于下行传输,从而满足场景D的工作需求。
对于DC_n1(/n78)_U3,可以包括DC_n1_U3、DC_n78_U3和DC_n1_n78_U3三种情况,表示可以将NR的FDD或TDD频段与NR-U的FDD频段进行配对。
在该频段组合中,NR的n1频段或n78频段虽然是FDD或TDD双工模式,但是在该组合频段中,仅用于上行传输,NR-U的U3频段虽然是TDD双工模式,但是在该频段组合中,仅用于下行传输,从而满足场景D的工作需求。
在该频段组合中,如果是DC_n1_n78_U3这种组合情况,表示NR-U的一个频段可以与NR的多个频段对应,即NR-U的U3频段可以与NR的n1频段和n78频段对应。
对于DC_n75_U2,可以将NR的SDL频段与NR-U的SUL频段进行配对。
在该频段组合中,NR的n75频段仅用于下行传输,NR-U的U2频段仅用于上行传输。
对于DC_n1_U1_U3,可以将NR的FDD频段与NR-U的TDD或FDD频段进行配对。
在该频段组合中,NR的n1频段虽然是FDD双工模式,但是在该频段组合中,仅用于上行传输,NR-U的U1频段或U3频段虽然是TDD或FDD双工模式,但是在该频段组合中,仅用于下行传输,以满足场景D的工作需求。
在该频段组合中,表示NR-U的多个频段可以与NR的一个频段对应。
本申请实施例主要是针对如下DC组合:NR-U的TDD频段和/或SDL频段与NR或LTE的SUL频段的组合。
本申请实施例还可以采用以下频段组合信息,例如,DC DL_n103/UL_n84,和DC DL_n101/UL_n84_n101。其中,n103是非授权频段的SDL频段的一个示例,n103频段仅用于下行传输。n101是非授权频段的TDD或FDD频段的示例,n101频段既可以进行上行传输,也可以进行下行传输。
DC DL_n103/UL_n84,表示下行在n103频段上进行传输,上行在n84频段上进行传输。
DC DL_n101/UL_n84_n101,表示下行在n101频段上进行传输,上行在n84频段和n101频段进行传输。
当然,除了上述组合方式之外,NR-U的多个频段也可以与NR的多个频段进行组合配对。
终端设备可以向网络设备发送上报信息,该上报信息至少可用于指示授权频谱的上行链路的频段信息和/或非授权频谱的下行链路的频段信息。例如,在NR的SUL频段与NR-U的SDL频段进行配对时,可以向网络设备上报SUL的频段信息和SDL的频段信息。
SUL的频段信息可包括在该频段的最低上行频率和最高上行频率。
SDL的频段信息可包括该频段的最低下行频率和最高下行频率。
终端设备的具体上报方式可以有多种。
作为一个示例,终端设备可以将频段组合信息上报给网络设备,另外,上报的信令里还可以包括NR-U的频段指示信息和NR/LTE的频段指示信息,如可以将NR-U SDL和NR SUL的频段序号上报给网络设备,其中,根据频段序号,通过查表可以获得上行频段信息和下行频段信息。该上报方式适用于DC或CA的部署场景。该频段组合信息可以是CA频段组合信息或DC频段组合信息。
作为另一个示例,可以为NR-U定义新的频段,终端设备可以将该新频段的频段序号上报给网络设备。这种方式适用于NR-U的独立部署场景。上报的信令里还可以包括新的NR-U频段的上下行频段信息,其中所述新的NR-U频段的上行频段范围可与NR-U SDL相同、下行频段范围可与NR/LTE SUL相同。
该新频段的频段序号可用于指示上行链路和下行链路的频段信息。例如,在NR的SUL频段与NR-U的SDL频段进行配对时,该新频段的频段序号可用于指示非授权频段的SDL的频段信息和授权频段的SUL的频段信息。具体地,如表5所示。
表5
Figure PCTCN2019075295-appb-000004
如表5所示,可以为NR-U定义新的频段,如Y1频段、Y2频段、X1频段和X2频段。以上仅是示例,该新的频段还可以包括其他的频段信息。
对于Y1频段,定义了NR-U的下行频段信息,包括最低下行频率M2_ low和最高下行频率M2_ high。该Y1频段为SDL频段。
对于Y2频段,定义了NR-U的上行频段信息,包括最低上行频率M1_ low和最高上行频率M1_ high。该Y2频段为SUL频段。
对于X1频段,定义了NR-U的上行频段信息和下行频段信息。其中,下行频段可以采用Y1频段,上行频段可以采用原NR的n86频段(频段重耕)。该组合后的新频段可以FDD的工作模式进行工作。
对于X2频段,定义了NR-U的上行频段信息和下行频段信息。其中,上行频段可以采用Y2频段,上行频段可以采用原NR的n75频段。该组合后的新频段可以FDD的工作模式进行工作。
终端设备在向网络设备上报时,可以直接将新频段的频段序号上报给网络设备。例如可直接向网络设备上报X1频段,X1频段中包括NR-U支持的频段组合信息。这样网络设备可确定是将NR-U的Y1频段与NR的n86频段进行配对。
新的频段可以包括不对称的频率,上行频段是LTE或NR频谱中的频段,下行频段是NR-U频谱中的频段。例如,新的频段序号n104,包括的下行频段为5150MHz–5925MHz,上行频段为1920MHz–1980MHz
另外,本申请是实施例还提供了一种NR-U的频段信道/带宽部分(band width part,BWP)/子带分配方式,在现有的频谱分配方案的基础上可以支持更灵活的带宽。
NR-U的一个频段可被分配/调用至少一个载波,根据目前NR系统的相关规定,NR系统中一个载波的最大带宽可以达到100MHz,因此,NR-U的一个载波的最大带宽可以达到100MHz。
此外,可以为NR-U的一个载波配置至少一个BWP,BWP的带宽小于载波的带宽。进一步地,本申请实施例还可以将BWP的带宽配置为至少一个子带。这样网络设备可以对BWP的子带进行调度,使得资源调度更为灵活,能够提高系统容量和用户速率。
此外,本申请实施例还可以为NR-U的一个载波配置至少一个子带。这样网络设备直接对载波内子带进行调度,使得资源调度更为灵活,能够提高系统容量和用户速率。
由于NR-U的一个载波的带宽大于20MHz,因此,一个BWP的带宽也可能是大于20MHz的。因此,为了兼容wifi的带宽20MHz,可以进一步对BWP的带宽进行分配,具体的分配方式可以有多种。
作为一个示例,可以按照最小单位带宽的子带或其整数倍带宽来调度使用。
如果NR-U的频段带宽为100MHz,可规定每个子带可固定为20MHz,一个频段最多可以有5个20MHz的子带。如果按照频分复用(frequency division multiplexing,FDM)的方式进行信道接入的话,最多可支持5个信道同时接入。
作为又一示例,可以按照灵活带宽的子带进行调度使用。子带可支持连续或不连续的频谱聚合,不同调度时间内子带的带宽可不同。
例如,本申请实施例可以支持除20MHz的整数倍大小的子带带宽外,还可以支持任意大小的子带带宽,例如,30MHz或50MHz的子带带宽。
另外,一个频段中的多个子带的带宽可以相同,也可以不同。换句话说,如果一个频段包括至少两个子带,则其中任意两个子带的带宽可以都相同,或者任意两个子带的带宽都不相同。
举例说明,一个频段包括两个子带,其中一个子带的带宽可以为40MHz,另一个子带的带宽为30MHz。
其次,本申请实施例中的分配子带的方式,也同样适用于BWP。例如,可以将一个BWP按照上述方式分配为多个子带,一个子带的带宽可以为20MHz的整数倍,或者为大于20MHz的任意值。
举例说明,如果一个BWP的带宽为45MHz,可以将该BWP分配为一个20MHz的子带和一个15MHz的子带,网络设备可以实现对该BWP的灵活调度。如可以一次调度一个BWP,或者可以调度BWP中的一个子带,或者同时调度BWP中的两个子带等。
本申请实施例对授权频谱与非授权频谱的配对方式不做具体限定,例如可以是至少一个授权频段的至少一个载波和至少一个非授权频段的至少一个载波配对。至少一个载波可以属于同一个授权频段,也可属于不同的授权频段。非授权频段的至少一个载波可以属于同一个授权频段,也可属于不同的授权频段。
以授权频谱的SUL和非授权频谱的SDL为例进行说明,授权频谱的SUL可以包括至少一个载波,特别地,该载波可以表示一个载波频段,非授权频段的SDL可以包括至少一个载波。网络设备可以在非授权频谱的至少一个载波上向终端设备发送上行信号,终端设备可以在该授权频谱的至少一个载波上向网络设备发送针对该上行信号的上行信号。
在至少一个上行载波频段与至少一个下行载波频段对应时,本申请实施例提供了一种网络设备对频谱资源的调度方式,能够增加非授权频谱的使用率。
例如,授权频谱的2个或2个以上的上行载波频段可以与非授权频谱的一个下行载波频段对应。假设授权频谱的上行载波频段包括第一频段和第二频段,非授权频谱的下行载波频段包括频段X。其中,第一频段和第二频段可以属于同一个运营网络,也可以属于不同的运营网络。
其中,上行频段可以是授权频谱的上行补充链路的频段,下行频段可以是非授权频谱的下行补充链路的频段。
网络设备可以通过时分复用(time-division multiplexing,TDM)和/或FDM的方式对非授权频谱的信道资源进行调度。下面结合图4进行详细描述,图4示出的是实施例1的方案,第一频段和第二频段属于不同的运营网络的资源调度情况。在这种情况下,用户A和用户B对应的网络设备不同。
A运营网络:第一频段+频段X;B运营网络:第二频段+频段X。
网络设备可以通过TDM的方式调度下行频段的一个载波上的同一个子带的信道资源,并在该调度的资源上向终端设备发送下行信号。
用户A在第一频段上向网络设备发送上行信号a,用户B在第二频段上向网络设备发送上行信号b,对于上行信号a和上行信号b,网络设备都需要在非授权频段的频段X上进行回复。
作为实施例1-1,网络设备可以通过TDM的方式在频段X的子带X1上为用户A和用户B调度信道资源。例如,如图4所示,网络设备可以为用户A调度子带X1上的第1、2、6、7时间上的资源,为用户B调度子带X1上的第3、4、5时间上的资源。
作为实施例1-2,网络设备可以通过FDM的方式在频段X上为用户A和用户B调度不同子带的信道资源。例如,如图4所示,网络设备可以为用户A调度子带X3的信道资源,为用户B调度子带X1的信道资源。对于将一个载波配置为多个BWP的频段的情况,该不同子带的信道资源可以是一个BWP中不同子带的信道资源。对于将一个载波配置为多个子带的情况,该不同子带的信道资源可以是一个载波上的不同子带的信道资源。这种描述对下文提到的不同子带也同样适用。
作为实施例1-3,网络设备还可以通过TDM+FDM的方式在频段X上为用户A和用户B调度不同子带的信道资源。例如,如图4所示,网络设备可以为用户A调度子带X1上第2、4、5时间上的信道资源,以及子带X2和子带3上的第6、7时间上的信道资源。网络设备为用户B调度子带X1上的第1、2时间上的信道资源,以及子带X2上的第1、2、3、4、5时间上的信道资源。
对于实施例1-3,网络设备可以在子带X-1上按照时分复用的方式为用户A和用户B调度资源,在第3、4、5时间上可以按照频分复用的方式为用户A和用户B调度资源。
图4仅是一种示例,频段X上的多个子带的带宽可以相同,也可以不同。例如,子带X1、子带X2和子带X3的带宽可以均相同。又例如,子带X1、子带X2和子带X3的带宽均不相同,或者子带X1、子带X2和子带X3中两个子带的带宽相同,但和剩余的一个子带的带宽不同。另外,在不同的调度窗口内,子带的带宽也可不同。
可选地,子带X1、子带X2和子带X3可以在频域上连续,也可以不连续。
作为实施例2,对于第一频段和第二频段属于同一个运营网络的情况,网络设备也可以采用图4所示的方式为用户A和用户B调度资源。
A运营网络:第一频段/第二频段+频段X,或第一频段+第二频段+频段X。
作为实施例2-1,网络设备可以采用TDM的方式竞争接入频段X的信道资源,网络设备可以分时调度占用频段X中的一个子带的信道资源,以及为用户调度第一频段或第二频段的信道资源。
作为实施例2-2,网络设备可以采用FDM的方式竞争接入频段X的信道资源,网络设备可以分频调度占用频段X的不同子带的信道资源,以及为用户调度第一频段和/或第二频段的资源。
作为实施例2-3,网络设备可以采用TDM+FDM的方式竞争接入频段X的信道资源,网络设备可以为分时和/或分频调度占用频段X中不同子带的信道资源,为用户调度第一频段和/或第二频段的信道资源。调度的信道资源可以是一个或多个子带的集合。其中,子带的集合可以为连续或不连续的子带,在不同调度时间内子带的信道带宽可不相同。
此外,与实施例1不同的是,为至少一个用户所分配的第一频段和第二频段是通过同一个运营网络来进行资源调度的。这里上报UE支持的频段组合的能力(UE capability)信令也会与实施例1不同。由于第一频段和第二频段均属于同一个运营网络,终端设备在上报频段组合能力时,会上报对第一频段和/或第二频段的支持能力。而在实施例1中,由于第一频段和第二频段属于不同的运营网络,终端设备只上报关于其中一个频段的支持能力。
作为一种实现方式,网络设备可以同时为一个用户调度第一频段和第二频段上的资源。如图5所示,网络设备为用户A同时调度第一频段和第二频段上的资源,用户A可以在第一频段和第二频段上向网络设备发送上行信号。网络设备可以在非授权频段的频段X上向用户A发送下行信号。例如,情况1,网络设备可以在频段X的多个子带上(子带1、子带2和子带3)上向用户A发送下行信号,或 者情况2,网络设备可以在频段X的一个子带(子带X2)上向用户A发送下行信号。
对于第一频段和第二频段属于同一个运营网络的情况,网络设备在为用户调度资源时,可以包括以下几种调度情况:第一频段+子带X1+子带X2,第二频段+子带X1+子带X2,第一频段+第二频段+子带X1,第一频段+第二频段+子带X2,第一频段+第二频段+子带X1+子带X2。与实施例1不同的是,上述所有的频段组合可以是针对同一个用户来调度的。
图5所示的方案中,网络设备为用户A调度非授权频谱上的多个子带(或称为子带集合)时,该多个子带可以为连续或不连续的子带。该多个子带的带宽可以相同,也可以不同,如子带X1和子带X2的带宽可以相同,也可以不同。另外,在不同的调度时间内,子带的带宽也可以不同。因此,本申请实施例的方案能够实现对非授权频谱资源的灵活调度。
除此之外,同一授权频段也可与2个及以上的非授权频段进行配对。如图6所示的实施例3。假设上行频段包括第一频段,下行频段包括第三频段和第四频段。
其中,上行频段可以是授权频谱的上行补充链路的频段,下行频段可以是非授权频谱的下行补充链路的频段。
网络设备可以采用TDM和/或FDM的方式调度第三频段或第四频段的至少一个子带的信道资源,并在调度的信道资源上向终端设备发送下行信号。
作为实施例3-1,网络设备可以通过TDM的方式进行信道接入,网络设备可以为用户调度第三频段或第四频段中的子带资源,以及第一频段的信道资源。如图6所示,用户A和用户B均在第一频段上向网络设备发送上行信号,网络设备可以通过TDM的方式为用户A和用户B调度第三频段的子带X3-2和第四频段的子带X4-1上的信道资源。
具体地,用户A可以在第一频段的n1-1频谱的第5、6时间上向网络设备发送上行信号,网络设备可以为用户A调度第三频段的子带X3-2和第四频段的子带X4-1上的第5、6时间上的信道资源,并在调度的子带资源上向用户A发送下行信号。用户B可以在第一频段的n1-2频谱的第1、2、3、4、7时间上向网络设备发送上行信号,网络设备可以为用户B调度第三频段的子带X3-2和第四频段的子带X4-1上的第1、2、3、4、7时间上的信道资源。
作为实施例3-2,网络设可以通过FDM的方式进行信道接入,网络设备可以为用户调度第三频段或第四频段中不同的子带资源,以及第一频段的信道资源。如图6所示,用户A和用户B均在第一频段上向网络设备发送上行信号,网络设备可以通过FDM的方式为用户A和用户B分别调度第三频段的子带X3-2和第四频段的子带X4-1上的信道资源。
具体地,用户A可以在第一频段的n1-1频谱上向网络设备发送上行信号,网络设备可以为用户A调度第三频段的子带X3-2上的信道资源。用户B可以在第一频段的n1-2频谱上向网络设备发送上行信号,网络设备可以为用户B调度第四频段的子带X4-1上的信道资源。
作为实施例3-3,网络设备可以通过TDM+FDM的方式进行信道接入,网络设备可以为用户调度第三频段或第四频段中不同的子带资源,以及第一频段的信道资源。如图6所示,用户A和用户B均在第一频段上向网络设备发送上行信号,网络设备可以通过TDM+FDM的方式为用户A和用户B调度不同子带上的信道资源。
具体地,用户A可以在第一频段的n1-1频谱上的第1、2、3、4、5、6时间上向网络设备发送上行信号,网络设备可以为用户A调度第三频段的子带X3-1、第四频段的子带X4-1上的第5、6时间上的信道资源,以及第三频段的子带X3-2上的第1、2、3、4时间上的信道资源。用户B可以在第一频段的n1-2频谱上的第1、2、3、4、7时间上向网络设备发送上行信号,网络设备可以为用户B调度第四频段的子带X4-1上的第1、2、3、4、7上的信道资源,以及第三频段的子带X3-2上的第7时间上的信道资源。
可选地,网络设备在为一个终端设备调度非授权频谱上的信道资源时,可以采用载波聚合或双连接的方式进行调度。具体地,网络设备可以调度至少一个BWP的信道资源或至少一个子带的信道资源。其中,该至少一个子带的信道资源可以是一个BWP中的至少一个子带的信道资源,也可以是多个BWP中的至少一个子带的信道资源。
可选地,网络设备在为至少两个终端设备调度非授权频谱上的信道资源时,可以采用时分复用和/或频分复用的方式来调度。
方式1,由于目前NR系统仅允许同时激活一个载波中的一个BWP资源,所以同一个非授权频谱的载波内的BWP只能按照TDM的方式来激活。因此,网络设备可以通过时分复用的方式为至少两个终端设备调度一个载波内的不同BWP的信道资源。例如,网络设备可以在第一时间为终端设备a调度一个载波上的第一BWP上的信道资源,在第二时间为终端设备b调度同一个载波上的第二BWP上的信道资源。
方式2,可以采用上文描述的子带的分配方式,可以将BWP的带宽进行进一步地分配。一个BWP中可以包括至少两个子带,网络设备可以通过时分复用和/或频分复用的方式为至少两个终端设备调度同一个BWP中的不同子带的信道资源。
举例说明,假设一个BWP的带宽为80MHz,该BWP可以包括4个20MHz的子带。网络设备可以通过时分复用的方式为终端设备调度其中一个子带的信道资源,或者,网络设备可以通过频分复用的方式为终端设备同时调度一个BWP中的不同子带的信道资源,或者,网络设备可以通过时分复用和频分复用的方式为终端设备同时调度一个BWP中的不同子带的信道资源。
方式2的调度方式相比于方式1更为灵活。方式1每次只能调度1个BWP,也就是说,同一时间只能为一个终端设备调度下行资源。但是将BWP资源分配为多个子带资源后,网络设备可以更加灵活地调度一个BWP中的多个子带资源。例如,可以采用频分复用的方式同时为不同的终端设备调度不同的子带资源,能够增加频谱使用率,为NR-U新的场景提供了可行方案。
本申请实施例允许使用非对称的频谱配对方式,相比原来的FDD对称频段配对或TDD频段的上下行调度方式,能够提高下行链路的速率,为大带宽业务提高了新的可能,同时进一步开拓运营网络授权频谱的使用范围和场景。
网络设备调度非授权频谱的信道资源的方式可以是通过LBT的方式进行竞争接入。具体的接入方式可以是上文描述的四种信道接入方式的任意一种。
本申请实施例还提供另一种传输信号的方法,如图7所示,该方法包括步骤S710-S720。该方法中的终端设备和网络设备可以在授权频谱和非授权频谱上传输信号,其中,非授权频谱的一个载波配置有至少一个BWP,一个BWP可以包括至少一个子带,一个子带的带宽可以为20MHz的整数倍,或者也可以为大于20MHz的任意值。当然,一个子带的带宽也可以为小于20MHz的任意值,例如,一个BWP中包括的一个子带的带宽为15MHz。
S710、网络设备调度非授权频谱的至少一个子带的信道资源。
S720、网络设备在调度的信道资源上向终端设备发送下行信号。
可选地,非授权频谱的载波可以是FDD频段上的载波,也可以是FDD频段上的载波,或者还可以是SUL频段上的载波。
可选地,一个BWP可以包括至少两个子带,其中任意两个子带的带宽都相同,或者任意两个子带的带宽均不相同。
本申请实施例提供一种频谱的分配方式,可以将非授权频谱的一个载波分配为多个BWP,并可以进一步将一个BWP分配为多个子带。网络设备在调度非授权频谱上的资源时,可以对子带上的资源进行调度,相比于追调度载波资源或BWP资源,调度方式更加灵活,并且能够提高频谱的利用率。
图7所示的方法中未描述的相应技术特征内容可以参照图3所示方法中的描述,为避免重复,此处不再描述。
上文详细描述了本申请实施例提供的传输信号的方法,下面结合图8-图12,详细描述本申请实施例的装置,装置实施例与方法实施例相互对应,因此未详细描述的部分可以参见前面各方法实施例。
图8是本申请实施例提供的一种网络设备800的示意性框图。图8所示的网络设备800可以是方法实施例中的网络设备。该网络设备可以包括通信单元810。
通信单元810,用于在非授权频谱的下行补充辅助载波链路上向终端设备发送下行信号。
通信单元810,还用于接收所述终端设备在授权频谱的上行补充链路上发送的针对所述下行信号的上行信号。
可选地,通信单元810还用于接收所述终端设备发送的上报信息,所述上报信息用于指示所述上行补充链路的频段信息和所述下行补充链路的频段信息。
可选地,所述上报信息包括所述非授权频段的下行补充链路的频段信息,以及所述上行补充链路和所述下行补充链路的频段组合信息。
可选地,所述频段组合信息包括载波聚合频段组合信息或双连接频段组合信息。
可选地,所述上报信息包括所述非授权频谱的频段序号,所述频段序号用于指示所述上行补充链路的频段信息和所述下行补充链路的频段信息。
可选地,所述下行补充链路的一个载波配置有至少一个带宽部分BWP,一个BWP包括至少一个子带,一个子带的带宽为20MHz的整数倍,或者为大于20MHz的任意值。
可选地,一个BWP中包括至少两个子带,任意两个子带的带宽都相同,或任意两个子带的带宽都不相同。
可选地,所述上行补充链路包括至少一个频段,所述下行补充链路包括至少一个频段。
可选地,所述上行补充链路包括第一授权频段和第二授权频段,所述下行补充链路包括一个非授权 频段,所述网络设备还包括处理单元,所述处理单元用于:
通过时分复用的方式调度所述下行补充链路的一个载波上的一个子带的信道资源;或,
通过频分复用的方式调度所述下行补充链路的一个载波上的不同子带的信道资源;或,
通过时分复用和频分复用的方式调度所述下行补充链路的一个载波上的不同子带的信道资源;
其中,所述下行信号是在调度的所述下行补充链路的信道资源上发送的。
可选地,在对一个终端设备进行调度时,所述处理单元还用于通过载波聚合或双连接的方式,调度至少一个BWP或至少一个子带的信道资源。
可选地,在对至少两个终端设备进行调度时,所述处理单元还用于:
通过时分复用的方式为所述至少两个终端设备调度一个载波内的不同BWP的信道资源;或,
通过时分复用和/或频分复用的方式为所述至少两个终端设备调度同一个BWP内的不同子带的信道资源。
可选地,所述第一频段和所述第二频段属于同一个运营网络,或所述第一频段和所述第二频段属于不同的运营网络。
可选地,若所述第一频段和所述第二频段属于同一个运营网络,所述通信单元还用于:
在所述下行补充链路的一个或多个子带中发送第一下行信号,所述第一下行信号是针对在所述第一频段或所述第二频段接收到所述终端设备发送的上行信号的下行信号。
可选地,所述上行补充链路包括一个频段,所述下行补充链路包括第三频段和第四频段,所述网络设备还包括处理单元,所述处理单元用于通过时分复用和/或频分复用调度所述第三频段或所述第四频段的至少一个子带的信道资源,其中,所述下行信号是在调度的所述下行补充链路的信道资源上发送的。
应理解,该网络设备800可以执行上述方法中由网络设备执行的相应操作,为了简洁,在此不再赘述。
图9是本申请实施例提供的另一种网络设备900的示意性框图。图9所示的网络设备900可以是方法实施例中的网络设备。该网络设备可以调度非授权频谱和授权频谱上的信道资源,其中,非授权频谱的一个载波配置有至少一个带宽部分BWP,一个BWP包括至少一个子带,一个子带的带宽为20MHz的整数倍,或者为大于20MHz的任意值。该网络设备900可以包括处理单元910和通信单元920。
处理单元910,用于调度所述非授权频谱的至少一个子带的信道资源。
通信单元920,用于在调度的信道资源上向终端设备发送下行信号。
可选地,一个BWP中包括至少两个子带,任意两个子带的带宽都相同,或任意两个子带的带宽都不相同。
应理解,该网络设备900可以执行上述方法中由网络设备执行的相应操作,为了简洁,在此不再赘述。
图10是本申请实施例提供的一种通信设备1000示意性结构图。图10所示的通信设备1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,如图10所示,通信设备1000还可以包括收发器1030,处理器1010可以控制该收发器1030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1030可以包括发射机和接收机。收发器1030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1000具体可为本申请实施例的终端设备,并且该通信设备1000可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1000具体可为本申请实施例的网络设备,并且该通信设备1000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片1100还可以包括存储器1120。其中,处理器1111可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,该芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或者可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch Link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图12是根据本申请实施例的通信系统1200的示意性框图。如图12所示,该通信系统1200包括网络设备1210和终端设备1220。
其中,该网络设备1210用于:在非授权频谱的下行补充链路上向终端设备发送下行信号;接收所述终端设备在授权频谱的上行补充链路上发送的针对所述下行信号的上行信号。
其中,该终端设备1220用于:在非授权频谱的下行补充链路上接收网络设备发送的下行信号;在授权频谱的上行补充链路上向网络设备发送针对所述下行信号的上行信号。
可选地,该网络设备1210可以用于实现上述方法中由网络设备实现的相应的功能,以及该网络设备1210的组成可以如图8或图9中的网络设备所示,为了简洁,在此不再赘述。
可选地,该终端设备1220可以用于实现上述方法中由终端设备实现的相应的功能。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请 实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,在本发明实施例中,“与A相应(对应)的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (44)

  1. 一种传输信号的方法,其特征在于,包括:
    在非授权频谱的下行补充链路上向终端设备发送下行信号;
    接收所述终端设备在授权频谱的上行补充链路上发送的针对所述下行信号的上行信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的上报信息,所述上报信息用于指示所述上行补充链路的频段信息和所述下行补充链路的频段信息。
  3. 根据权利要求2所述的方法,其特征在于,所述上报信息包括所述非授权频段的下行补充链路的频段信息,以及所述上行补充链路和所述下行补充链路的频段组合信息。
  4. 根据权利要求3所述的方法,其特征在于,所述频段组合信息包括载波聚合频段组合信息或双连接频段组合信息。
  5. 根据权利要求2所述的方法,其特征在于,所述上报信息包括所述非授权频谱的频段序号,所述频段序号用于指示所述上行补充链路的频段信息和所述下行补充链路的频段信息。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述下行补充链路的一个载波配置有至少一个带宽部分BWP,一个BWP包括至少一个子带,一个子带的带宽为20MHz的整数倍,或者为大于20MHz的任意值。
  7. 根据权利要求6所述的方法,其特征在于,一个BWP中包括至少两个子带,任意两个子带的带宽都相同,或任意两个子带的带宽都不相同。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述上行补充链路包括至少一个频段,所述下行补充链路包括至少一个频段。
  9. 根据权利要求6-8中任一项所述的方法,其特征在于,所述上行补充链路包括第一授权频段和第二授权频段,所述下行补充链路包括一个非授权频段,所述方法还包括:
    通过时分复用的方式调度所述下行补充链路的一个载波上的一个子带的信道资源;或,
    通过频分复用的方式调度所述下行补充链路的一个载波上的不同子带的信道资源;或,
    通过时分复用和频分复用的方式调度所述下行补充链路的一个载波上的不同子带的信道资源;
    其中,所述下行信号是在调度的所述下行补充链路的信道资源上发送的。
  10. 根据权利要求9所述的方法,其特征在于,所述一个载波上的不同子带属于一个BWP中的子带。
  11. 根据权利要求9或10所述的方法,其特征在于,在对一个终端设备进行调度时,所述方法还包括:
    通过载波聚合或双连接的方式,调度至少一个BWP或至少一个子带的信道资源。
  12. 根据权利要求9-11中任一项所述的方法,其特征在于,在对至少两个终端设备进行调度时,所述方法还包括:
    通过时分复用的方式为所述至少两个终端设备调度一个载波内的不同BWP的信道资源;或,
    通过时分复用和/或频分复用的方式为所述至少两个终端设备调度同一个BWP内的不同子带的信道资源。
  13. 根据权利要求9-12中任一项所述的方法,其特征在于,所述第一频段和所述第二频段属于同一个运营网络,或所述第一频段和所述第二频段属于不同的运营网络。
  14. 根据权利要求9-13中任一项所述的方法,其特征在于,若所述第一频段和所述第二频段属于同一个运营网络,所述方法还包括:
    在所述下行补充链路的一个或多个子带中发送第一下行信号,所述第一下行信号是针对在所述第一频段或所述第二频段接收到所述终端设备发送的上行信号的下行信号。
  15. 根据权利要求6-8中任一项所述的方法,其特征在于,所述上行补充链路包括一个频段,所述下行补充链路包括第三频段和第四频段,所述方法还包括:
    通过时分复用和/或频分复用调度所述第三频段或所述第四频段的至少一个子带的信道资源,其中,所述下行信号是在调度的所述下行补充链路的信道资源上发送的。
  16. 一种传输信号的方法,其特征在于,非授权频谱的一个载波配置有至少一个带宽部分BWP,一个BWP包括至少一个子带,一个子带的带宽为20MHz的整数倍,或者为大于20MHz的任意值,所述方法包括:
    调度所述非授权频谱的至少一个子带的信道资源;
    在调度的信道资源上向终端设备发送下行信号。
  17. 根据权利要求16所述的方法,其特征在于,一个BWP中包括至少两个子带,任意两个子带 的带宽都相同,或任意两个子带的带宽都不相同。
  18. 一种网络设备,其特征在于,包括:
    通信单元,用于在非授权频谱的下行补充链路上向终端设备发送下行信号;
    所述通信单元,还用于接收所述终端设备在授权频谱的上行补充链路上发送的针对所述下行信号的上行信号。
  19. 根据权利要求18所述的网络设备,其特征在于,所述通信单元还用于:
    接收所述终端设备发送的上报信息,所述上报信息用于指示所述上行补充链路的频段信息和所述下行补充链路的频段信息。
  20. 根据权利要求19所述的网络设备,其特征在于,所述上报信息包括所述非授权频段的下行补充链路的频段信息,以及所述上行补充链路和所述下行补充链路的频段组合信息。
  21. 根据权利要求20所述的网络设备,其特征在于,所述频段组合信息包括载波聚合频段组合信息或双连接频段组合信息。
  22. 根据权利要求20所述的网络设备,其特征在于,所述上报信息包括所述非授权频谱的频段序号,所述频段序号用于指示所述上行补充链路的频段信息和所述下行补充链路的频段信息。
  23. 根据权利要求18-22中任一项所述的网络设备,其特征在于,所述下行补充链路的一个载波配置有至少一个带宽部分BWP,一个BWP包括至少一个子带,一个子带的带宽为20MHz的整数倍,或者为大于20MHz的任意值。
  24. 根据权利要求23所述的网络设备,其特征在于,一个BWP中包括至少两个子带,任意两个子带的带宽都相同,或任意两个子带的带宽都不相同。
  25. 根据权利要求18-24中任一项所述的网络设备,其特征在于,所述上行补充链路包括至少一个频段,所述下行补充链路包括至少一个频段。
  26. 根据权利要求23-25中任一项所述的网络设备,其特征在于,所述上行补充链路包括第一授权频段和第二授权频段,所述下行补充链路包括一个非授权频段,所述网络设备还包括处理单元,所述处理单元用于:
    通过时分复用的方式调度所述下行补充链路的一个载波上的一个子带的信道资源;或,
    通过频分复用的方式调度所述下行补充链路的一个载波上的不同子带的信道资源;或,
    通过时分复用和频分复用的方式调度所述下行补充链路的一个载波上的不同子带的信道资源;
    其中,所述下行信号是在调度的所述下行补充链路的信道资源上发送的。
  27. 根据权利要求26所述的网络设备,其特征在于,所述一个载波上的不同子带属于一个BWP中的子带。
  28. 根据权利要求26或27所述的网络设备,其特征在于,在对一个终端设备进行调度时,所述处理单元还用于:
    通过载波聚合或双连接的方式,调度至少一个BWP或至少一个子带的信道资源。
  29. 根据权利要求26-28中任一项所述的网络设备,其特征在于,在对至少两个终端设备进行调度时,所述处理单元还用于:
    通过时分复用的方式为所述至少两个终端设备调度一个载波内的不同BWP的信道资源;或,
    通过时分复用和/或频分复用的方式为所述至少两个终端设备调度同一个BWP内的不同子带的信道资源。
  30. 根据权利要求26-29中任一项所述的网络设备,其特征在于,所述第一频段和所述第二频段属于同一个运营网络,或所述第一频段和所述第二频段属于不同的运营网络。
  31. 根据权利要求26-30中任一项所述的网络设备,其特征在于,若所述第一频段和所述第二频段属于同一个运营网络,所述通信单元还用于:
    在所述下行补充链路的一个或多个子带中发送第一下行信号,所述第一下行信号是针对在所述第一频段或所述第二频段接收到所述终端设备发送的上行信号的下行信号。
  32. 根据权利要求23-25中任一项所述的网络设备,其特征在于,所述上行补充链路包括一个频段,所述下行补充链路包括第三频段和第四频段,所述网络设备还包括处理单元,所述处理单元用于:
    通过时分复用和/或频分复用调度所述第三频段或所述第四频段的至少一个子带的信道资源,其中,所述下行信号是在调度的所述下行补充链路的信道资源上发送的。
  33. 一种网络设备,其特征在于,非授权频谱的一个载波配置有至少一个带宽部分BWP,一个BWP包括至少一个子带,一个子带的带宽为20MHz的整数倍,或者为大于20MHz的任意值,所述网络设备包括:
    处理单元,用于调度所述非授权频谱的至少一个子带的信道资源;
    通信单元,用于在调度的信道资源上向终端设备发送下行信号。
  34. 根据权利要求33所述的网络设备,其特征在于,一个BWP中包括至少两个子带,任意两个子带的带宽都相同,或任意两个子带的带宽都不相同。
  35. 一种网络设备,其特征在于,所述网络设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求1至15中任一项所述的方法。
  36. 一种网络设备,其特征在于,所述网络设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求16至17中任一项所述的方法。
  37. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的方法。
  38. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求16至17中任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求16至17中任一项所述的方法。
  41. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至15中任一项所述的方法。
  42. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求16至17中任一项所述的方法。
  43. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  44. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求16至17中任一项所述的方法。
PCT/CN2019/075295 2019-02-15 2019-02-15 传输信号的方法及设备 WO2020164154A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/075295 WO2020164154A1 (zh) 2019-02-15 2019-02-15 传输信号的方法及设备
CN201980071735.4A CN112997556B (zh) 2019-02-15 2019-02-15 传输信号的方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075295 WO2020164154A1 (zh) 2019-02-15 2019-02-15 传输信号的方法及设备

Publications (1)

Publication Number Publication Date
WO2020164154A1 true WO2020164154A1 (zh) 2020-08-20

Family

ID=72045190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075295 WO2020164154A1 (zh) 2019-02-15 2019-02-15 传输信号的方法及设备

Country Status (2)

Country Link
CN (1) CN112997556B (zh)
WO (1) WO2020164154A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116491181A (zh) * 2020-11-11 2023-07-25 Oppo广东移动通信有限公司 上报直流载波位置的方法、终端设备和网络设备
CN116582891A (zh) * 2023-07-13 2023-08-11 上海铂联通信技术有限公司 5g无线网络系统的负载优化方法、装置、介质及终端

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240314754A1 (en) * 2021-06-30 2024-09-19 Beijing Xiaomi Mobile Software Co., Ltd. Activation indication method and apparatus, frequency band activation method and apparatus, communication apparatus, and storage medium
CN117812732A (zh) * 2022-09-22 2024-04-02 维沃移动通信有限公司 传输处理方法、装置及设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169359A1 (en) * 2014-05-08 2015-11-12 Nokia Solutions And Networks Oy Improving communication efficiency

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10681558B2 (en) * 2016-06-23 2020-06-09 Apple Inc. Methods and devices for user detection in spectrum sharing
US11503534B2 (en) * 2018-04-19 2022-11-15 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for controlling network access

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169359A1 (en) * 2014-05-08 2015-11-12 Nokia Solutions And Networks Oy Improving communication efficiency

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AT&T: "View on CA And BWP Enhancements for NR Rel. 16", 3GPP TSG RAN MEETING #80 RP-180794, 14 June 2018 (2018-06-14), XP051455214, DOI: 20191017082100Y *
HUAWEI ET AL.: "HARQ Enhancements in NR Unlicensed", 3GPP TSG RAN WG1 MEETING #93 R1-1805918, 25 May 2018 (2018-05-25), XP051441137, DOI: 20191017082312X *
VIVO: "Design Considerations for Standalone Operation in NR Unlicensed Spectrum", 3GPP TSG RAN WG1 MEETING #92BIS R1-1803858, 20 April 2018 (2018-04-20), XP051426153, DOI: 20191017081943Y *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116491181A (zh) * 2020-11-11 2023-07-25 Oppo广东移动通信有限公司 上报直流载波位置的方法、终端设备和网络设备
CN116582891A (zh) * 2023-07-13 2023-08-11 上海铂联通信技术有限公司 5g无线网络系统的负载优化方法、装置、介质及终端
CN116582891B (zh) * 2023-07-13 2023-10-17 上海铂联通信技术有限公司 5g无线网络系统的负载优化方法、装置、介质及终端

Also Published As

Publication number Publication date
CN112997556B (zh) 2023-06-27
CN112997556A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2020147115A1 (zh) 用于非授权频谱的无线通信方法和设备
WO2020191769A1 (zh) 传输侧行信道的方法和终端设备
WO2020143057A1 (zh) 信道接入方案的确定方法及装置、终端设备、网络设备
WO2020164154A1 (zh) 传输信号的方法及设备
WO2020047856A1 (zh) 配置信息的传输方法和终端设备
CN110710312A (zh) 无线通信方法和设备
JP7514326B2 (ja) 伝送リソースの決定方法及び端末デバイス
CN113225823B (zh) 传输数据的方法和终端设备
TW202008829A (zh) 資源配置的方法和終端設備
WO2020087524A1 (zh) 非授权频段上ssb的传输方法和设备
WO2020154930A1 (zh) 无线通信的方法、终端设备和网络设备
US20220052796A1 (en) Harq information feedback method and device
WO2021026891A1 (zh) 传输侧行数据的方法、终端设备和网络设备
CN113115261B (zh) 无线通信的方法、终端设备和网络设备
WO2020087854A1 (zh) 无线通信方法和设备
WO2020001623A1 (zh) 一种确定侧行链路类别的方法、终端设备和网络设备
WO2021026841A1 (zh) 调度请求传输的方法和设备
WO2020015693A9 (zh) 侧行通信的方法、终端设备和网络设备
WO2020087541A1 (zh) 下行控制信息的传输方法和设备
WO2020113424A1 (zh) 确定传输块大小tbs的方法和设备
TW202019221A (zh) 一種回饋資源配置方法、終端設備及網路設備
WO2022205484A1 (zh) 无线通信方法、终端设备和网络设备
TW201904313A (zh) 無線通信方法和設備
WO2020143051A1 (zh) Bwp切换的方法和设备
US12075434B2 (en) Method for information feedback, terminal device and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914768

Country of ref document: EP

Kind code of ref document: A1