WO2020162152A1 - Lattice base material, electrode, and lead storage battery - Google Patents

Lattice base material, electrode, and lead storage battery Download PDF

Info

Publication number
WO2020162152A1
WO2020162152A1 PCT/JP2020/001757 JP2020001757W WO2020162152A1 WO 2020162152 A1 WO2020162152 A1 WO 2020162152A1 JP 2020001757 W JP2020001757 W JP 2020001757W WO 2020162152 A1 WO2020162152 A1 WO 2020162152A1
Authority
WO
WIPO (PCT)
Prior art keywords
lattice
frame
bone
bones
base material
Prior art date
Application number
PCT/JP2020/001757
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 木村
賢二 苅谷
佳孝 小笠原
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN202080012105.2A priority Critical patent/CN113366675A/en
Priority to JP2020571073A priority patent/JPWO2020162152A1/en
Publication of WO2020162152A1 publication Critical patent/WO2020162152A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • One aspect of the present invention relates to a grid base material, an electrode, and a lead storage battery.
  • a paste-type lead-acid battery that includes an electrode formed by filling a positive electrode active material and a negative electrode active material in a paste form in a grid.
  • Such a lattice body is formed by shaping a lattice body base material that is a prototype of the lattice body by casting.
  • the lattice base material includes a frame portion formed of four frame bones, a lattice portion formed of lattice bones arranged in the frame portion, and a pair of protrusions (ear portions) provided in the frame portion. ), and (for example, refer to Patent Document 1).
  • an object of one aspect of the present invention is to provide a grid base material, an electrode, and a lead storage battery that can reduce the deformation of the grid bone that occurs when cutting an unnecessary portion formed outside the frame portion. To do.
  • the lattice base material includes a pair of first frame bones arranged to face each other in a first direction, and a pair of first frame bones arranged to face a second direction intersecting the first direction.
  • a frame portion having two frame bones, and is arranged inside the frame portion, and extends from one first frame bone to the other first frame bone, and along the second direction
  • the first lattice bones arranged and arranged inside the frame portion extend from one second frame bone to the other second frame bone, and are arranged along the first direction.
  • the second lattice bone is formed so that the cross-sectional area of the first portion is larger than the cross-sectional area of the second portion.
  • the unnecessary portion as the lattice base material is formed outside the frame portion corresponding to the sprue side, in other words, outside the one frame bone (one second frame bone) forming the frame portion. .. Then, when such an unnecessary portion is cut by shearing, the second lattice bone orthogonal to the cut surface is deformed due to the influence of the shearing force during processing, particularly in the portion close to one of the second frame bones. There is.
  • the cross-sectional area of the first portion of the second lattice bone which is one of the lattice bones forming the lattice, is larger than the cross-sectional area of the second portion.
  • a lattice base material is a pair of first frame bones that are arranged to face each other in a first direction, and a pair of first frame bones that are arranged to face each other in a second direction intersecting the first direction.
  • a frame portion having two frame bones, and is arranged inside the frame portion, and extends from one first frame bone to the other first frame bone, and along the second direction.
  • a second lattice bone wherein the second lattice bone is a first portion extending from one second frame bone to a predetermined position in the second direction and a second portion extending from the predetermined position to the other second frame bone 2.
  • the second lattice bone is formed so that the average cross-sectional area of the first portion is larger than the average cross-sectional area of the second portion.
  • the unnecessary portion as the lattice base material is formed outside the frame portion corresponding to the sprue side, in other words, outside the one frame bone (one second frame bone) forming the frame portion. .. Then, when such an unnecessary portion is cut by shearing, the second lattice bone orthogonal to the cut surface is deformed due to the influence of the shearing force during processing, particularly in the portion close to one of the second frame bones. There is.
  • the thickest part is formed in the first portion in the second lattice bone which is one of the lattice bones forming the lattice body, and further, the average cross-sectional area of the first portion in the second lattice bone is It is formed to be larger than the average cross-sectional area of the second portion. That is, it is formed such that the average cross-sectional area of the first portion near one of the second frame bones becomes relatively large along the extending direction. Therefore, the load resistance of the first portion against the shear load is superior to the load resistance of the second portion against the shear load. As a result, it is possible to reduce the deformation of the second lattice bone that occurs when cutting the unnecessary portion formed outside the frame portion.
  • the thickest portion of the second lattice bone having the largest cross-sectional area may be formed in the first portion. Also in this case, it is possible to effectively reduce the deformation of the second lattice bone that occurs when the unnecessary portion formed outside the frame portion is cut.
  • the first portion of the second lattice bone may be formed such that the cross-sectional area gradually increases from a predetermined position toward one of the second frame bones.
  • the first frame bone is provided so as to project outside the frame portion in the direction in which the first lattice bone extends, and the first lattice bone extends.
  • a pair of protrusions may be formed so as to face each other in the direction.
  • the predetermined position may be located in a region between the pair of protrusions.
  • the predetermined position may be located at the intersection with the first lattice bone.
  • the predetermined position may be located at an intersection with the first lattice bone adjacent to one of the second frame bones.
  • the boundary between the first portion and the second portion can be easily formed, so that the template can be easily formed.
  • An electrode according to one aspect of the present invention includes a grid body formed of the grid body base material and an electrode material held by the grid body.
  • the electrode having this configuration is configured to include a lattice body base material in which the deformation of the second lattice bone generated when the unnecessary portion formed outside the frame portion is cut is small.
  • a positive electrode having a grid body formed of the above-mentioned grid body base material, a positive electrode material held by the grid body, the grid body, and the grid body being held by the grid body. And a separator disposed between the positive electrode and the negative electrode.
  • the lead-acid battery having this configuration is configured to include a lattice base material that causes less deformation of the second lattice bone that occurs when cutting an unnecessary portion formed outside the frame portion.
  • FIG. 1 is a perspective view showing a storage battery according to an embodiment with a part thereof broken away.
  • FIG. 2 is a plan view showing a positive electrode (negative electrode) according to one embodiment.
  • FIG. 3 is a plan view showing a lattice base material according to an embodiment.
  • FIG. 4 is an enlarged plan view showing the vicinity of the boundary between the first portion and the second portion of the second lattice bone in FIG.
  • FIG. 5 is a plan view of the lattice base material including unnecessary portions.
  • FIG. 6 is an enlarged plan view showing the vicinity of the boundary between the first portion and the second portion of the second lattice bone according to the first modification.
  • FIG. 1 is a perspective view showing a storage battery according to an embodiment with a part thereof broken away.
  • FIG. 2 is a plan view showing a positive electrode (negative electrode) according to one embodiment.
  • FIG. 3 is a plan view showing a lattice base material according to an embodiment.
  • FIG. 4 is an enlarged
  • FIG. 7 is an enlarged plan view showing the vicinity of the boundary between the first part and the second part of the second lattice bone according to the second modification.
  • FIG. 8 is an enlarged plan view showing the vicinity of a boundary portion between the first portion and the second portion of the second lattice bone according to the modified example 3.
  • the lead storage battery 1 is, for example, a control valve type lead storage battery.
  • the lead storage battery 1 includes an electrode group 3 and a case 5 that houses the electrode group 3.
  • the electrode group 3 includes a plurality of positive electrodes 10, a plurality of negative electrodes 12, and a plurality of separators 13.
  • the separator 13 is interposed between the positive electrode 10 and the negative electrode 12, and the positive electrode 10 and the negative electrode 12 are arranged alternately.
  • the negative electrode 12 is arranged at the end of the positive electrode 10, the negative electrode 12, and the separator 13 in the arrangement direction (hereinafter, also simply referred to as “arrangement direction”).
  • the positive electrode 10 has a positive electrode grid 10a.
  • the positive electrode grid body 10a has a positive electrode current collector tab 10b.
  • a positive electrode material 10c is provided on the positive electrode grid 10a.
  • the positive electrode material 10c may include a positive electrode active material and an additive.
  • the positive electrode active material is, for example, lead powder or the like.
  • Examples of the additive include a carbon material, reinforcing short fibers and the like.
  • the positive electrode grid body 10a is provided with convex portions 10d and 10e. The convex portions 10d and 10e are arranged at a predetermined interval and project outward from the positive electrode grid 10a.
  • the negative electrode 12 has a negative electrode grid 12a.
  • the negative electrode grid body 12a has a negative electrode current collecting tab 12b.
  • a negative electrode material 12c is provided on the negative electrode grid 12a.
  • the negative electrode material may include a negative electrode active material and an additive.
  • the negative electrode active material is, for example, spongy lead. Examples of the additive include barium sulfate, a carbon material, and reinforcing short fibers.
  • the negative electrode grid 12a is provided with projections 12d and 12e. The convex portions 12d and 12e are arranged at a predetermined interval and project outward from the negative electrode grid 12a.
  • the separator 13 electronically insulates between the positive electrode 10 and the negative electrode 12 while allowing ions to pass therethrough, and has resistance to oxidizing property on the positive electrode 10 side and reducing property on the negative electrode 12 side.
  • the material (material) of the separator 13 include glass fiber, resin, and inorganic material.
  • Each of the positive electrodes 10 is electrically connected to the positive electrode terminal 14. Each positive electrode 10 and positive electrode terminal 14 are electrically connected by a positive electrode strap 17. Each of the negative electrodes 12 is electrically connected to the negative electrode terminal 16. Each negative electrode 12 and the negative electrode terminal 16 are electrically connected by a negative electrode strap 18.
  • the case 5 has a main body 20 and a lid 22.
  • the main body 20 is a box-shaped battery case.
  • the main body 20 is made of a material such as polypropylene.
  • the main body 20 is composed of four side surface portions 20a and a bottom portion (not shown).
  • the lid 22 covers the opening of the main body 20.
  • the lid 22 is provided with a first terminal portion 24 where the positive electrode terminal 14 is arranged, a second terminal portion 26 where the negative electrode terminal 16 is arranged, and a control valve 28.
  • the grid body base material 30 forming the positive electrode grid body 10a and the negative electrode grid body 12a will be described.
  • the positive electrode grid body 10a and the negative electrode grid body 12a are manufactured by processing the grid body base material 30.
  • the lattice base material 30 includes a frame portion 32, a lattice portion 34, and protruding portions 36a and 36b.
  • the directions (X direction, Y direction) defined in FIG. 3 are used for description.
  • the X direction (first direction), the Y direction (second direction), and the Z direction are orthogonal (cross) to each other.
  • the frame 32 defines an internal space for holding the electrode material (the positive electrode material 10c and the negative electrode material 12c shown in FIG. 2).
  • the frame portion 32 is a rectangular frame. It has a pair of first frame bones 40a and 40b and a pair of second frame bones 42a and 42b. In the present embodiment, each of the pair of first frame bones 40a, 40b is shorter than each of the pair of second frame bones 42a, 42b.
  • Each of the pair of first frame bones 40a, 40b faces each other in the X direction.
  • Each of the pair of first frame bones 40a and 40b extends along the Y direction.
  • Each of the pair of first frame bones 40a and 40b has a hexagonal prism shape. That is, the cross-sectional shape of the first frame bones 40a and 40b that intersects the Y direction is hexagonal.
  • the first frame bone 40a and the first frame bone 40b may have the same thickness (cross-sectional area along the Y direction) or may have different thicknesses.
  • Each of the pair of second frame bones 42a and 42b faces each other in the Y direction.
  • Each of the pair of second frame bones 42a and 42b extends along the X direction.
  • Each of the pair of second frame bones 42a and 42b has a hexagonal prism shape. That is, the cross-sectional shape of the second frame bones 42a and 42b that intersects the X direction is hexagonal.
  • the second frame bone 42a is thicker than the second frame bone 42b.
  • the first frame bones 40a, 40b and the second frame bones 42a, 42b are connected to each other at their ends.
  • the protrusions 36a and 36b are provided on the pair of first frame bones 40a and 40b of the frame 32, respectively.
  • the protrusions 36a and 36b are arranged so as to face each other in the X direction.
  • the protruding portion 36a is provided on the first frame bone 40a.
  • the protruding portion 36a is arranged on one end side in the extending direction of the first frame bone 40a. That is, the protruding portion 36a is arranged closer to the second frame bone 42a side of the frame portion 32 than the central portion in the extending direction of the first frame bone 40a.
  • the projecting portion 36a projects outward from the first frame bone 40a along the X direction.
  • the protruding portion 36b is provided on the first frame bone 40b.
  • the protruding portion 36b is arranged on one end side in the extending direction of the first frame bone 40b. That is, the projecting portion 36b is arranged closer to the second frame bone 42a of the frame portion 32 than the central portion in the extending direction of the first frame bone 40a. The projecting portion 36b projects outward from the first frame bone 40b along the X direction.
  • the protrusion 36b constitutes the protrusion 10e of the positive electrode 10 or the protrusion 12e of the negative electrode 12 (see FIG. 2).
  • the lattice part 34 is provided in the frame part 32 and holds the electrode material (the positive electrode material 10c and the negative electrode material 12c shown in FIG. 2).
  • the lattice part 34 has a plurality of first lattice bones 44 and a plurality of second lattice bones 45.
  • Each of the plurality of first lattice bones 44 extends along the X direction. That is, one end of the first lattice bone 44 is connected to the first frame bone 40a, and the other end of the first lattice bone 44 is connected to the first frame bone 40b.
  • the plurality of first lattice bones 44 are arranged at predetermined intervals in the Y direction.
  • Each of the plurality of first lattice bones 44 has a hexagonal prism shape. That is, the cross-sectional shape of the first lattice bones 44 that intersects each X direction is hexagonal.
  • Each of the plurality of second lattice bones 45 extends along the Y direction. That is, one end of the second lattice bone 45 is connected to the second frame bone 42a, and the other end of the second lattice bone 45 is connected to the second frame bone 42b.
  • the plurality of second lattice bones 45 are arranged at predetermined intervals in the X direction.
  • Each of the plurality of second lattice bones 45 has a hexagonal prism shape. That is, the cross-sectional shape of the second lattice bone 45 that intersects each Y direction is hexagonal.
  • the first lattice bones 44 and the second lattice bones 45 may have the same thickness or different thicknesses.
  • the second lattice bone 45 includes a first portion 47 extending from one of the second frame bones 42a to a predetermined position in the Y direction and another second frame bone 42b from the predetermined position (see FIG. 3). And a second portion 48 extending to. Thereafter, the predetermined position between the second frame bone 42a on one side and the second frame frame 42b on the other side (see FIG. 3) in the second lattice bone 45 is set at the boundary portion 49 between the first portion 47 and the second portion 48. As described below.
  • the length ratio of the first portion 47 and the second portion 48 in the extending direction of the second lattice 45 is 1:7 to 1:13.
  • the second lattice bone 45 is formed such that the average cross-sectional area A1 in the first portion 47 is larger than the average cross-sectional area A2 in the second portion 48. That is, the cross-sectional area CA1 of the second lattice bone 45 changes in the extending direction.
  • the boundary 49 is formed in a region between the pair of protrusions 36a and 36b. Further, in the present embodiment, the boundary portion 49 is formed at the intersection with the first lattice bone 44.
  • the average cross-sectional areas A1 and A2 of the second lattice bone 42 are known methods (for example, a method of measuring using Archimedes' principle, a laser volume meter or an acoustic volume). It is calculated by dividing the volume of the target site measured by a method using a meter, etc.) by the length in the longitudinal direction (Y-axis direction).
  • the first portion 47 of the second lattice bone 45 is formed so that the cross-sectional area CA1 gradually increases from the boundary portion 49 toward the one second frame bone 42a.
  • the second portion 48 of the second lattice bone 45 has a constant cross-sectional area CA2 in the extending direction.
  • the thickest portion 45a of the second lattice bone 45 having the largest cross-sectional area CA1 is formed at the connecting portion of the first portion 47 to the second frame bone 42a.
  • the cross-sectional area CA1 of the thickest part 45a of the first portion 47 is formed to be 1.4 to 2.0 times the cross-sectional area CA2 of the second portion 48.
  • the frame portion 32 is provided with a convex portion 50.
  • the convex portion 50 is provided on the first frame bone 40b.
  • the convex portion 50 is arranged on the other end side in the extending direction of the first frame bone 40b.
  • the convex portion 50 is arranged in the Y direction with a predetermined distance from the protruding portion 36b.
  • the convex portion 50 projects outward from the first frame bone 40b along the X direction.
  • the convex portion 50 constitutes the convex portion 10d of the positive electrode 10 and the convex portion 12d of the negative electrode 12.
  • the manufacturing method of the lead storage battery 1 includes an electrode manufacturing process and an assembly process.
  • the electrode manufacturing process is a process of obtaining electrodes (the positive electrode 10 and the negative electrode 12 shown in FIG. 2), and includes, for example, a preparation process, a filling process, a pressing process, a carrying process, an aging process, a drying process, and a cutting process. ..
  • a preparation step of preparing the lattice base material 30 shown in FIG. 3 is performed.
  • the number of grid base materials 30 to be prepared is determined according to the number of electrodes to be manufactured.
  • the lattice base material 30 is produced by casting, for example.
  • the lattice base material 30 is formed by pouring molten metal from one side of the molding die such as gravity casting.
  • a pair of molding dies for the lattice base material 30 corresponding to the above-described shape are prepared.
  • the sprue into which the molten lead is poured is formed outside the second frame bone 42a.
  • the molding die is arranged such that the portion corresponding to the second frame bone 42b is below the portion corresponding to the second frame bone 42a.
  • Molten lead is poured from the gate of the molding die arranged in this manner.
  • One of the molding dies is removed when a predetermined time has elapsed after the molten lead was supplied to the molding dies.
  • the lattice base material 30 is formed by releasing the molding die. As shown in FIG. 5, in the lattice base material 30 thus formed, an unnecessary portion 60 such as a burr is formed outside the second frame bone 42a corresponding to the gate side. These unnecessary portions 60 are cut by, for example, shirring processing in accordance with the outer shape of the second frame bone 42a (broken line C shown in FIG. 5).
  • a filling step of filling an electrode material (active material) paste (not shown) into the lattice base material 30 shown in FIG. 3 is performed.
  • the electrode material paste is filled by the filling machine (not shown) into the grid body base material 30 horizontally placed on the conveyor device (not shown).
  • the filled grid body base material 30 that has been filled with the electrode material paste is subsequently conveyed by the conveyor device.
  • the conveyor device is provided with a piano wire for peeling off the filled lattice base material 30 attached to the conveyor belt. The piano wire is stretched across the conveying direction of the conveyor device.
  • a pressing step of pressing the electrode material paste filled in the grid base material 30 is performed.
  • pressure is applied to the electrode material paste by sandwiching the lattice base material 30 in the vertical direction with a press roll (not shown).
  • the electrode material paste is filled in the grid portion 34 of the grid body base material 30 from the filling side where the electrode material paste is filled to the side opposite to the filling side, and the filling property of the electrode material paste is improved. Further, the thickness of the electrode material paste filled in the grid body base material 30 is made uniform, and the electrode material paste is physically adhered to the grid portion 34.
  • the grid base material 30 filled with the electrode material paste is transported.
  • the lattice base material 30 is supported and conveyed by a pair of conveyor belts (not shown). Specifically, the protrusions 36a and 36b of the lattice base material 30 are supported by the pair of conveyor belts.
  • the lattice base material 30 shifts from the horizontal state to the suspended state with respect to the conveyor belt, and is then transported in the suspended state.
  • an aging step of aging the grid body base material 30 filled with the electrode material paste and a drying step of drying the grid body base material 30 filled with the electrode material paste are performed.
  • the lattice base material 30 is aged and dried in a suspended state in which the pair of protrusions 36a and 36b are supported by a support member (not shown).
  • a cutting process for cutting the lattice base material 30 is performed.
  • the protrusion 36b of the grid body base material 30 is cut to form the protrusions 10e and 12e (see FIG. 2).
  • an unformed electrode in which the positive electrode grid 10a or the negative electrode grid 12a is filled with the electrode material paste is obtained.
  • a rotary cutter for example, is used to cut the lattice base material 30.
  • polishing may be performed to remove the electrode material paste deposited on the frame 32.
  • the assembly process of assembling the components including the electrode plate to obtain the lead storage battery 1 shown in FIG. 1 is performed.
  • unformed positive electrodes and unformed negative electrodes are alternately laminated with the separators 13 interposed therebetween, and the positive electrode current collector tabs 10b of the positive electrode grid body 10a are connected (welded) together by the positive electrode straps 17 and the negative electrode grids are formed.
  • the electrode group 3 is obtained by connecting (welding) the negative electrode current collecting tabs 12b of the body 12a to each other with the negative electrode strap 18. Then, by accommodating the electrode group 3 in the main body 20 of the case 5, an unformed battery is manufactured.
  • a direct current is passed to perform battery case formation, the specific gravity of the formed electrolytic solution is adjusted to an appropriate specific gravity, and the lead storage battery 1 is obtained.
  • the average cross-sectional area A1 of the first portion 47 of the second lattice bone 45 forming the lattice base material 30 is , And is formed to be larger than the average cross-sectional area A2 of the second portion 48. That is, the second lattice bone 45 is formed such that the cross-sectional area CA of the second lattice bone 45 changes so that the average cross-sectional area A on the one second frame bone 42a side increases along the extending direction. ing.
  • the load resistance of the first portion 47 against a shear load is superior to the load resistance of the second portion 48 against a shear load.
  • the first portion 47 of the second lattice bone 45 is formed such that the cross-sectional area CA1 gradually increases from the boundary portion 49 toward the one second frame bone 42a. There is. As a result, the deformation of the second lattice bones 45 during processing can be reduced more easily and efficiently.
  • the thickest portion 45a having the maximum cross-sectional area CA1 in the second lattice bone 45 is formed in the first portion 47.
  • the boundary portion 49 is formed in the region between the pair of protrusions 36a and 36b (see FIG. 3). Accordingly, the first portion 47 and the second portion 48 of the second lattice bone 45 can be set appropriately.
  • the boundary portion 49 is formed at the intersection with the first lattice bone 44, the boundary portion 49 between the first portion 47 and the second portion 48 is easily formed. can do. In other words, it is possible to facilitate the formation of the casting die for the grid body base material 30.
  • the first portion 47 of the second lattice bone 45 is formed such that the cross-sectional area CA1 gradually increases from the boundary portion 49 toward the one second frame bone 42a.
  • the present invention is not limited to this.
  • CA11 may be formed to be larger than the cross-sectional area CA12 of the second portion 48.
  • the second lattice bone 45 may be formed such that the cross-sectional area CA becomes large on the way from the other second frame bone 42b to the one second frame bone 42a. Also in this case, similarly to the above-described embodiment, the load resistance of the first portion 147 against the shear load is superior to the load resistance of the second portion 48 against the shear load. As a result, it is possible to reduce the deformation of the lattice bone that occurs when cutting the unnecessary portion 60 formed outside the frame portion 32.
  • the load resistance of the first portion 247 against the shear load is superior to the load resistance of the second portion 48 against the shear load. As a result, it is possible to reduce the deformation of the lattice bone that occurs when cutting the unnecessary portion 60 formed outside the frame portion 32.
  • the boundary 49 is described as an example formed at the intersection with the first lattice bone 44, but the invention is not limited to this.
  • the boundary portion 49 may be formed in a part of the second lattice bone 45 that does not intersect the first lattice bone 44.
  • the load bearing capacity of the first portion 347 on the side closer to the second frame bone 42a against the shearing load is higher than the load bearing capacity of the second portion 348 against the shearing load.
  • the pair of first frame bones 40a and 40b is shorter than the pair of second frame bones 42a and 42b, respectively. did.
  • each of the pair of first frame bones 40a and 40b may be longer than each of the pair of second frame bones 42a and 42b, or may have the same length.
  • first frame bones 40a, 40b and the second frame bones 42a, 42b of the frame portion 32, and the first lattice bones 44 and the second lattice bones 45 of the lattice portion 34 are hexagonal columns.
  • first frame bones 40a and 40b and the second frame bones 42a and 42b of the frame portion 32, and the first lattice bones 44 and the second lattice bones 45 of the lattice portion 34 have other shapes (columns, polygonal columns, etc.). ).
  • the boundary portion 49 has been described as an example formed in the region between the pair of protrusions 36a and 36b, but outside the region between the pair of protrusions 36a and 36b. It may be formed.
  • SYMBOLS 1 Lead storage battery, 10... Positive electrode, 10a... Positive electrode grid, 12... Negative electrode, 12a... Negative grid, 30... Lattice body base material, 32... Frame part, 34... Lattice part, 36a... Projection part, 36b... Projection Part, 40a... First frame (one first frame), 40b... First frame (other first frame), 42a... Second frame (one second frame), 42b... Two frame bones (the other second frame bone), 44... First lattice bones, 45... Second lattice bones, 45a, 245a... Largest part, 47, 147, 247... First part, 48... Second part, 49 ... Boundary part, 50... Convex part, 60... Unnecessary part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

This lattice base material is provided with: a frame portion comprising a pair of first frame ribs disposed facing one another in a first direction, and a pair of second frame ribs disposed facing one another in a second direction intersecting the first direction; and, arranged inside the frame portion, first lattice ribs extending from one of the first frame ribs to the other first frame rib, and second lattice ribs extending from one of the second frame ribs to the other second frame rib. The second lattice ribs each include a first part from one of the second frame ribs to a boundary portion in the direction in which the second lattice ribs extend, and a second part from the boundary portion toward the other second frame rib, and the second lattice ribs are each formed in such a way that the average cross-sectional area of the first part is greater than the average cross-sectional area of the second part.

Description

格子体基材、電極及び鉛蓄電池Lattice base material, electrodes and lead-acid batteries
 本発明の一側面は、格子体基材、電極及び鉛蓄電池に関する。 One aspect of the present invention relates to a grid base material, an electrode, and a lead storage battery.
 ペースト状の正極活物質及び負極活物質を格子体に充填することによって構成された電極を備える、ペースト式の鉛蓄電池が知られている。このような格子体は、鋳造によって、格子体の原型となる格子体基材を整形することによって形成される。格子体基材は、4つの枠骨で形成されている枠部と、枠部内に配置されている格子骨から形成される格子部と、枠部に設けられている一対の突出部(耳部)と、を備えている(例えば、特許文献1参照)。 A paste-type lead-acid battery is known that includes an electrode formed by filling a positive electrode active material and a negative electrode active material in a paste form in a grid. Such a lattice body is formed by shaping a lattice body base material that is a prototype of the lattice body by casting. The lattice base material includes a frame portion formed of four frame bones, a lattice portion formed of lattice bones arranged in the frame portion, and a pair of protrusions (ear portions) provided in the frame portion. ), and (for example, refer to Patent Document 1).
特開2012-89511号公報Japanese Patent Laid-Open No. 2012-89511
 例えば、重力鋳造等、成形金型の一方側から溶融金属を流し込むことによって格子体基材を形成する場合、湯口側には格子体として不要なバリ等の不要部分が形成される。これらの不要部分は、例えばシャーリング加工によって切断される。このとき、上記格子部のうち、切断面に直交する方向に延在する格子骨が、切断時のせん断応力の影響を受け、ペースト面に交差する方向に変形が発生(曲がりが発生)することがあった。このような格子骨の変形は、ペーストが充填された格子体基材を搬送する際に、コンベヤ等から当該格子体基材を剥離させるために用いられるピアノ線に引っ掛かる等の不具合を発生させることがあった。 For example, when forming a lattice base material by pouring molten metal from one side of a molding die such as gravity casting, unnecessary portions such as burrs that are unnecessary as a lattice are formed on the gate side. These unnecessary portions are cut by, for example, shirring. At this time, in the lattice part, the lattice bone extending in the direction orthogonal to the cut surface is affected by the shearing stress at the time of cutting, and is deformed (curved) in the direction intersecting the paste surface. was there. Such deformation of the lattice bone may cause a problem such as being caught by a piano wire used for separating the lattice base material from a conveyor or the like when the paste-filled lattice base material is conveyed. was there.
 そこで、本発明の一側面は、枠部の外側に形成される不要部分を切断する際に発生する格子骨の変形を低減できる、格子体基材、電極及び鉛蓄電池を提供することを目的とする。 Therefore, an object of one aspect of the present invention is to provide a grid base material, an electrode, and a lead storage battery that can reduce the deformation of the grid bone that occurs when cutting an unnecessary portion formed outside the frame portion. To do.
 本発明の一側面に係る格子体基材は、第一方向に対向して配置される一対の第一枠骨と、第一方向と交差する第二方向に対向して配置される一対の第二枠骨と、を有している枠部と、枠部の内側に配置されており、一方の第一枠骨から他方の第一枠骨にまで延在すると共に、第二方向に沿って配列されている第一格子骨と、枠部の内側に配置されており、一方の第二枠骨から他方の第二枠骨にまで延在すると共に、第一方向に沿って配列されている第二格子骨と、を備え、第二格子骨は、一方の第二枠骨から第二方向に所定位置にまで延びる第一部分と所定位置から他方の第二枠骨にまで延びる第二部分とからなり、第二格子骨は、第一部分における断面積が、第二部分における断面積よりも大きくなるように形成されている。 The lattice base material according to one aspect of the present invention includes a pair of first frame bones arranged to face each other in a first direction, and a pair of first frame bones arranged to face a second direction intersecting the first direction. A frame portion having two frame bones, and is arranged inside the frame portion, and extends from one first frame bone to the other first frame bone, and along the second direction The first lattice bones arranged and arranged inside the frame portion extend from one second frame bone to the other second frame bone, and are arranged along the first direction. A second lattice bone, the second lattice bone, the first portion extending from one second frame bone to a predetermined position in the second direction and a second portion extending from the predetermined position to the other second frame bone. The second lattice bone is formed so that the cross-sectional area of the first portion is larger than the cross-sectional area of the second portion.
 上述したとおり、格子体基材としての不要部分は、湯口側に相当する枠部の外側、言い替えれば、枠部を形成する一の枠骨(一方の第二枠骨)の外側に形成される。そして、このような不要部分をシャーリング加工によって切断すると、切断面に直交する第二格子骨は、特に一方の第二枠骨に近い部分で、加工時のせん断力荷重の影響で変形が生じることがある。この構成の格子体基材では、格子体を形成する格子骨の一方である第二格子骨における第一部分の断面積が、第二部分の断面積よりも大きくなるように形成されている。すなわち、延在方向に沿って一方の第二枠骨に近い第一部分の断面積が相対的に大きくなるように形成されている。このため、第一部分のせん断荷重に対する耐荷重性が、第二部分のせん断荷重に対する耐荷重性と比べて優れている。これにより、枠部の外側に形成される不要部分を切断する際に発生する第二格子骨の変形を低減できる。 As described above, the unnecessary portion as the lattice base material is formed outside the frame portion corresponding to the sprue side, in other words, outside the one frame bone (one second frame bone) forming the frame portion. .. Then, when such an unnecessary portion is cut by shearing, the second lattice bone orthogonal to the cut surface is deformed due to the influence of the shearing force during processing, particularly in the portion close to one of the second frame bones. There is. In the lattice base material of this configuration, the cross-sectional area of the first portion of the second lattice bone, which is one of the lattice bones forming the lattice, is larger than the cross-sectional area of the second portion. That is, it is formed such that the cross-sectional area of the first portion near the one second frame bone becomes relatively large along the extending direction. Therefore, the load resistance of the first portion against the shear load is superior to the load resistance of the second portion against the shear load. As a result, it is possible to reduce the deformation of the second lattice bone that occurs when cutting the unnecessary portion formed outside the frame portion.
 本発明の一側面に係る格子体基材は、第一方向に対向して配置される一対の第一枠骨と、第一方向と交差する第二方向に対向して配置される一対の第二枠骨と、を有している枠部と、枠部の内側に配置されており、一方の第一枠骨から他方の第一枠骨にまで延在すると共に、第二方向に沿って配列されている第一格子骨と、枠部の内側に配置されており、一方の第二枠骨から他方の第二枠骨にまで延在すると共に、第一方向に沿って配列されている第二格子骨と、を備え、第二格子骨は、一方の第二枠骨から第二方向に所定位置にまで延びる第一部分と所定位置から他方の第二枠骨二まで延びる第二部分とからなり、第二格子骨は、第一部分における平均断面積が、第二部分における平均断面積よりも大きくなるように形成されている。 A lattice base material according to one aspect of the present invention is a pair of first frame bones that are arranged to face each other in a first direction, and a pair of first frame bones that are arranged to face each other in a second direction intersecting the first direction. A frame portion having two frame bones, and is arranged inside the frame portion, and extends from one first frame bone to the other first frame bone, and along the second direction The first lattice bones that are arranged and are arranged inside the frame portion, extend from one second frame bone to the other second frame bone, and are arranged along the first direction. A second lattice bone, wherein the second lattice bone is a first portion extending from one second frame bone to a predetermined position in the second direction and a second portion extending from the predetermined position to the other second frame bone 2. The second lattice bone is formed so that the average cross-sectional area of the first portion is larger than the average cross-sectional area of the second portion.
 上述したとおり、格子体基材としての不要部分は、湯口側に相当する枠部の外側、言い替えれば、枠部を形成する一の枠骨(一方の第二枠骨)の外側に形成される。そして、このような不要部分をシャーリング加工によって切断すると、切断面に直交する第二格子骨は、特に一方の第二枠骨に近い部分で、加工時のせん断力荷重の影響で変形が生じることがある。この構成の格子体基材では、格子体を形成する格子骨の一方である第二格子骨における第一部分に最太部が形成され、更に、第二格子骨における第一部分の平均断面積が、第二部分の平均断面積よりも大きくなるように形成されている。すなわち、延在方向に沿って一方の第二枠骨に近い第一部分の平均断面積が相対的に大きくなるように形成されている。このため、第一部分のせん断荷重に対する耐荷重性が、第二部分のせん断荷重に対する耐荷重性と比べて優れている。これにより、枠部の外側に形成される不要部分を切断する際に発生する第二格子骨の変形を低減できる。 As described above, the unnecessary portion as the lattice base material is formed outside the frame portion corresponding to the sprue side, in other words, outside the one frame bone (one second frame bone) forming the frame portion. .. Then, when such an unnecessary portion is cut by shearing, the second lattice bone orthogonal to the cut surface is deformed due to the influence of the shearing force during processing, particularly in the portion close to one of the second frame bones. There is. In the lattice base material of this configuration, the thickest part is formed in the first portion in the second lattice bone which is one of the lattice bones forming the lattice body, and further, the average cross-sectional area of the first portion in the second lattice bone is It is formed to be larger than the average cross-sectional area of the second portion. That is, it is formed such that the average cross-sectional area of the first portion near one of the second frame bones becomes relatively large along the extending direction. Therefore, the load resistance of the first portion against the shear load is superior to the load resistance of the second portion against the shear load. As a result, it is possible to reduce the deformation of the second lattice bone that occurs when cutting the unnecessary portion formed outside the frame portion.
 本発明の一側面に係る格子体基材では、第二格子骨において断面積が最大となる最太部は、第一部分に形成されていてもよい。この場合も、枠部の外側に形成される不要部分を切断する際に発生する第二格子骨の変形を効果的に低減できる。 In the lattice base material according to one aspect of the present invention, the thickest portion of the second lattice bone having the largest cross-sectional area may be formed in the first portion. Also in this case, it is possible to effectively reduce the deformation of the second lattice bone that occurs when the unnecessary portion formed outside the frame portion is cut.
 本発明の一側面に係る格子体基材では、第二格子骨の第一部分は、所定位置から一方の第二枠骨に向かって断面積が徐々に大きくなるように形成されていてもよい。この構成では、より簡易かつ効果的に、加工時の変形を低減できる。 In the lattice base material according to one aspect of the present invention, the first portion of the second lattice bone may be formed such that the cross-sectional area gradually increases from a predetermined position toward one of the second frame bones. With this configuration, deformation during processing can be reduced more easily and effectively.
 本発明の一側面に係る格子体基材では、第一枠骨には、第一格子骨が延在する方向に枠部の外側に突出するように設けられると共に、第一格子骨が延在する方向に互いに対向するように設けられる一対の突出部が形成されていてもよい。この構成では、格子体基材を搬送するにあたり、突出部を利用した懸架搬送が可能になる。 In the lattice body substrate according to one aspect of the present invention, the first frame bone is provided so as to project outside the frame portion in the direction in which the first lattice bone extends, and the first lattice bone extends. A pair of protrusions may be formed so as to face each other in the direction. With this configuration, when the lattice base material is transported, it is possible to carry out suspension transportation using the protrusions.
 本発明の一側面に係る格子体基材では、所定位置は、一対の突出部の間の領域に位置していてもよい。この構成では、第二格子骨において第一部分及び第二部分を適切に設定することができる。 In the lattice base material according to one aspect of the present invention, the predetermined position may be located in a region between the pair of protrusions. With this configuration, it is possible to properly set the first portion and the second portion in the second lattice bone.
 本発明の一側面に係る格子体基材では、所定位置は、第一格子骨との交差部に位置していてもよい。この構成では、第一部分と第二部分との境界部を容易に形成することができるので、鋳型の形成が容易となる。 In the lattice base material according to one aspect of the present invention, the predetermined position may be located at the intersection with the first lattice bone. With this configuration, since the boundary between the first portion and the second portion can be easily formed, the mold can be easily formed.
 本発明の一側面に係る格子体基材では、所定位置は、一方の第二枠骨に隣接する第一格子骨との交差部に位置していてもよい。この格子体基材は、第一部分と第二部分との境界部を容易に形成することができるので、鋳型の形成が容易となる。 In the lattice base material according to one aspect of the present invention, the predetermined position may be located at an intersection with the first lattice bone adjacent to one of the second frame bones. In this lattice base material, the boundary between the first portion and the second portion can be easily formed, so that the template can be easily formed.
 本発明の一側面に係る電極では、上記の格子体基材から形成される格子体と、格子体に保持されている電極材と、を備える。この構成の電極は、枠部の外側に形成される不要部分を切断する際に発生する第二格子骨の変形が少ない格子体基材を含んで構成される。 An electrode according to one aspect of the present invention includes a grid body formed of the grid body base material and an electrode material held by the grid body. The electrode having this configuration is configured to include a lattice body base material in which the deformation of the second lattice bone generated when the unnecessary portion formed outside the frame portion is cut is small.
 本発明の一側面に係る鉛蓄電池では、上記の格子体基材から形成される格子体と、格子体に保持されている正極材とを有する正極と、格子体と、格子体に保持されている負極材とを有する負極と、正極と負極との間に配置されたセパレータと、を備える。この構成の鉛蓄電池は、枠部の外側に形成される不要部分を切断する際に発生する第二格子骨の変形が少ない格子体基材を含んで構成される。 In a lead storage battery according to one aspect of the present invention, a positive electrode having a grid body formed of the above-mentioned grid body base material, a positive electrode material held by the grid body, the grid body, and the grid body being held by the grid body. And a separator disposed between the positive electrode and the negative electrode. The lead-acid battery having this configuration is configured to include a lattice base material that causes less deformation of the second lattice bone that occurs when cutting an unnecessary portion formed outside the frame portion.
 本発明の一側面によれば、枠部の外側に形成される不要部分を切断する際に発生する格子骨の変形を低減できる。 According to one aspect of the present invention, it is possible to reduce deformation of the lattice bone that occurs when cutting an unnecessary portion formed outside the frame portion.
図1は、一実施形態に係る蓄電池の一部を破断して示す斜視図である。FIG. 1 is a perspective view showing a storage battery according to an embodiment with a part thereof broken away. 図2は、一実施形態に係る正極(負極)を示す平面図である。FIG. 2 is a plan view showing a positive electrode (negative electrode) according to one embodiment. 図3は、一実施形態に係る格子体基材を示す平面図である。FIG. 3 is a plan view showing a lattice base material according to an embodiment. 図4は、図3の第二格子骨の第一部分と第二部分との境界部近傍を拡大して示した平面図である。FIG. 4 is an enlarged plan view showing the vicinity of the boundary between the first portion and the second portion of the second lattice bone in FIG. 図5は、不要部分を含んだ格子体基材の平面図である。FIG. 5 is a plan view of the lattice base material including unnecessary portions. 図6は、変形例1に係る第二格子骨の第一部分と第二部分との境界部近傍を拡大して示した平面図である。FIG. 6 is an enlarged plan view showing the vicinity of the boundary between the first portion and the second portion of the second lattice bone according to the first modification. 図7は、変形例2に係る第二格子骨の第一部分と第二部分との境界部近傍を拡大して示した平面図である。FIG. 7 is an enlarged plan view showing the vicinity of the boundary between the first part and the second part of the second lattice bone according to the second modification. 図8は、変形例3に係る第二格子骨の第一部分と第二部分との境界部近傍を拡大して示した平面図である。FIG. 8 is an enlarged plan view showing the vicinity of a boundary portion between the first portion and the second portion of the second lattice bone according to the modified example 3.
 以下、添付図面を参照して、本発明の一側面の好適な実施形態について詳細に説明する。なお、図面の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of one aspect of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or corresponding elements will be denoted by the same reference symbols, without redundant description.
[鉛蓄電池]
 図1に示されるように、鉛蓄電池1は、例えば、制御弁式鉛蓄電池である。鉛蓄電池1は、電極群3と、電極群3を収容するケース5と、を備えている。
[Lead storage battery]
As shown in FIG. 1, the lead storage battery 1 is, for example, a control valve type lead storage battery. The lead storage battery 1 includes an electrode group 3 and a case 5 that houses the electrode group 3.
 電極群3は、複数の正極10と、複数の負極12と、複数のセパレータ13と、を含んで構成されている。電極群3では、正極10と負極12との間にセパレータ13が介在しており、正極10と負極12とが交互に配置されている。本実施形態では、電極群3において、正極10、負極12及びセパレータ13の配列方向(以下、単に「配列方向」と称することもある)の端部には、負極12が配置されている。 The electrode group 3 includes a plurality of positive electrodes 10, a plurality of negative electrodes 12, and a plurality of separators 13. In the electrode group 3, the separator 13 is interposed between the positive electrode 10 and the negative electrode 12, and the positive electrode 10 and the negative electrode 12 are arranged alternately. In the present embodiment, in the electrode group 3, the negative electrode 12 is arranged at the end of the positive electrode 10, the negative electrode 12, and the separator 13 in the arrangement direction (hereinafter, also simply referred to as “arrangement direction”).
 図2に示されるように、正極10は、正極格子体10aを有している。正極格子体10aは、正極集電タブ10bを有している。正極格子体10aには、正極材10cが設けられている。正極材10cは、正極活物質と、添加剤と、を含み得る。正極活物質は、例えば、鉛粉等である。添加剤としては、炭素材料、又は、補強用短繊維等が挙げられる。正極格子体10aには、凸部10d,10eが設けられている。凸部10d,10eは、所定の間隔をあけて配置されており、正極格子体10aから外側に向かって突出している。 As shown in FIG. 2, the positive electrode 10 has a positive electrode grid 10a. The positive electrode grid body 10a has a positive electrode current collector tab 10b. A positive electrode material 10c is provided on the positive electrode grid 10a. The positive electrode material 10c may include a positive electrode active material and an additive. The positive electrode active material is, for example, lead powder or the like. Examples of the additive include a carbon material, reinforcing short fibers and the like. The positive electrode grid body 10a is provided with convex portions 10d and 10e. The convex portions 10d and 10e are arranged at a predetermined interval and project outward from the positive electrode grid 10a.
 負極12は、負極格子体12aを有している。負極格子体12aは、負極集電タブ12bを有している。負極格子体12aには、負極材12cが設けられている。負極材は、負極活物質と、添加剤と、を含み得る。負極活物質は、例えば、海綿状鉛等である。添加剤としては、硫酸バリウム、炭素材料、又は、補強用短繊維等が挙げられる。負極格子体12aには、凸部12d,12eが設けられている。凸部12d,12eは、所定の間隔をあけて配置されており、負極格子体12aから外側に向かって突出している。 The negative electrode 12 has a negative electrode grid 12a. The negative electrode grid body 12a has a negative electrode current collecting tab 12b. A negative electrode material 12c is provided on the negative electrode grid 12a. The negative electrode material may include a negative electrode active material and an additive. The negative electrode active material is, for example, spongy lead. Examples of the additive include barium sulfate, a carbon material, and reinforcing short fibers. The negative electrode grid 12a is provided with projections 12d and 12e. The convex portions 12d and 12e are arranged at a predetermined interval and project outward from the negative electrode grid 12a.
 図1に示されるように、セパレータ13は、正極10及び負極12間を電子的には絶縁する一方でイオンを透過させ、かつ、正極10側における酸化性及び負極12側における還元性に対する耐性を備えるものであれば、特に制限されない。このようなセパレータ13の材料(材質)としては、ガラス繊維、樹脂、無機物等が挙げられる。 As shown in FIG. 1, the separator 13 electronically insulates between the positive electrode 10 and the negative electrode 12 while allowing ions to pass therethrough, and has resistance to oxidizing property on the positive electrode 10 side and reducing property on the negative electrode 12 side. There is no particular limitation as long as it is provided. Examples of the material (material) of the separator 13 include glass fiber, resin, and inorganic material.
 各正極10のそれぞれは、正極端子14と電気的に接続されている。各正極10と正極端子14とは、正極ストラップ17によって電気的に接続されている。各負極12のそれぞれは、負極端子16と電気的に接続されている。各負極12と負極端子16とは、負極ストラップ18によって電気的に接続されている。 Each of the positive electrodes 10 is electrically connected to the positive electrode terminal 14. Each positive electrode 10 and positive electrode terminal 14 are electrically connected by a positive electrode strap 17. Each of the negative electrodes 12 is electrically connected to the negative electrode terminal 16. Each negative electrode 12 and the negative electrode terminal 16 are electrically connected by a negative electrode strap 18.
 ケース5は、本体20と、蓋22と、を有している。本体20は、箱状を呈している電槽である。本体20は、ポリプロピレン等の材料で形成されている。本体20は、4つの側面部20aと、底部(図示省略)と、により構成されている。 The case 5 has a main body 20 and a lid 22. The main body 20 is a box-shaped battery case. The main body 20 is made of a material such as polypropylene. The main body 20 is composed of four side surface portions 20a and a bottom portion (not shown).
 蓋22は、本体20の開口部を覆う。蓋22は、正極端子14が配置される第一端子部24と、負極端子16が配置される第二端子部26と、制御弁28と、が設けられている。 The lid 22 covers the opening of the main body 20. The lid 22 is provided with a first terminal portion 24 where the positive electrode terminal 14 is arranged, a second terminal portion 26 where the negative electrode terminal 16 is arranged, and a control valve 28.
[格子体基材]
 続いて、正極格子体10a及び負極格子体12aを構成する格子体基材30について説明する。正極格子体10a及び負極格子体12aは、格子体基材30を加工することにより製造される。図3に示されるように、格子体基材30は、枠部32と、格子部34と、突出部36a,36bと、を備えている。以下の説明においては、図3で規定する方向(X方向、Y方向)を説明に用いる。X方向(第一方向)、Y方向(第二方向)、及びZ方向は、互いに直交(交差)する。
[Lattice base material]
Next, the grid body base material 30 forming the positive electrode grid body 10a and the negative electrode grid body 12a will be described. The positive electrode grid body 10a and the negative electrode grid body 12a are manufactured by processing the grid body base material 30. As shown in FIG. 3, the lattice base material 30 includes a frame portion 32, a lattice portion 34, and protruding portions 36a and 36b. In the following description, the directions (X direction, Y direction) defined in FIG. 3 are used for description. The X direction (first direction), the Y direction (second direction), and the Z direction are orthogonal (cross) to each other.
 枠部32は、電極材(図2に示される正極材10c及び負極材12c)を保持するための内部空間を規定する。枠部32は、矩形状の枠である。一対の第一枠骨40a,40bと、一対の第二枠骨42a,42bと、を有している。本実施形態では、一対の第一枠骨40a,40bのそれぞれは、一対の第二枠骨42a,42bのそれぞれよりも短い。 The frame 32 defines an internal space for holding the electrode material (the positive electrode material 10c and the negative electrode material 12c shown in FIG. 2). The frame portion 32 is a rectangular frame. It has a pair of first frame bones 40a and 40b and a pair of second frame bones 42a and 42b. In the present embodiment, each of the pair of first frame bones 40a, 40b is shorter than each of the pair of second frame bones 42a, 42b.
 一対の第一枠骨40a,40bのそれぞれは、X方向において対向している。一対の第一枠骨40a,40bのそれぞれは、Y方向に沿って延在している。一対の第一枠骨40a,40bのそれぞれは、六角柱の形状を有している。すなわち、第一枠骨40a,40bのY方向と交差する断面形状は、六角形を呈している。本実施形態では、第一枠骨40a及び第一枠骨40bは、太さ(Y方向に沿った断面積)が同じであってもよいし、太さが異なっていてもよい。 Each of the pair of first frame bones 40a, 40b faces each other in the X direction. Each of the pair of first frame bones 40a and 40b extends along the Y direction. Each of the pair of first frame bones 40a and 40b has a hexagonal prism shape. That is, the cross-sectional shape of the first frame bones 40a and 40b that intersects the Y direction is hexagonal. In the present embodiment, the first frame bone 40a and the first frame bone 40b may have the same thickness (cross-sectional area along the Y direction) or may have different thicknesses.
 一対の第二枠骨42a,42bのそれぞれは、Y方向において対向している。一対の第二枠骨42a,42bのそれぞれは、X方向に沿って延在している。一対の第二枠骨42a,42bのそれぞれは、六角柱の形状を有している。すなわち、第二枠骨42a,42bのX方向と交差する断面形状は、六角形を呈している。本実施形態では、第二枠骨42aは、第二枠骨42bよりも太い。第一枠骨40a,40bと第二枠骨42a,42bとは、互いにその端部で連結されている。 Each of the pair of second frame bones 42a and 42b faces each other in the Y direction. Each of the pair of second frame bones 42a and 42b extends along the X direction. Each of the pair of second frame bones 42a and 42b has a hexagonal prism shape. That is, the cross-sectional shape of the second frame bones 42a and 42b that intersects the X direction is hexagonal. In the present embodiment, the second frame bone 42a is thicker than the second frame bone 42b. The first frame bones 40a, 40b and the second frame bones 42a, 42b are connected to each other at their ends.
 突出部36a,36bは、枠部32の一対の第一枠骨40a,40bのそれぞれに設けられている。突出部36a,36bは、X方向に互いに対向するように配置されている。突出部36aは、第一枠骨40aに設けられている。突出部36aは、第一枠骨40aの延在方向の一端部側に配置されている。すなわち、突出部36aは、第一枠骨40aの延在方向における中央部よりも枠部32の第二枠骨42a側に配置されている。突出部36aは、第一枠骨40aから、X方向に沿って外側に向かって突出している。突出部36bは、第一枠骨40bに設けられている。突出部36bは、第一枠骨40bの延在方向の一端部側に配置されている。すなわち、突出部36bは、第一枠骨40aの延在方向における中央部よりも枠部32の第二枠骨42a側に配置されている。突出部36bは、第一枠骨40bから、X方向に沿って外側に向かって突出している。突出部36bは、正極10の凸部10e、又は、負極12の凸部12eを構成する(図2参照)。 The protrusions 36a and 36b are provided on the pair of first frame bones 40a and 40b of the frame 32, respectively. The protrusions 36a and 36b are arranged so as to face each other in the X direction. The protruding portion 36a is provided on the first frame bone 40a. The protruding portion 36a is arranged on one end side in the extending direction of the first frame bone 40a. That is, the protruding portion 36a is arranged closer to the second frame bone 42a side of the frame portion 32 than the central portion in the extending direction of the first frame bone 40a. The projecting portion 36a projects outward from the first frame bone 40a along the X direction. The protruding portion 36b is provided on the first frame bone 40b. The protruding portion 36b is arranged on one end side in the extending direction of the first frame bone 40b. That is, the projecting portion 36b is arranged closer to the second frame bone 42a of the frame portion 32 than the central portion in the extending direction of the first frame bone 40a. The projecting portion 36b projects outward from the first frame bone 40b along the X direction. The protrusion 36b constitutes the protrusion 10e of the positive electrode 10 or the protrusion 12e of the negative electrode 12 (see FIG. 2).
 格子部34は、枠部32内に設けられ、電極材(図2に示される正極材10c及び負極材12c)を保持する。格子部34は、複数の第一格子骨44と、複数の第二格子骨45と、を有している。 The lattice part 34 is provided in the frame part 32 and holds the electrode material (the positive electrode material 10c and the negative electrode material 12c shown in FIG. 2). The lattice part 34 has a plurality of first lattice bones 44 and a plurality of second lattice bones 45.
 複数の第一格子骨44のそれぞれは、X方向に沿って延在している。すなわち、第一格子骨44の一端部は、第一枠骨40aに接続され、第一格子骨44の他端部は、第一枠骨40bに接続されている。複数の第一格子骨44は、Y方向において互いに所定の間隔をあけて配置されている。複数の第一格子骨44のそれぞれは、六角柱の形状を有している。すなわち、第一格子骨44のそれぞれのX方向と交差する断面形状は、六角形を呈している。 Each of the plurality of first lattice bones 44 extends along the X direction. That is, one end of the first lattice bone 44 is connected to the first frame bone 40a, and the other end of the first lattice bone 44 is connected to the first frame bone 40b. The plurality of first lattice bones 44 are arranged at predetermined intervals in the Y direction. Each of the plurality of first lattice bones 44 has a hexagonal prism shape. That is, the cross-sectional shape of the first lattice bones 44 that intersects each X direction is hexagonal.
 複数の第二格子骨45のそれぞれは、Y方向に沿って延在している。すなわち、第二格子骨45の一端部は、第二枠骨42aに接続され、第二格子骨45の他端部は、第二枠骨42bに接続されている。複数の第二格子骨45は、X方向において互いに所定の間隔をあけて配置されている。複数の第二格子骨45のそれぞれは、六角柱の形状を有している。すなわち、第二格子骨45のそれぞれのY方向と交差する断面形状は、六角形を呈している。第一格子骨44と第二格子骨45とは、太さが同じであってもよいし、太さが異なっていてもよい。 Each of the plurality of second lattice bones 45 extends along the Y direction. That is, one end of the second lattice bone 45 is connected to the second frame bone 42a, and the other end of the second lattice bone 45 is connected to the second frame bone 42b. The plurality of second lattice bones 45 are arranged at predetermined intervals in the X direction. Each of the plurality of second lattice bones 45 has a hexagonal prism shape. That is, the cross-sectional shape of the second lattice bone 45 that intersects each Y direction is hexagonal. The first lattice bones 44 and the second lattice bones 45 may have the same thickness or different thicknesses.
 以下、第二格子骨45について詳細に説明する。図4に示されるように、第二格子骨45は、一方の第二枠骨42aからY方向に所定位置にまで延びる第一部分47と所定位置から他方の第二枠骨42b(図3参照)にまで延びる第二部分48とを有している。以後、第二格子骨45における一方の第二枠骨42aと他方の第二枠骨42b(図3参照)との間にある所定位置を、第一部分47と第二部分48との境界部49として説明する。第二格子骨45の延在方向における第一部分47と第二部分48との長さの比は、1:7~1:13である。そして、第二格子骨45は、第一部分47における平均断面積A1が、第二部分48における平均断面積A2よりも大きくなるように形成されている。すなわち、第二格子骨45は、延在方向において断面積CA1が変化する。また、境界部49は、一対の突出部36a,36bの間の領域に形成されている。更に、本実施形態では、境界部49は、第一格子骨44との交差部に形成されている。 Hereinafter, the second lattice 45 will be described in detail. As shown in FIG. 4, the second lattice bone 45 includes a first portion 47 extending from one of the second frame bones 42a to a predetermined position in the Y direction and another second frame bone 42b from the predetermined position (see FIG. 3). And a second portion 48 extending to. Thereafter, the predetermined position between the second frame bone 42a on one side and the second frame frame 42b on the other side (see FIG. 3) in the second lattice bone 45 is set at the boundary portion 49 between the first portion 47 and the second portion 48. As described below. The length ratio of the first portion 47 and the second portion 48 in the extending direction of the second lattice 45 is 1:7 to 1:13. Then, the second lattice bone 45 is formed such that the average cross-sectional area A1 in the first portion 47 is larger than the average cross-sectional area A2 in the second portion 48. That is, the cross-sectional area CA1 of the second lattice bone 45 changes in the extending direction. The boundary 49 is formed in a region between the pair of protrusions 36a and 36b. Further, in the present embodiment, the boundary portion 49 is formed at the intersection with the first lattice bone 44.
 なお、第二格子骨42(第一部分47及び第二部分48)の平均断面積A1,A2は、公知の方法(例えば、アルキメデスの原理を利用して測定する方法、レーザ体積計又は音響式体積計を利用して測定する方法等)によって測定された対象部位の体積を、長手方向(Y軸方向)の長さで除することによって算出する。 The average cross-sectional areas A1 and A2 of the second lattice bone 42 (the first portion 47 and the second portion 48) are known methods (for example, a method of measuring using Archimedes' principle, a laser volume meter or an acoustic volume). It is calculated by dividing the volume of the target site measured by a method using a meter, etc.) by the length in the longitudinal direction (Y-axis direction).
 本実施形態では、第二格子骨45の第一部分47は、境界部49から一方の第二枠骨42aに向かって断面積CA1が徐々に大きくなるように形成されている。これに対し、第二格子骨45の第二部分48は、延在方向において断面積CA2が一定である。また、第二格子骨45において断面積CA1が最大となる最太部45aは、第一部分47において第二枠骨42aとの接続部分に形成されている。第一部分47の最太部45aの断面積CA1は、第二部分48の断面積CA2の1.4倍~2.0倍となるように形成されている。 In the present embodiment, the first portion 47 of the second lattice bone 45 is formed so that the cross-sectional area CA1 gradually increases from the boundary portion 49 toward the one second frame bone 42a. On the other hand, the second portion 48 of the second lattice bone 45 has a constant cross-sectional area CA2 in the extending direction. The thickest portion 45a of the second lattice bone 45 having the largest cross-sectional area CA1 is formed at the connecting portion of the first portion 47 to the second frame bone 42a. The cross-sectional area CA1 of the thickest part 45a of the first portion 47 is formed to be 1.4 to 2.0 times the cross-sectional area CA2 of the second portion 48.
 図3に示されるように、枠部32には、凸部50が設けられている。凸部50は、第一枠骨40bに設けられている。凸部50は、第一枠骨40bの延在方向の他端部側に配置されている。凸部50は、Y方向において、突出部36bと所定の間隔をあけて配置されている。凸部50は、第一枠骨40bから、X方向に沿って外側に向かって突出している。凸部50は、正極10の凸部10d、負極12の凸部12dを構成する。 As shown in FIG. 3, the frame portion 32 is provided with a convex portion 50. The convex portion 50 is provided on the first frame bone 40b. The convex portion 50 is arranged on the other end side in the extending direction of the first frame bone 40b. The convex portion 50 is arranged in the Y direction with a predetermined distance from the protruding portion 36b. The convex portion 50 projects outward from the first frame bone 40b along the X direction. The convex portion 50 constitutes the convex portion 10d of the positive electrode 10 and the convex portion 12d of the negative electrode 12.
[鉛蓄電池の製造方法]
 次に、鉛蓄電池1の製造方法について説明する。鉛蓄電池1の製造方法は、電極製造工程と、組立工程と、を備えている。電極製造工程は、電極(図2に示される正極10及び負極12)を得る工程であって、例えば、準備工程、充填工程、プレス工程、搬送工程、熟成工程、乾燥工程、及び切断工程を含む。
[Lead storage battery manufacturing method]
Next, a method of manufacturing the lead storage battery 1 will be described. The manufacturing method of the lead storage battery 1 includes an electrode manufacturing process and an assembly process. The electrode manufacturing process is a process of obtaining electrodes (the positive electrode 10 and the negative electrode 12 shown in FIG. 2), and includes, for example, a preparation process, a filling process, a pressing process, a carrying process, an aging process, a drying process, and a cutting process. ..
 最初に、図3に示される格子体基材30を準備する準備工程が行われる。製造する電極の枚数に応じて、準備される格子体基材30の数が決められる。格子体基材30は、例えば、鋳造によって作製される。本実施形態では、格子体基材30は、重力鋳造等、成形金型の一方側から溶融金属を流し込むことによって形成される。 First, a preparation step of preparing the lattice base material 30 shown in FIG. 3 is performed. The number of grid base materials 30 to be prepared is determined according to the number of electrodes to be manufactured. The lattice base material 30 is produced by casting, for example. In the present embodiment, the lattice base material 30 is formed by pouring molten metal from one side of the molding die such as gravity casting.
 具体的には、上述した形状に対応した格子体基材30の一対の成形金型が準備される。一対の成形金型が組み合わされた状態において、溶融鉛が流し込まれる湯口は、第二枠骨42aの外側に形成されている。また、成形金型は、第二枠骨42bに対応する部分が第二枠骨42aに対応する部分よりも下方となるように配置される。このように配置された成形金型の湯口から溶融鉛が流し込まれる。成形金型への溶融鉛の供給後、所定時間が経過すると、成形金型の一方が取り外される。 Specifically, a pair of molding dies for the lattice base material 30 corresponding to the above-described shape are prepared. In the state where the pair of molding dies are combined, the sprue into which the molten lead is poured is formed outside the second frame bone 42a. Further, the molding die is arranged such that the portion corresponding to the second frame bone 42b is below the portion corresponding to the second frame bone 42a. Molten lead is poured from the gate of the molding die arranged in this manner. One of the molding dies is removed when a predetermined time has elapsed after the molten lead was supplied to the molding dies.
 格子体基材30は、成形金型が離型されることによって形成される。このようにして形成された格子体基材30には、図5に示されるように、湯口側に対応する第二枠骨42aの外側に、バリ等の不要部分60が形成されている。これらの不要部分60は、第二枠骨42aの外形(図5に示される破線C)に合わせて、例えばシャーリング加工によって切断される。 The lattice base material 30 is formed by releasing the molding die. As shown in FIG. 5, in the lattice base material 30 thus formed, an unnecessary portion 60 such as a burr is formed outside the second frame bone 42a corresponding to the gate side. These unnecessary portions 60 are cut by, for example, shirring processing in accordance with the outer shape of the second frame bone 42a (broken line C shown in FIG. 5).
 次に、電極材(活物質)ペースト(図示せず)を、図3に示される格子体基材30に充填する充填工程が行われる。充填工程では、充填機(図示省略)によって、コンベア装置(図示省略)に水平に載置された格子体基材30に対して電極材ペーストが充填される。電極材ペーストの充填が完了した充填済み格子体基材30は、引き続きコンベヤ装置により搬送される。コンベア装置には、搬送用ベルトに付着した充填済み格子体基材30を剥離させるためのピアノ線が設けられている。ピアノ線は、コンベヤ装置の搬送方向を横切る方向に張り渡されている。 Next, a filling step of filling an electrode material (active material) paste (not shown) into the lattice base material 30 shown in FIG. 3 is performed. In the filling step, the electrode material paste is filled by the filling machine (not shown) into the grid body base material 30 horizontally placed on the conveyor device (not shown). The filled grid body base material 30 that has been filled with the electrode material paste is subsequently conveyed by the conveyor device. The conveyor device is provided with a piano wire for peeling off the filled lattice base material 30 attached to the conveyor belt. The piano wire is stretched across the conveying direction of the conveyor device.
 続いて、格子体基材30に充填された電極材ペーストをプレスするプレス工程が行われる。プレス工程では、プレスロール(図示省略)で格子体基材30を上下方向に挟み込むことにより、電極材ペーストに圧力が加えられる。プレス工程によって、格子体基材30の格子部34において、電極材ペーストが充填される充填側から充填側の反対側まで電極材ペーストが充填され、電極材ペーストの充填性が高められる。また、格子体基材30に充填された電極材ペーストの厚さが均一にされると共に、電極材ペーストが格子部34に物理的に密着される。 Subsequently, a pressing step of pressing the electrode material paste filled in the grid base material 30 is performed. In the pressing step, pressure is applied to the electrode material paste by sandwiching the lattice base material 30 in the vertical direction with a press roll (not shown). By the pressing process, the electrode material paste is filled in the grid portion 34 of the grid body base material 30 from the filling side where the electrode material paste is filled to the side opposite to the filling side, and the filling property of the electrode material paste is improved. Further, the thickness of the electrode material paste filled in the grid body base material 30 is made uniform, and the electrode material paste is physically adhered to the grid portion 34.
 続いて、電極材ペーストが充填された格子体基材30が搬送される。格子体基材30は、一対の搬送ベルト(図示せず)に支持されて搬送される。具体的には、格子体基材30の突出部36a及び突出部36bが一対の搬送ベルトに支持される。格子体基材30は、搬送装置ベルトに対して、水平状態から懸垂状態に移行し、その後、懸垂状態で搬送される。続いて、電極材ペーストが充填された格子体基材30を熟成する熟成工程、及び電極材ペーストが充填された格子体基材30を乾燥する乾燥工程が行われる。格子体基材30は、一対の突出部36a,36bが支持部材(図示省略)で支持された懸垂状態で熟成及び乾燥が行われる。 Subsequently, the grid base material 30 filled with the electrode material paste is transported. The lattice base material 30 is supported and conveyed by a pair of conveyor belts (not shown). Specifically, the protrusions 36a and 36b of the lattice base material 30 are supported by the pair of conveyor belts. The lattice base material 30 shifts from the horizontal state to the suspended state with respect to the conveyor belt, and is then transported in the suspended state. Then, an aging step of aging the grid body base material 30 filled with the electrode material paste and a drying step of drying the grid body base material 30 filled with the electrode material paste are performed. The lattice base material 30 is aged and dried in a suspended state in which the pair of protrusions 36a and 36b are supported by a support member (not shown).
 続いて、格子体基材30を切断する切断工程が行われる。切断工程では、格子体基材30の突出部36bが切断されて凸部10e,12e(図2参照)が形成される。これにより、正極格子体10a又は負極格子体12aに電極材ペーストが充填されている未化成の電極が得られる。格子体基材30の切断には、例えば、ロータリーカッターが用いられる。切断工程において、枠部32に堆積した電極材ペーストを除去するための研磨が行われてもよい。 Subsequently, a cutting process for cutting the lattice base material 30 is performed. In the cutting step, the protrusion 36b of the grid body base material 30 is cut to form the protrusions 10e and 12e (see FIG. 2). Thereby, an unformed electrode in which the positive electrode grid 10a or the negative electrode grid 12a is filled with the electrode material paste is obtained. A rotary cutter, for example, is used to cut the lattice base material 30. In the cutting step, polishing may be performed to remove the electrode material paste deposited on the frame 32.
 続いて、電極板を含む構成部材を組み立てて、図1に示される鉛蓄電池1を得る組立工程が行われる。組立工程では、未化成の正極及び未化成の負極を、セパレータ13を介して交互に積層し、正極格子体10aの正極集電タブ10b同士を正極ストラップ17で連結(溶接)すると共に、負極格子体12aの負極集電タブ12b同士を負極ストラップ18で連結(溶接)することで、電極群3が得られる。そして、電極群3をケース5の本体20内に収容することで、未化成の電池が作製される。次いで、未化成の電池に電解液を注入した後、直流電流を流すことで電槽化成が行われ、化成後の電解液の比重が適切な比重に調整され、鉛蓄電池1が得られる。 Next, the assembly process of assembling the components including the electrode plate to obtain the lead storage battery 1 shown in FIG. 1 is performed. In the assembling step, unformed positive electrodes and unformed negative electrodes are alternately laminated with the separators 13 interposed therebetween, and the positive electrode current collector tabs 10b of the positive electrode grid body 10a are connected (welded) together by the positive electrode straps 17 and the negative electrode grids are formed. The electrode group 3 is obtained by connecting (welding) the negative electrode current collecting tabs 12b of the body 12a to each other with the negative electrode strap 18. Then, by accommodating the electrode group 3 in the main body 20 of the case 5, an unformed battery is manufactured. Next, after injecting the electrolytic solution into the unformed battery, a direct current is passed to perform battery case formation, the specific gravity of the formed electrolytic solution is adjusted to an appropriate specific gravity, and the lead storage battery 1 is obtained.
 以上に説明したように、上記実施形態に係る格子体基材30では、図4に示されるように、格子体基材30を形成する第二格子骨45における第一部分47の平均断面積A1が、第二部分48の平均断面積A2よりも大きくなるように形成されている。すなわち、第二格子骨45は、延在方向に沿って一方の第二枠骨42a側の平均断面積Aが大きくなるように、第二格子骨45の断面積CAが変化するように形成されている。これにより、第一部分47のせん断荷重に対する耐荷重性が、第二部分48のせん断荷重に対する耐荷重性と比べて優れている。この結果、シャーリング加工等によって、枠部32の外側に形成される不要部分60を切断する際に発生する格子骨の変形を低減できる。 As described above, in the lattice base material 30 according to the above-described embodiment, as shown in FIG. 4, the average cross-sectional area A1 of the first portion 47 of the second lattice bone 45 forming the lattice base material 30 is , And is formed to be larger than the average cross-sectional area A2 of the second portion 48. That is, the second lattice bone 45 is formed such that the cross-sectional area CA of the second lattice bone 45 changes so that the average cross-sectional area A on the one second frame bone 42a side increases along the extending direction. ing. As a result, the load resistance of the first portion 47 against a shear load is superior to the load resistance of the second portion 48 against a shear load. As a result, it is possible to reduce the deformation of the lattice bone that occurs when the unnecessary portion 60 formed on the outer side of the frame portion 32 is cut by the shearing process or the like.
 上記実施形態に係る格子体基材30では、第二格子骨45の第一部分47は、境界部49から一方の第二枠骨42aに向かって断面積CA1が徐々に大きくなるように形成されている。これによって、より簡易かつ効率的に、加工時の第二格子骨45の変形を低減できる。 In the lattice base material 30 according to the above-described embodiment, the first portion 47 of the second lattice bone 45 is formed such that the cross-sectional area CA1 gradually increases from the boundary portion 49 toward the one second frame bone 42a. There is. As a result, the deformation of the second lattice bones 45 during processing can be reduced more easily and efficiently.
 上記実施形態に係る格子体基材30では、第二格子骨45において断面積CA1が最大となる最太部45aが第一部分47に形成されている。これにより、より簡易に第一部分47のせん断荷重に対する耐荷重性を第二部分48のせん断荷重に対する耐荷重性と比べて優れたものとすることができる。 In the lattice base material 30 according to the above-described embodiment, the thickest portion 45a having the maximum cross-sectional area CA1 in the second lattice bone 45 is formed in the first portion 47. Thereby, the load resistance of the first portion 47 against the shear load can be more easily made superior to the load resistance of the second portion 48 against the shear load.
 上記実施形態に係る格子体基材30では、境界部49は、一対の突出部36a,36b(図3参照)の間の領域に形成されている。これにより、第二格子骨45において第一部分47及び第二部分48を適切に設定することができる。 In the grid body base material 30 according to the above embodiment, the boundary portion 49 is formed in the region between the pair of protrusions 36a and 36b (see FIG. 3). Accordingly, the first portion 47 and the second portion 48 of the second lattice bone 45 can be set appropriately.
 上記実施形態に係る格子体基材30では、境界部49は、第一格子骨44との交差部に形成されているので、第一部分47と第二部分48との境界部49を容易に形成することができる。言い替えれば、格子体基材30の鋳造金型の形成を容易にすることができる。 In the grid body base material 30 according to the above-described embodiment, since the boundary portion 49 is formed at the intersection with the first lattice bone 44, the boundary portion 49 between the first portion 47 and the second portion 48 is easily formed. can do. In other words, it is possible to facilitate the formation of the casting die for the grid body base material 30.
 以上、本発明の一側面の実施形態について説明してきたが、本発明の一側面は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。 The embodiments of one aspect of the present invention have been described above, but one aspect of the present invention is not necessarily limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
(変形例1)
 上記実施形態では、図4に示されるように、第二格子骨45の第一部分47は、境界部49から一方の第二枠骨42aに向かって断面積CA1が徐々に大きくなるように形成されている例を挙げて説明したが、これに限定されない。例えば、図6に示されるように、第一部分147全体の断面積CA11が等しく、かつ第二部分148全体の断面積CA12が等しくなるように形成されているという前提において、第一部分147の断面積CA11は第二部分48の断面積CA12よりも大きくなるように形成されてもよい。すなわち、第二格子骨45は、他方の第二枠骨42bから一方の第二枠骨42aに向かう途中で断面積CAが大きくなるように形成されてもよい。この場合も、上記実施形態と同様に、第一部分147のせん断荷重に対する耐荷重性が、第二部分48のせん断荷重に対する耐荷重性と比べて優れている。この結果、枠部32の外側に形成される不要部分60を切断する際に発生する格子骨の変形を低減できる。
(Modification 1)
In the above embodiment, as shown in FIG. 4, the first portion 47 of the second lattice bone 45 is formed such that the cross-sectional area CA1 gradually increases from the boundary portion 49 toward the one second frame bone 42a. However, the present invention is not limited to this. For example, as shown in FIG. 6, on the assumption that the cross-sectional areas CA11 of the entire first portion 147 are equal and the cross-sectional areas CA12 of the entire second portion 148 are equal, the cross-sectional area of the first portion 147 is the same. CA11 may be formed to be larger than the cross-sectional area CA12 of the second portion 48. That is, the second lattice bone 45 may be formed such that the cross-sectional area CA becomes large on the way from the other second frame bone 42b to the one second frame bone 42a. Also in this case, similarly to the above-described embodiment, the load resistance of the first portion 147 against the shear load is superior to the load resistance of the second portion 48 against the shear load. As a result, it is possible to reduce the deformation of the lattice bone that occurs when cutting the unnecessary portion 60 formed outside the frame portion 32.
(変形例2)
 上記実施形態では、図4に示されるように第二格子骨45の最太部45aが一方の第二枠骨42aに接続される部分に形成される例を挙げて説明したが、これに限定されない。例えば、第一部分247における平均断面積A11が、第二部分48における平均断面積A12よりも大きくなるように形成されているという前提において、図7に示されるように、最太部245aは、第一部分247のどの部分に形成されてもよい。例えば、最太部245aは、第二格子骨45の延在方向において第一部分247の中心部近傍に設けられてもよい。この場合も、上記実施形態と同様に、第一部分247のせん断荷重に対する耐荷重性が、第二部分48のせん断荷重に対する耐荷重性と比べて優れている。この結果、枠部32の外側に形成される不要部分60を切断する際に発生する格子骨の変形を低減できる。
(Modification 2)
In the above embodiment, as shown in FIG. 4, an example in which the thickest part 45a of the second lattice bone 45 is formed in the portion connected to the one second frame bone 42a has been described, but the present invention is not limited to this. Not done. For example, on the premise that the average cross-sectional area A11 of the first portion 247 is larger than the average cross-sectional area A12 of the second portion 48, as shown in FIG. It may be formed on any part of the part 247. For example, the thickest portion 245a may be provided near the center of the first portion 247 in the extending direction of the second lattice bone 45. Also in this case, similarly to the above embodiment, the load resistance of the first portion 247 against the shear load is superior to the load resistance of the second portion 48 against the shear load. As a result, it is possible to reduce the deformation of the lattice bone that occurs when cutting the unnecessary portion 60 formed outside the frame portion 32.
(変形例3)
 上記実施形態及び変形例では、境界部49が第一格子骨44との交差部に形成されている例を挙げて説明したが、これに限定されない。例えば、図8に示されるように、境界部49は、第一格子骨44と交差しない第二格子骨45の一部に形成されていてもよい。この場合も、第二格子骨45の延在方向において、第二枠骨42aに近い側の第一部分347のせん断荷重に対する耐荷重性が、第二部分348のせん断荷重に対する耐荷重性と比べて優れている。この結果、枠部32の外側に形成される不要部分60を切断する際に発生する格子骨の変形を低減できる。
(Modification 3)
In the above-described embodiment and modification, the boundary 49 is described as an example formed at the intersection with the first lattice bone 44, but the invention is not limited to this. For example, as shown in FIG. 8, the boundary portion 49 may be formed in a part of the second lattice bone 45 that does not intersect the first lattice bone 44. In this case as well, in the extending direction of the second lattice bones 45, the load bearing capacity of the first portion 347 on the side closer to the second frame bone 42a against the shearing load is higher than the load bearing capacity of the second portion 348 against the shearing load. Are better. As a result, it is possible to reduce the deformation of the lattice bone that occurs when cutting the unnecessary portion 60 formed outside the frame portion 32.
(その他の変形例)
 上記実施形態では、図3に示されるように、枠部32において、一対の第一枠骨40a,40bのそれぞれが、一対の第二枠骨42a,42bのそれぞれよりも短い形態を一例に説明した。しかし、一対の第一枠骨40a,40bのそれぞれは、一対の第二枠骨42a,42bのそれぞれよりも長くてもよいし、長さが同等であってもよい。
(Other modifications)
In the above-described embodiment, as shown in FIG. 3, in the frame portion 32, the pair of first frame bones 40a and 40b is shorter than the pair of second frame bones 42a and 42b, respectively. did. However, each of the pair of first frame bones 40a and 40b may be longer than each of the pair of second frame bones 42a and 42b, or may have the same length.
 上記実施形態では、枠部32の第一枠骨40a,40b及び第二枠骨42a,42b、及び、格子部34の第一格子骨44及び第二格子骨45の形状が六角柱である形態を一例に説明した。しかし、枠部32の第一枠骨40a,40b及び第二枠骨42a,42b、及び、格子部34の第一格子骨44及び第二格子骨45は、他の形状(円柱、多角柱等)であってもよい。 In the above embodiment, the first frame bones 40a, 40b and the second frame bones 42a, 42b of the frame portion 32, and the first lattice bones 44 and the second lattice bones 45 of the lattice portion 34 are hexagonal columns. Was described as an example. However, the first frame bones 40a and 40b and the second frame bones 42a and 42b of the frame portion 32, and the first lattice bones 44 and the second lattice bones 45 of the lattice portion 34 have other shapes (columns, polygonal columns, etc.). ).
 上記実施形態及び変形例では、境界部49は、一対の突出部36a,36bの間の領域に形成されている例を挙げて説明したが、一対の突出部36a,36bの間の領域外に形成されていてもよい。 In the above-described embodiment and modification, the boundary portion 49 has been described as an example formed in the region between the pair of protrusions 36a and 36b, but outside the region between the pair of protrusions 36a and 36b. It may be formed.
 本発明の一側面は、上記実施形態及びその他の変形例として記載の内容を適宜組み合わせてもよい。 As for one aspect of the present invention, the contents described as the above embodiment and other modified examples may be appropriately combined.
 1…鉛蓄電池、10…正極、10a…正極格子体、12…負極、12a…負極格子体、30…格子体基材、32…枠部、34…格子部、36a…突出部、36b…突出部、40a…第一枠骨(一方の第一枠骨)、40b…第一枠骨(他方の第一枠骨)、42a…第二枠骨(一方の第二枠骨)、42b…第二枠骨(他方の第二枠骨)、44…第一格子骨、45…第二格子骨、45a,245a…最太部、47,147,247…第一部分、48…第二部分、49…境界部、50…凸部、60…不要部分。 DESCRIPTION OF SYMBOLS 1... Lead storage battery, 10... Positive electrode, 10a... Positive electrode grid, 12... Negative electrode, 12a... Negative grid, 30... Lattice body base material, 32... Frame part, 34... Lattice part, 36a... Projection part, 36b... Projection Part, 40a... First frame (one first frame), 40b... First frame (other first frame), 42a... Second frame (one second frame), 42b... Two frame bones (the other second frame bone), 44... First lattice bones, 45... Second lattice bones, 45a, 245a... Largest part, 47, 147, 247... First part, 48... Second part, 49 ... Boundary part, 50... Convex part, 60... Unnecessary part.

Claims (10)

  1.  第一方向に対向して配置される一対の第一枠骨と、前記第一方向と交差する第二方向に対向して配置される一対の第二枠骨と、を有している枠部と、
     前記枠部の内側に配置されており、一方の前記第一枠骨から他方の前記第一枠骨にまで延在すると共に、前記第二方向に沿って配列されている第一格子骨と、
     前記枠部の内側に配置されており、一方の前記第二枠骨から他方の前記第二枠骨にまで延在すると共に、前記第一方向に沿って配列されている第二格子骨と、を備え、
     前記第二格子骨は、一方の前記第二枠骨から前記第二方向に所定位置にまで延びる第一部分と前記所定位置から他方の前記第二枠骨にまで延びる第二部分とからなり、
     前記第二格子骨は、前記第一部分における断面積が、前記第二部分における断面積よりも大きくなるように形成されている、格子体基材。
    A frame portion having a pair of first frame bones arranged to face each other in a first direction and a pair of second frame bones arranged to face each other in a second direction intersecting the first direction. When,
    It is arranged inside the frame portion, and extends from one of the first frame bones to the other of the first frame bones, and a first lattice bone arranged along the second direction,
    The second lattice bones, which are arranged inside the frame portion, extend from one of the second frame bones to the other of the second frame bones, and are arranged along the first direction, Equipped with
    The second lattice bone is composed of a first portion extending from one of the second frame bones to a predetermined position in the second direction and a second portion extending from the predetermined position to the other second frame bone,
    The said 2nd lattice bone is a lattice body base material formed so that the cross-sectional area in the said 1st part may become larger than the cross-sectional area in the said 2nd part.
  2.  第一方向に対向して配置される一対の第一枠骨と、前記第一方向と交差する第二方向に対向して配置される一対の第二枠骨と、を有している枠部と、
     前記枠部の内側に配置されており、一方の前記第一枠骨から他方の前記第一枠骨にまで延在すると共に、前記第二方向に沿って配列されている第一格子骨と、
     前記枠部の内側に配置されており、一方の前記第二枠骨から他方の前記第二枠骨にまで延在すると共に、前記第一方向に沿って配列されている第二格子骨と、を備え、
     前記第二格子骨は、一方の前記第二枠骨から前記第二方向に所定位置にまで延びる第一部分と前記所定位置から他方の前記第二枠骨にまで延びる第二部分とからなり、
     前記第二格子骨は、前記第一部分における平均断面積が、前記第二部分における平均断面積よりも大きくなるように形成されている、格子体基材。
    A frame portion having a pair of first frame bones arranged to face each other in a first direction and a pair of second frame bones arranged to face each other in a second direction intersecting the first direction. When,
    It is arranged inside the frame portion, and extends from one of the first frame bones to the other of the first frame bones, and a first lattice bone arranged along the second direction,
    The second lattice bones, which are arranged inside the frame portion, extend from one of the second frame bones to the other of the second frame bones, and are arranged along the first direction, Equipped with
    The second lattice bone is composed of a first portion extending from one of the second frame bones to a predetermined position in the second direction and a second portion extending from the predetermined position to the other second frame bone,
    The said 2nd lattice bone is a lattice base material formed so that the average cross-sectional area in the said 1st part may become larger than the average cross-sectional area in the said 2nd part.
  3.  前記第二格子骨において断面積が最大となる最太部は、前記第一部分に形成されている、請求項2記載の格子体基材。 The lattice base material according to claim 2, wherein the thickest portion having the largest cross-sectional area in the second lattice bone is formed in the first portion.
  4.  前記第二格子骨の前記第一部分は、前記所定位置から一方の前記第二枠骨に向かって断面積が徐々に大きくなるように形成されている、請求項1~3の何れか一項記載の格子体基材。 4. The first portion of the second lattice bone is formed so that the cross-sectional area gradually increases from the predetermined position toward one of the second frame bones. Lattice base material.
  5.  前記第一枠骨には、前記第一格子骨が延在する方向に前記枠部の外側に突出するように設けられると共に、前記第一格子骨が延在する方向に互いに対向するように設けられる一対の突出部が形成されている、請求項1~4の何れか一項記載の格子体基材。 The first frame bone is provided so as to project to the outside of the frame portion in the direction in which the first lattice bone extends, and is provided so as to face each other in the direction in which the first lattice bone extends. The lattice base material according to any one of claims 1 to 4, wherein a pair of protrusions are formed.
  6.  前記所定位置は、前記一対の突出部の間の領域に位置している、請求項5記載の格子体基材。 The lattice base material according to claim 5, wherein the predetermined position is located in a region between the pair of protrusions.
  7.  前記所定位置は、前記第一格子骨との交差部に位置している、請求項1~6の何れか一項記載の格子体基材。 The lattice base material according to any one of claims 1 to 6, wherein the predetermined position is located at an intersection with the first lattice bone.
  8.  前記所定位置は、一方の前記第二枠骨に隣接する前記第一格子骨との交差部に位置している、請求項7記載の格子体基材。 The lattice base material according to claim 7, wherein the predetermined position is located at an intersection with the first lattice bone adjacent to one of the second frame bones.
  9.  請求項1~8の何れか一項記載の格子体基材から形成される格子体と、
     前記格子体に保持されている電極材と、を備える、電極。
    A lattice body formed from the lattice body substrate according to any one of claims 1 to 8,
    An electrode material held by the grid body.
  10.  請求項1~8の何れか一項記載の格子体基材から形成される格子体と、前記格子体に保持されている正極材とを有する正極と、
     前記格子体と、前記格子体に保持されている負極材とを有する負極と、
     前記正極と前記負極との間に配置されたセパレータと、を備える、鉛蓄電池。
    A positive electrode comprising a grid body formed from the grid body substrate according to any one of claims 1 to 8, and a positive electrode material held by the grid body.
    A negative electrode having the lattice body and a negative electrode material held by the lattice body;
    A lead storage battery, comprising: a separator disposed between the positive electrode and the negative electrode.
PCT/JP2020/001757 2019-02-05 2020-01-20 Lattice base material, electrode, and lead storage battery WO2020162152A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080012105.2A CN113366675A (en) 2019-02-05 2020-01-20 Grid base material, electrode and lead storage battery
JP2020571073A JPWO2020162152A1 (en) 2019-02-05 2020-01-20 Lattice substrate, electrodes and lead-acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-019027 2019-02-05
JP2019019027 2019-02-05

Publications (1)

Publication Number Publication Date
WO2020162152A1 true WO2020162152A1 (en) 2020-08-13

Family

ID=71947420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001757 WO2020162152A1 (en) 2019-02-05 2020-01-20 Lattice base material, electrode, and lead storage battery

Country Status (4)

Country Link
JP (1) JPWO2020162152A1 (en)
CN (1) CN113366675A (en)
TW (1) TW202040857A (en)
WO (1) WO2020162152A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882775U (en) * 1981-11-30 1983-06-04 古河電池株式会社 lead acid battery
JPS58216361A (en) * 1982-06-10 1983-12-16 Matsushita Electric Ind Co Ltd Plate grid for lead storage battery
JPS5958757A (en) * 1982-09-28 1984-04-04 Furukawa Electric Co Ltd:The Complex grid base plate for storage battery
CN103406521A (en) * 2013-09-02 2013-11-27 漳州市华威电源科技有限公司 Lead acid battery grid and processing mold thereof
JP2014535153A (en) * 2011-11-03 2014-12-25 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Battery grid with altered corrosion resistance
JP2017069123A (en) * 2015-10-01 2017-04-06 日立化成株式会社 Punched lattice for lead acid battery, positive electrode for lead acid battery, and lead acid battery using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882775U (en) * 1981-11-30 1983-06-04 古河電池株式会社 lead acid battery
JPS58216361A (en) * 1982-06-10 1983-12-16 Matsushita Electric Ind Co Ltd Plate grid for lead storage battery
JPS5958757A (en) * 1982-09-28 1984-04-04 Furukawa Electric Co Ltd:The Complex grid base plate for storage battery
JP2014535153A (en) * 2011-11-03 2014-12-25 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Battery grid with altered corrosion resistance
CN103406521A (en) * 2013-09-02 2013-11-27 漳州市华威电源科技有限公司 Lead acid battery grid and processing mold thereof
JP2017069123A (en) * 2015-10-01 2017-04-06 日立化成株式会社 Punched lattice for lead acid battery, positive electrode for lead acid battery, and lead acid battery using the same

Also Published As

Publication number Publication date
JPWO2020162152A1 (en) 2021-12-09
TW202040857A (en) 2020-11-01
CN113366675A (en) 2021-09-07

Similar Documents

Publication Publication Date Title
JP2022093710A (en) Battery grid with varied corrosion resistance
JP4892651B1 (en) Lead acid battery
US6385829B2 (en) Manufacturing method for a lead-acid battery electrode plate
WO2020162152A1 (en) Lattice base material, electrode, and lead storage battery
EP2174367A2 (en) An electrode plate
US20220158279A1 (en) Battery and method of manufacturing same
WO2022233050A1 (en) Electrode assembly, battery, device, and manufacturing method for electrode assembly
JPH08287905A (en) Plate for lead-acid battery and its manufacture
US4422494A (en) Vibratory forming of shaped lead joints
WO2020148836A1 (en) Lattice body substrate, electrode, and lead storage cell
WO2020129998A1 (en) Secondary battery electrode plate and secondary battery using same
EP3145006B1 (en) Battery grid and method of making
JPS6110866A (en) Sealed lead storage battery
EP1830429B1 (en) lead acid accumulator
JP2014197456A (en) Method of positive electrode grid body for lead-acid storage battery and lead-acid storage battery
JPS60115152A (en) Separator for lead storage battery
JP2019186028A (en) Grid and lead-acid battery
WO2020003729A1 (en) Grid body, lead-acid battery, and manufacturing method for lead-acid battery
JPH07326359A (en) Electrode plate for lead-acid battery
JPH11135131A (en) Lead-acid battery
JP2000215898A (en) Lead-acid battery grid body
JP4822583B2 (en) Method for manufacturing a lead-acid battery plate
JPS59114763A (en) Manufacture of lead-acid battery
JPH0753253Y2 (en) Multi-piece electrode plate assembly for lead-acid battery
JPH0548364Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571073

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 20752277

Country of ref document: EP

Kind code of ref document: A1