WO2020162387A1 - Mixing apparatus, foaming apparatus, and foam-particle manufacturing method - Google Patents

Mixing apparatus, foaming apparatus, and foam-particle manufacturing method Download PDF

Info

Publication number
WO2020162387A1
WO2020162387A1 PCT/JP2020/003897 JP2020003897W WO2020162387A1 WO 2020162387 A1 WO2020162387 A1 WO 2020162387A1 JP 2020003897 W JP2020003897 W JP 2020003897W WO 2020162387 A1 WO2020162387 A1 WO 2020162387A1
Authority
WO
WIPO (PCT)
Prior art keywords
stirring blade
stirring
blade
blades
foaming
Prior art date
Application number
PCT/JP2020/003897
Other languages
French (fr)
Japanese (ja)
Inventor
恭亮 村上
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2020571176A priority Critical patent/JPWO2020162387A1/en
Publication of WO2020162387A1 publication Critical patent/WO2020162387A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles

Definitions

  • the present invention relates to a mixing device, a foaming device, and a method for producing expanded particles.
  • a mixing device which includes a container for containing the mixture and which mixes the mixture with a stirring blade provided in the container.
  • Patent Document 1 discloses a stirring blade for stirring and mixing gas and liquid.
  • the stirring blade disclosed in Patent Document 1 has a configuration in which a plurality of upper and lower blades are radially attached to a rotating shaft so as to form a gap between opposed surfaces of a pair of upper and lower blades.
  • the pair of upper and lower blades are formed such that the distance between them becomes narrower or wider in the rotation direction of the blades.
  • Patent Document 2 discloses a pre-foaming device that heat-foams the resin particles while mixing the thermoplastic synthetic resin particles as a material to be mixed with a stirring blade.
  • the pre-foaming device disclosed in Patent Document 2 includes a scraping plate at the tip of the stirring blade. This scraping plate is provided in a direction substantially vertical to the stirring blade.
  • An object of one embodiment of the present invention is to realize a mixing device and a foaming device capable of mutually moving an object to be mixed between an upper layer and a lower layer to uniformly mix the upper layer and the lower layer. ..
  • the mixing device is a container that stores a mixed object, a plurality of stirring blades that stir the mixed object, and a rotating shaft that rotates the stirring blade, And having at least first and second blades with respect to the stirring blade, the first and second blades being inclined with respect to a horizontal plane and having different inclination angles from each other, It is characterized in that the first and second blades do not overlap each other in a top view.
  • the material to be mixed can be mutually moved between the upper layer and the lower layer, and can be uniformly mixed between the upper layer and the lower layer.
  • FIG. 1 shows typically the schematic structure of the prefoaming apparatus which concerns on Embodiment 1 of this invention.
  • FIG. It is a figure for explaining the operation mechanism of the 1st and 2nd stirring blade with which the prefoaming device concerning Embodiment 1 of the present invention was equipped, 301 is the 1st and 2nd stirring blade at the time of rotation, respectively.
  • FIG. 3 is a side view for explaining the action of FIG.
  • 302 is a top view showing respective rotation regions of the first and second stirring blades during rotation
  • 303 is a flow of foamed particles during rotation of the stirring blade. It is the figure which showed typically.
  • the structure of the stirring blade with which the pre-foaming apparatus which concerns on Embodiment 2 of this invention was shown 401 is a top view
  • 402 is a side view
  • 403 sees one stirring blade from the opposite side to a rotating shaft. It is a figure which shows the structure.
  • the structure of the prefoaming apparatus which concerns on Embodiment 3 of this invention is shown typically, 501 is a sectional view and 502 is a top view which shows an internal structure.
  • FIG. 6 is a side view showing a detailed configuration of one stirring blade
  • 604 is a side view showing a configuration of the one stirring blade viewed from the side opposite to the rotation axis
  • 605 is one of the two types of stirring blades.
  • FIG. 6 is a side view showing a detailed configuration of the other stirring blade
  • 606 is a side view showing a configuration of the other stirring blade as viewed from the side opposite to the rotation axis.
  • 701 is a sectional view
  • 702 is a top view which shows an internal structure.
  • image figure which shows the evaluation result of the fluidity and stirring mixing property of the foamed particles in an Example, a reference example, and a comparative example.
  • the material to be mixed which is the target of the mixing apparatus according to the present embodiment, is not particularly limited as long as it is a substance that can be mixed by a stirring blade, but a solid is preferable. Particularly preferably, the material to be mixed is a particulate solid.
  • the mixing apparatus according to the present embodiment has a specific structure of the stirring blade used for mixing the materials to be mixed, so that the materials to be mixed are mutually moved between the upper layer and the lower layer, and uniform between the upper layer and the lower layer. Can be mixed with.
  • a foaming device using expanded particles as a mixture particularly a pre-foaming device, will be described as an example.
  • the pre-foaming device described later has a configuration including the mixing device according to the present embodiment. Needless to say, the mixing device according to the present embodiment is not limited to that applied to the pre-foaming device described later.
  • FIG. 1 is a diagram schematically showing a schematic configuration of a pre-foaming device 10 (mixing device) according to the first embodiment.
  • a pre-foaming device 10 according to the present embodiment includes a foaming container 1 (a container for containing a material to be mixed), a rotary shaft 20, a stirring blade 30, a motor 4, and a measuring tank 5.
  • a discharge door 6, a steam supply line 7, an exhaust line 8 and a steam drain discharge line 9 are provided.
  • the foam container 1 is partitioned into a steam chamber S and a pre-foaming chamber T provided above the steam chamber S.
  • a steam supply line 7 and a steam drain discharge line 9 are connected to the steam chamber S.
  • the measuring tank 5 and the exhaust line 8 are connected to the pre-foaming chamber T.
  • a fixed amount of foamed particles is stored in the measuring tank 5.
  • a rotary shaft 20, a stirring blade 30, and a motor 4 are provided in the pre-foaming chamber T.
  • the stirring blade 30 is a member for stirring the foamed particles in the pre-foaming chamber T.
  • the rotating shaft 20 is a shaft for rotating the stirring blade 30, and is rotated by driving the motor 4. Further, the discharge door 6 is provided in the pre-foaming chamber T.
  • the stirring blade 30 extends in the horizontal direction with respect to the rotating shaft 20. Then, in the direction in which the rotary shaft 20 extends, the rotary shaft 20 is arranged in multiple stages with a predetermined gap. Thereby, the expanded particles can be efficiently stirred.
  • the expanded particles (first-stage expanded particles) in the measuring tank 5 are in a state where air is contained therein by injecting compressed air, for example, and the internal pressure of the air is higher than 1 atm.
  • the foamed particles are introduced from the measuring tank 5 into the pre-foaming chamber T of the foaming container 1 and agitated by the stirring blade 30. Further, steam is supplied from the steam supply line 7 to the steam chamber S of the foam container 1. Then, the steam supplied to the steam chamber S flows into the pre-foaming chamber T. As described above, in the foam container 1, the steam in the steam supply line 7 is supplied from the bottom portion to the pre-foaming chamber T.
  • the expanded particles in the pre-expansion chamber T are heated by the steam supplied from the bottom while being stirred by the stirring blade 30. Then, it is heated and expanded to obtain two-stage expanded particles having a predetermined expansion ratio. The obtained two-stage expanded particles are taken out through the discharge door 6.
  • the steam supplied from the bottom of the pre-foaming chamber T is discharged to the outside of the foam container 1 through the exhaust line 8 after the second-stage foaming is completed. Further, the steam drain generated during the second-stage foaming is discharged to the outside of the foam container 1 via the steam drain discharge line 9.
  • the pre-foaming device 10 pre-foams the foaming container 1 in order to prevent blocking of the foamed particles (fusion of the foamed particles) generated during stirring by the stirring blade 30.
  • a baffle (baffle plate) may be provided in the chamber T. The baffle may have any shape as long as it can prevent the foamed particles from blocking.
  • the expansion ratio of the two-stage expanded particles in the foam container 1 is increased. Variation easily occurs. The cause of such variations in the expansion ratio is that the expanded particles are not uniformly heated in the pre-expansion chamber T.
  • the pre-foaming device 10 according to the present embodiment is characterized by the shape of the stirring blade 30.
  • FIG. 2 shows the structure of the stirring blade 30, 201 in FIG. 2 is a side view, 202 in FIG. 2 is a sectional view taken along the line AA in 201 in FIG. 2, and 203 in FIG. 2 is 201 in FIG.
  • FIG. 6 is a sectional view taken along line BB in FIG.
  • the rotary shaft 20 is provided with a mounting portion 21 for mounting the stirring blade 30.
  • the stirring blade 30 includes two blade portions 30a and 30b arranged symmetrically with respect to the rotation shaft 20.
  • the mounting portion 21 may have, for example, a fitting recess that fits with the ends of the wings 30a and 30b on the rotary shaft 20 side.
  • the stirring blade 30 is attached to the mounting portion 21 by fitting the ends of the blade portions 30 a and 30 b on the rotary shaft 20 side and the fitting recesses of the mounting portion 21.
  • the wings 30a and 30b may be directly attached to the rotary shaft 20 by welding or the like.
  • the stirring blades 30 are arranged so as to be separated from each other on the inner wall and the bottom surface of the foam container 1. That is, the length L of the stirring blade 30 is smaller than the inner diameter (diameter) of the foam container 1 in the direction perpendicular to the rotating shaft 20. In the configuration in which the stirring blade 30 is in contact with the inner wall or the bottom surface of the foam container 1, the stirring blade 30 does not rotate smoothly due to friction due to contact with the inner wall or bottom surface of the foam container 1, which adversely affects the stirring performance. Is.
  • the first agitating blade 32 (first blade) and a second agitation blade 33 of a length r 2 of the length r 1 ( It is characterized by having at least a second blade.
  • the first stirring blade 32 and the second stirring blade 33 constitute a blade portion 30a having a length r
  • the first stirring blade 32 is the second stirring blade. It is arranged inside the blade 33 (on the side of the rotary shaft 20).
  • the first stirring blade 32 and the second stirring blade 33 are inclined with respect to the horizontal plane and have different inclination angles. And the inclination angle theta 1 with respect to the horizontal plane of the first stirring blade 32 is different from the inclination angle theta 2 with respect to the horizontal plane of the second stirring blade 33.
  • the first stirring blade 32 and the second stirring blade 33 are mutually seen when viewed from the end on the side opposite to the rotating shaft 20 (the inner wall side of the foam container 1). There is a positional relationship where they intersect.
  • the inclination angle ⁇ 1 of the first stirring blade 32 with respect to the horizontal plane is an acute angle.
  • the inclination angle ⁇ 2 of the second stirring blade 33 with respect to the horizontal plane is an obtuse angle. Therefore, the first stirring blade 32 is configured to incline downward in the rotation direction of the stirring blade 30. Further, the second stirring blade 33 is configured to be inclined upward in the rotation direction of the stirring blade 30.
  • FIG. 3 is a diagram for explaining the action mechanism of the first stirring blade 32 and the second stirring blade 33.
  • Reference numeral 301 in FIG. 3 is a side view for explaining the action of each of the first stirring blade 32 and the second stirring blade 33 during rotation.
  • reference numeral 302 in FIG. 3 is a top view showing respective rotating regions of the first stirring blade 32 and the second stirring blade 33 during rotation.
  • 303 in FIG. 3 is a diagram schematically showing the flow of foamed particles when the stirring blade 30 rotates.
  • the first stirring blade 32 has an acute inclination angle ⁇ 1 and is inclined downward in the rotation direction. Therefore, as indicated by 301 in FIG. 3, during the rotational operation of the stirring blade 30, the first stirring blade 32 acts so as to scrape up the foamed particles in the pre-foaming chamber T.
  • the second stirring blade 33 has an obtuse inclination angle ⁇ 2 and is inclined upward in the rotation direction. Therefore, as indicated by 301 in FIG. 3, the second stirring blade 33 acts so as to scrape the foamed particles in the pre-foaming chamber T during the rotating operation of the stirring blade 30.
  • the rotation area A of the first stirring blade 32 and the rotation area B of the second stirring blade 33 do not overlap each other in a top view seen from the direction of the rotation shaft 20. .. From this, it can be said that the first agitating blade 32 and the second agitating blade 33 are in a positional relationship that does not overlap each other in a top view seen from the direction of the rotating shaft 20.
  • the set of the first stirring blade 32 and the second stirring blade 33 is provided for each of the plurality of stirring blades 30. In a top view seen from the direction of the rotating shaft 20, the plurality of first stirring blades 32 may have a positional relationship within the rotation region A.
  • the plurality of first stirring blades 32 may or may not overlap.
  • the plurality of second stirring blades 33 may have a positional relationship that is contained within the rotation region B, and may overlap or may overlap. You don't have to.
  • the foamed particles move upward in the rotation region A of the inner first stirring blade 32 shown by 302 in FIG.
  • the foamed particles move downward. Therefore, as indicated by 303 in FIG. 3, during the rotating operation of the stirring blade 30, the flow F to the foamed particles in the pre-foaming chamber T is caused by the above-described actions of the first stirring blade 32 and the second stirring blade 33. Occurs.
  • the flow F is a flow that rises inside the vicinity of the rotary shaft 20 and descends outside the rotary shaft 20.
  • the foamed particles in the pre-foaming chamber T mutually move between the upper layer and the lower layer, so that the stirring and mixing property is improved.
  • the stirring blade 30 improves the fluidity of the expanded particles in the pre-foaming chamber T both in the vertical direction and in the horizontal direction. As a result, since the expanded beads are heated uniformly, it is possible to obtain the two-stage expanded particles having a small variation in expansion ratio. Further, since the variation of the foaming ratio is reduced by the structure of the stirring blade 30, the cost of the prefoaming device 10 is low.
  • the tilt angles ⁇ 1 and ⁇ 2 may be different from each other and can be appropriately set according to the type of the mixture to generate the flow F described above. Particularly, when the mixture is particles such as expanded particles, it is preferable that one of the inclination angles ⁇ 1 and ⁇ 2 is an obtuse angle and the other angle is an acute angle, for example, as shown in 201 to 203 of FIG. The configuration may be mentioned.
  • tilt angles ⁇ 1 and ⁇ 2 is an obtuse angle or an acute angle can be appropriately set according to the rotation direction of the stirring blade 30 and the like.
  • the inclination angle ⁇ 1 of the first stirring blade 32 is set to an obtuse angle and the inclination of the second stirring blade 33 is changed.
  • the angle ⁇ 2 may be an acute angle.
  • the first stirring blade 32 and the second stirring blade 33 have a line-symmetrical positional relationship when viewed from the end opposite to the rotary shaft 20. Has become. Therefore, during the rotating operation of the stirring blade 30, the expanded particles in the pre-expansion chamber T move uniformly upward and downward. Therefore, the expanded particles in the pre-expansion chamber T can be more stably moved to each other between the upper layer and the lower layer.
  • the area of the rotation region A of the first stirring blade 32 is equal to that of the rotation region B of the second stirring blade 33. It is preferably the same as the area.
  • the area where the foamed particles are scraped up becomes substantially the same as the area where the foamed particles are scraped down, so that the foamed particles move uniformly upward and downward.
  • the length r 2 of the first stirring blade 32 lengths r 1 and second agitating blade 33, the area of the rotation range A is set to be the same as the area of the rotation range B Is preferred. More specifically, in the direction perpendicular to the rotational axis 20, the length r 1 and a ratio of r 2 r 1: r 2 is preferably 5: 1, more preferably 6: 5-9 4 It is ⁇ 8:2, particularly preferably 7:3.
  • the tilt angle ⁇ 1 may be any angle as long as it can cause the action of scraping the expanded particles by rotation.
  • the inclination angle ⁇ 1 is preferably 10 to 80°, more preferably 30 to 60°, and particularly preferably 40 to 50°.
  • the tilt angle ⁇ 2 may be any angle as long as it can cause the action of scraping the expanded particles by rotation.
  • the inclination angle ⁇ 2 is preferably 100 to 170°, more preferably 120 to 150°, and particularly preferably 130 to 140°.
  • FIG. 4 shows the structure of the stirring blade 30 provided in the pre-foaming apparatus according to the present embodiment
  • 401 in FIG. 4 is a top view
  • 402 in FIG. 4 is a side view
  • 403 in FIG. It is a figure which shows the structure seen from the opposite side to the rotating shaft 20 about one stirring blade 30.
  • the rotary shaft 20 is provided so that the multi-stage stirring blades 30 form a spiral shape.
  • the second-stage stirring blade 30 has a positional relationship in which it is rotated from the first-stage stirring blade 30 by an angle ⁇ in a direction opposite to the rotation direction.
  • the n-th stage stirring blade 30 has a positional relationship in which it is rotated from the (n-1)th stage stirring blade 30 by an angle ⁇ in a direction opposite to the rotation direction. With such a positional relationship, the multistage stirring blades 30 form a spiral shape extending in the direction of the rotary shaft 20.
  • the n-th stage stirring blade 30 may have a positional relationship in which it is rotated by an angle ⁇ in the rotation direction from the (n-1)-th stage stirring blade 30.
  • the multistage stirring blades 30 will have a spiral shape in the direction opposite to that of FIG.
  • the stirring blades 30 extend in the horizontal direction and are arranged in multiple stages on the rotary shaft 20 with a predetermined gap.
  • the multistage stirring blade 30 is provided on the rotary shaft 20 so as to form a spiral shape. Even with such a configuration, the foamed particles in the pre-foaming chamber can be mutually moved between the upper layer and the lower layer.
  • the mixing and stirring performance of the foamed particles is improved by arranging the stirring blades 30 in a spiral shape.
  • the angle ⁇ formed by the n-th stage stirring blade 30 and the (n-1)th stage stirring blade 30 in a top view can be appropriately set according to the number of stages (n) of the stirring blades.
  • the angle ⁇ obtained by 180° ⁇ the number of steps (n) is preferably 10° to 60°, more preferably 10° to 45°, and particularly preferably 10° to 30°.
  • FIG. 5 schematically shows the configuration of the pre-foaming device according to the present embodiment
  • 501 in FIG. 5 is a sectional view
  • 502 in FIG. 5 is a top view showing the internal configuration.
  • the pre-foaming device according to the present embodiment is different from the first and second embodiments in the arrangement of the multistage stirring blades 30.
  • the n-th stirring blade 30 and the (n-1)-th stirring blade 30 have a positional relationship orthogonal to each other in a plan view.
  • FIG. 6 shows the configurations of two types of stirring blades 30A and 30B provided in the pre-foaming device according to the present embodiment.
  • 601 in FIG. 6 is a top view and 602 in FIG. 6 is a side view.
  • 603 in FIG. 6 is a side view showing the detailed configuration of the stirring blade 30B
  • 604 in FIG. 6 is a side view showing the configuration of the stirring blade 30B as seen from the side opposite to the rotary shaft 20.
  • 605 of FIG. 6 is a side view showing the detailed configuration of the stirring blade 30A
  • 606 of FIG. 6 is a side view showing the configuration of the stirring blade 30A viewed from the side opposite to the rotary shaft 20.
  • the same stirring blade 30 was provided with the first stirring blade 32 and the second stirring blade 33.
  • the pre-foaming device according to the embodiment of the present invention is not limited to the first to third embodiments, and may have any configuration that satisfies the following (a) and (b).
  • the first stirring blade 32 and the second stirring blade 33 are provided for one or more stirring blades 30.
  • the first stirring blade 32 and the second stirring blade 33 do not overlap each other when viewed from the top when viewed from the direction of the rotary shaft 20.
  • the first stirring blade 32 and the second stirring blade 33 may be provided for the same set (in other words, a unit group) of one or more stirring blades. ..
  • the second stirring blade 33 may be provided on the same or different stirring blade as the stirring blade on which the first stirring blade 32 is provided.
  • the pre-foaming apparatus according to the present embodiment is the point that the first stirring blade 32 and the second stirring blade 33 are not provided for the same stirring blade. Different from the first embodiment. That is, in the pre-foaming device according to the present embodiment, the stirring blade 30A provided with the first stirring blade 32 and the stirring blade 30B provided with the second stirring blade 33 are different.
  • Each of the stirring blades 30A and 30B includes a main body shaft portion 31.
  • the main body shaft portion 31 is attached to the attachment portion 21 of the rotary shaft 20.
  • the first stirring blade 32 is provided on the main body shaft portion 31 of the stirring blade 30A, while the second stirring blade 33 is provided on the main body shaft portion 31 of the stirring blade 30B.
  • the first stirring blade 32 attached to the stirring blade 30A is arranged closer to the rotating shaft 20 than the second stirring blade 33 attached to the stirring blade 30B. More specifically, in the top view seen from the direction of the rotary shaft 20, the positional relationship between the first stirring blade 32 and the second stirring blade 33 satisfies the following (i) and (ii).
  • the inclination angle ⁇ 2 of the second stirring blade 33 with respect to the horizontal plane is an obtuse angle.
  • the inclination angle ⁇ 1 of the first stirring blade 32 with respect to the horizontal plane is an acute angle. Therefore, the first stirring blade 32 is configured to incline downward in the rotation direction of the stirring blade 30. Further, the second stirring blade 33 is configured to be inclined upward in the rotation direction of the stirring blade 30.
  • the stirring blades 30A and 30B are arranged in multiple stages so as to be staggered with a predetermined interval.
  • the sets of stirring blades including the stirring blades 30A and 30B are arranged in multiple stages.
  • the stirring blades 30A are arranged below the stirring blades 30B.
  • the second-stage stirring blade 30B has a positional relationship in which it is rotated from the first-stage stirring blade 30A by an angle ⁇ on the side opposite to the rotation direction.
  • the n-th stage stirring blade 30B has a positional relationship in which it is rotated from the (n-1)th stage stirring blade 30A by an angle ⁇ in a direction opposite to the rotation direction. With such a positional relationship, the multistage stirring blades 30A and 30B form a spiral shape extending in the direction of the rotation shaft 20.
  • the n-th stage stirring blade 30B may have a positional relationship in which it is rotated by an angle ⁇ in the rotation direction from the (n-1)-th stage stirring blade 30A.
  • the multistage stirring blades 30A and 30B form a spiral shape in the direction opposite to 602 in FIG.
  • the first stirring blade 32 and the second stirring blade 33 are attached to the same set of two adjacent stirring blades 30A and 30B.
  • the second stirring blade 33 is provided on a stirring blade 30B different from the stirring blade 30A on which the first stirring blade 32 is provided.
  • a plurality of sets of one or more stirring blades that is, a set of two stirring blades 30A and 30B
  • the sets are the same.
  • the 1st stirring blade 32 and the 2nd stirring blade 33 incline with respect to a horizontal surface, and have mutually different inclination angles (theta) 1 and (theta) 2 .
  • the stirring blades 30A and 30B are arranged in multiple stages so as to be staggered with a predetermined gap therebetween. That is, the set including the two stirring blades 30A and 30B is arranged in multiple stages.
  • the expanded particles in the pre-expansion chamber can be moved to each other between the upper layer and the lower layer.
  • the mixing and stirring performance of the foamed particles is improved by arranging the stirring blades 30A and 30B in a spiral shape.
  • the angle ⁇ formed by the n-th stage stirring blade 30B and the (n-1)th stage stirring blade 30A in a top view can be appropriately set according to the number of stages (n) of the stirring blades.
  • the angle ⁇ obtained by 180° ⁇ the number of steps (n) is preferably 10° to 60°, more preferably 10° to 45°, and particularly preferably 10° to 30°.
  • the foamed particles to be put into the foaming container 1 are not particularly limited as long as they are foamed particles that require two-stage foaming.
  • the foamed particles include thermoplastic resin foamed particles.
  • the base resin of the expanded thermoplastic resin particles used in the present embodiment is not particularly limited as long as it is a generally known expandable thermoplastic resin.
  • the thermoplastic resin include polyolefin resins, polyester resins, polystyrene resins, polyphenylene ether resins, polyamide resins, and mixtures thereof.
  • the thermoplastic resin is preferably a polyolefin resin or a polyester resin.
  • polyester resins include aliphatic polyester resins, aromatic polyester resins, and aliphatic aromatic polyester resins.
  • polyester resin examples include polyhydroxyalkanoate, polybutylene succinate (PBS), poly(butylene adipate-co-butylene terephthalate) (PBAT), polyethylene terephthalate (PET), and the like.
  • polyhydroxyalkanoates include poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), poly(3-hydroxybutyrate) (P3HB), poly(3-hydroxybutyrate-co-).
  • polyolefin resin is preferably used. That is, it is preferable that the expanded particles to be placed in the expanded container 1 are polyolefin resin expanded particles.
  • thermoplastic resin particles An embodiment in which a polyolefin resin is used as a base resin for thermoplastic resin particles will be described below.
  • the base resin of the thermoplastic resin particles that can be used in this embodiment is not limited to the polyolefin resin.
  • the above-mentioned polyolefin resin is a resin containing 50% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more of an olefin unit.
  • the polyolefin resin include polyethylenes such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and low-molecular-weight polyethylene; propylene homopolymer; ethylene-propylene random copolymer; ⁇ -Olefin-propylene random copolymers such as ethylene-propylene-1-butene random copolymer and propylene-1-butene random copolymer, and polypropylenes such as ⁇ -olefin-propylene block copolymer; propylene Other polyolefin homopolymers such as homopolymer and polybutene; and the like. These may be used alone or in combination of two or more.
  • the ethylene-propylene random copolymer, the ethylene-propylene-1-butene random copolymer, and the propylene-1-butene random copolymer exhibit good foamability when they are used as expanded particles. , Preferably used.
  • thermoplastic resins such as polystyrene, polybutene, and ionomer
  • polystyrene, polybutene, and ionomer are mixed in the base resin of the polyolefin resin foamed particles as long as the characteristics of the polyolefin resin are not lost. May be.
  • the polyolefin resin is usually melted by using an extruder, a kneader, a Banbury mixer, a roll, and the like, and a columnar shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc., so that the expanded beads can be easily produced. It is preferable to process the above resin particles in advance.
  • the resin particles are also called pellets.
  • the weight of one particle of the polyolefin-based resin particles is preferably 0.1 to 30 mg, more preferably 0.3 to 10 mg.
  • the additive When an additive is added to the polyolefin resin, it is preferable to mix the polyolefin resin and the additive using a blender or the like before the production of the polyolefin resin particles.
  • the additive include a cell nucleating agent (also simply referred to as a nucleating agent).
  • the nucleating agent may be an inorganic material such as talc, silica, calcium carbonate, kaolin, titanium oxide, bentonite or barium sulfate. Nucleating agents are commonly used.
  • the addition amount of the cell nucleating agent varies depending on the type of the polyolefin resin used and the type of the cell nucleating agent, and therefore cannot be specified unconditionally, but is generally 0.001 part by weight or more relative to 100 parts by weight of the polyolefin resin. It is preferably 2 parts by weight or less.
  • an inorganic foaming agent such as air, nitrogen, carbon dioxide, or water
  • water is used as the dispersion medium of the aqueous dispersion
  • the polyolefin resin is impregnated with water, and the impregnated water acts as a foaming agent alone or together with other foaming agents.
  • the hydrophilic substance acts so as to increase the amount of water impregnated in the polyolefin resin.
  • specific examples of the hydrophilic substance include inorganic substances such as sodium chloride, calcium chloride, magnesium chloride, borax and zinc borate; or glycerin, melamine, isocyanuric acid, melamine-isocyanuric acid condensate; polyethylene glycol, polyethylene oxide, etc.
  • the amount of hydrophilic substance added is 0. It is preferably 005 parts by weight or more and 2 parts by weight or less, and more preferably 0.005 parts by weight or more and 1 part by weight or less.
  • the average cell diameter of the polyolefin resin expanded particles can be adjusted.
  • additives such as stabilizers, hindered amine light stabilizers, flame retardants, flame retardant aids, acid neutralizers, crystal nucleating agents, amide additives, etc. within a range that does not impair the properties of the polyolefin resin. be able to.
  • foaming agent it is possible to use volatile hydrocarbon-based foaming agents such as propane, isobutane, butane, pentane and hexane, and inorganic gases such as air, nitrogen, carbon dioxide and water.
  • volatile hydrocarbon-based foaming agents such as propane, isobutane, butane, pentane and hexane
  • inorganic gases such as air, nitrogen, carbon dioxide and water.
  • carbon dioxide is preferable because foamed particles having a relatively high expansion ratio can be easily obtained.
  • foaming agents may be used alone or in combination of two or more kinds.
  • aqueous dispersion medium it is preferable to use water as the aqueous dispersion medium.
  • a dispersion medium obtained by adding methanol, ethanol, ethylene glycol, glycerin or the like to water can also be used as the aqueous dispersant.
  • a dispersant in order to prevent fusion of the polyolefin resin particles with each other.
  • the dispersant include inorganic dispersants such as tricalcium phosphate, tribasic magnesium phosphate, titanium oxide, basic magnesium carbonate, calcium carbonate, barium sulfate, kaolin, talc and clay.
  • tricalcium phosphate, barium sulfate, and kaolin are more preferable because they can stably disperse the aqueous dispersion containing the polyolefin resin particles in the pressure resistant container even in a small amount.
  • dispersion aid together with the dispersant.
  • the dispersion aid include carboxylate types such as N-acyl amino acid salt, alkyl ether carboxylate, and acylated peptide; alkylsulfonate, alkylbenzenesulfonate, alkylnaphthalenesulfonate, sulfosuccinate.
  • Sulfonate types such as acid salts; sulfated oils, alkyl sulfates, alkyl ether sulfates, alkyl amide sulfates and other sulfate ester types; and alkyl phosphates, polyoxyethylene phosphates, alkyl allyl ether sulfates Anionic surfactants such as phosphate ester type such as salt; and the like.
  • a dispersion aid a maleic acid copolymer salt; a polycarboxylic acid type polymer surfactant such as polyacrylate; and a polyvalent salt such as polystyrene sulfonate, naphthalsulfonic acid formalin condensate salt; Anionic polymeric surfactants can also be used.
  • the dispersion aid it is preferable to use a sulfonate type anionic surfactant, and it is further preferable to use one kind or a mixture of two or more kinds selected from alkylsulfonate and alkylbenzenesulfonate. .. Further, it is more preferable to use an alkyl sulfonate, and to use an alkyl sulfonate having a linear carbon chain having 10 to 18 carbon atoms as a hydrophobic group adheres to the expanded particles of the polyolefin resin. It is particularly preferable because the dispersant can be reduced.
  • one or more kinds selected from tribasic calcium phosphate, tribasic magnesium phosphate, barium sulfate or kaolin as a dispersant, and n-paraffin sodium sulfonate as a dispersion aid may be used in combination. Particularly preferred.
  • the amount of the dispersant and the dispersion aid used depends on the type or the type and amount of the polyolefin resin used.
  • the dispersant is preferably added in an amount of 0.1 parts by weight or more and 5 parts by weight or less, and 0.2 parts by weight or more and 3 parts by weight or less with respect to 100 parts by weight of the aqueous dispersion medium. More preferable.
  • the dispersion aid is preferably added in an amount of 0.001 parts by weight or more and 0.3 parts by weight or less, and 0.001 parts by weight or more and 0.1 parts by weight or less with respect to 100 parts by weight of the aqueous dispersion medium. More preferably.
  • the polyolefin resin particles can be stably dispersed in the aqueous dispersion medium in the pressure resistant container.
  • the method for producing expanded particles according to the present embodiment has a step of producing expanded particles using the expansion device according to Embodiments 1 to 4 described above.
  • the method for producing expanded particles according to the present embodiment includes a step of introducing expanded particles into the pre-expansion chamber T of the expansion container 1, and the expanded particles. While agitating with a plurality of agitating blades 30, while supplying steam to the pre-expansion chamber T and heating, a two-stage foaming step in which the foamed particles are subjected to a two-stage foaming process.
  • the stirring blade 30 is stirred to improve the fluidity of the expanded particles in the pre-expansion chamber T both in the vertical direction and in the horizontal direction, so that the expanded particles are heated uniformly. To be done. Therefore, it is possible to obtain the two-stage expanded particles having a small variation in expansion ratio.
  • a mixing device (pre-foaming device 10) according to Aspect 1 of the present invention includes a container (foaming container 1) for containing a material to be mixed, a plurality of stirring blades 30, 30A, 30B for stirring the material to be mixed, and the stirring blades.
  • Stirring blade 32 and a second stirring blade 33 the first and second blades are inclined with respect to the horizontal plane and have different inclination angles ⁇ 1 and ⁇ 2 from each other, and As viewed, the first and second blades are configured so as not to overlap each other.
  • the mixing device pre-foaming device 10 according to the second aspect of the present invention is configured such that, in the first aspect, the same stirring blade 30 has at least the first and second blades. That is, the first and second blades are provided on the same stirring blade 30.
  • a mixing device (pre-foaming device 10) according to Aspect 3 of the present invention is the mixing blade (pre-foaming device 10) according to Aspect 1, in which the first blade (first stirring blade 32) is provided with the stirring blade 30A and the second blade ( The stirring blade 30B provided with the second stirring blade 33) has a different structure. That is, the first blade (first stirring blade 32) and the second blade (second stirring blade 33) are provided on the different stirring blades 30A and 30B, respectively.
  • an inclination angle ⁇ 1 of the first blade (first stirring blade 32) with respect to the horizontal plane is an acute angle.
  • the inclination angle ⁇ 2 of the second blade (second stirring blade 33) with respect to the horizontal plane is an obtuse angle.
  • a mixing apparatus (pre-foaming apparatus 10) according to Aspect 5 of the present invention is the mixing apparatus according to any one of Aspects 1 to 4, wherein the stirring blade 30 extends in the horizontal direction, and the rotation is performed at a predetermined interval.
  • the shaft 20 is arranged in multiple stages.
  • the stirring blade 30A provided with the first blade and the stirring blade 30B provided with the second blade are the longitudinal axis of the rotary shaft 20. It is preferable that they are arranged in multiple stages alternately in the direction.
  • a mixing apparatus (pre-foaming apparatus 10) according to Aspect 6 of the present invention is configured such that, in Aspect 5, the multistage stirring blades 30, 30A, 30B are provided on the rotary shaft 20 so as to form a spiral shape. Is.
  • a mixing device (pre-foaming device 10) according to Aspect 7 of the present invention is the mixing device according to any one of Aspects 1 to 6, in which a length r 1 of the first and second blades in a direction perpendicular to the rotation axis and ratio r 1 of r 2: r 2 is 5: 5 to 9: configuration 1.
  • the mixture is foamed particles and is provided with the mixing device according to any one of Aspects 1 to 7.
  • the method for producing expanded particles according to aspect 9 of the present invention includes a step of producing expanded particles (for example, two-step expanded particles) using the expansion device of aspect 8.
  • FIG. 7 is a view showing a premise structure of a pre-foaming device to be used in Examples, Reference Examples and Comparative Examples
  • 701 in FIG. 7 is a sectional view
  • 702 in FIG. 7 is an upper surface showing an internal structure. It is a figure.
  • the pre-foaming apparatuses of Examples, Reference Examples and Comparative Examples have a configuration in which the multi-stage stirring blades G are provided on the rotary shaft 20 so as to form a spiral shape. It is a prerequisite.
  • the inner diameter ⁇ of the foam container 1 is 290 mm.
  • the stirring blade G is separated from the inner wall of the foam container 1 and has a length L of 282 mm.
  • the angle ⁇ is 30°.
  • the inclination angle of the stirring blade G with respect to the horizontal plane is 45°.
  • the stirring and mixing properties of the expanded particles were evaluated. More specifically, first, the foamed container 1 was charged with white foamed particles and black foamed particles so as to form an upper and lower two layers. Then, the fluidity and the stirring and mixing property of the foamed particles when the stirring blade G was rotated at a stirring speed of 75 rpm were visualized and evaluated as the behavior and the color mixing property of the foamed particles of two colors.
  • FIG. 8 is an image diagram showing the evaluation results of the fluidity and agitation mixing property of the expanded particles in Examples, Reference Examples, and Comparative Examples.
  • the shorter length of the stirring blade G is advantageous in terms of improving the stirring and mixing property of the expanded particles.
  • a discharge process for discharging the second-stage expanded particles to the outside of the pre-expansion device is required.
  • the particles in the foam container 1 are discharged to the outside together with the cleaning air while rotating the stirring blade G. Therefore, when the length L of the stirring blade G is short, particles in the foam container 1 may remain on the side wall in the discharging step.
  • the stirring blade G having a short length L when the stirring blade G having a short length L is used, the mixing property of the expanded particles due to the mutual movement of the upper layer and the lower layer is ensured, but the particles may not be efficiently discharged out of the apparatus. Further, when the stirring blade G having a long length L is used, the mixing property of the expanded particles is not good, but the particles can be efficiently discharged out of the apparatus.
  • the inventor of the present application has devised a stirring blade having a long length L while ensuring the mixing property of the foamed particles by the mutual movement of the upper layer and the lower layer, and the structure of the stirring blade 30 shown in 201 to 203 of FIG. was developed.
  • the stirring blade 30 is applied to the stirring blade G
  • white foamed particles appear in the upper portion much faster than in the comparative example in which the stirring blade G having a long length L is used. It was then mixed. From this, it was found that the example had better stirring and mixing properties than the comparative example. Further, it was found that the example has the same or better stirring and mixing property as compared with the reference example using the stirring blade G having the short length L.
  • the present invention can be utilized in the technical field in which the materials to be mixed are required to be mixed, particularly in the technical field in which the stirring technology is used for foaming the resin.
  • Foaming container (container for containing the mixture) 10 Pre-foaming device (mixing device) 20 Rotating Shafts 30, 30A, 30B Stirring Blade 32 First Stirring Blade (First Blade) 33 Second stirring blade (second blade) ⁇ 1 , ⁇ 2 tilt angle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Molding Of Porous Articles (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The purpose of the present invention so to evenly mix materials to be mixed between an upper layer and a lower layer by moving the materials to be mixed between the upper layer and the lower layer. A mixing apparatus according to the present invention has at least a first stirring impeller (32) and a second stirring impeller (33) in stirring blades (30), the first stirring impeller (32) and the second stirring impeller (33) are inclined with respect to a horizontal surface and have inclined angles (θ1, θ2) that are different from each other, and, in top view, the first and second stirring impellers (32, 33) do not overlap with each other.

Description

混合装置、発泡装置および発泡粒子の製造方法Mixing device, foaming device and method for producing expanded particles
 本発明は、混合装置、発泡装置および発泡粒子の製造方法に関する。 The present invention relates to a mixing device, a foaming device, and a method for producing expanded particles.
 被混合物を収容する容器を備え、容器内に設けられた撹拌翼により被混合物を混合する混合装置が知られている。 A mixing device is known which includes a container for containing the mixture and which mixes the mixture with a stirring blade provided in the container.
 例えば、特許文献1には、気液の撹拌混合用の撹拌翼が開示されている。特許文献1に開示された撹拌翼は、上下一対の翼の対向面の間に間隔を形成するように、回転軸に放射状に上下複数段に取り付けた構成となっている。そして、上下一対の翼は、その間隔が翼の回転方向に向かって狭くなるか、あるいは広くなるように形成されている。 For example, Patent Document 1 discloses a stirring blade for stirring and mixing gas and liquid. The stirring blade disclosed in Patent Document 1 has a configuration in which a plurality of upper and lower blades are radially attached to a rotating shaft so as to form a gap between opposed surfaces of a pair of upper and lower blades. The pair of upper and lower blades are formed such that the distance between them becomes narrower or wider in the rotation direction of the blades.
 また、特許文献2には、被混合物として熱可塑性合成樹脂粒子を撹拌翼により混合しつつ、当該樹脂粒子を加熱発泡する予備発泡装置が開示されている。特許文献2に開示された予備発泡装置は、撹拌翼の先端部に掻き取り板を備えている。この掻き取り板は、撹拌翼に対して略垂直方向に設けられている。 Also, Patent Document 2 discloses a pre-foaming device that heat-foams the resin particles while mixing the thermoplastic synthetic resin particles as a material to be mixed with a stirring blade. The pre-foaming device disclosed in Patent Document 2 includes a scraping plate at the tip of the stirring blade. This scraping plate is provided in a direction substantially vertical to the stirring blade.
特開2014-226633号公報JP, 2014-226633, A 特開平1-301210号公報JP-A-1-301210
 しかしながら、特許文献1に開示された撹拌翼を、被混合物(例えば粒子)を混合する混合装置に適用した場合、容器内において、被混合物が上層と下層との間で相互移動しにくいという技術的課題があることを本発明者は見出した。すなわち、撹拌翼による撹拌を行っても、上層の被混合物は、下層へ移動しにくく、上層に留まったままとなる。また、下層の被混合物は、上層へ移動しにくく、下層に留まったままとなる。このため、特許文献1に開示された撹拌翼では、被混合物を上層と下層との間で相互移動させ、上層と下層との間で均一に混合させるという点で改善の余地がある。 However, when the stirring blade disclosed in Patent Document 1 is applied to a mixing device for mixing an object to be mixed (for example, particles), it is technically difficult for the object to be mixed to move between an upper layer and a lower layer in a container. The present inventors have found that there is a problem. That is, even if stirring is performed by the stirring blade, the mixture to be mixed in the upper layer does not easily move to the lower layer and remains in the upper layer. Further, the mixture to be mixed in the lower layer does not easily move to the upper layer and remains in the lower layer. Therefore, in the stirring blade disclosed in Patent Document 1, there is room for improvement in that the materials to be mixed are mutually moved between the upper layer and the lower layer and are uniformly mixed between the upper layer and the lower layer.
 また、特許文献1に開示された撹拌翼を、特に特許文献2に開示された予備発泡装置に適用した場合、樹脂粒子が上層と下層との間で均一に混合されにくいため、樹脂粒子が均一に加熱されないという技術上の課題もあることがわかった。そのため、樹脂粒子の発泡倍率のバラツキが生じやすくなる。 Further, when the stirring blade disclosed in Patent Document 1 is applied to the pre-foaming device disclosed in Patent Document 2, since the resin particles are difficult to be uniformly mixed between the upper layer and the lower layer, the resin particles are uniform. It turns out that there is also a technical problem in that it is not heated. Therefore, the expansion ratio of the resin particles tends to vary.
 本発明の一態様は、被混合物を上層と下層との間で相互移動させ、上層と下層との間で均一に混合させることが可能な混合装置、および発泡装置を実現することを目的とする。 An object of one embodiment of the present invention is to realize a mixing device and a foaming device capable of mutually moving an object to be mixed between an upper layer and a lower layer to uniformly mix the upper layer and the lower layer. ..
 上記の課題を解決するために、本発明の一態様に係る混合装置は、被混合物を収容する容器と、前記被混合物を攪拌する複数の撹拌翼と、前記撹拌翼を回転させる回転軸と、を備え、前記撹拌翼に対して、少なくとも第1および第2の羽根を有し、前記第1および第2の羽根は、水平面に対して傾斜しているとともに、互いに異なる傾斜角度を有し、上面視において、前記第1および第2の羽根は互いに重複しないことを特徴としている。 In order to solve the above problems, the mixing device according to an aspect of the present invention is a container that stores a mixed object, a plurality of stirring blades that stir the mixed object, and a rotating shaft that rotates the stirring blade, And having at least first and second blades with respect to the stirring blade, the first and second blades being inclined with respect to a horizontal plane and having different inclination angles from each other, It is characterized in that the first and second blades do not overlap each other in a top view.
 本発明の一態様によれば、被混合物を上層と下層との間で相互移動させ、上層と下層との間で均一に混合させることができる。 According to one aspect of the present invention, the material to be mixed can be mutually moved between the upper layer and the lower layer, and can be uniformly mixed between the upper layer and the lower layer.
本発明の実施形態1に係る予備発泡装置の概略構成を模式的に示す図である。It is a figure which shows typically the schematic structure of the prefoaming apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る予備発泡装置に備えられた撹拌翼の構成を示し、201は側面図であり、202は201におけるA-A線断面図であり、203は201におけるB-B線断面図である。The structure of the stirring blade with which the pre-foaming apparatus which concerns on Embodiment 1 of this invention was shown, 201 is a side view, 202 is the AA sectional view taken on the line of 201, 203 is the BB line of 201. FIG. 本発明の実施形態1に係る予備発泡装置に備えられた、第1および第2の撹拌羽根の作用機構を説明するための図であり、301は回転時の第1および第2の撹拌羽根それぞれの作用を説明するための側面図であり、302は、回転時の第1および第2の撹拌羽根それぞれの回転領域を示す上面図であり、303は、撹拌翼の回転時の発泡粒子の流れを模式的に示した図である。It is a figure for explaining the operation mechanism of the 1st and 2nd stirring blade with which the prefoaming device concerning Embodiment 1 of the present invention was equipped, 301 is the 1st and 2nd stirring blade at the time of rotation, respectively. FIG. 3 is a side view for explaining the action of FIG. 3, 302 is a top view showing respective rotation regions of the first and second stirring blades during rotation, and 303 is a flow of foamed particles during rotation of the stirring blade. It is the figure which showed typically. 本発明の実施形態2に係る予備発泡装置に備えられた撹拌翼の構成を示し、401は上面図であり、402は側面図であり、403は1つの撹拌翼について回転軸と反対側から見た構成を示す図である。The structure of the stirring blade with which the pre-foaming apparatus which concerns on Embodiment 2 of this invention was shown, 401 is a top view, 402 is a side view, 403 sees one stirring blade from the opposite side to a rotating shaft. It is a figure which shows the structure. 本発明の実施形態3に係るに係る予備発泡装置の構成を模式的に示し、501は断面図であり、502は内部構成を示す上面図である。The structure of the prefoaming apparatus which concerns on Embodiment 3 of this invention is shown typically, 501 is a sectional view and 502 is a top view which shows an internal structure. 本発明の実施形態4に係る予備発泡装置に備えられた2種類の撹拌翼の構成を示し、601は上面図であり、602は側面図であり、603は、前記2種類の撹拌翼のうち一方の撹拌翼の詳細な構成を示す側面図であり、604は、当該一方の撹拌翼について回転軸と反対側から見た構成を示す側面図であり、605は、前記2種類の撹拌翼のうち他方の撹拌翼の詳細な構成を示す側面図であり、606は、当該他方の撹拌翼について回転軸と反対側から見た構成を示す側面図である。The structure of two types of stirring blades provided in the pre-foaming device according to Embodiment 4 of the present invention is shown, 601 is a top view, 602 is a side view, and 603 is one of the two types of stirring blades. FIG. 6 is a side view showing a detailed configuration of one stirring blade, 604 is a side view showing a configuration of the one stirring blade viewed from the side opposite to the rotation axis, and 605 is one of the two types of stirring blades. FIG. 6 is a side view showing a detailed configuration of the other stirring blade, and 606 is a side view showing a configuration of the other stirring blade as viewed from the side opposite to the rotation axis. 実施例、参考例、および比較例について、使用する予備発泡装置の前提的構成を示す図であり、701は断面図であり、702は内部構成を示す上面図である。It is a figure which shows the premise structure of the prefoaming apparatus to be used about an Example, a reference example, and a comparative example, 701 is a sectional view, 702 is a top view which shows an internal structure. 実施例、参考例、および比較例における発泡粒子の流動性および撹拌混合性の評価結果を示すイメージ図である。It is an image figure which shows the evaluation result of the fluidity and stirring mixing property of the foamed particles in an Example, a reference example, and a comparative example.
 本実施形態に係る混合装置の対象である被混合物は、撹拌翼により混合可能な物質であれば、特に限定されないが、固体が好ましい。特に好ましくは、被混合物は、粒子状の固体である。本実施形態に係る混合装置は、被混合物の混合に使用される撹拌翼を特定の構造とすることにより、被混合物を上層と下層との間で相互移動させ、上層と下層との間で均一に混合させることが可能となっている。以下では、被混合物として発泡粒子を使用した発泡装置、特に予備発泡装置を例にして説明する。後述する予備発泡装置は、本実施形態に係る混合装置を備えた構成である。なお、本実施形態に係る混合装置は、後述する予備発泡装置に適用されたものに限定されないことはいうまでもない。 The material to be mixed, which is the target of the mixing apparatus according to the present embodiment, is not particularly limited as long as it is a substance that can be mixed by a stirring blade, but a solid is preferable. Particularly preferably, the material to be mixed is a particulate solid. The mixing apparatus according to the present embodiment has a specific structure of the stirring blade used for mixing the materials to be mixed, so that the materials to be mixed are mutually moved between the upper layer and the lower layer, and uniform between the upper layer and the lower layer. Can be mixed with. In the following, a foaming device using expanded particles as a mixture, particularly a pre-foaming device, will be described as an example. The pre-foaming device described later has a configuration including the mixing device according to the present embodiment. Needless to say, the mixing device according to the present embodiment is not limited to that applied to the pre-foaming device described later.
 〔実施形態1〕
 図1は、実施形態1に係る予備発泡装置10(混合装置)の概略構成を模式的に示す図である。図1に示されるように、本実施形態に係る予備発泡装置10は、発泡容器1(被混合物を収容する容器)と、回転軸20と、撹拌翼30と、モータ4と、計量タンク5と、排出扉6と、蒸気供給ライン7と、排気ライン8と、蒸気ドレン排出ライン9と、を備えている。
[Embodiment 1]
FIG. 1 is a diagram schematically showing a schematic configuration of a pre-foaming device 10 (mixing device) according to the first embodiment. As shown in FIG. 1, a pre-foaming device 10 according to the present embodiment includes a foaming container 1 (a container for containing a material to be mixed), a rotary shaft 20, a stirring blade 30, a motor 4, and a measuring tank 5. A discharge door 6, a steam supply line 7, an exhaust line 8 and a steam drain discharge line 9 are provided.
 発泡容器1は、蒸気室Sと、当該蒸気室Sの上側に設けられた予備発泡室Tとに区画されている。蒸気室Sには、蒸気供給ライン7および蒸気ドレン排出ライン9が接続されている。また、予備発泡室Tには、計量タンク5および排気ライン8が接続されている。計量タンク5には、発泡粒子が一定量貯蔵されている。 The foam container 1 is partitioned into a steam chamber S and a pre-foaming chamber T provided above the steam chamber S. A steam supply line 7 and a steam drain discharge line 9 are connected to the steam chamber S. Further, to the pre-foaming chamber T, the measuring tank 5 and the exhaust line 8 are connected. A fixed amount of foamed particles is stored in the measuring tank 5.
 また、予備発泡室T内には、回転軸20、撹拌翼30、およびモータ4が設けられている。撹拌翼30は、予備発泡室T内の発泡粒子を撹拌するための部材である。回転軸20は、撹拌翼30を回転させるための軸であり、モータ4の駆動により回転する。また、排出扉6は、予備発泡室Tに設けられている。 Further, in the pre-foaming chamber T, a rotary shaft 20, a stirring blade 30, and a motor 4 are provided. The stirring blade 30 is a member for stirring the foamed particles in the pre-foaming chamber T. The rotating shaft 20 is a shaft for rotating the stirring blade 30, and is rotated by driving the motor 4. Further, the discharge door 6 is provided in the pre-foaming chamber T.
 撹拌翼30は、回転軸20に対して水平方向に延在している。そして、回転軸20が伸びる方向において、所定の間隔を開けて、多段に配置されている。これにより、発泡粒子を効率的に撹拌することができる。 The stirring blade 30 extends in the horizontal direction with respect to the rotating shaft 20. Then, in the direction in which the rotary shaft 20 extends, the rotary shaft 20 is arranged in multiple stages with a predetermined gap. Thereby, the expanded particles can be efficiently stirred.
 計量タンク5内の発泡粒子(一段発泡粒子)は、例えば、圧縮空気の注入により内部に空気が含有された状態となっており、例えば空気による内圧が1気圧よりも大きくなっている。予備発泡装置10では、発泡粒子は、計量タンク5から発泡容器1の予備発泡室Tへ導入され、撹拌翼30により撹拌される。また、発泡容器1の蒸気室Sには、蒸気供給ライン7から蒸気が供給される。そして、蒸気室Sに供給された蒸気は、予備発泡室Tへ流入する。このように発泡容器1は、蒸気供給ライン7の蒸気が底部から予備発泡室Tへ供給されるようになっている。予備発泡室T内の発泡粒子は、撹拌翼30により撹拌されつつ、底部から供給される蒸気により加熱される。そして、加熱膨張して、所定の発泡倍率を有する二段発泡粒子が得られる。得られた二段発泡粒子は、排出扉6から外部へ取り出される。 The expanded particles (first-stage expanded particles) in the measuring tank 5 are in a state where air is contained therein by injecting compressed air, for example, and the internal pressure of the air is higher than 1 atm. In the pre-foaming device 10, the foamed particles are introduced from the measuring tank 5 into the pre-foaming chamber T of the foaming container 1 and agitated by the stirring blade 30. Further, steam is supplied from the steam supply line 7 to the steam chamber S of the foam container 1. Then, the steam supplied to the steam chamber S flows into the pre-foaming chamber T. As described above, in the foam container 1, the steam in the steam supply line 7 is supplied from the bottom portion to the pre-foaming chamber T. The expanded particles in the pre-expansion chamber T are heated by the steam supplied from the bottom while being stirred by the stirring blade 30. Then, it is heated and expanded to obtain two-stage expanded particles having a predetermined expansion ratio. The obtained two-stage expanded particles are taken out through the discharge door 6.
 また、予備発泡室Tの底部から供給された蒸気は、二段発泡が完了した後、排気ライン8を介して発泡容器1外部へ排出される。また、二段発泡中に発生した蒸気ドレンは、蒸気ドレン排出ライン9を介して発泡容器1外部へ排出される。 Further, the steam supplied from the bottom of the pre-foaming chamber T is discharged to the outside of the foam container 1 through the exhaust line 8 after the second-stage foaming is completed. Further, the steam drain generated during the second-stage foaming is discharged to the outside of the foam container 1 via the steam drain discharge line 9.
 なお、図1には示されていないが、予備発泡装置10は、撹拌翼30による撹拌中に発生する発泡粒子のブロッキング(発泡粒子同士の融着)を防止するため、発泡容器1の予備発泡室T内にバッフル(邪魔板)を備えていてもよい。このバッフルは、発泡粒子のブロッキングの防止し得る形状であれば、任意の形状であってもよい。 Although not shown in FIG. 1, the pre-foaming device 10 pre-foams the foaming container 1 in order to prevent blocking of the foamed particles (fusion of the foamed particles) generated during stirring by the stirring blade 30. A baffle (baffle plate) may be provided in the chamber T. The baffle may have any shape as long as it can prevent the foamed particles from blocking.
 ここで、上述のように、予備発泡室T内で発泡粒子を撹拌翼30により撹拌しながら、底部から供給される蒸気により加熱する発泡方法では、発泡容器1内の二段発泡粒子の発泡倍率にバラツキが生じ易くなる。このように発泡倍率のバラツキが生じる要因として、発泡粒子が予備発泡室T内で均一に加熱されないことが挙げられる。 Here, as described above, in the foaming method in which the foamed particles are heated by the steam supplied from the bottom while being stirred by the stirring blades 30 in the pre-foaming chamber T, the expansion ratio of the two-stage expanded particles in the foam container 1 is increased. Variation easily occurs. The cause of such variations in the expansion ratio is that the expanded particles are not uniformly heated in the pre-expansion chamber T.
 そこで、本願発明者は、この発泡粒子の加熱均一化という課題に対して、予備発泡室T内での撹拌翼30による発泡粒子の撹拌混合性に着目して、鋭意検討した。その結果、予備発泡室T内における発泡粒子の上下方向および水平方向の両方の流動性を向上し得る撹拌翼30の形状を見出した。本実施形態に係る予備発泡装置10は、撹拌翼30の形状に特徴がある。 Therefore, the inventor of the present application diligently studied the problem of uniform heating of the expanded particles, focusing on the stirring and mixing property of the expanded particles by the stirring blade 30 in the pre-expansion chamber T. As a result, the shape of the stirring blade 30 that can improve the fluidity of the expanded particles in the pre-expansion chamber T both in the vertical direction and in the horizontal direction was found. The pre-foaming device 10 according to the present embodiment is characterized by the shape of the stirring blade 30.
 図2は、撹拌翼30の構成を示し、図2の201は側面図であり、図2の202は図2の201におけるA-A線断面図であり、図2の203は図2の201におけるB-B線断面図である。 2 shows the structure of the stirring blade 30, 201 in FIG. 2 is a side view, 202 in FIG. 2 is a sectional view taken along the line AA in 201 in FIG. 2, and 203 in FIG. 2 is 201 in FIG. FIG. 6 is a sectional view taken along line BB in FIG.
 図2の201~203に示されるように、回転軸20には、撹拌翼30を取り付けるための取付部21が設けられている。また、撹拌翼30は、回転軸20に対して対称に配された2つの翼部30aおよび30bを備えている。 As shown by 201 to 203 in FIG. 2, the rotary shaft 20 is provided with a mounting portion 21 for mounting the stirring blade 30. Further, the stirring blade 30 includes two blade portions 30a and 30b arranged symmetrically with respect to the rotation shaft 20.
 取付部21は、例えば、翼部30aおよび30bの回転軸20側端部と嵌合する嵌合凹部を有していてもよい。翼部30aおよび30bの回転軸20側端部と取付部21の上記嵌合凹部とを嵌合させることにより、撹拌翼30は取付部21に取り付けられる。また、例えば、翼部30aおよび30bは、溶接などによって、直接回転軸20に取り付けられていてもよい。 The mounting portion 21 may have, for example, a fitting recess that fits with the ends of the wings 30a and 30b on the rotary shaft 20 side. The stirring blade 30 is attached to the mounting portion 21 by fitting the ends of the blade portions 30 a and 30 b on the rotary shaft 20 side and the fitting recesses of the mounting portion 21. Further, for example, the wings 30a and 30b may be directly attached to the rotary shaft 20 by welding or the like.
 ここで、撹拌翼30は、発泡容器1の内壁および底面に離間するように配置されている。すなわち、回転軸20に対して垂直な方向において、撹拌翼30の長さLは、発泡容器1の内径(直径)よりも小さくなっている。撹拌翼30が発泡容器1の内壁または底面に接触している構成では、発泡容器1の内壁または底面との接触による摩擦によって、撹拌翼30がスムーズに回転せず、撹拌性能に悪影響があるためである。 Here, the stirring blades 30 are arranged so as to be separated from each other on the inner wall and the bottom surface of the foam container 1. That is, the length L of the stirring blade 30 is smaller than the inner diameter (diameter) of the foam container 1 in the direction perpendicular to the rotating shaft 20. In the configuration in which the stirring blade 30 is in contact with the inner wall or the bottom surface of the foam container 1, the stirring blade 30 does not rotate smoothly due to friction due to contact with the inner wall or bottom surface of the foam container 1, which adversely affects the stirring performance. Is.
 本実施形態に係る予備発泡装置10は、同一の撹拌翼30に対して、長さrの第1の撹拌羽根32(第1の羽根)および長さrの第2の撹拌羽根33(第2の羽根)を少なくとも有することを特徴としている。図2の201に示されるように、第1の撹拌羽根32および第2の撹拌羽根33が、長さrの翼部30aを構成しており、第1の撹拌羽根32は、第2の撹拌羽根33よりも内側(回転軸20側)に配置されている。 Pre-expansion apparatus 10 according to the present embodiment, for the same stirring blade 30, the first agitating blade 32 (first blade) and a second agitation blade 33 of a length r 2 of the length r 1 ( It is characterized by having at least a second blade. As shown by 201 in FIG. 2, the first stirring blade 32 and the second stirring blade 33 constitute a blade portion 30a having a length r, and the first stirring blade 32 is the second stirring blade. It is arranged inside the blade 33 (on the side of the rotary shaft 20).
 そして、第1の撹拌羽根32および第2の撹拌羽根33は、水平面に対して傾斜しているとともに、互いに異なる傾斜角度を有する。第1の撹拌羽根32の水平面に対する傾斜角度θと第2の撹拌羽根33の水平面に対する傾斜角度θとは異なる。図2の201~203に示された構成では、第1の撹拌羽根32および第2の撹拌羽根33は、回転軸20と反対側(発泡容器1の内壁側)の端部から見て、互いに交差する位置関係にある。 Then, the first stirring blade 32 and the second stirring blade 33 are inclined with respect to the horizontal plane and have different inclination angles. And the inclination angle theta 1 with respect to the horizontal plane of the first stirring blade 32 is different from the inclination angle theta 2 with respect to the horizontal plane of the second stirring blade 33. In the configuration shown in 201 to 203 of FIG. 2, the first stirring blade 32 and the second stirring blade 33 are mutually seen when viewed from the end on the side opposite to the rotating shaft 20 (the inner wall side of the foam container 1). There is a positional relationship where they intersect.
 また、第1の撹拌羽根32の水平面に対する傾斜角度θは、鋭角である。第2の撹拌羽根33の水平面に対する傾斜角度θは、鈍角である。このため、第1の撹拌羽根32は、撹拌翼30の回転方向へ向かって下方へ傾斜する構成となっている。また、第2の撹拌羽根33は、撹拌翼30の回転方向へ向かって上方へ傾斜する構成となっている。 Further, the inclination angle θ 1 of the first stirring blade 32 with respect to the horizontal plane is an acute angle. The inclination angle θ 2 of the second stirring blade 33 with respect to the horizontal plane is an obtuse angle. Therefore, the first stirring blade 32 is configured to incline downward in the rotation direction of the stirring blade 30. Further, the second stirring blade 33 is configured to be inclined upward in the rotation direction of the stirring blade 30.
 図3は、第1の撹拌羽根32および第2の撹拌羽根33の作用機構を説明するための図である。図3の301は回転時の第1の撹拌羽根32および第2の撹拌羽根33それぞれの作用を説明するための側面図である。また、図3の302は、回転時の第1の撹拌羽根32および第2の撹拌羽根33それぞれの回転領域を示す上面図である。また、図3の303は、撹拌翼30の回転時の発泡粒子の流れを模式的に示した図である。 FIG. 3 is a diagram for explaining the action mechanism of the first stirring blade 32 and the second stirring blade 33. Reference numeral 301 in FIG. 3 is a side view for explaining the action of each of the first stirring blade 32 and the second stirring blade 33 during rotation. Further, reference numeral 302 in FIG. 3 is a top view showing respective rotating regions of the first stirring blade 32 and the second stirring blade 33 during rotation. Further, 303 in FIG. 3 is a diagram schematically showing the flow of foamed particles when the stirring blade 30 rotates.
 上述したように、第1の撹拌羽根32は、傾斜角度θが鋭角であり、回転方向へ向かって下方に傾斜している。このため、図3の301に示されるように、撹拌翼30の回転動作中、第1の撹拌羽根32は、発予備発泡室T内の発泡粒子をかき上げるように作用する。 As described above, the first stirring blade 32 has an acute inclination angle θ 1 and is inclined downward in the rotation direction. Therefore, as indicated by 301 in FIG. 3, during the rotational operation of the stirring blade 30, the first stirring blade 32 acts so as to scrape up the foamed particles in the pre-foaming chamber T.
 一方、第2の撹拌羽根33は、傾斜角度θが鈍角であり、回転方向へ向かって上方に傾斜している。このため、図3の301に示されるように、第2の撹拌羽根33は、撹拌翼30の回転動作中、予備発泡室T内の発泡粒子をかき下げるように作用する。 On the other hand, the second stirring blade 33 has an obtuse inclination angle θ 2 and is inclined upward in the rotation direction. Therefore, as indicated by 301 in FIG. 3, the second stirring blade 33 acts so as to scrape the foamed particles in the pre-foaming chamber T during the rotating operation of the stirring blade 30.
 また、図3の302に示されるように、回転軸20の方向から見た上面視において、第1の撹拌羽根32の回転領域Aおよび第2の撹拌羽根33の回転領域Bは、互いに重複しない。このことから、回転軸20の方向から見た上面視において、第1の撹拌羽根32および第2の撹拌羽根33は互いに重複しない位置関係となっていることがいえる。なお、第1の撹拌羽根32および第2の撹拌羽根33のセットは、複数の撹拌翼30それぞれに設けられている。回転軸20の方向から見た上面視において、複数の第1の撹拌羽根32同士は、回転領域A内に収められた位置関係であればよい。すなわち、回転軸20の方向から見た上面視において、複数の第1の撹拌羽根32同士は、重複していてもよいし、重複していなくてもよい。同様に、回転軸20の方向から見た上面視において、複数の第2の撹拌羽根33同士は、回転領域B内に収められた位置関係であればよく、重複していてもよいし、重複していなくてもよい。 Further, as indicated by reference numeral 302 in FIG. 3, the rotation area A of the first stirring blade 32 and the rotation area B of the second stirring blade 33 do not overlap each other in a top view seen from the direction of the rotation shaft 20. .. From this, it can be said that the first agitating blade 32 and the second agitating blade 33 are in a positional relationship that does not overlap each other in a top view seen from the direction of the rotating shaft 20. The set of the first stirring blade 32 and the second stirring blade 33 is provided for each of the plurality of stirring blades 30. In a top view seen from the direction of the rotating shaft 20, the plurality of first stirring blades 32 may have a positional relationship within the rotation region A. That is, in the top view seen from the direction of the rotating shaft 20, the plurality of first stirring blades 32 may or may not overlap. Similarly, in the top view seen from the direction of the rotation shaft 20, the plurality of second stirring blades 33 may have a positional relationship that is contained within the rotation region B, and may overlap or may overlap. You don't have to.
 ここで、予備発泡装置10では、図3の302に示される内側の第1の撹拌羽根32の回転領域Aでは、発泡粒子が上方へ移動する。一方、図3の302に示される外側の第2の撹拌羽根33の回転領域Bでは、発泡粒子が下方へ移動する。したがって、図3の303に示されるように、撹拌翼30の回転動作中、第1の撹拌羽根32および第2の撹拌羽根33の上述した作用により、予備発泡室T内の発泡粒子に流れFが生じる。当該流れFは、回転軸20近傍の内側では上昇する一方、回転軸20から遠い外側では下降する流れである。その結果、予備発泡装置10では、予備発泡室T内の発泡粒子が上層と下層との間で相互移動するので、撹拌混合性が向上する。 Here, in the pre-foaming device 10, the foamed particles move upward in the rotation region A of the inner first stirring blade 32 shown by 302 in FIG. On the other hand, in the rotation region B of the outer second stirring blade 33 shown by 302 in FIG. 3, the foamed particles move downward. Therefore, as indicated by 303 in FIG. 3, during the rotating operation of the stirring blade 30, the flow F to the foamed particles in the pre-foaming chamber T is caused by the above-described actions of the first stirring blade 32 and the second stirring blade 33. Occurs. The flow F is a flow that rises inside the vicinity of the rotary shaft 20 and descends outside the rotary shaft 20. As a result, in the pre-foaming device 10, the foamed particles in the pre-foaming chamber T mutually move between the upper layer and the lower layer, so that the stirring and mixing property is improved.
 したがって、本実形態に係る予備発泡装置10によれば、撹拌翼30の撹拌により、予備発泡室T内における発泡粒子の上下方向および水平方向の両方の流動性を向上する。その結果、発泡粒子が均一に加熱されるため、発泡倍率のバラツキが小さい二段発泡粒子を得ることができる。また、撹拌翼30の構造によって発泡倍率のバラツキを低減しているので、予備発泡装置10にかかる費用が安価である。 Therefore, according to the pre-foaming apparatus 10 according to the present embodiment, the stirring blade 30 improves the fluidity of the expanded particles in the pre-foaming chamber T both in the vertical direction and in the horizontal direction. As a result, since the expanded beads are heated uniformly, it is possible to obtain the two-stage expanded particles having a small variation in expansion ratio. Further, since the variation of the foaming ratio is reduced by the structure of the stirring blade 30, the cost of the prefoaming device 10 is low.
 傾斜角度θおよびθは、互いに異なっていればよく、上述した流れFを生じさせるために被混合物の種類に応じて適宜設定することができる。特に、被混合物が発泡粒子等の粒子である場合、傾斜角度θおよびθの一方の角度が鈍角であり、他方の角度が鋭角であることが好ましく、例えば図2の201~203に示された構成が挙げられる。 The tilt angles θ 1 and θ 2 may be different from each other and can be appropriately set according to the type of the mixture to generate the flow F described above. Particularly, when the mixture is particles such as expanded particles, it is preferable that one of the inclination angles θ 1 and θ 2 is an obtuse angle and the other angle is an acute angle, for example, as shown in 201 to 203 of FIG. The configuration may be mentioned.
 また、傾斜角度θおよびθの何れを鈍角または鋭角とするかは、撹拌翼30の回転方向等に応じて適宜設定可能である。例えば、撹拌翼30の回転方向が図2の201および202に示された回転方向を逆である場合、第1の撹拌羽根32の傾斜角度θを鈍角とし、第2の撹拌羽根33の傾斜角度θを鋭角とすることもできる。 Further, which of the tilt angles θ 1 and θ 2 is an obtuse angle or an acute angle can be appropriately set according to the rotation direction of the stirring blade 30 and the like. For example, when the rotation direction of the stirring blade 30 is opposite to the rotation direction shown in 201 and 202 of FIG. 2, the inclination angle θ 1 of the first stirring blade 32 is set to an obtuse angle and the inclination of the second stirring blade 33 is changed. The angle θ 2 may be an acute angle.
 また、傾斜角度θおよびθは、傾斜角度θ+傾斜角度θ=180°であることが好ましい。このように傾斜角度θおよびθが設定されている場合、回転軸20と反対側の端部から見ると、第1の撹拌羽根32および第2の撹拌羽根33は線対称な位置関係となっている。それゆえ、撹拌翼30の回転動作中、予備発泡室T内の発泡粒子は、上方および下方に均等に移動することなる。このため、より安定して、予備発泡室T内の発泡粒子を上層と下層との間で相互移動させることができる。 Further, the tilt angles θ 1 and θ 2 are preferably tilt angle θ 1 +tilt angle θ 2 =180°. When the tilt angles θ 1 and θ 2 are set in this way, the first stirring blade 32 and the second stirring blade 33 have a line-symmetrical positional relationship when viewed from the end opposite to the rotary shaft 20. Has become. Therefore, during the rotating operation of the stirring blade 30, the expanded particles in the pre-expansion chamber T move uniformly upward and downward. Therefore, the expanded particles in the pre-expansion chamber T can be more stably moved to each other between the upper layer and the lower layer.
 また、撹拌翼30の回転動作中に発泡粒子を上方および下方に均等に移動させるためには、第1の撹拌羽根32の回転領域Aの面積は、第2の撹拌羽根33の回転領域Bの面積と同じであることが好ましい。これにより、発泡粒子がかき上げられる領域は、発泡粒子がかき下げられる領域と略同じになるので、発泡粒子が上方および下方に均等に移動する。 Further, in order to uniformly move the expanded particles upward and downward during the rotating operation of the stirring blade 30, the area of the rotation region A of the first stirring blade 32 is equal to that of the rotation region B of the second stirring blade 33. It is preferably the same as the area. As a result, the area where the foamed particles are scraped up becomes substantially the same as the area where the foamed particles are scraped down, so that the foamed particles move uniformly upward and downward.
 それゆえ、第1の撹拌羽根32の長さrおよび第2の撹拌羽根33の長さrは、回転領域Aの面積が回転領域Bの面積と同じになるように設定されていることが好ましい。より具体的には、回転軸20に対し垂直な方向において、長さrおよびrの比率r:rは、好ましくは5:5~9:1であり、より好ましくは6:4~8:2であり、特に好ましくは7:3である。 Therefore, the length r 2 of the first stirring blade 32 lengths r 1 and second agitating blade 33, the area of the rotation range A is set to be the same as the area of the rotation range B Is preferred. More specifically, in the direction perpendicular to the rotational axis 20, the length r 1 and a ratio of r 2 r 1: r 2 is preferably 5: 1, more preferably 6: 5-9 4 It is ˜8:2, particularly preferably 7:3.
 傾斜角度θは、回転により発泡粒子をかき上げる作用が生じ得る角度であれば、任意の角度でよい。傾斜角度θは、好ましくは10~80°であり、より好ましくは30~60°であり、特に好ましくは40~50°である。 The tilt angle θ 1 may be any angle as long as it can cause the action of scraping the expanded particles by rotation. The inclination angle θ 1 is preferably 10 to 80°, more preferably 30 to 60°, and particularly preferably 40 to 50°.
 また、傾斜角度θは、回転により発泡粒子をかき下げる作用が生じ得る角度であれば、任意の角度でよい。傾斜角度θは、好ましくは100~170°であり、より好ましくは120~150°であり、特に好ましくは130~140°である。 Further, the tilt angle θ 2 may be any angle as long as it can cause the action of scraping the expanded particles by rotation. The inclination angle θ 2 is preferably 100 to 170°, more preferably 120 to 150°, and particularly preferably 130 to 140°.
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。図4は、本実施形態に係る予備発泡装置に備えられた撹拌翼30の構成を示し、図4の401は上面図であり、図4の402は側面図であり、図4の403は1つの撹拌翼30について回転軸20と反対側から見た構成を示す図である。
[Embodiment 2]
Another embodiment of the present invention will be described below. For convenience of description, members having the same functions as the members described in the above embodiment will be designated by the same reference numerals, and the description thereof will not be repeated. 4 shows the structure of the stirring blade 30 provided in the pre-foaming apparatus according to the present embodiment, 401 in FIG. 4 is a top view, 402 in FIG. 4 is a side view, and 403 in FIG. It is a figure which shows the structure seen from the opposite side to the rotating shaft 20 about one stirring blade 30.
 図4の401~403に示されるように、本実施形態に係る予備発泡装置は、多段の撹拌翼30が螺旋形状を形成するように、回転軸20に設けられている点が前記実施形態1と異なる。図4の401に示されるように、2段目の撹拌翼30は、1段目の撹拌翼30から回転方向と反対方向に角度αだけ回転した位置関係となっている。一般化すると、上面視において、n段目の撹拌翼30は、n-1段目の撹拌翼30から回転方向と反対方向に角度αだけ回転した位置関係となっている。このような位置関係になっていることにより、多段の撹拌翼30は、回転軸20の方向に伸びる螺旋形状を構成することになる。 As shown by 401 to 403 in FIG. 4, in the pre-foaming device according to the present embodiment, the rotary shaft 20 is provided so that the multi-stage stirring blades 30 form a spiral shape. Different from As indicated by 401 in FIG. 4, the second-stage stirring blade 30 has a positional relationship in which it is rotated from the first-stage stirring blade 30 by an angle α in a direction opposite to the rotation direction. As a generalization, in a top view, the n-th stage stirring blade 30 has a positional relationship in which it is rotated from the (n-1)th stage stirring blade 30 by an angle α in a direction opposite to the rotation direction. With such a positional relationship, the multistage stirring blades 30 form a spiral shape extending in the direction of the rotary shaft 20.
 なお、本実施形態では、n段目の撹拌翼30は、n-1段目の撹拌翼30から回転方向に角度αだけ回転した位置関係となっていてもよい。この場合、多段の撹拌翼30は、図4と逆方向の螺旋形状を構成することになる。 In the present embodiment, the n-th stage stirring blade 30 may have a positional relationship in which it is rotated by an angle α in the rotation direction from the (n-1)-th stage stirring blade 30. In this case, the multistage stirring blades 30 will have a spiral shape in the direction opposite to that of FIG.
 このように本実施形態では、撹拌翼30は、水平方向に延在しており、所定の間隔を開けて、回転軸20に多段に配置されている。そして、多段の撹拌翼30は、螺旋形状を形成するように回転軸20に設けられている。このような構成であっても、予備発泡室内の発泡粒子を上層と下層との間で相互移動させることができる。特に、本実施形態に係る予備発泡装置では、撹拌翼30を螺旋状に配置することにより発泡粒子の混合攪拌性能が向上する。 As described above, in the present embodiment, the stirring blades 30 extend in the horizontal direction and are arranged in multiple stages on the rotary shaft 20 with a predetermined gap. The multistage stirring blade 30 is provided on the rotary shaft 20 so as to form a spiral shape. Even with such a configuration, the foamed particles in the pre-foaming chamber can be mutually moved between the upper layer and the lower layer. Particularly, in the pre-foaming device according to the present embodiment, the mixing and stirring performance of the foamed particles is improved by arranging the stirring blades 30 in a spiral shape.
 また、上面視におけるn段目の撹拌翼30とn-1段目の撹拌翼30とのなす角度αは、撹拌翼の段数(n)に応じて適宜設定可能である。180°÷段数(n)で求められる角度αは、好ましくは10°~60°であり、より好ましくは10°~45°であり、特に好ましくは10°~30°である。 Further, the angle α formed by the n-th stage stirring blade 30 and the (n-1)th stage stirring blade 30 in a top view can be appropriately set according to the number of stages (n) of the stirring blades. The angle α obtained by 180°÷the number of steps (n) is preferably 10° to 60°, more preferably 10° to 45°, and particularly preferably 10° to 30°.
 〔実施形態3〕
 本発明のさらに他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。図5は、本実施形態に係る予備発泡装置の構成を模式的に示し、図5の501は断面図であり、図5の502は内部構成を示す上面図である。
[Embodiment 3]
Still another embodiment of the present invention will be described below. For convenience of description, members having the same functions as the members described in the above embodiment will be designated by the same reference numerals, and the description thereof will not be repeated. FIG. 5 schematically shows the configuration of the pre-foaming device according to the present embodiment, 501 in FIG. 5 is a sectional view, and 502 in FIG. 5 is a top view showing the internal configuration.
 図5の501および502に示されるように、本実施形態に係る予備発泡装置は、多段の撹拌翼30の配置が前記実施形態1および2と異なる。図5の501および502に示されるように、平面視において、n段目の撹拌翼30とn-1段目の撹拌翼30とは、互いに直交する位置関係となっている。 As shown by 501 and 502 in FIG. 5, the pre-foaming device according to the present embodiment is different from the first and second embodiments in the arrangement of the multistage stirring blades 30. As shown by 501 and 502 in FIG. 5, the n-th stirring blade 30 and the (n-1)-th stirring blade 30 have a positional relationship orthogonal to each other in a plan view.
 このように配置された多段の撹拌翼30であっても、予備発泡室内の発泡粒子を上層と下層との間で相互移動させることができる。 Even with the multi-stage stirring blades 30 arranged in this way, the expanded particles in the pre-expansion chamber can be moved to each other between the upper layer and the lower layer.
 〔実施形態4〕
 本発明のさらに他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。図6は、本実施形態に係る予備発泡装置に備えられた2種類の撹拌翼30Aおよび30Bの構成を示し、図6の601は上面図であり、図6の602は側面図である。また、図6の603は、撹拌翼30Bの詳細な構成を示す側面図であり、図6の604は、撹拌翼30Bについて回転軸20と反対側から見た構成を示す側面図である。また、図6の605は、撹拌翼30Aの詳細な構成を示す側面図であり、図6の606は、撹拌翼30Aについて回転軸20と反対側から見た構成を示す側面図である。
[Embodiment 4]
Still another embodiment of the present invention will be described below. For convenience of description, members having the same functions as the members described in the above embodiment will be designated by the same reference numerals, and the description thereof will not be repeated. FIG. 6 shows the configurations of two types of stirring blades 30A and 30B provided in the pre-foaming device according to the present embodiment. 601 in FIG. 6 is a top view and 602 in FIG. 6 is a side view. Further, 603 in FIG. 6 is a side view showing the detailed configuration of the stirring blade 30B, and 604 in FIG. 6 is a side view showing the configuration of the stirring blade 30B as seen from the side opposite to the rotary shaft 20. Further, 605 of FIG. 6 is a side view showing the detailed configuration of the stirring blade 30A, and 606 of FIG. 6 is a side view showing the configuration of the stirring blade 30A viewed from the side opposite to the rotary shaft 20.
 実施形態1~3に係る予備発泡装置は、同一の撹拌翼30に対して第1の撹拌羽根32および第2の撹拌羽根33が設けられていた。しかし、本発明の実施形態に係る予備発泡装置は、実施形態1~3に限定されず、次の(a)および(b)を満たす構成であればよい。(a)第1の撹拌羽根32および第2の撹拌羽根33は1つ以上の撹拌翼30に対して設けられる。(b)回転軸20の方向から見た上面視において、第1の撹拌羽根32および第2の撹拌羽根33は互いに重複しない。前記(a)について換言すれば、第1の撹拌羽根32および第2の撹拌羽根33は、1以上の撹拌翼からなる同一組(換言すれば、単位グループ)に対して設けられていればよい。さらに換言すれば、第2の撹拌羽根33は、第1の撹拌羽根32が設けられた撹拌翼と同一または別の撹拌翼に設けられていればよい。図6の601~606に示されるように、本実施形態に係る予備発泡装置は、第1の撹拌羽根32および第2の撹拌羽根33が同一の撹拌翼に対して設けられていない点が前記実施形態1と異なる。すなわち、本実施形態に係る予備発泡装置では、第1の撹拌羽根32が設けられた撹拌翼30Aと第2の撹拌羽根33が設けられた撹拌翼30Bとは、異なっている。 In the pre-foaming devices according to Embodiments 1 to 3, the same stirring blade 30 was provided with the first stirring blade 32 and the second stirring blade 33. However, the pre-foaming device according to the embodiment of the present invention is not limited to the first to third embodiments, and may have any configuration that satisfies the following (a) and (b). (A) The first stirring blade 32 and the second stirring blade 33 are provided for one or more stirring blades 30. (B) The first stirring blade 32 and the second stirring blade 33 do not overlap each other when viewed from the top when viewed from the direction of the rotary shaft 20. In other words, regarding the above (a), the first stirring blade 32 and the second stirring blade 33 may be provided for the same set (in other words, a unit group) of one or more stirring blades. .. In other words, the second stirring blade 33 may be provided on the same or different stirring blade as the stirring blade on which the first stirring blade 32 is provided. As shown by 601 to 606 in FIG. 6, the pre-foaming apparatus according to the present embodiment is the point that the first stirring blade 32 and the second stirring blade 33 are not provided for the same stirring blade. Different from the first embodiment. That is, in the pre-foaming device according to the present embodiment, the stirring blade 30A provided with the first stirring blade 32 and the stirring blade 30B provided with the second stirring blade 33 are different.
 撹拌翼30Aおよび30Bはそれぞれ、本体軸部31を備えている。この本体軸部31は、回転軸20の取付部21に取り付けられる。第1の撹拌羽根32は、撹拌翼30Aの本体軸部31に設けられている一方、第2の撹拌羽根33は、撹拌翼30Bの本体軸部31に設けられている。撹拌翼30Aに取り付けられた第1の撹拌羽根32は、撹拌翼30Bに取り付けられた第2の撹拌羽根33よりも回転軸20に近くなるように配置されている。より具体的には、回転軸20の方向から見た上面視において、第1の撹拌羽根32および第2の撹拌羽根33の位置関係は、次の(i)および(ii)を満たす。(i)前記上面視において、第1の撹拌羽根32の回転領域と第2の撹拌羽根33の回転領域とが重複しない。(ii)前記上面視において、第2の撹拌羽根33の回転領域である環状軌跡内に、第1の撹拌羽根32の回転領域が収まる。 Each of the stirring blades 30A and 30B includes a main body shaft portion 31. The main body shaft portion 31 is attached to the attachment portion 21 of the rotary shaft 20. The first stirring blade 32 is provided on the main body shaft portion 31 of the stirring blade 30A, while the second stirring blade 33 is provided on the main body shaft portion 31 of the stirring blade 30B. The first stirring blade 32 attached to the stirring blade 30A is arranged closer to the rotating shaft 20 than the second stirring blade 33 attached to the stirring blade 30B. More specifically, in the top view seen from the direction of the rotary shaft 20, the positional relationship between the first stirring blade 32 and the second stirring blade 33 satisfies the following (i) and (ii). (I) In the top view, the rotation area of the first stirring blade 32 and the rotation area of the second stirring blade 33 do not overlap. (Ii) In the top view, the rotation region of the first stirring blade 32 fits within the annular locus that is the rotation region of the second stirring blade 33.
 また、図6の604および606に示されるように、第2の撹拌羽根33の水平面に対する傾斜角度θは、鈍角である。さらに、図6の606に示されるように、第1の撹拌羽根32の水平面に対する傾斜角度θは、鋭角である。このため、第1の撹拌羽根32は、撹拌翼30の回転方向へ向かって下方へ傾斜する構成となっている。また、第2の撹拌羽根33は、撹拌翼30の回転方向へ向かって上方へ傾斜する構成となっている。 Further, as indicated by 604 and 606 in FIG. 6, the inclination angle θ 2 of the second stirring blade 33 with respect to the horizontal plane is an obtuse angle. Further, as indicated by 606 in FIG. 6, the inclination angle θ 1 of the first stirring blade 32 with respect to the horizontal plane is an acute angle. Therefore, the first stirring blade 32 is configured to incline downward in the rotation direction of the stirring blade 30. Further, the second stirring blade 33 is configured to be inclined upward in the rotation direction of the stirring blade 30.
 また、図6の601および602に示されるように、撹拌翼30Aおよび30Bは、所定の間隔を開けて、互い違いになるように多段に配置されている。換言すると、撹拌翼30Aおよび30Bからなる撹拌翼の組が多段に配置されている。そして、前記撹拌翼の組では、撹拌翼30Aは撹拌翼30Bよりも下側に配置されている。 Further, as shown by 601 and 602 in FIG. 6, the stirring blades 30A and 30B are arranged in multiple stages so as to be staggered with a predetermined interval. In other words, the sets of stirring blades including the stirring blades 30A and 30B are arranged in multiple stages. In the set of stirring blades, the stirring blades 30A are arranged below the stirring blades 30B.
 また、2段目の撹拌翼30Bは、1段目の撹拌翼30Aから回転方向と反対側に角度αだけ回転した位置関係となっている。一般化すると、上面視において、n段目の撹拌翼30Bは、n-1段目の撹拌翼30Aから回転方向と反対方向に角度αだけ回転した位置関係となっている。このような位置関係になっていることにより、多段の撹拌翼30Aおよび30Bは、回転軸20の方向に伸びる螺旋形状を構成することになる。 Also, the second-stage stirring blade 30B has a positional relationship in which it is rotated from the first-stage stirring blade 30A by an angle α on the side opposite to the rotation direction. Generally speaking, in a top view, the n-th stage stirring blade 30B has a positional relationship in which it is rotated from the (n-1)th stage stirring blade 30A by an angle α in a direction opposite to the rotation direction. With such a positional relationship, the multistage stirring blades 30A and 30B form a spiral shape extending in the direction of the rotation shaft 20.
 なお、本実施形態では、n段目の撹拌翼30Bは、n-1段目の撹拌翼30Aから回転方向に角度αだけ回転した位置関係となっていてもよい。この場合、多段の撹拌翼30Aおよび30Bは、図6の602と逆方向の螺旋形状を構成することになる。 Note that, in the present embodiment, the n-th stage stirring blade 30B may have a positional relationship in which it is rotated by an angle α in the rotation direction from the (n-1)-th stage stirring blade 30A. In this case, the multistage stirring blades 30A and 30B form a spiral shape in the direction opposite to 602 in FIG.
 このように、本実施形態に係る予備発泡装置では、隣接する2つの撹拌翼30Aおよび30Bからなる同一組に対して、第1の撹拌羽根32および第2の撹拌羽根33が取り付けられている。第2の撹拌羽根33は、第1の撹拌羽根32が設けられた撹拌翼30Aとは別の撹拌翼30Bに設けられている。本実施形態に係る予備発泡装置では、1以上の撹拌翼からなる組(すなわち、2つの撹拌翼30Aおよび30Bからなる組)は複数設けられており、互いの組は同一である。そして、第1の撹拌羽根32および第2の撹拌羽根33は、水平面に対して傾斜しているとともに、互いに異なる傾斜角度θおよびθを有する。また、撹拌翼30Aおよび30Bは、所定の間隔を開けて、互い違いになるように多段に配置されている。すなわち、2つの撹拌翼30Aおよび30Bからなる組は、多段に配置されている。 As described above, in the pre-foaming device according to the present embodiment, the first stirring blade 32 and the second stirring blade 33 are attached to the same set of two adjacent stirring blades 30A and 30B. The second stirring blade 33 is provided on a stirring blade 30B different from the stirring blade 30A on which the first stirring blade 32 is provided. In the pre-foaming device according to the present embodiment, a plurality of sets of one or more stirring blades (that is, a set of two stirring blades 30A and 30B) are provided, and the sets are the same. And the 1st stirring blade 32 and the 2nd stirring blade 33 incline with respect to a horizontal surface, and have mutually different inclination angles (theta) 1 and (theta) 2 . In addition, the stirring blades 30A and 30B are arranged in multiple stages so as to be staggered with a predetermined gap therebetween. That is, the set including the two stirring blades 30A and 30B is arranged in multiple stages.
 このような構成であっても、予備発泡室内の発泡粒子を上層と下層との間で相互移動させることができる。特に、本実施形態に係る予備発泡装置では、撹拌翼30Aおよび30Bを螺旋状に配置することにより発泡粒子の混合攪拌性能が向上する。 Even with such a structure, the expanded particles in the pre-expansion chamber can be moved to each other between the upper layer and the lower layer. In particular, in the pre-foaming device according to the present embodiment, the mixing and stirring performance of the foamed particles is improved by arranging the stirring blades 30A and 30B in a spiral shape.
 また、上面視におけるn段目の撹拌翼30Bとn-1段目の撹拌翼30Aとのなす角度αは、撹拌翼の段数(n)に応じて適宜設定可能である。180°÷段数(n)で求められる角度αは、好ましくは10°~60°であり、より好ましくは10°~45°であり、特に好ましくは10°~30°である。 The angle α formed by the n-th stage stirring blade 30B and the (n-1)th stage stirring blade 30A in a top view can be appropriately set according to the number of stages (n) of the stirring blades. The angle α obtained by 180°÷the number of steps (n) is preferably 10° to 60°, more preferably 10° to 45°, and particularly preferably 10° to 30°.
 (発泡容器1に投入される発泡粒子について)
 発泡容器1に投入される発泡粒子は、二段発泡が必要な発泡粒子であれば、特に限定されない。例えば、当該発泡粒子として、熱可塑性樹脂発泡粒子が挙げられる。
(Regarding the foamed particles put into the foam container 1)
The foamed particles to be put into the foaming container 1 are not particularly limited as long as they are foamed particles that require two-stage foaming. For example, the foamed particles include thermoplastic resin foamed particles.
 本実施形態にて使用される熱可塑性樹脂発泡粒子の基材樹脂は、一般的な公知の発泡性の熱可塑性樹脂であれば特に限定されない。前記熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリフェニレンエーテル系樹脂、ポリアミド系樹脂、およびこれらの混合物等が挙げられる。前記熱可塑性樹脂は、好ましくは、ポリオレフィン系樹脂、またはポリエステル系樹脂である。ポリエステル系樹脂としては、例えば、脂肪族系ポリエステル樹脂、芳香族系ポリエステル樹脂、脂肪族芳香族系ポリエステル樹脂などが挙げられる。ポリエステル系樹脂の具体例としては、例えば、ポリヒドロキシアルカノエート、ポリブチレンサクシネート(PBS)、ポリ(ブチレンアジペート-co-ブチレンテレフラレート)(PBAT)、ポリエチレンテレフタレート(PET)等が挙げられる。また、ポリヒドロキシアルカノエートは、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(PHBH)、ポリ(3-ヒドロキシブチレート)(P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)(PHBV)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)からなる群から選択される少なくとも1種である。これらの中でも、ポリオレフィン系樹脂が好適に使用される。すなわち、発泡容器1に投入される発泡粒子は、ポリオレフィン系樹脂発泡粒子であることが好ましい。 The base resin of the expanded thermoplastic resin particles used in the present embodiment is not particularly limited as long as it is a generally known expandable thermoplastic resin. Examples of the thermoplastic resin include polyolefin resins, polyester resins, polystyrene resins, polyphenylene ether resins, polyamide resins, and mixtures thereof. The thermoplastic resin is preferably a polyolefin resin or a polyester resin. Examples of polyester resins include aliphatic polyester resins, aromatic polyester resins, and aliphatic aromatic polyester resins. Specific examples of the polyester resin include polyhydroxyalkanoate, polybutylene succinate (PBS), poly(butylene adipate-co-butylene terephthalate) (PBAT), polyethylene terephthalate (PET), and the like. Further, polyhydroxyalkanoates include poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), poly(3-hydroxybutyrate) (P3HB), poly(3-hydroxybutyrate-co-). -3-hydroxyvalerate) (PHBV), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), poly(3-hydroxybutyrate-co-3-hydroxyoctanoate), poly It is at least one selected from the group consisting of (3-hydroxybutyrate-co-3-hydroxyoctadecanoate). Among these, polyolefin resin is preferably used. That is, it is preferable that the expanded particles to be placed in the expanded container 1 are polyolefin resin expanded particles.
 以下、熱可塑性樹脂粒子の基材樹脂としてポリオレフィン系樹脂を使用した実施形態について説明する。なお、本実施形態に使用され得る熱可塑性樹脂粒子の基材樹脂は、ポリオレフィン系樹脂に限定されない。 An embodiment in which a polyolefin resin is used as a base resin for thermoplastic resin particles will be described below. The base resin of the thermoplastic resin particles that can be used in this embodiment is not limited to the polyolefin resin.
 前記ポリオレフィン系樹脂とは、オレフィン単位を50重量%以上、好ましくは80重量%以上、より好ましくは90重量%以上含む樹脂のことである。ポリオレフィン系樹脂の具体例としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、低分子量ポリエチレン等のポリエチレン類;プロピレンホモポリマー;エチレン-プロピレンランダム共重合体、エチレン-プロピレン-1-ブテンランダム共重合体、プロピレン-1-ブテンランダム共重合体等のα-オレフィン-プロピレンランダム共重合体、並びに、α-オレフィン-プロピレンブロック共重合体等のポリプロピレン類;プロピレンホモポリマー、ポリブテン等のその他のポリオレフィンホモポリマー類;等が挙げられる。これらは単独で用いてもよく、2種類以上併用してもよい。 The above-mentioned polyolefin resin is a resin containing 50% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more of an olefin unit. Specific examples of the polyolefin resin include polyethylenes such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and low-molecular-weight polyethylene; propylene homopolymer; ethylene-propylene random copolymer; Α-Olefin-propylene random copolymers such as ethylene-propylene-1-butene random copolymer and propylene-1-butene random copolymer, and polypropylenes such as α-olefin-propylene block copolymer; propylene Other polyolefin homopolymers such as homopolymer and polybutene; and the like. These may be used alone or in combination of two or more.
 これらの内でも、エチレン-プロピレンランダム共重合体、エチレン-プロピレン-1-ブテンランダム共重合体、およびプロピレン-1-ブテンランダム共重合体が、発泡粒子とするときに良好な発泡性を示すため、好適に使用される。 Among them, the ethylene-propylene random copolymer, the ethylene-propylene-1-butene random copolymer, and the propylene-1-butene random copolymer exhibit good foamability when they are used as expanded particles. , Preferably used.
 また、ポリオレフィン系樹脂発泡粒子の基材樹脂には、ポリオレフィン系樹脂以外に、該ポリオレフィン系樹脂の特性が失われない範囲で、他の熱可塑性樹脂、例えばポリスチレン、ポリブテン、アイオノマー等が混合されていてもよい。 In addition to the polyolefin resin, other thermoplastic resins, such as polystyrene, polybutene, and ionomer, are mixed in the base resin of the polyolefin resin foamed particles as long as the characteristics of the polyolefin resin are not lost. May be.
 また、ポリオレフィン系樹脂は、通常、発泡粒子を製造し易いように、押出機、ニーダー、バンバリーミキサー、ロール等を用いて溶融し、且つ円柱形状、楕円形状、球形状、立方体形状、直方体形状等の樹脂粒子に予め加工しておくことが好ましい。なお、樹脂粒子はペレットとも称する。 Further, the polyolefin resin is usually melted by using an extruder, a kneader, a Banbury mixer, a roll, and the like, and a columnar shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc., so that the expanded beads can be easily produced. It is preferable to process the above resin particles in advance. The resin particles are also called pellets.
 ポリオレフィン系樹脂粒子は、一粒の重量が0.1~30mgであることが好ましく、0.3~10mgであることがより好ましい。 The weight of one particle of the polyolefin-based resin particles is preferably 0.1 to 30 mg, more preferably 0.3 to 10 mg.
 ポリオレフィン系樹脂に添加剤を加える場合には、前記ポリオレフィン系樹脂粒子の製造前に、ブレンダー等を用いてポリオレフィン系樹脂と添加剤とを混合することが好ましい。添加剤の具体例としては、セル造核剤(単に造核剤とも称する)が挙げられる。また、プロパン、ブタン、ペンタン、ヘキサン等の炭化水素系発泡剤を使用する場合には、造核剤としては、タルク、シリカ、炭酸カルシウム、カオリン、酸化チタン、ベントナイト、硫酸バリウム等のような無機造核剤が一般に使用される。セル造核剤の添加量は、使用するポリオレフィン系樹脂の種類、セル造核剤の種類によって異なるので一概には規定できないが、ポリオレフィン系樹脂100重量部に対して、概ね0.001重量部以上、2重量部以下であることが好ましい。 When an additive is added to the polyolefin resin, it is preferable to mix the polyolefin resin and the additive using a blender or the like before the production of the polyolefin resin particles. Specific examples of the additive include a cell nucleating agent (also simply referred to as a nucleating agent). When a hydrocarbon-based foaming agent such as propane, butane, pentane or hexane is used, the nucleating agent may be an inorganic material such as talc, silica, calcium carbonate, kaolin, titanium oxide, bentonite or barium sulfate. Nucleating agents are commonly used. The addition amount of the cell nucleating agent varies depending on the type of the polyolefin resin used and the type of the cell nucleating agent, and therefore cannot be specified unconditionally, but is generally 0.001 part by weight or more relative to 100 parts by weight of the polyolefin resin. It is preferably 2 parts by weight or less.
 また、空気、窒素、二酸化炭素、水等の無機発泡剤を使用する場合には、前記無機造核剤および/または親水性物質を使用することが好ましい。水系分散物の分散媒として水を使用する場合には、ポリオレフィン系樹脂中に水が含浸し、含浸した水が他の発泡剤と共にあるいは単独で発泡剤として作用する。 When using an inorganic foaming agent such as air, nitrogen, carbon dioxide, or water, it is preferable to use the inorganic nucleating agent and/or the hydrophilic substance. When water is used as the dispersion medium of the aqueous dispersion, the polyolefin resin is impregnated with water, and the impregnated water acts as a foaming agent alone or together with other foaming agents.
 前記親水性物質は、ポリオレフィン系樹脂に含浸される水分量を多くするように作用する。親水性物質の具体例としては、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、硼砂、硼酸亜鉛等の無機物質;あるいは、グリセリン、メラミン、イソシアヌル酸、メラミン・イソシアヌル酸縮合物;ポリエチレングリコール、またはポリエチレンオキシド等のポリエーテル、ポリエーテルのポリプロピレン等への付加物、およびこれらのポリマーアロイ;エチレン-(メタ)アクリル酸共重合体のアルカリ金属塩、ブタジエン-(メタ)アクリル酸共重合体のアルカリ金属塩、カルボキシル化ニトリルゴムのアルカリ金属塩、イソブチレン-無水マレイン酸共重合体のアルカリ金属塩、ポリ(メタ)アクリル酸のアルカリ金属塩等の重合体;等の有機物が挙げられる。これら親水性物質は、単独で用いてもよく、2種類以上併用してもよい。 The hydrophilic substance acts so as to increase the amount of water impregnated in the polyolefin resin. Specific examples of the hydrophilic substance include inorganic substances such as sodium chloride, calcium chloride, magnesium chloride, borax and zinc borate; or glycerin, melamine, isocyanuric acid, melamine-isocyanuric acid condensate; polyethylene glycol, polyethylene oxide, etc. , Polyethers of polypropylene to polypropylene, etc., and polymer alloys thereof; alkali metal salts of ethylene-(meth)acrylic acid copolymers, alkali metal salts of butadiene-(meth)acrylic acid copolymers, Polymers such as alkali metal salts of carboxylated nitrile rubber, alkali metal salts of isobutylene-maleic anhydride copolymer, and alkali metal salts of poly(meth)acrylic acid; These hydrophilic substances may be used alone or in combination of two or more.
 親水性物質の添加量は、ポリオレフィン系樹脂100重量部に対して、0 .005重量部以上、2重量部以下であることが好ましく、0.005重量 部以上、1重量部以下であることがより好ましい。親水性物質の種類および量を調整することにより、ポリオレフィン系樹脂発泡粒子の平均気泡径を調整することができる。 The amount of hydrophilic substance added is 0. It is preferably 005 parts by weight or more and 2 parts by weight or less, and more preferably 0.005 parts by weight or more and 1 part by weight or less. By adjusting the type and amount of the hydrophilic substance, the average cell diameter of the polyolefin resin expanded particles can be adjusted.
 さらに、ポリオレフィン系樹脂粒子の製造時には、必要により着色剤、帯電防止剤、酸化防止剤、リン系加工安定剤、ラクトン系加工安定剤、金属不活性剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾエート系光安定剤、ヒンダートアミン系光安定剤、難燃剤、難燃助剤、酸中和剤、結晶核剤、アミド系添加剤等の添加剤を、ポリオレフィン系樹脂の特性を損なわない範囲で添加することができる。 Furthermore, when manufacturing polyolefin resin particles, if necessary, colorants, antistatic agents, antioxidants, phosphorus-based processing stabilizers, lactone-based processing stabilizers, metal deactivators, benzotriazole-based UV absorbers, benzoate-based light stabilizers. Add additives such as stabilizers, hindered amine light stabilizers, flame retardants, flame retardant aids, acid neutralizers, crystal nucleating agents, amide additives, etc. within a range that does not impair the properties of the polyolefin resin. be able to.
 また、発泡剤としては、プロパン、イソブタン、ブタン、ペンタン、ヘキサン等の揮発性の炭化水素系発泡剤、および空気、窒素、二酸化炭素、水等の無機ガスを用いることが可能である。無機ガスを用いる場合は、比較的高い発泡倍率の発泡粒子が得られやすいことから、二酸化炭素が好ましい。これら発泡剤は、単独で用いてもよく、2種類以上併用してもよい。 Also, as the foaming agent, it is possible to use volatile hydrocarbon-based foaming agents such as propane, isobutane, butane, pentane and hexane, and inorganic gases such as air, nitrogen, carbon dioxide and water. When an inorganic gas is used, carbon dioxide is preferable because foamed particles having a relatively high expansion ratio can be easily obtained. These foaming agents may be used alone or in combination of two or more kinds.
 水系分散媒としては水を使用することが好ましい。メタノール、エタノール、エチレングリコール、グリセリン等を水に添加した分散媒も、水系分散剤として使用することができる。 It is preferable to use water as the aqueous dispersion medium. A dispersion medium obtained by adding methanol, ethanol, ethylene glycol, glycerin or the like to water can also be used as the aqueous dispersant.
 水系分散媒においては、ポリオレフィン系樹脂粒子同士の融着を防止するために、分散剤を使用することが好ましい。分散剤の具体例としては、例えば、第三リン酸カルシウム、第三リン酸マグネシウム、酸化チタン、塩基性 炭酸マグネシウム、炭酸カルシウム、硫酸バリウム、カオリン、タルク、クレー等の無機系分散剤が挙げられる。これらの中でも、第三リン酸カルシウム、硫酸バリウム、カオリンが、少ない使用量でも耐圧容器内のポリオレフィン系樹脂粒子を含んでなる水系分散物を安定的に分散させることができるため、より好ましい。 In the aqueous dispersion medium, it is preferable to use a dispersant in order to prevent fusion of the polyolefin resin particles with each other. Specific examples of the dispersant include inorganic dispersants such as tricalcium phosphate, tribasic magnesium phosphate, titanium oxide, basic magnesium carbonate, calcium carbonate, barium sulfate, kaolin, talc and clay. Among these, tricalcium phosphate, barium sulfate, and kaolin are more preferable because they can stably disperse the aqueous dispersion containing the polyolefin resin particles in the pressure resistant container even in a small amount.
 また、分散剤と共に分散助剤を使用することが好ましい。分散助剤の具体例としては、例えば、N-アシルアミノ酸塩、アルキルエーテルカルボン酸塩、アシル化ペプチド等のカルボン酸塩型;アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、スルホコハク酸塩等のスルホン酸塩型;硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、アルキルアミド硫酸塩等の硫酸エステル型;および、アルキルリン酸塩、ポリオキシエチレンリン酸塩、アルキルアリルエーテル硫酸塩等のリン酸エステル型;等の陰イオン界面活性剤が挙げられる。また、分散助剤として、マレイン酸共重合体塩;ポリアクリル酸塩等のポリカルボン酸型高分子界面活性剤;および、ポリスチレンスルホン酸塩、ナフタルスルホン酸ホルマリン縮合物塩;等の多価陰イオン高分子界面活性剤も使用することができる。 Also, it is preferable to use a dispersion aid together with the dispersant. Specific examples of the dispersion aid include carboxylate types such as N-acyl amino acid salt, alkyl ether carboxylate, and acylated peptide; alkylsulfonate, alkylbenzenesulfonate, alkylnaphthalenesulfonate, sulfosuccinate. Sulfonate types such as acid salts; sulfated oils, alkyl sulfates, alkyl ether sulfates, alkyl amide sulfates and other sulfate ester types; and alkyl phosphates, polyoxyethylene phosphates, alkyl allyl ether sulfates Anionic surfactants such as phosphate ester type such as salt; and the like. Further, as a dispersion aid, a maleic acid copolymer salt; a polycarboxylic acid type polymer surfactant such as polyacrylate; and a polyvalent salt such as polystyrene sulfonate, naphthalsulfonic acid formalin condensate salt; Anionic polymeric surfactants can also be used.
 分散助剤として、スルホン酸塩型の陰イオン界面活性剤を使用することが好ましく、さらには、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩から選ばれる1種もしくは2種類以上の混合物を用いることが好ましい。また、アルキルスルホン酸塩を使用することがより好ましく、疎水基として炭素数10~18の直鎖状の炭素鎖を持つアルキルスルホン酸塩を使用することが、ポリオレフィン系樹脂の発泡粒子に付着する分散剤を低減することができるため、特に好ましい。 As the dispersion aid, it is preferable to use a sulfonate type anionic surfactant, and it is further preferable to use one kind or a mixture of two or more kinds selected from alkylsulfonate and alkylbenzenesulfonate. .. Further, it is more preferable to use an alkyl sulfonate, and to use an alkyl sulfonate having a linear carbon chain having 10 to 18 carbon atoms as a hydrophobic group adheres to the expanded particles of the polyolefin resin. It is particularly preferable because the dispersant can be reduced.
 そして、本発明の実施形態においては、分散剤として第三リン酸カルシウム、第三リン酸マグネシウム、硫酸バリウムまたはカオリンから選ばれる1種以上と、分散助剤としてn-パラフィンスルホン酸ソーダを併用することが特に好ましい。 Further, in the embodiment of the present invention, one or more kinds selected from tribasic calcium phosphate, tribasic magnesium phosphate, barium sulfate or kaolin as a dispersant, and n-paraffin sodium sulfonate as a dispersion aid may be used in combination. Particularly preferred.
 分散剤および分散助剤の使用量は、その種類、または用いるポリオレフィン系樹脂の種類および使用量に応じて異なる。通常、分散剤は、水系分散媒100重量部に対して、0.1重量部以上、5重量部以下で配合することが好ましく、0.2重量部以上、3重量部以下で配合することがより好ましい。分散助剤は、水系分散媒100重量部に対して、0.001重量部以上、0.3重量部以下で配合することが好ましく、0.001重量部以上、0.1重量部以下で配合することがより好ましい。また、ポリオレフィン系樹脂粒子は、水系分散媒中での分散性を良好にするため、通常、水系分散媒100重量部に対して、20重量部以上、100重量部以下で使用することが好ましい。前記構成であれば、ポリオレフィン系樹脂粒子を耐圧容器内で水系分散媒中に安定に分散させることができる。 The amount of the dispersant and the dispersion aid used depends on the type or the type and amount of the polyolefin resin used. Usually, the dispersant is preferably added in an amount of 0.1 parts by weight or more and 5 parts by weight or less, and 0.2 parts by weight or more and 3 parts by weight or less with respect to 100 parts by weight of the aqueous dispersion medium. More preferable. The dispersion aid is preferably added in an amount of 0.001 parts by weight or more and 0.3 parts by weight or less, and 0.001 parts by weight or more and 0.1 parts by weight or less with respect to 100 parts by weight of the aqueous dispersion medium. More preferably. Further, in order to improve the dispersibility of the polyolefin resin particles in the aqueous dispersion medium, it is usually preferable to use 20 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of the aqueous dispersion medium. With the above structure, the polyolefin resin particles can be stably dispersed in the aqueous dispersion medium in the pressure resistant container.
 (発泡粒子の製造方法)
 本実施形態に係る発泡粒子の製造方法は、上述した実施形態1~4に係る発泡装置を用いて、発泡粒子を製造する工程を有する。例えば図1並びに図2の201および202を参照して説明すると、本実施形態に係る発泡粒子の製造方法は、発泡容器1の予備発泡室Tに発泡粒子を投入する投入工程と、前記発泡粒子を、複数の撹拌翼30により撹拌しつつ、予備発泡室Tへ蒸気を供給して加熱することにより、前記発泡粒子を二段発泡する二段発泡工程と、を含み、撹拌翼30は、少なくとも第1の撹拌羽根32および第2の撹拌羽根33(第1および第2の羽根)を有し、第1の撹拌羽根32および第2の撹拌羽根33は、水平面に対して傾斜しているとともに、互いに異なる傾斜角度θおよびθを有する構造になっている。
(Method for producing expanded particles)
The method for producing expanded particles according to the present embodiment has a step of producing expanded particles using the expansion device according to Embodiments 1 to 4 described above. For example, referring to FIG. 1 and 201 and 202 of FIG. 2, the method for producing expanded particles according to the present embodiment includes a step of introducing expanded particles into the pre-expansion chamber T of the expansion container 1, and the expanded particles. While agitating with a plurality of agitating blades 30, while supplying steam to the pre-expansion chamber T and heating, a two-stage foaming step in which the foamed particles are subjected to a two-stage foaming process. It has the 1st stirring blade 32 and the 2nd stirring blade 33 (1st and 2nd blade), and the 1st stirring blade 32 and the 2nd stirring blade 33 incline with respect to a horizontal surface. , And have different inclination angles θ 1 and θ 2 .
 本実施形態に係る発泡粒子の製造方法によれば、撹拌翼30の撹拌により、予備発泡室T内における発泡粒子の上下方向および水平方向の両方の流動性を向上し、発泡粒子が均一に加熱される。このため、発泡倍率のバラツキが小さい二段発泡粒子を得ることができる。 According to the method for producing expanded particles according to the present embodiment, the stirring blade 30 is stirred to improve the fluidity of the expanded particles in the pre-expansion chamber T both in the vertical direction and in the horizontal direction, so that the expanded particles are heated uniformly. To be done. Therefore, it is possible to obtain the two-stage expanded particles having a small variation in expansion ratio.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, but various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 (まとめ)
 本発明の態様1に係る混合装置(予備発泡装置10)は、被混合物を収容する容器(発泡容器1)と、前記被混合物を攪拌する複数の撹拌翼30、30A、30Bと、前記撹拌翼30、30A、30Bを回転させる回転軸20と、を備え、前記撹拌翼(1つの撹拌翼30、または2つの撹拌翼30Aおよび30B)に対して、少なくとも第1および第2の羽根(第1の撹拌羽根32および第2の撹拌羽根33)を有し、前記第1および第2の羽根は、水平面に対して傾斜しているとともに、互いに異なる傾斜角度θおよびθを有し、上面視において、前記第1および第2の羽根は互いに重複しない構成である。
(Summary)
A mixing device (pre-foaming device 10) according to Aspect 1 of the present invention includes a container (foaming container 1) for containing a material to be mixed, a plurality of stirring blades 30, 30A, 30B for stirring the material to be mixed, and the stirring blades. A rotating shaft 20 for rotating 30, 30A, 30B, and at least first and second blades (first blade) with respect to the stirring blade (one stirring blade 30, or two stirring blades 30A and 30B). Stirring blade 32 and a second stirring blade 33), the first and second blades are inclined with respect to the horizontal plane and have different inclination angles θ 1 and θ 2 from each other, and As viewed, the first and second blades are configured so as not to overlap each other.
 本発明の態様2に係る混合装置(予備発泡装置10)は、態様1において、同一の前記撹拌翼30に対して、前記第1および第2の羽根を少なくとも有する構成である。すなわち、前記第1および第2の羽根は、同一の前記撹拌翼30に設けられている構成である。 The mixing device (pre-foaming device 10) according to the second aspect of the present invention is configured such that, in the first aspect, the same stirring blade 30 has at least the first and second blades. That is, the first and second blades are provided on the same stirring blade 30.
 本発明の態様3に係る混合装置(予備発泡装置10)は、態様1において、前記第1の羽根(第1の撹拌羽根32)が設けられている前記撹拌翼30Aと前記第2の羽根(第2の撹拌羽根33)が設けられている前記撹拌翼30Bとは、互いに異なる構成である。すなわち、前記第1の羽根(第1の撹拌羽根32)および第2の羽根(第2の撹拌羽根33)は、それぞれ異なる前記撹拌翼30A・30Bに設けられている構成である。 A mixing device (pre-foaming device 10) according to Aspect 3 of the present invention is the mixing blade (pre-foaming device 10) according to Aspect 1, in which the first blade (first stirring blade 32) is provided with the stirring blade 30A and the second blade ( The stirring blade 30B provided with the second stirring blade 33) has a different structure. That is, the first blade (first stirring blade 32) and the second blade (second stirring blade 33) are provided on the different stirring blades 30A and 30B, respectively.
 本発明の態様4に係る混合装置(予備発泡装置10)は、態様1~3の何れかにおいて、前記第1の羽根(第1の撹拌羽根32)の前記水平面に対する傾斜角度θが鋭角であり、前記第2の羽根(第2の撹拌羽根33)の前記水平面に対する傾斜角度θが鈍角である構成である。 In the mixing apparatus (pre-foaming apparatus 10) according to Aspect 4 of the present invention, in any one of Aspects 1 to 3, an inclination angle θ 1 of the first blade (first stirring blade 32) with respect to the horizontal plane is an acute angle. The inclination angle θ 2 of the second blade (second stirring blade 33) with respect to the horizontal plane is an obtuse angle.
 本発明の態様5に係る混合装置(予備発泡装置10)は、態様1~4の何れかにおいて、前記撹拌翼30は、水平方向に延在しており、所定の間隔を開けて、前記回転軸20に多段に配置されている構成である。当該混合装置は、特に前記態様3においては、前記第1の羽根が設けられている前記撹拌翼30Aと前記第2の羽根が設けられている前記撹拌翼30Bとは、前記回転軸20の長手方向に、互い違いに多段に配置されている構成であることが好ましい。 A mixing apparatus (pre-foaming apparatus 10) according to Aspect 5 of the present invention is the mixing apparatus according to any one of Aspects 1 to 4, wherein the stirring blade 30 extends in the horizontal direction, and the rotation is performed at a predetermined interval. The shaft 20 is arranged in multiple stages. In the mixing device, in particular, in the third aspect, the stirring blade 30A provided with the first blade and the stirring blade 30B provided with the second blade are the longitudinal axis of the rotary shaft 20. It is preferable that they are arranged in multiple stages alternately in the direction.
 本発明の態様6に係る混合装置(予備発泡装置10)は、態様5において、前記多段の撹拌翼30、30A、30Bは、螺旋形状を形成するように前記回転軸20に設けられている構成である。 A mixing apparatus (pre-foaming apparatus 10) according to Aspect 6 of the present invention is configured such that, in Aspect 5, the multistage stirring blades 30, 30A, 30B are provided on the rotary shaft 20 so as to form a spiral shape. Is.
 本発明の態様7に係る混合装置(予備発泡装置10)は、態様1~6の何れかにおいて、前記回転軸に対し垂直な方向において、前記第1および第2の羽根の長さrおよびrの比率r:rは、5:5~9:1である構成である。 A mixing device (pre-foaming device 10) according to Aspect 7 of the present invention is the mixing device according to any one of Aspects 1 to 6, in which a length r 1 of the first and second blades in a direction perpendicular to the rotation axis and ratio r 1 of r 2: r 2 is 5: 5 to 9: configuration 1.
 本発明の態様8に係る発泡装置(予備発泡装置10)は、前記被混合物は、発泡粒子であり、態様1~7の何れかの混合装置を備えた構成である。 In the foaming device (pre-foaming device 10) according to Aspect 8 of the present invention, the mixture is foamed particles and is provided with the mixing device according to any one of Aspects 1 to 7.
 本発明の態様9に係る発泡粒子の製造方法は、態様8の発泡装置を用いて、発泡粒子(例えば二段発泡粒子)を製造する工程を有する。 The method for producing expanded particles according to aspect 9 of the present invention includes a step of producing expanded particles (for example, two-step expanded particles) using the expansion device of aspect 8.
 以下、実施例、参考例、および比較例を用いて、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されて解釈されるべきではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, Reference Examples, and Comparative Examples, but the present invention should not be construed as being limited to these Examples.
 図7は、実施例、参考例、および比較例について、使用する予備発泡装置の前提的構成を示す図であり、図7の701は断面図であり、図7の702は内部構成を示す上面図である。図7の701および702に示されるように、実施例、参考例、および比較例の予備発泡装置は、多段の撹拌翼Gが螺旋形状を形成するように回転軸20に設けられている構成が前提となっている。また、発泡容器1の内径φは、290mmである。さらに、撹拌翼Gは、発泡容器1の内壁と離間しており、長さLが282mmである。また、角度αは、30°である。さらに、撹拌翼Gの水平面に対する傾斜角度は45°である。 FIG. 7 is a view showing a premise structure of a pre-foaming device to be used in Examples, Reference Examples and Comparative Examples, 701 in FIG. 7 is a sectional view, and 702 in FIG. 7 is an upper surface showing an internal structure. It is a figure. As shown by 701 and 702 in FIG. 7, the pre-foaming apparatuses of Examples, Reference Examples and Comparative Examples have a configuration in which the multi-stage stirring blades G are provided on the rotary shaft 20 so as to form a spiral shape. It is a prerequisite. The inner diameter φ of the foam container 1 is 290 mm. Further, the stirring blade G is separated from the inner wall of the foam container 1 and has a length L of 282 mm. The angle α is 30°. Further, the inclination angle of the stirring blade G with respect to the horizontal plane is 45°.
 図7の701および702に示された予備発泡装置を使用して、発泡粒子の撹拌混合性を評価した。より具体的には、まず、発泡容器1に白色の発泡粒子および黒色の発泡粒子を上下2層になるように仕込んだ。そして、撹拌回転数75rpmで撹拌翼Gを回転したときの発泡粒子の流動性および撹拌混合性を、2色の発泡粒子の挙動および混色性として可視化して評価した。 Using the pre-foaming device shown in 701 and 702 of FIG. 7, the stirring and mixing properties of the expanded particles were evaluated. More specifically, first, the foamed container 1 was charged with white foamed particles and black foamed particles so as to form an upper and lower two layers. Then, the fluidity and the stirring and mixing property of the foamed particles when the stirring blade G was rotated at a stirring speed of 75 rpm were visualized and evaluated as the behavior and the color mixing property of the foamed particles of two colors.
 (実施例)
 図7の701および702に示される構成において、撹拌翼Gに図2の201~203に示される撹拌翼30を適用した予備発泡装置を使用して、発泡粒子の流動性および撹拌混合性を評価した。第1の撹拌羽根32の長さrおよび第2の撹拌羽根33の長さrの比率r:rは、7:3であった。また、第1の撹拌羽根32の傾斜角度θは45°であり、第2の撹拌羽根33の傾斜角度θは135°であった。
(Example)
In the configuration shown in 701 and 702 of FIG. 7, the pre-expansion device in which the stirring blades 30 shown in 201 to 203 of FIG. 2 are applied to the stirring blade G is used to evaluate the fluidity and stirring mixing property of the expanded particles. did. Ratio r 1 of length r 2 of the first stirring blade 32 lengths r 1 and the second agitation blade 33: r 2 is 7: 3. The inclination angle θ 1 of the first stirring blade 32 was 45°, and the inclination angle θ 2 of the second stirring blade 33 was 135°.
 (参考例)
 図7の701および702に示される構成において、撹拌翼Gの長さLを250mmに短くした予備発泡装置を使用して、発泡粒子の流動性および撹拌混合性を評価した。
(Reference example)
In the configurations shown in 701 and 702 in FIG. 7, the pre-expanding device in which the length L of the stirring blade G was shortened to 250 mm was used to evaluate the fluidity of the expanded particles and the stirring and mixing property.
 (比較例)
 図7の701および702に示される予備発泡装置を使用して、発泡粒子の流動性および撹拌混合性を評価した。
(Comparative example)
The pre-expansion apparatus shown at 701 and 702 in FIG. 7 was used to evaluate the fluidity and agitating mixability of the expanded particles.
 図8は、実施例、参考例、および比較例における発泡粒子の流動性および撹拌混合性の評価結果を示すイメージ図である。 FIG. 8 is an image diagram showing the evaluation results of the fluidity and agitation mixing property of the expanded particles in Examples, Reference Examples, and Comparative Examples.
 まず、比較例と参考例との比較結果について説明する。図8に示されるように、長さLが短い撹拌翼Gを使用した参考例の方が、長さLが長い撹拌翼Gを使用した比較例よりも早く白色の発泡粒子が上方に出現し混合されていた。このことから、参考例の方が比較例よりも撹拌混合性が良好であることがわかった。 First, the result of comparison between the comparative example and the reference example will be explained. As shown in FIG. 8, in the reference example using the stirring blade G having the short length L, the white foamed particles appeared at the upper side earlier than in the comparative example using the stirring blade G having the long length L. It was mixed. From this, it was found that the reference example had better stirring and mixing properties than the comparative example.
 また、撹拌翼Gの回転中の側面観察の結果、参考例では、発泡粒子の上側から下側への流動は、参考例では観察されたのに対して、比較例では観察されなかった。比較例では、回転方向への発泡粒子の流動が観察された。 Further, as a result of the side surface observation while the stirring blade G was rotating, in the reference example, the flow of the expanded particles from the upper side to the lower side was observed in the reference example, but not observed in the comparative example. In the comparative example, the flow of expanded particles in the rotating direction was observed.
 このような結果となった理由として、撹拌中の発泡容器1の壁部における発泡粒子の上下方向の流動が、長さLが長い撹拌翼Gにより阻害されることが考えられる。 As a reason for such a result, it is conceivable that the vertical flow of the foamed particles in the wall portion of the foam container 1 during stirring is hindered by the stirring blade G having a long length L.
 上述の通り、撹拌翼Gの長さLが短い場合、発泡粒子が発泡容器1の中央で上昇する一方、発泡容器1の側壁側では下降する流れが生じて上下混合される。しかし、撹拌翼Gの長さLが長い場合、発泡容器1の側壁側での発泡粒子が下降する流れが阻害される。このため、発泡粒子の撹拌混合性を良好する点では、撹拌翼Gの長さが短い方が有利であると考えられる。 As described above, when the length L of the stirring blade G is short, the foamed particles rise in the center of the foaming container 1, while a descending flow occurs on the side wall side of the foaming container 1 to mix up and down. However, when the length L of the stirring blade G is long, the downward flow of the foamed particles on the side wall side of the foamed container 1 is obstructed. Therefore, it is considered that the shorter length of the stirring blade G is advantageous in terms of improving the stirring and mixing property of the expanded particles.
 一方で、実際の予備発泡装置を用いた二段発泡粒子の生産においては、二段発泡粒子を予備発泡装置外部へ排出する排出工程が必要である。当該排出工程では、撹拌翼Gを回転させながら掃除用エアとともに発泡容器1内の粒子を外部へ排出する。このため、撹拌翼Gの長さLが短い場合、排出工程にて発泡容器1内の粒子が側壁に残る可能性がある。 On the other hand, in the production of second-stage expanded particles using an actual pre-expansion device, a discharge process for discharging the second-stage expanded particles to the outside of the pre-expansion device is required. In the discharging step, the particles in the foam container 1 are discharged to the outside together with the cleaning air while rotating the stirring blade G. Therefore, when the length L of the stirring blade G is short, particles in the foam container 1 may remain on the side wall in the discharging step.
 それゆえ、長さLが短い撹拌翼Gを使用した場合、上層と下層との相互移動による発泡粒子の混合性が確保される一方、効率的に粒子を装置外に排出できないおそれがある。また、長さLが長い撹拌翼Gを使用した場合、発泡粒子の混合性は良好ではないが、効率的に粒子を装置外に排出できる。 Therefore, when the stirring blade G having a short length L is used, the mixing property of the expanded particles due to the mutual movement of the upper layer and the lower layer is ensured, but the particles may not be efficiently discharged out of the apparatus. Further, when the stirring blade G having a long length L is used, the mixing property of the expanded particles is not good, but the particles can be efficiently discharged out of the apparatus.
 そこで、本願発明者は、上層と下層との相互移動による発泡粒子の混合性が確保されつつ、長さLが長い撹拌翼を考案し、図2の201~203に示される撹拌翼30の構造を開発した。図8に示されるように、撹拌翼Gに撹拌翼30を適用した実施例の方が、長さLが長い撹拌翼Gを使用した比較例よりも格段に早く白色の発泡粒子が上方に出現し混合されていた。このことから、実施例の方が比較例よりも撹拌混合性が良好であることがわかった。さらに、実施例は、長さLが短い撹拌翼Gを使用した参考例と比較しても同等以上の撹拌混合性があることがわかった。 Therefore, the inventor of the present application has devised a stirring blade having a long length L while ensuring the mixing property of the foamed particles by the mutual movement of the upper layer and the lower layer, and the structure of the stirring blade 30 shown in 201 to 203 of FIG. Was developed. As shown in FIG. 8, in the example in which the stirring blade 30 is applied to the stirring blade G, white foamed particles appear in the upper portion much faster than in the comparative example in which the stirring blade G having a long length L is used. It was then mixed. From this, it was found that the example had better stirring and mixing properties than the comparative example. Further, it was found that the example has the same or better stirring and mixing property as compared with the reference example using the stirring blade G having the short length L.
 本発明は、被混合物の混合が必要な技術分野、特に樹脂の発泡に撹拌技術を使用する技術分野に利用することができる。 The present invention can be utilized in the technical field in which the materials to be mixed are required to be mixed, particularly in the technical field in which the stirring technology is used for foaming the resin.
 1            発泡容器(被混合物を収容する容器)
10            予備発泡装置(混合装置)
20            回転軸
30、30A、30B    撹拌翼
32            第1の撹拌羽根(第1の羽根)
33            第2の撹拌羽根(第2の羽根)
θ、θ          傾斜角度
1 Foaming container (container for containing the mixture)
10 Pre-foaming device (mixing device)
20 Rotating Shafts 30, 30A, 30B Stirring Blade 32 First Stirring Blade (First Blade)
33 Second stirring blade (second blade)
θ 1 , θ 2 tilt angle

Claims (9)

  1.  被混合物を収容する容器と、
     前記被混合物を攪拌する複数の撹拌翼と、
     前記撹拌翼を回転させる回転軸と、を備え、
     前記撹拌翼に対して、少なくとも第1および第2の羽根を有し、
     前記第1および第2の羽根は、水平面に対して傾斜しているとともに、互いに異なる傾斜角度を有し、
     上面視において、前記第1および第2の羽根は互いに重複しない、混合装置。
    A container for containing the material to be mixed,
    A plurality of stirring blades for stirring the material to be mixed,
    A rotating shaft for rotating the stirring blade,
    With respect to the stirring blade, having at least first and second blades,
    The first and second blades are inclined with respect to a horizontal plane and have different inclination angles from each other,
    A mixing device in which the first and second blades do not overlap with each other in a top view.
  2.  同一の前記撹拌翼に対して、前記第1および第2の羽根を少なくとも有する、請求項1に記載の混合装置。 The mixing device according to claim 1, which has at least the first and second blades for the same stirring blade.
  3.  前記第1の羽根が設けられている前記撹拌翼と前記第2の羽根が設けられている前記撹拌翼とは、互いに異なる、請求項1に記載の混合装置。 The mixing device according to claim 1, wherein the stirring blade provided with the first blade and the stirring blade provided with the second blade are different from each other.
  4.  前記第1の羽根の前記水平面に対する傾斜角度が鋭角であり、
     前記第2の羽根の前記水平面に対する傾斜角度が鈍角である、請求項1~3の何れか1項に記載の混合装置。
    The inclination angle of the first blade with respect to the horizontal plane is an acute angle,
    The mixing device according to any one of claims 1 to 3, wherein an inclination angle of the second blade with respect to the horizontal plane is an obtuse angle.
  5.  前記撹拌翼は、水平方向に延在しており、所定の間隔を開けて、前記回転軸に多段に配置されている、請求項1~4の何れか1項に記載の混合装置。 The mixing device according to any one of claims 1 to 4, wherein the stirring blades extend in the horizontal direction and are arranged in multiple stages on the rotating shaft at predetermined intervals.
  6.  前記多段の撹拌翼は、螺旋形状を形成するように前記回転軸に設けられている、請求項5に記載の混合装置。 The mixing device according to claim 5, wherein the multi-stage stirring blades are provided on the rotary shaft so as to form a spiral shape.
  7.  前記回転軸に対し垂直な方向において、
     前記第1および第2の羽根の長さの比率が5:5~9:1である、請求項1~6の何れか1項に記載の混合装置。
    In the direction perpendicular to the rotation axis,
    The mixing device according to any one of claims 1 to 6, wherein a ratio of the lengths of the first and second blades is 5:5 to 9:1.
  8.  前記被混合物は、発泡粒子であり、
     請求項1~7の何れか1項に記載の混合装置を備えた、発泡装置。
    The mixed material is expanded particles,
    A foaming device comprising the mixing device according to any one of claims 1 to 7.
  9.  請求項8に記載の発泡装置を用いて、発泡粒子を製造する工程を有する、発泡粒子の製造方法。 A method for producing expanded particles, comprising the step of producing expanded particles using the expansion device according to claim 8.
PCT/JP2020/003897 2019-02-06 2020-02-03 Mixing apparatus, foaming apparatus, and foam-particle manufacturing method WO2020162387A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020571176A JPWO2020162387A1 (en) 2019-02-06 2020-02-03 Mixing device, foaming device and manufacturing method of foamed particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019019917 2019-02-06
JP2019-019917 2019-02-06

Publications (1)

Publication Number Publication Date
WO2020162387A1 true WO2020162387A1 (en) 2020-08-13

Family

ID=71947351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003897 WO2020162387A1 (en) 2019-02-06 2020-02-03 Mixing apparatus, foaming apparatus, and foam-particle manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2020162387A1 (en)
WO (1) WO2020162387A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112191213A (en) * 2020-12-07 2021-01-08 嘉特(烟台)国际贸易有限公司 Reaction vessel capable of stirring uniformly
CN113580462A (en) * 2021-08-27 2021-11-02 浙江新恒泰新材料有限公司 Production equipment for degradable foaming material
CN113580462B (en) * 2021-08-27 2024-06-11 浙江新恒泰新材料有限公司 Production equipment for degradable foaming material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172770A (en) * 1974-12-20 1976-06-23 Kumagai Gumi Co Ltd KONRENKI
JPH01301210A (en) * 1988-05-30 1989-12-05 Kanegafuchi Chem Ind Co Ltd Prefoaming device for thermoplastic synthetic resin particles
JPH02273531A (en) * 1989-04-17 1990-11-08 Hitachi Ltd Agitating device
US5762417A (en) * 1997-02-10 1998-06-09 Philadelphia Mixers High solidity counterflow impeller system
CN208194216U (en) * 2018-02-05 2018-12-07 大连华建科技有限公司 A kind of turbulent flow agitating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172770A (en) * 1974-12-20 1976-06-23 Kumagai Gumi Co Ltd KONRENKI
JPH01301210A (en) * 1988-05-30 1989-12-05 Kanegafuchi Chem Ind Co Ltd Prefoaming device for thermoplastic synthetic resin particles
JPH02273531A (en) * 1989-04-17 1990-11-08 Hitachi Ltd Agitating device
US5762417A (en) * 1997-02-10 1998-06-09 Philadelphia Mixers High solidity counterflow impeller system
CN208194216U (en) * 2018-02-05 2018-12-07 大连华建科技有限公司 A kind of turbulent flow agitating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112191213A (en) * 2020-12-07 2021-01-08 嘉特(烟台)国际贸易有限公司 Reaction vessel capable of stirring uniformly
CN113580462A (en) * 2021-08-27 2021-11-02 浙江新恒泰新材料有限公司 Production equipment for degradable foaming material
CN113580462B (en) * 2021-08-27 2024-06-11 浙江新恒泰新材料有限公司 Production equipment for degradable foaming material

Also Published As

Publication number Publication date
JPWO2020162387A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
WO2020162387A1 (en) Mixing apparatus, foaming apparatus, and foam-particle manufacturing method
PL207926B1 (en) Method and device for pre- expanding thermoplastic microspheres
JP6564948B2 (en) Foamed particle production apparatus for polyolefin resin particles and method for producing the foamed particles
US20100239845A1 (en) Thermoplastic resin composition foamed sheet and method for producing the same
US20160340517A1 (en) Flame retardant compositions and processes for preparation thereof
US20210354346A1 (en) Foamed particle dehydration device and dehydration method, and use thereof
JP2008540772A (en) Expandable resin
WO2017104217A1 (en) Method for manufacturing foam molded article, and foam molded article
JP6199919B2 (en) Supercritical foaming method
JP7394109B2 (en) Method for producing expanded thermoplastic resin particles, and expanded thermoplastic resin particles
KR20220020799A (en) Stirring blade assembly and stirring tank
JP2006206753A (en) Foamable thermoplastic resin particle, method for producing the same, antistatic agent composition for foamable thermoplastic resin particle, and method for making foamable thermoplastic resin particle antistatic
US5102696A (en) Method of dispersing fluoropolymers on polycarbonate resins
JP6085729B1 (en) Method for producing foam molded product and foam molded product
RU2323824C2 (en) Method of achieving granules on base of foamed polymer
CN1127269A (en) Method of dispersing solid additives in polymers and products made therewith
TW202313812A (en) Thermally expandable microcapsules, expandable master batch and foam molded body
JP2010006958A (en) Method for producing dehydrated and dried olefin-based resin foamed particles
JP7373943B2 (en) Expanded particle manufacturing device and manufacturing method
EP2025700A1 (en) process for the production of expandable polystyrene (eps) comprising flame retardant additives
JP3593471B2 (en)   Method for producing thermoplastic polyester resin foam
JPH093234A (en) Foaming polyolefine resin particle
JP2004292489A (en) Styrenic resin expandable particle, method for producing the same, expanded particle and expansion molded product
JP3602087B2 (en) Method for producing fluororesin-containing thermoplastic resin composition
JP2023125583A (en) Manufacturing apparatus and manufacturing method for second-stage foamed particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20753256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20753256

Country of ref document: EP

Kind code of ref document: A1