WO2020162086A1 - Medical device - Google Patents

Medical device Download PDF

Info

Publication number
WO2020162086A1
WO2020162086A1 PCT/JP2020/000178 JP2020000178W WO2020162086A1 WO 2020162086 A1 WO2020162086 A1 WO 2020162086A1 JP 2020000178 W JP2020000178 W JP 2020000178W WO 2020162086 A1 WO2020162086 A1 WO 2020162086A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
space
exhaust
closing
exhaust valve
Prior art date
Application number
PCT/JP2020/000178
Other languages
French (fr)
Japanese (ja)
Inventor
靖志 田中
山本 円朗
Original Assignee
リバーフィールド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リバーフィールド株式会社 filed Critical リバーフィールド株式会社
Publication of WO2020162086A1 publication Critical patent/WO2020162086A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam

Definitions

  • the present disclosure relates to a medical device whose movement is controlled by an actuator driven by gas pressure.
  • Patent Documents 1 and 2 are provided with various actuators that control movement.
  • Patent Document 1 discloses a vibrating body that generates a vibrating wave, a moving body that is arranged to face the vibrating body and that moves by receiving the vibrating wave, and a pressure unit that controls the contact pressure of the vibrating body and the moving body.
  • a structured actuator is disclosed. The actuator described in Patent Document 1 controls the contact pressure of the vibrating body and the moving body to control the driving force generated by the combination of the vibrating body and the moving body.
  • Patent Document 2 discloses a configuration including an air/water feeding device, an air/water feeding channel, and a normally open solenoid valve.
  • the pressure in the air/water feeding channel can be increased by closing the electromagnetic valve and supplying air to the air/water feeding channel.
  • the curved shape of the air supply/water supply channel can be deformed straight.
  • an emergency stop can be made to stop the operation of the medical equipment for some reason.
  • a method for realizing an emergency stop a method using a brake using an electromagnet is generally known.
  • a brake that uses an electromagnet will also be referred to as an electromagnetic brake.
  • the electromagnetic brake is newly arranged in the medical device, the cost of the electromagnetic brake is increased as compared with the medical device in which the electromagnetic brake is not arranged, and the cost of the medical device increases. there were.
  • a gas pressure actuator driven by the pressure of gas such as air is known as an actuator used for medical equipment.
  • an actuator used for medical equipment By combining the gas pressure actuator and the electromagnetic brake, it is possible to perform an emergency stop for stopping the operation of the medical device.
  • the pressure difference of the gas pressure at the time of the emergency stop may remain inside the gas pressure actuator.
  • the electromagnetic brake is released, there is also a problem that the gas pressure actuator may perform an unintended operation based on the remaining pressure difference.
  • the present disclosure has been made in order to solve the above-described problems, and promptly performs an operation related to an emergency stop in a medical device using a gas pressure actuator, and suppresses an unintended operation, and as a medical device.
  • An object of the present invention is to provide a medical device that can be used easily.
  • the present disclosure provides the following means.
  • the medical device of the present disclosure has a cylinder formed in a tubular shape, and a piston that is arranged so as to be relatively movable in the axial direction of the cylinder and that partitions the internal space of the cylinder into a first space and a second space.
  • Inflow and outflow of gas between the first space and a first flow path connected to allow inflow and outflow of gas between the gas pressure actuator and the first space A second flow path connected to the first flow path; a first closing valve provided in the first flow path to control the flow and cutoff of the gas supplied from the outside to the first space; Second shut-off valve provided in the flow passage of No.
  • the medical device of the present disclosure it is possible to stop the relative movement of the piston with respect to the cylinder by cutting off the supply of gas to the cylinder with the first closing valve and the second closing valve.
  • the gas pressure actuator can be stopped urgently.
  • the pressure of the first space and the second space of the cylinder is reduced to the atmospheric pressure by allowing the gas to be discharged from the first exhaust valve and the second exhaust valve. , The pressure difference between the two is eliminated. Thereby, the unintended operation of the gas pressure actuator can be suppressed.
  • the pressure drop in the first space and the second space is controlled by the flow passage cross-sectional area by the throttle valve. That is, as the flow passage cross-sectional area of the throttle valve increases, the gas exhaust rate increases and the pressure decreases in a short period of time. On the other hand, when the flow passage cross-sectional area of the throttle valve becomes small, the gas exhaust rate becomes small, and it takes a long time to reduce the pressure.
  • first and second closing valves As compared with the case where an electromagnetic brake is used for emergency stop of medical equipment, compared with electromagnets and brake pads called first and second closing valves, first and second exhaust valves, and a throttle valve. Since lightweight, small, and inexpensive parts are used, it is easy to suppress weight increase, size increase, and price increase.
  • the first shutoff valve and the second shutoff valve are integrally formed shutoff valves, and the gases exhausted from the first exhaust valve and the second exhaust valve are the same. Of the gas flowing toward the throttle valve between the first exhaust valve and the throttle valve and between the second exhaust valve and the throttle valve. It is preferable that a non-return valve permitting is provided.
  • first closing valve and the second closing valve integrally, it becomes possible to reduce the number of parts constituting the medical device as compared with the case where they are provided separately. .. Further, since one throttle valve is arranged for the first exhaust valve and the second exhaust valve, the size and weight of the medical device can be reduced as compared with the case where two throttle valves are arranged. Easy to plan.
  • the first closing valve and the first exhaust valve are a first valve device integrally formed, and the second closing valve and the second exhaust valve are integrally formed.
  • a second valve device, the gas exhausted from the first exhaust valve is guided to a first throttle valve, and the gas exhausted from the second exhaust valve is a second throttle valve. It is preferably led to a valve.
  • the first valve device in which the first closing valve and the first exhaust valve are integrally formed, and the second valve device in which the second closing valve and the second exhaust valve are integrally formed are provided.
  • the first blocking valve, the first exhaust valve, the second blocking valve and the second exhaust valve are separately arranged.
  • the first throttle valve is compared with the case where a common throttle valve is provided. It is possible to independently control the rate of pressure decrease in the space and the second space.
  • first closing valve and the second closing valve are integrally formed closing valves, and the gas exhausted from the first exhaust valve is guided to the first throttle valve.
  • the gas exhausted from the second exhaust valve is preferably guided to the second throttle valve.
  • the first closing valve and the second closing valve as the integrally formed closing valve, it is possible to reduce the number of parts constituting the medical device as compared with the case where they are provided separately. Become.
  • the first throttle valve is compared with the case where a common throttle valve is provided. It is possible to independently control the rate of pressure decrease in the space and the second space.
  • an emergency stop can be promptly performed by shutting off the supply of gas to the cylinder by the first closing valve and the second closing valve. Further, by permitting the discharge of gas from the first exhaust valve and the second exhaust valve after the gas pressure actuator is stopped, it is possible to quickly perform an operation related to an emergency stop and suppress an unintended operation. .. Further, according to the present disclosure, there is an effect that safety can be improved when used as a medical device.
  • FIG. 1 is a schematic diagram illustrating a circuit configuration of a medical device according to a first embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view illustrating a configuration of a joint section of FIG. 1.
  • FIG. 3 is a schematic diagram illustrating a circuit configuration of a characteristic part in the drive unit of FIG.
  • FIG. 3 is a block diagram illustrating a configuration of a control unit in FIG. 2.
  • FIG. 6A is a schematic diagram illustrating a state in which an external force is applied to the pneumatic actuator during an emergency stop, and FIG.
  • 6B is a schematic diagram illustrating a state in which the external force is removed. It is a graph explaining a pressure change when an exhaust valve is opened after an emergency stop. It is a schematic diagram explaining the structure of the drive part which concerns on the medical device of the 2nd Embodiment of this embodiment. It is a graph explaining a pressure change when an exhaust valve is opened after an emergency stop. It is a schematic diagram explaining the structure of the drive part which concerns on the medical device of the 3rd Embodiment of this embodiment.
  • the medical device 1 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 7.
  • the medical device 1 will be described as being applied to an example in which the medical device 1 is a medical robot used for assistance in endoscopic surgery.
  • the medical device 1 is a device in which forceps 52 are arranged at the tip of a shaft 51 formed in a rod shape.
  • a joint portion 53 is provided near the tip of the shaft 51. By bending the joint portion 53, the direction of the forceps 52 can be operated.
  • the medical device 1 includes a compressor 11, a main valve 12, a first drive unit 20A, a second drive unit 20B, a third drive unit 20C, a fourth drive unit 20D, and a control unit 40. And are mainly provided.
  • the compressor 11, the main valve 12, the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D are used to drive the joint unit 53.
  • the compressor 11 is a device that supplies the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D with air pressurized to a predetermined pressure.
  • a known structure can be used for the method and mechanism for increasing the pressure of air, and is not particularly limited. Further, a device that supplies air of a predetermined pressure by a cylinder storing high-pressure air instead of the compressor 11 may be used.
  • the gas used to drive the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D may be air or another gas.
  • the main valve 12 is a valve that controls the supply of air from the compressor 11 to the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D.
  • description will be made by applying to an example of the main valve 12 that controls the supply of air based on a control signal input from the control unit 40.
  • a source pressure sensor 13 that measures the pressure of air after passing through the source valve 12 is arranged.
  • the form of the main valve 12 may be a known form and is not particularly limited.
  • the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D are connected in parallel to the compressor 11.
  • the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D are supplied with the branched air after passing through the main valve 12.
  • the first drive unit 20A is configured to generate a force that pulls the position A at 0° in FIG. 3 when the joint 53 is viewed from the forceps 52 side.
  • pulling means pulling toward the base side of the shaft 51 on which the first drive unit 20A is arranged, that is, the side opposite to the forceps 52.
  • a wire that connects the first drive unit 20A and the position A of the joint unit 53 is provided, and the position A is pulled by the first drive unit 20A via the wire.
  • the second drive unit 20B is configured to generate a force that pulls the position B at 90°.
  • the third drive unit 20C is configured to generate a force that pulls the position C of 180°.
  • the fourth drive unit 20D generates a force that pulls the position D of 270°. Note that the description of 0°, 90°, 180°, and 270° in the above description is used to describe the relative relationship between the respective positions, and does not mean an absolute angle.
  • the joint portion 53 shown in FIG. 1 has a structure that can be bent in any direction. Therefore, the joint 53 can be bent in a desired direction by combining the forces generated in the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D.
  • first drive unit 20A Since the configurations of the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D are all the same, they will be described without distinguishing between them.
  • first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D are not distinguished, they are simply referred to as the drive unit 20.
  • the drive unit 20 includes a control servo valve 21, a first servo-side pressure sensor 22a and a second servo-side pressure sensor 22b, an opening/closing solenoid valve 23, and a pneumatic actuator.
  • a valve 27b, a variable throttle 28 that is a throttle valve, and a silencer 29 are mainly provided.
  • the opening/closing solenoid valve 23 includes a first closing valve and a second closing valve.
  • the pneumatic actuator 30 is also referred to as a pneumatic actuator when a gas other than air is used.
  • control servo valve 21 the opening/closing solenoid valve 23, and the pneumatic actuator 30 provided in any of the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D.
  • each code is described by adding A, B, C, and D.
  • the control servo valve 21 they are described as a control servo valve 21A, a control servo valve 21B, a control servo valve 21C, and a control servo valve 21D, respectively.
  • first servo side pressure sensor 22a and the second servo side pressure sensor 22b the first exhaust valve 26a and the second exhaust valve 26b, the first check valve 27a and the second check valve 27b.
  • first open/close side pressure sensor 25a and the second open/close side pressure sensor 25b in any of the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D.
  • the first servo side pressure sensor 22Aa, the second servo side pressure sensor 22Ab, and the first servo side pressure sensor respectively.
  • the control servo valve 21 is arranged between the main valve 12 and the opening/closing solenoid valve 23. Between the control servo valve 21 and the main valve 12, air is circulated by one pipe branching toward the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D. Connected possible. Further, the control servo valve 21 and the opening/closing solenoid valve 23 are connected by a first flow path 23a and a second flow path 23b, which are two pipes arranged in parallel, so that air can flow therethrough. There is.
  • the control servo valve 21 is configured to guide the air passing through the main valve 12 to a first space 33a or a second space 33b of a pneumatic actuator 30 described later.
  • the selection of the first space 33a and the second space 33b, which are the partners to guide the air, is performed based on the control signal input from the control unit 40.
  • the configuration of the control servo valve 21 may be a known configuration and is not particularly limited.
  • the servo side pressure sensor 22a and the servo side pressure sensor 22b are sensors that measure the pressure of air between the control servo valve 21 and the opening/closing solenoid valve 23.
  • the air introduced to the first space 33a or the second space 33b of the pneumatic actuator 30 by the servo side pressure sensor 22a and the servo side pressure sensor 22b which is the air before passing through the opening/closing solenoid valve 23.
  • the pressure is measured.
  • the value of the measured air pressure is input to the control unit 40 as a sensor output.
  • Known pressure sensors can be used as the servo side pressure sensor 22a and the servo side pressure sensor 22b.
  • the opening/closing solenoid valve 23 is arranged between the control servo valve 21 and the pneumatic actuator 30. Between the on-off solenoid valve 23 and the control servo valve 21, there are two pipes, a first flow path 23a and a second flow passage 23a corresponding to the first space 33a and the second space 33b of the pneumatic actuator 30, respectively.
  • the flow path 23b is connected so that air can flow.
  • the open/close solenoid valve 23 and the pneumatic actuator 30 are connected so that air can flow through the first flow path 23a and the second flow path 23b corresponding to the first space 33a and the second space 33b, respectively. ing.
  • the opening/closing solenoid valve 23 opens/closes and opens the first flow path 23a communicating from the control servo valve 21 to the first space 33a of the pneumatic actuator 30, and opens the first flow path 23a from the control servo valve 21 to the second space. It is a valve that controls opening and closing of the second flow path 23b communicating with 33b and opening to the outside.
  • control servo valve 21 and the first space 33a are closed, and the control servo valve 21 and the second space 33b are closed, and the control servo valve 21 and the first space 33b are closed.
  • a state in which the spaces 33a are communicated with each other and the second space 33b is opened to the outside, and a state in which the first space 33a is opened to the outside and the control servo valve 21 and the second space 33b are connected to each other
  • the description will be given by applying it to the case of controlling by three states of communicating.
  • the open/close solenoid valve 23 may have any known structure and is not particularly limited.
  • a state in which the control servo valve 21 and the first space 33a are communicated with each other is also referred to as a state in which the control servo valve 21 and the first space 33a are opened, and the control servo valve 21 and the second space 33a
  • the state in which the spaces 33b are communicated with each other is also referred to as a state in which the control servo valve 21 and the second space 33b are opened.
  • the pneumatic actuator 30 is configured to generate a driving force for bending the joint 53 using the pressure of air supplied from the compressor 11.
  • the pneumatic actuator 30 is mainly provided with a cylinder 31 formed in a cylindrical shape and a piston 32 arranged so as to be movable relative to the cylinder 31.
  • the inside of the cylinder 31 is divided by a piston 32 into a first space 33a and a second space 33b.
  • a first flow path 23a and a second flow path 23b, which communicate with the first space 33a and the second space 33b, are arranged between the cylinder 31 and the opening/closing solenoid valve 23, respectively.
  • the piston 32 is provided with a transmission member (not shown) such as a wire for transmitting the relative movement with respect to the cylinder 31 to the joint portion 53.
  • the open/close side pressure sensor 25a and the open/close side pressure sensor 25b are sensors for measuring the pressure of air between the open/close solenoid valve 23 and the pneumatic actuator 30.
  • the pressure of the air that has been introduced into the first space 33a or the second space 33b of the pneumatic actuator 30 after passing through the opening/closing solenoid valve 23 is the opening/closing side pressure sensor 25a and the opening/closing side pressure sensor 25b.
  • Measured by The value of the measured air pressure is input to the control unit 40 as a sensor output.
  • Known pressure sensors can be used as the opening/closing pressure sensor 25a and the opening/closing pressure sensor 25b.
  • the exhaust valve 26a and the exhaust valve 26b are arranged in the exhaust pipe 35 which is branched from the first flow passage 23a and the second flow passage 23b which are pipes between the opening/closing solenoid valve 23 and the pneumatic actuator 30, and which is opened to the outside. It is a valve that is used.
  • the exhaust pipe 35 has a single end on the side open to the outside, and the second end on the side where the exhaust valve 26a and the exhaust valve 26b are arranged is branched into two pipes. It is a Y-shaped pipe.
  • the exhaust valve 26a and the exhaust valve 26b are valves that control communication and closing of the exhaust pipe 35 based on a control signal input from the control unit 40. In other words, the exhaust of the air inside the first space 33a or the second space 33b of the pneumatic actuator 30 is controlled by the exhaust valve 26a and the exhaust valve 26b.
  • the check valve 27a and the check valve 27b are valves arranged in the exhaust pipe 35 between the exhaust valve 26a and the exhaust valve 26b and the silencer 29, respectively.
  • the check valve 27a is a valve that allows the flow of air from the exhaust valve 26a toward the silencer 29 and blocks the flow of air from the silencer 29 toward the exhaust valve 26a.
  • the check valve 27b is a valve that allows the flow of air from the exhaust valve 26b toward the silencer 29 and blocks the flow of air from the silencer 29 toward the exhaust valve 26b.
  • valves having a known structure can be used as the check valve 27a and the check valve 27b.
  • variable throttle 28 is arranged near the end of the exhaust pipe 35 on the side open to the outside and on the check valve 27a and check valve 27b sides of the silencer 29.
  • the variable throttle 28 adjusts the flow rate per unit time when the air is discharged from the exhaust pipe 35 to the outside.
  • a known configuration may be used as the variable diaphragm 28.
  • the silencer 29 is arranged at the end of the exhaust pipe 35 that is open to the outside.
  • the silencer 29 is configured to reduce the sound generated when the air is discharged from the exhaust pipe 35 to the outside, or to suppress the generation of the sound.
  • a known configuration may be used as the silencer 29.
  • the control unit 40 is configured to control at least the bending of the joint 53.
  • the control unit 40 is a microcomputer having a central processing unit, which is a CPU, ROM, RAM, an input/output interface, and the like.
  • the program stored in the storage device such as the ROM described above is a program that causes the CPU, the ROM, the RAM, and the input/output interface to cooperate with each other.
  • the control unit 40 includes a control input for instructing bending of the joint portion, an original pressure sensor 13, a servo pressure sensor 22a and a servo pressure sensor 22b, and opening/closing.
  • the signals output from the side pressure sensor 25a and the opening/closing side pressure sensor 25b are mainly input.
  • the control unit 40 also generates and generates a control signal for controlling the control servo valve 21, the opening/closing solenoid valve 23, the exhaust valve 26a, and the exhaust valve 26b based on the control input and the signals output from various sensors.
  • the control signal is output.
  • the control unit 40 When the joint portion 53 is bent, as shown in FIG. 2, the control unit 40 outputs a control signal for controlling the main valve 12 so that air can be supplied from the compressor 11 to the drive unit 20.
  • control unit 40 controls the drive unit 20 corresponding to the direction in which the joint 53 is bent. For example, description will be given by applying to an example of controlling the first drive unit 20A.
  • the control unit 40 controls the servo valve 21A for guiding air to the first space 33Aa or the second space 33Ab of the pneumatic actuator 30A.
  • a control signal for guiding air to the first space 33Aa is generated and output to the control servo valve 21A.
  • control unit 40 outputs a control signal to the opening/closing solenoid valve 23A shown in FIGS. 2 and 4, which enables air to flow into the first space 33Aa.
  • the first space 33Aa into which the air pressurized by the compressor 11 flows has a higher pressure than the second space 33Ab.
  • the piston 32 of the pneumatic actuator 30 moves to the second space 33Ab side due to the pressure difference between the first space 33Aa and the second space 33Ab. As shown in FIG. 3, the movement of the piston 32 is transmitted to the position A in the joint 53 via the wire, and a force pulling the position A is generated. This causes the joint portion 53 to bend.
  • the control unit 40 closes the opening/closing solenoid valve 23 between the control servo valve 21 and the first space 33a, and controls the control servo valve 21 and the second space 33a.
  • a control signal for closing the space 33b is output.
  • the pressure difference between the first space 33a and the second space 33b in the pneumatic actuator 30 causes the external force F applied to the piston 32 via the joint portion 53, and the piston 32 stops. Balance to do.
  • control unit 40 performs the control described below.
  • the control unit 40 outputs a control signal for opening the exhaust valve 26a and the exhaust valve 26b.
  • the exhaust valve 26a to which the control signal is input makes the first space 33a of the pneumatic actuator 30 communicate with the exhaust pipe 35, and the exhaust valve 26b communicates with the second space 33b of the pneumatic actuator 30. It communicates with the exhaust pipe 35.
  • the air in the first space 33a passes through the check valve 27a, the variable throttle 28 and the silencer 29 and is discharged to the outside.
  • the air in the second space 33b passes through the check valve 27b, the variable throttle 28 and the silencer 29 and is discharged to the outside.
  • the air pressure Pa in the first space 33a and the air pressure Pb in the second space 33b change as shown in FIG.
  • the air pressure Pa is P1 and the air pressure Pb is P2.
  • the air pressure Pa which is a relatively high pressure, begins to decrease.
  • the air pressure Pa and the air pressure Pb similarly decrease.
  • the decrease of the air pressure Pa and the air pressure Pb continues until it becomes equal to the external pressure, that is, the atmospheric pressure.
  • the relative movement of the piston 32 with respect to the cylinder 31 can be stopped by shutting off the supply of air to the cylinder 31 by the opening/closing solenoid valve 23.
  • the pneumatic actuator 30 can be brought to an emergency stop.
  • the pressure in the first space 33a and the second space 33b of the cylinder 31 is increased by allowing the air to be discharged from the first exhaust valve 26a and the second exhaust valve 26b.
  • the pressure drops to atmospheric pressure and the pressure difference between the two is eliminated. Thereby, the unintended operation of the pneumatic actuator 30 can be suppressed.
  • the pressure drop in the first space 33a and the second space 33b is controlled by the flow passage cross-sectional area of the variable throttle 28. That is, when the flow passage cross-sectional area in the variable throttle 28 increases, the exhaust speed of air increases and the pressure decreases in a short period of time. On the other hand, when the flow passage cross-sectional area in the variable throttle 28 becomes small, the air exhaust velocity becomes small, and it takes a long time to reduce the pressure.
  • variable throttle 28 compared with the case where an electromagnetic brake is used for an emergency stop of the medical device 1, an opening/closing solenoid valve 23, a first exhaust valve 26a and a second exhaust valve 26b, and an electromagnet or a brake pad called a variable throttle 28 are provided.
  • a first exhaust valve 26a and a second exhaust valve 26b, and an electromagnet or a brake pad called a variable throttle 28 are provided.
  • lightweight, small, and inexpensive parts are used, it is easy to suppress weight increase, size increase, and price increase.
  • the on-off solenoid valve 23 formed integrally it is possible to reduce the number of parts constituting the medical device 1 as compared with the case where a plurality of on-off solenoid valves are provided. Further, since one variable throttle 28 is arranged for the first exhaust valve 26a and the second exhaust valve 26b, the medical device 1 can be made smaller as compared with the case where two throttle valves are respectively arranged. It is easy to reduce the weight.
  • the check valve 27a and the check valve 27b between the first exhaust valve 26a and the variable throttle 28, and between the second exhaust valve 26b and the variable throttle 28, respectively, the first space
  • the backflow of air from 33a to the second space 33b or from the second space 33b to the first space 33a can be suppressed.
  • FIGS. 8 and 9 a second embodiment of the present disclosure will be described with reference to FIGS. 8 and 9.
  • the basic configuration of the medical device of this embodiment is the same as that of the first embodiment, but the configuration of the drive unit is different from that of the first embodiment. Therefore, in the present embodiment, the configuration of the drive unit will be described with reference to FIGS. 8 and 9, and description of other configurations will be omitted.
  • the drive unit 120 of the medical device 101 includes a first valve device 121a and a second valve device 121b, a first opening/closing side pressure sensor 25a, and a second opening/closing side.
  • a pressure sensor 25b, a throttle valve 128a that is a first variable throttle, a throttle valve 128b that is a second variable throttle, a first silencer 129a, and a second silencer 129b are mainly provided.
  • the first valve device 121a is a device arranged in a first space 33a which is a space between the control servo valve 21 and the pneumatic actuator 30.
  • the second valve device 121b is a device arranged in the second space 33b which is a space between the control servo valve 21 and the pneumatic actuator 30.
  • the first valve device 121a is mainly provided with a first closing valve 123a, which is a first opening/closing solenoid valve, and a first exhaust valve 26a.
  • the second valve device 121b is mainly provided with a second closing valve 123b, which is a second opening/closing solenoid valve, and a second exhaust valve 26b.
  • the first opening/closing solenoid valve 123a is a valve that controls opening/closing of the first flow path 23a that communicates with the control servo valve 21 to the first space 33a of the pneumatic actuator 30.
  • the second opening/closing solenoid valve 23b is a valve that controls opening/closing of the second flow path 23b that communicates with the control servo valve 21 to the second space 33b of the pneumatic actuator 30.
  • the first exhaust valve 26a is a valve that is arranged in the exhaust pipe 135a that is branched from the first flow path 23a between the opening/closing solenoid valve 23 and the first space 33a of the pneumatic actuator 30 and is open to the outside.
  • the second exhaust valve 26b is a valve disposed in an exhaust pipe 135b that is branched from the second flow path 23b between the opening/closing solenoid valve 23 and the second space 33b of the pneumatic actuator 30 and is open to the outside.
  • the first exhaust valve 26a is a valve that controls communication and closing of the exhaust pipe 135a based on a control signal input from the control unit 40. In other words, the exhaust of the air inside the first space 33a of the pneumatic actuator 30 is controlled by the first exhaust valve 26a.
  • the second exhaust valve 26b is a valve that controls communication and closing of the exhaust pipe 135b based on a control signal input from the control unit 40. In other words, the exhaust of the air inside the second space 33b of the pneumatic actuator 30 is controlled by the second exhaust valve 26b.
  • the first variable throttle 128a is arranged in the first exhaust pipe 135a.
  • the second variable throttle 128b is arranged in the second exhaust pipe 135b. More specifically, the first variable throttle 128a is arranged between the first valve device 121a and the first silencer 129a in the first exhaust pipe 135a, and the second variable throttle 128b is the second variable throttle 128b. It is disposed between the second valve device 121b and the second silencer 129b in the exhaust pipe 135b.
  • the first variable throttle 128a is configured to adjust the flow rate per unit time when air is discharged from the first exhaust pipe 135a to the outside.
  • the second variable throttle 128b is configured to adjust the flow rate per unit time when air is discharged from the second exhaust pipe 135b to the outside.
  • Known configurations may be used as the first variable aperture 128a and the second variable aperture 128b.
  • the first silencer 129a is arranged at the end of the first exhaust pipe 135a on the side open to the outside.
  • the second silencer 129b is arranged at the end of the second exhaust pipe 135b on the side open to the outside.
  • the first silencer 129a and the second silencer 129b reduce the noise generated when air is emitted to the outside from the first exhaust pipe 135a and the second exhaust pipe 135b, respectively. It is a configuration that suppresses.
  • a known configuration may be used as the first silencer 129a and the second silencer 129b.
  • the control unit 40 closes the control servo valve 21 and the first space 33a with respect to the first opening/closing solenoid valve 123a of the first valve device 121a.
  • a control signal is output and a control signal for closing the space between the control servo valve 21 and the second space 33b is output to the second opening/closing solenoid valve 123b of the second valve device 121b.
  • the control unit 40 outputs a control signal for opening the first exhaust valve 26a of the first valve device 121a and the second exhaust valve 26b of the second valve device 121b.
  • the first exhaust valve 26a to which the control signal is input makes the first space 33a of the pneumatic actuator 30 communicate with the first exhaust pipe 135a, and the second exhaust valve 26b is pneumatically connected.
  • the second space 33b of the actuator 30 communicates with the second exhaust pipe 135b.
  • the air in the first space 33a passes through the first variable throttle 128a and the first silencer 129a and is discharged to the outside.
  • the air in the second space 33b passes through the second variable throttle 128b and the second silencer 129b and is discharged to the outside.
  • the air pressure Pa in the first space 33a and the air pressure Pb in the second space 33b change as shown in FIG.
  • the air pressure Pa is P1
  • the air pressure Pb is P2, and P1>P2.
  • the pressures of the air pressure Pa and the air pressure Pb start to decrease.
  • the decrease of the air pressure Pa and the air pressure Pb continues until it becomes equal to the atmospheric pressure which is the external pressure.
  • the first valve device 121a in which the first opening/closing solenoid valve 123a and the first exhaust valve 26a are integrally formed, and the second opening/closing solenoid valve 123b and the second exhaust valve 26b are provided.
  • the integrally formed second valve device 121b compared with the case where the first opening/closing solenoid valve, the first exhaust valve, the second opening/closing solenoid valve and the second exhaust valve are separately arranged. It is possible to reduce the number of parts constituting the medical device 101.
  • FIGS. 9 and 10 The basic configuration of the medical device of this embodiment is the same as that of the first embodiment, but the configuration of the drive unit is different from that of the first embodiment. Therefore, in the present embodiment, the configuration of the drive unit will be described with reference to FIGS. 9 and 10, and description of other configurations will be omitted.
  • the drive unit 220 of the medical device 201 includes an opening/closing solenoid valve 23, a pneumatic actuator 30, a first opening/closing side pressure sensor 25a and a second opening/closing side pressure sensor 25b.
  • the first exhaust valve 26a and the second exhaust valve 26b, the first check valve 27a and the second check valve 27b, and the throttle valve 228a which is the first variable throttle and the second variable throttle.
  • a certain throttle valve 228b and a first silencer 229a and a second silencer 229b are mainly provided.
  • the drive unit 220 is provided with a control servo valve 21, a first servo-side pressure sensor 22a, and a second servo-side pressure sensor 22b, as in the drive unit 20 of the first embodiment.
  • the illustration and description thereof are omitted.
  • the first variable throttle 228a is arranged in the first exhaust pipe 235a.
  • the second variable throttle 228b is arranged in the second exhaust pipe 235b. More specifically, the first variable throttle 228a is arranged between the first exhaust valve 26a and the first silencer 229a in the first exhaust pipe 235a, and the second variable throttle 228b is the second variable throttle 228b. It is arranged between the second exhaust valve 26b and the second silencer 229b in the exhaust pipe 235b.
  • the first variable throttle 228a is configured to adjust the flow rate per unit time when air is discharged from the first exhaust pipe 235a to the outside
  • the second variable throttle 228b is configured such that air is the second exhaust gas. This is a configuration for adjusting the flow rate per unit time when being discharged from the pipe 235b to the outside.
  • Known configurations may be used as the first variable diaphragm 228a and the second variable diaphragm 228b.
  • the first exhaust pipe 235a is a pipe that branches from the first flow path 23a that communicates with the first space 33a of the pneumatic actuator 30 and has an end open to the outside.
  • a first exhaust valve 26a, a first variable throttle 228a, and a first silencer 229a are arranged in the first exhaust pipe 235a.
  • the second exhaust pipe 235b is a pipe that is branched from the second flow path 23b that communicates with the second space 33b of the pneumatic actuator 30 and the end of which is open to the outside.
  • a second exhaust valve 26b, a second variable throttle 228b, and a second silencer 229b are arranged in the second exhaust pipe 235b.
  • the first silencer 229a is arranged at the end of the first exhaust pipe 235a on the side open to the outside.
  • the second silencer 229b is arranged at the end of the second exhaust pipe 235b on the side open to the outside.
  • the first silencer 229a and the second silencer 229b reduce the sound generated when the air is discharged to the outside from the first exhaust pipe 235a and the second exhaust pipe 235b, respectively, or generate the sound. It is a configuration to suppress. A known configuration may be used for the first silencer 229a and the second silencer 229b.
  • control unit 40 closes the control servo valve 21 and the first space 33a with respect to the opening/closing solenoid valve 23, and controls the servo valve 21 and the first space 33a.
  • a control signal for closing the space between the two spaces 33b is output.
  • the control unit 40 outputs a control signal for opening the exhaust valve 26a and the exhaust valve 26b.
  • the exhaust valve 26a to which the control signal is input makes the first space 33a of the pneumatic actuator 30 communicate with the exhaust pipe 235a, and the exhaust valve 26b communicates with the second space 33b of the pneumatic actuator 30. It communicates with the exhaust pipe 235b.
  • the air in the first space 33a passes through the variable throttle 28a and the silencer 29a and is discharged to the outside.
  • the air in the second space 33b passes through the variable throttle 28b and the silencer 29b and is discharged to the outside.
  • the change in the air pressure Pa in the first space 33a and the change in the air pressure Pb in the second space 33b are similar to those in the second embodiment, and thus the description thereof is omitted.
  • first variable throttle 228a With arranging the first variable throttle 228a with respect to the first exhaust valve 26a and arranging the second variable throttle 228b with respect to the second exhaust valve 26b, as compared with the case where a common throttle valve is provided. Thus, it is possible to independently control the rate of pressure decrease in the first space 33a and the second space 33b.
  • the technical scope of the present disclosure is not limited to the above embodiment.
  • Various modifications can be made to the technical scope of the present disclosure without departing from the spirit of the present disclosure.
  • the operation target is not limited to the forceps 52.
  • the operation target may be an instrument used for operating another surgical tool such as an electric scalpel used for endoscopic surgery.

Abstract

This medical device is characterized by being provided with: a gas pressure actuator; a first flow path; a second flow path; a first closing valve provided to the first flow path; a second closing valve provided to the second flow path; a first exhaust valve that controls the exhaust of a gas to the outside of the first flow path, and the shutoff of such exhaust; a second exhaust valve that controls the exhaust of the gas to the outside of the second flow path, and the shutoff of such exhaust; and a throttle valve capable of changing the flow path cross-sectional area of the gas released from the first exhaust valve and the second exhaust valve.

Description

医用機器Medical equipment 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2019年2月7日に日本国特許庁に出願された日本国特許出願第2019-020732号に基づく優先権を主張するものであり、日本国特許出願第2019-020732号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2019-020732 filed with the Japan Patent Office on February 7, 2019, and is based on Japanese Patent Application No. 2019-020732. The entire contents of this International Application are incorporated by reference.
 本開示は、気体の圧力により駆動されるアクチュエータによって動きが制御される医用機器に関する。 The present disclosure relates to a medical device whose movement is controlled by an actuator driven by gas pressure.
 近年、医用ロボット等の医用機器により支援された手術が普及しつつある。例えば、特許文献1および2に記載の医用機器には、動きを制御する種々のアクチュエータが設けられている。 In recent years, surgery supported by medical devices such as medical robots is becoming widespread. For example, the medical devices described in Patent Documents 1 and 2 are provided with various actuators that control movement.
 特許文献1には、振動波を発生させる振動体と、振動体に対向して配置され振動波を受けて移動する移動体と、振動体および移動体の接触圧を制御する加圧手段などから構成されたアクチュエータが開示されている。特許文献1に記載されているアクチュエータは、振動体および移動体の接触圧を制御することにより、振動体および移動体の組み合わせにより発生する駆動力を制御している。 Patent Document 1 discloses a vibrating body that generates a vibrating wave, a moving body that is arranged to face the vibrating body and that moves by receiving the vibrating wave, and a pressure unit that controls the contact pressure of the vibrating body and the moving body. A structured actuator is disclosed. The actuator described in Patent Document 1 controls the contact pressure of the vibrating body and the moving body to control the driving force generated by the combination of the vibrating body and the moving body.
 特許文献2には、送気・送水装置と、送気・送水チャンネルと、ノーマルオープンの電磁弁などから構成された構成が開示されている。特許文献2に記載されている構成は、電磁弁を閉じて送気・送水チャンネルにエアーを供給することにより、送気・送水チャンネル内の圧力を高められる。これにより、例えば湾曲していた送気・送水チャンネルの形状をストレートに変形させることができる。 Patent Document 2 discloses a configuration including an air/water feeding device, an air/water feeding channel, and a normally open solenoid valve. In the configuration described in Patent Document 2, the pressure in the air/water feeding channel can be increased by closing the electromagnetic valve and supplying air to the air/water feeding channel. Thereby, for example, the curved shape of the air supply/water supply channel can be deformed straight.
特開2014-003734号公報JP, 2014-003734, A 特開2010-035587号公報JP, 2010-035587, A
 その一方で、手術支援に用いられる医用機器の場合、何らかの事情により医療機器の動作を停止させる緊急停止が可能であることが求められている。緊急停止を実現する方法として、電磁石を利用したブレーキを用いた方法が一般的に知られている。なお、以下では、電磁石を利用したブレーキを電磁ブレーキとも表記する。 On the other hand, in the case of medical equipment used for surgery support, it is required that an emergency stop can be made to stop the operation of the medical equipment for some reason. As a method for realizing an emergency stop, a method using a brake using an electromagnet is generally known. In the following, a brake that uses an electromagnet will also be referred to as an electromagnetic brake.
 つまり、医用機器の可動部分などに電磁ブレーキを配置し、電磁ブレーキへの電力供給を制御することにより可動部分の動きが規制され、医用機器の緊急停止が実現される。 In other words, by placing an electromagnetic brake on the movable part of the medical device and controlling the power supply to the electromagnetic brake, the movement of the movable part is regulated and the emergency stop of the medical device is realized.
 しかしながら、医用機器に電磁ブレーキを配置する場合、電磁石やブレーキパッドといった重い部品を配置することになり、医用機器の重量が重くなるという問題があった。 However, when arranging the electromagnetic brake on the medical device, heavy parts such as an electromagnet and a brake pad are arranged, which causes a problem that the weight of the medical device becomes heavy.
 また、医用機器に新たに電磁ブレーキを配置することになり、医用機器のサイズが大きくなるという問題があった。手術支援に用いられる医用機器の場合、当該医用機器を配置できる空間の大きさに制約があるため、医用機器のサイズが大きくなると、配置できなくなるという点は問題になる。 Also, there was a problem that the size of the medical device would increase because a new electromagnetic brake would be placed on the medical device. In the case of a medical device used for surgery support, there is a restriction on the size of the space in which the medical device can be placed, so that it becomes a problem that the medical device cannot be placed if the size of the medical device becomes large.
 さらに、医用機器に新たに電磁ブレーキを配置するため、電磁ブレーキが配置されていない医用機器と比較して、電磁ブレーキのコストが上乗せされることになり、医用機器のコストが増大するという問題があった。 Further, since the electromagnetic brake is newly arranged in the medical device, the cost of the electromagnetic brake is increased as compared with the medical device in which the electromagnetic brake is not arranged, and the cost of the medical device increases. there were.
 医用機器に用いられるアクチュエータとして空気などの気体の圧力により駆動される気体圧アクチュエータが知られている。気体圧アクチュエータと電磁ブレーキとを組み合わせることにより、医療機器の動作を停止させる緊急停止が可能となる。 A gas pressure actuator driven by the pressure of gas such as air is known as an actuator used for medical equipment. By combining the gas pressure actuator and the electromagnetic brake, it is possible to perform an emergency stop for stopping the operation of the medical device.
 しかしながら、電磁ブレーキにより医療機器を緊急停止した場合、気体圧アクチュエータの内部に緊急停止した時点の気体圧の圧力差が残るときがある。このときに、電磁ブレーキを解除すると、残った圧力差に基づいて気体圧アクチュエータが意図しない動作を行う可能性があるという問題もあった。 However, when the medical device is stopped by the electromagnetic brake in an emergency, the pressure difference of the gas pressure at the time of the emergency stop may remain inside the gas pressure actuator. At this time, if the electromagnetic brake is released, there is also a problem that the gas pressure actuator may perform an unintended operation based on the remaining pressure difference.
 本開示は、上記の課題を解決するためになされたものであって、気体圧アクチュエータを用いた医用機器において緊急停止に関する動作を速やかに行い、かつ、意図しない動作を抑制するとともに、医用機器としての利用を容易にすることができる医用機器を提供することを目的とする。 The present disclosure has been made in order to solve the above-described problems, and promptly performs an operation related to an emergency stop in a medical device using a gas pressure actuator, and suppresses an unintended operation, and as a medical device. An object of the present invention is to provide a medical device that can be used easily.
 上記目的を達成するために、本開示は、以下の手段を提供する。 In order to achieve the above object, the present disclosure provides the following means.
 本開示の医用機器は、筒状に形成されたシリンダ、および、前記シリンダの軸線方向に相対移動可能に配置されるとともに前記シリンダの内部空間を第1および第2の空間に区画するピストンを有する気体圧アクチュエータと、前記第1の空間との間で気体の流入および流出が可能に接続された第1の流路と、前記第2の空間との間で前記気体の流入および流出が可能に接続された第2の流路と、前記第1の流路に設けられ、外部から前記第1の空間へ供給される前記気体の流通および遮断を制御する第1の閉塞弁と、前記第2の流路に設けられ、外部から前記第2の空間へ供給される前記気体の流通及び遮断を制御する第2の閉塞弁と、前記第1の流路における前記シリンダおよび前記第1の閉塞弁との間から、前記第1の流路の外側へ前記気体の排気および遮断を制御する第1の排気弁と、前記第2の流路における前記シリンダおよび前記第2の閉塞弁との間から、前記第2の流路の外側へ前記気体の排気および遮断を制御する第2の排気弁と、前記第1の排気弁および前記第2の排気弁から排気される前記気体の流路断面積を変更可能とする絞り弁と、が設けられていることを特徴とする。 The medical device of the present disclosure has a cylinder formed in a tubular shape, and a piston that is arranged so as to be relatively movable in the axial direction of the cylinder and that partitions the internal space of the cylinder into a first space and a second space. Inflow and outflow of gas between the first space and a first flow path connected to allow inflow and outflow of gas between the gas pressure actuator and the first space A second flow path connected to the first flow path; a first closing valve provided in the first flow path to control the flow and cutoff of the gas supplied from the outside to the first space; Second shut-off valve provided in the flow passage of No. 1 for controlling the flow and shut-off of the gas supplied from the outside to the second space, the cylinder and the first shut-off valve in the first flow passage. Between the first exhaust valve that controls exhaust and shutoff of the gas to the outside of the first flow path, and between the cylinder and the second closing valve in the second flow path. A second exhaust valve for controlling exhaust and shutoff of the gas to the outside of the second flow path, and a flow path cross-sectional area of the gas exhausted from the first exhaust valve and the second exhaust valve And a throttling valve that can change.
 本開示の医用機器によれば、第1の閉塞弁および第2の閉塞弁によりシリンダへの気体の供給を遮断することにより、シリンダに対するピストンの相対移動を停止させることができる。言い換えると気体圧アクチュエータを緊急停止させることが可能となる。 According to the medical device of the present disclosure, it is possible to stop the relative movement of the piston with respect to the cylinder by cutting off the supply of gas to the cylinder with the first closing valve and the second closing valve. In other words, the gas pressure actuator can be stopped urgently.
 また、気体圧アクチュエータの停止後に、第1の排気弁および第2の排気弁から気体の排出を許容することにより、シリンダの第1の空間および第2の空間の圧力が大気圧にまで低下し、両者の間の圧力差が解消される。これにより、気体圧アクチュエータの意図しない動作を抑制することができる。 Further, after the gas pressure actuator is stopped, the pressure of the first space and the second space of the cylinder is reduced to the atmospheric pressure by allowing the gas to be discharged from the first exhaust valve and the second exhaust valve. , The pressure difference between the two is eliminated. Thereby, the unintended operation of the gas pressure actuator can be suppressed.
 第1の空間および第2の空間の圧力低下は、絞り弁による流路断面積により制御される。つまり、絞り弁における流路断面積が大きくなると気体の排気速度が大きくなり、圧力が短期間で低下する。その一方で絞り弁における流路断面積が小さくなると気体の排気速度が小さくなり、圧力の低下に長い時間が必要となる。 The pressure drop in the first space and the second space is controlled by the flow passage cross-sectional area by the throttle valve. That is, as the flow passage cross-sectional area of the throttle valve increases, the gas exhaust rate increases and the pressure decreases in a short period of time. On the other hand, when the flow passage cross-sectional area of the throttle valve becomes small, the gas exhaust rate becomes small, and it takes a long time to reduce the pressure.
 その他に、医用機器の緊急停止に電磁ブレーキを用いる場合と比較して、第1および第2の閉塞弁、第1および第2の排気弁、および、絞り弁という電磁石やブレーキパッドと比較して軽量、小型、安価な部品を用いるため、重量化、大型化、高価格化を抑制しやすい。 In addition, as compared with the case where an electromagnetic brake is used for emergency stop of medical equipment, compared with electromagnets and brake pads called first and second closing valves, first and second exhaust valves, and a throttle valve. Since lightweight, small, and inexpensive parts are used, it is easy to suppress weight increase, size increase, and price increase.
 上記開示において前記第1の閉塞弁および前記第2の閉塞弁は、一体に形成された閉塞弁であり、前記第1の排気弁および前記第2の排気弁から排気される前記気体は、同一の前記絞り弁に導かれ、前記第1の排気弁と前記絞り弁との間、および、前記第2の排気弁と前記絞り弁との間には、前記絞り弁に向かう前記気体の流れを許容する逆止弁が設けられていることが好ましい。 In the above disclosure, the first shutoff valve and the second shutoff valve are integrally formed shutoff valves, and the gases exhausted from the first exhaust valve and the second exhaust valve are the same. Of the gas flowing toward the throttle valve between the first exhaust valve and the throttle valve and between the second exhaust valve and the throttle valve. It is preferable that a non-return valve permitting is provided.
 このように、第1の閉塞弁および第2の閉塞弁を一体に形成された閉塞弁することにより、別々に設ける場合と比較して、医用機器を構成する部品点数を減らすことが可能となる。また、第1の排気弁と第2の排気弁に対して1つの絞り弁を配置しているため、2つの絞り弁をそれぞれ配置する場合と比較して、医用機器の小型化や軽量化を図りやすい。 Thus, by forming the first closing valve and the second closing valve integrally, it becomes possible to reduce the number of parts constituting the medical device as compared with the case where they are provided separately. .. Further, since one throttle valve is arranged for the first exhaust valve and the second exhaust valve, the size and weight of the medical device can be reduced as compared with the case where two throttle valves are arranged. Easy to plan.
 また、第1の排気弁と絞り弁の間、および、第2の排気弁と絞り弁の間にそれぞれ逆止弁を配置することにより、第1の空間から第2の空間へ、または、第2の空間から第1の空間への気体の逆流を抑制することができる。 Further, by arranging the check valves between the first exhaust valve and the throttle valve and between the second exhaust valve and the throttle valve, respectively, from the first space to the second space, or Backflow of gas from the second space to the first space can be suppressed.
 上記開示において前記第1の閉塞弁および前記第1の排気弁は、一体に形成された第1の弁装置であり、前記第2の閉塞弁および前記第2の排気弁は、一体に形成された第2の弁装置であり、前記第1の排気弁から排気される前記気体は、第1の絞り弁に導かれ、前記第2の排気弁から排気される前記気体は、第2の絞り弁に導かれることが好ましい。 In the above disclosure, the first closing valve and the first exhaust valve are a first valve device integrally formed, and the second closing valve and the second exhaust valve are integrally formed. A second valve device, the gas exhausted from the first exhaust valve is guided to a first throttle valve, and the gas exhausted from the second exhaust valve is a second throttle valve. It is preferably led to a valve.
 このように第1の閉塞弁および第1の排気弁を一体に形成した第1の弁装置、および、第2の閉塞弁および第2の排気弁を一体に形成した第2の弁装置を設けることにより、第1の閉塞弁、第1の排気弁、第2の閉塞弁および第2の排気弁を別々に配置した場合と比較して、医用機器を構成する部品点数を減らすことが可能となる。 Thus, the first valve device in which the first closing valve and the first exhaust valve are integrally formed, and the second valve device in which the second closing valve and the second exhaust valve are integrally formed are provided. As a result, it is possible to reduce the number of parts constituting the medical device as compared with the case where the first blocking valve, the first exhaust valve, the second blocking valve and the second exhaust valve are separately arranged. Become.
 第1の排気弁に対して第1の絞り弁を配置し、第2の排気弁に対して第2の絞り弁を配置することにより、共通の絞り弁を設ける場合と比較して、第1の空間および第2の空間における圧力の低下の速さなどを独立して制御することが可能となる。 By arranging the first throttle valve with respect to the first exhaust valve and the second throttle valve with respect to the second exhaust valve, the first throttle valve is compared with the case where a common throttle valve is provided. It is possible to independently control the rate of pressure decrease in the space and the second space.
 上記開示において前記第1の閉塞弁および前記第2の閉塞弁は、一体に形成された閉塞弁であり、前記第1の排気弁から排気される前記気体は、第1の絞り弁に導かれ、前記第2の排気弁から排気される前記気体は、第2の絞り弁に導かれることが好ましい。 In the above disclosure, the first closing valve and the second closing valve are integrally formed closing valves, and the gas exhausted from the first exhaust valve is guided to the first throttle valve. The gas exhausted from the second exhaust valve is preferably guided to the second throttle valve.
 このように、第1の閉塞弁および第2の閉塞弁を一体に形成された閉塞弁にすることにより、別々に設ける場合と比較して、医用機器を構成する部品点数を減らすことが可能となる。 As described above, by forming the first closing valve and the second closing valve as the integrally formed closing valve, it is possible to reduce the number of parts constituting the medical device as compared with the case where they are provided separately. Become.
 第1の排気弁に対して第1の絞り弁を配置し、第2の排気弁に対して第2の絞り弁を配置することにより、共通の絞り弁を設ける場合と比較して、第1の空間および第2の空間における圧力の低下の速さなどを独立して制御することが可能となる。 By arranging the first throttle valve with respect to the first exhaust valve and the second throttle valve with respect to the second exhaust valve, the first throttle valve is compared with the case where a common throttle valve is provided. It is possible to independently control the rate of pressure decrease in the space and the second space.
 本開示の医用機器によれば、第1の閉塞弁および第2の閉塞弁によりシリンダへの気体の供給を遮断することにより、緊急停止を速やかに行うことができる。また、気体圧アクチュエータの停止後に、第1の排気弁および第2の排気弁から気体の排出を許容することにより、緊急停止に関する動作を速やかに行い、かつ、意図しない動作を抑制することができる。更に、本開示によれば医用機器として利用するうえで安全性を向上することができるという効果を奏する。 According to the medical device of the present disclosure, an emergency stop can be promptly performed by shutting off the supply of gas to the cylinder by the first closing valve and the second closing valve. Further, by permitting the discharge of gas from the first exhaust valve and the second exhaust valve after the gas pressure actuator is stopped, it is possible to quickly perform an operation related to an emergency stop and suppress an unintended operation. .. Further, according to the present disclosure, there is an effect that safety can be improved when used as a medical device.
本開示の第1の実施形態の医療機器に係るシャフト、関節部、鉗子の構成を説明する模式図である。It is a schematic diagram explaining the structure of the shaft, joint part, and forceps which concern on the medical device of 1st Embodiment of this indication. 本開示の第1の実施形態に係る医療機器の回路構成を説明する概略図である。1 is a schematic diagram illustrating a circuit configuration of a medical device according to a first embodiment of the present disclosure. 図1の関節部の構成を説明する断面視図である。FIG. 3 is a cross-sectional view illustrating a configuration of a joint section of FIG. 1. 図2の駆動部における特徴部の回路構成を説明する概略図である。FIG. 3 is a schematic diagram illustrating a circuit configuration of a characteristic part in the drive unit of FIG. 図2の制御部における構成を説明するブロック図である。FIG. 3 is a block diagram illustrating a configuration of a control unit in FIG. 2. 図6Aは、緊急停止時の空気圧アクチュエータにおける外力が加わっている状態を説明する模式図であり、図6Bは、外力が除去された状態を説明する模式図である。FIG. 6A is a schematic diagram illustrating a state in which an external force is applied to the pneumatic actuator during an emergency stop, and FIG. 6B is a schematic diagram illustrating a state in which the external force is removed. 緊急停止後に排気弁を開にした際の圧力変化を説明するグラフである。It is a graph explaining a pressure change when an exhaust valve is opened after an emergency stop. 本実施形態の第2の実施形態の医療機器に係る駆動部の構成を説明する模式図である。It is a schematic diagram explaining the structure of the drive part which concerns on the medical device of the 2nd Embodiment of this embodiment. 緊急停止後に排気弁を開にした際の圧力変化を説明するグラフである。It is a graph explaining a pressure change when an exhaust valve is opened after an emergency stop. 本実施形態の第3の実施形態の医療機器に係る駆動部の構成を説明する模式図である。It is a schematic diagram explaining the structure of the drive part which concerns on the medical device of the 3rd Embodiment of this embodiment.
 1,101,201…医用機器、 23…開閉電磁弁(第1の閉塞弁、第2の閉塞弁)、 26a…第1の排気弁、 26b…第2の排気弁、 28…可変絞り(絞り弁)、 30…空気圧アクチュエータ(気体圧アクチュエータ)、 31…シリンダ、 32…ピストン、 33a…第1の空間、 33b…第2の空間、 121a…第1の弁装置、 121b…第2の弁装置、 123a…第1の開閉電磁弁(第1の閉塞弁)、 123b…第2の開閉電磁弁(第2の閉塞弁)、 128a,228a…第1の可変絞り(絞り弁)、 128b,228b…第2の可変絞り(絞り弁) 1, 101, 201... Medical equipment, 23... Open/close solenoid valve (first closing valve, second closing valve), 26a... First exhaust valve, 26b... Second exhaust valve, 28... Variable throttle (throttle) Valve), 30...pneumatic actuator (gas pressure actuator), 31...cylinder, 32...piston, 33a...first space, 33b...second space, 121a...first valve device, 121b...second valve device , 123a...first opening/closing solenoid valve (first closing valve), 123b...second opening/closing solenoid valve (second closing valve), 128a, 228a...first variable throttle (throttle valve), 128b, 228b …Second variable throttle (throttle valve)
 〔第1の実施形態〕
 以下、本開示の第1の実施形態に係る医用機器1ついて図1から図7までの図を参照しながら説明する。本実施形態では、医用機器1が内視鏡手術における支援に用いられる医用ロボットである例に適用して説明する。具体的には医用機器1は、図1に示すように、棒状に形成されたシャフト51の先端に鉗子52が配置された機器である。シャフト51の先端近傍に関節部53が設けられる。関節部53を屈曲させることにより、鉗子52の向きを操作可能に構成される。
[First Embodiment]
Hereinafter, the medical device 1 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 7. In the present embodiment, the medical device 1 will be described as being applied to an example in which the medical device 1 is a medical robot used for assistance in endoscopic surgery. Specifically, as shown in FIG. 1, the medical device 1 is a device in which forceps 52 are arranged at the tip of a shaft 51 formed in a rod shape. A joint portion 53 is provided near the tip of the shaft 51. By bending the joint portion 53, the direction of the forceps 52 can be operated.
 医用機器1には、図2に示すように、コンプレッサ11と、元弁12と、第1駆動部20A、第2駆動部20B、第3駆動部20C、第4駆動部20Dと、制御部40と、が主に設けられている。コンプレッサ11と、元弁12と、第1駆動部20A、第2駆動部20B、第3駆動部20C、第4駆動部20Dとは関節部53の駆動に用いられる。 As shown in FIG. 2, the medical device 1 includes a compressor 11, a main valve 12, a first drive unit 20A, a second drive unit 20B, a third drive unit 20C, a fourth drive unit 20D, and a control unit 40. And are mainly provided. The compressor 11, the main valve 12, the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D are used to drive the joint unit 53.
 コンプレッサ11は、第1駆動部20A、第2駆動部20B、第3駆動部20Cおよび第4駆動部20Dに所定の圧力に昇圧された空気を供給する機器である。空気を昇圧する方式や機構は、公知の構成を用いることができ、特に限定されない。さらに、コンプレッサ11の代わりに高圧空気が貯留されたボンベによって所定の圧力の空気を供給する機器であってもよい。また、第1駆動部20A、第2駆動部20B、第3駆動部20Cおよび第4駆動部20Dの駆動に用いられる気体は、空気であってもよいし、その他の気体であってもよい。 The compressor 11 is a device that supplies the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D with air pressurized to a predetermined pressure. A known structure can be used for the method and mechanism for increasing the pressure of air, and is not particularly limited. Further, a device that supplies air of a predetermined pressure by a cylinder storing high-pressure air instead of the compressor 11 may be used. The gas used to drive the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D may be air or another gas.
 元弁12は、コンプレッサ11から第1駆動部20A、第2駆動部20B、第3駆動部20Cおよび第4駆動部20Dへの空気の供給を制御する弁である。本実施形態では、制御部40から入力される制御信号に基づいて、空気の供給を制御する元弁12である例に適用して説明する。本実施形態では、元弁12を通過した後の空気の圧力を測定する元側圧力センサ13が配置されている。なお、元弁12の形式としては、公知の形式を用いることができ、特に限定されない。 The main valve 12 is a valve that controls the supply of air from the compressor 11 to the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D. In the present embodiment, description will be made by applying to an example of the main valve 12 that controls the supply of air based on a control signal input from the control unit 40. In the present embodiment, a source pressure sensor 13 that measures the pressure of air after passing through the source valve 12 is arranged. The form of the main valve 12 may be a known form and is not particularly limited.
 第1駆動部20A、第2駆動部20B、第3駆動部20Cおよび第4駆動部20Dは、コンプレッサ11に対して並列に接続された構成である。第1駆動部20A、第2駆動部20B、第3駆動部20Cおよび第4駆動部20Dには、元弁12を通過した後、分岐した空気が供給される。 The first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D are connected in parallel to the compressor 11. The first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D are supplied with the branched air after passing through the main valve 12.
 第1駆動部20Aは、関節部53を鉗子52側から見た図3において、0°の位置Aを引く力を発生させる構成である。ここで引くとは、第1駆動部20Aが配置されているシャフト51の根元側、すなわち、鉗子52とは反対側に向かって引き寄せることである。例えば、第1駆動部20Aと関節部53の位置Aとの間をつなぐワイヤが設けられ、位置Aは第1駆動部20Aによりワイヤを介して引かれる。 The first drive unit 20A is configured to generate a force that pulls the position A at 0° in FIG. 3 when the joint 53 is viewed from the forceps 52 side. Here, pulling means pulling toward the base side of the shaft 51 on which the first drive unit 20A is arranged, that is, the side opposite to the forceps 52. For example, a wire that connects the first drive unit 20A and the position A of the joint unit 53 is provided, and the position A is pulled by the first drive unit 20A via the wire.
 同様に、第2駆動部20Bは90°の位置Bを引く力を発生させる構成である。第3駆動部20Cは180°の位置Cを引く力を発生させる構成である。第4駆動部20Dは270°の位置Dを引く力を発生させる。なお、上述の説明における0°,90°,180°,270°との記載は、それぞれの位置の相対関係を説明するために用いた記載であり、絶対的な角度を意味するものではない。 Similarly, the second drive unit 20B is configured to generate a force that pulls the position B at 90°. The third drive unit 20C is configured to generate a force that pulls the position C of 180°. The fourth drive unit 20D generates a force that pulls the position D of 270°. Note that the description of 0°, 90°, 180°, and 270° in the above description is used to describe the relative relationship between the respective positions, and does not mean an absolute angle.
 図1に示す関節部53は、どの方向へも屈曲可能な構成を有している。そのため、第1駆動部20A、第2駆動部20B、第3駆動部20C、および、第4駆動部20Dにおいて発生させる力の組み合わせにより、関節部53を所望の向きに曲げることができる。 The joint portion 53 shown in FIG. 1 has a structure that can be bent in any direction. Therefore, the joint 53 can be bent in a desired direction by combining the forces generated in the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D.
 第1駆動部20A、第2駆動部20B、第3駆動部20C、および、第4駆動部20Dの構成は全て同一であるため、個々を区別することなく説明する。なお第1駆動部20A、第2駆動部20B、第3駆動部20C、および、第4駆動部20Dを区別しない場合には、単に駆動部20と表記する。 Since the configurations of the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D are all the same, they will be described without distinguishing between them. When the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D are not distinguished, they are simply referred to as the drive unit 20.
 駆動部20には、図2および図4に示すように、制御用サーボバルブ21と、第1のサーボ側圧力センサ22aおよび第2のサーボ側圧力センサ22bと、開閉電磁弁23と、空気圧アクチュエータ30と、第1の開閉側圧力センサ25aおよび第2の開閉側圧力センサ25bと、第1の排気弁26aおよび第2の排気弁26bと、第1の逆止弁27aおよび第2の逆止弁27bと、絞り弁である可変絞り28と、サイレンサ29と、が主に設けられている。 As shown in FIGS. 2 and 4, the drive unit 20 includes a control servo valve 21, a first servo-side pressure sensor 22a and a second servo-side pressure sensor 22b, an opening/closing solenoid valve 23, and a pneumatic actuator. 30, the first opening/closing side pressure sensor 25a and the second opening/closing side pressure sensor 25b, the first exhaust valve 26a and the second exhaust valve 26b, the first check valve 27a and the second check valve. A valve 27b, a variable throttle 28 that is a throttle valve, and a silencer 29 are mainly provided.
 なお、開閉電磁弁23としては、第1の閉塞弁及び第2の閉塞弁が含まれる。また、空気圧アクチュエータ30は、空気以外の気体が用いられる場合、気体圧アクチュエータとも表記する。 The opening/closing solenoid valve 23 includes a first closing valve and a second closing valve. The pneumatic actuator 30 is also referred to as a pneumatic actuator when a gas other than air is used.
 また、制御用サーボバルブ21、開閉電磁弁23および空気圧アクチュエータ30を第1駆動部20A、第2駆動部20B、第3駆動部20C、および、第4駆動部20Dのいずれかに設けられているかを区別する場合には、それぞれの符号にA,B,C,Dを加えて表記する。例えば、制御用サーボバルブ21の場合には、それぞれ制御用サーボバルブ21A、制御用サーボバルブ21B、制御用サーボバルブ21C、および、制御用サーボバルブ21Dと表記する。 Further, is the control servo valve 21, the opening/closing solenoid valve 23, and the pneumatic actuator 30 provided in any of the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D. In the case of distinguishing from each other, each code is described by adding A, B, C, and D. For example, in the case of the control servo valve 21, they are described as a control servo valve 21A, a control servo valve 21B, a control servo valve 21C, and a control servo valve 21D, respectively.
 同様に、第1のサーボ側圧力センサ22aおよび第2のサーボ側圧力センサ22b、第1の排気弁26aおよび第2の排気弁26b、第1の逆止弁27aおよび第2の逆止弁27b、並びに、第1の開閉側圧力センサ25aおよび第2の開閉側圧力センサ25bを第1駆動部20A、第2駆動部20B、第3駆動部20C、および、第4駆動部20Dのいずれかに設けられているかを区別する場合には、それぞれの符号にA,B,C,Dを加えて表記する。 Similarly, the first servo side pressure sensor 22a and the second servo side pressure sensor 22b, the first exhaust valve 26a and the second exhaust valve 26b, the first check valve 27a and the second check valve 27b. , And the first open/close side pressure sensor 25a and the second open/close side pressure sensor 25b in any of the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D. When distinguishing whether or not it is provided, it is described by adding A, B, C, and D to each code.
 例えば、第1のサーボ側圧力センサ22aおよび第2のサーボ側圧力センサ22bの場合には、それぞれ第1のサーボ側圧力センサ22Aaおよび第2のサーボ側圧力センサ22Ab、第1のサーボ側圧力センサ22Baおよび第2のサーボ側圧力センサ22Bb、第1のサーボ側圧力センサ22Caおよび第2のサーボ側圧力センサ22Cb、および、第1のサーボ側圧力センサ22Daおよび第2のサーボ側圧力センサ22Dbと表記する。 For example, in the case of the first servo side pressure sensor 22a and the second servo side pressure sensor 22b, the first servo side pressure sensor 22Aa, the second servo side pressure sensor 22Ab, and the first servo side pressure sensor, respectively. 22Ba and a second servo side pressure sensor 22Bb, a first servo side pressure sensor 22Ca and a second servo side pressure sensor 22Cb, and a first servo side pressure sensor 22Da and a second servo side pressure sensor 22Db. To do.
 制御用サーボバルブ21は、元弁12と開閉電磁弁23との間に配置される構成である。制御用サーボバルブ21および元弁12の間は、第1駆動部20A、第2駆動部20B、第3駆動部20Cおよび第4駆動部20Dに向かって分岐する1本の配管で空気の流通が可能に接続されている。また、制御用サーボバルブ21および開閉電磁弁23の間は、並列に配置された2本の配管である第1の流路23a及び第2の流路23bで空気の流通が可能に接続されている。 The control servo valve 21 is arranged between the main valve 12 and the opening/closing solenoid valve 23. Between the control servo valve 21 and the main valve 12, air is circulated by one pipe branching toward the first drive unit 20A, the second drive unit 20B, the third drive unit 20C, and the fourth drive unit 20D. Connected possible. Further, the control servo valve 21 and the opening/closing solenoid valve 23 are connected by a first flow path 23a and a second flow path 23b, which are two pipes arranged in parallel, so that air can flow therethrough. There is.
 制御用サーボバルブ21は、元弁12を通過した空気を後述する空気圧アクチュエータ30の第1の空間33aまたは第2の空間33bに導く構成である。空気を導く相手である第1の空間33aおよび第2の空間33bの選択は、制御部40から入力される制御信号に基づいて行われる。なお、制御用サーボバルブ21の構成は、公知の構成を用いることができ、特に限定されない。 The control servo valve 21 is configured to guide the air passing through the main valve 12 to a first space 33a or a second space 33b of a pneumatic actuator 30 described later. The selection of the first space 33a and the second space 33b, which are the partners to guide the air, is performed based on the control signal input from the control unit 40. The configuration of the control servo valve 21 may be a known configuration and is not particularly limited.
 サーボ側圧力センサ22aおよびサーボ側圧力センサ22bは、制御用サーボバルブ21および開閉電磁弁23の間の空気の圧力を測定するセンサである。言い換えると、サーボ側圧力センサ22aおよびサーボ側圧力センサ22bにより、空気圧アクチュエータ30の第1の空間33aまたは第2の空間33bに導かれる空気であって、開閉電磁弁23を通過する前の空気の圧力が測定される。測定された空気の圧力の値は、センサ出力として制御部40に入力される。サーボ側圧力センサ22aおよびサーボ側圧力センサ22bとしては、公知の圧力センサを用いることができる。 The servo side pressure sensor 22a and the servo side pressure sensor 22b are sensors that measure the pressure of air between the control servo valve 21 and the opening/closing solenoid valve 23. In other words, the air introduced to the first space 33a or the second space 33b of the pneumatic actuator 30 by the servo side pressure sensor 22a and the servo side pressure sensor 22b, which is the air before passing through the opening/closing solenoid valve 23. The pressure is measured. The value of the measured air pressure is input to the control unit 40 as a sensor output. Known pressure sensors can be used as the servo side pressure sensor 22a and the servo side pressure sensor 22b.
 開閉電磁弁23は、制御用サーボバルブ21および空気圧アクチュエータ30の間に配置される構成である。開閉電磁弁23および制御用サーボバルブ21の間は、空気圧アクチュエータ30の第1の空間33aおよび第2の空間33bのそれぞれに対応する2本の配管である第1の流路23a及び第2の流路23bで空気の流通が可能に接続されている。開閉電磁弁23および空気圧アクチュエータ30の間は、第1の空間33aおよび第2の空間33bのそれぞれに対応する第1の流路23aおよび第2の流路23bで空気の流通が可能に接続されている。 The opening/closing solenoid valve 23 is arranged between the control servo valve 21 and the pneumatic actuator 30. Between the on-off solenoid valve 23 and the control servo valve 21, there are two pipes, a first flow path 23a and a second flow passage 23a corresponding to the first space 33a and the second space 33b of the pneumatic actuator 30, respectively. The flow path 23b is connected so that air can flow. The open/close solenoid valve 23 and the pneumatic actuator 30 are connected so that air can flow through the first flow path 23a and the second flow path 23b corresponding to the first space 33a and the second space 33b, respectively. ing.
 開閉電磁弁23は、制御用サーボバルブ21から空気圧アクチュエータ30の第1の空間33aに連通する第1の流路23aの開閉と外部への開放、および、制御用サーボバルブ21から第2の空間33bに連通する第2の流路23bの開閉と外部への開放を制御する弁である。 The opening/closing solenoid valve 23 opens/closes and opens the first flow path 23a communicating from the control servo valve 21 to the first space 33a of the pneumatic actuator 30, and opens the first flow path 23a from the control servo valve 21 to the second space. It is a valve that controls opening and closing of the second flow path 23b communicating with 33b and opening to the outside.
 本実施形態では、制御用サーボバルブ21および第1の空間33aの間を閉じる、かつ、制御用サーボバルブ21および第2の空間33bの間を閉じる状態と、制御用サーボバルブ21および第1の空間33aの間を連通させる、かつ、第2の空間33bを外部に開放する状態と、第1の空間33aを外部に開放し、かつ、制御用サーボバルブ21および第2の空間33bの間を連通させる状態の3つの状態により制御する場合に適用して説明する。なお、開閉電磁弁23の構成は、公知の構成を用いることができ、特に限定されない。また、制御用サーボバルブ21および第1の空間33aの間を連通させた状態を制御用サーボバルブ21および第1の空間33aの間が開いた状態とも表記し、制御用サーボバルブ21および第2の空間33bの間を連通させた状態を制御用サーボバルブ21および第2の空間33bの間を開いた状態とも表記する。 In this embodiment, the control servo valve 21 and the first space 33a are closed, and the control servo valve 21 and the second space 33b are closed, and the control servo valve 21 and the first space 33b are closed. A state in which the spaces 33a are communicated with each other and the second space 33b is opened to the outside, and a state in which the first space 33a is opened to the outside and the control servo valve 21 and the second space 33b are connected to each other The description will be given by applying it to the case of controlling by three states of communicating. The open/close solenoid valve 23 may have any known structure and is not particularly limited. Further, a state in which the control servo valve 21 and the first space 33a are communicated with each other is also referred to as a state in which the control servo valve 21 and the first space 33a are opened, and the control servo valve 21 and the second space 33a The state in which the spaces 33b are communicated with each other is also referred to as a state in which the control servo valve 21 and the second space 33b are opened.
 空気圧アクチュエータ30は、コンプレッサ11から供給される空気の圧力を用いて関節部53を屈曲させる駆動力を発生させる構成である。空気圧アクチュエータ30には、円筒状に形成されたシリンダ31と、シリンダ31に対して相対的に移動可能に配置されたピストン32と、が主に設けられている。 The pneumatic actuator 30 is configured to generate a driving force for bending the joint 53 using the pressure of air supplied from the compressor 11. The pneumatic actuator 30 is mainly provided with a cylinder 31 formed in a cylindrical shape and a piston 32 arranged so as to be movable relative to the cylinder 31.
 シリンダ31の内部は、ピストン32により第1の空間33aおよび第2の空間33bに分けられている。シリンダ31および開閉電磁弁23の間には、それぞれ第1の空間33aおよび第2の空間33bと連通する第1の流路23aおよび第2の流路23bが配置されている。ピストン32には、シリンダ31に対する相対移動を関節部53に伝達するワイヤなどの図示しない伝達部材が設けられている。 The inside of the cylinder 31 is divided by a piston 32 into a first space 33a and a second space 33b. A first flow path 23a and a second flow path 23b, which communicate with the first space 33a and the second space 33b, are arranged between the cylinder 31 and the opening/closing solenoid valve 23, respectively. The piston 32 is provided with a transmission member (not shown) such as a wire for transmitting the relative movement with respect to the cylinder 31 to the joint portion 53.
 開閉側圧力センサ25aおよび開閉側圧力センサ25bは、開閉電磁弁23および空気圧アクチュエータ30の間の空気の圧力を測定するセンサである。言い換えると、空気圧アクチュエータ30の第1の空間33aまたは第2の空間33bに導かれる空気であって、開閉電磁弁23を通過する後の空気の圧力が開閉側圧力センサ25aおよび開閉側圧力センサ25bにより測定される。測定された空気の圧力の値は、センサ出力として制御部40に入力される。開閉側圧力センサ25aおよび開閉側圧力センサ25bとしては、公知の圧力センサを用いることができる。 The open/close side pressure sensor 25a and the open/close side pressure sensor 25b are sensors for measuring the pressure of air between the open/close solenoid valve 23 and the pneumatic actuator 30. In other words, the pressure of the air that has been introduced into the first space 33a or the second space 33b of the pneumatic actuator 30 after passing through the opening/closing solenoid valve 23 is the opening/closing side pressure sensor 25a and the opening/closing side pressure sensor 25b. Measured by The value of the measured air pressure is input to the control unit 40 as a sensor output. Known pressure sensors can be used as the opening/closing pressure sensor 25a and the opening/closing pressure sensor 25b.
 排気弁26aおよび排気弁26bは、それぞれ開閉電磁弁23および空気圧アクチュエータ30の間の配管である第1の流路23aおよび第2の流路23bから分岐し外部に開放された排気配管35に配置される弁である。なお、排気配管35は、外部に開放される側の端部は1本の配管であり、排気弁26aおよび排気弁26bが配置される側の第2の端部は、2本の配管に分岐するY字型の配管である。 The exhaust valve 26a and the exhaust valve 26b are arranged in the exhaust pipe 35 which is branched from the first flow passage 23a and the second flow passage 23b which are pipes between the opening/closing solenoid valve 23 and the pneumatic actuator 30, and which is opened to the outside. It is a valve that is used. The exhaust pipe 35 has a single end on the side open to the outside, and the second end on the side where the exhaust valve 26a and the exhaust valve 26b are arranged is branched into two pipes. It is a Y-shaped pipe.
 排気弁26aおよび排気弁26bは、制御部40から入力される制御信号に基づいて、排気配管35の連通および閉鎖を制御する弁である。言い換えると、それぞれ空気圧アクチュエータ30の第1の空間33aまたは第2の空間33bの内部の空気の排気は排気弁26aおよび排気弁26bにより制御される。 The exhaust valve 26a and the exhaust valve 26b are valves that control communication and closing of the exhaust pipe 35 based on a control signal input from the control unit 40. In other words, the exhaust of the air inside the first space 33a or the second space 33b of the pneumatic actuator 30 is controlled by the exhaust valve 26a and the exhaust valve 26b.
 逆止弁27aおよび逆止弁27bは、それぞれ排気配管35における排気弁26aおよび排気弁26bとサイレンサ29との間に配置される弁である。逆止弁27aは、排気弁26aからサイレンサ29に向かう空気の流れを許容し、サイレンサ29から排気弁26aに向かう空気の流れを阻止する弁である。逆止弁27bは、排気弁26bからサイレンサ29に向かう空気の流れを許容し、サイレンサ29から排気弁26bに向かう空気の流れを阻止する弁である。なお、逆止弁27aおよび逆止弁27bとしては、公知の構成の弁を使用することができる。 The check valve 27a and the check valve 27b are valves arranged in the exhaust pipe 35 between the exhaust valve 26a and the exhaust valve 26b and the silencer 29, respectively. The check valve 27a is a valve that allows the flow of air from the exhaust valve 26a toward the silencer 29 and blocks the flow of air from the silencer 29 toward the exhaust valve 26a. The check valve 27b is a valve that allows the flow of air from the exhaust valve 26b toward the silencer 29 and blocks the flow of air from the silencer 29 toward the exhaust valve 26b. As the check valve 27a and the check valve 27b, valves having a known structure can be used.
 可変絞り28は、排気配管35における外部に開放される側の端部近傍であって、サイレンサ29よりも逆止弁27aおよび逆止弁27b側に配置される構成を有する。空気が排気配管35から外部に放出される際の単位時間当たりの流量が可変絞り28により調整される。可変絞り28としては公知の構成が用いられてもよい。 The variable throttle 28 is arranged near the end of the exhaust pipe 35 on the side open to the outside and on the check valve 27a and check valve 27b sides of the silencer 29. The variable throttle 28 adjusts the flow rate per unit time when the air is discharged from the exhaust pipe 35 to the outside. A known configuration may be used as the variable diaphragm 28.
 サイレンサ29は、排気配管35における外部に開放される側の端部に配置される。サイレンサ29は、空気が排気配管35から外部に放出される際に発生する音を低減する、または、音の発生を抑制する構成である。なお、サイレンサ29としては、公知の構成が用いられてもよい。 The silencer 29 is arranged at the end of the exhaust pipe 35 that is open to the outside. The silencer 29 is configured to reduce the sound generated when the air is discharged from the exhaust pipe 35 to the outside, or to suppress the generation of the sound. A known configuration may be used as the silencer 29.
 制御部40は、少なくとも関節部53の屈曲を制御する構成である。制御部40は、CPUである中央演算処理ユニット、ROM、RAM、入出力インタフェース等を有するマイクロコンピュータである。上述のROM等の記憶装置に記憶されているプログラムは、CPU、ROM、RAM、入出力インタフェースを協働させるプログラムである。 The control unit 40 is configured to control at least the bending of the joint 53. The control unit 40 is a microcomputer having a central processing unit, which is a CPU, ROM, RAM, an input/output interface, and the like. The program stored in the storage device such as the ROM described above is a program that causes the CPU, the ROM, the RAM, and the input/output interface to cooperate with each other.
 制御部40には、図5に示すように、外部から入力される関節部の屈曲を指示する制御入力と、元側圧力センサ13、サーボ側圧力センサ22aおよびサーボ側圧力センサ22b、および、開閉側圧力センサ25aおよび開閉側圧力センサ25bから出力される信号と、が主に入力される。 As shown in FIG. 5, the control unit 40 includes a control input for instructing bending of the joint portion, an original pressure sensor 13, a servo pressure sensor 22a and a servo pressure sensor 22b, and opening/closing. The signals output from the side pressure sensor 25a and the opening/closing side pressure sensor 25b are mainly input.
 また、制御部40は、制御入力と、各種センサから出力された信号に基づいて、制御用サーボバルブ21、開閉電磁弁23、排気弁26aおよび排気弁26bを制御する制御信号を生成し、生成した制御信号を出力する構成である。 The control unit 40 also generates and generates a control signal for controlling the control servo valve 21, the opening/closing solenoid valve 23, the exhaust valve 26a, and the exhaust valve 26b based on the control input and the signals output from various sensors. The control signal is output.
 次に、上記の構成からなる医用機器1における動作について説明する。まず、関節部53を屈曲させる動作について図2から図4までの図を参照しながら説明する。関節部53を屈曲させる場合には、図2に示すように、制御部40はコンプレッサ11から駆動部20へ空気が供給できるように元弁12を制御する制御信号を出力する。 Next, the operation of the medical device 1 having the above configuration will be described. First, the operation of bending the joint portion 53 will be described with reference to FIGS. 2 to 4. When the joint portion 53 is bent, as shown in FIG. 2, the control unit 40 outputs a control signal for controlling the main valve 12 so that air can be supplied from the compressor 11 to the drive unit 20.
 次いで、制御部40は関節部53を屈曲させる方向に対応した駆動部20の制御を行う。例えば、第1駆動部20Aを制御する例に適用して説明する。制御部40は、制御用サーボバルブ21Aに対して、空気圧アクチュエータ30Aの第1の空間33Aaまたは第2の空間33Abへ空気を導く制御を行う。例えば、第1の空間33Aaへ空気を導く制御信号を生成し、制御用サーボバルブ21Aに出力する。 Next, the control unit 40 controls the drive unit 20 corresponding to the direction in which the joint 53 is bent. For example, description will be given by applying to an example of controlling the first drive unit 20A. The control unit 40 controls the servo valve 21A for guiding air to the first space 33Aa or the second space 33Ab of the pneumatic actuator 30A. For example, a control signal for guiding air to the first space 33Aa is generated and output to the control servo valve 21A.
 さらに、制御部40は、図2および図4に示す開閉電磁弁23Aに対して、第1の空間33Aaへの空気の流通を可能とする制御信号を出力する。コンプレッサ11で昇圧された空気が流入した第1の空間33Aaは、第2の空間33Abよりも圧力が高くなる。 Further, the control unit 40 outputs a control signal to the opening/closing solenoid valve 23A shown in FIGS. 2 and 4, which enables air to flow into the first space 33Aa. The first space 33Aa into which the air pressurized by the compressor 11 flows has a higher pressure than the second space 33Ab.
 空気圧アクチュエータ30のピストン32は、第1の空間33Aaと第2の空間33Abとの圧力差により、第2の空間33Ab側へ移動する。ピストン32の移動は、図3に示すように、ワイヤを介して関節部53における位置Aに伝わり、位置Aを引く力が発生する。これにより、関節部53が屈曲する。 The piston 32 of the pneumatic actuator 30 moves to the second space 33Ab side due to the pressure difference between the first space 33Aa and the second space 33Ab. As shown in FIG. 3, the movement of the piston 32 is transmitted to the position A in the joint 53 via the wire, and a force pulling the position A is generated. This causes the joint portion 53 to bend.
 次に、医用機器1における緊急停止時の動作について説明する。緊急停止時には、図2に示すように、制御部40は、開閉電磁弁23に対して制御用サーボバルブ21および第1の空間33aの間を閉じる、かつ、制御用サーボバルブ21および第2の空間33bの間を閉じる制御信号を出力する。 Next, the operation of the medical device 1 during an emergency stop will be described. At the time of emergency stop, as shown in FIG. 2, the control unit 40 closes the opening/closing solenoid valve 23 between the control servo valve 21 and the first space 33a, and controls the control servo valve 21 and the second space 33a. A control signal for closing the space 33b is output.
 この際、空気圧アクチュエータ30における第1の空間33aおよび第2の空間33bの圧力差は、図6Aに示すように、関節部53を介してピストン32に加わる外力Fも加えて、ピストン32が静止するようにバランスしている。 At this time, as shown in FIG. 6A, the pressure difference between the first space 33a and the second space 33b in the pneumatic actuator 30 causes the external force F applied to the piston 32 via the joint portion 53, and the piston 32 stops. Balance to do.
 例えば、図6Aに示す状態から、何らかの要因で関節部53を介してピストン32に加わる外力Fが消滅すると、ピストン32は第1の空間33aおよび第2の空間33bの圧力差が等しくなる位置まで移動する。その結果として、関節部53が意図しない屈曲を行う。 For example, when the external force F applied to the piston 32 via the joint portion 53 disappears from the state shown in FIG. 6A for some reason, the piston 32 reaches the position where the pressure difference between the first space 33a and the second space 33b becomes equal. Moving. As a result, the joint portion 53 bends unintentionally.
 このような意図しない屈曲を抑制するために、制御部40は次に説明する制御を行う。制御部40は、排気弁26aおよび排気弁26bを開にする制御信号を出力する。制御信号が入力された排気弁26aは、図4に示すように、空気圧アクチュエータ30の第1の空間33aと排気配管35とを連通させ、排気弁26bは空気圧アクチュエータ30の第2の空間33bと排気配管35とを連通させる。 In order to suppress such unintended bending, the control unit 40 performs the control described below. The control unit 40 outputs a control signal for opening the exhaust valve 26a and the exhaust valve 26b. As shown in FIG. 4, the exhaust valve 26a to which the control signal is input makes the first space 33a of the pneumatic actuator 30 communicate with the exhaust pipe 35, and the exhaust valve 26b communicates with the second space 33b of the pneumatic actuator 30. It communicates with the exhaust pipe 35.
 第1の空間33a内の空気は、逆止弁27a、可変絞り28およびサイレンサ29を通過して外部へ放出される。第2の空間33b内の空気は、逆止弁27b、可変絞り28およびサイレンサ29を通過して外部へ放出される。 The air in the first space 33a passes through the check valve 27a, the variable throttle 28 and the silencer 29 and is discharged to the outside. The air in the second space 33b passes through the check valve 27b, the variable throttle 28 and the silencer 29 and is discharged to the outside.
 逆止弁27aおよび逆止弁27bが設けられているため、第1の空間33a内の空気が第2の空間33bへ流入すること、第2の空間33b内の空気が第1の空間33aへ流入することが防止される。 Since the check valve 27a and the check valve 27b are provided, the air in the first space 33a flows into the second space 33b, and the air in the second space 33b goes to the first space 33a. Inflow is prevented.
 第1の空間33a内の空気圧力Pa、および、第2の空間33b内の空気圧力Pbは、図7に示すように変化する。まず、排気弁26aおよび排気弁26bが閉じられた状態において、空気圧力PaがP1であって、空気圧力PbがP2である。ここで、P1>P2となる。排気弁26aおよび排気弁26bが開になった時点から、比較的高い圧力である空気圧力Paの低下が始まる。空気圧力PaがP2まで低下すると、空気圧力Paおよび空気圧力Pbが同様に低下する。空気圧力Paおよび空気圧力Pbの低下は、外部の圧力、すなわち大気圧と同等になるまで継続する。 The air pressure Pa in the first space 33a and the air pressure Pb in the second space 33b change as shown in FIG. First, when the exhaust valve 26a and the exhaust valve 26b are closed, the air pressure Pa is P1 and the air pressure Pb is P2. Here, P1>P2. When the exhaust valves 26a and 26b are opened, the air pressure Pa, which is a relatively high pressure, begins to decrease. When the air pressure Pa decreases to P2, the air pressure Pa and the air pressure Pb similarly decrease. The decrease of the air pressure Pa and the air pressure Pb continues until it becomes equal to the external pressure, that is, the atmospheric pressure.
 上記の構成の医用機器1によれば、開閉電磁弁23によりシリンダ31への空気の供給を遮断することにより、シリンダ31に対するピストン32の相対移動を停止させることができる。言い換えると空気圧アクチュエータ30を緊急停止させることが可能となる。 According to the medical device 1 having the above configuration, the relative movement of the piston 32 with respect to the cylinder 31 can be stopped by shutting off the supply of air to the cylinder 31 by the opening/closing solenoid valve 23. In other words, the pneumatic actuator 30 can be brought to an emergency stop.
 また、空気圧アクチュエータ30の停止後に、第1の排気弁26aおよび第2の排気弁26bから空気の排出を許容することにより、シリンダ31の第1の空間33aおよび第2の空間33bの圧力が大気圧にまで低下し、両者の間の圧力差が解消される。これにより、空気圧アクチュエータ30の意図しない動作を抑制することができる。 Further, after the pneumatic actuator 30 is stopped, the pressure in the first space 33a and the second space 33b of the cylinder 31 is increased by allowing the air to be discharged from the first exhaust valve 26a and the second exhaust valve 26b. The pressure drops to atmospheric pressure and the pressure difference between the two is eliminated. Thereby, the unintended operation of the pneumatic actuator 30 can be suppressed.
 第1の空間33aおよび第2の空間33bの圧力低下は、可変絞り28による流路断面積により制御される。つまり、可変絞り28における流路断面積が大きくなると空気の排気速度が大きくなり、圧力が短期間で低下する。その一方で可変絞り28における流路断面積が小さくなると空気の排気速度が小さくなり、圧力の低下に長い時間が必要となる。 The pressure drop in the first space 33a and the second space 33b is controlled by the flow passage cross-sectional area of the variable throttle 28. That is, when the flow passage cross-sectional area in the variable throttle 28 increases, the exhaust speed of air increases and the pressure decreases in a short period of time. On the other hand, when the flow passage cross-sectional area in the variable throttle 28 becomes small, the air exhaust velocity becomes small, and it takes a long time to reduce the pressure.
 その他に、医用機器1の緊急停止に電磁ブレーキを用いる場合と比較して、開閉電磁弁23、第1の排気弁26aおよび第2の排気弁26b、および、可変絞り28という電磁石やブレーキパッドと比較して軽量、小型、安価な部品を用いるため、重量化、大型化、高価格化を抑制しやすい。 In addition, compared with the case where an electromagnetic brake is used for an emergency stop of the medical device 1, an opening/closing solenoid valve 23, a first exhaust valve 26a and a second exhaust valve 26b, and an electromagnet or a brake pad called a variable throttle 28 are provided. In comparison, since lightweight, small, and inexpensive parts are used, it is easy to suppress weight increase, size increase, and price increase.
 一体に形成された開閉電磁弁23を用いることにより、複数に分割された開閉電磁弁を設ける場合と比較して、医用機器1を構成する部品点数を減らすことが可能となる。また、第1の排気弁26aと第2の排気弁26bに対して1つの可変絞り28を配置しているため、2つの絞り弁をそれぞれ配置する場合と比較して、医用機器1の小型化や軽量化を図りやすい。 By using the on-off solenoid valve 23 formed integrally, it is possible to reduce the number of parts constituting the medical device 1 as compared with the case where a plurality of on-off solenoid valves are provided. Further, since one variable throttle 28 is arranged for the first exhaust valve 26a and the second exhaust valve 26b, the medical device 1 can be made smaller as compared with the case where two throttle valves are respectively arranged. It is easy to reduce the weight.
 また、第1の排気弁26aと可変絞り28の間、および、第2の排気弁26bと可変絞り28の間にそれぞれ逆止弁27aおよび逆止弁27bを配置することにより、第1の空間33aから第2の空間33bへ、または、第2の空間33bから第1の空間33aへの空気の逆流を抑制することができる。 Further, by arranging the check valve 27a and the check valve 27b between the first exhaust valve 26a and the variable throttle 28, and between the second exhaust valve 26b and the variable throttle 28, respectively, the first space The backflow of air from 33a to the second space 33b or from the second space 33b to the first space 33a can be suppressed.
 〔第2の実施形態〕
 次に、本開示の第2の実施形態について図8および図9を参照しながら説明する。本実施形態の医用機器の基本構成は、第1の実施形態と同様であるが、第1の実施形態とは、駆動部の構成が異なっている。よって、本実施形態においては、図8および図9を用いて駆動部の構成を説明し、その他の構成等の説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present disclosure will be described with reference to FIGS. 8 and 9. The basic configuration of the medical device of this embodiment is the same as that of the first embodiment, but the configuration of the drive unit is different from that of the first embodiment. Therefore, in the present embodiment, the configuration of the drive unit will be described with reference to FIGS. 8 and 9, and description of other configurations will be omitted.
 本実施形態の医用機器101の駆動部120には、図8に示すように、第1の弁装置121aおよび第2の弁装置121bと、第1の開閉側圧力センサ25aおよび第2の開閉側圧力センサ25bと、第1の可変絞りである絞り弁128aおよび第2の可変絞りである絞り弁128bと、第1のサイレンサ129aおよび第2のサイレンサ129bと、が主に設けられている。 As shown in FIG. 8, the drive unit 120 of the medical device 101 according to the present embodiment includes a first valve device 121a and a second valve device 121b, a first opening/closing side pressure sensor 25a, and a second opening/closing side. A pressure sensor 25b, a throttle valve 128a that is a first variable throttle, a throttle valve 128b that is a second variable throttle, a first silencer 129a, and a second silencer 129b are mainly provided.
 第1の弁装置121aは、制御用サーボバルブ21および空気圧アクチュエータ30の間の空間である第1の空間33aに配置される装置である。第2の弁装置121bは、制御用サーボバルブ21および空気圧アクチュエータ30の間の空間である第2の空間33bに配置される装置である。 The first valve device 121a is a device arranged in a first space 33a which is a space between the control servo valve 21 and the pneumatic actuator 30. The second valve device 121b is a device arranged in the second space 33b which is a space between the control servo valve 21 and the pneumatic actuator 30.
 第1の弁装置121aには、第1の開閉電磁弁である第1の閉塞弁123aと、第1の排気弁26aと、が主に設けられている。第2の弁装置121bには、第2の開閉電磁弁である第2の閉塞弁123bと、第2の排気弁26bと、が主に設けられている。 The first valve device 121a is mainly provided with a first closing valve 123a, which is a first opening/closing solenoid valve, and a first exhaust valve 26a. The second valve device 121b is mainly provided with a second closing valve 123b, which is a second opening/closing solenoid valve, and a second exhaust valve 26b.
 第1の開閉電磁弁123aは、制御用サーボバルブ21から空気圧アクチュエータ30の第1の空間33aに連通する第1の流路23aの開閉を制御する弁である。第2の開閉電磁弁23bは、制御用サーボバルブ21から空気圧アクチュエータ30の第2の空間33bに連通する第2の流路23bの開閉を制御する弁である。 The first opening/closing solenoid valve 123a is a valve that controls opening/closing of the first flow path 23a that communicates with the control servo valve 21 to the first space 33a of the pneumatic actuator 30. The second opening/closing solenoid valve 23b is a valve that controls opening/closing of the second flow path 23b that communicates with the control servo valve 21 to the second space 33b of the pneumatic actuator 30.
 第1の排気弁26aは、開閉電磁弁23および空気圧アクチュエータ30の第1の空間33aの間の第1の流路23aから分岐し外部に開放された排気配管135aに配置される弁である。第2の排気弁26bは、開閉電磁弁23および空気圧アクチュエータ30の第2の空間33bの間の第2の流路23bから分岐し外部に開放された排気配管135bに配置される弁である。 The first exhaust valve 26a is a valve that is arranged in the exhaust pipe 135a that is branched from the first flow path 23a between the opening/closing solenoid valve 23 and the first space 33a of the pneumatic actuator 30 and is open to the outside. The second exhaust valve 26b is a valve disposed in an exhaust pipe 135b that is branched from the second flow path 23b between the opening/closing solenoid valve 23 and the second space 33b of the pneumatic actuator 30 and is open to the outside.
 第1の排気弁26aは、制御部40から入力される制御信号に基づいて、排気配管135aの連通および閉鎖を制御する弁である。言い換えると、空気圧アクチュエータ30の第1の空間33aの内部の空気の排気は、第1の排気弁26aにより制御されるものである。 The first exhaust valve 26a is a valve that controls communication and closing of the exhaust pipe 135a based on a control signal input from the control unit 40. In other words, the exhaust of the air inside the first space 33a of the pneumatic actuator 30 is controlled by the first exhaust valve 26a.
 第2の排気弁26bは、制御部40から入力される制御信号に基づいて、排気配管135bの連通および閉鎖を制御する弁である。言い換えると、空気圧アクチュエータ30の第2の空間33bの内部の空気の排気は、第2の排気弁26bにより制御される。 The second exhaust valve 26b is a valve that controls communication and closing of the exhaust pipe 135b based on a control signal input from the control unit 40. In other words, the exhaust of the air inside the second space 33b of the pneumatic actuator 30 is controlled by the second exhaust valve 26b.
 第1の可変絞り128aは第1の排気配管135aに配置される。第2の可変絞り128bは、第2の排気配管135bに配置される。より具体的には、第1の可変絞り128aは、第1の排気配管135aにおける第1の弁装置121aおよび第1のサイレンサ129aの間に配置され、第2の可変絞り128bは、第2の排気配管135bにおける第2の弁装置121bおよび第2のサイレンサ129bの間に配置される。 The first variable throttle 128a is arranged in the first exhaust pipe 135a. The second variable throttle 128b is arranged in the second exhaust pipe 135b. More specifically, the first variable throttle 128a is arranged between the first valve device 121a and the first silencer 129a in the first exhaust pipe 135a, and the second variable throttle 128b is the second variable throttle 128b. It is disposed between the second valve device 121b and the second silencer 129b in the exhaust pipe 135b.
 第1の可変絞り128aは、空気が第1の排気配管135aから外部に放出される際の単位時間当たりの流量を調整する構成である。第2の可変絞り128bは、空気が第2の排気配管135bから外部に放出される際の単位時間当たりの流量を調整する構成である。第1の可変絞り128aおよび第2の可変絞り128bとしては公知の構成が用いられてもよい。 The first variable throttle 128a is configured to adjust the flow rate per unit time when air is discharged from the first exhaust pipe 135a to the outside. The second variable throttle 128b is configured to adjust the flow rate per unit time when air is discharged from the second exhaust pipe 135b to the outside. Known configurations may be used as the first variable aperture 128a and the second variable aperture 128b.
 第1のサイレンサ129aは、第1の排気配管135aにおける外部に開放される側の端部に配置される。第2のサイレンサ129bは、第2の排気配管135bにおける外部に開放される側の端部に配置される。 The first silencer 129a is arranged at the end of the first exhaust pipe 135a on the side open to the outside. The second silencer 129b is arranged at the end of the second exhaust pipe 135b on the side open to the outside.
 第1のサイレンサ129aおよび第2のサイレンサ129bは、それぞれ空気が第1の排気配管135aおよび第2の排気配管135bから外部に放出される際に発生する音を低減する、または、音の発生を抑制する構成である。なお、第1のサイレンサ129aおよび第2のサイレンサ129bとしては、公知の構成が用いられてもよい。 The first silencer 129a and the second silencer 129b reduce the noise generated when air is emitted to the outside from the first exhaust pipe 135a and the second exhaust pipe 135b, respectively. It is a configuration that suppresses. A known configuration may be used as the first silencer 129a and the second silencer 129b.
 次に、上記の構成からなる医用機器101における動作について説明する。関節部53を屈曲させる動作については、第1の実施形態と同様であるためその説明を省略する。ここでは、医用機器101における緊急停止時の動作におけるについて説明する。 Next, the operation of the medical device 101 having the above configuration will be described. The operation of bending the joint portion 53 is similar to that of the first embodiment, and therefore its description is omitted. Here, the operation of the medical device 101 during an emergency stop will be described.
 緊急停止時には、第1の実施形態と同様に、制御部40は、第1の弁装置121aの第1の開閉電磁弁123aに対して制御用サーボバルブ21および第1の空間33aの間を閉じる制御信号を出力し、かつ、第2の弁装置121bの第2の開閉電磁弁123bに対して制御用サーボバルブ21および第2の空間33bの間を閉じる制御信号を出力する。 At the time of an emergency stop, as in the first embodiment, the control unit 40 closes the control servo valve 21 and the first space 33a with respect to the first opening/closing solenoid valve 123a of the first valve device 121a. A control signal is output and a control signal for closing the space between the control servo valve 21 and the second space 33b is output to the second opening/closing solenoid valve 123b of the second valve device 121b.
 その後、制御部40は、第1の弁装置121aの第1の排気弁26aおよび第2の弁装置121bの第2の排気弁26bを開にする制御信号を出力する。制御信号が入力された第1の排気弁26aは、図8に示すように、空気圧アクチュエータ30の第1の空間33aと第1の排気配管135aとを連通させ、第2の排気弁26bは空気圧アクチュエータ30の第2の空間33bと第2の排気配管135bとを連通させる。 After that, the control unit 40 outputs a control signal for opening the first exhaust valve 26a of the first valve device 121a and the second exhaust valve 26b of the second valve device 121b. As shown in FIG. 8, the first exhaust valve 26a to which the control signal is input makes the first space 33a of the pneumatic actuator 30 communicate with the first exhaust pipe 135a, and the second exhaust valve 26b is pneumatically connected. The second space 33b of the actuator 30 communicates with the second exhaust pipe 135b.
 第1の空間33a内の空気は、第1の可変絞り128aおよび第1のサイレンサ129aを通過して外部へ放出される。第2の空間33b内の空気は、第2の可変絞り128bおよび第2のサイレンサ129bを通過して外部へ放出される。 The air in the first space 33a passes through the first variable throttle 128a and the first silencer 129a and is discharged to the outside. The air in the second space 33b passes through the second variable throttle 128b and the second silencer 129b and is discharged to the outside.
 第1の空間33a内の空気圧力Pa、および、第2の空間33b内の空気圧力Pbは、図9に示すように変化する。まず、排気弁26aおよび排気弁26bが閉じられた状態において、空気圧力PaがP1であって、空気圧力PbがP2であり、P1>P2となる。排気弁26aおよび排気弁26bが開になった時点から、空気圧力Paおよび空気圧力Pbはそれぞれ圧力が低下し始める。空気圧力Paおよび空気圧力Pbの低下は、外部の圧力である大気圧と同等になるまで継続する。 The air pressure Pa in the first space 33a and the air pressure Pb in the second space 33b change as shown in FIG. First, in the state where the exhaust valve 26a and the exhaust valve 26b are closed, the air pressure Pa is P1, the air pressure Pb is P2, and P1>P2. From the time when the exhaust valve 26a and the exhaust valve 26b are opened, the pressures of the air pressure Pa and the air pressure Pb start to decrease. The decrease of the air pressure Pa and the air pressure Pb continues until it becomes equal to the atmospheric pressure which is the external pressure.
 上記の構成によれば、第1の開閉電磁弁123aおよび第1の排気弁26aを一体に形成した第1の弁装置121a、および、第2の開閉電磁弁123bおよび第2の排気弁26bを一体に形成した第2の弁装置121bを設けることにより、第1の開閉電磁弁、第1の排気弁、第2の開閉電磁弁および第2の排気弁を別々に配置した場合と比較して、医用機器101を構成する部品点数を減らすことが可能となる。 According to the above configuration, the first valve device 121a in which the first opening/closing solenoid valve 123a and the first exhaust valve 26a are integrally formed, and the second opening/closing solenoid valve 123b and the second exhaust valve 26b are provided. By providing the integrally formed second valve device 121b, compared with the case where the first opening/closing solenoid valve, the first exhaust valve, the second opening/closing solenoid valve and the second exhaust valve are separately arranged. It is possible to reduce the number of parts constituting the medical device 101.
 第1の排気弁26aに対して第1の可変絞り128aを配置し、第2の排気弁26bに対して第2の可変絞り128bを配置することにより、共通の絞り弁を設ける場合と比較して、第1の空間33aおよび第2の空間33bにおける圧力の低下の速さなどを独立して制御することが可能となる。 By arranging the first variable throttle 128a with respect to the first exhaust valve 26a and arranging the second variable throttle 128b with respect to the second exhaust valve 26b, as compared with the case where a common throttle valve is provided. Thus, it is possible to independently control the rate of pressure decrease in the first space 33a and the second space 33b.
 〔第3の実施形態〕
 次に、本開示の第3の実施形態について図9および図10を参照しながら説明する。本実施形態の医用機器の基本構成は、第1の実施形態と同様であるが、第1の実施形態とは、駆動部の構成が異なっている。よって、本実施形態においては、図9および図10を用いて駆動部の構成について説明し、その他の構成等の説明を省略する。
[Third Embodiment]
Next, a third embodiment of the present disclosure will be described with reference to FIGS. 9 and 10. The basic configuration of the medical device of this embodiment is the same as that of the first embodiment, but the configuration of the drive unit is different from that of the first embodiment. Therefore, in the present embodiment, the configuration of the drive unit will be described with reference to FIGS. 9 and 10, and description of other configurations will be omitted.
 本実施形態の医用機器201の駆動部220には、図9に示すように、開閉電磁弁23と、空気圧アクチュエータ30と、第1の開閉側圧力センサ25aおよび第2の開閉側圧力センサ25bと、第1の排気弁26aおよび第2の排気弁26bと、第1の逆止弁27aおよび第2の逆止弁27bと、第1の可変絞りである絞り弁228aおよび第2の可変絞りである絞り弁228bと、第1のサイレンサ229aおよび第2のサイレンサ229bと、が主に設けられている。 As shown in FIG. 9, the drive unit 220 of the medical device 201 according to the present embodiment includes an opening/closing solenoid valve 23, a pneumatic actuator 30, a first opening/closing side pressure sensor 25a and a second opening/closing side pressure sensor 25b. , The first exhaust valve 26a and the second exhaust valve 26b, the first check valve 27a and the second check valve 27b, and the throttle valve 228a which is the first variable throttle and the second variable throttle. A certain throttle valve 228b and a first silencer 229a and a second silencer 229b are mainly provided.
 なお、駆動部220には、第1の実施形態の駆動部20と同様に制御用サーボバルブ21、および、第1のサーボ側圧力センサ22aおよび第2のサーボ側圧力センサ22bが設けられており、その図示および説明を省略する。 The drive unit 220 is provided with a control servo valve 21, a first servo-side pressure sensor 22a, and a second servo-side pressure sensor 22b, as in the drive unit 20 of the first embodiment. The illustration and description thereof are omitted.
 第1の可変絞り228aは第1の排気配管235aに配置される。第2の可変絞り228bは、第2の排気配管235bに配置される。より具体的には、第1の可変絞り228aは、第1の排気配管235aにおける第1の排気弁26aおよび第1のサイレンサ229aの間に配置され、第2の可変絞り228bは、第2の排気配管235bにおける第2の排気弁26bおよび第2のサイレンサ229bの間に配置される。 The first variable throttle 228a is arranged in the first exhaust pipe 235a. The second variable throttle 228b is arranged in the second exhaust pipe 235b. More specifically, the first variable throttle 228a is arranged between the first exhaust valve 26a and the first silencer 229a in the first exhaust pipe 235a, and the second variable throttle 228b is the second variable throttle 228b. It is arranged between the second exhaust valve 26b and the second silencer 229b in the exhaust pipe 235b.
 第1の可変絞り228aは、空気が第1の排気配管235aから外部に放出される際の単位時間当たりの流量を調整する構成であり、第2の可変絞り228bは、空気が第2の排気配管235bから外部に放出される際の単位時間当たりの流量を調整する構成である。第1の可変絞り228aおよび第2の可変絞り228bとしては公知の構成が用いられてもよい。 The first variable throttle 228a is configured to adjust the flow rate per unit time when air is discharged from the first exhaust pipe 235a to the outside, and the second variable throttle 228b is configured such that air is the second exhaust gas. This is a configuration for adjusting the flow rate per unit time when being discharged from the pipe 235b to the outside. Known configurations may be used as the first variable diaphragm 228a and the second variable diaphragm 228b.
 第1の排気配管235aは、空気圧アクチュエータ30の第1の空間33aと連通する第1の流路23aから分岐し、端部が外部に開放された配管である。第1の排気配管235aには、第1の排気弁26a、第1の可変絞り228aおよび第1のサイレンサ229aが配置されている。 The first exhaust pipe 235a is a pipe that branches from the first flow path 23a that communicates with the first space 33a of the pneumatic actuator 30 and has an end open to the outside. A first exhaust valve 26a, a first variable throttle 228a, and a first silencer 229a are arranged in the first exhaust pipe 235a.
 第2の排気配管235bは、空気圧アクチュエータ30の第2の空間33bと連通する第2の流路23bから分岐し、端部が外部に開放された配管である。第2の排気配管235bには、第2の排気弁26b、第2の可変絞り228bおよび第2のサイレンサ229bが配置されている。 The second exhaust pipe 235b is a pipe that is branched from the second flow path 23b that communicates with the second space 33b of the pneumatic actuator 30 and the end of which is open to the outside. A second exhaust valve 26b, a second variable throttle 228b, and a second silencer 229b are arranged in the second exhaust pipe 235b.
 第1のサイレンサ229aは、第1の排気配管235aにおける外部に開放される側の端部に配置される。第2のサイレンサ229bは、第2の排気配管235bにおける外部に開放される側の端部に配置される。 The first silencer 229a is arranged at the end of the first exhaust pipe 235a on the side open to the outside. The second silencer 229b is arranged at the end of the second exhaust pipe 235b on the side open to the outside.
 第1のサイレンサ229aおよび第2のサイレンサ229bは、それぞれ空気が第1の排気配管235aおよび第2の排気配管235bから外部に放出される際に発生する音を低減する、または、音の発生を抑制する構成である。なお、第1のサイレンサ229aおよび第2のサイレンサ229bとしては、公知の構成が用いられてもよい。 The first silencer 229a and the second silencer 229b reduce the sound generated when the air is discharged to the outside from the first exhaust pipe 235a and the second exhaust pipe 235b, respectively, or generate the sound. It is a configuration to suppress. A known configuration may be used for the first silencer 229a and the second silencer 229b.
 次に、上記の構成からなる医用機器201における動作について説明する。関節部53を屈曲させる動作については、第1の実施形態と同様であるためその説明を省略する。ここでは、医用機器201における緊急停止時の動作におけるについて説明する。 Next, the operation of the medical device 201 having the above configuration will be described. The operation of bending the joint portion 53 is similar to that of the first embodiment, and therefore its explanation is omitted. Here, the operation of the medical device 201 during an emergency stop will be described.
 緊急停止時には、第1の実施形態と同様に、制御部40は、開閉電磁弁23に対して制御用サーボバルブ21および第1の空間33aの間を閉じる、かつ、制御用サーボバルブ21および第2の空間33bの間を閉じる制御信号を出力する。 At the time of an emergency stop, as in the first embodiment, the control unit 40 closes the control servo valve 21 and the first space 33a with respect to the opening/closing solenoid valve 23, and controls the servo valve 21 and the first space 33a. A control signal for closing the space between the two spaces 33b is output.
 その後、制御部40は、排気弁26aおよび排気弁26bを開にする制御信号を出力する。制御信号が入力された排気弁26aは、図9に示すように、空気圧アクチュエータ30の第1の空間33aと排気配管235aとを連通させ、排気弁26bは空気圧アクチュエータ30の第2の空間33bと排気配管235bとを連通させる。 After that, the control unit 40 outputs a control signal for opening the exhaust valve 26a and the exhaust valve 26b. As shown in FIG. 9, the exhaust valve 26a to which the control signal is input makes the first space 33a of the pneumatic actuator 30 communicate with the exhaust pipe 235a, and the exhaust valve 26b communicates with the second space 33b of the pneumatic actuator 30. It communicates with the exhaust pipe 235b.
 第1の空間33a内の空気は、可変絞り28aおよびサイレンサ29aを通過して外部へ放出される。第2の空間33b内の空気は、可変絞り28bおよびサイレンサ29bを通過して外部へ放出される。なお、第1の空間33a内の空気圧力Pa、および、第2の空間33b内の空気圧力Pbの変化は、第2の実施形態を同様な変化であるため、その説明を省略する。 The air in the first space 33a passes through the variable throttle 28a and the silencer 29a and is discharged to the outside. The air in the second space 33b passes through the variable throttle 28b and the silencer 29b and is discharged to the outside. The change in the air pressure Pa in the first space 33a and the change in the air pressure Pb in the second space 33b are similar to those in the second embodiment, and thus the description thereof is omitted.
 上記の構成によれば、一体に形成された開閉電磁弁23を用いることにより、複数に分割された開閉電磁弁を設ける場合と比較して、医用機器201を構成する部品点数を減らすことが可能となる。 According to the above configuration, by using the opening/closing solenoid valve 23 integrally formed, it is possible to reduce the number of parts constituting the medical device 201, as compared with the case of providing a plurality of opening/closing solenoid valves. Becomes
 第1の排気弁26aに対して第1の可変絞り228aを配置し、第2の排気弁26bに対して第2の可変絞り228bを配置することにより、共通の絞り弁を設ける場合と比較して、第1の空間33aおよび第2の空間33bにおける圧力の低下の速さなどを独立して制御することが可能となる。 By arranging the first variable throttle 228a with respect to the first exhaust valve 26a and arranging the second variable throttle 228b with respect to the second exhaust valve 26b, as compared with the case where a common throttle valve is provided. Thus, it is possible to independently control the rate of pressure decrease in the first space 33a and the second space 33b.
 なお、本開示の技術範囲は上記実施形態に限定されない。本開示の技術範囲は、本開示の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上記の実施形態においては、この発明を内視鏡手術で用いられる鉗子52の操作に用いられる例に適用して説明したが、操作の対象は鉗子52に限られない。たとえば、操作の対象は、電気メスなど内視鏡手術に用いられる他の術具の操作に用いられる器具であってもよい。 Note that the technical scope of the present disclosure is not limited to the above embodiment. Various modifications can be made to the technical scope of the present disclosure without departing from the spirit of the present disclosure. For example, in the above-described embodiment, the present invention has been described by being applied to an example used for operating the forceps 52 used in endoscopic surgery, but the operation target is not limited to the forceps 52. For example, the operation target may be an instrument used for operating another surgical tool such as an electric scalpel used for endoscopic surgery.

Claims (4)

  1.  筒状に形成されたシリンダ、および、前記シリンダの軸線方向に相対移動可能に配置されるとともに前記シリンダの内部空間を第1および第2の空間に区画するピストンを有する気体圧アクチュエータと、
     前記第1の空間との間で気体の流入および流出が可能に接続された第1の流路と、
     前記第2の空間との間で前記気体の流入および流出が可能に接続された第2の流路と、
     前記第1の流路に設けられ、外部から前記第1の空間へ供給される前記気体の流通および遮断を制御する第1の閉塞弁と、
     前記第2の流路に設けられ、外部から前記第2の空間へ供給される前記気体の流通及び遮断を制御する第2の閉塞弁と、
     前記第1の流路における前記シリンダおよび前記第1の閉塞弁との間から、前記第1の流路の外側へ前記気体の排気および遮断を制御する第1の排気弁と、
     前記第2の流路における前記シリンダおよび前記第2の閉塞弁との間から、前記第2の流路の外側へ前記気体の排気および遮断を制御する第2の排気弁と、
     前記第1の排気弁および前記第2の排気弁から排気される前記気体の流路断面積を変更可能とする絞り弁と、
    が設けられていることを特徴とする医用機器。
    A cylinder-shaped cylinder, and a gas pressure actuator having a piston arranged so as to be relatively movable in the axial direction of the cylinder and partitioning an internal space of the cylinder into first and second spaces,
    A first flow path connected to the first space so that gas can flow in and out of the first space;
    A second flow path connected to the second space such that the gas can flow in and out.
    A first closing valve which is provided in the first flow path and controls the flow and cutoff of the gas supplied from the outside to the first space;
    A second closing valve which is provided in the second flow path and controls the flow and cutoff of the gas supplied to the second space from the outside;
    A first exhaust valve that controls exhaust and shutoff of the gas from between the cylinder and the first closing valve in the first flow path to the outside of the first flow path;
    A second exhaust valve that controls exhaust and shutoff of the gas from between the cylinder and the second closing valve in the second flow path to the outside of the second flow path;
    A throttle valve capable of changing the flow passage cross-sectional area of the gas exhausted from the first exhaust valve and the second exhaust valve;
    A medical device characterized by being provided.
  2.  前記第1の閉塞弁および前記第2の閉塞弁は、一体に形成された閉塞弁であり、
     前記第1の排気弁および前記第2の排気弁から排気される前記気体は、同一の前記絞り弁に導かれ、
     前記第1の排気弁と前記絞り弁との間、および、前記第2の排気弁と前記絞り弁との間には、前記絞り弁に向かう前記気体の流れを許容する逆止弁が設けられていることを特徴とする請求項1記載の医用機器。
    The first closing valve and the second closing valve are integrally formed closing valves,
    The gas exhausted from the first exhaust valve and the second exhaust valve is guided to the same throttle valve,
    A check valve that allows the flow of the gas toward the throttle valve is provided between the first exhaust valve and the throttle valve and between the second exhaust valve and the throttle valve. The medical device according to claim 1, wherein:
  3.  前記第1の閉塞弁および前記第1の排気弁は、一体に形成された第1の弁装置であり、
     前記第2の閉塞弁および前記第2の排気弁は、一体に形成された第2の弁装置であり、
     前記第1の排気弁から排気される前記気体は、第1の絞り弁に導かれ、
     前記第2の排気弁から排気される前記気体は、第2の絞り弁に導かれることを特徴とする請求項1記載の医用機器。
    The first closing valve and the first exhaust valve are a first valve device formed integrally,
    The second closing valve and the second exhaust valve are second valve devices formed integrally,
    The gas exhausted from the first exhaust valve is guided to a first throttle valve,
    The medical device according to claim 1, wherein the gas exhausted from the second exhaust valve is guided to a second throttle valve.
  4.  前記第1の閉塞弁および前記第2の閉塞弁は、一体に形成された閉塞弁であり、
     前記第1の排気弁から排気される前記気体は、第1の絞り弁に導かれ、
     前記第2の排気弁から排気される前記気体は、第2の絞り弁に導かれることを特徴とする請求項1記載の医用機器。
    The first closing valve and the second closing valve are integrally formed closing valves,
    The gas exhausted from the first exhaust valve is guided to a first throttle valve,
    The medical device according to claim 1, wherein the gas exhausted from the second exhaust valve is guided to a second throttle valve.
PCT/JP2020/000178 2019-02-07 2020-01-07 Medical device WO2020162086A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019020732A JP2020128762A (en) 2019-02-07 2019-02-07 Medical appliance
JP2019-020732 2019-02-07

Publications (1)

Publication Number Publication Date
WO2020162086A1 true WO2020162086A1 (en) 2020-08-13

Family

ID=71947832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000178 WO2020162086A1 (en) 2019-02-07 2020-01-07 Medical device

Country Status (2)

Country Link
JP (1) JP2020128762A (en)
WO (1) WO2020162086A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113998U (en) * 1978-01-25 1979-08-10
JPS56168603U (en) * 1980-05-16 1981-12-12
JPS60121506U (en) * 1984-01-20 1985-08-16 三菱電線工業株式会社 fluid pressure cylinder
JPH04357307A (en) * 1991-02-25 1992-12-10 Aisin Seiki Co Ltd Pneumatic cylinder positioning device
JPH0532805U (en) * 1991-10-07 1993-04-30 日本電気エンジニアリング株式会社 Air cylinder speed control circuit
JPH11166509A (en) * 1997-12-02 1999-06-22 Smc Corp Seal mechanism for sliding part
US6050172A (en) * 1997-04-04 2000-04-18 Emhart Glass S.A. Pneumatically operated mechanism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113998U (en) * 1978-01-25 1979-08-10
JPS56168603U (en) * 1980-05-16 1981-12-12
JPS60121506U (en) * 1984-01-20 1985-08-16 三菱電線工業株式会社 fluid pressure cylinder
JPH04357307A (en) * 1991-02-25 1992-12-10 Aisin Seiki Co Ltd Pneumatic cylinder positioning device
JPH0532805U (en) * 1991-10-07 1993-04-30 日本電気エンジニアリング株式会社 Air cylinder speed control circuit
US6050172A (en) * 1997-04-04 2000-04-18 Emhart Glass S.A. Pneumatically operated mechanism
JPH11166509A (en) * 1997-12-02 1999-06-22 Smc Corp Seal mechanism for sliding part

Also Published As

Publication number Publication date
JP2020128762A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
CN101473123B (en) Pneumatic actuating drive comprising an integrated electropneumatic position adjustment
US5645520A (en) Shape memory alloy actuated rod for endoscopic instruments
JP4196293B2 (en) Vacuum pressure control valve
JP4296232B2 (en) Compressible fluid pressure actuator drive mechanism
JP5443801B2 (en) Tension detection means and manipulator using the same
JP5253689B1 (en) Insertion equipment
JP2007533035A (en) Asymmetric volume booster configuration for valve actuators
CA2538266A1 (en) Pinch valve
WO2020162086A1 (en) Medical device
WO2006082703A1 (en) Fluid control valve
US8933387B2 (en) Optical potentiometer and manipulator
US5458047A (en) High speed pneumatic servo actuator with hydraulic damper
US5951240A (en) Method and apparatus for improving antisurge control of turbocompressors by reducing control valve response time
EP4230877A1 (en) Solenoid driven actuator systems
JP5538004B2 (en) Pressure control device
TW201912956A (en) Fluid circuit for air cylinder and design method thereof
JP2007040513A (en) Pilot valve for positioner
KR102304548B1 (en) Valve device and control method using the same, fluid control device and semiconductor manufacturing device
WO2020195433A1 (en) Medical robot system
US9095254B2 (en) Endoscope apparatus and bending control method of endoscope apparatus
JP4369202B2 (en) Fluid regulator
RU2216762C1 (en) Gear to adjust parameters of gas flow
JPH0949574A (en) Pilot valve device of positioner device
JPH0979204A (en) Actuator
JP2006181690A (en) Joint structural body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752957

Country of ref document: EP

Kind code of ref document: A1