WO2020164058A1 - 随机接入消息传输方法、装置及存储介质 - Google Patents

随机接入消息传输方法、装置及存储介质 Download PDF

Info

Publication number
WO2020164058A1
WO2020164058A1 PCT/CN2019/075098 CN2019075098W WO2020164058A1 WO 2020164058 A1 WO2020164058 A1 WO 2020164058A1 CN 2019075098 W CN2019075098 W CN 2019075098W WO 2020164058 A1 WO2020164058 A1 WO 2020164058A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
time
rar
terminal
base station
Prior art date
Application number
PCT/CN2019/075098
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/430,678 priority Critical patent/US11963233B2/en
Priority to PCT/CN2019/075098 priority patent/WO2020164058A1/zh
Priority to CN201980000145.2A priority patent/CN110268795B/zh
Publication of WO2020164058A1 publication Critical patent/WO2020164058A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a random access message transmission method, device and storage medium.
  • the NR-U technology in the wireless communication system also needs to introduce a Listen Before Talk (LBT) mechanism, and through the corresponding random access process, so that the terminal can communicate with the base station. data transmission.
  • LBT Listen Before Talk
  • the terminal can communicate with the base station. data transmission.
  • LBT Listen Before Talk
  • the present disclosure provides a random access message transmission method, device and storage medium.
  • the technical solution is as follows:
  • a random access message transmission method the method is executed by a terminal, and the method includes:
  • the random access preamble is performed in the first RO through the LBT method of listening before speaking Code sending process; the first RO is the first RO selected in the random access process;
  • the random access preamble sending process is performed in the second RO through the LBT method; the second RO is any RO in the random access response RAR time window corresponding to the random access process; the RAR time window is a predetermined length of time period starting after the first RO.
  • the method further includes:
  • the RAR returned by the base station is monitored after the random access preamble is successfully sent for the first time.
  • the method further includes:
  • the method further includes:
  • the execution of the random access preamble sending process in the first RO in the LBT manner by listening first and then speaking includes:
  • the random access preamble sending process is performed in the first RO.
  • the execution of the random access preamble sending process in the first RO in the LBT manner by listening first and then speaking includes:
  • the target frequency domain interval is a frequency domain interval including the frequency band where the at least two time-frequency units are located.
  • the at least two time-frequency units are frequency division multiplexed in an unlicensed channel resource pool
  • the at least two time-frequency units are frequency-division multiplexed and time-division multiplexed in an unlicensed channel resource pool.
  • a random access message transmission device the device is used in a terminal, and the device includes:
  • the first sending module is used to perform random access in the first RO in a random access process based on an unlicensed channel, starting from before the arrival of the first random access opportunity RO, by listening first and then speaking LBT. Incoming preamble sending process; the first RO is the first RO selected in the random access process;
  • the second sending module is configured to, if the RAR returned by the base station is not received before the arrival of the second RO, execute the random access preamble sending process in the second RO in the LBT mode; the second RO is all The random access corresponding to the random access process responds to any RO in the RAR time window; the RAR time window is a predetermined length of time period starting after the first RO.
  • the device further includes:
  • the monitoring module is used to monitor the RAR returned by the base station after the random access preamble is successfully sent for the first time in the random access process.
  • the device further includes:
  • the end module is configured to, if the RAR returned by the base station is received before the second RO arrives, after the RAR returned by the base station is monitored for the first time within the RAR time window, end monitoring the RAR returned by the base station .
  • the device further includes:
  • the stop module is configured to stop performing the random access preamble sending process in the subsequent RO after the RAR returned by the base station is monitored for the first time in the RAR time window.
  • the first sending module includes:
  • the first sending submodule is configured to perform a random access preamble sending process in the first RO through an LBT mode without random back-off.
  • the first sending module includes:
  • the second sending sub-module is configured to detect that the target frequency domain interval is in an idle state within a preset period of time before the start time of the first RO, then at least two time-frequency units corresponding to the first RO Sending a random access preamble on one of the time-frequency units;
  • the target frequency domain interval is a frequency domain interval including the frequency band where the at least two time-frequency units are located.
  • the at least two time-frequency units are frequency division multiplexed in an unlicensed channel resource pool
  • the at least two time-frequency units are frequency-division multiplexed and time-division multiplexed in an unlicensed channel resource pool.
  • a random access message transmission device characterized in that the device is used in a terminal, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the random access preamble sending process is performed in the first RO through the LBT mode of listening before speaking;
  • the first RO is the first RO selected in the random access process;
  • the random access preamble sending process is performed in the second RO through LBT; the second RO is corresponding to the random access process Random access responds to any RO in the RAR time window; the RAR time window is a time period of a predetermined length starting after the first RO.
  • a computer-readable storage medium containing executable instructions, and a processor in a terminal invokes the executable instructions to implement the above-mentioned first aspect Or the random access message transmission method described in any optional implementation of the first aspect.
  • the terminal executes the random access preamble sending process in the first RO through the LBT mode of listening before speaking, if If the terminal does not receive the RAR returned by the base station before the second RO arrives, it continues to perform the random access preamble sending process in the second RO in the LBT manner.
  • the present disclosure uses the second RO added during the random access process in the unlicensed channel, so that the terminal can also send the random access preamble through the second RO, that is, the terminal can perform multiple times during one random access process.
  • the random access preamble is sent, which saves the time when the terminal fails to perform the random access preamble transmission process in the first RO and waits for the start of the next random access, thereby reducing the delay of NR-U-based random access , Improve the efficiency of NR-U-based random access.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to some exemplary embodiments
  • FIG. 2 is a schematic diagram of a random access procedure provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a random access process provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a random access process provided by an embodiment of the present disclosure.
  • FIG. 5 is a method flowchart of a random access message transmission method provided by an embodiment of the present disclosure
  • FIG. 6 is a method flowchart of a random access message transmission method provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of time-frequency resources of a first RO including four time-frequency units involved in an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of time-frequency resources of a first RO including four time-frequency units involved in an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of time-frequency resources of a first RO including four time-frequency units related to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of time-frequency resources of a first RO including four time-frequency units related to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of time-frequency resources of a first RO including four time-frequency units related to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of a terminal sending a random access preamble according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a terminal sending a random access preamble according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a terminal that fails to send a random access preamble according to an embodiment of the present disclosure
  • 15 is a schematic diagram of a random access failure of a terminal according to an embodiment of the present disclosure.
  • Fig. 16 is a block diagram showing a random access message transmission device according to an exemplary embodiment
  • Fig. 17 is a schematic structural diagram showing a random access message transmission device according to an exemplary embodiment.
  • the radio frequency spectrum resource is a limited, non-renewable natural resource. Therefore, various countries have special management organizations for the radio frequency spectrum and issue special policies and regulations to realize the unified planning and management of the radio frequency spectrum. At present, most countries' spectrum management adopts fixed spectrum allocation strategies, that is, spectrum resources are managed by government authorities and allocated to fixed authorized users, which can ensure that users avoid excessive mutual interference and make better use of spectrum resources.
  • spectrum resources can be divided into two categories, namely, licensed spectrum (Licensed Spectrum) and unlicensed spectrum (Unlicensed Spectrum).
  • Licensed spectrum is strictly restricted and protected, and only authorized users and their devices that meet the specifications are allowed to access, and users usually have to pay for this.
  • important departments such as public security, railways, civil aviation, radio and television, and telecommunications all have certain authorized spectrum.
  • the communication of equipment in these departments is running on their authorized spectrum, especially in the telecommunications industry.
  • the mobile phones we use every day are operated All major operators have dedicated frequency bands authorized by radio management units or departments in their respective countries to protect public mobile communications from interference.
  • Unlicensed spectrum is a spectrum that can be accessed and used by devices that meet certain specifications and standards, but it must be guaranteed not to cause interference to other users.
  • communication technologies such as Wireless Fidelity (Wi-Fi) and Bluetooth (BT) are transmitted through unlicensed spectrum.
  • Wi-Fi Wireless Fidelity
  • BT Bluetooth
  • ISM Industrial Scientific Medical
  • NR-generation fifth-generation mobile communication technology
  • 5G fifth-generation mobile communication technology
  • NR new radio
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • the organization passed the 5G research project "Study on NR-based Access to Unlicensed Spectrum” (NR-based unlicensed spectrum access research), referred to as NR-U, which aims to enable NR to meet the requirements of unlicensed frequency bands through the research of this project Legal requirements, and can ensure peaceful coexistence with other access technologies working on unlicensed frequency bands.
  • the embodiments of the present disclosure provide a random access scheme based on NR-U research, which can be used in a wireless communication system to realize a connection between a terminal and a base station.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to some exemplary embodiments.
  • the mobile communication system is a communication system based on cellular mobile communication technology.
  • the mobile communication system may include : Several terminals 110 and several base stations 120.
  • the terminal 110 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 110 can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal 110 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access terminal access terminal
  • user device user terminal
  • user agent user agent
  • user equipment user device
  • user terminal user equipment
  • UE user terminal
  • the terminal 110 may also be a device of an unmanned aerial vehicle.
  • the base station 120 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as the new radio (NR) system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the base station 120 may be an evolved base station (eNB) used in a 4G system.
  • the base station 120 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • the base station 120 adopts a centralized and distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • the unit is provided with a physical (PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation of the base station 120.
  • PHY physical
  • a wireless connection can be established between the base station 120 and the terminal 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on 5G-based next-generation mobile communication network technology standards.
  • the foregoing wireless communication system may further include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), policy and charging rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • the terminals and base stations in the above-mentioned wireless communication system may have the ability to use unlicensed frequency bands based on cellular mobile communication technology (such as NR-U capabilities), and correspondingly, have the ability to use non-licensed frequency bands based on cellular mobile communication technology.
  • a terminal capable of a licensed frequency band can initiate a random access request to a base station with the same ability on an unlicensed frequency band.
  • Figure 2 shows a random access process based on contention access provided by an embodiment of the present disclosure. Schematic. as shown in picture 2,
  • step 201 the terminal randomly selects a preamble from the preamble resource pool and sends it to the base station, and the message containing the preamble is also called random access message one (MSG1).
  • the base station performs correlation detection on the received signal, thereby identifying the preamble sent by the user.
  • the base station sends a random access response (Random Access Response, RAR) to the terminal.
  • RAR is also called a random access message 2 (MSG2).
  • the RAR contains a random access preamble identifier and is based on the terminal and the base station.
  • Information such as the timing advance instruction determined by the time delay estimation, the Temporary Cell-Radio Network Temporary Identifier (TC-RNTI), and the time-frequency resources allocated for the terminal's next uplink transmission.
  • TC-RNTI Temporary Cell-Radio Network Temporary Identifier
  • the terminal sends a random access message 3 (MSG3) to the base station according to the information in the RAR.
  • the MSG3 includes information such as a terminal identifier and a radio resource control (Radio Resource Control, RRC) link request, where the terminal identifier may be a unique identifier corresponding to the terminal.
  • RRC Radio Resource Control
  • the terminal identification may be the terminal’s International Mobile Subscriber Identification Number (IMSI); when the terminal is in the connected state (CONNECTED state) ), the terminal identifier may be a Cell-Radio Network Temporary Identifier (C-RNTI) to which the terminal has been allocated.
  • IMSI International Mobile Subscriber Identification Number
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the base station sends a conflict resolution identifier (also referred to as MSG4) to the terminal, including the terminal identifier that wins in the conflict resolution.
  • a conflict resolution identifier also referred to as MSG4
  • the terminal After the terminal detects its own identity, if the terminal is in the idle state (Idle state), it will upgrade the TC-RNTI to C-RNTI, and send an Acknowledgement (ACK) signal to the base station to complete the random connection. Enter the process and wait for the scheduling of the base station.
  • the non-competition-based random access process does not require a contention resolution process, and it only needs the first two steps of the contention-based random access process. That is, the process of non-contention access may pass the above step 201 and step 202, and then the process of random access can be completed with the base station.
  • the terminal can initiate random access with the base station, and the specific process can be shown in Figure 2 above.
  • FIG. 3 shows a schematic diagram of a random access process provided by an embodiment of the present disclosure.
  • it contains MSG1 channel resources 301, MSG2 channel resources 302, MSG3 channel resources 303, and MSG4 channel resources 304.
  • the terminal can send MSG1 channel resources through LBT before the arrival of the time domain unit for sending MSG1.
  • the resource 301 listens.
  • the terminal can send MSG1 on the corresponding channel resource, and receive MSG2 sent by the base station in the MSG2 channel resource 302.
  • the terminal can be in a RAR time window
  • the terminal continuously monitors the RAR returned by the base station.
  • the terminal can monitor whether the MSG3 channel resource 303 is free through the LBT method before the time domain unit that sends the MSG3 arrives.
  • the terminal can be sent on the corresponding channel resource, and the MSG4 sent by the base station can be received in the MSG4 channel resource 304.
  • the terminal receives its own MSG4, it can announce the success of this random access.
  • FIG. 4 shows a schematic diagram of a random access process provided by an embodiment of the present disclosure. As shown in FIG. 4,
  • the terminal contains the first MSG1 channel resource 401, Two MSG channel resources 402, the terminal can send MSG1 in the first MSG1 channel resource 401, when the terminal fails to send or other reasons cause random access initiated through the first MSG1 channel resource 401 to fail, the terminal needs to wait until the second MSG channel resource 402 When it arrives, resend MSG1, thus restarting random access. That is to say, in a random access process, the terminal has only one chance to send a random access preamble to the base station. From step 201 to the end of the entire random access process, the terminal can only send random access to the base station in step 201.
  • Access preamble when the terminal did not send the random access preamble in step 201, or the base station did not receive the random access preamble sent by the terminal, or the base station did not feed back the random access response RAR, or the terminal did not receive
  • the random access response RAR and other reasons fed back to the base station may cause the random access process to fail this time, causing the terminal to re-initiate random access. Since the time interval for the terminal to initiate random access twice is too long, it affects the efficiency of the terminal in NR-U-based random access.
  • the present disclosure provides a method for sending random access preambles.
  • FIG. 5 shows a method flowchart of a random access message transmission method provided by an embodiment of the present disclosure.
  • This method can be used in the wireless communication system shown in Figure 1 above.
  • the NR-U random access process between the terminal and the base station can be executed by the base station supporting the NR-U capability in the wireless communication system, as shown in Figure 5.
  • the method can include the following steps:
  • step 501 in a random access process based on an unlicensed channel, starting from before the arrival of the first random access opportunity RO, the random access preamble is sent in the first RO through the LBT mode of listening before speaking process.
  • the first RO is the first RO selected in the random access process.
  • step 502 if the RAR returned by the base station is not received before the second RO arrives, the random access preamble sending process is performed in the second RO in the LBT manner.
  • the second RO is any RO in the random access response RAR time window corresponding to the random access process
  • the RAR time window is a time period of a predetermined length starting from the first RO.
  • the method further includes:
  • the RAR returned by the base station is monitored after the random access preamble is successfully sent for the first time.
  • the method further includes:
  • the method further includes:
  • the random access preamble sending process is stopped in the subsequent RO.
  • the above-mentioned implementation of the random access preamble sending process in the first RO in the LBT manner by listening first and then speaking includes:
  • the random access preamble sending process is performed in the first RO.
  • the above-mentioned implementation of the random access preamble sending process in the first RO through the LBT mode of listening first and then speaking includes:
  • the random access preamble is sent on one of the at least two time-frequency units corresponding to the first RO code
  • the target frequency domain interval is a frequency domain interval including the frequency band where at least two time-frequency units are located.
  • At least two time-frequency units are frequency division multiplexed in an unlicensed channel resource pool
  • At least two time-frequency units are frequency-division multiplexed and time-division multiplexed in the unlicensed channel resource pool.
  • the method before performing the random access preamble sending process in the first RO in the above-mentioned LBT manner by listening first and then speaking, the method further includes:
  • the present disclosure uses the second RO added during the random access process in the unlicensed channel, so that the terminal can also send the random access preamble through the second RO, that is, the terminal can receive random access in one time.
  • the random access preamble is sent multiple times during the entry process, which saves the terminal from waiting for the start of the next random access after the failure of the sending process of the random access preamble in the first RO, thereby reducing the random access based on NR-U.
  • the access delay improves the efficiency of random access based on NR-U.
  • a base station that supports NR-U capabilities can broadcast system messages through unicast radio resource control RRC signaling, and corresponding terminals that support NR-U capabilities can After receiving the system message broadcast by the base station, the terminal that needs to access the base station can generate MSG1 for contention-based random access based on the information carried in the system message, send the MSG1 to the base station, and start a random random access based on the unlicensed channel Access to the base station process.
  • FIG. 6 shows a method flowchart of a random access message transmission method provided by an embodiment of the present disclosure.
  • the random access message transmission method can be applied to the wireless network shown in FIG.
  • the method may include the following steps:
  • step 601 the terminal receives random access configuration information sent by the base station.
  • the random access configuration information is used to indicate at least one of the random access occasion RO available to the terminal and the time length of the RAR time window.
  • the RAR time window is a time period of a predetermined length starting after the first RO, which is the first RO in a random access process.
  • the base station can broadcast the system message carrying the random access configuration information.
  • the terminal can receive the system message broadcast by the base station through the receiving component, and analyze it through its own analysis method. Obtain the random access configuration information carried in the system message, and further obtain on which time-frequency resources the terminal can send the random access preamble and on which time-frequency resources the RAR fed back by the base station is received, that is, the random access configuration information It can indicate the RO available to the terminal and the length of time of the RAR time window for receiving feedback from the base station.
  • the terminal when the terminal determines to start a random access process, it may select the first RO after the current moment as the first RO from each RO resource included in the random access configuration information sent by the base station. For example, the terminal can obtain the time information of each RO after the current time according to the time-frequency resource of each RO in the obtained random access configuration information, and select the RO closest to the current time as the random access process. The first RO.
  • the first RO that arrives is the above-mentioned first RO;
  • the time period of a predetermined length of time (ie, RAR time window) after the first RO can be determined by the developer or the operator. Maintenance personnel are pre-configured or sent through the base station broadcast system message.
  • the terminal can determine the responding RAR time window according to the first arriving RO and a predetermined time period, and receive the RAR fed back by the base station within the obtained RAR time window.
  • the system message broadcast by the base station may include a master information block (Master Information Block, MIB) or a system information block (System Information Block, SIB).
  • Preamble information that can also be carried in the main information module MIB or the system information block SIB.
  • the terminal can parse out the Preamble information and configure it to the MAC.
  • the MAC randomly selects a Preamble index in the Preamble set according to the path loss and other information and configures it to the physical layer.
  • the physical layer generates a valid one by looking up the table/formula according to the preamble index of the MAC.
  • the random access preamble is sent to the base station on the time-frequency resource corresponding to the RO that the response arrives, and the base station can receive the random access preamble sent by the terminal on the corresponding time-frequency resource.
  • multiple terminals may send random access preambles to the base station on the same RO resource, and the base station may also receive random access preambles sent by multiple terminals.
  • step 602 starting from before the arrival of the first RO, the terminal performs a process of sending a random access preamble to the base station in the first RO in the LBT manner by listening first and then speaking.
  • the terminal can first detect whether the current channel is idle through the LBT method, that is, whether other terminals in the first RO are sending random access preambles, when the terminal detects When the current channel is idle, the terminal sends the effective random access preamble generated in step 601 to the base station in the RO.
  • the LBT mode adopted by the terminal may be an LBT mode that does not require random backoff. That is, the levels of LBT can include: level one LBT, the terminal does not need to perform a clear channel assessment (CCA) detection before sending uplink data; level two LBT, the terminal needs to perform CCA detection for a predetermined period of time before sending uplink data (For example, perform a 25 microsecond CCA test). The terminal can perform LBT detection on the currently arriving RO according to any one of the LBT modes.
  • CCA clear channel assessment
  • the LBT mode executed by the terminal can be indicated by the indication information in the system message sent by the base station. That is, when the terminal parses the system message, it can know which LBT mode it adopts through the indication information. Test RO.
  • the indication information includes information such as an identifier corresponding to the corresponding LBT type or competition window, and the terminal knows which LBT method it will use to detect RO according to the information carried in the indication information.
  • the terminal monitors that the target frequency domain interval is in an idle state within a preset period of time before the start time of the first RO, in at least two time-frequency units corresponding to the first RO
  • the random access preamble is sent on a time-frequency unit of.
  • the target frequency domain interval is a frequency domain interval including the frequency band where at least two time-frequency units are located.
  • the terminal may perform CCA detection for a predetermined period of time.
  • the target frequency domain interval is monitored to be in an idle state
  • the first RO The random access preamble is sent in the corresponding time-frequency resource.
  • the terminal does not send a random access preamble in the time-frequency resource corresponding to the first RO, nor does it wait for random backoff, but before the arrival of the next RO. Repeat the CCA test for the predetermined duration described above.
  • the aforementioned at least two time-frequency units are frequency-division multiplexed in an unlicensed channel resource pool; or, the at least two time-frequency units are frequency-division multiplexed and time-division multiplexed in an unlicensed channel resource pool; or, at least The two time-frequency units are time-division multiplexed in the unlicensed channel resource pool.
  • FIG. 7 shows a schematic diagram of time-frequency resources of a first RO including four time-frequency units involved in an embodiment of the present disclosure. As shown in FIG. 7, it includes a first time-frequency unit 701, a second time-frequency unit 702, a third time-frequency unit 703, and a fourth time-frequency unit 704.
  • the third time-frequency unit 703 and the fourth time-frequency unit 704 may be four time-frequency units with the same time domain but different frequency domains, namely the first time-frequency unit 701, the second time-frequency unit 702, and the third time-frequency unit.
  • the unit 703 and the fourth time-frequency unit 704 use frequency division multiplexing in the unlicensed channel resource pool.
  • the terminal monitors the frequency domain interval corresponding to each time-frequency unit within the preset time period before the start time of the first RO
  • the terminal can randomly select a time-frequency unit from the above-mentioned first time-frequency unit 701, second time-frequency unit 702, third time-frequency unit 703, and fourth time-frequency unit 704.
  • the random access preamble is sent on.
  • the first time-frequency unit 701, the second time-frequency unit 702, the third time-frequency unit 703, and the fourth time-frequency unit 704 may be discontinuous in the frequency domain. Please refer to FIG.
  • FIG. 8 which shows a schematic diagram of time-frequency resources of a first RO including four time-frequency units involved in an embodiment of the present disclosure. As shown in Figure 8, it contains a first time-frequency unit 701, a second time-frequency unit 702, a third time-frequency unit 703, and a fourth time-frequency unit 704. The terminal selects one of the time-frequency units to send random access
  • the process of the preamble is similar to the above-mentioned selection principle of four consecutive time-frequency units in the frequency domain, and will not be repeated here.
  • time division multiplexing may also be used when frequency division multiplexing is used.
  • FIG. 9 shows a schematic diagram of a time-frequency resource of a first RO including four time-frequency units involved in an embodiment of the present disclosure.
  • Figure 9 which includes a first time-frequency unit 901, a second time-frequency unit 902, a third time-frequency unit 903, and a fourth time-frequency unit 904.
  • the first time-frequency unit 901 and the third time-frequency unit 903 are in In the first time period, the second time-frequency unit 902 and the fourth time-frequency unit 904 are in the second time period, and the terminal can monitor each time-frequency unit in the corresponding time period during the preset time period before the corresponding time period Whether the corresponding frequency domain interval is free, when the frequency domain interval corresponding to each time-frequency unit in the monitored time interval is in an idle state, a time-frequency unit is randomly selected from each time-frequency unit in the corresponding time interval, and The random access preamble is sent on this time-frequency unit. For example, in FIG.
  • the terminal when the first RO arrives, the terminal can monitor whether the frequency domain interval corresponding to each time-frequency unit in the first time period is free during the preset time period before the first time period.
  • the terminal can randomly select a time-frequency unit from the first time-frequency unit 901 and the third time-frequency unit 903, and select the selected time-frequency unit The random access preamble is sent on.
  • the terminal can repeat the monitoring before the arrival of the second time period and the monitoring before the arrival of the first time period, and according to the monitoring results, in the second time period A time-frequency unit is randomly selected among the time-frequency units, and the random access preamble is sent on the selected time-frequency unit.
  • the selection of the specific time-frequency unit can refer to the selection in the first time period described above, which will not be repeated here.
  • the time-frequency unit of frequency division multiplexing and time division multiplexing shown in FIG. 9 may be a discontinuous time-frequency unit in the frequency domain, as shown in FIG. 10, which shows that the embodiments of the present disclosure relate to A schematic diagram of the time-frequency resource of the first RO including four time-frequency units. As shown in FIG. 10,
  • the first time-frequency unit 901 In the first time period, the second time-frequency unit 902 and the fourth time-frequency unit 904 are in the second time period, and the first time-frequency unit 901 and the third time-frequency unit 903 in the first time period are in the frequency domain It may be discontinuous, and the second time-frequency unit 902 and the fourth time-frequency unit 904 in the second time period may also be discontinuous in the frequency domain.
  • the manner in which the terminal randomly selects a time-frequency unit in the time-frequency unit allocation manner shown in FIG. 10 is similar to the above-mentioned case of continuous frequency domain, and will not be repeated here.
  • the discontinuity of the time-frequency resource of the first RO in the frequency domain may also be discontinuous in the first time period and continuous in the second time period.
  • the first time period and the second time period in which the time-frequency unit shown in FIG. 10 is located may also be discontinuous, as shown in FIG. 11, which shows a type of inclusion involved in the embodiment of the present disclosure.
  • FIG. 11 shows a type of inclusion involved in the embodiment of the present disclosure.
  • the embodiment of the present disclosure does not limit the form of the time-frequency unit used in the RO available for the terminal, and the embodiment of the present disclosure only uses the above-mentioned four time-frequency units and two time periods for illustration. In practical applications, Other numbers of configurations can be used.
  • step 603 if the terminal does not receive the RAR returned by the base station before the second RO arrives, the process of sending the random access preamble to the base station is performed in the second RO in the LBT manner.
  • the second RO is any RO in the random access response RAR time window corresponding to the random access process
  • the RAR time window is a time period of a predetermined length starting from the first RO.
  • the terminal when the terminal performs LBT detection on the first RO, it finds that the time-frequency resource of the first RO is in an idle state, and the terminal sends a random access preamble in the time-frequency resource of the first RO, The terminal can monitor the RAR fed back by the base station within the RAR time window. Before the arrival of the second RO, if the terminal still does not receive the RAR returned by the base station, the terminal can detect the second RO through the LBT method. When the second RO is in an idle state, The terminal may resend the random access preamble in the time-frequency resource of the second RO.
  • the random access preamble re-transmitted by the terminal in the time-frequency resource of the second RO may be different from the random access preamble obtained before the arrival of the first RO, that is, the terminal may obtain the random access preamble from the resource pool of the random access preamble. Re-select a random access preamble to send in.
  • the LBT method used for the LBT detection performed by the terminal before the arrival time of the second RO may also be different from the LBT method used when the terminal performs LBT detection on the first RO. That is, the terminal may perform LBT detection on the first RO through level two LBT. Carry out detection, pass level one LBT to detect the second RO, etc. The embodiments of the present disclosure do not limit this.
  • FIG. 12 shows a schematic diagram of a terminal sending a random access preamble according to an embodiment of the present disclosure.
  • it includes a first RO 1201, an RAR time window 1202, and a second RO 1203.
  • the terminal may resend the random access preamble in the time-frequency resources of the second RO 1203. It should be noted that when the terminal resends the random access preamble in the time-frequency resource of the second RO 1203, it can continue to monitor the RAR returned by the base station.
  • the RAR time window 1202 may contain multiple ROs, for example, a third RO, a fourth RO, etc., if the terminal does not receive the base station before the arrival time of the third RO and the fourth RO.
  • the terminal may also send the random access preamble in the time-frequency resources corresponding to the corresponding third RO and fourth RO. The specific process is similar to that of the second RO, and will not be repeated here.
  • step 604 the terminal starts to monitor the RAR returned by the base station after successfully sending the random access preamble for the first time.
  • the terminal can start monitoring the RAR returned by the base station.
  • there may be no time interval between the start time when the terminal monitors the RAR returned by the base station and the time when the random access preamble is successfully sent that is, when the terminal successfully sends the random access preamble, the terminal starts to monitor the base station return RAR.
  • the time interval may be determined by the communication protocol between the terminal and the base station. For example, after the terminal successfully sends the random access preamble, it monitors the RAR returned by the base station from the beginning of the third subframe.
  • the terminal when the terminal performs LBT detection on the first RO and finds that the time-frequency resource of the first RO is busy, the terminal does not send random access in the time-frequency resource of the first RO Preamble.
  • the RAR time window may come, but the terminal will not monitor the RAR fed back by the base station within the RAR time window.
  • the terminal can also perform LBT detection on it And, the terminal can learn that it has not received the RAR returned by the base station before the arrival of the second RO. If the LBT detection result of the second RO time-frequency resource is in an idle state, the terminal can use the time-frequency resource of the second RO The random access preamble is sent again within the network. When the random access preamble is successfully sent this time, the terminal can start to monitor the RAR returned by the base station.
  • FIG. 13 shows a schematic diagram of a terminal sending a random access preamble according to an embodiment of the present disclosure.
  • the terminal includes a first RO 1301, an RAR time window 1302, and a second RO.
  • RO 1303 the terminal can perform LBT detection before the first RO 1301 and the second RO 1303.
  • the terminal does not send a random access preamble in the time-frequency resource of the first RO 1301, Perform LBT detection on the second RO 1303 when the second RO 1303 within the RAR time window 1302 arrives.
  • the terminal can start monitoring the RAR returned by the base station from the end of the second RO 1303, and will not start monitoring the RAR returned by the base station at the end of the first RO 1301, that is, between T 1 and T 2 as shown in FIG. 13 the terminal does not monitor the base station returns RAR, but from 3 to begin listening T.
  • the terminal may fail to send random access preambles in the RO time-frequency resources included in the RAR time window.
  • the random access process of the terminal fails this time and waits for the next random access initiation.
  • FIG. 14 shows a schematic diagram of a terminal involved in an embodiment of the present disclosure failing to send random access preambles, as shown in FIG.
  • the terminal which includes a first RO 1401, an RAR time window 1402, and a second RO 1403, taking only one RO included in the RAR time window 1402 as an example, when the terminal fails to send the random access preamble in the time-frequency resource corresponding to the first RO 1401, the terminal can use the time-frequency resource corresponding to the second RO 1403 When the random access preamble is sent again, and the random access preamble fails to be sent at this time, the terminal fails this random access and needs to wait for the start of the next random access.
  • the terminal may not receive the RAR returned by the base station from the beginning to the end of the RAR time window. At this time, it is also equivalent to that the terminal has failed this random access and needs to wait for the next random access to be initiated.
  • FIG. 15 shows a schematic diagram of a random access failure of a terminal involved in an embodiment of the present disclosure. As shown in FIG. 15, it includes the first RO 1501, the RAR time window 1502, the second RO 1503, and the terminal The random access preamble failed to be sent in the first RO time-frequency resource, and the random access preamble was successfully sent in the second RO time-frequency resource. The terminal never received the RAR returned by the base station from the beginning to the end of the RAR time window. Then the terminal fails this random access and needs to wait for the start of the next random access.
  • the terminal can directly end monitoring the RAR returned by the base station, that is, the terminal no longer monitors the RAR returned by the base station during this random access process, and ends The step of monitoring the RAR returned by the base station in the random access process.
  • the terminal may stop performing the random access preamble sending process in the subsequent RO during this random access process, that is, the terminal ends the RAR in the random access process by stopping sending the preamble in the subsequent RO. Monitoring steps.
  • the actual length of the RAR time window can be changed by monitoring the RAR time point returned by the base station, and the terminal receives
  • the terminal can end the RAR time window early, thereby saving the time of random access.
  • the terminal may successfully transmit the random access preamble in the first RO, and also successfully transmit the random access preamble in the second RO, and receive the base station response code after the second RO opportunity.
  • the terminal when the terminal monitors the RAR returned by the base station within the RAR time window, the terminal may start the step of sending the random access message 3 to the base station according to the monitored RAR returned by the base station.
  • the base station when the above-mentioned base station returns to RAR, it can also return RAR to the terminal through LBT. That is, when the base station returns to RAR, it also uses LBT to detect whether the RAR channel resource is idle. Send RAR on. If the terminal never receives the RAR sent by the base station within a predetermined period of time, the random access fails this time, and it waits for the terminal to initiate random access next time, enters a new random access process, and then executes the provided embodiments of the present disclosure. Of the above steps.
  • the present disclosure uses the second RO added during the random access process in the unlicensed channel, so that the terminal can also send the random access preamble through the second RO, that is, the terminal can receive random access in one time.
  • the random access preamble is sent multiple times during the entry process, which saves the terminal from waiting for the start of the next random access after the failure of the sending process of the random access preamble in the first RO, thereby reducing the random access based on NR-U.
  • the access delay improves the efficiency of random access based on NR-U.
  • Fig. 16 is a block diagram showing a random access message transmission device according to an exemplary embodiment.
  • the random access message transmission device can be implemented as shown in Fig. 1 through hardware or a combination of software and hardware. All or part of the terminal in the implementation environment is used to execute the steps executed by the terminal in any of the embodiments shown in FIG. 5 or FIG. 6.
  • the random access message transmission apparatus may include:
  • the first sending module 1601 is configured to perform random access in the first RO in a random access process based on an unlicensed channel, starting before the arrival of the first random access opportunity RO, by listening first and then speaking LBT. Incoming preamble sending process; the first RO is the first RO selected in the random access process;
  • the second sending module 1602 is configured to, if the RAR returned by the base station is not received before the arrival of the second RO, execute a random access preamble sending process in the second RO in the LBT mode; the second RO is The random access corresponding to the random access process responds to any RO in the RAR time window; the RAR time window is a predetermined length of time period starting after the first RO.
  • the device further includes:
  • the monitoring module is used to monitor the RAR returned by the base station after the random access preamble is successfully sent for the first time in the random access process.
  • the device further includes:
  • the end module is configured to, if the RAR returned by the base station is received before the second RO arrives, after the RAR returned by the base station is monitored for the first time within the RAR time window, end monitoring the RAR returned by the base station .
  • the device further includes:
  • the stop module is configured to stop performing the random access preamble sending process in the subsequent RO after the RAR returned by the base station is monitored for the first time in the RAR time window.
  • the first sending module 1601 includes:
  • the first sending submodule is configured to perform a random access preamble sending process in the first RO through an LBT mode without random back-off.
  • the first sending module 1601 includes:
  • the second sending sub-module is configured to detect that the target frequency domain interval is in an idle state within a preset period of time before the start time of the first RO, then at least two time-frequency units corresponding to the first RO Sending a random access preamble on one of the time-frequency units;
  • the target frequency domain interval is a frequency domain interval including the frequency band where the at least two time-frequency units are located.
  • the at least two time-frequency units are frequency division multiplexed in an unlicensed channel resource pool
  • the at least two time-frequency units are frequency-division multiplexed and time-division multiplexed in an unlicensed channel resource pool.
  • the device further includes:
  • the receiving module is configured to receive the random access configuration information sent by the base station before the random access preamble sending process is performed in the first RO in the LBT manner by listening before speaking, and the random access
  • the configuration information is used to indicate the RO available to the terminal and the time length of the RAR time window.
  • the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used as an example for illustration. In actual applications, the above functions can be allocated by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • An exemplary embodiment of the present disclosure provides a random access message transmission device that can implement all or part of the steps performed by a terminal in the embodiment shown in FIG. 5 or FIG. 6 of the present disclosure.
  • the random access message transmission device includes : Processor, memory used to store executable instructions of the processor;
  • the processor is configured to:
  • the random access preamble sending process is performed in the first RO through the LBT mode of listening before speaking;
  • the first RO is the first RO selected in the random access process;
  • the random access preamble sending process is performed in the second RO through LBT; the second RO is corresponding to the random access process Random access responds to any RO in the RAR time window; the RAR time window is a time period of a predetermined length starting after the first RO.
  • the processor is further configured to:
  • the RAR returned by the base station is monitored after the random access preamble is successfully sent for the first time.
  • the processor is further configured to:
  • the processor is further configured to:
  • the process of sending a random access preamble is executed in the first RO in the LBT manner by listening before speaking, and the processor is configured to:
  • the random access preamble sending process is performed in the first RO.
  • the process of sending a random access preamble is executed in the first RO in the LBT manner by listening before speaking, and the processor is configured to:
  • the target frequency domain interval is a frequency domain interval including the frequency band where the at least two time-frequency units are located.
  • the at least two time-frequency units are frequency division multiplexed in an unlicensed channel resource pool
  • the at least two time-frequency units are frequency-division multiplexed and time-division multiplexed in an unlicensed channel resource pool.
  • the processor is further configured to:
  • random access configuration information sent by the base station is received, where the random access configuration information is used to indicate RO available to the terminal and the length of time of the RAR time window.
  • the terminal and the base station include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 17 is a schematic structural diagram showing a random access message transmission device according to an exemplary embodiment.
  • the apparatus 1700 may be implemented as a terminal or a base station in each of the foregoing embodiments.
  • the apparatus 1700 includes a communication unit 1704 and a processor 1702.
  • the processor 1702 may also be a controller, which is represented as "controller/processor 1702" in FIG. 17.
  • the communication unit 1704 is used to support the terminal to communicate with other network devices (for example, base stations, etc.).
  • the apparatus 1700 may further include a memory 1703, and the memory 1703 is configured to store program codes and data of the terminal 1700.
  • FIG. 17 only shows a simplified design of the device 1700.
  • the apparatus 1700 may include any number of processors, controllers, memories, communication units, etc., and all terminals or base stations that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • the functions described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • the embodiment of the present disclosure also provides a computer storage medium for storing computer software instructions used by the above-mentioned terminal or base station, which contains a program for executing the above-mentioned random access message transmission method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开揭示了一种随机接入消息传输方法,属于无线通信技术领域。所述方法包括:在基于非授权信道的一次随机接入过程中,从第一随机接入时机RO到达前开始,终端通过先听后说LBT方式,在第一RO中执行随机接入前导码的发送过程,若终端在第二RO到达前未接收到基站返回的RAR,则继续通过LBT方式在第二RO中执行随机接入前导码的发送过程。本公开通过终端在非授权信道中的一次随机接入过程中多次发送随机接入前导码,节约了终端在第一RO中执行随机接入前导码的发送过程失败而等待下一次随机接入开始的时间,从而减少了基于NR-U的随机接入的时延,提高了基于NR-U的随机接入的效率。

Description

随机接入消息传输方法、装置及存储介质 技术领域
本公开涉及无线通信技术领域,特别涉及一种随机接入消息传输方法、装置及存储介质。
背景技术
为了应对移动数据日益增长的通信需求,业内提出将蜂窝移动通信技术扩展应用到非授权频段上,即,提出了基于新空口的非授权接入(New Radio Based Unlicensed Access,NR-U)的研究。
在相关技术中,在无线通信系统中的NR-U技术也需要通过引入先听后说(Listen Before Talk,LBT)机制,并且通过相应的随机接入流程,使得终端可以与基站之间互相进行数据传输。然而,对于如何减少基于NR-U的随机接入的时延,目前还没有完善的解决方案。
发明内容
本公开提供一种随机接入消息传输方法、装置及存储介质。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种随机接入消息传输方法,所述方法由终端执行,所述方法包括:
在基于非授权信道的一次随机接入过程中,从第一随机接入时机(Rach Occasion,RO)到达前开始,通过先听后说LBT方式,在所述第一RO中执行随机接入前导码的发送过程;所述第一RO是所述随机接入过程中选择的第一个RO;
若在第二RO到达前未接收到基站返回的随机接入响应(Random Access Response,RAR),则通过LBT方式在所述第二RO中执行随机接入前导码的发送过程;所述第二RO是所述随机接入过程对应的随机接入响应RAR时间窗内的任一RO;所述RAR时间窗是从所述第一RO之后开始的预定长度时间段。
可选的,所述方法还包括:
在所述随机接入过程中,从首次成功发送随机接入前导码之后开始监听所述基站返回的RAR。
可选的,所述方法还包括:
若在所述第二RO到达前接收到所述基站返回的RAR,则在所述RAR时间窗内首次监听到所述基站返回的RAR之后,结束监听所述基站返回的RAR。
可选的,所述方法还包括:
在所述RAR时间窗内首次监听到所述基站返回的RAR之后,停止在后续的RO中执行随机接入前导码的发送过程。
可选的,所述通过先听后说LBT方式在所述第一RO中执行随机接入前导码的发送过程,包括:
通过不做随机退避的LBT方式,在所述第一RO中执行随机接入前导码的发送过程。
可选的,所述通过先听后说LBT方式在所述第一RO中执行随机接入前导码的发送过程,包括:
若在所述第一RO的起始时刻之前的预设时长内监听到目标频域区间处于空闲状态,则在所述第一RO对应的至少两个时频单元中的一个时频单元上发送随机接入前导码;
其中,所述目标频域区间是包含所述至少两个时频单元所在频段的频域区间。
可选的,所述至少两个时频单元在非授权信道资源池中频分复用;
或者,
所述至少两个时频单元在非授权信道资源池中频分复用和时分复用。
根据本公开实施例的第二方面,提供了一种随机接入消息传输装置,所述装置用于终端中,所述装置包括:
第一发送模块,用于在基于非授权信道的一次随机接入过程中,从第一随机接入时机RO到达前开始,通过先听后说LBT方式,在所述第一RO中执行随机接入前导码的发送过程;所述第一RO是所述随机接入过程中选择的第一个RO;
第二发送模块,用于若在第二RO到达前未接收到基站返回的RAR,则通过LBT方式在所述第二RO中执行随机接入前导码的发送过程;所述第二RO 是所述随机接入过程对应的随机接入响应RAR时间窗内的任一RO;所述RAR时间窗是从所述第一RO之后开始的预定长度时间段。
可选的,所述装置还包括:
监听模块,用于在所述随机接入过程中,从首次成功发送随机接入前导码之后开始监听所述基站返回的RAR。
可选的,所述装置还包括:
结束模块,用于若在所述第二RO到达前接收到所述基站返回的RAR,则在所述RAR时间窗内首次监听到所述基站返回的RAR之后,结束监听所述基站返回的RAR。
可选的,所述装置还包括:
停止模块,用于在所述RAR时间窗内首次监听到所述基站返回的RAR之后,停止在后续的RO中执行随机接入前导码的发送过程。
可选的,所述第一发送模块包括:
第一发送子模块,用于通过不做随机退避的LBT方式,在所述第一RO中执行随机接入前导码的发送过程。
可选的,所述第一发送模块包括:
第二发送子模块,用于若在所述第一RO的起始时刻之前的预设时长内监听到目标频域区间处于空闲状态,则在所述第一RO对应的至少两个时频单元中的一个时频单元上发送随机接入前导码;
其中,所述目标频域区间是包含所述至少两个时频单元所在频段的频域区间。
可选的,所述至少两个时频单元在非授权信道资源池中频分复用;
或者,
所述至少两个时频单元在非授权信道资源池中频分复用和时分复用。
根据本公开实施例的第五方面,提供了一种随机接入消息传输装置,其特征在于,所述装置用于终端中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
在基于非授权信道的一次随机接入过程中,从第一随机接入时机RO到达 前开始,通过先听后说LBT方式,在所述第一RO中执行随机接入前导码的发送过程;所述第一RO是所述随机接入过程中选择的第一个RO;
若在第二RO到达前未接收到基站返回的RAR,则通过LBT方式在所述第二RO中执行随机接入前导码的发送过程;所述第二RO是所述随机接入过程对应的随机接入响应RAR时间窗内的任一RO;所述RAR时间窗是从所述第一RO之后开始的预定长度时间段。
根据本公开实施例的第四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中包含可执行指令,终端中的处理器调用所述可执行指令以实现上述第一方面或者第一方面的任一可选实现方式所述的随机接入消息传输方法。
本公开的实施例提供的技术方案可以至少包括以下有益效果:
在基于非授权信道的一次随机接入过程中,从第一随机接入时机RO到达前开始,终端通过先听后说LBT方式,在第一RO中执行随机接入前导码的发送过程,若终端在第二RO到达前未接收到基站返回的RAR,则继续通过LBT方式在第二RO中执行随机接入前导码的发送过程。本公开通过在非授权信道中的随机接入过程中增加的第二RO,使得终端还可以通过第二RO发送随机接入前导码,也就是说,终端可以在一次随机接入过程中多次发送随机接入前导码,节约了终端在第一RO中执行随机接入前导码的发送过程失败而等待下一次随机接入开始的时间,从而减少了基于NR-U的随机接入的时延,提高了基于NR-U的随机接入的效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1是根据部分示例性实施例示出的一种无线通信系统的结构示意图;
图2是本公开实施例提供的一种随机接入流程的示意图;
图3是本公开实施例提供的一种随机接入过程的示意图;
图4是本公开实施例提供的一种随机接入过程示意图;
图5是本公开实施例提供的一种随机接入消息传输方法的方法流程图;
图6是本公开实施例提供的一种随机接入消息传输方法的方法流程图;
图7是本公开实施例涉及的一种包含四个时频单元的第一RO的时频资源示意图;
图8是本公开实施例涉及的一种包含四个时频单元的第一RO的时频资源示意图;
图9是本公开实施例涉及的一种包含四个时频单元的第一RO的时频资源示意图;
图10是本公开实施例涉及的一种包含四个时频单元的第一RO的时频资源示意图;
图11是本公开实施例涉及的一种包含四个时频单元的第一RO的时频资源示意图;
图12是本公开实施例涉及的一种终端发送随机接入前导码的示意图;
图13是本公开实施例涉及的一种终端发送随机接入前导码的示意图;
图14是本公开实施例涉及的一种终端发送随机接入前导码均失败的示意图;
图15是本公开实施例涉及的一种终端随机接入失败的示意图;
图16是根据一示例性实施例示出的一种随机接入消息传输装置的框图;
图17是根据一示例性实施例示出的一种随机接入消息传输装置的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
应当理解的是,在本文中提及的“若干个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这 三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
无线电频谱资源是一种有限、不可再生的自然资源,因此各国对于无线电频谱有专门的管理机构,出台专门的政策法规,以实现无线电频谱的统一规划管理。目前各国的频谱管理大多数采用固定频谱分配策略,即频谱资源由政府主管部门管理并分配给固定的授权用户,这样能够确保各用户之间避免过多相互干扰,更好利用频谱资源。目前频谱资源可分为两类,即授权频谱(Licensed Spectrum)和非授权频谱(Unlicensed Spectrum)。
授权频谱受到严格的限制和保护,只允许授权用户及其符合规范的设备接入,并且用户通常要为此进行付费。目前,公安、铁路、民航、广电、电信等重要的部门均拥有一定的授权频谱,这些部门内设备的通信是运行在其授权频谱上的,尤其是电信行业,我们每天使用的手机就是通过运营商拥有的授权频谱来通信的,各大运营商都拥有各自国家的无线电管理单位或部门授权的专用频段,以保障公众移动通信不受干扰。
而非授权频谱是满足一定规范和标准的设备都可以接入和使用的频谱,但必须保证不对其他用户造成干扰。比较典型的,无线保真(Wireless Fidelity,Wi-Fi)、蓝牙(Bluetooth,BT)等通信技术就是通过非授权频谱进行传输的。此外,国际通信联盟无线电通信局曾经定义过工业科学医疗(Industrial Scientific Medical,ISM)频段,主要是开放给工业、科学、医学这三类机构使用,无需授权许可,当然也需要遵守一定的发射功率,并且不能对其它频段造成干扰。
随着移动数据日益增长的通信需求,业内开展了将蜂窝移动通信技术扩展到非授权频段的研究。比如,为了将第五代移动通信技术(Fifth-generation,5G)技术,也称新空口(new radio,NR)技术扩展到非授权频段上,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)组织通过了5G研究项目“Study on NR-based Access to Unlicensed Spectrum”(基于NR的非授权频谱接入研究),简称NR-U,旨在通过该项目的研究使NR能够满足非授权频段的法规要求,并且能够保证与工作在非授权频段上的其他接入技术和平共处。
本公开实施例提供一种基于NR-U研究的随机接入方案,可以用于无线通信系统中,实现终端与基站的连接。
请参考图1,图1是根据部分示例性实施例示出的一种无线通信系统的结构示意图,如图1所示,移动通信系统是基于蜂窝移动通信技术的通信系统,该移动通信系统可以包括:若干个终端110以及若干个基站120。
其中,终端110可以是指向用户提供语音和/或数据连通性的设备。终端110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端110可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端110也可以是无人飞行器的设备。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统。或者,该无线通信系统也可以是5G系统的再下一代系统。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和终端110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
可选的,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
在一种可能实现的方式中,上述无线通信系统中的终端和基站可以具有基于蜂窝移动通信技术使用非授权频段的能力(比如NR-U能力),相应的,具有基于蜂窝移动通信技术使用非授权频段的能力的终端可以在非授权频段上对具有同样能力的基站发起随机接入请求,请参考图2,其示出了本公开实施例提供的一种基于竞争接入的随机接入流程示意图。如图2所示,
在步骤201中,终端从前导码资源池中随机选择一个前导码发送给基站,包含前导码的消息也称为随机接入消息一(MSG1)。基站对接收信号进行相关性检测,从而识别出用户所发送的前导码。
在步骤202中,基站向终端发送随机接入响应(Random Access Response,RAR),该RAR也称为随机接入消息二(MSG2),该RAR包含随机接入前导码标识符、根据终端与基站间时延估计所确定的定时提前指令、临时小区无线网络临时标识(Temporary Cell-Radio Network Temporary Identifier,TC-RNTI),以及为终端下次上行传输所分配的时频资源等信息。
在步骤203中,终端根据RAR中的信息,向基站发送随机接入消息三(Message 3,MSG3)。MSG3中包含终端标识以及无线资源控制(Radio Resource Control,RRC)链接请求等信息,其中,该终端标识可以是终端唯一对应的标识。比如,当该终端是处于空闲态(IDLE状态)的终端时,该终端标识可以是该终端的国际移动终端识别码(International Mobile Subscriber Identification Number,IMSI);当该终端是处于连接态(CONNECTED状态)时,该终端标识可以是该终端已经被分配的小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI)。
在步骤204中,基站向终端发送冲突解决标识(也称为MSG4),包含了 冲突解决中胜出的终端标识。终端在检测出自己的标识后,若该终端是处于空闲态(Idle态)的终端,则将TC-RNTI升级为C-RNTI,并向基站发送确认字符(Acknowledgement,ACK)信号,完成随机接入过程,并等待基站的调度。
其中,与基于竞争的随机接入过程相比,基于非竞争的随机接入过程的不需要竞争解决过程,它只需要基于竞争的随机接入过程的前面两个步骤。即,非竞争接入的过程可以通过上述步骤201以及步骤202之后,便可以与基站完成随机接入的过程。
目前,在上述NR-U的随机接入研究中,终端可以与基站发起随机接入,具体流程可以如上图2所示。请参考图3,其示出了本公开实施例提供的一种随机接入过程的示意图。如图3所示,其中包含了MSG1信道资源301,MSG2信道资源302,MSG3信道资源303,MSG4信道资源304,进一步的,终端可以在发送MSG1的时域单元到来前,通过LBT方式对MSG1信道资源301进行监听,当得到发送MSG1信道资源301空闲时,终端可以在相应的信道资源上发送MSG1,并且在MSG2信道资源302内接收基站发送的MSG2,可选的,终端可以在一个RAR时间窗内持续监听基站返回的RAR,当终端接收到属于自己的RAR时,终端可以在发送MSG3的时域单元到来前通过LBT方式进行监听MSG3信道资源303是否空闲,当MSG3信道资源303空闲时,终端可以在相应的信道资源上发送MSG3,在MSG4信道资源304内接收基站发送的MSG4,当终端接收到属于自己的MSG4时,便可以宣布此次随机接入成功。
在另一种可能存在的方式中,当上述随机接入过程中,终端通过LBT方式对MSG1信道资源301进行监听,得到发送MSG1信道资源301繁忙时,终端可能错过此次随机接入的机会,从而等待下一次随机接入的发起,请参考图4,其示出了本公开实施例提供的一种随机接入过程示意图,如图4所示,其中包含了第一MSG1信道资源401,第二MSG信道资源402,终端可以在第一MSG1信道资源401发送MSG1,当终端发送失败或者其他原因导致通过第一MSG1信道资源401发起的随机接入失败时,终端需要等到第二MSG信道资源402到达时,重新发送MSG1,从而重新开始随机接入。也就是说,在一次随机接入过程中,终端只有一次向基站发送随机接入前导码的机会,从步骤201开始,至整个随机接入过程结束,终端只能在步骤201中向基站发送随机接入前导码,当终端在步骤201中没有发送随机接入前导码,或者,基站没有接收到终端发送的随机接入前导码,或者,基站没有反馈随机接入响应RAR, 或者,终端没有接收到基站反馈的随机接入响应RAR等原因,可能使得此次随机接入过程失败,导致终端需要重新发起随机接入。由于终端两次发起随机接入的时间间隔过长,影响了终端在基于NR-U的随机接入的效率。
为了解决上述方案存在的问题,本公开提供了一种随机接入前导码发送的方法,请参考图5,其示出了本公开实施例提供的一种随机接入消息传输方法的方法流程图,该方法可以用于上述图1所示的无线通信系统中,终端与基站的NR-U的随机接入过程,可以由无线通信系统中支持NR-U能力的基站执行,如图5所示,该方法可以包括以下步骤:
在步骤501中,在基于非授权信道的一次随机接入过程中,从第一随机接入时机RO到达前开始,通过先听后说LBT方式在第一RO中执行随机接入前导码的发送过程。
其中,该第一RO是该随机接入过程中选择的第一个RO。
在步骤502中,若在第二RO到达前未接收到基站返回的RAR,则通过LBT方式在第二RO中执行随机接入前导码的发送过程。
其中,该第二RO是随机接入过程对应的随机接入响应RAR时间窗内的任一RO,该RAR时间窗是从第一RO之后开始的预定长度时间段。
可选的,该方法还包括:
在随机接入过程中,从首次成功发送随机接入前导码之后开始监听基站返回的RAR。
可选的,该方法还包括:
若在第二RO到达前接收到基站返回的RAR,则在RAR时间窗内首次监听到基站返回的RAR之后,结束监听基站返回的RAR。
可选的,该方法还包括:
在RAR时间窗内首次监听到基站返回的RAR之后,停止在后续的RO中执行随机接入前导码的发送过程。
可选的,上述通过先听后说LBT方式在第一RO中执行随机接入前导码的发送过程,包括:
通过不做随机退避的LBT方式,在第一RO中执行随机接入前导码的发送过程。
可选的,上述通过先听后说LBT方式在第一RO中执行随机接入前导码的 发送过程,包括:
若在第一RO的起始时刻之前的预设时长内监听到目标频域区间处于空闲状态,则在第一RO对应的至少两个时频单元中的一个时频单元上发送随机接入前导码;
其中,目标频域区间是包含至少两个时频单元所在频段的频域区间。
可选的,至少两个时频单元在非授权信道资源池中频分复用;
或者,
至少两个时频单元在非授权信道资源池中频分复用和时分复用。
可选的,上述通过先听后说LBT方式在第一RO中执行随机接入前导码的发送过程之前,还包括:
接收基站发送的随机接入配置信息,随机接入配置信息用于指示终端可用的RO,以及,RAR时间窗的时间长度。
综上所述,本公开通过在非授权信道中的随机接入过程中增加的第二RO,使得终端还可以通过第二RO发送随机接入前导码,也就是说,终端可以在一次随机接入过程中多次发送随机接入前导码,节约了终端在第一RO中执行随机接入前导码的发送过程失败而等待下一次随机接入开始的时间,从而减少了基于NR-U的随机接入的时延,提高了基于NR-U的随机接入的效率。
在一种可能实现的方式中,图1所示的无线通信系统中,支持NR-U能力的基站可以通过单播无线资源控制RRC信令广播系统消息,相应的支持NR-U能力的终端可以接收到基站广播的系统消息,需要接入基站的终端可以根据该系统消息中携带的信息,生成进行基于竞争的随机接入的MSG1,将该MSG1发送给基站,开始基于非授权信道的一次随机接入基站的流程。
请参考图6,其示出了本公开实施例提供的一种随机接入消息传输方法的方法流程图,如图6所示,该随机接入消息传输方法可以应用于图1所示的无线通信系统中,该方法可以包括以下步骤:
在步骤601中,终端接收基站发送的随机接入配置信息。
其中,该随机接入配置信息用于指示终端可用的随机接入时机RO,以及RAR时间窗的时间长度中的至少一种。该RAR时间窗是从第一RO之后开始的预定长度时间段,该第一RO是一次随机接入过程中的第一个RO。
在一种可能实现的方式中,基站可以将携带随机接入配置信息的系统消息 通过广播发送出去,相应的,终端可以通过接收组件接收到基站广播的系统消息,并且通过自身的解析方法,解析得到该系统消息中携带的随机接入配置信息,进一步得到终端可以在哪些时频资源上发送随机接入前导码,在哪些时频资源上接收基站反馈的RAR,即,该随机接入配置信息可以指示终端可用的RO以及用于接收基站反馈的RAR时间窗的时间长度。
在一种可能实现的方式中,终端确定开始一次随机接入过程时,可以从基站发送的随机接入配置信息包含的各个RO资源中,选择当前时刻之后的第一个RO作为第一RO。例如,终端可以根据得到的随机接入配置信息中各个RO的时频资源,得到当前时刻之后的各个RO的时刻信息,并选择其中距离当前时刻最近的一个RO作为本次随机接入过程中的第一RO。
终端开始进行一次随机接入过程后,第一个到达的RO即为上述的第一RO;从第一RO之后开始的预定长度时间段(即RAR时间窗)的时间长度可以由开发人员或者运维人员预先配置,也可以通过基站广播系统消息发出,终端可以根据第一个到达的RO以及预定时间段确定出响应的RAR时间窗,并在得到的RAR时间窗内接收基站反馈的RAR。
可选的,基站广播的系统消息可以包含主信息模块(Master Information Block,MIB)或者系统信息块(System Information Block,SIB)。主信息模块MIB或者系统信息块SIB中还可以携带的Preamble信息等。终端可以解析出其中的Preamble信息并配置到MAC,由MAC根据路损等信息在Preamble集合中随机选择一个Preamble索引配置给物理层,物理层根据MAC的Preamble索引,通过查表/公式生成有效的随机接入前导码,并在响应到达的RO对应的时频资源上发送给基站,基站可以在相应的时频资源上接收终端发送的随机接入前导码。
可选的,在单个RO资源上可以有多个终端在同一RO资源上向基站发送随机接入前导码,基站也可以接收到多个终端发送的随机接入前导码。
在步骤602中,从第一RO到达前开始,终端通过先听后说LBT方式在第一RO中执行向基站发送随机接入前导码的过程。
在一种可能实现的方式中,从第一RO到达前开始,终端可以先通过LBT方式检测当前信道是否空闲,即第一RO中是否有其他终端正在发送随机接入前导码,当终端检测到当前信道为空闲时,则该终端将上述步骤601中生成的有效的随机接入前导码在RO中发送给基站。
可选的,终端采用的LBT方式可以是不需要做随机退避的LBT方式。即,LBT的等级可以包括:等级一LBT,终端在发送上行数据前不需要执行空闲信道评估(Clear Channel Assessment,CCA)检测;等级二LBT,终端在发送上行数据前需要执行预定时长的CCA检测(例如执行25微秒的CCA检测)。终端可以按照LBT方式中的任意一种方式进行当前到达的RO进行LBT检测。
在一种可能实现的方式中,终端执行的LBT方式可以由基站发送的系统消息中的指示信息指示,即,终端在解析系统消息时,可以通过该指示信息得知自身采用那种LBT方式来对RO进行检测。例如,该指示信息中包含相应的LBT类型对应的标识或者竞争窗等信息,终端根据该指示信息中携带的信息,得知自身将采用哪种LBT方式来对RO进行检测。
在一种可能实现的方式中,若该终端在第一RO的起始时刻之前的预设时长内监听到目标频域区间处于空闲状态,则在第一RO对应的至少两个时频单元中的一个时频单元上发送随机接入前导码。其中,该目标频域区间是包含至少两个时频单元所在频段的频域区间。
可选的,以终端确定采用等级二LBT进行LBT检测为例,当第一RO到来之前,终端可以进行预定时长的CCA检测,当监听到目标频域区间处于空闲状态时,则在第一RO对应的时频资源内发送随机接入前导码。当监听到目标频域区间处于繁忙状态时,终端在第一RO对应的时频资源内并不发送随机接入前导码,也不做随机退避的等待,而是在下一个RO到来时刻之前。重复上述预定时长的CCA检测。
可选的,上述至少两个时频单元在非授权信道资源池中频分复用;或者,该至少两个时频单元在非授权信道资源池中频分复用和时分复用;或者,该至少两个时频单元在非授权信道资源池中时分复用。
即,第一RO中对应有至少两个时频单元。在一种可能实现的方式中,请参考图7,其示出了本公开实施例涉及的一种包含四个时频单元的第一RO的时频资源示意图。如图7所示,其中包含了第一时频单元701、第二时频单元702、第三时频单元703和第四时频单元704,该第一时频单元701、第二时频单元702、第三时频单元703和第四时频单元704可以是时域相同且频域不同的四个时频单元,即第一时频单元701、第二时频单元702、第三时频单元703和第四时频单元704在非授权信道资源池中采用频分复用,当终端在第一RO的起始时刻之前的预设时长内监听到各个时频单元对应的频域区间均处于空 闲状态时,该终端可以从上述第一时频单元701、第二时频单元702、第三时频单元703以及第四时频单元704中随机挑选一个时频单元,在该时频单元上发送随机接入前导码。可选的,第一时频单元701、第二时频单元702、第三时频单元703和第四时频单元704可以在频域上不连续。请参考图8,其示出了本公开实施例涉及的一种包含四个时频单元的第一RO的时频资源示意图。如图8所示,其中包含了第一时频单元701、第二时频单元702、第三时频单元703和第四时频单元704,终端选择在其中一个时频单元上发送随机接入前导码的过程与上述频域连续的四个时频单元的选择原理类似,此处不再赘述。
在一种可能实现的方式中,上述图7所示的至少两个时频单元在采用频分复用的情况下,资源分配不足时,也可以在采用频分复用时采用时分复用,请参考图9,其示出了本公开实施例涉及的一种包含四个时频单元的第一RO的时频资源示意图。请参考图9,其中包含了第一时频单元901、第二时频单元902、第三时频单元903和第四时频单元904,第一时频单元901和第三时频单元903处于第一时间段上,第二时频单元902和第四时频单元904处于第二时间段上,终端可以在相应的时间段前的预设时长内监听处于相应时间段内的各个时频单元对应的频域区间是否空闲,当监听到的时间段内的各个时频单元对应的频域区间均处于空闲状态时,在相应时间段内的各个时频单元中随机挑选一个时频单元,并在该时频单元上发送随机接入前导码。例如,在图9中,当第一RO到来时,终端可以在第一时间段前的预设时长内监听第一时间段内的各个时频单元对应的频域区间是否空闲,当第一时频单元901和第三时频单元903对应的频域区间均空闲时,终端可以从第一时频单元901和第三时频单元903中随机挑选一个时频单元,并在挑选的时频单元上发送随机接入前导码。当第一时间段内的时频单元有至少一个不处于空闲状态时,终端可以在第二时间段到来前重复与第一时间段到来前的监听,并依据监听结果,在第二时间段内的时频单元中随机选择一个时频单元,在挑选的时频单元上发送随机接入前导码,具体的时频单元的选择可以参照上述第一时间段内的选择,此处不再赘述。
可选的,上述图9所示的频分复用和时分复用的时频单元,可以是频域上不连续的时频单元,如图10所示,其示出了本公开实施例涉及的一种包含四个时频单元的第一RO的时频资源示意图。如图10所示,其中包含了第一时频单元901、第二时频单元902、第三时频单元903和第四时频单元904,第一 时频单元901和第三时频单元903处于第一时间段上,第二时频单元902和第四时频单元904处于第二时间段上,第一时间段内的第一时频单元901和第三时频单元903在频域上可以是不连续的,第二时间段内的第二时频单元902和第四时频单元904在频域上也可以是不连续的。其中,终端在图10所示时频单元的分配方式下随机选择一个时频单元的方式与上述频域连续的情况下类似,此处不再赘述。可选的,第一RO的时频资源在频域上的不连续也可以是在第一时间段内不连续,在第二时间段内连续。
可选的,上述图10所示的时频单元所在的第一时间段与第二时间段也可以是不连续的,如图11所示,其示出了本公开实施例涉及的一种包含四个时频单元的第一RO的时频资源示意图。如图11所示,第一时间段与第二时间段不连续,即,第一RO中包含的时频单元可以既在不同时间段上又在不同的频域区间上。本公开实施例对终端可用的RO中采用的时频单元的形式并不加以限定,并且,本公开实施例仅以上述四个时频单元以及两个时间段进行举例说明,在实际应用中,可以采用其他数量的配置。
在步骤603中,若终端在第二RO到达前未接收到基站返回的RAR,则通过LBT方式在第二RO中执行向基站发送随机接入前导码的过程。
其中,该第二RO是随机接入过程对应的随机接入响应RAR时间窗内的任一RO,该RAR时间窗是从第一RO之后开始的预定长度时间段。
在一种可能实现的方式中,终端在对第一RO进行LBT检测时,发现第一RO的时频资源处于空闲状态,终端在第一RO的时频资源内发送了随机接入前导码,终端可以在RAR时间窗内监听基站反馈的RAR,在第二RO到来之前,如果终端仍未接收到基站返回的RAR,终端可以通过LBT方式检测第二RO,当第二RO处于空闲状态时,终端可以在第二RO的时频资源内重新发送随机接入前导码。
可选的,终端在第二RO的时频资源内重新发送的随机接入前导码可以与第一RO到达之前获得的随机接入前导码不同,即终端可能从随机接入前导码的资源池中重新选择了一个随机接入前导码发送。可选的,终端在第二RO到达时刻之前进行的LBT检测采用的LBT方式也可以与终端对第一RO进行LBT检测时采用的LBT方式不同,即,终端可以通过等级二LBT对第一RO进行检测,通过等级一LBT对第二RO进行检测等。本公开实施例对此并不加以限定。
请参考图12,其示出了本公开实施例涉及的一种终端发送随机接入前导码的示意图,如图12所示,其中包含了第一RO 1201,RAR时间窗1202,第二RO 1203,若终端在第二RO 1203到达之前未接受到基站返回的RAR,终端可以在第二RO 1203的时频资源内重新发送随机接入前导码。需要说明的是,终端在第二RO 1203的时频资源内重新发送随机接入前导码时,可以继续监听基站返回的RAR。可选的,该RAR时间窗1202内可以包含有多个RO,例如,第三RO、第四RO等等,若终端在第三RO、第四RO各自的到达时刻之前,仍未接收到基站返回的RAR,终端也可以在相应的第三RO、第四RO对应的时频资源内发送随机接入前导码,其具体过程与第二RO的类似,此处不再赘述。
在步骤604中,终端从首次成功发送随机接入前导码之后开始监听基站返回的RAR。
当终端在任意一个可用的RO内成功发送随机接入前导码之后,终端便可以开始监听基站返回的RAR。可选的,终端监听基站返回的RAR的起始时刻可以与成功发送随机接入前导码的时刻之间没有时间间隔,即,在终端成功发送随机接入前导码时,终端就开始监听基站返回的RAR。当然,终端监听基站返回的RAR的起始时刻可以与成功发送随机接入前导码的时刻之间可用有一定的时间间隔,该时间间隔可以由终端与基站之间的通信协议确定。比如,终端成功发送随机接入前导码之后,从第三个子帧开始处监听基站返回的RAR。
在一种可能实现的方式中,终端在对第一RO进行LBT检测时,发现第一RO的时频资源处于繁忙状态,则终端在第一RO的时频资源内并不会发送随机接入前导码,此时,RAR时间窗可能会到来,但是终端并不会在RAR时间窗内监听基站反馈的RAR,当处于RAR时间窗内的第二RO到达时,终端也可以对其进行LBT检测,并且,终端可以得知自身在第二RO到达前未接收到基站返回的RAR,则如果对第二RO时频资源的LBT检测结果为空闲状态时,终端可以在第二RO的时频资源内再次发送随机接入前导码,当此次发送随机接入前导码成功时,终端可以开始监听基站返回的RAR。
例如,请参考图13,其示出了本公开实施例涉及的一种终端发送随机接入前导码的示意图,如图13所示,其中包含了第一RO 1301,RAR时间窗1302,第二RO 1303,终端可以在第一RO 1301和第二RO 1303前进行LBT检测,当第一RO 1301检测结果为繁忙状态,终端在第一RO 1301的时频资源内没有 发送随机接入前导码,在RAR时间窗1302内的第二RO 1303到来时对第二RO 1303进行LBT检测,当检测结果为空闲状态时,且终端在第二RO 1303的时频资源内成功发送了随机接入前导码,终端可以从第二RO 1303的结束时刻开始监听基站返回的RAR,并不会在第一RO 1301结束的时刻开始监听基站返回的RAR,即在图13所示的T 1至T 2之间,终端并不监听基站返回的RAR,而是从T 3开始监听。
可选的,终端可能在RAR时间窗内包含的RO时频资源内发送的随机接入前导码均失败,此时,终端本次的随机接入过程失败,等待下次随机接入的发起。请参考图14,其示出了本公开实施例涉及的一种终端发送随机接入前导码均失败的示意图,如图14所示,其中包含了第一RO 1401,RAR时间窗1402,第二RO 1403,以RAR时间窗1402中只包含一个RO为例,当终端在第一RO1401对应的时频资源中发送随机接入前导码失败时,终端可以在第二RO 1403对应的时频资源上再次发送随机接入前导码,而此时随机接入前导码也发送失败时,则终端本次随机接入失败,需等待下次随机接入的开始。
可选的,终端可能在RAR时间窗开始至结束时都没有接收到基站返回的RAR,此时也相当于终端本次随机接入失败,需要等待下次随机接入的发起。请参考图15,其示出了本公开实施例涉及的一种终端随机接入失败的示意图,如图15所示,其中包含了第一RO 1501,RAR时间窗1502,第二RO 1503,终端在第一RO时频资源内发送随机接入前导码失败,在第二RO时频资源内发送随机接入前导码成功,终端在RAR时间窗开始至结束时始终没有接收到基站返回的RAR,则终端本次随机接入失败,需等待下次随机接入的开始。
可选的,当终端在RAR时间窗内首次监听到基站返回的RAR之后,终端可以直接结束监听基站返回的RAR,即终端在本次随机接入过程中不再监听基站返回的RAR,并且结束该随机接入过程中监听基站返回的RAR的步骤。或者,终端可以在本次随机接入过程中停止在后续的RO中执行随机接入前导码的发送过程,即终端以在后续的RO中停止发送前导码的方式结束该随机接入过程中RAR的监听步骤。也就是说,本公开实施例提供的随机接入流程中,随机接入前导码成功发送之后,RAR时间窗的实际长度是可以因监听到基站返回的RAR时间点而变化的,在终端接收到RAR时,终端可以提前结束该RAR时间窗,从而节约随机接入的时间。在一种可能实现的方式中,终端可能在第一RO中成功发送随机接入前导码之后,在第二RO中也成功发送随机接入前 导码,并且在第二RO时机之后接收到基站针对终端在第一RO中发送的随机接入前导码而返回的RAR,此时终端也可以结束该RAR时间窗。
在一种可能实现的方式中,当终端在RAR时间窗内监听到基站返回的RAR时,终端可以根据监听到的基站返回的RAR,开始执行向基站发送随机接入消息3的步骤。
需要说明的是,上述基站在返回RAR时,也可以通过LBT的方式对终端返回RAR,即,基站在返回RAR时,也通过LBT检测RAR信道资源是否空闲,在RAR信道资源中空闲的信道资源上发送RAR。如果终端在预定长度时间段内始终没有接收到基站发送的RAR,则在本次随机接入失败,等待终端下次发起随机接入,进入新的随机接入流程,从而执行本公开实施例提供的上述步骤。
综上所述,本公开通过在非授权信道中的随机接入过程中增加的第二RO,使得终端还可以通过第二RO发送随机接入前导码,也就是说,终端可以在一次随机接入过程中多次发送随机接入前导码,节约了终端在第一RO中执行随机接入前导码的发送过程失败而等待下一次随机接入开始的时间,从而减少了基于NR-U的随机接入的时延,提高了基于NR-U的随机接入的效率。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图16是根据一示例性实施例示出的一种随机接入消息传输装置的框图,如图16所示,该随机接入消息传输装置可以通过硬件或者软硬结合的方式实现为图1所示实施环境中的终端的全部或者部分,以执行图5或者图6任一所示实施例中由终端执行的步骤。该随机接入消息传输装置可以包括:
第一发送模块1601,用于在基于非授权信道的一次随机接入过程中,从第一随机接入时机RO到达前开始,通过先听后说LBT方式在所述第一RO中执行随机接入前导码的发送过程;所述第一RO是所述随机接入过程中的选择的第一个RO;
第二发送模块1602,用于若在第二RO到达前未接收到基站返回的RAR,则通过LBT方式在所述第二RO中执行随机接入前导码的发送过程;所述第二RO是所述随机接入过程对应的随机接入响应RAR时间窗内的任一RO;所述RAR时间窗是从所述第一RO之后开始的预定长度时间段。
可选的,所述装置还包括:
监听模块,用于在所述随机接入过程中,从首次成功发送随机接入前导码之后开始监听所述基站返回的RAR。
可选的,所述装置还包括:
结束模块,用于若在所述第二RO到达前接收到所述基站返回的RAR,则在所述RAR时间窗内首次监听到所述基站返回的RAR之后,结束监听所述基站返回的RAR。
可选的,所述装置还包括:
停止模块,用于在所述RAR时间窗内首次监听到所述基站返回的RAR之后,停止在后续的RO中执行随机接入前导码的发送过程。
可选的,所述第一发送模块1601,包括:
第一发送子模块,用于通过不做随机退避的LBT方式,在所述第一RO中执行随机接入前导码的发送过程。
可选的,所述第一发送模块1601,包括:
第二发送子模块,用于若在所述第一RO的起始时刻之前的预设时长内监听到目标频域区间处于空闲状态,则在所述第一RO对应的至少两个时频单元中的一个时频单元上发送随机接入前导码;
其中,所述目标频域区间是包含所述至少两个时频单元所在频段的频域区间。
可选的,所述至少两个时频单元在非授权信道资源池中频分复用;
或者,
所述至少两个时频单元在非授权信道资源池中频分复用和时分复用。
可选的,所述装置还包括:
接收模块,用于在所述通过先听后说LBT方式在所述第一RO中执行随机接入前导码的发送过程之前,接收所述基站发送的随机接入配置信息,所述随机接入配置信息用于指示所述终端可用的RO,以及,所述RAR时间窗的时间长度。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块, 以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例提供了一种随机接入消息传输装置,能够实现本公开上述图5或者图6所示实施例中由终端执行的全部或者部分步骤,该随机接入消息传输装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在基于非授权信道的一次随机接入过程中,从第一随机接入时机RO到达前开始,通过先听后说LBT方式,在所述第一RO中执行随机接入前导码的发送过程;所述第一RO是所述随机接入过程中选择的第一个RO;
若在第二RO到达前未接收到基站返回的RAR,则通过LBT方式在所述第二RO中执行随机接入前导码的发送过程;所述第二RO是所述随机接入过程对应的随机接入响应RAR时间窗内的任一RO;所述RAR时间窗是从所述第一RO之后开始的预定长度时间段。
可选的,所述处理器还被配置为:
在所述随机接入过程中,从首次成功发送随机接入前导码之后开始监听所述基站返回的RAR。
可选的,所述处理器还被配置为:
若在所述第二RO到达前接收到所述基站返回的RAR,则在所述RAR时间窗内首次监听到所述基站返回的RAR之后,结束监听所述基站返回的RAR。
可选的,所述处理器还被配置为:
在所述RAR时间窗内首次监听到所述基站返回的RAR之后,停止在后续的RO中执行随机接入前导码的发送过程。
可选的,所述通过先听后说LBT方式在所述第一RO中执行随机接入前导码的发送过程,所述处理器被配置为:
通过不做随机退避的LBT方式,在所述第一RO中执行随机接入前导码的发送过程。
可选的,所述通过先听后说LBT方式在所述第一RO中执行随机接入前导码的发送过程,所述处理器被配置为:
若在所述第一RO的起始时刻之前的预设时长内监听到目标频域区间处于 空闲状态,则在所述第一RO对应的至少两个时频单元中的一个时频单元上发送随机接入前导码;
其中,所述目标频域区间是包含所述至少两个时频单元所在频段的频域区间。
可选的,所述至少两个时频单元在非授权信道资源池中频分复用;
或者,
所述至少两个时频单元在非授权信道资源池中频分复用和时分复用。
可选的,所述处理器还被配置为:
在所述通过先听后说LBT方式在所述第一RO中执行随机接入前导码的发送过程之前,接收所述基站发送的随机接入配置信息,所述随机接入配置信息用于指示所述终端可用的RO,以及,所述RAR时间窗的时间长度。
上述主要以终端和基站为例,对本公开实施例提供的方案进行了介绍。可以理解的是,终端和基站为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的模块及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图17是根据一示例性实施例示出的一种随机接入消息传输装置的结构示意图。该装置1700可以实现为上述各个实施例中的终端或者基站。
装置1700包括通信单元1704和处理器1702。其中,处理器1702也可以为控制器,图17中表示为“控制器/处理器1702”。通信单元1704用于支持终端与其它网络设备(例如基站等)进行通信。
进一步的,装置1700还可以包括存储器1703,存储器1703用于存储终端1700的程序代码和数据。
可以理解的是,图17仅仅示出了装置1700的简化设计。在实际应用中,装置1700可以包含任意数量的处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的终端或者基站都在本公开实施例的保护范围之内。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
本公开实施例还提供了一种计算机存储介质,用于储存为上述终端或基站所用的计算机软件指令,其包含用于执行上述随机接入消息传输方法所设计的程序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种随机接入消息传输方法,其特征在于,所述方法由终端执行,所述方法包括:
    在基于非授权信道的一次随机接入过程中,从第一随机接入时机RO到达前开始,通过先听后说LBT方式,在所述第一RO中执行随机接入前导码的发送过程;所述第一RO是所述随机接入过程中选择的第一个RO;
    若在第二RO到达前未接收到基站返回的RAR,则通过LBT方式在所述第二RO中执行随机接入前导码的发送过程;所述第二RO是所述随机接入过程对应的随机接入响应RAR时间窗内的任一RO;所述RAR时间窗是从所述第一RO之后开始的预定长度时间段。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述随机接入过程中,从首次成功发送随机接入前导码之后开始监听所述基站返回的RAR。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    若在所述第二RO到达前接收到所述基站返回的RAR,则在所述RAR时间窗内首次监听到所述基站返回的RAR之后,结束监听所述基站返回的RAR。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    在所述RAR时间窗内首次监听到所述基站返回的RAR之后,停止在后续的RO中执行随机接入前导码的发送过程。
  5. 根据权利要求1或2所述的方法,其特征在于,所述通过先听后说LBT方式在所述第一RO中执行随机接入前导码的发送过程,包括:
    通过不做随机退避的LBT方式,在所述第一RO中执行随机接入前导码的发送过程。
  6. 根据权利要求1或2所述的方法,其特征在于,所述通过先听后说LBT方式在所述第一RO中执行随机接入前导码的发送过程,包括:
    若在所述第一RO的起始时刻之前的预设时长内监听到目标频域区间处于 空闲状态,则在所述第一RO对应的至少两个时频单元中的一个时频单元上发送随机接入前导码;
    其中,所述目标频域区间是包含所述至少两个时频单元所在频段的频域区间。
  7. 根据权利要求6所述的方法,其特征在于,
    所述至少两个时频单元在非授权信道资源池中频分复用;
    或者,
    所述至少两个时频单元在非授权信道资源池中频分复用和时分复用。
  8. 一种随机接入消息传输装置,其特征在于,所述装置用于终端中,所述装置包括:
    第一发送模块,用于在基于非授权信道的一次随机接入过程中,从第一随机接入时机RO到达前开始,通过先听后说LBT方式,在所述第一RO中执行随机接入前导码的发送过程;所述第一RO是所述随机接入过程中选择的第一个RO;
    第二发送模块,用于若在第二RO到达前未接收到基站返回的RAR,则通过LBT方式在所述第二RO中执行随机接入前导码的发送过程;所述第二RO是所述随机接入过程对应的随机接入响应RAR时间窗内的任一RO;所述RAR时间窗是从所述第一RO之后开始的预定长度时间段。
  9. 根据权利要求8所述的装置,其特征在于,所述装置还包括:
    监听模块,用于在所述随机接入过程中,从首次成功发送随机接入前导码之后开始监听所述基站返回的RAR。
  10. 根据权利要求8或9所述的装置,其特征在于,所述装置还包括:
    结束模块,用于若在所述第二RO到达前接收到所述基站返回的RAR,则在所述RAR时间窗内首次监听到所述基站返回的RAR之后,结束监听所述基站返回的RAR。
  11. 根据权利要求10所述的装置,其特征在于,所述装置还包括:
    停止模块,用于在所述RAR时间窗内首次监听到所述基站返回的RAR之后,停止在后续的RO中执行随机接入前导码的发送过程。
  12. 根据权利要求8或9所述的装置,其特征在于,所述第一发送模块包括:
    第一发送子模块,用于通过不做随机退避的LBT方式,在所述第一RO中执行随机接入前导码的发送过程。
  13. 根据权利要求8或9所述的装置,其特征在于,所述第一发送模块包括:
    第二发送子模块,用于若在所述第一RO的起始时刻之前的预设时长内监听到目标频域区间处于空闲状态,则在所述第一RO对应的至少两个时频单元中的一个时频单元上发送随机接入前导码;
    其中,所述目标频域区间是包含所述至少两个时频单元所在频段的频域区间。
  14. 根据权利要求13所述的装置,其特征在于,
    所述至少两个时频单元在非授权信道资源池中频分复用;
    或者,
    所述至少两个时频单元在非授权信道资源池中频分复用和时分复用。
  15. 一种随机接入消息传输装置,其特征在于,所述装置用于终端中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    在基于非授权信道的一次随机接入过程中,从第一随机接入时机RO到达前开始,通过先听后说LBT方式在所述第一RO中执行随机接入前导码的发送过程;所述第一RO是所述随机接入过程中的选择的第一个RO;
    若在第二RO到达前未接收到基站返回的RAR,则通过LBT方式在所述第二RO中执行随机接入前导码的发送过程;所述第二RO是所述随机接入过程对 应的随机接入响应RAR时间窗内的任一RO;所述RAR时间窗是从所述第一RO之后开始的预定长度时间段。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中包含可执行指令,终端中的处理器调用所述可执行指令以实现上述权利要求1至7任一所述的随机接入消息传输方法。
PCT/CN2019/075098 2019-02-14 2019-02-14 随机接入消息传输方法、装置及存储介质 WO2020164058A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/430,678 US11963233B2 (en) 2019-02-14 2019-02-14 Method and device for transmitting a random access message, and a storage medium
PCT/CN2019/075098 WO2020164058A1 (zh) 2019-02-14 2019-02-14 随机接入消息传输方法、装置及存储介质
CN201980000145.2A CN110268795B (zh) 2019-02-14 2019-02-14 随机接入消息传输方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075098 WO2020164058A1 (zh) 2019-02-14 2019-02-14 随机接入消息传输方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2020164058A1 true WO2020164058A1 (zh) 2020-08-20

Family

ID=67912073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075098 WO2020164058A1 (zh) 2019-02-14 2019-02-14 随机接入消息传输方法、装置及存储介质

Country Status (3)

Country Link
US (1) US11963233B2 (zh)
CN (1) CN110268795B (zh)
WO (1) WO2020164058A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630898A (zh) * 2021-06-16 2021-11-09 北京邮电大学 无线数据监听的方法、装置、电子设备及介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114667794B (zh) * 2019-11-15 2023-07-25 中兴通讯股份有限公司 无线通信方法、设备及计算机可读程序介质
US20220417999A1 (en) * 2019-12-10 2022-12-29 Qualcomm Incorporated Rach procedures based upon downlink receive capability level of a user equipment
CN111246311A (zh) * 2019-12-31 2020-06-05 深圳前海达闼云端智能科技有限公司 数据传输的方法、装置、存储介质及电子设备
CN111556448B (zh) * 2020-05-22 2021-11-09 深圳护龙科技有限公司 用于在5g移动终端处进行时间敏感信息传输的方法及系统
WO2022012318A1 (en) * 2020-07-16 2022-01-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access methodand apparatus and user equipment
CN114375065A (zh) * 2020-10-19 2022-04-19 展讯通信(上海)有限公司 下行lbt的方法、装置、设备及存储介质
CN116567849A (zh) * 2022-01-27 2023-08-08 北京紫光展锐通信技术有限公司 一种随机接入方法、设备及存储介质
CN117426135A (zh) * 2022-05-17 2024-01-19 北京小米移动软件有限公司 随机接入方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662836A (zh) * 2009-09-23 2010-03-03 普天信息技术研究院有限公司 竞争随机接入的方法、系统和演进基站
CN102404864A (zh) * 2010-09-16 2012-04-04 中兴通讯股份有限公司 进行随机接入冲突规避的方法及移动终端
US20150110076A1 (en) * 2013-10-22 2015-04-23 Qualcomm Incorporated Reducing latency during redirection
CN104754758A (zh) * 2013-12-27 2015-07-01 重庆重邮信科通信技术有限公司 随机接入方法、用户设备、基站及系统
CN109275187A (zh) * 2017-07-17 2019-01-25 维沃移动通信有限公司 一种随机接入方法、终端及计算机可读存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3609278A4 (en) * 2017-04-25 2020-04-08 Huawei Technologies Co., Ltd. DIRECT ACCESS METHOD AND DEVICE
CN110493870B (zh) * 2017-09-27 2020-08-21 华为技术有限公司 一种通信方法、装置和计算机可读存储介质
US11202320B2 (en) * 2018-09-05 2021-12-14 Samsung Electronics Co., Ltd. Method and apparatus of performing random access on unlicensed carrier
WO2020060358A1 (ko) * 2018-09-21 2020-03-26 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
US11700643B2 (en) * 2020-02-21 2023-07-11 Qualcomm Incorporated Techniques for transmitting repetitions of random access messages in wireless communications
US20220191940A1 (en) * 2020-12-16 2022-06-16 Samsung Electronics Co., Ltd. Method and apparatus for multiple concurrent random access procedures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662836A (zh) * 2009-09-23 2010-03-03 普天信息技术研究院有限公司 竞争随机接入的方法、系统和演进基站
CN102404864A (zh) * 2010-09-16 2012-04-04 中兴通讯股份有限公司 进行随机接入冲突规避的方法及移动终端
US20150110076A1 (en) * 2013-10-22 2015-04-23 Qualcomm Incorporated Reducing latency during redirection
CN104754758A (zh) * 2013-12-27 2015-07-01 重庆重邮信科通信技术有限公司 随机接入方法、用户设备、基站及系统
CN109275187A (zh) * 2017-07-17 2019-01-25 维沃移动通信有限公司 一种随机接入方法、终端及计算机可读存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630898A (zh) * 2021-06-16 2021-11-09 北京邮电大学 无线数据监听的方法、装置、电子设备及介质

Also Published As

Publication number Publication date
US20220256607A1 (en) 2022-08-11
CN110268795B (zh) 2023-05-02
CN110268795A (zh) 2019-09-20
US11963233B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2020164058A1 (zh) 随机接入消息传输方法、装置及存储介质
WO2020147130A1 (zh) 随机接入方法、装置及存储介质
US20220141785A1 (en) Multi-link communication method and apparatus
EP3139680B1 (en) Channel access method, system and computer readable storage medium
EP3739933B1 (en) Beam failure recovery method, device, and apparatus
CN108462998B (zh) 用于随机接入的基站、用户设备和方法
US11664879B2 (en) Method and apparatus for handling BWP switching in random access procedure
US20160198497A1 (en) Method for predetermining resource in random access, user equipment, and base station
US20210105813A1 (en) Apparatus and method for performing a random access procedure
US20180288808A1 (en) Random access method, apparatus, and system
KR20100119453A (ko) 이동통신시스템의 rach 채널 정보 전송 방법
US11153913B2 (en) Random access procedure in next generation wireless networks
US20160249386A1 (en) Random Access Method and Related Apparatus
WO2010127520A1 (zh) 随机接入方法以及基站
US20210400736A1 (en) Uplink transmission method and device, computer readable storage medium and terminal
US11382142B2 (en) Random access method and device, storage medium, and electronic device
US11812478B2 (en) Network access method and apparatus
WO2018184476A1 (zh) 上行数据发送方法、装置、基站、用户设备及存储介质
US10462827B2 (en) Random access method and apparatus
US20150334742A1 (en) Method and device for restricted access window-based channel access in wlan system
WO2017162004A1 (zh) 一种竞争式随机接入的方法及装置
WO2020199014A1 (zh) 随机接入响应的接收方法、装置和通信系统
WO2021033586A1 (en) Method and apparatus for signaling multi-usim ue busy status
JP2022543309A (ja) アンライセンスバンドの2ステップランダムアクセス方法及び機器
US10986663B2 (en) Uplink signal transmission based on timing advance value

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914868

Country of ref document: EP

Kind code of ref document: A1