WO2020161863A1 - Vacuum-freeze drying method and vacuum-freeze drying device - Google Patents

Vacuum-freeze drying method and vacuum-freeze drying device Download PDF

Info

Publication number
WO2020161863A1
WO2020161863A1 PCT/JP2019/004442 JP2019004442W WO2020161863A1 WO 2020161863 A1 WO2020161863 A1 WO 2020161863A1 JP 2019004442 W JP2019004442 W JP 2019004442W WO 2020161863 A1 WO2020161863 A1 WO 2020161863A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
vacuum
material liquid
drying
injection nozzle
Prior art date
Application number
PCT/JP2019/004442
Other languages
French (fr)
Japanese (ja)
Inventor
美尚 中野
勉 西橋
剛 吉元
薫樹 伊藤
野末 竜弘
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to PCT/JP2019/004442 priority Critical patent/WO2020161863A1/en
Publication of WO2020161863A1 publication Critical patent/WO2020161863A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/10Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by fluid currents, e.g. issuing from a nozzle, e.g. pneumatic, flash, vortex or entrainment dryers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing

Definitions

  • the present invention relates to the technical field of a vacuum freeze-drying apparatus, and more particularly to a technology for producing a powder by dripping and spraying a liquid such as a chemical solution in a vacuum and freeze-drying.
  • microdroplets are formed and evaporated in a vacuum with a low water pressure, so the latent heat can freeze at ultra-high speeds of less than 1 second, and the ice crystals are also miniaturized.
  • the feature is that
  • Freeze-drying in a vacuum atmosphere does not cause deterioration of foods due to water content or dilution of pharmaceuticals, and high-quality drying can be performed.However, since solid water is vaporized and dried, Since the amount of vaporization also increases due to the rise, conventionally, in order to shorten the drying time, it is necessary to deposit frozen powder on a metal tray in a vacuum tank and heat the metal tray to heat the frozen powder to dry it. Is being done.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-232883 describes a mass production method of forming atomized frozen powder of a chemical solution or the like in a vacuum and sublimating and drying it, but it depends on conditions of each step. Then, there is a concern that the device will become large and the cost of mass production will increase.
  • the present invention has been made in view of the problems of the conventional techniques as described above, and an object of the present invention is to make it possible to freeze the liquid droplets of the raw material liquid in a short time and with a short drop distance, and to perform mass production in a small size. To provide a simple vacuum freeze-drying device.
  • the present invention was created in order to solve the above-mentioned problems of the prior art, and the present invention made to achieve the above-mentioned object is to spray a raw material liquid in a vacuum tank from a spray nozzle and spray it under a low temperature vacuum.
  • a method of vacuum freeze-drying comprising the steps of: producing frozen fine particles by self-freezing in step 1, and drying the produced frozen fine particles to produce a dry powder, wherein the water vapor partial pressure in the vacuum tank is maintained at 60 Pa or less.
  • the diameter of the droplet of the raw material liquid dropped from the injection nozzle is adjusted to 1000 ⁇ m or less, and the initial velocity of the droplet is adjusted to 8 m/sec or more and 22 m/sec or less. It has a process.
  • the raw material liquid contains a solvent or dispersion medium composed of water with a content of 70% by weight or more, and a solute dissolved in the solvent or a dispersoid dispersed in the dispersion medium.
  • the solute or the dispersoid of the raw material liquid is a raw material of a freeze-dried food in which cells are not destroyed and proteins are not denatured during vacuum freeze-drying, or a drug as an active ingredient of a preparation. Is also effective.
  • a vacuum tank in which a container for storing frozen fine particles can be arranged, and a droplet of a raw material liquid, which is provided in the vacuum tank and contains 70% by weight or more of water supplied from a raw material tank, is dropped and sprayed.
  • Injection nozzle a raw material tank for supplying the raw material liquid to the injection nozzle, a cold trap for removing water in the vacuum chamber, and heating for drying the frozen fine particles contained in the container.
  • a cold trap for maintaining the partial pressure of water vapor in the vacuum tank at 60 Pa or less based on the result obtained by a vacuum gauge connected to the vacuum tank when the raw material liquid is dropped.
  • An exhaust amount adjusting device for adjusting the exhaust amount is also provided, and the hole diameter of the injection nozzle is adjusted so that the diameter of the droplet of the raw material liquid dropped from the injection nozzle is 1000 ⁇ m or less.
  • the raw material liquid supply amount adjusting device adjusts the initial velocity of the liquid droplets of the raw material liquid dropped from the jet nozzle to 8 m/sec or more and 22 m/sec or less with respect to the jet nozzle.
  • the vacuum freeze-drying device is configured to adjust the supply amount of the raw material liquid.
  • a freezing chamber configured by the vacuum chamber for freezing the liquid droplets of the raw material liquid, and a drying chamber connected to the freezing chamber via a gate valve to dry the frozen fine particles contained in the container It is also effective when having and.
  • the diameter of the droplet of the raw material liquid dropped from the injection nozzle is 1000 ⁇ m or less, and By adjusting the initial velocity to 8 m/sec or more and 22 m/sec or less, the liquid droplets of the raw material liquid can be frozen in a short time and with a shorter drop distance than the conventional technology, which allows for small-scale mass production.
  • a vacuum freeze-drying device can be provided.
  • FIG. 1 is a schematic configuration diagram showing an entire embodiment of a vacuum freeze-drying apparatus according to the present invention.
  • the vacuum freeze-drying apparatus 1 of the present embodiment includes a freezing chamber 2 connected to a vacuum exhaust device 10 via an exhaust volume adjusting device 13, and a freezing chamber 2 via a gate valve 5 to the freezing chamber 2. And a drying chamber 3 connected thereto.
  • the freezing chamber 2 is connected to a carry-in chamber (not shown), and the drying chamber 3 is provided with a vent valve (not shown) for recompressing (opening to the atmosphere).
  • a vacuum gauge 11 for measuring the pressure inside the freezing chamber 2 is connected to the freezing chamber 2.
  • a raw material tank 9 in which a raw material liquid at room temperature is stored is arranged outside the freezing chamber 2, and an injection nozzle 20 connected to the raw material tank 9 is provided above the freezing chamber 2.
  • the raw material liquid is supplied to the injection nozzle 20 from the raw material tank 9 via the raw material liquid supply amount adjusting device 12, and the raw material liquid is sprayed downward in a vacuum atmosphere in a liquid column shape from the lower end portion of the injection nozzle 20. Has become.
  • a cold trap 6 connected to a refrigerator (not shown) is provided near the injection nozzle 20.
  • the raw material liquid may be, for example, a solvent made of water and a solute dissolved in the solvent, or a dispersion medium made of water and a dispersoid dispersed in the dispersion medium.
  • the concentration of water used as the solvent and the dispersion medium is preferably set to 70% by weight or more.
  • a solvent or dispersion medium consisting of 70% by weight of water, a solute dissolved in this solvent, or a liquid containing the dispersoid dispersed in this dispersion medium is preferably used as the raw material liquid. it can.
  • solutes or dispersoids examples include raw materials for freeze-dried foods in which cells are not destroyed and proteins and the like are not denatured during vacuum freeze-drying, and drugs (medicines) as active ingredients of preparations.
  • the tray 7 for containing the generated frozen fine particles 35 is arranged below the injection nozzle 20 inside the freezing chamber 2.
  • the tray 7 is configured to be transferred from the freezing chamber 2 to the drying chamber 3 by using a transfer mechanism such as a robot (not shown).
  • a heating device 8 for drying the frozen fine particles 35 contained in the tray 7, which is, for example, an infrared heater.
  • the vacuum freeze-drying device used in each experiment was a micro-powder dry system, which is a micro-jet freeze-drying device manufactured by ULVAC, Inc.
  • the vacuum exhaust device 10 and the cold trap 6 are operated with the gate valve 5 closed to reduce the pressure in the freezing chamber 2.
  • the inside of the freezing chamber 2 at the time of dropping the raw material liquid is based on the data measured by the vacuum gauge 11 in advance.
  • the partial pressure of water vapor is adjusted to 60 Pa or less.
  • the cold trap 6 and the injection nozzle 20 are operated, and the liquid droplet of the raw material liquid is ejected from the tip of the injection nozzle 20 to be dropped.
  • FIG. 2 is a graph showing the relationship between pressure and temperature of a droplet of water having a diameter (hereinafter referred to as “diameter”) of 300 ⁇ m.
  • the partial pressure of water vapor in the freezing chamber 2 was about 100 Pa, but in the present invention, the partial pressure of water vapor in the freezing chamber 2 is maintained at 60 Pa or less.
  • the partial pressure of water vapor in the freezing chamber 2 is 60 Pa or less, the temperature of the dropped water droplets of 300 ⁇ m diameter is ⁇ 25° C. or less, and as a result, the raw material liquid consisting of water is The droplet can be surely frozen.
  • the exhaust amount is adjusted by the exhaust amount adjusting device 13 and the cold trap 6 so that the partial pressure of water vapor in the freezing chamber 2 is maintained at 60 Pa or less based on the result obtained by the vacuum gauge 11. To do.
  • the cooling time to the desired temperature becomes longer, and the drop distance of the droplet until it reaches -25°C after being cooled increases.
  • FIG. 3 is a graph showing the relationship between the drop distance and the temperature of the droplet with respect to the droplet diameter when the partial pressure of water vapor in the freezing chamber is maintained at 60 Pa and the droplet is dropped at an initial velocity of 13 m/sec.
  • the droplet diameter of the raw material liquid dropped from the injection nozzle 20 is 1000 ⁇ m or less, the drop distance until the droplet is frozen can be reliably 1500 mm or less.
  • the diameter (hole diameter) of the nozzle hole of the injection nozzle 20 for dropping the droplet may be adjusted.
  • FIG. 4 is a graph showing the relationship between the hole diameter of the injection nozzle and the droplet diameter.
  • the droplet diameter of the raw material liquid dropped from the injection nozzle 20 is 1000 ⁇ m or less, the drop distance until the droplet is frozen can be reliably set to 1500 mm or less, which is understood from FIG.
  • the droplet diameter can be set to 600 ⁇ m or less, and thus the drop distance until the freezing of the droplet can be reliably set to less than 1500 mm. ..
  • the initial velocity of the droplets of the raw material liquid dropped from the injection nozzle 20 is adjusted to be 8 m/sec or more and 22 m/sec or less.
  • the present inventor reaches the tray 7 before the liquid droplet is completely frozen even when the liquid droplet is dropped under the above-mentioned conditions. I have found empirically that I will do it.
  • control was performed so that the initial velocity of the liquid droplets of the raw material liquid was 23 m/sec.
  • the raw material liquid in the injection nozzle hole may freeze and the hole may be easily clogged.
  • FIG. 5 is a graph showing the relationship between the spray pressure of the raw material liquid at the injection nozzle and the initial velocity of the liquid droplets.
  • This graph shows the results when a force larger than the surface tension of the raw material liquid is applied to the raw material liquid stored in the liquid storage portion having the hole diameter of the injection nozzle 20 of 0.2 mm and the thickness of the injection nozzle 20 of 0.5 mm. It is the data shown.
  • the initial velocity of the droplet of the raw material liquid dropped from the injection nozzle 20 is 8 m/sec or more and 22 m/sec or less.
  • the raw material liquid supply amount adjusting device 12 adjusts the supply amount (liquid feeding pressure) of the raw material liquid to the injection nozzle 20.
  • the raw material liquid dropped from the injection nozzle 20 becomes a columnar raw material liquid 21 in the initial state of dropping, and thereafter, It is separated from the columnar raw material liquid 21 by the surface tension and becomes a droplet 30 of the raw material liquid.
  • the droplets 30 of the raw material liquid become the droplets 32 in the form of particles through the droplets 31 in the dispersed state as they descend.
  • the particulate droplets 32 are evaporated by the cold trap 6 to adsorb the water in the freezing chamber 2 and self-freezing starts, whereby frozen fine particles 35 are formed.
  • the frozen fine particles 35 are spread in all directions and fall into the tray 7.
  • the tray 7 is carried into the drying chamber 3 by using a transfer mechanism such as a robot (not shown), and the frozen fine particles 35 are heated by the heating device 8 to evaporate the remaining water and dry the same.
  • the diameter of the droplet 30 of the raw material liquid dropped from the injection nozzle 20 is 1000 ⁇ m or less while the partial pressure of water vapor in the freezing chamber 2 is maintained at 60 Pa or less. Moreover, by adjusting the initial velocity of the droplet to be 8 m/sec or more and 22 m/sec or less, the droplet 30 of the raw material liquid can be dropped in a short time and with a shorter fall distance (1500 mm or less) as compared with the conventional technique.
  • the vacuum freeze-drying apparatus 1 that can be frozen and can be mass-produced can be provided.
  • the freezing chamber 2 and the drying chamber 3 are connected via the gate valve 5, but the present invention is not limited to this, and a heating device for drying frozen fine particles in one vacuum tank. Can be provided.
  • the cold trap 6 is provided in the freezing chamber 2 in the above-described embodiment, the present invention is not limited to this, and the cold trap is arranged in a chamber different from the freezing chamber, and the cold trap 6 and the freezing chamber are separated from each other. Can also be configured to connect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

Provided is a compact mass-producible vacuum-freeze drying device capable of freezing droplets of a raw material liquid at a short falling distance in a short time. The vacuum-freeze drying method according to the present invention comprises a step for producing a dry powder by: spaying droplets of a raw material liquid through an injection nozzle (20) in a freezing chamber (2) which is a vacuum tank; generating frozen fine particles (35) through self-freezing in low-temperature vacuum; and drying the generated frozen fine particles (35). In the present invention, the diameters of the droplets of the raw material liquid discharged downward through the injection nozzle (20) are adjusted to 1000 µm or less and the initial speed of the droplets is adjusted to 8-22 m/second, in a state where the partial pressure of water vapor in the freezing chamber (2) is maintained at 60 Pa or lower.

Description

真空凍結乾燥方法及び真空凍結乾燥装置Vacuum freeze-drying method and vacuum freeze-drying apparatus
 本発明は真空凍結乾燥装置の技術分野に関し、特に、真空中に薬液等の液体を滴下噴霧して凍結乾燥させて粉体を製造する技術に関する。 The present invention relates to the technical field of a vacuum freeze-drying apparatus, and more particularly to a technology for producing a powder by dripping and spraying a liquid such as a chemical solution in a vacuum and freeze-drying.
 近年、真空凍結乾燥装置として、真空中に噴射ノズルから直接液体を噴霧し、水分の蒸発による自己凍結で凍結微粒子を生成し、凍結乾燥する装置が提案されている。 In recent years, as a vacuum freeze-drying device, a device has been proposed in which a liquid is directly sprayed from a jet nozzle into a vacuum, freezing fine particles are generated by self-freezing by evaporation of water, and freeze-drying is performed.
 この真空凍結乾燥方法では、水分圧が低い真空中で、微小液滴を形成し、蒸発するため、その潜熱により、1秒以下の超高速で凍結が可能であり、その氷結晶も微小化していることが特徴である。 In this vacuum freeze-drying method, microdroplets are formed and evaporated in a vacuum with a low water pressure, so the latent heat can freeze at ultra-high speeds of less than 1 second, and the ice crystals are also miniaturized. The feature is that
 このような真空凍結乾燥装置は、液体から直接凍結乾燥粉体を得ることができることから、種々の粉体を製造することができる。 Since such a vacuum freeze-drying device can directly obtain freeze-dried powder from a liquid, various powders can be produced.
 真空雰囲気中での凍結乾燥は、水分による食品の変質や医薬品の希釈等は発生せず、高品質の乾燥を行うことができるが、固体の水を気化させて乾燥させていることから、温度上昇によって気化の量も増加するので、従来、乾燥時間を短縮するために凍結粉体を真空槽内において金属トレイ上に堆積させ、金属トレイを加熱し凍結粉体を昇温させて乾燥することが行われている。 Freeze-drying in a vacuum atmosphere does not cause deterioration of foods due to water content or dilution of pharmaceuticals, and high-quality drying can be performed.However, since solid water is vaporized and dried, Since the amount of vaporization also increases due to the rise, conventionally, in order to shorten the drying time, it is necessary to deposit frozen powder on a metal tray in a vacuum tank and heat the metal tray to heat the frozen powder to dry it. Is being done.
 しかし、このような従来技術では、液滴落下時の初速が大きい場合、凝固点降下の著しい溶媒を使用した場合、また、凍結槽内の真空排気が不十分な場合には、溶媒の液滴を凍結させるため、凍結槽の長さが長くなり、その結果、装置が大型化するという問題があった。 However, in such a conventional technique, when the initial velocity at the time of dropping a droplet is high, when a solvent having a significant freezing point depression is used, and when the vacuum evacuation in the freezing tank is insufficient, the droplet of the solvent is dropped. Since it is frozen, the length of the freezing tank becomes long, and as a result, there is a problem that the device becomes large.
 例えば、特許文献1(特開2004-232883号公報)には、真空中における、薬液等の微粒化凍結紛体を形成し、昇華乾燥する量産化方法が記載されているが、各工程の条件次第では、装置が大型化し、量産化のコスト増大が懸念される。 For example, Patent Document 1 (Japanese Patent Laid-Open No. 2004-232883) describes a mass production method of forming atomized frozen powder of a chemical solution or the like in a vacuum and sublimating and drying it, but it depends on conditions of each step. Then, there is a concern that the device will become large and the cost of mass production will increase.
 また、特許文献2(特開2006-90671号公報)の真空凍結乾燥方法及び真空凍結乾燥装置には、多少の薬液噴霧条件が記載されているが、装置を小型化させるための、噴霧条件、水分圧条件の記載が無く、有効な手段を開示するには至っていない。 In addition, although the vacuum freeze-drying method and the vacuum freeze-drying apparatus of Patent Document 2 (JP 2006-90671 A) describe some spray conditions of the chemical solution, spraying conditions for reducing the size of the apparatus, There is no description of water pressure conditions, and no effective means has been disclosed.
特開2004-232883号公報JP 2004-232883A 特開2006-90671号公報JP 2006-90671 A
 本発明は、このような従来の技術の課題を考慮してなされたもので、その目的とするところは、原料液の液滴を短時間且つ短い落下距離で凍結することができる小型で量産可能な真空凍結乾燥装置を提供することにある。 The present invention has been made in view of the problems of the conventional techniques as described above, and an object of the present invention is to make it possible to freeze the liquid droplets of the raw material liquid in a short time and with a short drop distance, and to perform mass production in a small size. To provide a simple vacuum freeze-drying device.
 本発明は上記従来技術の課題を解決するために創作されたものであり、上記目的を達成するためになされた本発明は、原料液を真空槽内で噴射ノズルから滴下噴霧し、低温真空下で自己凍結による凍結微粒子を生成し、生成された当該凍結微粒子を乾燥させて乾燥粉体を製造する工程を有する真空凍結乾燥方法であって、前記真空槽内の水蒸気分圧を60Pa以下に維持した状態で、前記噴射ノズルから滴下される原料液の前記液滴の直径が1000μm以下となるように、かつ、当該液滴の初速度が8m/秒以上22m/秒以下となるように調整する工程を有するものである。
 本発明では、前記原料液が、含有量が70重量%以上の水からなる溶媒又は分散媒と、前記溶媒に溶解させた溶質又は前記分散媒に分散させた分散質を含む場合にも効果的である。
 本発明では、前記原料液の前記溶質又は前記分散質が、真空凍結乾燥の際に細胞が破壊されず且つタンパク質が変性しないフリーズドライ食品の原材料、又は、製剤の有効成分としての薬物である場合にも効果的である。
 一方、本発明は、凍結微粒子を収容する容器を配置可能な真空槽と、前記真空槽内に設けられ、原料タンクから供給された70重量%以上の水を含む原料液の液滴を滴下噴霧する噴射ノズルと、前記噴射ノズルに対して前記原料液を供給する原料タンクと、前記真空槽内の水分を除去するためのコールドトラップと、前記容器に収容された凍結微粒子を乾燥させるための加熱装置とを有し、原料液を滴下する際、前記真空槽に接続された真空計にて得られた結果に基づいて当該真空槽内の水蒸気分圧を60Pa以下に維持するように前記コールドトラップと共に排気量を調整する排気量調整装置が設けられるとともに、前記噴射ノズルから滴下される原料液の液滴の直径が1000μm以下となるように当該噴射ノズルの孔径が調整され、さらに、前記噴射ノズルの孔径及び液収容部の寸法に基づいて当該噴射ノズルから滴下される原料液の液滴の初速度が8m/秒以上22m/秒以下となるように原料液供給量調整装置によって前記噴射ノズルに対する原料液の供給量を調整するように構成されている真空凍結乾燥装置である。
 本発明では、前記真空槽によって構成され、前記原料液の液滴の凍結を行う凍結室と、前記凍結室とゲートバルブを介して接続され、前記容器に収容された凍結微粒子を乾燥させる乾燥室とを有する場合にも効果的である。
The present invention was created in order to solve the above-mentioned problems of the prior art, and the present invention made to achieve the above-mentioned object is to spray a raw material liquid in a vacuum tank from a spray nozzle and spray it under a low temperature vacuum. A method of vacuum freeze-drying, comprising the steps of: producing frozen fine particles by self-freezing in step 1, and drying the produced frozen fine particles to produce a dry powder, wherein the water vapor partial pressure in the vacuum tank is maintained at 60 Pa or less. In this state, the diameter of the droplet of the raw material liquid dropped from the injection nozzle is adjusted to 1000 μm or less, and the initial velocity of the droplet is adjusted to 8 m/sec or more and 22 m/sec or less. It has a process.
In the present invention, it is also effective when the raw material liquid contains a solvent or dispersion medium composed of water with a content of 70% by weight or more, and a solute dissolved in the solvent or a dispersoid dispersed in the dispersion medium. Is.
In the present invention, when the solute or the dispersoid of the raw material liquid is a raw material of a freeze-dried food in which cells are not destroyed and proteins are not denatured during vacuum freeze-drying, or a drug as an active ingredient of a preparation. Is also effective.
On the other hand, according to the present invention, a vacuum tank in which a container for storing frozen fine particles can be arranged, and a droplet of a raw material liquid, which is provided in the vacuum tank and contains 70% by weight or more of water supplied from a raw material tank, is dropped and sprayed. Injection nozzle, a raw material tank for supplying the raw material liquid to the injection nozzle, a cold trap for removing water in the vacuum chamber, and heating for drying the frozen fine particles contained in the container. A cold trap for maintaining the partial pressure of water vapor in the vacuum tank at 60 Pa or less based on the result obtained by a vacuum gauge connected to the vacuum tank when the raw material liquid is dropped. An exhaust amount adjusting device for adjusting the exhaust amount is also provided, and the hole diameter of the injection nozzle is adjusted so that the diameter of the droplet of the raw material liquid dropped from the injection nozzle is 1000 μm or less. Based on the hole diameter and the size of the liquid storage portion, the raw material liquid supply amount adjusting device adjusts the initial velocity of the liquid droplets of the raw material liquid dropped from the jet nozzle to 8 m/sec or more and 22 m/sec or less with respect to the jet nozzle. The vacuum freeze-drying device is configured to adjust the supply amount of the raw material liquid.
In the present invention, a freezing chamber configured by the vacuum chamber for freezing the liquid droplets of the raw material liquid, and a drying chamber connected to the freezing chamber via a gate valve to dry the frozen fine particles contained in the container It is also effective when having and.
 本発明によれば、真空槽内の水蒸気分圧を60Pa以下に維持した状態で、噴射ノズルから滴下される原料液の前記液滴の直径が1000μm以下となるように、かつ、当該液滴の初速度が8m/秒以上22m/秒以下となるように調整することにより、原料液の液滴を短時間且つ従来技術に比べて短い落下距離で凍結させることができ、これにより小型で量産可能な真空凍結乾燥装置を提供することができる。 According to the present invention, with the partial pressure of water vapor in the vacuum chamber maintained at 60 Pa or less, the diameter of the droplet of the raw material liquid dropped from the injection nozzle is 1000 μm or less, and By adjusting the initial velocity to 8 m/sec or more and 22 m/sec or less, the liquid droplets of the raw material liquid can be frozen in a short time and with a shorter drop distance than the conventional technology, which allows for small-scale mass production. A vacuum freeze-drying device can be provided.
本発明に係る真空凍結乾燥装置の実施の形態の全体を示す概略構成図Schematic configuration diagram showing the entire embodiment of a vacuum freeze-drying apparatus according to the present invention 直径300μmの水からなる液滴の圧力と温度の関係を示すグラフGraph showing the relationship between pressure and temperature of a droplet of water having a diameter of 300 μm 凍結室内の水蒸気分圧を60Paに維持し、初速度13m/秒で液滴を滴下させた場合における液滴径に対する落下距離と液滴の温度の関係を示すグラフA graph showing the relationship between the drop distance and the droplet temperature with respect to the droplet diameter when the partial pressure of water vapor in the freezing chamber is maintained at 60 Pa and the droplet is dropped at an initial velocity of 13 m/sec. 噴射ノズルの孔径と液滴径の関係を示すグラフGraph showing the relationship between the hole diameter of the injection nozzle and the droplet diameter 噴射ノズルにおける原料液の噴霧圧力と液滴の初速度の関係を示すグラフGraph showing the relationship between the spray pressure of the raw material liquid and the initial velocity of the liquid droplets at the injection nozzle
 以下、本発明の実施の形態を図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明に係る真空凍結乾燥装置の実施の形態の全体を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing an entire embodiment of a vacuum freeze-drying apparatus according to the present invention.
 図1に示すように、本実施の形態の真空凍結乾燥装置1は、排気量調整装置13を介して真空排気装置10に接続された凍結室2と、凍結室2にゲートバルブ5を介して接続された乾燥室3とを有している。 As shown in FIG. 1, the vacuum freeze-drying apparatus 1 of the present embodiment includes a freezing chamber 2 connected to a vacuum exhaust device 10 via an exhaust volume adjusting device 13, and a freezing chamber 2 via a gate valve 5 to the freezing chamber 2. And a drying chamber 3 connected thereto.
 凍結室2は、図示しない搬入室に接続され、乾燥室3には、復圧(大気開放)用の図示しないベントバルブが設けられている。また、凍結室2には、その内部の圧力を測定するための真空計11が接続されている。 The freezing chamber 2 is connected to a carry-in chamber (not shown), and the drying chamber 3 is provided with a vent valve (not shown) for recompressing (opening to the atmosphere). A vacuum gauge 11 for measuring the pressure inside the freezing chamber 2 is connected to the freezing chamber 2.
 凍結室2の外部には、常温の原料液が蓄液された原料タンク9が配置され、凍結室2内の上部には、原料タンク9に接続された噴射ノズル20が設けられている。 A raw material tank 9 in which a raw material liquid at room temperature is stored is arranged outside the freezing chamber 2, and an injection nozzle 20 connected to the raw material tank 9 is provided above the freezing chamber 2.
 そして、噴射ノズル20に原料タンク9から原料液供給量調整装置12を介して原料液が供給され、噴射ノズル20の下端部から原料液が真空雰囲気中に下方に液柱状に噴霧されるようになっている。 Then, the raw material liquid is supplied to the injection nozzle 20 from the raw material tank 9 via the raw material liquid supply amount adjusting device 12, and the raw material liquid is sprayed downward in a vacuum atmosphere in a liquid column shape from the lower end portion of the injection nozzle 20. Has become.
 また、噴射ノズル20の近傍には、図示しない冷凍機に接続されたコールドトラップ6が設けられている。 A cold trap 6 connected to a refrigerator (not shown) is provided near the injection nozzle 20.
 本発明の場合、原料液としては、例えば水からなる溶媒と当該溶媒に溶質を溶解させたものや、水からなる分散媒と当該分散媒に分散した分散質を用いることができる。 In the case of the present invention, the raw material liquid may be, for example, a solvent made of water and a solute dissolved in the solvent, or a dispersion medium made of water and a dispersoid dispersed in the dispersion medium.
 この場合、溶媒と分散媒に用いる水の濃度は、70重量%以上に設定することが好ましい。 In this case, the concentration of water used as the solvent and the dispersion medium is preferably set to 70% by weight or more.
 すなわち、本発明では、70重量%の水からなる溶媒又は分散媒と、この溶媒に溶解させた溶質、又は、この分散媒に分散させた分散質を含む液を原料液として好適に用いることができる。 That is, in the present invention, a solvent or dispersion medium consisting of 70% by weight of water, a solute dissolved in this solvent, or a liquid containing the dispersoid dispersed in this dispersion medium is preferably used as the raw material liquid. it can.
 この場合、溶質又は分散質としては、真空凍結乾燥の際に細胞が破壊されず且つタンパク質等が変性しないフリーズドライ食品の原材料や、製剤の有効成分としての薬物(薬剤)等があげられる。 In this case, examples of solutes or dispersoids include raw materials for freeze-dried foods in which cells are not destroyed and proteins and the like are not denatured during vacuum freeze-drying, and drugs (medicines) as active ingredients of preparations.
 一方、凍結室2の内部の噴射ノズル20の下方には、生成された凍結微粒子35を収容するトレイ7が配置されるようになっている。 On the other hand, below the injection nozzle 20 inside the freezing chamber 2, the tray 7 for containing the generated frozen fine particles 35 is arranged.
 このトレイ7は、図示しないロボット等の搬送機構を用いて凍結室2から乾燥室3内に搬送するように構成されている。 The tray 7 is configured to be transferred from the freezing chamber 2 to the drying chamber 3 by using a transfer mechanism such as a robot (not shown).
 乾燥室3内には、トレイ7に収容された凍結微粒子35を乾燥するための例えば赤外線ヒーターからなる加熱装置8が設けられている。 In the drying chamber 3, there is provided a heating device 8 for drying the frozen fine particles 35 contained in the tray 7, which is, for example, an infrared heater.
 本発明は、70重量%以上の水からなる溶媒又は分散媒を含む液滴を噴射ノズル20から滴下させた場合に凍結するまでの距離を従来技術に比べて小さく(1500mm以下)するために、以下のような条件で液滴の滴下を行うようにしている。 In order to reduce the distance until freezing when a droplet containing a solvent or dispersion medium composed of 70% by weight or more of water is dropped from the injection nozzle 20 as compared with the prior art (1500 mm or less), The droplets are dropped under the following conditions.
 なお、各実験に使用した真空凍結乾燥装置は、(株)アルバック製の微噴凍結乾燥装置であるマイクロパウダードライシステムである。 The vacuum freeze-drying device used in each experiment was a micro-powder dry system, which is a micro-jet freeze-drying device manufactured by ULVAC, Inc.
 本実施の形態において、凍結乾燥された粉体を製造するには、まず、ゲートバルブ5を閉じた状態で真空排気装置10及びコールドトラップ6を動作させて凍結室2内の圧力を減圧する。 In the present embodiment, in order to produce freeze-dried powder, first, the vacuum exhaust device 10 and the cold trap 6 are operated with the gate valve 5 closed to reduce the pressure in the freezing chamber 2.
 この場合、噴射ノズル20から原料液を滴下させると凍結室2内の圧力が上昇することを考慮し、予め真空計11によって測定したデータ等に基づいて、原料液の滴下時における凍結室2内の水蒸気分圧を60Pa以下に維持するように調整する。 In this case, considering that the pressure inside the freezing chamber 2 rises when the raw material liquid is dropped from the injection nozzle 20, the inside of the freezing chamber 2 at the time of dropping the raw material liquid is based on the data measured by the vacuum gauge 11 in advance. The partial pressure of water vapor is adjusted to 60 Pa or less.
 そして、この状態でコールドトラップ6と噴射ノズル20を動作させ、噴射ノズル20の先端部から原料液の液滴を噴射して滴下させる。 Then, in this state, the cold trap 6 and the injection nozzle 20 are operated, and the liquid droplet of the raw material liquid is ejected from the tip of the injection nozzle 20 to be dropped.
 図2は、直径(以下、「径」という。)300μmの水からなる液滴の圧力と温度の関係を示すグラフである。 FIG. 2 is a graph showing the relationship between pressure and temperature of a droplet of water having a diameter (hereinafter referred to as “diameter”) of 300 μm.
 従来技術では、凍結室2内の水蒸気分圧が100Pa程度であったが、本発明では、凍結室2内の水蒸気分圧を60Pa以下に維持するようにしている。 In the prior art, the partial pressure of water vapor in the freezing chamber 2 was about 100 Pa, but in the present invention, the partial pressure of water vapor in the freezing chamber 2 is maintained at 60 Pa or less.
 図2に示すように、凍結室2内の水蒸気分圧が60Pa以下であれば、滴下された300μm径の水の液滴の温度が-25℃以下となり、その結果、水からなる原料液の液滴を確実に凍結させることができる。 As shown in FIG. 2, if the partial pressure of water vapor in the freezing chamber 2 is 60 Pa or less, the temperature of the dropped water droplets of 300 μm diameter is −25° C. or less, and as a result, the raw material liquid consisting of water is The droplet can be surely frozen.
 本実施の形態においては、真空計11にて得られた結果に基づいて凍結室2内の水蒸気分圧が60Pa以下に維持されるように排気量調整装置13及びコールドトラップ6によって排気量を調整する。 In the present embodiment, the exhaust amount is adjusted by the exhaust amount adjusting device 13 and the cold trap 6 so that the partial pressure of water vapor in the freezing chamber 2 is maintained at 60 Pa or less based on the result obtained by the vacuum gauge 11. To do.
 なお、水からなる液滴の径が300μmより大きい場合であっても、図2に示す関係は殆ど変わらない。 Note that the relationship shown in FIG. 2 remains almost unchanged even when the diameter of the droplets of water is larger than 300 μm.
 ただし、液滴の径が大きくなるに従い、所望温度までの冷却時間が長くなるため、冷却されて-25℃に到達するまでの液滴の落下距離が大きくなる。 However, as the diameter of the droplet increases, the cooling time to the desired temperature becomes longer, and the drop distance of the droplet until it reaches -25°C after being cooled increases.
 図3は、凍結室内の水蒸気分圧を60Paに維持し、初速度13m/秒で液滴を滴下させた場合における液滴径に対する落下距離と液滴の温度の関係を示すグラフである。 FIG. 3 is a graph showing the relationship between the drop distance and the temperature of the droplet with respect to the droplet diameter when the partial pressure of water vapor in the freezing chamber is maintained at 60 Pa and the droplet is dropped at an initial velocity of 13 m/sec.
 図3に示すように、液滴径が10000μmの場合は、液滴の温度が-25℃に到達するまでに5000mm以上の落下距離が必要となるのに対し、液滴径が1000μmの場合は、落下距離が500mm程度、液滴径が300μmの場合は、落下距離が200mm程度で液滴の温度が-25℃に到達して凍結することが理解される。 As shown in FIG. 3, when the droplet diameter is 10,000 μm, a drop distance of 5000 mm or more is required before the temperature of the droplet reaches −25° C., whereas when the droplet diameter is 1000 μm, It is understood that when the drop distance is about 500 mm and the droplet diameter is 300 μm, the drop temperature reaches −25° C. and freezes when the drop distance is about 200 mm.
 したがって、本発明では、噴射ノズル20から滴下される原料液の液滴径が1000μm以下であれば、液滴の凍結までの落下距離を確実に1500mm以下にすることができる。 Therefore, in the present invention, if the droplet diameter of the raw material liquid dropped from the injection nozzle 20 is 1000 μm or less, the drop distance until the droplet is frozen can be reliably 1500 mm or less.
 本発明において、液滴径の大きさを調整するには、液滴を滴下する噴射ノズル20のノズル孔の直径(孔径)を調整すればよい。 In the present invention, in order to adjust the size of the droplet diameter, the diameter (hole diameter) of the nozzle hole of the injection nozzle 20 for dropping the droplet may be adjusted.
 図4は、噴射ノズルの孔径と液滴径の関係を示すグラフである。 FIG. 4 is a graph showing the relationship between the hole diameter of the injection nozzle and the droplet diameter.
 上述したように、噴射ノズル20から滴下される原料液の液滴径が1000μm以下であれば、液滴の凍結までの落下距離を確実に1500mm以下にすることができるので、図4から理解されるように、噴射ノズル20の孔径を500μm以下に設定した場合に、液滴径を600μm以下にすることができ、これにより液滴の凍結までの落下距離を確実に1500mm未満にすることができる。 As described above, if the droplet diameter of the raw material liquid dropped from the injection nozzle 20 is 1000 μm or less, the drop distance until the droplet is frozen can be reliably set to 1500 mm or less, which is understood from FIG. As described above, when the hole diameter of the jet nozzle 20 is set to 500 μm or less, the droplet diameter can be set to 600 μm or less, and thus the drop distance until the freezing of the droplet can be reliably set to less than 1500 mm. ..
 本発明では、噴射ノズル20から滴下される原料液の液滴の初速度が8m/秒以上22m/秒以下となるように調整する。 In the present invention, the initial velocity of the droplets of the raw material liquid dropped from the injection nozzle 20 is adjusted to be 8 m/sec or more and 22 m/sec or less.
 本発明者は、原料液の液滴の初速度が22m/秒より大きいと、上述した条件で液滴を滴下させた場合であっても、液滴が完全に凍結する前にトレイ7に到達してしまうことを経験的に見出している。 When the initial velocity of the liquid droplet of the raw material liquid is higher than 22 m/sec, the present inventor reaches the tray 7 before the liquid droplet is completely frozen even when the liquid droplet is dropped under the above-mentioned conditions. I have found empirically that I will do it.
 なお、従来技術では、原料液の液滴の初速度が23m/秒になるように制御を行っていた。 In the prior art, control was performed so that the initial velocity of the liquid droplets of the raw material liquid was 23 m/sec.
 一方、原料液の液滴の初速度が8m/秒より小さいと、噴射ノズル孔の原料液が凍結し孔の閉塞が発生しやすいという不都合がある。 On the other hand, if the initial velocity of the liquid droplets of the raw material liquid is smaller than 8 m/sec, the raw material liquid in the injection nozzle hole may freeze and the hole may be easily clogged.
 図5は、噴射ノズルにおける原料液の噴霧圧力と液滴の初速度の関係を示すグラフである。 FIG. 5 is a graph showing the relationship between the spray pressure of the raw material liquid at the injection nozzle and the initial velocity of the liquid droplets.
 このグラフは、噴射ノズル20の孔径が0.2mm、噴射ノズル20の厚み0.5mmの液収容部に収容された原料液に対し、原料液の表面張力より大きい力を加えた場合の結果を示すデータである。 This graph shows the results when a force larger than the surface tension of the raw material liquid is applied to the raw material liquid stored in the liquid storage portion having the hole diameter of the injection nozzle 20 of 0.2 mm and the thickness of the injection nozzle 20 of 0.5 mm. It is the data shown.
 このグラフによれば、原料液の液滴の初速度を8m/秒(すなわち、ノズル孔に張った水の表面張力より大きい力を加えた場合の流速度に対応する値)にするためには、原料液に対して0.02MPa程度の噴霧圧力を加えればよく、原料液の液滴の初速度を22m/秒にするためには、原料液に対して0.3MPa程度の噴霧圧力を加えればよいことが理解される。 According to this graph, in order to set the initial velocity of the liquid droplets of the raw material liquid to 8 m/sec (that is, the value corresponding to the flow velocity when a force larger than the surface tension of the water stretched in the nozzle hole is applied) It is sufficient to apply a spraying pressure of about 0.02 MPa to the raw material liquid. In order to set the initial velocity of the liquid droplets of the raw material liquid to 22 m/sec, a spraying pressure of about 0.3 MPa should be applied to the raw material liquid. It is understood that it is good.
 したがって、上述した噴射ノズル20の孔径及び液収容部の寸法(厚み)に基づいて噴射ノズル20から滴下される原料液の液滴の初速度が8m/秒以上22m/秒以下となるように、原料液供給量調整装置12によって噴射ノズル20に対する原料液の供給量(送液圧力)を調整する。 Therefore, based on the hole diameter of the injection nozzle 20 and the dimension (thickness) of the liquid storage portion, the initial velocity of the droplet of the raw material liquid dropped from the injection nozzle 20 is 8 m/sec or more and 22 m/sec or less, The raw material liquid supply amount adjusting device 12 adjusts the supply amount (liquid feeding pressure) of the raw material liquid to the injection nozzle 20.
 以上説明した条件の下で原料液の滴下を行うと、例えば図1に示すように、噴射ノズル20から滴下された原料液が、滴下の初期状態では柱状の原料液21になり、その後、その表面張力によって柱状の原料液21から切り離されて原料液の液滴30になる。 When the raw material liquid is dropped under the conditions described above, for example, as shown in FIG. 1, the raw material liquid dropped from the injection nozzle 20 becomes a columnar raw material liquid 21 in the initial state of dropping, and thereafter, It is separated from the columnar raw material liquid 21 by the surface tension and becomes a droplet 30 of the raw material liquid.
 さらに、この原料液の液滴30は、下降するに伴い、分散状態の液滴31を経て粒子状の液滴32となる。 Further, the droplets 30 of the raw material liquid become the droplets 32 in the form of particles through the droplets 31 in the dispersed state as they descend.
 その後、粒子状の液滴32は、コールドトラップ6による凍結室2内の水分の吸着によって水分が蒸発して自己凍結が始まり、これにより凍結微粒子35が形成される。 Thereafter, the particulate droplets 32 are evaporated by the cold trap 6 to adsorb the water in the freezing chamber 2 and self-freezing starts, whereby frozen fine particles 35 are formed.
 これら凍結微粒子35は、四方に広がった状態で落下してトレイ7内に収容される。 The frozen fine particles 35 are spread in all directions and fall into the tray 7.
 その後、図示しないロボット等の搬送機構を用いてトレイ7を乾燥室3内に搬入し、加熱装置8によって凍結微粒子35を加熱して残留している水分を蒸発して乾燥させる。 After that, the tray 7 is carried into the drying chamber 3 by using a transfer mechanism such as a robot (not shown), and the frozen fine particles 35 are heated by the heating device 8 to evaporate the remaining water and dry the same.
 なお、この乾燥工程においては、ゲートバルブ5を閉じて、次の原料液の噴霧、凍結を連続して実施する。 Note that in this drying process, the gate valve 5 is closed and the subsequent spraying and freezing of the raw material liquid is continuously performed.
 以上述べた本実施の形態によれば、凍結室2内の水蒸気分圧を60Pa以下に維持した状態で、噴射ノズル20から滴下される原料液の液滴30の直径が1000μm以下となるように、かつ、当該液滴の初速度が8m/秒以上22m/秒以下となるように調整することにより、原料液の液滴30を短時間且つ従来技術に比べて短い落下距離(1500mm以下)で凍結させることができ、これにより小型で量産可能な真空凍結乾燥装置1を提供することができる。 According to the present embodiment described above, the diameter of the droplet 30 of the raw material liquid dropped from the injection nozzle 20 is 1000 μm or less while the partial pressure of water vapor in the freezing chamber 2 is maintained at 60 Pa or less. Moreover, by adjusting the initial velocity of the droplet to be 8 m/sec or more and 22 m/sec or less, the droplet 30 of the raw material liquid can be dropped in a short time and with a shorter fall distance (1500 mm or less) as compared with the conventional technique. The vacuum freeze-drying apparatus 1 that can be frozen and can be mass-produced can be provided.
 なお、本発明は上述した実施の形態に限られず、種々の変更を行うことができる。 The present invention is not limited to the above-described embodiment, and various changes can be made.
 例えば、上記実施の形態では、凍結室2と乾燥室3をゲートバルブ5を介して接続するようにしたが、本発明はこれに限られず、一つの真空槽内に凍結微粒子を乾燥させる加熱装置を設けることもできる。 For example, in the above embodiment, the freezing chamber 2 and the drying chamber 3 are connected via the gate valve 5, but the present invention is not limited to this, and a heating device for drying frozen fine particles in one vacuum tank. Can be provided.
 なお、この場合には、凍結微粒子を収容するトレイの温度を低温に維持し、凍結微粒子から発生する昇華ガスの量を減少させるように構成するとよい。 Note that in this case, it is advisable to maintain the temperature of the tray containing the frozen fine particles at a low temperature and reduce the amount of sublimation gas generated from the frozen fine particles.
 また、上記実施の形態では、コールドトラップ6を凍結室2内に設けるようにしたが、本発明はこれに限られず、コールドトラップを凍結室と別の室内に配置し、この室と凍結室とを接続するように構成することもできる。 Further, although the cold trap 6 is provided in the freezing chamber 2 in the above-described embodiment, the present invention is not limited to this, and the cold trap is arranged in a chamber different from the freezing chamber, and the cold trap 6 and the freezing chamber are separated from each other. Can also be configured to connect.
 1……真空凍結乾燥装置
 2……凍結室
 3……乾燥室
 5……ゲートバルブ
 6……コールドトラップ
 7……トレイ
 8……加熱装置
 9……原料タンク
10……真空排気装置
11……真空計
12……原料液供給量調整装置
13……排気量調整装置
20……噴射ノズル
30……原料液の液滴
35……凍結微粒子 
1... Vacuum freeze-drying device 2... Freezing chamber 3... Drying chamber 5... Gate valve 6... Cold trap 7... Tray 8... Heating device 9... Raw material tank 10... Vacuum exhaust device 11... Vacuum gauge 12... Raw material liquid supply amount adjusting device 13... Exhaust amount adjusting device 20... Injection nozzle 30... Raw material liquid droplets 35... Frozen particles

Claims (5)

  1.  原料液を真空槽内で噴射ノズルから滴下噴霧し、低温真空下で自己凍結による凍結微粒子を生成し、生成された当該凍結微粒子を乾燥させて乾燥粉体を製造する工程を有する真空凍結乾燥方法であって、
     前記真空槽内の水蒸気分圧を60Pa以下に維持した状態で、前記噴射ノズルから滴下される原料液の前記液滴の直径が1000μm以下となるように、かつ、当該液滴の初速度が8m/秒以上22m/秒以下となるように調整する工程を有する真空凍結乾燥方法。
    A vacuum freeze-drying method including a step of spraying a raw material liquid from a spray nozzle in a vacuum tank, producing frozen fine particles by self-freezing under low temperature vacuum, and drying the produced frozen fine particles to produce a dry powder. And
    With the water vapor partial pressure in the vacuum tank maintained at 60 Pa or less, the diameter of the droplet of the raw material liquid dropped from the injection nozzle is 1000 μm or less, and the initial velocity of the droplet is 8 m. The method of vacuum freeze-drying, which comprises the step of adjusting the pressure to be not less than 22 m/sec and not more than 22 m/sec.
  2.  前記原料液が、含有量が70重量%以上の水からなる溶媒又は分散媒と、前記溶媒に溶解させた溶質又は前記分散媒に分散させた分散質を含む請求項1記載の真空凍結乾燥方法。 The vacuum freeze-drying method according to claim 1, wherein the raw material liquid contains a solvent or a dispersion medium composed of water having a content of 70% by weight or more, and a solute dissolved in the solvent or a dispersoid dispersed in the dispersion medium. ..
  3.  前記原料液の前記溶質又は前記分散質が、真空凍結乾燥の際に細胞が破壊されず且つタンパク質が変性しないフリーズドライ食品の原材料、又は、製剤の有効成分としての薬物である請求項2記載の真空凍結乾燥方法。 3. The solute or the dispersoid of the raw material liquid is a raw material of a freeze-dried food in which cells are not destroyed and proteins are not denatured during vacuum freeze-drying, or a drug as an active ingredient of a preparation. Vacuum freeze-drying method.
  4.  凍結微粒子を収容する容器を配置可能な真空槽と、
     前記真空槽内に設けられ、原料タンクから供給された70重量%以上の水を含む原料液の液滴を滴下噴霧する噴射ノズルと、
     前記噴射ノズルに対して前記原料液を供給する原料タンクと、
     前記真空槽内の水分を除去するためのコールドトラップと、
     前記容器に収容された凍結微粒子を乾燥させるための加熱装置とを有し、
     原料液を滴下する際、前記真空槽に接続された真空計にて得られた結果に基づいて当該真空槽内の水蒸気分圧を60Pa以下に維持するように前記コールドトラップと共に排気量を調整する排気量調整装置が設けられるとともに、前記噴射ノズルから滴下される原料液の液滴の直径が1000μm以下となるように当該噴射ノズルの孔径が調整され、さらに、前記噴射ノズルの孔径及び液収容部の寸法に基づいて当該噴射ノズルから滴下される原料液の液滴の初速度が8m/秒以上22m/秒以下となるように原料液供給量調整装置によって前記噴射ノズルに対する原料液の供給量を調整するように構成されている真空凍結乾燥装置。
    A vacuum chamber in which a container for storing frozen fine particles can be arranged,
    An injection nozzle which is provided in the vacuum tank and which sprays droplets of a raw material liquid containing 70% by weight or more of water supplied from the raw material tank.
    A raw material tank for supplying the raw material liquid to the injection nozzle,
    A cold trap for removing water in the vacuum chamber,
    And a heating device for drying the frozen fine particles contained in the container,
    When the raw material liquid is dropped, the exhaust amount is adjusted together with the cold trap so that the partial pressure of water vapor in the vacuum tank is maintained at 60 Pa or less based on the result obtained by the vacuum gauge connected to the vacuum tank. An exhaust amount adjusting device is provided, and the hole diameter of the injection nozzle is adjusted so that the diameter of the droplet of the raw material liquid dropped from the injection nozzle is 1000 μm or less. Based on the dimension of the above, the supply rate of the raw material liquid to the injection nozzle is adjusted by the raw material liquid supply amount adjusting device so that the initial velocity of the droplets of the raw material liquid dropped from the injection nozzle is 8 m/sec or more and 22 m/sec or less. A vacuum lyophilizer that is configured to condition.
  5.  前記真空槽によって構成され、前記原料液の液滴の凍結を行う凍結室と、前記凍結室とゲートバルブを介して接続され、前記容器に収容された凍結微粒子を乾燥させる乾燥室とを有する請求項4記載の真空凍結乾燥装置。  A freezing chamber configured by the vacuum chamber for freezing the liquid droplets of the raw material liquid, and a drying chamber connected to the freezing chamber via a gate valve for drying the frozen fine particles contained in the container. Item 5. The vacuum freeze-drying device according to item 4. 
PCT/JP2019/004442 2019-02-07 2019-02-07 Vacuum-freeze drying method and vacuum-freeze drying device WO2020161863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004442 WO2020161863A1 (en) 2019-02-07 2019-02-07 Vacuum-freeze drying method and vacuum-freeze drying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004442 WO2020161863A1 (en) 2019-02-07 2019-02-07 Vacuum-freeze drying method and vacuum-freeze drying device

Publications (1)

Publication Number Publication Date
WO2020161863A1 true WO2020161863A1 (en) 2020-08-13

Family

ID=71947706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004442 WO2020161863A1 (en) 2019-02-07 2019-02-07 Vacuum-freeze drying method and vacuum-freeze drying device

Country Status (1)

Country Link
WO (1) WO2020161863A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11320200B1 (en) 2021-02-16 2022-05-03 Ulvac, Inc. Freeze-drying device and freeze-drying method
JP7367240B1 (en) 2022-05-19 2023-10-23 株式会社神鋼環境ソリューション Particle manufacturing device and frozen particle manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090671A (en) * 2004-09-27 2006-04-06 Ulvac Japan Ltd Freeze vacuum dryer and freeze vacuum drying method
WO2008153039A1 (en) * 2007-06-14 2008-12-18 Ulvac, Inc. Vacuum freeze-drying apparatus and method of vacuum freeze drying
JP2014520912A (en) * 2011-06-30 2014-08-25 イー アンド ジェイ ガロ ワイネリイ Natural crystalline colorant and process
JP2014530685A (en) * 2011-10-05 2014-11-20 サノフィ パスツール ソシエテ アノニム Process line for manufacturing freeze-dried particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090671A (en) * 2004-09-27 2006-04-06 Ulvac Japan Ltd Freeze vacuum dryer and freeze vacuum drying method
WO2008153039A1 (en) * 2007-06-14 2008-12-18 Ulvac, Inc. Vacuum freeze-drying apparatus and method of vacuum freeze drying
JP2014520912A (en) * 2011-06-30 2014-08-25 イー アンド ジェイ ガロ ワイネリイ Natural crystalline colorant and process
JP2014530685A (en) * 2011-10-05 2014-11-20 サノフィ パスツール ソシエテ アノニム Process line for manufacturing freeze-dried particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11320200B1 (en) 2021-02-16 2022-05-03 Ulvac, Inc. Freeze-drying device and freeze-drying method
WO2022175999A1 (en) * 2021-02-16 2022-08-25 株式会社アルバック Freeze-drying apparatus and freeze-drying method
US11480390B2 (en) 2021-02-16 2022-10-25 Ulvac, Inc. Freeze-drying device and freeze-drying method
US11732965B2 (en) 2021-02-16 2023-08-22 Ulvac, Inc. Freeze-drying device and freeze-drying method
JP7367240B1 (en) 2022-05-19 2023-10-23 株式会社神鋼環境ソリューション Particle manufacturing device and frozen particle manufacturing method
WO2023224103A1 (en) * 2022-05-19 2023-11-23 株式会社神鋼環境ソリューション Particle production device and method for producing frozen particles
JP2023171213A (en) * 2022-05-19 2023-12-01 株式会社神鋼環境ソリューション Particle production device and frozen particle production method

Similar Documents

Publication Publication Date Title
US7007406B2 (en) Powder formation by atmospheric spray-freeze drying
US8322046B2 (en) Powder formation by atmospheric spray-freeze drying
EP0742888B1 (en) Process for drying a material from solution
US7278843B2 (en) Methods for fine powder formation
US8341854B2 (en) Vacuum freeze-drying apparatus and method for vacuum freeze drying
WO2020161863A1 (en) Vacuum-freeze drying method and vacuum-freeze drying device
JP3942093B2 (en) Spray type vacuum freeze dryer
JP6887050B1 (en) Vacuum freeze-drying method and vacuum freeze-drying equipment
WO2004071410A2 (en) Lyophilization method and apparatus for producing particles
JP4180551B2 (en) Freeze vacuum drying apparatus and freeze vacuum drying method
US7279181B2 (en) Method for preparation of particles from solution-in-supercritical fluid or compressed gas emulsions
Rostamnezhad et al. Spray freeze-drying for inhalation application: process and formulation variables
US20210190425A1 (en) Spray freeze drying on a substrate
Beteta et al. Cool down with liquid nitrogen
Zhiyi et al. Experimental investigation on the micronization of aqueous cefadroxil by supercritical fluid technology
JP2023528418A (en) Freeze-drying with combination of freezing chamber and condenser
CA2450779C (en) Powder formation by atmospheric spray-freeze drying
Werly et al. Production of submicronic powder by spray-freezing
Schaefer et al. Making large, flowable particles of protein or disaccharide in a mini-scale spray dryer
CN206508943U (en) Porous light particle preparation facilities
IES64140B2 (en) Process for drying a material from solution
CN117781610A (en) Spray freeze drying device and spray freeze drying system
JP2001011635A (en) Liquid material evaporator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP