WO2020162537A1 - Ester compound, resin composition, cured product, and build-up film - Google Patents

Ester compound, resin composition, cured product, and build-up film Download PDF

Info

Publication number
WO2020162537A1
WO2020162537A1 PCT/JP2020/004550 JP2020004550W WO2020162537A1 WO 2020162537 A1 WO2020162537 A1 WO 2020162537A1 JP 2020004550 W JP2020004550 W JP 2020004550W WO 2020162537 A1 WO2020162537 A1 WO 2020162537A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
ester compound
present
resin
group
Prior art date
Application number
PCT/JP2020/004550
Other languages
French (fr)
Japanese (ja)
Inventor
誠実 新土
幸平 竹田
達史 林
悠子 川原
顕紀子 久保
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020217013934A priority Critical patent/KR20210124178A/en
Priority to JP2020515267A priority patent/JP7319969B2/en
Priority to CN202080008953.6A priority patent/CN113272358B/en
Publication of WO2020162537A1 publication Critical patent/WO2020162537A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • C08G59/4269Macromolecular compounds obtained by reactions other than those involving unsaturated carbon-to-carbon bindings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins

Definitions

  • the present invention relates to an ester compound that can be used in a resin composition having excellent heat resistance and dielectric properties after curing.
  • the present invention also relates to a resin composition containing the ester compound, a cured product of the resin composition, and a build-up film using the resin composition.
  • a curable resin such as an epoxy resin which has a low shrinkage and is excellent in adhesiveness, insulation, and chemical resistance, is used in many industrial products.
  • a resin composition used as an interlayer insulating material for a printed wiring board is required to have dielectric properties such as a low dielectric constant and a low dielectric loss tangent.
  • Patent Documents 1 and 2 disclose resin compositions containing a curable resin and a compound having a specific structure as a curing agent.
  • such a resin composition has a problem that it is difficult to achieve both heat resistance after curing and dielectric properties.
  • An object of the present invention is to provide an ester compound that can be used in a resin composition having excellent heat resistance and dielectric properties after curing. It is another object of the present invention to provide a resin composition containing the ester compound, a cured product of the resin composition, and a build-up film using the resin composition.
  • the present invention is an ester compound having a phenylene ether oligomer structure in the main chain and polycyclic aromatic ring carbonyloxy groups at both ends.
  • the present invention will be described in detail below.
  • the present inventors have examined adjusting the type and mixing ratio of the curable resin in order to obtain a resin composition that can achieve both heat resistance after curing and dielectric properties.
  • a main chain has a phenylene ether oligomer structure, and an ester compound having a polycyclic aromatic ring carbonyloxy group at both ends is used as a curing agent to cure.
  • the inventors have found that a resin composition having excellent heat resistance and dielectric properties can be obtained, and have completed the present invention.
  • the ester compound of the present invention has a phenylene ether oligomer structure in the main chain.
  • a phenylene ether oligomer structure in the main chain, the cured product of the obtained resin composition has excellent heat resistance.
  • the above-mentioned “phenylene ether oligomer structure” means a repeating structure of optionally substituted phenyleneoxy units.
  • the phenylene ether oligomer structure is preferably a repeating structure of a structural unit represented by the following formula (1-1) and/or a repeating structure of a structural unit represented by the following formula (1-2).
  • the repeating structure of the structural unit represented by (2-1) and/or the repeating structure of the structural unit represented by the following formula (2-2) is more preferable.
  • R 1 to R 4 may be the same or different and each is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. is there.
  • the ester compound of the present invention has a polycyclic aromatic ring carbonyloxy group at both ends.
  • the compatibility with the resin component becomes excellent, and the cured product of the obtained resin composition has excellent dielectric properties such as low dielectric loss tangent.
  • the polycyclic aromatic ring carbonyloxy group may be a polycyclic arylcarbonyloxy group or a polycyclic heteroarylcarbonyloxy group. That is, the polycyclic aromatic ring contained in the polycyclic aromatic ring carbonyloxy group may be a polycyclic aryl group or a polycyclic heteroaryl group.
  • the polycyclic aryl group contained in the above polycyclic arylcarbonyloxy group may be substituted or may not be substituted.
  • the polycyclic heteroaryl group contained in the above polycyclic heteroarylcarbonyloxy group may be substituted or may not be substituted. Examples of the polycyclic aryl group include a naphthyl group and an anthryl group.
  • a naphthyl group is preferable.
  • the polycyclic heteroaryl group include quinolyl group, acridine group, indolyl group, benzothienyl group and the like.
  • Specific examples of the polycyclic arylcarbonyloxy group include a naphthylcarbonyloxy group and an anthrylcarbonyloxy group. Of these, a naphthylcarbonyloxy group is preferable.
  • Specific examples of the polycyclic heteroarylcarbonyloxy group include a quinolylcarbonyloxy group, an acridinecarbonyloxy group, an indolylcarbonyloxy group, a benzothienylcarbonyloxy group, and the like.
  • the ester compound of the present invention preferably has a structure represented by the following formula (3-1) as a structure containing the above polycyclic aromatic ring, and a structure represented by the following formula (3-2). It is more preferable to have.
  • R 5 is a polycyclic aromatic ring, and * is a bonding position.
  • R 6 to R 9 may be the same or different and each is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 5 is a polycyclic aromatic ring. That is, the polycyclic aromatic ring represented by R 5 is a polycyclic aromatic ring possessed by the above-mentioned polycyclic aromatic ring carbonyloxy group. Further, the structure represented by the above formula (3-2) is preferably a structure in which R 6 and R 8 are methyl groups, and R 7 and R 9 are hydrogen atoms.
  • the ester compound of the present invention may have a structure containing an arylene group and two or more carbonyloxy groups in the main chain in addition to the phenylene ether oligomer structure and the polycyclic aromatic ring carbonyloxy group. ..
  • the two or more carbonyloxy groups are preferably bonded to different phenylene ether oligomer structures.
  • the arylene group may be substituted. Further, two or more arylene groups may be bonded via an oxygen atom or the like. Examples of the group containing an arylene group include a phenylene group, a naphthalene group, a biphenylene group, a diphenylene ether group, and a bisphenylene group. Of these, a diphenylene ether group is preferable.
  • ester compound of the present invention preferably has a structure represented by the following formula (4-1), and more preferably has a structure represented by the following formula (4-2).
  • R 10 is a group containing an arylene group, and * is a bonding position.
  • R 11 to R 18 may be the same or different and each is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 12 , R 14 , R 15 and R 17 are methyl groups, and R 11 , R 13 , R 16 and R 18 are hydrogen. It is preferable that the structure is an atom.
  • the preferred lower limit of the molecular weight of the ester compound of the present invention is 500, and the preferred upper limit thereof is 40,000.
  • the ester compound of the present invention is more excellent in compatibility with the resin component, and the cured product of the obtained resin composition is more excellent in dielectric properties such as low dielectric loss tangent.
  • the more preferable lower limit of the molecular weight of the ester compound of the present invention is 1,000, and the more preferable upper limit thereof is 15,000.
  • the “molecular weight” is a molecular weight obtained from the structural formula for a compound whose molecular structure is specified, but for a compound having a wide distribution of the degree of polymerization and a compound having an unspecified modified site, It may be expressed using the number average molecular weight.
  • the “number average molecular weight” is a value obtained by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and polystyrene conversion. Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Japan Analytical Industry Co., Ltd.) and the like.
  • the preferable upper limit of the active ester equivalent of the ester compound of the present invention is 5,000.
  • the upper limit of the active ester equivalent is 5000 or less, the compatibility with the resin component becomes excellent, and the cured product of the obtained resin composition becomes excellent in the dielectric properties such as low dielectric loss tangent.
  • the more preferable upper limit of the active ester equivalent weight is 4000, and the still more preferable upper limit thereof is 3000.
  • the lower limit of the active ester equivalent of the ester compound of the present invention is not particularly limited, but is usually 250 or more.
  • the “active ester equivalent” means a value obtained by dividing the molecular weight of the ester compound by the number of ester groups contained in the ester compound.
  • Examples of the method for producing the ester compound of the present invention include a method of reacting a diol compound having a phenylene ether oligomer structure with a monocarboxylic acid having a polycyclic aromatic ring or an acid halide thereof. Further, for example, a method of reacting a diol compound having a phenylene ether oligomer structure, a monocarboxylic acid having a polycyclic aromatic ring or an acid halide thereof, and a polyvalent carboxylic acid having an arylene group or an acid halide thereof Can be mentioned.
  • Examples of the diol compound having a phenylene ether oligomer structure include compounds represented by the following formula (5-1) and compounds represented by the following formula (5-2).
  • m and n mean the number of repeating dimethylphenyleneoxy units.
  • Examples of the monocarboxylic acid having a polycyclic aromatic ring include 1-naphthalenecarboxylic acid, 2-naphthalenecarboxylic acid, 1-anthracenecarboxylic acid, 2-anthracenecarboxylic acid, 9-anthracenecarboxylic acid, and phenanthrenecarboxylic acid. , Pyrenecarboxylic acid and the like.
  • Examples of the acid halide of the monocarboxylic acid having a polycyclic aromatic ring include the acid chlorides and acid boramides of the monocarboxylic acids having a polycyclic aromatic ring described above.
  • Examples of the polyvalent carboxylic acid having an arylene group include 3,3′-oxydibenzoic acid, 4,4′-oxydibenzoic acid, 4,4′-oxydiphthalic acid and 2,6′-naphthalenedicarboxylic acid. 1,7′-naphthalenedicarboxylic acid, isophthalic acid, terephthalic acid, phthalic acid, 5-norbornane-2,3′dicarboxylic acid, 2,4-cyclopentadiene 1,1-dicarboxylic acid and the like.
  • Examples of the acid halide of the polyvalent carboxylic acid having an arylene group include acid chlorides and acid boramides of the polyvalent carboxylic acid having an arylene group described above.
  • a resin composition containing a curable resin and a curing agent, wherein the curing agent contains the ester compound of the present invention is also one aspect of the present invention.
  • the resin composition of the present invention contains the ester compound of the present invention, the cured product has excellent heat resistance and dielectric properties.
  • the resin composition of the present invention may contain other curing agents in addition to the ester compound of the present invention within a range that does not impair the object of the present invention in order to improve the processability in an uncured state.
  • the other curing agent include phenol-based curing agents, thiol-based curing agents, amine-based curing agents, acid anhydride-based curing agents, cyanate-based curing agents, active ester-based curing agents other than the ester compound of the present invention. Agents and the like. Of these, active ester-based curing agents and cyanate-based curing agents other than the ester compound of the present invention are preferable.
  • the preferable lower limit is 0.3 equivalent and the preferable upper limit is 2.0 equivalent with respect to 1 equivalent of the curable resin. is there.
  • the content of the ester compound of the present invention within this range makes the obtained resin composition more excellent in heat resistance and dielectric properties.
  • the more preferable lower limit of the content of the ester compound of the present invention is 0.6 equivalent, and the more preferable upper limit thereof is 1.5 equivalent.
  • the content of the ester compound of the present invention when the ester compound of the present invention and another curing agent are used together as the curing agent has a preferable lower limit of 0.05 equivalent, and preferably 1 equivalent of the curable resin.
  • the upper limit is 1.8 equivalents.
  • the ester compound of the present invention is used in combination with another curing agent as the above-mentioned curing agent, the more preferable lower limit of the content of the ester compound of the present invention is 0.2 equivalent, and the more preferable upper limit thereof is 1.2 equivalent.
  • the ester compound of the present invention and another curing agent are used in combination as the curing agent, the total content of the ester compound of the present invention and the other curing agent has a preferable lower limit of 0 with respect to 1 equivalent of the curable resin. 0.3 equivalent, and a preferable upper limit is 2.0 equivalent.
  • the content (equivalent) of the ester compound with respect to 1 equivalent of the curable resin is the ratio of the content of the active ester group in the ester compound when the content of the curable reactive group of the curable resin is 1.
  • the content of the curable reactive group is determined by dividing the content weight of the curable resin by the reactive group equivalent of the curable resin (for example, epoxy equivalent when the curable resin is an epoxy resin).
  • the content of the active ester group is determined by dividing the content weight of the ester compound by the active ester equivalent.
  • the resin composition of the present invention contains a curable resin.
  • the curable resin include epoxy resin, cyanate resin, phenol resin, imide resin, maleimide resin, benzoxazine resin, silicone resin, acrylic resin, and fluororesin.
  • the curable resin preferably contains at least one selected from the group consisting of epoxy resin, cyanate resin, phenol resin, imide resin, maleimide resin, and benzoxazine resin, and contains epoxy resin. Is more preferable.
  • the above curable resins may be used alone or in combination of two or more.
  • the epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, hydrogenated bisphenol type epoxy resin. , Propylene oxide-added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, naphthylene ether Type epoxy resin, phenol novolac type epoxy resin, ortho-cresol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalene phenol novolac type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, Examples thereof include rubber-modified epoxy resins and glycidyl ester compounds.
  • the resin composition of the present invention preferably contains a curing accelerator.
  • a curing accelerator By containing the above curing accelerator, the curing time can be shortened and the productivity can be improved.
  • the curing accelerator examples include imidazole curing accelerators, tertiary amine curing accelerators, phosphine curing accelerators, photobase generators, sulfonium salt curing accelerators, and the like. Among them, imidazole-based curing accelerators and phosphine-based curing accelerators are preferable from the viewpoint of storage stability and curability.
  • the above curing accelerators may be used alone or in combination of two or more.
  • the content of the curing accelerator is preferably 0.01 parts by weight and 5 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the curing accelerator is within this range, the resin composition obtained is more excellent in the effect of shortening the curing time without deteriorating the adhesiveness.
  • the more preferable lower limit of the content of the curing accelerator is 0.05 parts by weight, and the more preferable upper limit thereof is 3 parts by weight.
  • the resin composition of the present invention preferably contains an inorganic filler.
  • an inorganic filler By containing the above-mentioned inorganic filler, the resin composition of the present invention is more excellent in moisture absorption reflow resistance, plating resistance, and processability while maintaining excellent adhesiveness and long-term heat resistance.
  • the inorganic filler is preferably at least one of silica and barium sulfate.
  • the resin composition of the present invention becomes more excellent in hygroscopic reflow resistance, plating resistance, and processability.
  • Examples of the inorganic filler other than the silica and the barium sulfate include alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, and inorganic ion exchanger.
  • the inorganic fillers may be used alone or in combination of two or more.
  • the preferable lower limit of the average particle diameter of the inorganic filler is 50 nm, and the preferable upper limit is 20 ⁇ m. When the average particle size of the inorganic filler is within this range, the resin composition obtained will be more excellent in coatability and processability.
  • the more preferable lower limit of the average particle diameter of the inorganic filler is 100 nm, and the more preferable upper limit thereof is 10 ⁇ m.
  • the content of the inorganic filler is preferably 10 parts by weight and 1000 parts by weight with respect to 100 parts by weight of the total of the resin composition excluding the solvent.
  • the content of the above-mentioned inorganic filler is in this range, the obtained resin composition is more excellent in moisture absorption reflow resistance, plating resistance, and processability.
  • the more preferable lower limit of the content of the inorganic filler is 20 parts by weight.
  • the resin composition of the present invention may contain a flow regulator for the purpose of improving the wettability and shape retention on the adherend in a short time.
  • a flow regulator for the purpose of improving the wettability and shape retention on the adherend in a short time.
  • the flow modifier include fumed silica such as Aerosil and layered silicate.
  • the above flow regulator may be used alone or in combination of two or more kinds. Further, as the flow regulator, those having an average particle diameter of less than 100 nm are preferably used.
  • the content of the flow regulator is preferably 0.1 part by weight and 100 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the flow control agent is within this range, the effect of improving the wettability on the adherend in a short period of time and the shape-retaining property is improved.
  • the more preferable lower limit of the content of the flow regulator is 0.5 parts by weight, and the more preferable upper limit thereof is 50 parts by weight.
  • the resin composition of the present invention may contain an organic filler for the purpose of stress relaxation, imparting toughness and the like.
  • organic filler include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Of these, polyamide particles, polyamideimide particles, and polyimide particles are preferable.
  • the organic fillers may be used alone or in combination of two or more.
  • the content of the organic filler is preferably 300 parts by weight with respect to 100 parts by weight of the total resin composition excluding the solvent.
  • the content of the organic filler is within this range, the cured product of the obtained resin composition becomes more excellent in toughness and the like while maintaining excellent adhesiveness and the like.
  • the more preferable upper limit of the content of the organic filler is 200 parts by weight.
  • the resin composition of the present invention may contain a flame retardant.
  • the flame retardant include metal hydrates such as boehmite type aluminum hydroxide, aluminum hydroxide and magnesium hydroxide, halogen compounds, phosphorus compounds and nitrogen compounds. Among them, boehmite type aluminum hydroxide is preferable.
  • the above flame retardants may be used alone or in combination of two or more.
  • the content of the flame retardant is preferably 2 parts by weight and 300 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the flame retardant is within this range, the resin composition obtained has excellent flame retardancy while maintaining excellent adhesiveness and the like.
  • the more preferable lower limit of the content of the flame retardant is 5 parts by weight, and the more preferable upper limit thereof is 250 parts by weight.
  • the resin composition of the present invention may contain a thermoplastic resin as long as the object of the present invention is not impaired.
  • the resin composition of the present invention is more excellent in flow properties, and it becomes easier to satisfy both the filling property and the leaching prevention property during thermocompression bonding, and the flex resistance after curing. It will be excellent.
  • thermoplastic resin examples include a polyimide resin, a phenoxy resin, a polyamide resin, a polyamideimide resin, a polyvinyl acetal resin, and a bismaleimide resin.
  • polyimide resin, phenoxy resin, and bismaleimide resin are preferable from the viewpoint of heat resistance and handleability.
  • the above thermoplastic resins may be used alone or in combination of two or more kinds.
  • the preferred lower limit of the number average molecular weight of the thermoplastic resin is 2000, and the preferred upper limit is 100,000. When the number average molecular weight of the thermoplastic resin is within this range, the resin composition obtained is more excellent in flow properties and flex resistance after curing.
  • the more preferable lower limit of the number average molecular weight of the thermoplastic resin is 5,000, and the more preferable upper limit thereof is 50,000.
  • the content of the thermoplastic resin is preferably 0.5 parts by weight and 100 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the thermoplastic resin is 0.5 parts by weight or more, the resin composition obtained is more excellent in the flow characteristics and the flex resistance after curing.
  • the content of the thermoplastic resin is 120 parts by weight or less, the resin composition obtained will be more excellent in adhesiveness and heat resistance.
  • the more preferable lower limit of the content of the thermoplastic resin is 1 part by weight, and the more preferable upper limit thereof is 80 parts by weight.
  • the resin composition of the present invention may contain a solvent from the viewpoint of coatability and the like.
  • a solvent a non-polar solvent having a boiling point of 160° C. or lower or an aprotic polar solvent having a boiling point of 160° C. or lower is preferable from the viewpoint of coating properties and storage stability.
  • the non-polar solvent having a boiling point of 160° C. or lower or the aprotic polar solvent having a boiling point of 160° C. or lower include a ketone solvent, an ester solvent, a hydrocarbon solvent, a halogen solvent, an ether solvent, and a nitrogen-containing solvent. Examples include system solvents.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Examples of the ester solvent include methyl acetate, ethyl acetate, isobutyl acetate and the like.
  • Examples of the hydrocarbon solvent include benzene, toluene, normal hexane, isohexane, cyclohexane, methylcyclohexane, and normal heptane.
  • Examples of the halogen-based solvent include dichloromethane, chloroform, trichloroethylene and the like.
  • the ether solvent examples include diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane and the like.
  • the nitrogen-containing solvent examples include acetonitrile and the like.
  • the solvent is a ketone solvent having a boiling point of 60° C. or higher, an ester solvent having a boiling point of 60° C. or higher, and an ether solvent having a boiling point of 60° C. or higher. At least one selected from the group is preferred.
  • a solvent examples include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, isobutyl acetate, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran and the like.
  • the “boiling point” means a value measured under the condition of 101 kPa, or a value converted to 101 kPa in a boiling point conversion chart or the like.
  • the preferred lower limit of the content of the solvent in 100 parts by weight of the resin composition of the present invention is 10 parts by weight, and the preferred upper limit is 80 parts by weight.
  • the content of the solvent is within this range, the resin composition of the present invention is more excellent in coatability and the like.
  • the more preferable lower limit of the content of the solvent is 20 parts by weight, and the more preferable upper limit thereof is 70 parts by weight.
  • the resin composition of the present invention may contain a reactive diluent as long as the object of the present invention is not impaired.
  • the reactive diluent is preferably a reactive diluent having two or more reactive functional groups in one molecule.
  • the resin composition of the present invention may further contain additives such as a coupling agent, a dispersant, a storage stabilizer, an anti-bleeding agent, a flux agent and a leveling agent.
  • additives such as a coupling agent, a dispersant, a storage stabilizer, an anti-bleeding agent, a flux agent and a leveling agent.
  • Examples of the method for producing the resin composition of the present invention include a method of mixing a curable resin, the ester compound of the present invention, and a solvent and the like added as necessary with a mixer. ..
  • Examples of the mixer include a homodisper, a universal mixer, a Banbury mixer, and a kneader.
  • a resin composition film comprising the resin composition of the present invention can be obtained by applying the resin composition of the present invention onto a substrate film and drying it.
  • the resin composition film is cured to obtain a cured product.
  • a cured product of the resin composition of the present invention is also one aspect of the present invention.
  • the glass transition temperature of the cured product has a preferred lower limit of 100°C and a preferred upper limit of 250°C.
  • the cured product of the resin composition of the present invention is excellent in mechanical strength and long-term heat resistance.
  • the more preferable lower limit of the glass transition temperature of the cured product is 130°C, and the more preferable upper limit thereof is 220°C.
  • the “glass transition temperature of the cured product” is from ⁇ 0° C. to 300° C. at a temperature rising rate of 10° C./min, a frequency of 10 Hz and a chuck distance of 24 mm using a dynamic viscoelasticity measuring device.
  • the cured product for measuring the glass transition temperature can be obtained by heating the resin composition film having a thickness of about 400 ⁇ m at 190° C. for 30 minutes.
  • the resin composition of the present invention has a preferable lower limit of 5 ppm/° C. and a preferable upper limit of 100 ppm of the linear expansion coefficient in the temperature range of 40° C. to 120° C. /°C.
  • the cured product of the resin composition of the present invention is more excellent in heat resistance.
  • the more preferable lower limit of the linear expansion coefficient is 10 ppm/°C, and the more preferable upper limit thereof is 80 ppm/°C.
  • the “linear expansion coefficient” refers to a value measured by the TMA method under the conditions of a temperature rising rate of 10° C./min and a force of 50N.
  • the cured product used for measuring the linear expansion coefficient can be obtained, for example, by heating the resin composition film having a thickness of about 200 ⁇ m at 190° C. for 30 minutes.
  • the resin composition of the present invention has a preferable upper limit of the dielectric loss tangent of the cured product at 23° C. of 0.015. Since the cured product has a dielectric loss tangent of 0.015 or less at 23° C., the resin composition of the present invention can be suitably used for an interlayer insulating material such as a multilayer printed wiring board. The more preferable upper limit of the dielectric loss tangent at 23° C. of the cured product is 0.01.
  • the “dielectric loss tangent” is a value measured under the condition of 5 GHz using a dielectric constant measuring device and a network analyzer.
  • the cured product whose “dielectric loss tangent” is measured can be obtained by heating the above resin composition film having a thickness of about 40 ⁇ m to about 200 ⁇ m at 190° C. for 90 minutes.
  • the resin composition of the present invention can be used for a wide range of applications, but can be suitably used for electronic material applications where particularly high heat resistance is required.
  • it can be used as a die attach agent for use in electric control units (ECUs) for aviation and vehicles, and for power device applications using SiC and GaN.
  • adhesives for power overlay packages adhesives for printed wiring boards, adhesives for coverlays of flexible printed circuit boards, copper-clad laminates, adhesives for semiconductor bonding, interlayer insulating materials, prepregs, LED encapsulation. It can also be used as an adhesive and an adhesive for structural materials.
  • the resin composition of the present invention has a low dielectric constant and low dielectric loss tangent as a cured product and is excellent in dielectric properties, and therefore can be suitably used for a build-up film.
  • a build-up film using the resin composition of the present invention is also one aspect of the present invention.
  • the ester compound which can be used for the resin composition which is excellent in heat resistance and dielectric property after hardening can be provided. Further, according to the present invention, it is possible to provide a resin composition containing the ester compound, a cured product of the resin composition, and a buildup film using the resin composition.
  • ester compound A was represented by the following formula (6).
  • the number average molecular weight of the ester compound A was 2,150.
  • n and n mean the number of repeating dimethylphenyleneoxy units.
  • ester compound B was represented by the following formula (7).
  • the number average molecular weight of the ester compound B was 4,100.
  • m, n, o, and p mean the number of repeating dimethylphenyleneoxy units.
  • m and n mean the number of repeating dimethylphenyleneoxy units.
  • m and n mean the number of repeating dimethylphenyleneoxy units.
  • m and n mean the number of repeating dimethylphenyleneoxy units.
  • Examples 1 to 6, Comparative Examples 1 to 5 Methyl ethyl ketone was added as a solvent to each material having the compounding ratio shown in Table 1, and the mixture was stirred at 1200 rpm for 4 hours using a stirrer to obtain a resin composition.
  • the molecular weight of the compound represented by the above formula (5-1) is regarded as 1000
  • the theoretical molecular weight obtained from the structures of the above formulas (6) to (10) is divided by the number of each ester group.
  • the active ester equivalents of the ester compounds A to E were determined with.
  • the active ester equivalent of Compound A was 651
  • the active ester equivalent of Compound B was 630
  • the active ester equivalent of Compound C was 607
  • the active ester equivalent of Compound D was 567
  • the active ester equivalent of Compound E was 601. .
  • the composition of Table 1 describes the solid content excluding the solvent.
  • the obtained resin composition was applied onto the release-treated surface of a PET film having a thickness of 25 ⁇ m using an applicator.
  • XG284 manufactured by Toray Industries, Inc.
  • the base PET film was peeled off from each uncured laminated film obtained in each of the examples and comparative examples, and the resin composition layers were laminated using a laminator to obtain a laminate having a thickness of about 400 ⁇ m.
  • the obtained laminated body was heated at 190° C. for 90 minutes to obtain a cured product.
  • a tan ⁇ curve obtained when the temperature was raised from 0° C. to 300° C. under the conditions of a temperature rising rate of 10° C./minute, a frequency of 10 Hz, and a chuck distance of 24 mm. was determined as the glass transition temperature.
  • Rheovibron DDV-25GP manufactured by A&D Company
  • the base PET film was peeled off from each uncured laminated film obtained in each of the examples and comparative examples, and the resin composition layers were laminated using a laminator to obtain a laminate having a thickness of about 400 ⁇ m.
  • the obtained laminated body was heated at 190° C. for 90 minutes to obtain a cured product.
  • a linear expansion coefficient was measured in a temperature range from 40° C. to 120° C. under the conditions of a temperature rising rate of 10° C./min and a force of 50 N using a TMA device.
  • TMA7100 manufactured by Hitachi High-Tech Science Co., Ltd.
  • Each uncured laminated film obtained in Examples and Comparative Examples was cut into a size of 2 mm in width and 80 mm in length.
  • the base PET film was peeled from the resin composition film after cutting, and the resin composition layers were laminated using a laminator to obtain a laminate having a thickness of about 200 ⁇ m.
  • the obtained laminated body was heated at 190° C. for 90 minutes to obtain a cured product.
  • the dielectric loss tangent of the obtained cured product was measured by a cavity resonance perturbation method dielectric constant measuring device and a network analyzer under the conditions of a cavity resonance method at 23° C. and a frequency of 5 GHz.
  • CP521 manufactured by Kanto Electronics Application Development Co., Ltd.
  • N5224A PNA manufactured by Keysight Technology Inc.
  • the ester compound which can be used for the resin composition which is excellent in heat resistance and dielectric property after hardening can be provided. Further, according to the present invention, it is possible to provide a resin composition containing the ester compound, a cured product of the resin composition, and a buildup film using the resin composition.

Abstract

The purpose of the present invention is to provide an ester compound that can be used in a resin composition that has excellent heat resistance and dielectric properties after curing. Additionally, the purpose of the present invention is to provide: a resin composition containing the ester compound; a cured product of the resin composition; and a build-up film that is produced using the resin composition. The present invention is an ester compound having a phenylene ether oligomer structure in the main chain thereof, and having a polycyclic aromatic carbonyloxy group at both ends thereof.

Description

エステル化合物、樹脂組成物、硬化物、及び、ビルドアップフィルムEster compound, resin composition, cured product, and build-up film
本発明は、硬化後の耐熱性及び誘電特性に優れる樹脂組成物に用いることができるエステル化合物に関する。また、本発明は、該エステル化合物を含有する樹脂組成物、該樹脂組成物の硬化物、及び、該樹脂組成物を用いてなるビルドアップフィルムに関する。 The present invention relates to an ester compound that can be used in a resin composition having excellent heat resistance and dielectric properties after curing. The present invention also relates to a resin composition containing the ester compound, a cured product of the resin composition, and a build-up film using the resin composition.
低収縮であり、接着性、絶縁性、及び、耐薬品性に優れるエポキシ樹脂等の硬化性樹脂は、多くの工業製品に使用されている。特に、プリント配線板の層間絶縁材料等に用いられる樹脂組成物には、低誘電率、低誘電正接といった誘電特性が必要となる。このような誘電特性に優れる樹脂組成物として、例えば、特許文献1、2には、硬化性樹脂と、硬化剤として特定の構造を有する化合物とを含有する樹脂組成物が開示されている。しかしながら、このような樹脂組成物は、硬化後の耐熱性と誘電特性とを両立することが困難であるという問題があった。 A curable resin such as an epoxy resin, which has a low shrinkage and is excellent in adhesiveness, insulation, and chemical resistance, is used in many industrial products. In particular, a resin composition used as an interlayer insulating material for a printed wiring board is required to have dielectric properties such as a low dielectric constant and a low dielectric loss tangent. As such a resin composition having excellent dielectric properties, for example, Patent Documents 1 and 2 disclose resin compositions containing a curable resin and a compound having a specific structure as a curing agent. However, such a resin composition has a problem that it is difficult to achieve both heat resistance after curing and dielectric properties.
特開2017-186551号公報JP, 2017-186551, A 国際公開第2016/114286号International Publication No. 2016/114286
本発明は、硬化後の耐熱性及び誘電特性に優れる樹脂組成物に用いることができるエステル化合物を提供することを目的とする。また、本発明は、該エステル化合物を含有する樹脂組成物、該樹脂組成物の硬化物、及び、該樹脂組成物を用いてなるビルドアップフィルムを提供することを目的とする。 An object of the present invention is to provide an ester compound that can be used in a resin composition having excellent heat resistance and dielectric properties after curing. It is another object of the present invention to provide a resin composition containing the ester compound, a cured product of the resin composition, and a build-up film using the resin composition.
本発明は、主鎖にフェニレンエーテルオリゴマー構造を有し、かつ、両末端に多環式芳香族環カルボニルオキシ基を有するエステル化合物である。
以下に本発明を詳述する。
The present invention is an ester compound having a phenylene ether oligomer structure in the main chain and polycyclic aromatic ring carbonyloxy groups at both ends.
The present invention will be described in detail below.
本発明者らは、硬化後の耐熱性と誘電特性とを両立することのできる樹脂組成物を得るため、硬化性樹脂の種類や配合割合を調整することを検討した。しかしながら、硬化性樹脂の種類や配合割合の調整だけでは、硬化後の耐熱性と誘電特性とを両立することが困難であった。そこで本発明者らは、硬化後の耐熱性を向上させるため、硬化剤として高分子量のフェニレンエーテル化合物を用いることを検討したが、樹脂成分との相溶性に劣るために反応が充分に進行せず、得られる硬化物が誘電特性に劣るものとなることがあった。そこで本発明者らは更に鋭意検討した結果、主鎖にフェニレンエーテルオリゴマー構造を有し、かつ、両末端に多環式芳香族環カルボニルオキシ基を有するエステル化合物を硬化剤として用いることにより、硬化後の耐熱性及び誘電特性に優れる樹脂組成物を得ることができることを見出し、本発明を完成させるに至った。 The present inventors have examined adjusting the type and mixing ratio of the curable resin in order to obtain a resin composition that can achieve both heat resistance after curing and dielectric properties. However, it has been difficult to achieve both heat resistance after curing and dielectric properties only by adjusting the type and mixing ratio of the curable resin. Therefore, the present inventors have studied to use a high molecular weight phenylene ether compound as a curing agent in order to improve the heat resistance after curing, but the reaction is insufficient because the compatibility with the resin component is poor. In some cases, the resulting cured product may have poor dielectric properties. Therefore, as a result of further diligent studies, the present inventors have found that a main chain has a phenylene ether oligomer structure, and an ester compound having a polycyclic aromatic ring carbonyloxy group at both ends is used as a curing agent to cure. The inventors have found that a resin composition having excellent heat resistance and dielectric properties can be obtained, and have completed the present invention.
本発明のエステル化合物は、主鎖にフェニレンエーテルオリゴマー構造を有する。主鎖にフェニレンエーテルオリゴマー構造を有することにより、得られる樹脂組成物の硬化物が耐熱性に優れるものとなる。
なお、本明細書において上記「フェニレンエーテルオリゴマー構造」は、置換されていてもよいフェニレンオキシ単位の繰り返し構造を意味する。
The ester compound of the present invention has a phenylene ether oligomer structure in the main chain. By having a phenylene ether oligomer structure in the main chain, the cured product of the obtained resin composition has excellent heat resistance.
In addition, in the present specification, the above-mentioned “phenylene ether oligomer structure” means a repeating structure of optionally substituted phenyleneoxy units.
上記フェニレンエーテルオリゴマー構造は、下記式(1-1)で表される構造単位の繰り返し構造及び/又は下記式(1-2)で表される構造単位の繰り返し構造であることが好ましく、下記式(2-1)で表される構造単位の繰り返し構造及び/又は下記式(2-2)で表される構造単位の繰り返し構造であることがより好ましい。 The phenylene ether oligomer structure is preferably a repeating structure of a structural unit represented by the following formula (1-1) and/or a repeating structure of a structural unit represented by the following formula (1-2). The repeating structure of the structural unit represented by (2-1) and/or the repeating structure of the structural unit represented by the following formula (2-2) is more preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
式(1-1)及び式(1-2)中、R~Rは、それぞれ同一であってもよいし、異なっていてもよく、水素原子又は炭素数1以上10以下のアルキル基である。 In formulas (1-1) and (1-2), R 1 to R 4 may be the same or different and each is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. is there.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
本発明のエステル化合物は、両末端に多環式芳香族環カルボニルオキシ基を有する。両末端に多環式芳香族環カルボニルオキシ基を有することにより、樹脂成分との相溶性に優れるものとなり、得られる樹脂組成物の硬化物が低誘電正接等の誘電特性に優れるものとなる。 The ester compound of the present invention has a polycyclic aromatic ring carbonyloxy group at both ends. By having a polycyclic aromatic ring carbonyloxy group at both ends, the compatibility with the resin component becomes excellent, and the cured product of the obtained resin composition has excellent dielectric properties such as low dielectric loss tangent.
上記多環式芳香族環カルボニルオキシ基は、多環式アリールカルボニルオキシ基であってもよいし、多環式ヘテロアリールカルボニルオキシ基であってもよい。即ち、上記多環式芳香族環カルボニルオキシ基が有する多環式芳香族環は、多環式アリール基であってもよいし、多環式ヘテロアリール基であってもよい。
上記多環式アリールカルボニルオキシ基に含まれる多環式アリール基は、置換されていてもよいし、置換されていなくてもよい。また、上記多環式ヘテロアリールカルボニルオキシ基に含まれる多環式ヘテロアリール基は、置換されていてもよいし、置換されていなくてもよい。
上記多環式アリール基としては、例えば、ナフチル基、アントリル基等が挙げられる。なかでもナフチル基が好ましい。
上記多環式ヘテロアリール基としては、例えば、キノリル基、アクリジン基、インドリル基、ベンゾチエニル基等が挙げられる。
上記多環式アリールカルボニルオキシ基としては、具体的には例えば、ナフチルカルボニルオキシ基、アントリルカルボニルオキシ基等が挙げられる。なかでも、ナフチルカルボニルオキシ基が好ましい。
上記多環式ヘテロアリールカルボニルオキシ基としては、具体的には例えば、キノリルカルボニルオキシ基、アクリジンカルボニルオキシ基、インドリルカルボニルオキシ基、ベンゾチエニルカルボニルオキシ基等が挙げられる。
The polycyclic aromatic ring carbonyloxy group may be a polycyclic arylcarbonyloxy group or a polycyclic heteroarylcarbonyloxy group. That is, the polycyclic aromatic ring contained in the polycyclic aromatic ring carbonyloxy group may be a polycyclic aryl group or a polycyclic heteroaryl group.
The polycyclic aryl group contained in the above polycyclic arylcarbonyloxy group may be substituted or may not be substituted. Further, the polycyclic heteroaryl group contained in the above polycyclic heteroarylcarbonyloxy group may be substituted or may not be substituted.
Examples of the polycyclic aryl group include a naphthyl group and an anthryl group. Of these, a naphthyl group is preferable.
Examples of the polycyclic heteroaryl group include quinolyl group, acridine group, indolyl group, benzothienyl group and the like.
Specific examples of the polycyclic arylcarbonyloxy group include a naphthylcarbonyloxy group and an anthrylcarbonyloxy group. Of these, a naphthylcarbonyloxy group is preferable.
Specific examples of the polycyclic heteroarylcarbonyloxy group include a quinolylcarbonyloxy group, an acridinecarbonyloxy group, an indolylcarbonyloxy group, a benzothienylcarbonyloxy group, and the like.
本発明のエステル化合物は、上記多環式芳香族環を含む構造として、下記式(3-1)で表される構造を有することが好ましく、下記式(3-2)で表される構造を有することがより好ましい。 The ester compound of the present invention preferably has a structure represented by the following formula (3-1) as a structure containing the above polycyclic aromatic ring, and a structure represented by the following formula (3-2). It is more preferable to have.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式(3-1)及び式(3-2)中、Rは、多環式芳香族環であり、*は、結合位置である。式(3-2)中、R~Rは、それぞれ同一であってもよいし、異なっていてもよく、水素原子又は炭素数1以上10以下のアルキル基である。 In formulas (3-1) and (3-2), R 5 is a polycyclic aromatic ring, and * is a bonding position. In formula (3-2), R 6 to R 9 may be the same or different and each is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
上記式(3-1)及び式(3-2)中、Rは、多環式芳香族環である。即ち、該Rで表される多環式芳香族環は、上述した多環式芳香族環カルボニルオキシ基が有する多環式芳香族環である。
また、上記式(3-2)で表される構造は、R及びRがメチル基であり、かつ、R及びRが水素原子である構造であることが好ましい。
In the above formulas (3-1) and (3-2), R 5 is a polycyclic aromatic ring. That is, the polycyclic aromatic ring represented by R 5 is a polycyclic aromatic ring possessed by the above-mentioned polycyclic aromatic ring carbonyloxy group.
Further, the structure represented by the above formula (3-2) is preferably a structure in which R 6 and R 8 are methyl groups, and R 7 and R 9 are hydrogen atoms.
本発明のエステル化合物は、上記フェニレンエーテルオリゴマー構造及び上記多環式芳香族環カルボニルオキシ基に加えて、主鎖にアリーレン基と2以上のカルボニルオキシ基とを含む構造を有していてもよい。該2以上のカルボニルオキシ基は、それぞれ別の上記フェニレンエーテルオリゴマー構造と結合していることが好ましい。 The ester compound of the present invention may have a structure containing an arylene group and two or more carbonyloxy groups in the main chain in addition to the phenylene ether oligomer structure and the polycyclic aromatic ring carbonyloxy group. .. The two or more carbonyloxy groups are preferably bonded to different phenylene ether oligomer structures.
上記アリーレン基は、置換されていてもよい。また、2以上のアリーレン基が酸素原子等を介して結合していてもよい。
上記アリーレン基を含む基としては、例えば、フェニレン基、ナフタレン基、ビフェニレン基、ジフェニレンエーテル基、ビスフェニレン基等が挙げられる。なかでも、ジフェニレンエーテル基が好ましい。
The arylene group may be substituted. Further, two or more arylene groups may be bonded via an oxygen atom or the like.
Examples of the group containing an arylene group include a phenylene group, a naphthalene group, a biphenylene group, a diphenylene ether group, and a bisphenylene group. Of these, a diphenylene ether group is preferable.
特に、本発明のエステル化合物は、下記式(4-1)で表される構造を有することが好ましく、下記式(4-2)で表される構造を有することがより好ましい。 In particular, the ester compound of the present invention preferably has a structure represented by the following formula (4-1), and more preferably has a structure represented by the following formula (4-2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(4-1)及び式(4-2)中、R10は、アリーレン基を含む基であり、*は、結合位置である。式(4-2)中、R11~R18は、それぞれ同一であってもよいし、異なっていてもよく、水素原子又は炭素数1以上10以下のアルキル基である。 In formulas (4-1) and (4-2), R 10 is a group containing an arylene group, and * is a bonding position. In formula (4-2), R 11 to R 18 may be the same or different and each is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
上記式(4-2)で表される構造は、R12、R14、R15、及び、R17がメチル基であり、かつ、R11、R13、R16、及び、R18が水素原子である構造であることが好ましい。 In the structure represented by the formula (4-2), R 12 , R 14 , R 15 and R 17 are methyl groups, and R 11 , R 13 , R 16 and R 18 are hydrogen. It is preferable that the structure is an atom.
本発明のエステル化合物の分子量の好ましい下限は500、好ましい上限は4万である。上記分子量がこの範囲であることにより、本発明のエステル化合物は、樹脂成分との相溶性により優れるものとなり、得られる樹脂組成物の硬化物が低誘電正接等の誘電特性により優れるものとなる。本発明のエステル化合物の分子量のより好ましい下限は1000、より好ましい上限は15000である。
なお、本明細書において上記「分子量」は、分子構造が特定される化合物については、構造式から求められる分子量であるが、重合度の分布が広い化合物及び変性部位が不特定な化合物については、数平均分子量を用いて表す場合がある。本明細書において上記「数平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際に用いるカラムとしては、例えば、JAIGEL-2H-A(日本分析工業社製)等が挙げられる。
また、本発明のエステル化合物の活性エステル当量の好ましい上限は5000である。上記活性エステル当量の上限が5000以下であることにより、樹脂成分との相溶性により優れるものとなり、得られる樹脂組成物の硬化物が低誘電正接等の誘電特性により優れるものとなる。上記活性エステル当量のより好ましい上限は4000、更に好ましい上限は3000である。本発明のエステル化合物の活性エステル当量の下限は特に限定されないが、通常250以上である。
なお、上記「活性エステル当量」は、エステル化合物の分子量を該エステル化合物に含まれるエステル基の数で除した値を意味する。
The preferred lower limit of the molecular weight of the ester compound of the present invention is 500, and the preferred upper limit thereof is 40,000. When the molecular weight is within this range, the ester compound of the present invention is more excellent in compatibility with the resin component, and the cured product of the obtained resin composition is more excellent in dielectric properties such as low dielectric loss tangent. The more preferable lower limit of the molecular weight of the ester compound of the present invention is 1,000, and the more preferable upper limit thereof is 15,000.
In the present specification, the “molecular weight” is a molecular weight obtained from the structural formula for a compound whose molecular structure is specified, but for a compound having a wide distribution of the degree of polymerization and a compound having an unspecified modified site, It may be expressed using the number average molecular weight. In the present specification, the “number average molecular weight” is a value obtained by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and polystyrene conversion. Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2H-A (manufactured by Japan Analytical Industry Co., Ltd.) and the like.
Moreover, the preferable upper limit of the active ester equivalent of the ester compound of the present invention is 5,000. When the upper limit of the active ester equivalent is 5000 or less, the compatibility with the resin component becomes excellent, and the cured product of the obtained resin composition becomes excellent in the dielectric properties such as low dielectric loss tangent. The more preferable upper limit of the active ester equivalent weight is 4000, and the still more preferable upper limit thereof is 3000. The lower limit of the active ester equivalent of the ester compound of the present invention is not particularly limited, but is usually 250 or more.
The “active ester equivalent” means a value obtained by dividing the molecular weight of the ester compound by the number of ester groups contained in the ester compound.
本発明のエステル化合物を製造する方法としては、例えば、フェニレンエーテルオリゴマー構造を有するジオール化合物と、多環式芳香族環を有するモノカルボン酸又はその酸ハライドとを反応させる方法等が挙げられる。また、例えば、フェニレンエーテルオリゴマー構造を有するジオール化合物と、多環式芳香族環を有するモノカルボン酸又はその酸ハライドと、アリーレン基を有する多価カルボン酸又はその酸ハライドとを反応させる方法等も挙げられる。 Examples of the method for producing the ester compound of the present invention include a method of reacting a diol compound having a phenylene ether oligomer structure with a monocarboxylic acid having a polycyclic aromatic ring or an acid halide thereof. Further, for example, a method of reacting a diol compound having a phenylene ether oligomer structure, a monocarboxylic acid having a polycyclic aromatic ring or an acid halide thereof, and a polyvalent carboxylic acid having an arylene group or an acid halide thereof Can be mentioned.
上記フェニレンエーテルオリゴマー構造を有するジオール化合物としては、例えば、下記式(5-1)で表される化合物、下記式(5-2)で表される化合物等が挙げられる。 Examples of the diol compound having a phenylene ether oligomer structure include compounds represented by the following formula (5-1) and compounds represented by the following formula (5-2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(5-1)及び式(5-2)中、m及びnは、ジメチルフェニレンオキシ単位の繰り返し数を意味する。 In formulas (5-1) and (5-2), m and n mean the number of repeating dimethylphenyleneoxy units.
上記多環式芳香族環を有するモノカルボン酸としては、例えば、1-ナフタレンカルボン酸、2-ナフタレンカルボン酸、1-アントラセンカルボン酸、2-アントラセンカルボン酸、9-アントラセンカルボン酸、フェナントレンカルボン酸、ピレンカルボン酸等が挙げられる。また、上記多環式芳香族環を有するモノカルボン酸の酸ハライドとしては、上述した多環式芳香族環を有するモノカルボン酸の酸クロリド、酸ボロミド等が挙げられる。 Examples of the monocarboxylic acid having a polycyclic aromatic ring include 1-naphthalenecarboxylic acid, 2-naphthalenecarboxylic acid, 1-anthracenecarboxylic acid, 2-anthracenecarboxylic acid, 9-anthracenecarboxylic acid, and phenanthrenecarboxylic acid. , Pyrenecarboxylic acid and the like. Examples of the acid halide of the monocarboxylic acid having a polycyclic aromatic ring include the acid chlorides and acid boramides of the monocarboxylic acids having a polycyclic aromatic ring described above.
上記アリーレン基を有する多価カルボン酸としては、例えば、3,3’-オキシ二安息香酸、4,4’-オキシ二安息香酸、4,4’-オキシジフタル酸、2,6’-ナフタレンジカルボン酸、1,7’-ナフタレンジカルボン酸、イソフタル酸、テレフタル酸、フタル酸、5-ノルボルナン-2,3’ジカルボン酸、2,4-シクロペンタジエン1,1-ジカルボン酸等が挙げられる。また、上記アリーレン基を有する多価カルボン酸の酸ハライドとしては、上述したアリーレン基を有する多価カルボン酸の酸クロリド、酸ボロミド等が挙げられる。 Examples of the polyvalent carboxylic acid having an arylene group include 3,3′-oxydibenzoic acid, 4,4′-oxydibenzoic acid, 4,4′-oxydiphthalic acid and 2,6′-naphthalenedicarboxylic acid. 1,7′-naphthalenedicarboxylic acid, isophthalic acid, terephthalic acid, phthalic acid, 5-norbornane-2,3′dicarboxylic acid, 2,4-cyclopentadiene 1,1-dicarboxylic acid and the like. Examples of the acid halide of the polyvalent carboxylic acid having an arylene group include acid chlorides and acid boramides of the polyvalent carboxylic acid having an arylene group described above.
硬化性樹脂と硬化剤とを含有する樹脂組成物であって、上記硬化剤は、本発明のエステル化合物を含む樹脂組成物もまた、本発明の1つである。
本発明のエステル化合物を含有することにより、本発明の樹脂組成物は、硬化物が耐熱性及び誘電特性に優れるものとなる。
A resin composition containing a curable resin and a curing agent, wherein the curing agent contains the ester compound of the present invention is also one aspect of the present invention.
When the resin composition of the present invention contains the ester compound of the present invention, the cured product has excellent heat resistance and dielectric properties.
本発明の樹脂組成物は、未硬化状態での加工性を向上させる等のために、本発明の目的を阻害しない範囲において、本発明のエステル化合物に加えて他の硬化剤を含有してもよい。
上記他の硬化剤としては、例えば、フェノール系硬化剤、チオール系硬化剤、アミン系硬化剤、酸無水物系硬化剤、シアネート系硬化剤、本発明のエステル化合物以外の他の活性エステル系硬化剤等が挙げられる。なかでも、本発明のエステル化合物以外の他の活性エステル系硬化剤、シアネート系硬化剤が好ましい。
The resin composition of the present invention may contain other curing agents in addition to the ester compound of the present invention within a range that does not impair the object of the present invention in order to improve the processability in an uncured state. Good.
Examples of the other curing agent include phenol-based curing agents, thiol-based curing agents, amine-based curing agents, acid anhydride-based curing agents, cyanate-based curing agents, active ester-based curing agents other than the ester compound of the present invention. Agents and the like. Of these, active ester-based curing agents and cyanate-based curing agents other than the ester compound of the present invention are preferable.
上記硬化剤として、本発明のエステル化合物のみを用いる場合の本発明のエステル化合物の含有量は、硬化性樹脂1当量に対して、好ましい下限が0.3当量、好ましい上限が2.0当量である。上記硬化剤として本発明のエステル化合物のみを用いる場合、本発明のエステル化合物の含有量がこの範囲であることにより、得られる樹脂組成物が、耐熱性及び誘電特性により優れるものとなる。上記硬化剤として本発明のエステル化合物のみを用いる場合の本発明のエステル化合物の含有量のより好ましい下限は0.6当量、より好ましい上限は1.5当量である。
また、上記硬化剤として、本発明のエステル化合物とその他の硬化剤を併用する場合の本発明のエステル化合物の含有量は、硬化性樹脂1当量に対して、好ましい下限が0.05当量、好ましい上限が1.8当量である。上記硬化剤として本発明のエステル化合物とその他の硬化剤を併用する場合、本発明のエステル化合物の含有量がこの範囲であることにより、得られる樹脂組成物が、耐熱性及び誘電特性により優れるものとなる。上記硬化剤として本発明のエステル化合物とその他の硬化剤を併用する場合の本発明のエステル化合物の含有量のより好ましい下限は0.2当量、より好ましい上限は1.2当量である。上記硬化剤として本発明のエステル化合物とその他の硬化剤を併用する場合の本発明のエステル化合物とその他の硬化剤との合計の含有量は、硬化性樹脂1当量に対して、好ましい下限が0.3当量、好ましい上限が2.0当量である。
なお、上記硬化性樹脂1当量に対するエステル化合物の含有量(当量)は、硬化性樹脂が有する硬化性反応基の含有量を1とした場合のエステル化合物中の活性エステル基の含有量の比を意味する。上記硬化性反応基の含有量は、硬化性樹脂の含有重量を硬化性樹脂の反応基当量(例えば、硬化性樹脂がエポキシ樹脂の場合、エポキシ当量)で除することで求められる。上記活性エステル基の含有量は、エステル化合物の含有重量を上記活性エステル当量で除することで求められる。
As for the content of the ester compound of the present invention when only the ester compound of the present invention is used as the curing agent, the preferable lower limit is 0.3 equivalent and the preferable upper limit is 2.0 equivalent with respect to 1 equivalent of the curable resin. is there. When only the ester compound of the present invention is used as the curing agent, the content of the ester compound of the present invention within this range makes the obtained resin composition more excellent in heat resistance and dielectric properties. When only the ester compound of the present invention is used as the curing agent, the more preferable lower limit of the content of the ester compound of the present invention is 0.6 equivalent, and the more preferable upper limit thereof is 1.5 equivalent.
In addition, the content of the ester compound of the present invention when the ester compound of the present invention and another curing agent are used together as the curing agent has a preferable lower limit of 0.05 equivalent, and preferably 1 equivalent of the curable resin. The upper limit is 1.8 equivalents. When the ester compound of the present invention is used in combination with another curing agent as the above-mentioned curing agent, the content of the ester compound of the present invention is within this range, so that the resulting resin composition is excellent in heat resistance and dielectric properties. Becomes When the ester compound of the present invention is used in combination with another curing agent as the above-mentioned curing agent, the more preferable lower limit of the content of the ester compound of the present invention is 0.2 equivalent, and the more preferable upper limit thereof is 1.2 equivalent. When the ester compound of the present invention and another curing agent are used in combination as the curing agent, the total content of the ester compound of the present invention and the other curing agent has a preferable lower limit of 0 with respect to 1 equivalent of the curable resin. 0.3 equivalent, and a preferable upper limit is 2.0 equivalent.
The content (equivalent) of the ester compound with respect to 1 equivalent of the curable resin is the ratio of the content of the active ester group in the ester compound when the content of the curable reactive group of the curable resin is 1. means. The content of the curable reactive group is determined by dividing the content weight of the curable resin by the reactive group equivalent of the curable resin (for example, epoxy equivalent when the curable resin is an epoxy resin). The content of the active ester group is determined by dividing the content weight of the ester compound by the active ester equivalent.
本発明の樹脂組成物は、硬化性樹脂を含有する。
上記硬化性樹脂としては、例えば、エポキシ樹脂、シアネート樹脂、フェノール樹脂、イミド樹脂、マレイミド樹脂、ベンゾオキサジン樹脂、シリコーン樹脂、アクリル樹脂、フッ素樹脂等が挙げられる。なかでも、上記硬化性樹脂は、エポキシ樹脂、シアネート樹脂、フェノール樹脂、イミド樹脂、マレイミド樹脂、及び、ベンゾオキサジン樹脂からなる群より選択される少なくとも1種を含むことが好ましく、エポキシ樹脂を含むことがより好ましい。上記硬化性樹脂は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
The resin composition of the present invention contains a curable resin.
Examples of the curable resin include epoxy resin, cyanate resin, phenol resin, imide resin, maleimide resin, benzoxazine resin, silicone resin, acrylic resin, and fluororesin. Among them, the curable resin preferably contains at least one selected from the group consisting of epoxy resin, cyanate resin, phenol resin, imide resin, maleimide resin, and benzoxazine resin, and contains epoxy resin. Is more preferable. The above curable resins may be used alone or in combination of two or more.
上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, hydrogenated bisphenol type epoxy resin. , Propylene oxide-added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, naphthylene ether Type epoxy resin, phenol novolac type epoxy resin, ortho-cresol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalene phenol novolac type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, Examples thereof include rubber-modified epoxy resins and glycidyl ester compounds.
本発明の樹脂組成物は、硬化促進剤を含有することが好ましい。上記硬化促進剤を含有することにより、硬化時間を短縮させて生産性を向上させることができる。 The resin composition of the present invention preferably contains a curing accelerator. By containing the above curing accelerator, the curing time can be shortened and the productivity can be improved.
上記硬化促進剤としては、例えば、イミダゾール系硬化促進剤、3級アミン系硬化促進剤、ホスフィン系硬化促進剤、光塩基発生剤、スルホニウム塩系硬化促進剤等が挙げられる。なかでも、貯蔵安定性及び硬化性の観点から、イミダゾール系硬化促進剤、ホスフィン系硬化促進剤が好ましい。
上記硬化促進剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
Examples of the curing accelerator include imidazole curing accelerators, tertiary amine curing accelerators, phosphine curing accelerators, photobase generators, sulfonium salt curing accelerators, and the like. Among them, imidazole-based curing accelerators and phosphine-based curing accelerators are preferable from the viewpoint of storage stability and curability.
The above curing accelerators may be used alone or in combination of two or more.
上記硬化促進剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が5重量部である。上記硬化促進剤の含有量がこの範囲であることにより、得られる樹脂組成物の接着性を悪化させることなく硬化時間を短縮させる効果により優れるものとなる。上記硬化促進剤の含有量のより好ましい下限は0.05重量部、より好ましい上限は3重量部である。 The content of the curing accelerator is preferably 0.01 parts by weight and 5 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the curing accelerator is within this range, the resin composition obtained is more excellent in the effect of shortening the curing time without deteriorating the adhesiveness. The more preferable lower limit of the content of the curing accelerator is 0.05 parts by weight, and the more preferable upper limit thereof is 3 parts by weight.
本発明の樹脂組成物は、無機充填剤を含有することが好ましい。
上記無機充填剤を含有することにより、本発明の樹脂組成物は、優れた接着性及び長期耐熱性を維持したまま、吸湿リフロー耐性、めっき耐性、及び、加工性により優れるものとなる。
The resin composition of the present invention preferably contains an inorganic filler.
By containing the above-mentioned inorganic filler, the resin composition of the present invention is more excellent in moisture absorption reflow resistance, plating resistance, and processability while maintaining excellent adhesiveness and long-term heat resistance.
上記無機充填剤は、シリカ及び硫酸バリウムの少なくともいずれかであることが好ましい。上記無機充填剤としてシリカ及び硫酸バリウムの少なくともいずれかを含有することにより、本発明の樹脂組成物は、吸湿リフロー耐性、めっき耐性、及び、加工性により優れるものとなる。 The inorganic filler is preferably at least one of silica and barium sulfate. By containing at least one of silica and barium sulfate as the above-mentioned inorganic filler, the resin composition of the present invention becomes more excellent in hygroscopic reflow resistance, plating resistance, and processability.
上記シリカ及び上記硫酸バリウム以外のその他の無機充填剤としては、例えば、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、ガラスパウダー、ガラスフリット、ガラス繊維、カーボンファイバー、無機イオン交換体等が挙げられる。 Examples of the inorganic filler other than the silica and the barium sulfate include alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, and inorganic ion exchanger.
上記無機充填剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。 The inorganic fillers may be used alone or in combination of two or more.
上記無機充填剤の平均粒子径の好ましい下限は50nm、好ましい上限は20μmである。上記無機充填剤の平均粒子径がこの範囲であることにより、得られる樹脂組成物が塗布性や加工性により優れるものとなる。上記無機充填剤の平均粒子径のより好ましい下限は100nm、より好ましい上限は10μmである。 The preferable lower limit of the average particle diameter of the inorganic filler is 50 nm, and the preferable upper limit is 20 μm. When the average particle size of the inorganic filler is within this range, the resin composition obtained will be more excellent in coatability and processability. The more preferable lower limit of the average particle diameter of the inorganic filler is 100 nm, and the more preferable upper limit thereof is 10 μm.
上記無機充填剤の含有量は、後述する溶媒を用いる場合は該溶媒を除く樹脂組成物の合計100重量部に対して、好ましい下限が10重量部、好ましい上限が1000重量部である。上記無機充填剤の含有量がこの範囲であることにより、得られる樹脂組成物が吸湿リフロー耐性、めっき耐性、及び、加工性により優れるものとなる。上記無機充填剤の含有量のより好ましい下限は20重量部である。 When the solvent described below is used, the content of the inorganic filler is preferably 10 parts by weight and 1000 parts by weight with respect to 100 parts by weight of the total of the resin composition excluding the solvent. When the content of the above-mentioned inorganic filler is in this range, the obtained resin composition is more excellent in moisture absorption reflow resistance, plating resistance, and processability. The more preferable lower limit of the content of the inorganic filler is 20 parts by weight.
本発明の樹脂組成物は、被着体への短時間での塗れ性と形状保持性とを向上させる等の目的で流動調整剤を含有してもよい。
上記流動調整剤としては、例えば、アエロジル等のヒュームドシリカや層状ケイ酸塩等が挙げられる。
上記流動調整剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
また、上記流動調整剤としては、平均粒子径が100nm未満のものが好適に用いられる。
The resin composition of the present invention may contain a flow regulator for the purpose of improving the wettability and shape retention on the adherend in a short time.
Examples of the flow modifier include fumed silica such as Aerosil and layered silicate.
The above flow regulator may be used alone or in combination of two or more kinds.
Further, as the flow regulator, those having an average particle diameter of less than 100 nm are preferably used.
上記流動調整剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が100重量部である。上記流動調整剤の含有量がこの範囲であることにより、被着体への短時間での塗れ性と形状保持性とを向上させる等の効果により優れるものとなる。上記流動調整剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は50重量部である。 The content of the flow regulator is preferably 0.1 part by weight and 100 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the flow control agent is within this range, the effect of improving the wettability on the adherend in a short period of time and the shape-retaining property is improved. The more preferable lower limit of the content of the flow regulator is 0.5 parts by weight, and the more preferable upper limit thereof is 50 parts by weight.
本発明の樹脂組成物は、応力緩和、靭性付与等を目的として有機充填剤を含有してもよい。
上記有機充填剤としては、例えば、シリコーンゴム粒子、アクリルゴム粒子、ウレタンゴム粒子、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子、ベンゾグアナミン粒子、及び、これらのコアシェル粒子等が挙げられる。なかでも、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子が好ましい。
上記有機充填剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
The resin composition of the present invention may contain an organic filler for the purpose of stress relaxation, imparting toughness and the like.
Examples of the organic filler include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Of these, polyamide particles, polyamideimide particles, and polyimide particles are preferable.
The organic fillers may be used alone or in combination of two or more.
上記有機充填剤の含有量は、後述する溶媒を用いる場合は該溶媒を除く樹脂組成物の合計100重量部に対して、好ましい上限が300重量部である。上記有機充填剤の含有量がこの範囲であることにより、優れた接着性等を維持したまま、得られる樹脂組成物の硬化物が靭性等により優れるものとなる。上記有機充填剤の含有量のより好ましい上限は200重量部である。 When the solvent described below is used, the content of the organic filler is preferably 300 parts by weight with respect to 100 parts by weight of the total resin composition excluding the solvent. When the content of the organic filler is within this range, the cured product of the obtained resin composition becomes more excellent in toughness and the like while maintaining excellent adhesiveness and the like. The more preferable upper limit of the content of the organic filler is 200 parts by weight.
本発明の樹脂組成物は、難燃剤を含有してもよい。
上記難燃剤としては、例えば、ベーマイト型水酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム等の金属水和物、ハロゲン系化合物、りん系化合物、窒素化合物等が挙げられる。なかでも、ベーマイト型水酸化アルミニウムが好ましい。
上記難燃剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
The resin composition of the present invention may contain a flame retardant.
Examples of the flame retardant include metal hydrates such as boehmite type aluminum hydroxide, aluminum hydroxide and magnesium hydroxide, halogen compounds, phosphorus compounds and nitrogen compounds. Among them, boehmite type aluminum hydroxide is preferable.
The above flame retardants may be used alone or in combination of two or more.
上記難燃剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が2重量部、好ましい上限が300重量部である。上記難燃剤の含有量がこの範囲であることにより、得られる樹脂組成物が優れた接着性等を維持したまま、難燃性に優れるものとなる。上記難燃剤の含有量のより好ましい下限は5重量部、より好ましい上限は250重量部である。 The content of the flame retardant is preferably 2 parts by weight and 300 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the flame retardant is within this range, the resin composition obtained has excellent flame retardancy while maintaining excellent adhesiveness and the like. The more preferable lower limit of the content of the flame retardant is 5 parts by weight, and the more preferable upper limit thereof is 250 parts by weight.
本発明の樹脂組成物は、本発明の目的を阻害しない範囲で熱可塑性樹脂を含有してもよい。上記熱可塑性樹脂を用いることにより、本発明の樹脂組成物は、流動特性により優れ、熱圧着時の充填性及び浸出防止性を両立することがより容易となり、かつ、硬化後の耐屈曲性により優れるものとなる。 The resin composition of the present invention may contain a thermoplastic resin as long as the object of the present invention is not impaired. By using the above-mentioned thermoplastic resin, the resin composition of the present invention is more excellent in flow properties, and it becomes easier to satisfy both the filling property and the leaching prevention property during thermocompression bonding, and the flex resistance after curing. It will be excellent.
上記熱可塑性樹脂としては、ポリイミド樹脂、フェノキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリビニルアセタール樹脂、ビスマレイミド樹脂等が挙げられる。なかでも、耐熱性や取り扱い性の点から、ポリイミド樹脂、フェノキシ樹脂、ビスマレイミド樹脂が好ましい。
上記熱可塑性樹脂は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
Examples of the thermoplastic resin include a polyimide resin, a phenoxy resin, a polyamide resin, a polyamideimide resin, a polyvinyl acetal resin, and a bismaleimide resin. Among them, polyimide resin, phenoxy resin, and bismaleimide resin are preferable from the viewpoint of heat resistance and handleability.
The above thermoplastic resins may be used alone or in combination of two or more kinds.
上記熱可塑性樹脂の数平均分子量の好ましい下限は2000、好ましい上限は10万である。上記熱可塑性樹脂の上記数平均分子量がこの範囲であることにより、得られる樹脂組成物が流動特性や硬化後の耐屈曲性により優れるものとなる。上記熱可塑性樹脂の数平均分子量のより好ましい下限は5000、より好ましい上限は5万である。 The preferred lower limit of the number average molecular weight of the thermoplastic resin is 2000, and the preferred upper limit is 100,000. When the number average molecular weight of the thermoplastic resin is within this range, the resin composition obtained is more excellent in flow properties and flex resistance after curing. The more preferable lower limit of the number average molecular weight of the thermoplastic resin is 5,000, and the more preferable upper limit thereof is 50,000.
上記熱可塑性樹脂の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限は0.5重量部、好ましい上限は120重量部である。上記熱可塑性樹脂の含有量が0.5重量部以上であることにより、得られる樹脂組成物が流動特性や硬化後の耐屈曲性により優れるものとなる。上記熱可塑性樹脂の含有量が120重量部以下であることにより、得られる樹脂組成物が接着性や耐熱性により優れるものとなる。上記熱可塑性樹脂の含有量のより好ましい下限は1重量部、より好ましい上限は80重量部である。 The content of the thermoplastic resin is preferably 0.5 parts by weight and 100 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermoplastic resin is 0.5 parts by weight or more, the resin composition obtained is more excellent in the flow characteristics and the flex resistance after curing. When the content of the thermoplastic resin is 120 parts by weight or less, the resin composition obtained will be more excellent in adhesiveness and heat resistance. The more preferable lower limit of the content of the thermoplastic resin is 1 part by weight, and the more preferable upper limit thereof is 80 parts by weight.
本発明の樹脂組成物は、塗工性等の観点から溶媒を含有してもよい。
上記溶媒としては、塗工性や貯蔵安定性等の観点から、沸点が160℃以下の非極性溶媒又は沸点が160℃以下の非プロトン性極性溶媒が好ましい。
上記沸点が160℃以下の非極性溶媒又は沸点が160℃以下の非プロトン性極性溶媒としては、例えば、ケトン系溶媒、エステル系溶媒、炭化水素系溶媒、ハロゲン系溶媒、エーテル系溶媒、含窒素系溶媒等が挙げられる。
上記ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。
上記エステル系溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸イソブチル等が挙げられる。
上記炭化水素系溶媒としては、例えば、ベンゼン、トルエン、ノルマルヘキサン、イソヘキサン、シクロヘキサン、メチルシクロヘキサン、ノルマルヘプタン等が挙げられる。
上記ハロゲン系溶媒としては、例えば、ジクロロメタン、クロロホルム、トリクロロエチレン等が挙げられる。
上記エーテル系溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン等が挙げられる。
上記含窒素系溶媒としては、例えば、アセトニトリル等が挙げられる。
なかでも、取り扱い性や上記硬化剤の溶解性等の観点から、沸点が60℃以上のケトン系溶媒、沸点が60℃以上のエステル系溶媒、及び、沸点が60℃以上のエーテル系溶媒からなる群より選択される少なくとも1種が好ましい。このような溶媒としては、例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸イソブチル、1,4-ジオキサン、1,3-ジオキソラン、テトラヒドロフラン等が挙げられる。
なお、上記「沸点」は、101kPaの条件で測定される値、又は、沸点換算図表等で101kPaに換算された値を意味する。
The resin composition of the present invention may contain a solvent from the viewpoint of coatability and the like.
As the solvent, a non-polar solvent having a boiling point of 160° C. or lower or an aprotic polar solvent having a boiling point of 160° C. or lower is preferable from the viewpoint of coating properties and storage stability.
Examples of the non-polar solvent having a boiling point of 160° C. or lower or the aprotic polar solvent having a boiling point of 160° C. or lower include a ketone solvent, an ester solvent, a hydrocarbon solvent, a halogen solvent, an ether solvent, and a nitrogen-containing solvent. Examples include system solvents.
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
Examples of the ester solvent include methyl acetate, ethyl acetate, isobutyl acetate and the like.
Examples of the hydrocarbon solvent include benzene, toluene, normal hexane, isohexane, cyclohexane, methylcyclohexane, and normal heptane.
Examples of the halogen-based solvent include dichloromethane, chloroform, trichloroethylene and the like.
Examples of the ether solvent include diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane and the like.
Examples of the nitrogen-containing solvent include acetonitrile and the like.
Among them, from the viewpoints of handleability, solubility of the above-mentioned curing agent, etc., the solvent is a ketone solvent having a boiling point of 60° C. or higher, an ester solvent having a boiling point of 60° C. or higher, and an ether solvent having a boiling point of 60° C. or higher. At least one selected from the group is preferred. Examples of such a solvent include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, isobutyl acetate, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran and the like.
The “boiling point” means a value measured under the condition of 101 kPa, or a value converted to 101 kPa in a boiling point conversion chart or the like.
本発明の樹脂組成物100重量部中における上記溶媒の含有量の好ましい下限は10重量部、好ましい上限は80重量部である。上記溶媒の含有量がこの範囲であることにより、本発明の樹脂組成物は、塗工性等により優れるものとなる。上記溶媒の含有量のより好ましい下限は20重量部、より好ましい上限は70重量部である。 The preferred lower limit of the content of the solvent in 100 parts by weight of the resin composition of the present invention is 10 parts by weight, and the preferred upper limit is 80 parts by weight. When the content of the solvent is within this range, the resin composition of the present invention is more excellent in coatability and the like. The more preferable lower limit of the content of the solvent is 20 parts by weight, and the more preferable upper limit thereof is 70 parts by weight.
本発明の樹脂組成物は、本発明の目的を阻害しない範囲で反応性希釈剤を含有してもよい。
上記反応性希釈剤としては、接着信頼性の観点から、1分子中に2つ以上の反応性官能基を有する反応性希釈剤が好ましい。
The resin composition of the present invention may contain a reactive diluent as long as the object of the present invention is not impaired.
From the viewpoint of adhesion reliability, the reactive diluent is preferably a reactive diluent having two or more reactive functional groups in one molecule.
本発明の樹脂組成物は、更に、カップリング剤、分散剤、貯蔵安定化剤、ブリード防止剤、フラックス剤、レベリング剤等の添加剤を含有してもよい。 The resin composition of the present invention may further contain additives such as a coupling agent, a dispersant, a storage stabilizer, an anti-bleeding agent, a flux agent and a leveling agent.
本発明の樹脂組成物を製造する方法としては、例えば、混合機を用いて、硬化性樹脂と、本発明のエステル化合物と、必要に応じて添加する溶媒等とを混合する方法等が挙げられる。
上記混合機としては、例えば、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等が挙げられる。
Examples of the method for producing the resin composition of the present invention include a method of mixing a curable resin, the ester compound of the present invention, and a solvent and the like added as necessary with a mixer. ..
Examples of the mixer include a homodisper, a universal mixer, a Banbury mixer, and a kneader.
本発明の樹脂組成物を基材フィルム上に塗工し、乾燥させることにより、本発明の樹脂組成物からなる樹脂組成物フィルムを得ることができ、該樹脂組成物フィルムを硬化させて硬化物を得ることができる。本発明の樹脂組成物の硬化物もまた、本発明の1つである。 A resin composition film comprising the resin composition of the present invention can be obtained by applying the resin composition of the present invention onto a substrate film and drying it. The resin composition film is cured to obtain a cured product. Can be obtained. A cured product of the resin composition of the present invention is also one aspect of the present invention.
本発明の樹脂組成物は、硬化物のガラス転移温度の好ましい下限が100℃、好ましい上限が250℃である。上記硬化物のガラス転移温度がこの範囲であることにより、本発明の樹脂組成物は、硬化物が機械的強度及び長期耐熱性により優れるものとなる。上記硬化物のガラス転移温度のより好ましい下限は130℃、より好ましい上限は220℃である。
なお、本明細書において上記「硬化物のガラス転移温度」は、動的粘弾性測定装置を用い、昇温速度10℃/分、周波数10Hz、チャック間距離24mmで-0℃から300℃までの昇温条件で測定した際に得られるtanδカーブのピーク温度として求めることができる。上記動的粘弾性測定装置としては、例えば、レオバイブロン動的粘弾性自動測定器DDV-GPシリーズ(エー・アンド・デイ社製)等が挙げられる。上記ガラス転移温度を測定する硬化物は、厚さを約400μmとした上記樹脂組成物フィルムを190℃で30分加熱することにより得ることができる。
In the resin composition of the present invention, the glass transition temperature of the cured product has a preferred lower limit of 100°C and a preferred upper limit of 250°C. When the glass transition temperature of the above-mentioned cured product is within this range, the cured product of the resin composition of the present invention is excellent in mechanical strength and long-term heat resistance. The more preferable lower limit of the glass transition temperature of the cured product is 130°C, and the more preferable upper limit thereof is 220°C.
In addition, in the present specification, the “glass transition temperature of the cured product” is from −0° C. to 300° C. at a temperature rising rate of 10° C./min, a frequency of 10 Hz and a chuck distance of 24 mm using a dynamic viscoelasticity measuring device. It can be obtained as the peak temperature of the tan δ curve obtained when the measurement is performed under the temperature rising condition. Examples of the dynamic viscoelasticity measuring device include a rheovibron dynamic viscoelasticity automatic measuring device DDV-GP series (manufactured by A&D Company) and the like. The cured product for measuring the glass transition temperature can be obtained by heating the resin composition film having a thickness of about 400 μm at 190° C. for 30 minutes.
上記硬化性樹脂としてビフェニル型エポキシ樹脂を含有する場合、本発明の樹脂組成物は、硬化物の40℃から120℃までの温度範囲における線膨張係数の好ましい下限が5ppm/℃、好ましい上限が100ppm/℃である。本発明の樹脂組成物は、硬化物が耐熱性により優れるものとなる。上記線膨張係数のより好ましい下限は10ppm/℃、より好ましい上限は80ppm/℃である。
なお、本明細書において上記「線膨張係数」は、TMA法により昇温速度10℃/分、力50Nの条件で測定される値を示す。また、上記線膨張係数の測定に用いる硬化物は、例えば、厚さを約200μmとした上記樹脂組成物フィルムを190℃で30分加熱することにより得ることができる。
When a biphenyl type epoxy resin is contained as the curable resin, the resin composition of the present invention has a preferable lower limit of 5 ppm/° C. and a preferable upper limit of 100 ppm of the linear expansion coefficient in the temperature range of 40° C. to 120° C. /°C. The cured product of the resin composition of the present invention is more excellent in heat resistance. The more preferable lower limit of the linear expansion coefficient is 10 ppm/°C, and the more preferable upper limit thereof is 80 ppm/°C.
In the present specification, the “linear expansion coefficient” refers to a value measured by the TMA method under the conditions of a temperature rising rate of 10° C./min and a force of 50N. The cured product used for measuring the linear expansion coefficient can be obtained, for example, by heating the resin composition film having a thickness of about 200 μm at 190° C. for 30 minutes.
上記硬化性樹脂としてビフェニル型エポキシ樹脂を含有する場合、本発明の樹脂組成物は、硬化物の23℃における誘電正接の好ましい上限が0.015である。上記硬化物の23℃における誘電正接が0.015以下であることにより、本発明の樹脂組成物は、多層プリント配線板等の層間絶縁材料に好適に用いることができる。上記硬化物の23℃における誘電正接のより好ましい上限は0.01である。
なお、上記「誘電正接」は、誘電率測定装置及びネットワークアナライザーを用いて5GHzの条件で測定される値である。なお、上記「誘電正接」を測定する硬化物は、厚さを約40μmから約200μmとした上記樹脂組成物フィルムを190℃で90分間加熱することにより得ることができる。
When a biphenyl type epoxy resin is contained as the curable resin, the resin composition of the present invention has a preferable upper limit of the dielectric loss tangent of the cured product at 23° C. of 0.015. Since the cured product has a dielectric loss tangent of 0.015 or less at 23° C., the resin composition of the present invention can be suitably used for an interlayer insulating material such as a multilayer printed wiring board. The more preferable upper limit of the dielectric loss tangent at 23° C. of the cured product is 0.01.
The “dielectric loss tangent” is a value measured under the condition of 5 GHz using a dielectric constant measuring device and a network analyzer. The cured product whose “dielectric loss tangent” is measured can be obtained by heating the above resin composition film having a thickness of about 40 μm to about 200 μm at 190° C. for 90 minutes.
本発明の樹脂組成物は、広い用途に用いることができるが、特に高い耐熱性が求められている電子材料用途に好適に用いることができる。例えば、航空、車載用電気制御ユニット(ECU)用途や、SiC、GaNを用いたパワーデバイス用途におけるダイアタッチ剤等に用いることができる。また、例えば、パワーオーバーレイパッケージ用接着剤、プリント配線基板用接着剤、フレキシブルプリント回路基板のカバーレイ用接着剤、銅張積層板、半導体接合用接着剤、層間絶縁材料、プリプレグ、LED用封止剤、構造材料用接着剤等にも用いることができる。
なかでも、本発明の樹脂組成物は、硬化物が低誘電率、低誘電正接であり、誘電特性に優れるため、ビルドアップフィルムに好適に用いることができる。本発明の樹脂組成物を用いてなるビルドアップフィルムもまた、本発明の1つである。
The resin composition of the present invention can be used for a wide range of applications, but can be suitably used for electronic material applications where particularly high heat resistance is required. For example, it can be used as a die attach agent for use in electric control units (ECUs) for aviation and vehicles, and for power device applications using SiC and GaN. Also, for example, adhesives for power overlay packages, adhesives for printed wiring boards, adhesives for coverlays of flexible printed circuit boards, copper-clad laminates, adhesives for semiconductor bonding, interlayer insulating materials, prepregs, LED encapsulation. It can also be used as an adhesive and an adhesive for structural materials.
Among them, the resin composition of the present invention has a low dielectric constant and low dielectric loss tangent as a cured product and is excellent in dielectric properties, and therefore can be suitably used for a build-up film. A build-up film using the resin composition of the present invention is also one aspect of the present invention.
本発明によれば、硬化後の耐熱性及び誘電特性に優れる樹脂組成物に用いることができるエステル化合物を提供することができる。また、本発明によれば、該エステル化合物を含有する樹脂組成物、該樹脂組成物の硬化物、及び、該樹脂組成物を用いてなるビルドアップフィルムを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the ester compound which can be used for the resin composition which is excellent in heat resistance and dielectric property after hardening can be provided. Further, according to the present invention, it is possible to provide a resin composition containing the ester compound, a cured product of the resin composition, and a buildup film using the resin composition.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(合成例1(エステル化合物Aの作製))
上記式(5-1)で表される化合物20重量部、及び、トリエチルアミン7重量部をテトラヒドロフラン100重量部に溶解させた。得られた溶液に2-ナフタレンカルボン酸クロリド7.5重量部を添加し、室温で6時間撹拌してエステル化反応を進行させた。上記式(5-1)で表される化合物としては、数平均分子量が約1000であるOPE(三菱ガス化学社製)を用いた。反応後、析出物をろ過により除去し、得られた溶液からエバポレーターにてテトラヒドロフランを除去した。更に純水で洗浄を行った後、真空乾燥を行いエステル化合物Aを得た。
なお、H-NMR、GPC、及び、FT-IR分析により、エステル化合物Aは、下記式(6)で表されることを確認した。また、該エステル化合物Aの数平均分子量は2150であった。
(Synthesis Example 1 (Production of Ester Compound A))
20 parts by weight of the compound represented by the above formula (5-1) and 7 parts by weight of triethylamine were dissolved in 100 parts by weight of tetrahydrofuran. 7.5 parts by weight of 2-naphthalenecarboxylic acid chloride was added to the obtained solution, and the mixture was stirred at room temperature for 6 hours to allow the esterification reaction to proceed. As the compound represented by the above formula (5-1), OPE (manufactured by Mitsubishi Gas Chemical Co., Inc.) having a number average molecular weight of about 1000 was used. After the reaction, the precipitate was removed by filtration, and tetrahydrofuran was removed from the resulting solution with an evaporator. After further washing with pure water, vacuum drying was performed to obtain an ester compound A.
By 1 H-NMR, GPC, and FT-IR analysis, it was confirmed that the ester compound A was represented by the following formula (6). The number average molecular weight of the ester compound A was 2,150.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(6)中、m及びnは、ジメチルフェニレンオキシ単位の繰り返し数を意味する。 In the formula (6), m and n mean the number of repeating dimethylphenyleneoxy units.
(合成例2(エステル化合物Bの作製))
上記式(5-1)で表される化合物30重量部、及び、トリエチルアミン12重量部及び4,4’-オキシ二安息香酸クロリド4.5重量部をテトラヒドロフラン150重量部に溶解させた。得られた溶液に2-ナフタレンカルボン酸クロリド6重量部を添加し、室温で10時間撹拌してエステル化反応を進行させた。上記式(5-1)で表される化合物としては、数平均分子量が約1000であるOPE(三菱ガス化学社製)を用いた。反応後、析出物をろ過により除去し、得られた溶液からエバポレーターにてテトラヒドロフランを除去した。更に純水で洗浄を行った後、真空乾燥を行いエステル化合物Bを得た。
なお、H-NMR、GPC、及び、FT-IR分析により、エステル化合物Bは、下記式(7)で表されることを確認した。また、該エステル化合物Bの数平均分子量は4100であった。
(Synthesis Example 2 (Preparation of Ester Compound B))
30 parts by weight of the compound represented by the above formula (5-1), 12 parts by weight of triethylamine and 4.5 parts by weight of 4,4′-oxydibenzoic acid chloride were dissolved in 150 parts by weight of tetrahydrofuran. 6 parts by weight of 2-naphthalenecarboxylic acid chloride was added to the resulting solution, and the mixture was stirred at room temperature for 10 hours to allow the esterification reaction to proceed. As the compound represented by the above formula (5-1), OPE (manufactured by Mitsubishi Gas Chemical Co., Inc.) having a number average molecular weight of about 1000 was used. After the reaction, the precipitate was removed by filtration, and tetrahydrofuran was removed from the resulting solution with an evaporator. After further washing with pure water, vacuum drying was performed to obtain an ester compound B.
By 1 H-NMR, GPC, and FT-IR analysis, it was confirmed that the ester compound B was represented by the following formula (7). The number average molecular weight of the ester compound B was 4,100.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式(7)中、m、n、o、及び、pは、ジメチルフェニレンオキシ単位の繰り返し数を意味する。 In the formula (7), m, n, o, and p mean the number of repeating dimethylphenyleneoxy units.
(合成例3(エステル化合物Cの作製))
2-ナフタレンカルボン酸クロリド7.5重量部をシクロヘキサンカルボン酸クロリド5.1重量部に変更したこと以外は合成例1と同様にして、エステル化合物Cを得た。
なお、H-NMR、GPC、及び、FT-IR分析により、エステル化合物Cは、下記式(8)で表されることを確認した。また、該エステル化合物Cの数平均分子量は1930であった。
(Synthesis Example 3 (Production of Ester Compound C))
An ester compound C was obtained in the same manner as in Synthesis Example 1 except that 7.5 parts by weight of 2-naphthalenecarboxylic acid chloride was changed to 5.1 parts by weight of cyclohexanecarboxylic acid chloride.
By 1 H-NMR, GPC, and FT-IR analysis, it was confirmed that the ester compound C was represented by the following formula (8). The number average molecular weight of the ester compound C was 1930.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
式(8)中、m及びnは、ジメチルフェニレンオキシ単位の繰り返し数を意味する。 In the formula (8), m and n mean the number of repeating dimethylphenyleneoxy units.
(合成例4(エステル化合物Dの作製))
2-ナフタレンカルボン酸クロリド7.5重量部をイソ酪酸クロリド4.2重量部に変更したこと以外は合成例1と同様にして、エステル化合物Dを得た。
なお、H-NMR、GPC、及び、FT-IR分析により、エステル化合物Dは、下記式(9)で表されることを確認した。また、該エステル化合物Dの数平均分子量は1780であった。
(Synthesis Example 4 (Production of Ester Compound D))
An ester compound D was obtained in the same manner as in Synthesis Example 1 except that 7.5 parts by weight of 2-naphthalenecarboxylic acid chloride was changed to 4.2 parts by weight of isobutyric acid chloride.
By 1 H-NMR, GPC, and FT-IR analysis, it was confirmed that the ester compound D was represented by the following formula (9). The number average molecular weight of the ester compound D was 1780.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
式(9)中、m及びnは、ジメチルフェニレンオキシ単位の繰り返し数を意味する。 In the formula (9), m and n mean the number of repeating dimethylphenyleneoxy units.
(合成例5(エステル化合物Eの作製))
2-ナフタレンカルボン酸クロリド7.5重量部を安息香酸クロリド5.6重量部に変更したこと以外は合成例1と同様にして、エステル化合物Eを得た。
なお、H-NMR、GPC、及び、FT-IR分析により、エステル化合物Eは、下記式(10)で表されることを確認した。また、該エステル化合物Eの数平均分子量は2010であった。
(Synthesis Example 5 (Production of Ester Compound E))
An ester compound E was obtained in the same manner as in Synthesis Example 1 except that 7.5 parts by weight of 2-naphthalenecarboxylic acid chloride was changed to 5.6 parts by weight of benzoic acid chloride.
By 1 H-NMR, GPC, and FT-IR analysis, it was confirmed that the ester compound E was represented by the following formula (10). The number average molecular weight of the ester compound E was 2010.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
式(10)中、m及びnは、ジメチルフェニレンオキシ単位の繰り返し数を意味する。 In the formula (10), m and n mean the number of repeating dimethylphenyleneoxy units.
(実施例1~6、比較例1~5)
表1に記載された配合比の各材料に溶媒としてメチルエチルケトンを加え、撹拌機を用いて1200rpmで4時間撹拌し、樹脂組成物を得た。なお、上記式(5-1)で表される化合物の分子量を1000とみなした場合に、上記式(6)~(10)の構造より求められる理論分子量を各エステル基の数で除すことでエステル化合物A~Eの活性エステル当量を求めた。その結果、化合物Aの活性エステル当量は651、化合物Bの活性エステル当量は630、化合物Cの活性エステル当量は607、化合物Dの活性エステル当量は567、化合物Eの活性エステル当量は601であった。また、表1の組成には、溶媒を除く固形分について記載した。
アプリケーターを用いて、得られた樹脂組成物を厚み25μmのPETフィルムの離型処理面上に塗工した。PETフィルムとしては、XG284(東レ社製)を用いた。その後、100℃のギアオーブン内で5分間乾燥し、溶媒を揮発させることにより、PETフィルムと、該PETフィルム上に厚さが40μmの樹脂組成物層とを有する未硬化積層フィルムを得た。
(Examples 1 to 6, Comparative Examples 1 to 5)
Methyl ethyl ketone was added as a solvent to each material having the compounding ratio shown in Table 1, and the mixture was stirred at 1200 rpm for 4 hours using a stirrer to obtain a resin composition. When the molecular weight of the compound represented by the above formula (5-1) is regarded as 1000, the theoretical molecular weight obtained from the structures of the above formulas (6) to (10) is divided by the number of each ester group. The active ester equivalents of the ester compounds A to E were determined with. As a result, the active ester equivalent of Compound A was 651, the active ester equivalent of Compound B was 630, the active ester equivalent of Compound C was 607, the active ester equivalent of Compound D was 567, and the active ester equivalent of Compound E was 601. .. In addition, the composition of Table 1 describes the solid content excluding the solvent.
The obtained resin composition was applied onto the release-treated surface of a PET film having a thickness of 25 μm using an applicator. XG284 (manufactured by Toray Industries, Inc.) was used as the PET film. Then, it was dried in a gear oven at 100° C. for 5 minutes and the solvent was volatilized to obtain an uncured laminated film having a PET film and a resin composition layer having a thickness of 40 μm on the PET film.
<評価>
実施例及び比較例で得られた各未硬化積層フィルムについて以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about each uncured laminated film obtained by the Example and the comparative example. The results are shown in Table 1.
(硬化物のガラス転移温度)
実施例及び比較例で得られた各未硬化積層フィルムから基材PETフィルムを剥離し、ラミネーターを用いて樹脂組成物層を重ね合わせて厚さ約400μmの積層体を得た。得られた積層体を190℃で90分間加熱して硬化物を得た。得られた硬化物について、動的粘弾性測定装置を用い、昇温速度10℃/分、周波数10Hz、チャック間距離24mmの条件で0℃から300℃まで昇温した際に得られたtanδカーブのピーク温度をガラス転移温度として求めた。動的粘弾性測定装置としては、レオバイブロンDDV-25GP(エー・アンド・デイ社製)を用いた。
(Glass transition temperature of cured product)
The base PET film was peeled off from each uncured laminated film obtained in each of the examples and comparative examples, and the resin composition layers were laminated using a laminator to obtain a laminate having a thickness of about 400 μm. The obtained laminated body was heated at 190° C. for 90 minutes to obtain a cured product. About the obtained cured product, using a dynamic viscoelasticity measuring device, a tan δ curve obtained when the temperature was raised from 0° C. to 300° C. under the conditions of a temperature rising rate of 10° C./minute, a frequency of 10 Hz, and a chuck distance of 24 mm. Was determined as the glass transition temperature. Rheovibron DDV-25GP (manufactured by A&D Company) was used as the dynamic viscoelasticity measuring device.
(線膨張係数)
実施例及び比較例で得られた各未硬化積層フィルムから基材PETフィルムを剥離し、ラミネーターを用いて樹脂組成物層を重ね合わせて厚さ約400μmの積層体を得た。得られた積層体を190℃で90分間加熱して硬化物を得た。得られた硬化物について、TMA装置を用い、昇温速度10℃/分、力50Nの条件で40℃から120℃までの温度範囲における線膨張係数を測定した。TMA装置としては、TMA7100(日立ハイテクサイエンス社製)を用いた。
(Coefficient of linear expansion)
The base PET film was peeled off from each uncured laminated film obtained in each of the examples and comparative examples, and the resin composition layers were laminated using a laminator to obtain a laminate having a thickness of about 400 μm. The obtained laminated body was heated at 190° C. for 90 minutes to obtain a cured product. With respect to the obtained cured product, a linear expansion coefficient was measured in a temperature range from 40° C. to 120° C. under the conditions of a temperature rising rate of 10° C./min and a force of 50 N using a TMA device. As the TMA device, TMA7100 (manufactured by Hitachi High-Tech Science Co., Ltd.) was used.
(誘電正接)
実施例及び比較例で得られた各未硬化積層フィルムを幅2mm、長さ80mmの大きさに裁断した。裁断後の樹脂組成物フィルムから基材PETフィルムを剥離し、ラミネーターを用いて樹脂組成物層を重ね合わせて厚さ約200μmの積層体を得た。得られた積層体を190℃で90分間加熱して硬化物を得た。得られた硬化物について、空洞共振摂動法誘電率測定装置及びネットワークアナライザーを用いて、空洞共振法で23℃、周波数5GHzの条件にて誘電正接を測定した。空洞共振摂動法誘電率測定装置としては、CP521(関東電子応用開発社製)を用い、ネットワークアナライザーとしては、N5224A PNA(キーサイトテクノロジー社製)を用いた。
(Dielectric loss tangent)
Each uncured laminated film obtained in Examples and Comparative Examples was cut into a size of 2 mm in width and 80 mm in length. The base PET film was peeled from the resin composition film after cutting, and the resin composition layers were laminated using a laminator to obtain a laminate having a thickness of about 200 μm. The obtained laminated body was heated at 190° C. for 90 minutes to obtain a cured product. The dielectric loss tangent of the obtained cured product was measured by a cavity resonance perturbation method dielectric constant measuring device and a network analyzer under the conditions of a cavity resonance method at 23° C. and a frequency of 5 GHz. CP521 (manufactured by Kanto Electronics Application Development Co., Ltd.) was used as the cavity resonance perturbation method dielectric constant measuring device, and N5224A PNA (manufactured by Keysight Technology Inc.) was used as the network analyzer.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
本発明によれば、硬化後の耐熱性及び誘電特性に優れる樹脂組成物に用いることができるエステル化合物を提供することができる。また、本発明によれば、該エステル化合物を含有する樹脂組成物、該樹脂組成物の硬化物、及び、該樹脂組成物を用いてなるビルドアップフィルムを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the ester compound which can be used for the resin composition which is excellent in heat resistance and dielectric property after hardening can be provided. Further, according to the present invention, it is possible to provide a resin composition containing the ester compound, a cured product of the resin composition, and a buildup film using the resin composition.

Claims (7)

  1. 主鎖にフェニレンエーテルオリゴマー構造を有し、かつ、両末端に多環式芳香族環カルボニルオキシ基を有することを特徴とするエステル化合物。 An ester compound having a phenylene ether oligomer structure in the main chain and having a polycyclic aromatic ring carbonyloxy group at both ends.
  2. 前記多環式芳香族環カルボニルオキシ基は、ナフチルカルボニルオキシ基である請求項1記載のエステル化合物。 The ester compound according to claim 1, wherein the polycyclic aromatic ring carbonyloxy group is a naphthylcarbonyloxy group.
  3. 前記フェニレンエーテルオリゴマー構造及び前記多環式芳香族環カルボニルオキシ基に加えて、主鎖にアリーレン基と2以上のカルボニルオキシ基とを含む構造を有し、該2以上のカルボニルオキシ基は、それぞれ別の前記フェニレンエーテルオリゴマー構造と結合している請求項1又は2記載のエステル化合物。 In addition to the phenylene ether oligomer structure and the polycyclic aromatic ring carbonyloxy group, the main chain has a structure containing an arylene group and two or more carbonyloxy groups, the two or more carbonyloxy groups, respectively, The ester compound according to claim 1 or 2, which is bonded to another phenylene ether oligomer structure.
  4. 硬化性樹脂と硬化剤とを含有する樹脂組成物であって、
    前記硬化剤は、請求項1、2又は3記載のエステル化合物を含む樹脂組成物。
    A resin composition containing a curable resin and a curing agent,
    The said hardening|curing agent is a resin composition containing the ester compound of Claim 1, 2 or 3.
  5. 前記硬化性樹脂は、エポキシ樹脂を含む請求項4記載の樹脂組成物。 The resin composition according to claim 4, wherein the curable resin contains an epoxy resin.
  6. 請求項4又は5記載の樹脂組成物の硬化物。 A cured product of the resin composition according to claim 4.
  7. 請求項4又は5記載の樹脂組成物を用いてなるビルドアップフィルム。 A build-up film comprising the resin composition according to claim 4.
PCT/JP2020/004550 2019-02-08 2020-02-06 Ester compound, resin composition, cured product, and build-up film WO2020162537A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217013934A KR20210124178A (en) 2019-02-08 2020-02-06 Ester compound, resin composition, cured product, and build-up film
JP2020515267A JP7319969B2 (en) 2019-02-08 2020-02-06 Ester compound, resin composition, cured product, and build-up film
CN202080008953.6A CN113272358B (en) 2019-02-08 2020-02-06 Ester compound, resin composition, cured product, and laminate film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019021637 2019-02-08
JP2019-021637 2019-02-08

Publications (1)

Publication Number Publication Date
WO2020162537A1 true WO2020162537A1 (en) 2020-08-13

Family

ID=71947041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004550 WO2020162537A1 (en) 2019-02-08 2020-02-06 Ester compound, resin composition, cured product, and build-up film

Country Status (4)

Country Link
JP (1) JP7319969B2 (en)
KR (1) KR20210124178A (en)
CN (1) CN113272358B (en)
WO (1) WO2020162537A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503754A (en) * 2006-09-15 2010-02-04 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Poly (arylene ether) compositions, methods and articles
JP2018508603A (en) * 2015-04-01 2018-03-29 ▲広▼▲東▼生益科技股▲ふん▼有限公司Shengyi Technology Co., Ltd. Active ester, and thermosetting resin composition, prepreg, and laminate containing the active ester

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135471B2 (en) 2002-10-31 2008-08-20 Dic株式会社 Epoxy resin composition and cured product thereof
WO2012002119A1 (en) * 2010-07-02 2012-01-05 Dic株式会社 Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, printed circuit board, and build-up film
JP5910866B2 (en) * 2012-03-06 2016-04-27 Dic株式会社 Active ester resin, thermosetting resin composition, cured product thereof, semiconductor sealing material, prepreg, circuit board, and build-up film
JP6376392B2 (en) * 2014-11-21 2018-08-22 Dic株式会社 Epoxy resin composition, curable resin composition, active ester, cured product, semiconductor sealing material, semiconductor device, prepreg, flexible wiring board, circuit board, build-up film, build-up board, fiber reinforced composite material, molded product
KR102455920B1 (en) 2015-01-13 2022-10-17 쇼와덴코머티리얼즈가부시끼가이샤 Resin composition, support with resin layer, prepreg, laminated board, multilayer printed wiring board, and printed wiring board for millimeter wave radar
JP6939017B2 (en) 2016-03-30 2021-09-22 荒川化学工業株式会社 Polyimide, polyimide adhesive, film-like adhesive, adhesive layer, adhesive sheet, copper foil with resin, copper-clad laminate and printed wiring board, and multilayer wiring board and its manufacturing method
CN108164684B (en) 2016-12-07 2019-08-27 广东生益科技股份有限公司 A kind of compositions of thermosetting resin
CN106633671B (en) * 2017-01-03 2018-12-18 苏州生益科技有限公司 A kind of resin combination and its application
JP7119290B2 (en) * 2017-05-30 2022-08-17 住友ベークライト株式会社 Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board and semiconductor device
CN108219371B (en) * 2017-12-29 2020-08-18 广东生益科技股份有限公司 Epoxy resin composition, prepreg, laminate, and printed wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503754A (en) * 2006-09-15 2010-02-04 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Poly (arylene ether) compositions, methods and articles
JP2018508603A (en) * 2015-04-01 2018-03-29 ▲広▼▲東▼生益科技股▲ふん▼有限公司Shengyi Technology Co., Ltd. Active ester, and thermosetting resin composition, prepreg, and laminate containing the active ester

Also Published As

Publication number Publication date
JP7319969B2 (en) 2023-08-02
TW202045472A (en) 2020-12-16
CN113272358B (en) 2024-03-26
JPWO2020162537A1 (en) 2021-12-09
CN113272358A (en) 2021-08-17
KR20210124178A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
TWI516518B (en) An epoxy resin composition, a prepreg using the epoxy resin composition, a resin film with a support, a laminated sheet of a metal foil, and a multilayer printed circuit board
JP6854505B2 (en) Resin composition, thermosetting film using it
TWI786271B (en) Phosphorus-containing phenoxy resin, resin composition thereof, and cured product thereof
JP6978371B2 (en) Curable resin composition and laminate
JPWO2016121750A1 (en) Flame-retardant epoxy resin composition, prepreg and laminate using the same
JP7365235B2 (en) Active ester compounds, curable resin compositions, adhesives, adhesive films, circuit boards, interlayer insulation materials, and multilayer printed wiring boards
JP6422230B2 (en) Insulating resin composition for printed circuit board and product using the same
TWI826633B (en) Ester compounds, resin compositions, hardened materials and build-up films
JP7319969B2 (en) Ester compound, resin composition, cured product, and build-up film
JP6106931B2 (en) Compatibilizing resin, and thermosetting resin composition, prepreg, and laminate using the same
TWI837297B (en) Ester compounds, resin compositions, hardeners, and build-up films
JP2018168074A (en) Organic phosphorus compound, curable resin composition containing organic phosphorus compound, and cured product thereof, and method for producing organic phosphorus compound
JP7211829B2 (en) Epoxy resin composition and cured product thereof
JP7480040B2 (en) Polyfunctional active ester compound, resin composition, cured product, and build-up film
JP7249162B2 (en) Resin composition, cured product, and build-up film
JP6217280B2 (en) Thermosetting resin composition and prepreg, laminate, printed wiring board, and mounting board using the same
JP2022170345A (en) Epoxy resin, curable resin composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molding

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020515267

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752305

Country of ref document: EP

Kind code of ref document: A1