WO2020161817A1 - Corrosion resistance diagnostic component, corrosion resistance diagnostic device, heat exchanger, air conditioner, method for manufacturing corrosion resistance diagnostic component and diagnosis method - Google Patents

Corrosion resistance diagnostic component, corrosion resistance diagnostic device, heat exchanger, air conditioner, method for manufacturing corrosion resistance diagnostic component and diagnosis method Download PDF

Info

Publication number
WO2020161817A1
WO2020161817A1 PCT/JP2019/004197 JP2019004197W WO2020161817A1 WO 2020161817 A1 WO2020161817 A1 WO 2020161817A1 JP 2019004197 W JP2019004197 W JP 2019004197W WO 2020161817 A1 WO2020161817 A1 WO 2020161817A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
sacrificial layer
corrosion resistance
diagnostic component
core material
Prior art date
Application number
PCT/JP2019/004197
Other languages
French (fr)
Japanese (ja)
Inventor
栗木 宏徳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/004197 priority Critical patent/WO2020161817A1/en
Priority to JP2019536610A priority patent/JPWO2020161817A1/en
Publication of WO2020161817A1 publication Critical patent/WO2020161817A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/04Corrosion probes

Definitions

  • the present invention relates to a corrosion resistance diagnostic component used for diagnosing a corrosion state of a material to be diagnosed in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum, a corrosion resistance diagnostic device including the corrosion resistance diagnostic component, and the corrosion resistance diagnostic.
  • the present invention relates to a heat exchanger including components, an air conditioner including the corrosion-resistant diagnostic component, a method for manufacturing the corrosion-resistant diagnostic component, and a diagnostic method using the corrosion-resistant diagnostic component.
  • a heat transfer tube in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum may be used.
  • the heat transfer tube in which the sacrificial layer containing zinc is formed on the surface of the core material containing aluminum may be simply referred to as an aluminum heat transfer tube.
  • the aluminum heat transfer tube may have local corrosion, a through hole may be formed in the aluminum heat transfer tube, and a refrigerant leak may occur. For this reason, there is a demand for a technique for detecting corrosion leading to refrigerant leakage by grasping the progress of corrosion of the aluminum heat transfer tube.
  • Patent Document 1 discloses a technique for diagnosing the life of a heat exchanger using an aluminum heat transfer tube by using a corrosion resistance life diagnosis component.
  • the corrosion resistance life diagnosis component includes a plate-shaped base material having an aluminum layer on the surface.
  • the corrosion-resistant life diagnostic component has a sacrificial anode layer made of a zinc-aluminum alloy formed on a part of the surface of the base material. That is, in the corrosion-resistant life diagnostic component, the base material exposed portion where the base material is exposed is formed on a part of the surface.
  • the corrosion resistance life diagnosis component described in Patent Document 1 is a zinc-aluminum alloy on the surface of the base material by spraying zinc on the surface of the base material or by applying a coating containing zinc on the surface of the base material.
  • a sacrificial anode layer is formed.
  • zinc diffuses to the base material side. That is, in the corrosion-resistant life diagnosis component described in Patent Document 1, diffused zinc is present in at least a part of the base material exposed portion observed when forming the sacrificial anode layer and performing life diagnosis.
  • the present invention has been made to solve the above-mentioned problems, and it is possible to more accurately diagnose the corrosion state of a material to be diagnosed in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum than in the past.
  • a first object is to obtain a possible corrosion resistance diagnostic component.
  • the present invention also provides a corrosion resistance diagnostic device including the corrosion resistance diagnostic component, a heat exchanger including the corrosion resistance diagnostic component, an air conditioner including the corrosion resistance diagnostic component, a method of manufacturing the corrosion resistance diagnostic component, and the corrosion resistance.
  • a second object is to provide a diagnostic method using a diagnostic component.
  • the corrosion-resistant diagnostic component according to the present invention is a corrosion-resistant diagnostic component used for diagnosing a corrosion condition of a material to be diagnosed in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum, and the corrosion-resistant diagnostic component is A first core material containing aluminum and a first sacrificial layer formed on the surface of the first core material and containing zinc having a lower corrosion resistance than the first core material are provided, and the corrosion resistance diagnostic component includes At a position adjacent to the first sacrificial layer, the first sacrificial layer is removed from the surface to the inside of the first core material with respect to the boundary between the first sacrificial layer and the first core material, and the first core material is removed. It has a configuration in which an exposed portion where the core material is exposed is formed.
  • the corrosion resistance diagnostic device is a corrosion resistance diagnostic component according to the present invention, a photographing unit for photographing the surface of the exposed portion, and corrosion of the surface of the exposed portion from image data photographed by the photographing unit. And a detection unit that detects the situation.
  • the heat exchanger according to the present invention includes the corrosion resistance diagnostic component according to the present invention, and a refrigerant pipe in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum, and a refrigerant flows, the corrosion resistance diagnosis The component is formed of the same member as the refrigerant pipe.
  • an air conditioner according to the present invention is a corrosion resistance diagnostic component according to the present invention, a heat exchanger having a heat transfer tube in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum, and a core containing aluminum.
  • a sacrificial layer containing zinc is formed on the surface of the material, and a refrigerant pipe in which the refrigerant flowing into the heat exchanger or the refrigerant flowing out of the heat exchanger flows is provided, and the corrosion-resistant diagnostic component is the same as the refrigerant pipe. It is formed of a member.
  • the method for manufacturing a corrosion-resistant diagnostic component comprises a preparation step of preparing a material for a corrosion-resistant diagnostic component in which the first sacrificial layer is formed on the surface of the first core material, and a surface of the first sacrificial layer. From the boundary between the first sacrificial layer and the first core material to the inside of the first core material, and forming the exposed portion at a position adjacent to the first sacrificial layer. I have it.
  • the diagnostic method according to the present invention is a diagnostic method for diagnosing a corrosion state of a material to be diagnosed in which a sacrificial layer containing zinc is formed on a surface of a core material containing aluminum using the corrosion resistance diagnostic component according to the present invention. Then, on the surface of the exposed portion, a range within a specified distance from the first sacrificial layer is defined as a first range, and when a local corrosion mark appears in the first range, the material to be diagnosed is used. Diagnose the product is at end of life.
  • the exposed portion is removed from the surface of the first sacrificial layer to the inside of the first core material with respect to the boundary between the first sacrificial layer and the first core material.
  • the core material is exposed. That is, in the exposed portion of the corrosion-resistant diagnostic component according to the present invention, the boundary portion between the first sacrificial layer and the first core member is completely removed. In other words, in the exposed portion of the corrosion-resistant diagnostic component according to the present invention, zinc diffused in the first core material during the formation of the first sacrificial layer is completely removed. Therefore, in the corrosion-resistant diagnostic component according to the present invention, the corrosion status of the material to be diagnosed can be diagnosed more accurately than before based on the corrosion status of the surface of the exposed portion.
  • FIG. 1 It is a refrigerant circuit diagram showing a schematic structure of an air conditioner concerning Embodiment 1 of the present invention. It is a functional block diagram of the corrosion-resistant diagnostic device which concerns on Embodiment 1 of this invention. It is a top view which shows the outline of the corrosion-resistant diagnostic component which concerns on Embodiment 1 of this invention. It is a longitudinal cross-sectional view which shows the outline of the corrosion-resistant diagnostic component which concerns on Embodiment 1 of this invention. It is a model figure for demonstrating the reaction which arises at the time of corrosion progress of the corrosion-resistant diagnostic component concerning Embodiment 1 of this invention. It is a figure which shows the changing process of the exposed part of the corrosion-resistant diagnostic component which concerns on Embodiment 1 of this invention. FIG.
  • FIG. 4 is a vertical cross-sectional view of the corrosion resistance diagnostic component according to the first embodiment, showing a state in which general corrosion has occurred in the first sacrificial layer of the corrosion resistance diagnostic component. It is a figure which shows the changing process of the surface of the 1st sacrificial layer of the corrosion resistance diagnostic component which concerns on Embodiment 1 of this invention.
  • 3 is a flowchart showing a manufacturing process of the corrosion resistance diagnostic component according to the first embodiment of the present invention. It is a figure which shows the formation process of the exposed part of the corrosion-resistant diagnostic component which concerns on Embodiment 1 of this invention.
  • 3 is a flowchart showing a combined cycle test performed in the first embodiment of the present invention. It is a side view which shows a part of core part of the outdoor heat exchanger which concerns on Embodiment 4 of this invention.
  • Embodiment 1 [About the structure of the corrosion resistance diagnostic component, the structure of the corrosion resistance diagnostic device, and the purpose of providing these]
  • a heat transfer tube made of a material containing aluminum is used as the heat transfer tube of the outdoor heat exchanger 100.
  • This heat transfer tube has a structure in which a sacrificial layer containing zinc is formed on the surface and corrosion of the heat transfer tube is suppressed. That is, the heat transfer tube of the outdoor heat exchanger 100 has a structure in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum.
  • the sacrificial layer containing zinc may be referred to as a zinc sacrificial layer.
  • a member having a zinc sacrificial layer formed on the surface of a core material containing aluminum may be referred to as an aluminum material with a zinc sacrificial layer.
  • the heat transfer tube using the core material containing aluminum may be called an aluminum heat transfer tube.
  • the core material of the aluminum heat transfer tube of the outdoor heat exchanger 100 is an aluminum alloy containing no zinc.
  • the aluminum alloy is, for example, an aluminum-manganese alloy.
  • the zinc sacrificial layer of the heat transfer tube of the outdoor heat exchanger 100 is an aluminum-zinc alloy layer.
  • the zinc sacrificial layer is lower in potential than the aluminum alloy as the core material. Therefore, in the heat transfer tube of the outdoor heat exchanger 100, the sacrificial layer is preferentially corroded, and the corrosion of the aluminum alloy of the core material can be suppressed.
  • the corrosion mode of the zinc sacrificial layer is a general corrosion in which the surface layer is uniformly corroded from the surface side to the inside side. Moreover, the corrosion form of the core material which is an aluminum alloy becomes a local corrosion. Therefore, by forming a sacrificial layer containing zinc on the surface of the aluminum heat transfer tube of the outdoor heat exchanger 100, the corrosion resistance of the aluminum heat transfer tube of the outdoor heat exchanger 100 can be improved.
  • the zinc sacrificial layer may peel off at a part of the surface of the core material.
  • the aluminum alloy as the core material may be exposed on a part of the surface from the beginning of manufacturing. As described above, the exposed portion of the aluminum alloy as the core material on the surface of the aluminum heat transfer tube is also protected by the preferential corrosion of the zinc sacrificial layer.
  • the corrosion resistance of the aluminum heat transfer tube whose surface of the core material is covered with the zinc sacrificial layer greatly affects the product life of the outdoor heat exchanger 100 and the outdoor unit equipped with the outdoor heat exchanger 100.
  • the corrosion resistance diagnostic component and the corrosion resistance diagnostic device according to the first embodiment are used for the purpose of diagnosing the corrosion state of the aluminum heat transfer tube in which the surface of the core material is covered with the zinc sacrificial layer.
  • the corrosion-resistant diagnostic component and the corrosion-resistant diagnostic device according to the first embodiment include the outdoor heat exchanger 100 and the outdoor heat exchanger 100 that use the aluminum heat transfer tube whose surface of the core material is covered with the zinc sacrificial layer. It is used for the purpose of grasping the life of the installed outdoor unit. That is, in the first embodiment, the aluminum heat transfer tube whose surface is covered with the zinc sacrificial layer is the material to be diagnosed.
  • the air conditioner 200 includes a compressor 201, a muffler 202, a four-way valve 203, an outdoor heat exchanger 100, a capillary tube 205, a strainer 206, an electronically controlled expansion valve 207,
  • the refrigerant circuit is configured by connecting the stop valve 208a, the indoor heat exchanger 209, the stop valve 208b, and the auxiliary muffler 210 with the refrigerant pipe 204.
  • the indoor unit having the indoor heat exchanger 209 of the air conditioner 200 controls the actuators such as the compressor 201 and the electronically controlled expansion valve 207 based on the temperatures of the outside air, the indoor air, the refrigerant, and the like.
  • a device 211 is provided.
  • the four-way valve 203 is a valve that switches a refrigeration cycle for cooling and heating, and is controlled by the control device 211.
  • the control device 211 also functions as a control device for the corrosion resistance diagnostic device 300.
  • the control device of the air conditioner 200 and the control device of the corrosion resistance diagnostic device 300 may be separately configured.
  • the control device 211 is composed of dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in a memory.
  • the CPU is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor.
  • control device 211 When the control device 211 is dedicated hardware, the control device 211 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable Each of the functional units realized by the control device 211 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • each function executed by the control device 211 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in memory.
  • the CPU realizes each function of the control device 211 by reading and executing the program stored in the memory.
  • the memory is, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
  • control device 211 may be realized by dedicated hardware and a part thereof may be realized by software or firmware.
  • the air conditioner 200 during a cooling operation will be described with reference to FIG.
  • the refrigerant is compressed by the compressor 201 to become a high-temperature and high-pressure gas refrigerant, and is transferred to the outdoor heat exchanger 100 via the four-way valve 203.
  • the high-temperature high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 100 exchanges heat with the outdoor air passing through the outdoor heat exchanger 100, and flows out as a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 100 is decompressed by the capillary 205 and the electronically controlled expansion valve 207, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 209.
  • the gas-liquid two-phase refrigerant flowing into the indoor heat exchanger 209 exchanges heat with the indoor air passing through the indoor heat exchanger 209, cools the indoor air, becomes a low-temperature low-pressure gas refrigerant, and is sucked into the compressor 201. To be done.
  • the air conditioner 200 during heating operation When the four-way valve 203 is switched to the flow path of the heating operation by the control device 211, the refrigerant is compressed by the compressor 201 into a high-temperature and high-pressure gas refrigerant in the same manner as described above, and the indoor heat is transferred via the four-way valve 203. It flows into the exchanger 209.
  • the high-temperature and high-pressure gas refrigerant flowing into the indoor heat exchanger 209 exchanges heat with the indoor air passing through the indoor heat exchanger 209 to warm the indoor air and become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out from the indoor heat exchanger 209 is decompressed by the electronically controlled expansion valve 207 and the capillary tube 205, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the outdoor heat exchanger 100.
  • the low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 100 exchanges heat with the outdoor air that passes through the outdoor heat exchanger 100, becomes a low-temperature low-pressure gas refrigerant, and is sucked into the compressor 201.
  • FIG. 2 is a functional block diagram of the corrosion resistance diagnostic device according to the first embodiment of the present invention.
  • the corrosion resistance diagnostic device 300 includes a photographing unit 312, a detection unit 313, a storage unit 314, a comparison unit 315, a notification unit 316, a control device 211, and a corrosion resistance diagnosis component 1 described below.
  • the imaging unit 312 is an imaging device such as a digital camera or a television camera, for example. Based on a control signal from the control device 211, the image capturing unit 312 captures an image of the surface of the corrosion resistance diagnostic component 1 described later. More specifically, the image capturing unit 312 captures at least the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 described below.
  • the image data of the surface of the corrosion resistance diagnostic component 1 photographed by the photographing unit 312 is input to the detection unit 313.
  • the detection unit 313 obtains a digital image signal by A/D (Analog/Digital) conversion of the image data output from the imaging unit 312 based on the control signal from the control device 211, and the corrosion resistance diagnostic component 1
  • the image data of the surface of is analyzed. That is, the detection unit 313 detects the corrosion state of the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 from the image data captured by the imaging unit 312.
  • the image data analyzed by the detection unit 313 is output to the comparison unit 315 and the storage unit 314.
  • the storage unit 314 is, for example, a memory, and stores a parameter indicating the corrosion state of the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1.
  • the storage unit 314 stores the image data output from the detection unit 313 as a parameter indicating the corrosion state of the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1.
  • the comparison unit 315 compares the detection result of the detection unit 313 with the parameter stored in the storage unit 314. In the case of the first embodiment, the comparison unit 315 compares the image data sent from the detection unit 313 with the image data stored in the storage unit 314.
  • the notification unit 316 notifies the comparison result of the comparison unit 315.
  • the operation panel or operation panel (not shown) of the air conditioner 200 is used as the notification unit 316. That is, in the first embodiment, the notification unit 316 notifies the comparison result of the comparison unit 315 by displaying the comparison result of the comparison unit 315.
  • the detection unit 313 and the comparison unit 315 are configured by dedicated hardware or a CPU that executes a program stored in a memory, for example.
  • the detection unit 313 and the comparison unit 315 may be a part of the functional unit of the control device 211 or may be configured separately from the control device 211. Further, for example, the detection unit 313 can also be configured as hardware combined with the image capturing unit 312.
  • the hardware in which the imaging unit 312 and the detection unit 313 are combined is, for example, a line scan camera, a three-dimensional image processing system, an image discrimination sensor, or the like.
  • the corrosion resistance diagnostic device 300 configured as described above is mounted on the air conditioner 200 described above.
  • the corrosion resistance diagnostic device 300 may be sold together with the air conditioner 200, or may be sold together with the outdoor heat exchanger 100. That is, the corrosion resistance diagnostic device 300 may be treated as a configuration of the air conditioner 200 or may be treated as a configuration of the outdoor heat exchanger 100.
  • Al material with zinc sacrificial layer used for aluminum heat transfer tubes When manufacturing an aluminum material with a zinc sacrificial layer used for an aluminum heat transfer tube, first, a core material using a material containing aluminum is prepared. Then, by forming a zinc sacrificial layer having lower corrosion resistance than the core material on the surface of the core material, an aluminum material with a zinc sacrificial layer used for an aluminum heat transfer tube is manufactured. Specifically, for example, an aluminum alloy such as an aluminum-manganese alloy is used as a core material, a sacrificial layer of an aluminum-zinc alloy is formed on the surface of the core material, and an aluminum material with a zinc sacrificial layer used for an aluminum heat transfer tube. Is manufactured.
  • an aluminum alloy such as an aluminum-manganese alloy is used as a core material
  • a sacrificial layer of an aluminum-zinc alloy is formed on the surface of the core material
  • An aluminum clad material or a zinc sprayed aluminum material is used as the aluminum material with a zinc sacrificial layer.
  • the aluminum clad material is manufactured by rolling and heat treating a material containing aluminum as a core material and an aluminum-zinc alloy material as a zinc sacrificial layer, and joining the both.
  • the zinc-sprayed aluminum material is manufactured by spraying metallic zinc on the surface of a core material containing aluminum and diffusing the zinc into the core material by heat treatment.
  • both aluminum clad material and zinc sprayed aluminum material can be used.
  • flat tubes may be used as the heat transfer tubes of the heat exchanger.
  • the flat tube has a flat cross section, and has a pair of flat portions facing a part of the external shape. Further, the flat tube has a plurality of refrigerant flow paths formed therein.
  • the flat tube thus configured is used as, for example, a fin tube type heat exchanger in which fin materials are combined.
  • nozzles for spraying zinc are installed on both sides of a tubular member containing aluminum as a core material, and molten zinc is sprayed onto the surface of the tubular member from these nozzles. .. Therefore, on the surface of the tubular member, an unsprayed portion of zinc may be formed around the portion that is oriented in the direction perpendicular to the facing direction of the nozzle. That is, in the heat transfer tube made of zinc sprayed aluminum material, the core material may be exposed on a part of the surface. However, for the portion where the core material is exposed on the surface, the zinc sacrificial layer around the portion exhibits the anticorrosion function. Since the anticorrosion performance of the zinc sacrificial layer with respect to the core material is determined by the sprayed zinc basis weight and the degree of zinc diffusion by heat treatment, the zinc sacrificial layer is designed according to the product life.
  • the corrosion resistance diagnostic component 1 included in the corrosion resistance diagnostic device 300 according to the first embodiment is particularly effective in diagnosing the presence or absence of the anticorrosion function of the zinc sacrificial layer for the portion where the core material is exposed on the surface. Therefore, in the first embodiment, the case where a zinc sprayed aluminum material is used as the aluminum heat transfer tube of the outdoor heat exchanger 100 will be described below as an example.
  • FIG. 3 is a plan view showing an outline of the corrosion resistance diagnostic component according to the first embodiment of the present invention.
  • FIG. 4 is a vertical cross-sectional view showing an outline of the corrosion resistance diagnostic component according to the first embodiment of the present invention.
  • the core material of the corrosion resistance diagnostic component 1 in order to distinguish the core material of the corrosion resistance diagnostic component 1 from the core material of the material to be diagnosed, the core material of the corrosion resistance diagnostic component 1 is referred to as a first core material 3.
  • the zinc sacrificial layer of the corrosion resistant diagnostic component 1 is referred to as a first sacrificial layer 2.
  • the concentration of zinc in the first sacrificial layer 2 is shown by hatching. Therefore, in the cross-sectional view of FIG. 4, hatching of the cross-section portion is omitted. The denser the hatching, the higher the zinc concentration.
  • the two-dot chain line shown in FIG. 4 indicates the boundary between the first sacrificial layer 2 and the first core material 3.
  • the corrosion resistance diagnostic component 1 is used to diagnose the corrosion state of the material to be diagnosed.
  • an aluminum material with a zinc sacrificial layer used for an aluminum heat transfer tube of the outdoor heat exchanger 100 which is a material to be diagnosed, is used as a material of the corrosion resistance diagnostic component 1.
  • This aluminum material with a zinc sacrificial layer is a zinc sprayed aluminum material.
  • This zinc-sprayed aluminum material heat-treats metallic zinc that has been uniformly sprayed onto the surface of a core material containing aluminum, and diffuses zinc into the core material. By this diffusion of zinc, a zinc sacrificial layer which is an aluminum-zinc alloy is formed on the surface of the core material.
  • the zinc sacrificial layer is an aluminum-zinc alloy layer having a predetermined thickness with a highest concentration of zinc in the outermost layer and a concentration gradient in which the concentration decreases as it goes in the direction of the core material.
  • the corrosion resistance diagnostic component 1 When using the zinc sprayed aluminum material manufactured in this way as the material of the corrosion resistance diagnostic component 1, the core material portion where the zinc has not diffused by the heat treatment becomes the first core material 3. Further, the portion where zinc is diffused becomes the first sacrificial layer 2. That is, the corrosion resistance diagnostic component 1 includes a first core material 3 containing aluminum and a first sacrificial layer 2 formed on the surface of the first core material 3 and containing zinc having a lower corrosion resistance than the first core material 3. It will be equipped.
  • a part of the surface is removed by cutting in the depth direction, and an exposed portion 3a is formed at a position adjacent to the first sacrificial layer 2.
  • the exposed portion 3a is removed, for example, by cutting from the surface of the first sacrificial layer 2 to the inside of the first core material 3 with respect to the boundary between the first sacrificial layer 2 and the first core material 3, and the first core material 3 is removed. Is exposed. By forming the exposed portion 3a in this manner, zinc is completely removed from the surface of the exposed portion 3a.
  • a state in which the first sacrificial layer 2 in which zinc is diffused and the first core material 3 in which zinc is not diffused are laminated.
  • the exposed portion 3a of the corrosion resistance diagnostic component 1 is in a state where the first sacrificial layer 2 is not laminated on the first core material 3.
  • the corrosion resistance diagnostic component 1 is provided in an outdoor unit having the outdoor heat exchanger 100 together with the outdoor heat exchanger 100.
  • the corrosion resistance diagnostic component 1 is attached to the outdoor heat exchanger 100.
  • the corrosion resistance diagnostic component 1 may be sold together with the air conditioner 200 or may be sold together with the outdoor heat exchanger 100. That is, the corrosion resistance diagnostic component 1 may be treated as a configuration of the air conditioner 200 or as a configuration of the outdoor heat exchanger 100.
  • FIG. 5 is a model diagram for explaining a reaction that occurs when corrosion progresses in the corrosion resistance diagnostic component according to the first embodiment of the present invention.
  • the corrosion resistance diagnostic component 1 according to the first embodiment uses the aluminum material with the zinc sacrificial layer used for the aluminum heat transfer tube of the outdoor heat exchanger 100. Therefore, FIG. 5 can also be regarded as a model diagram for explaining the reaction that occurs when corrosion of the aluminum heat transfer tube of the outdoor heat exchanger 100 progresses.
  • the corrosion resistance diagnostic component 1 can be regarded as a structure in which two metals having different electric potentials are electrically connected. Specifically, it can be considered that the first core material 3 which is an aluminum alloy such as an aluminum-manganese alloy and the first sacrificial layer 2 which is an aluminum-zinc alloy are electrically connected. Therefore, when the liquid junction 4 extending over the first core material 3 and the first sacrificial layer 2 is formed, the first sacrificial layer 2 that is an aluminum-zinc alloy is the first core material 3 that is an aluminum alloy. Since it has a lower potential than that, it functions as an anode in which the oxidation reaction proceeds.
  • the first core material 3 which is an aluminum alloy such as an aluminum-manganese alloy
  • the first sacrificial layer 2 which is an aluminum-zinc alloy
  • the first core material 3 which is an aluminum alloy is more than the first sacrificial layer 2 which is an aluminum-zinc alloy. Since it also has a high potential, it functions as a cathode in which the reduction reaction proceeds.
  • the oxidation reaction of the aluminum-zinc alloy represented by the formulas (1) and (2) proceeds on the anode side.
  • the oxidation reaction shown in Formula (1) and Formula (2) and the reduction reaction shown in Formula (3) and Formula (4) proceed with electron transfer. These oxidation reaction and reduction reaction proceed even if the surface of the first core material 3 which is an aluminum alloy is not covered with the first sacrificial layer 2 as long as the movement of electrons can reach the surface. On the other hand, in the region where the movement of electrons does not reach, the reduction reaction of oxygen does not proceed, and the corrosion reaction of the single first core material 3 proceeds.
  • the range where the movement of the electrons reaches is referred to as "corrosion prevention range of the zinc sacrificial layer with respect to the core material" or simply “corrosion prevention range”. This anticorrosion range has a great influence on the diagnosis of the product life of the corrosion resistance diagnostic component 1. The correlation between the product life and the corrosion protection range will be described later.
  • This general corrosion proceeds at a rate corresponding to the zinc concentration.
  • general corrosion progresses uniformly from the surface in the depth direction at a predetermined rate. How much the general corrosion progresses in the depth direction in a predetermined time can be grasped by observing the cross section of the first sacrificial layer 2 in the predetermined time.
  • the corrosion is performed as described above and the corrosion does not proceed, but the corrosion progresses outside the anticorrosion range.
  • the first core material 3 which is an aluminum alloy
  • so-called "local corrosion” in which the film is locally destroyed due to the influence of the surface passive film, which is a feature of the aluminum alloy, progresses.
  • the appearance of this local corrosion can be grasped as a local corrosion mark by observing the surface.
  • a local battery is formed by the passivation film and the core material, and corrosion to the core material side having a low potential is promoted. Further, oxygen is present on the surface of the passivation film, and oxygen is deficient inside the core material. Therefore, a so-called oxygen concentration battery is formed between the passivation film and the inside of the core material, and corrosion to the core material side is also promoted. Therefore, in the aluminum heat transfer tube, when local corrosion occurs, the progress of the corrosion cannot be controlled, and the formation of the through hole leads to refrigerant leakage, resulting in failure of the outdoor heat exchanger 100. Therefore, setting the occurrence of local corrosion as the product life point is considered to be a safe design for ensuring the reliability of the outdoor heat exchanger 100 and the outdoor unit.
  • the “time point when local corrosion appears in the region within the corrosion protection range of the first sacrificial layer 2 with respect to the first core material 3” is defined as the outdoor heat exchanger 100 and It is the life point of the outdoor unit.
  • the aluminum heat transfer tube of the outdoor heat exchanger 100 is a flat tube of zinc-sprayed aluminum material
  • zinc is sprayed on the pair of flat portions that form a part of the external shape. Therefore, in the flat tube of the zinc sprayed aluminum material, the exposed portion of the core material is formed on the side surface portion connecting the pair of flat surface portions from the beginning of manufacturing.
  • this side surface portion is the most unfavorable portion for corrosion resistance, and it is considered that when the zinc sacrificial layer gradually disappears with the lapse of time, local corrosion first appears in the exposed portion of the core material on the side surface portion. Therefore, the time when the local corrosion appears on the side surface is the life point of the outdoor heat exchanger 100.
  • the outdoor heat exchanger 100 in which the aluminum material with the zinc sacrificial layer is applied to the heat transfer tube and the outdoor unit including the outdoor heat exchanger 100 finally reach the product life.
  • the aluminum-zinc alloy disappears from the surface layer of the zinc sacrificial layer due to corrosion, and the zinc concentration of the zinc sacrificial layer gradually decreases. Since the zinc sacrificial layer having a reduced zinc concentration has a higher potential, the potential difference from the core material becomes smaller. That is, the movement of electrons between the anode and the cathode is attenuated, and the corrosion protection range of the zinc sacrificial layer in the core material is reduced.
  • the core material is exposed on the surface of the flat tube of the zinc sprayed aluminum material. Some of them are outside the corrosion protection range of the zinc sacrificial layer. Then, at the location where the core material is exposed on the surface of the flat tube of the zinc sprayed aluminum material, local corrosion occurs in the area outside the corrosion protection range of the zinc sacrificial layer, and the life of the outdoor heat exchanger 100 and the outdoor unit.
  • the anticorrosion range of the zinc sacrificial layer in the initially manufactured flat tube of zinc sprayed aluminum material is larger than the range in which the core material is exposed on the surface of the initially manufactured flat tube of zinc sprayed aluminum material. Needs to be set so that
  • FIG. 6 is a diagram showing a changing process of the exposed portion of the corrosion resistance diagnostic component according to the first embodiment of the present invention.
  • FIG. 6 is a plan view of the corrosion resistance diagnostic component 1.
  • the concentration of zinc in the first sacrificial layer 2, which is a zinc sacrificial layer is indicated by hatching, and the denser the hatching, the higher the zinc concentration.
  • the black dots shown in FIG. 6 are local corrosion marks 5.
  • FIG. 6A shows the corrosion resistance diagnostic component 1 in a state before the operation of the outdoor unit having the outdoor heat exchanger 100 to which the corrosion resistance diagnostic component 1 is attached is started.
  • FIG. 6A shows the corrosion resistance diagnostic component 1 in a state before the outdoor unit is installed.
  • FIG. 6(a) shows the corrosion resistance diagnostic component 1 at the beginning of manufacture.
  • FIG. 6B shows the corrosion resistance diagnostic component 1 after a predetermined time has elapsed since the outdoor unit was installed.
  • FIG. 6C shows the corrosion resistance diagnostic component 1 after a predetermined time has elapsed from the state of FIG. 6B.
  • FIG. 6(d) shows the corrosion resistance diagnostic component 1 after a predetermined time has elapsed from the state of FIG. 6(c).
  • the corrosion resistance diagnostic component 1 indicates that the outdoor heat exchanger 100 and the outdoor unit have reached the end of their lives. It is a figure of the state shown.
  • a first range 6a is arranged on the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 at a position adjacent to the first sacrificial layer 2 which is a zinc sacrificial layer. Specifically, on the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1, the range within the specified distance L from the first sacrificial layer 2 is the first range 6a. Further, on the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1, a second range 6b is arranged at a position opposite to the first sacrificial layer 2 with respect to the first range 6a.
  • the prescribed distance L of the first range 6a is the most distant part from the zinc sacrificial layer within the range where the core material is exposed on the surface of the flat tube of the initially manufactured zinc sprayed aluminum material, and the zinc sacrificial layer. It is the same as the distance between.
  • the specified distance L of the first range 6a is the position farthest from the zinc sacrificial layer within the range where the core material is exposed on the surface of the flat tube of the zinc sprayed aluminum material before the outdoor unit is installed. And the distance between the zinc sacrificial layer and.
  • the local corrosion mark 5 appears in the second range 6b before the first range 6a. After that, the local corrosion mark 5 is generated in the first range 6a.
  • the outdoor heat exchanger 100 using the flat tube of the zinc sprayed aluminum material as the material to be diagnosed in other words, the outdoor heat exchanger 100 having the outdoor heat exchanger 100 is used. Can be diagnosed as lifespan.
  • the specified distance L of the first range 6a from the zinc sacrificial layer within the range in which the core material is exposed on the surface of the flat tube of the zinc sprayed aluminum material before the outdoor unit is installed. It may be longer than the distance between the most distant part and the zinc sacrificial layer.
  • the corrosion resistance diagnostic component 1 shown in FIG. 6A is in a state before the outdoor unit starts to operate, and in any of the first range 6a and the second range 6b of the exposed portion 3a, No corrosion mark 5 appears.
  • the corrosion of the first sacrificial layer 2, which is the zinc sacrificial layer proceeds.
  • the anticorrosion range of the first sacrificial layer 2 gradually decreases. Therefore, when the operation of the outdoor unit is started and a predetermined time elapses, as shown in FIG. 6( b ), the surface of the exposed portion 3 a of the corrosion-resistant diagnostic component 1 is outside the anticorrosion range of the first sacrificial layer 2.
  • the local corrosion mark 5 appears in the second range 6b. Further, when time further elapses from the state of FIG. 6(b) and the corrosion of the first sacrificial layer 2 further progresses, as shown in FIG. 6(c), the first surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 is exposed. The local corrosion marks 5 increase in the second range 6b, and the local corrosion marks 5 also appear at a position closer to the first range 6a than in FIG. 6B.
  • the surface of the exposed portion 3a of the corrosion-resistant diagnostic component 1 may have a The local corrosion marks 5 appear not only in the second range 6b but also in the first range 6a. It is considered that even in the flat tube made of the zinc sprayed aluminum material of the outdoor heat exchanger 100, which is the material to be diagnosed, local corrosion appeared at the portion where the core material was exposed on the surface. Then, after that, the localized corrosion rapidly progresses into the core material, and a through hole is formed in the flat tube of the zinc sprayed aluminum material.
  • the method of detecting the appearance of the local corrosion traces 5 in the first range 6a includes the outdoor heat exchanger 100 and the outdoor heat exchanger 100 using the flat tube of the zinc sprayed aluminum material as the material to be diagnosed. This is a method for diagnosing the life of an outdoor unit that the user has.
  • this life diagnosis method can be performed by a person or the corrosion resistance diagnostic device 300 described above. A detailed example of the life diagnosis method will be described later in the fifth embodiment.
  • the corrosion progressing process of the corrosion resistance diagnostic component 1 By utilizing the corrosion progressing process of the corrosion resistance diagnostic component 1, it becomes possible to diagnose the remaining life of the outdoor heat exchanger 100 and the outdoor unit. Specifically, by grasping the correlation between the appearance of the local corrosion mark 5 on the exposed portion 3a of the corrosion resistance diagnostic component 1 up to the reaching point of the product life and the progress of corrosion of the first sacrificial layer 2, By observing the corrosion resistance diagnostic component 1, it is possible to diagnose the remaining life of the outdoor heat exchanger 100 and the outdoor unit. Hereinafter, the diagnosis of the remaining life of the outdoor heat exchanger 100 and the outdoor unit using the corrosion resistance diagnostic component 1 will be described.
  • the progress of the first core material 3 is as described in [Achieving the product life due to the reduction of the corrosion prevention range and detection by the corrosion resistance diagnostic component].
  • the surface of the exposed portion 3a of 3 may be observed.
  • the first sacrificial layer 2 undergoes general corrosion in the depth direction from the surface, corrosion products may remain on the surface or fall off, which makes it difficult to measure the corrosion depth of the first sacrificial layer 2. Many. Therefore, in the first embodiment, the corrosion depth of the first sacrificial layer 2 is measured as follows.
  • FIG. 7 is a vertical cross-sectional view of the corrosion resistance diagnostic component according to the first embodiment, showing a state in which general corrosion occurs in the first sacrificial layer of the corrosion resistance diagnostic component. Note that, in FIG. 7, the shape of the corrosion resistance diagnostic component 1 in a state before the general corrosion occurs in the first sacrificial layer 2 is also indicated by a chain double-dashed line.
  • the surface of the exposed portion 3a is used as the height standard. In other words, the height of the surface of the exposed portion 3a is set to 0.
  • the height reference is defined in this way, the height from the surface of the exposed portion 3a to the surface of the first sacrificial layer 2 is d1 at the beginning of manufacture.
  • this d1 is the cutting depth when the exposed portion 3a is formed.
  • a reference point 7a and a reference line 7 are defined as shown in FIG.
  • the reference point 7a is defined on the surface of the exposed portion 3a. That is, the height from the surface of the exposed portion 3a to the reference point 7a is 0.
  • the reference point 7a is defined as a position within the corrosion prevention range of the first sacrificial layer 2 until the end point of the product life is reached so that the corrosion resistance diagnostic component 1 does not corrode until the end point of the product life. Therefore, it is preferable to set the reference point 7a at a position as close as possible to the boundary 2a between the first sacrificial layer 2 and the exposed portion 3a.
  • the reference line 7 is an imaginary straight line extending parallel to the surface of the first first sacrificial layer 2 manufactured from the reference point 7a. That is, the height from the surface of the exposed portion 3a to the reference line 7 is also 0, like the reference point 7a.
  • the corroded portion 8 shown in FIG. 7 is the portion of the first sacrificial layer 2 that disappears due to corrosion over time.
  • the remaining portion 9 shown in FIG. 7 is the portion of the first sacrificial layer 2 remaining at that time.
  • the height d of the corroded portion 8 in the cross section in other words, the corrosion depth d of the first sacrificial layer 2 in the cross section is given by the following equation (5).
  • FIG. 8 is a diagram showing a process of changing the surface of the first sacrificial layer of the corrosion resistance diagnostic component according to the first embodiment of the present invention.
  • the horizontal axis of FIG. 8 indicates the distance L1 from the boundary 2a.
  • the vertical axis of FIG. 8 indicates the corrosion depth d of the first sacrificial layer 2.
  • the line (a) shown in FIG. 8 shows the measurement result of the corrosion depth d of the first sacrificial layer 2 of the corrosion resistance diagnostic component 1 in the state of FIG. 6(a).
  • the line (b) shown in FIG. 8 shows the measurement result of the corrosion depth d of the first sacrificial layer 2 of the corrosion resistance diagnostic component 1 in the state of FIG. 6(b).
  • FIG. 8 shows the measurement result of the corrosion depth d of the first sacrificial layer 2 of the corrosion resistance diagnostic component 1 in the state of FIG. 6(c).
  • the line (d) shown in FIG. 8 shows the measurement result of the corrosion depth d of the first sacrificial layer 2 of the corrosion resistance diagnostic component 1 in the state of FIG. 6(d).
  • the first sacrificial layer 2 of the corrosion resistance diagnostic component 1 has no corrosion.
  • the corrosion of the first sacrificial layer 2, which is the zinc sacrificial layer progresses as shown by the line (b) in FIG. 8.
  • the anticorrosion range of the first sacrificial layer 2 gradually decreases. Therefore, as shown in FIG. 6B, the local corrosion mark 5 appears on the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 in the second range 6b which is outside the corrosion protection range of the first sacrificial layer 2. ..
  • data such as a table showing the relationship between the appearance of the local corrosion mark 5 on the exposed portion 3a and the corrosion depth d of the first sacrificial layer 2 may be created.
  • the appearance of the local corrosion traces 5 is, for example, the number of local corrosion traces 5, the distance between the local corrosion traces 5 and the first sacrificial layer 2, and the like.
  • the corrosion depth d of the first sacrificial layer 2 can be diagnosed by comparing the appearance of the local corrosion mark 5 in the exposed portion 3a with the data, and the outdoor heat
  • the remaining life of the exchanger 100 and the outdoor unit can be diagnosed.
  • the residual life of the outdoor heat exchanger 100 and the outdoor unit can be diagnosed by the local corrosion marks 5 appearing in the second range 6b of the exposed portion 3a.
  • the corrosion depth d of the first sacrificial layer 2 is measured by creating data indicating the relationship between the elapsed time and the corrosion depth d of the first sacrificial layer 2, and the measured first sacrificial layer 2 is measured.
  • the remaining life of the outdoor heat exchanger 100 and the outdoor unit can be diagnosed by comparing the corrosion depth d of Eq.
  • the corrosion depth d of the first sacrificial layer 2 is observed in the corrosion resistance diagnostic component 1 in a state where the local corrosion does not occur in the first range 6a of the exposed portion 3a. It is assumed that the corrosion depth d at this time is in the state indicated by the line c1 in FIG. In this case, the time until the corrosion depth d indicated by the line c1 reaches the state of the line (d) in FIG. 8 can be predicted based on the above data. That is, the remaining life of the outdoor heat exchanger 100 and the outdoor unit can be diagnosed. Therefore, by measuring the corrosion resistance diagnostic component 1 as many times as possible between the state shown in FIG. 6(a) and the state shown in FIG. 6(d), the remaining life of the outdoor heat exchanger 100 and the outdoor unit is reduced. Data for more accurate diagnosis can be created.
  • the distance of the exposed portion 3a from the first sacrificial layer 2 is used. Is preferably as long as possible.
  • the distance of the exposed portion 3a from the first sacrificial layer 2 is the distance in the juxtaposed direction of the first sacrificial layer 2 and the exposed portion 3a in the exposed portion 3a. For example, in FIG. 6, it is the lateral distance of the exposed portion 3a. is there.
  • the distance of the exposed portion 3a from the first sacrificial layer 2 is calculated. Is more than the distance between the zinc sacrificial layer and the part farthest from the zinc sacrificial layer within the range where the core material is exposed on the surface of the flat tube of the zinc sprayed aluminum material before the outdoor unit is installed. , Need to be long.
  • the method of diagnosing the remaining life of the outdoor heat exchanger 100 and the outdoor unit can be performed by a person, or can be performed by the above-described corrosion resistance diagnostic device 300. A detailed example of this remaining life diagnosis method will be described later in the fifth embodiment.
  • the corrosion resistance diagnostic component 1 according to the first embodiment was mounted on an outdoor unit, and the performance of the corrosion resistance diagnostic component 1 was verified.
  • the material to be diagnosed according to the first embodiment is the flat tube of zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100.
  • the corrosion resistance diagnostic component 1 was formed of the same member as the flat tube of zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100.
  • a method of manufacturing the corrosion resistance diagnostic component 1 will be specifically described.
  • FIG. 9 is a flowchart showing a manufacturing process of the corrosion resistance diagnostic component according to the first embodiment of the present invention.
  • FIG. 10 is a diagram showing a process of forming an exposed portion of the corrosion resistance diagnostic component according to the first embodiment of the present invention. Note that FIG. 10 is a view of the material 500 for the corrosion-resistant diagnostic component, which is the corrosion-resistant diagnostic component 1, observed in the direction of the arrow Z shown in FIG. 4, and is a diagram showing an end surface of the material 500 for the corrosion-resistant diagnostic component.
  • step S10 which is a preparatory step
  • the material 500 for the corrosion resistance diagnostic component that becomes the corrosion resistance diagnostic component 1 is prepared. That is, the corrosion-resistant diagnostic component material 500 in which the first sacrificial layer 2 is formed on the surface of the first core material 3 is prepared.
  • the same member as the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100 is cut to a length of 50 mm to obtain the corrosion resistance diagnostic component material 500. Note that the length of 50 mm is the length in the direction orthogonal to the paper surface in FIG.
  • the core material of the flat tube of the zinc sprayed aluminum material becomes the first core material 3 of the corrosion resistance diagnostic component 1 formed from the material 500 for corrosion resistance diagnostic component.
  • the zinc sacrificial layer of the flat tube of the zinc sprayed aluminum material becomes the first sacrificial layer 2 of the corrosion resistance diagnostic component 1 formed of the material 500 for corrosion resistance diagnostic component.
  • this corrosion resistance diagnostic component material 500 is plate-shaped and has a width of 10 mm, a thickness of 4 mm, a wall thickness of 500 ⁇ m, and a thickness of the first sacrificial layer 2 of 50 ⁇ m. ing.
  • the zinc concentration in the surface portion of the first sacrificial layer 2 is 10 wt %.
  • step S10 which is a preparation step, includes step S11 and step S12.
  • step S11 is a core material preparing step of preparing the first core material 3.
  • step S11 is a step of preparing the same core material as the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100.
  • Step S12 is a sacrificial layer forming step of forming the first sacrificial layer 2 on the surface of the first core material 3.
  • step S12 the zinc spraying used as the heat transfer tube of the outdoor heat exchanger 100 is formed on the surface of the same core material as the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100.
  • This is a step of forming the same zinc sacrificial layer as the zinc sacrificial layer of an aluminum material.
  • a flat tube of zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100 can be manufactured.
  • step S20 which is a forming step for forming the exposed portion 3a is performed.
  • the first sacrificial layer 2 is removed from the surface thereof to the inside of the first sacrificial layer 3 beyond the boundary between the first sacrificial layer 2 and the first sacrificial layer 3, and is located at a position adjacent to the first sacrificial layer 2.
  • the exposed portion 3a is formed.
  • the exposed portion 3a is formed by removing a part of the plate-shaped material 500 for corrosion-resistant diagnostic parts by cutting.
  • step S20 which is a forming step of forming the exposed portion 3a, includes steps S21 and S22.
  • Step S21 is, as shown in FIG. 10(b), a first cutting step of cutting the flat surface portion of the corrosion-resistant diagnostic component material 500 and exposing the first core material 3 at the flat surface portion.
  • the range from the end surface of the material 500 for corrosion-resistant diagnostic parts to 25 mm in the depth direction of the paper surface of FIG. 10 is cut by 120 ⁇ m from the surface of the first sacrificial layer 2 in the first core material 3 direction to expose the exposed portion. 3a is formed.
  • This cutting process is performed, for example, by milling.
  • the thickness of the first sacrificial layer 2 is 50 ⁇ m. Therefore, the flat portion of the exposed portion 3a is formed by cutting the flat portion of the corrosion-resistant diagnostic component material 500 by 120 ⁇ m from the surface of the first sacrificial layer 2 in the first core 3 direction. In the range, zinc can be completely removed.
  • step S22 As described above, in the case of a flat tube made of zinc-sprayed aluminum material, zinc is sprayed on the pair of flat parts that form a part of the external shape. The zinc sprayed onto the flat surface portion also diffuses into a part of the side surface portion during the heat treatment. Therefore, as shown in FIG. 10B, after cutting the flat surface portion of the material 500 for corrosion-resistant diagnostic parts, the zinc residual region 10 where zinc remains is present in a part of the side surface portion. .. Therefore, as shown in FIG. 10C, the zinc remaining region 10 is removed in step S22 which is the second cutting process.
  • step S22 which is the second cutting step
  • both side surface portions of the corrosion-resistant diagnostic component material 500 are cut so as to be continuous with the exposed portion of the first core material 3 in the flat surface portion.
  • the first core material 3 is exposed.
  • zinc can be completely removed from the surface of the exposed portion 3a, and the corrosion resistance diagnostic component 1 is completed.
  • the first range 6a was determined as follows.
  • the specified distance L from the first sacrificial layer 2 in the exposed portion 3a of the corrosion resistance diagnostic component 1 shown in FIG. 6 was determined as follows.
  • the core material may be exposed on the entire surface of the side surface portion.
  • the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100 has a thickness of 4 mm.
  • the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100 has a surface distance between the pair of flat surfaces of 4 mm.
  • the cross-sectional shape of the side surface portion connecting the pair of flat surface portions is an arc shape. ..
  • the cross-sectional shape of the side surface of the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100 is an arc shape with a radius of 2 mm.
  • the arc length of the side surface portion is 6.28 mm.
  • the center of the side surface portion in the cross-sectional shape is the farthest position from both of the flat surface portions on the side surface portion, so that it is the earliest outside the anticorrosion range and local corrosion occurs. That is, the local corrosion occurs earliest at a position on the side surface where the distance on the surface from the flat surface is 3.14 mm. Therefore, in the first embodiment, the specified distance L from the first sacrificial layer 2 in the exposed portion 3a of the corrosion resistance diagnostic component 1 shown in FIG. 6 is set to 3.14 mm.
  • the corrosion resistance diagnostic component 1 configured in this way has zinc completely removed from the exposed portion 3a. Therefore, in the corrosion resistance diagnostic component 1 according to the first embodiment, the corrosion status of the material to be diagnosed can be diagnosed more accurately than before based on the corrosion status of the surface of the exposed portion 3a. Therefore, by using the corrosion resistance diagnostic component 1 according to the first embodiment, it is possible to accurately diagnose the service life and the remaining service life of the outdoor heat exchanger 100 and the outdoor unit having the outdoor heat exchanger 100. Further, the conventional component for diagnosing the product life of the heat exchanger using the aluminum heat transfer tube is manufactured by a member different from the material to be diagnosed.
  • the corrosion resistance diagnostic component 1 according to the first embodiment is formed of the same member as the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100 which is the material to be diagnosed, The life of the outdoor heat exchanger 100 and the outdoor unit having the outdoor heat exchanger 100 can be diagnosed more accurately while suppressing the manufacturing cost.
  • FIG. 11 is a flowchart showing the combined cycle test performed in the first embodiment of the present invention.
  • the corrosion resistance diagnostic component 1 manufactured as described above was provided in the outdoor unit of the air conditioner 200 together with the outdoor heat exchanger 100, and the combined cycle test shown in FIG. 11 was performed as an accelerated test for reproducing the corrosion pattern in the salt damage area. ..
  • step S31 a spray process of salt water was performed. Specifically, the installation environment of the outdoor unit was set to an environment of a temperature of 35° C. and a relative humidity of 100%. Then, in this state, the outdoor unit was operated for 2 hours while spraying an aqueous solution having a salt concentration of 5% by weight on the outdoor unit.
  • step S32 after step S31 a drying process was performed. Specifically, the installation environment of the outdoor unit was set to an environment of a temperature of 60° C. and a relative humidity of 30%. Then, in this state, the outdoor unit was operated for 4 hours.
  • step S33 after step S32 a wetting process was performed. Specifically, the installation environment of the outdoor unit was set to an environment of a temperature of 50° C. and a relative humidity of 95%. Then, in this state, the outdoor unit was operated for 2 hours.
  • step S34 after step S33, it is determined whether the operating time of the outdoor unit has reached the specified time.
  • the process returns to step S31.
  • the combined cycle test ends. That is, in the combined cycle test performed in the first embodiment, the processes of steps S31 to S33 are repeated until the operating time of the outdoor unit reaches the specified time.
  • the specified time is set to 2000 hours.
  • the corrosion state of the corrosion resistance diagnostic component 1 was periodically observed.
  • the corrosion state of the corrosion resistance diagnostic component 1 was observed every 250 hours.
  • the periodic observation of the corrosion state of the corrosion resistance diagnostic component 1 was repeated until the local corrosion mark 5 was generated in the first area 6a of the exposed portion 3a of the corrosion resistance diagnostic component 1.
  • the corrosion resistance diagnostic component 1 1500 hours after the start of operation of the outdoor unit it was confirmed that the local corrosion mark 5 appeared in the first range 6a of the exposed portion 3a. Further, when the first sacrificial layer 2 was observed in the corrosion resistance diagnostic component 1, it was confirmed that the first sacrificial layer 2 disappeared over almost the entire surface due to corrosion. Since the first sacrificial layer 2 disappeared and the anticorrosion function for the exposed portion 3a disappeared, it is considered that the local corrosion proceeded within the first range 6a of the exposed portion 3a.
  • Embodiment 2 The members used for the corrosion resistance diagnostic component 1 are not limited to the members shown in the first embodiment. Further, the manufacturing method of the corrosion resistance diagnostic component 1 is not limited to the manufacturing method shown in the first embodiment. In the second embodiment, another example of members that can be used for the corrosion resistance diagnostic component 1 will be introduced. In addition, in the second embodiment, an example of another method of manufacturing the corrosion resistance diagnostic component 1 will be described. In the second embodiment, items not particularly described are the same as those in the first embodiment, and the same functions and configurations as those in the first embodiment will be described using the same reference numerals.
  • the outdoor unit is equipped with a refrigerant pipe through which the refrigerant flowing into the outdoor heat exchanger 100 or the refrigerant flowing out of the outdoor heat exchanger 100 flows.
  • a part of this refrigerant pipe may be formed of an aluminum material with a zinc sacrificial layer.
  • the refrigerant distributor may form a part of the refrigerant pipe of the outdoor unit.
  • the refrigerant distributor includes a main pipe and a plurality of branch pipes connected to the main pipe. Since the refrigerant distributor has a complicated shape, it is difficult to form the sacrificial layer by spraying zinc. Therefore, in the refrigerant distributor, the zinc-containing paint is applied to the surface of the core material containing aluminum, and the zinc sacrificial layer is formed on the surface of the core material.
  • the heat transfer tubes are a part of the refrigerant pipes of the outdoor heat exchanger 100, and the outdoor heat exchanger 100 also includes refrigerant pipes other than the heat transfer tubes, such as the refrigerant pipes connecting the heat transfer tubes.
  • refrigerant pipes other than the heat transfer pipe An aluminum material with a zinc sacrificial layer may be used for the refrigerant pipe other than the heat transfer pipe.
  • a circular pipe having a simple shape may be used even when a flat pipe made of zinc sprayed aluminum material is used as the heat transfer pipe for improving the performance of the outdoor heat exchanger 100. ..
  • the refrigerant pipes other than the heat transfer pipes are circular pipes of aluminum material with a zinc sacrificial layer, zinc sprayed aluminum material or aluminum clad material can be used.
  • the corrosion resistance diagnostic component 1 can be manufactured using the same member as the refrigerant pipe of the outdoor unit, which is formed of an aluminum material with a zinc sacrificial layer.
  • the refrigerant pipe of the outdoor unit formed of the aluminum material with the zinc sacrificial layer serves as the material to be diagnosed.
  • the corrosion resistance diagnostic component 1 can be manufactured using the same member as the refrigerant pipe other than the heat transfer pipe of the outdoor heat exchanger 100 formed of the aluminum material with the zinc sacrificial layer.
  • the refrigerant pipes other than the heat transfer pipes of the outdoor heat exchanger 100 formed of the aluminum material with the zinc sacrificial layer serve as the material to be diagnosed.
  • a method of manufacturing the corrosion resistance diagnostic component 1 using the same member as the refrigerant pipe formed of such an aluminum material with a zinc sacrificial layer will be described.
  • the corrosion-resistant diagnostic component 1 When the corrosion-resistant diagnostic component 1 is manufactured using the same member as the flat tube made of an aluminum material with a zinc sacrificial layer, the zinc sacrificial layer is formed on the flat surface portion, so the zinc sacrificial layer is removed by cutting and the exposed portion 3a is removed. Can be formed.
  • the corrosion-resistant diagnostic component 1 when manufacturing the corrosion-resistant diagnostic component 1 using the same member as the refrigerant pipe formed of the aluminum material with the zinc sacrificial layer described in the second embodiment, it is difficult to remove the zinc sacrificial layer by cutting. There is. In this case, a method of removing the zinc sacrificial layer by chemical etching and forming the exposed portion 3a is effective.
  • the corrosion resistance diagnostic component 1 can be manufactured. That is, the core material can be exposed on the surface of the same member as the refrigerant pipe formed of the aluminum material with a zinc sacrificial layer by bringing the surface of the member into contact with the chemical solution. Then, zinc can be completely removed from the exposed surface of the core material, and the exposed portion 3a can be formed.
  • the member may be immersed in a chemical solution to expose the core material on the surface.
  • the same member as the refrigerant pipe formed of the aluminum material with a zinc sacrificial layer has a complicated shape like a refrigerant distributor, the member is simply immersed in a chemical solution to expose the core material on the surface. Is difficult.
  • the core material may be exposed on the surface by applying gauze impregnated with a chemical solution to the place where the exposed portion 3a is to be formed and chemically etching the place where the gauze or the like is applied.
  • the chemical solution used for chemical etching may be any material that dissolves an aluminum material, and an acidic chemical solution having a pH of 5 or less or an alkaline chemical solution having a pH of 10 or more is preferable. Further, the time until the core material is exposed by bringing the zinc sacrificial layer-provided aluminum material into contact with the chemical solution may be appropriately determined depending on the chemical solution used and the zinc sacrificial layer-provided aluminum material.
  • the corrosion resistance diagnostic component 1 according to the second embodiment is also formed of the same material as the material to be diagnosed, the life of the outdoor heat exchanger 100 and the outdoor unit is accurately diagnosed while suppressing the manufacturing cost. be able to.
  • the exposed portion 3a is formed by cutting or the exposed portion 3a is formed by chemical etching, if the surface roughness of the exposed portion 3a is large, the local corrosion mark 5 cannot be detected. It can be difficult. For this reason, it is preferable to reduce the surface roughness of the exposed portion 3a by performing electrolytic polishing, chemical polishing, buffing, or the like on the exposed portion 3a after forming the exposed portion 3a by cutting or chemical etching. Thereby, the local corrosion mark 5 appearing on the exposed portion 3a can be accurately confirmed, and the accuracy of diagnosing the corrosion state of the product using the material to be diagnosed can be improved.
  • Embodiment 3 In the first embodiment, the corrosion depth of the first sacrificial layer 2 which is the zinc sacrificial layer was measured in the cross section, and the progress of corrosion of the first sacrificial layer 2 with the passage of time was grasped.
  • the method of ascertaining the progress of corrosion of the first sacrificial layer 2 over time is not limited to this method.
  • some other examples for grasping the progress of corrosion of the first sacrificial layer 2 over time will be introduced.
  • items not particularly described are the same as those in the first or second embodiment, and the same reference numerals are used for the same functions and configurations as those in the first or second embodiment. Will be described.
  • the first method is a method of grasping the amount of corrosion of the first sacrificial layer 2 by measuring the area of the region where the first sacrificial layer 2 has corroded in a predetermined cross section of the first sacrificial layer 2.
  • a predetermined cross section Regarding the corrosion of the first sacrificial layer 2, general corrosion progresses in the depth direction. Therefore, by setting a predetermined cross section and measuring the corroded area of the first sacrificial layer 2 in this cross section, it is considered possible to convert it into the corrosion amount of the entire first sacrificial layer 2.
  • the corroded portion 8 of the entire first sacrificial layer 2 can be derived. Therefore, as a result, it is possible to grasp the progress of corrosion of the first sacrificial layer 2 over time.
  • the storage unit 314 of the corrosion resistance diagnostic device 300 stores the data.
  • the stored parameter indicating the corrosion state of the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 can be associated with the corrosion area of the first sacrificial layer 2 in the predetermined cross section.
  • the corroded area of the first sacrificial layer 2 in the predetermined cross section is measured, and the measured first sacrificial layer 2 is measured.
  • the remaining life of the outdoor heat exchanger 100 and the outdoor unit can be diagnosed by comparing the corroded area in the predetermined cross section of the layer 2 with the data.
  • the second method is to measure the corrosion amount of the first sacrificial layer 2 by measuring the weight of the corrosion resistance diagnostic component 1.
  • the weight of the corrosion resistance diagnostic component 1 before the outdoor unit starts to operate and the weight of the corrosion resistance diagnostic component 1 after the outdoor unit has operated for a predetermined time are measured, and the weight change of the corrosion resistance diagnostic component 1 indicates the first sacrificial layer 2 Understand the amount of corrosion of.
  • the amount of corrosion of the first core material 3 is on the order of ⁇ m in terms of the amount of corrosion itself, which is smaller than the amount of corrosion of the first sacrificial layer 2. Therefore, the change in weight of the corrosion resistance diagnostic component 1 may be regarded as the amount of corrosion of the first sacrificial layer 2. Therefore, the amount of corrosion of the first sacrificial layer 2 can be grasped from the weight change of the corrosion resistance diagnostic component 1. Therefore, as a result, it is possible to grasp the progress of corrosion of the first sacrificial layer 2 over time.
  • the “chemical corrosion product removal method” in JIS Z2371 standard or mechanical removal with a brush or the like is suitable. After starting the operation of the outdoor unit, the corrosion products are removed from the corrosion resistance diagnostic component 1 by these methods, and the weight of the corrosion resistance diagnostic component is measured. Then, by comparing this weight with the weight of the corrosion resistance diagnostic component 1 before the operation of the outdoor unit, it is possible to grasp the progress of corrosion of the first sacrificial layer 2 over time.
  • the data is stored in the storage unit 314 of the corrosion resistance diagnostic device 300.
  • the parameter indicating the corrosion state of the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 can be associated with the weight change of the corrosion resistance diagnostic component 1.
  • the weight change of the corrosion resistance diagnostic component 1 is measured, and the measured weight change of the corrosion resistance diagnostic component 1 and the data By comparing, it is possible to diagnose the remaining life of the outdoor heat exchanger 100 and the outdoor unit.
  • the corrosion depth of the first sacrificial layer 2 which is a zinc sacrificial layer, was measured in the cross section.
  • the method for measuring the corrosion depth of the first sacrificial layer 2 is not limited to this method, and the corrosion depth of the first sacrificial layer 2 may be measured by, for example, the depth of focus method.
  • the corrosion depth of the first sacrificial layer 2 is measured by the depth of focus method for the corrosion resistance diagnostic component 1 from which the corrosion product has been removed.
  • This method can continuously measure the corrosion depth at each position from the boundary between the first sacrificial layer 2 and the exposed portion 3a, and can easily measure the corrosion depth of the first sacrificial layer 2. Therefore, it is a useful method for measuring the corrosion depth of the first sacrificial layer 2.
  • the corrosion resistance diagnostic component 1 when an aluminum material with a zinc sacrificial layer is used for at least a part of the refrigerant pipe of the outdoor heat exchanger 100, a portion of the refrigerant pipe of the aluminum material with a zinc sacrificial layer where fly salt is most likely to adhere It is advisable to install the corrosion resistance diagnostic component 1.
  • the corrosion resistance diagnostic component 1 when the corrosion resistance diagnostic component 1 is formed of a zinc sprayed aluminum material used as a heat transfer tube of the outdoor heat exchanger 100, the corrosion resistance diagnostic component 1 may be installed at the following position.
  • FIG. 12 is a side view which shows a part of core part of the outdoor heat exchanger which concerns on Embodiment 4 of this invention.
  • the core section 400 of the outdoor heat exchanger 100 according to the fourth embodiment includes the heat transfer tube 411.
  • the heat transfer tube 411 is a flat tube of zinc sprayed aluminum material.
  • a plurality of fins 412 made of, for example, a material containing aluminum is attached to the surface of a part of the heat transfer tube 411 in order to improve the amount of heat exchange between the refrigerant flowing in the heat transfer tube 411 and the outside air. ing. That is, the heat transfer tube 411 has the exposed surface portion 413 where the fin 412 is not attached to the surface and the fin contact portion 414 where the surface is covered with the fin 412.
  • the corrosion resistance diagnostic component 1 is formed of the zinc sprayed aluminum material used as the heat transfer pipe of the outdoor heat exchanger 100, the corrosion resistance diagnostic component 1 may be attached to the exposed surface portion 413 of the heat transfer pipe 411. As a result, it can be reliably diagnosed that the outdoor heat exchanger 100 has reached the end of its life before the through hole is formed in the heat transfer tube 411, and the reliability of the product life diagnosis using the corrosion resistance diagnosis component 1 is improved.
  • the corrosion resistance diagnostic component 1 is installed in the portion of the outdoor unit having the highest wind speed during operation of the outdoor unit, the corrosion resistance diagnostic component 1 is less likely to corrode than the refrigerant pipe made of aluminum material with a zinc sacrificial layer provided in the outdoor unit. It will progress faster.
  • the corrosion resistance diagnostic component 1 is installed at such a position, it can be reliably diagnosed that the outdoor unit has reached the end of life before the through hole is formed in the refrigerant pipe of the aluminum material with the zinc sacrificial layer, Reliability of product life diagnosis using the corrosion resistance diagnosis component 1 is improved.
  • Embodiment 5 As described above, the life and the remaining life of the outdoor heat exchanger 100 and the outdoor unit can be diagnosed by a person or the corrosion resistance diagnosing device 300.
  • items not particularly described are the same as those in any of the first to fourth embodiments, and the same functions and configurations as those in any of the first to fourth embodiments are the same. Will be described using the reference sign.
  • a person When a person diagnoses the life of the outdoor heat exchanger 100 and the outdoor unit, a person such as a maintenance maker checks the local corrosion mark 5 that appears on the exposed portion of the corrosion resistance diagnostic component 1.
  • the local corrosion mark 5 that appears on the exposed portion 3a of the corrosion resistance diagnostic component 1 is visually confirmed, for example.
  • a person When visually confirming the local corrosion traces 5 appearing on the exposed portion 3a, for example, a person temporarily removes the corrosion resistance diagnostic component 1 and confirms the local corrosion traces 5 appearing on the exposed portion 3a of the corrosion resistance diagnostic component 1.
  • the corrosion resistance diagnostic component 1 when the corrosion resistance diagnostic component 1 is installed at a position where the local corrosion mark 5 appearing on the exposed portion 3a can be directly viewed, a person does not remove the corrosion resistance diagnostic component 1 and the local corrosion appearing on the exposed portion 3a is removed. The mark 5 may be confirmed. Further, for example, even by installing a mirror or the like, a person can confirm the local corrosion marks 5 appearing on the exposed portion 3a without removing the corrosion resistance diagnostic component 1.
  • the corrosion resistance diagnostic device 300 including at least the imaging unit 312 and the detection unit 313 when the corrosion resistance diagnostic device 300 including at least the imaging unit 312 and the detection unit 313 is provided, a person can visually check the image data of the detection unit 313 to see the local corrosion mark appearing on the exposed portion 3a. 5 can be confirmed. Then, when confirming the local corrosion mark 5 in the first range 6a of the exposed portion 3a, the person diagnoses that the outdoor heat exchanger 100 and the outdoor unit have reached the end of their lives.
  • maintenance of the outdoor unit includes replacement of the refrigerant pipe of the aluminum material with the zinc sacrificial layer, repair of a local corrosion portion generated in the refrigerant pipe of the aluminum material with the zinc sacrificial layer, replacement of the outdoor heat exchanger 100, and the like.
  • the corrosion resistance diagnostic component 1 is once brought back to the environment where the progress of corrosion of the first sacrificial layer 2 can be measured. Then, for example, when the data indicating the relationship between the elapsed time and the corrosion depth d of the first sacrificial layer 2 is created, a person measures the corrosion depth d of the first sacrificial layer 2. Then, by comparing the measured corrosion depth d of the first sacrificial layer 2 with the data, the remaining life of the outdoor heat exchanger 100 and the outdoor unit is diagnosed.
  • a person measures the corroded area of the first sacrificial layer 2 in the predetermined cross section. Then, the remaining area of the outdoor heat exchanger 100 and the outdoor unit is diagnosed by comparing the measured corrosion area in the predetermined cross section of the first sacrificial layer 2 with the data. Further, for example, when data indicating the relationship between the passage of time and the weight change of the corrosion resistance diagnostic component 1 is created, a person measures the weight change of the corrosion resistance diagnostic component 1. Then, the remaining weight of the outdoor heat exchanger 100 and the outdoor unit is diagnosed by comparing the measured weight change of the corrosion resistance diagnostic component 1 with the data.
  • the case where the corrosion resistance diagnostic device 300 diagnoses the life of the outdoor heat exchanger 100 and the outdoor unit will be described.
  • the local corrosion mark 5 that appears on the exposed portion 3 a of the corrosion resistance diagnostic component 1 is different in color and shape from the first core material 3. Therefore, the detection unit 313 converts the image data of the exposed portion 3a photographed by the photographing unit 312 into image data composed of at least one of color and shape, and the local corrosion appearing on the exposed portion 3a.
  • the trace 5 is used as discriminable data.
  • the image data generated by the detection unit 313 is sent to the storage unit 314 and the comparison unit 315 at predetermined time intervals, for example.
  • the comparing unit 315 compares with the image data stored in the storage unit 314 every time the image data is sent from the detecting unit 313.
  • the comparison unit 315 diagnoses that the outdoor heat exchanger 100 and the outdoor unit have reached the end of their lives.
  • the notification unit 316 notifies that the outdoor heat exchanger 100 and the outdoor unit have reached the end of their lives.
  • the storage unit 314 stores data for guiding the remaining life of the outdoor heat exchanger 100 and the outdoor unit in advance.
  • the data that indicates the remaining life of the outdoor heat exchanger 100 and the outdoor unit is, for example, data indicating the relationship between the appearance of the local corrosion trace 5 on the exposed portion 3a and the corrosion depth d of the first sacrificial layer 2 described above.
  • Data showing the relationship between the appearance of the local corrosion marks 5 on the exposed portion 3a and the corrosion area of the first sacrificial layer 2 in a predetermined cross section, or the appearance of the local corrosion marks 5 on the exposed portion 3a. 2 is data showing the relationship between the weight change of the corrosion resistance diagnostic component 1 and.
  • data indicating the relationship between the appearance of the local corrosion mark 5 on the exposed portion 3a and the remaining life of the outdoor heat exchanger 100 and the outdoor unit is used as data for guiding the remaining life of the outdoor heat exchanger 100 and the outdoor unit. It may be stored in the storage unit 314.
  • the comparison unit 315 determines how the local corrosion mark 5 appears in the exposed portion 3 a in the data and the outdoor heat exchanger 100 and the outdoor stored in the storage unit 314.
  • the remaining lifespan of the outdoor heat exchanger 100 and the outdoor unit are diagnosed by comparing with the data that guides the remaining lifespan of the machine.
  • the notification unit 316 notifies the remaining life of the outdoor heat exchanger 100 and the outdoor unit.
  • the corrosion resistance diagnosing device 300 it is possible to diagnose the remaining life of the outdoor heat exchanger 100 and the outdoor unit without human work and judgment.
  • the corrosion resistance diagnostic component 1 By using the corrosion resistance diagnostic component 1, the presence or absence of corrosive substances in the atmosphere in the installation environment of the outdoor unit and the degree of influence of the corrosive substances in the atmosphere on the members including aluminum provided in the outdoor unit are grasped. It is also possible. In the sixth embodiment, a method of diagnosing the corrosiveness of the installation environment of the outdoor unit will be introduced. In the sixth embodiment, items not particularly described are the same as those in any of the first to fifth embodiments, and the same functions and configurations as those in any of the first to fifth embodiments are the same. Will be described using the reference sign.
  • the corrosion resistance diagnostic device 300 or the corrosion resistance diagnostic component 1 alone is installed inside the outdoor unit when the outdoor unit is installed. Then, after the operation of the air conditioner is started, the corrosion state of the corrosion resistance diagnostic component 1 is regularly investigated.
  • one of the areas where the corrosiveness of the aluminum-containing members installed in the outdoor unit is known is set as the standard area. Then, data indicating the relationship between the passage of time from the start of operation of the air conditioner in the standard area and the degree of occurrence of the local corrosion mark 5 on the exposed portion 3a of the corrosion resistance diagnostic component 1 is created. Then, when the outdoor unit is installed in a new area and the operation of the air conditioner is started, the degree of occurrence of the local corrosion marks 5 on the exposed portion 3a of the corrosion resistance diagnostic component 1 installed inside the outdoor unit and the above-mentioned data. Compare with. This makes it possible to diagnose whether the corrosiveness of the new area where the outdoor unit is installed is larger or smaller than that of the standard area.
  • the corrosion resistance diagnostic device 300 when the corrosion resistance diagnostic device 300 is installed inside the outdoor unit, the time elapsed from the start of operation of the air conditioner in the standard area and the occurrence of the local corrosion mark 5 on the exposed portion 3a of the corrosion resistance diagnostic component 1 Data indicating the relationship is stored in the storage unit 314. Then, the comparison unit 315 compares the image data sent from the detection unit 313 with the data stored in the storage unit 314, so that the corrosiveness of the new area where the outdoor unit is installed is the standard area. Diagnose whether it is larger or smaller than.
  • the corrosion resistance diagnostic component 1 installed inside the outdoor unit is brought back and the degree of corrosion progress of the first sacrificial layer 2 is measured. Good.
  • the degree of progress of corrosion of the first sacrificial layer 2 can be measured by the above-described corrosion depth of the first sacrificial layer 2 or the like.
  • the present invention may appropriately combine the configurations shown in the above embodiments. Further, the configurations shown in the above-described respective embodiments are merely examples, and do not limit the configurations of the present invention.
  • the scope of the present invention is defined by the scope of the claims, and includes meanings equivalent to the scope of the claims and all modifications within the scope.
  • 1 Corrosion resistance diagnostic part 2 1st sacrifice layer, 2a boundary, 3 1st core material, 3a exposed part, 4 liquid junction, 5 local corrosion mark, 6a 1st range, 6b 2nd range, 7 reference line, 7a reference point , 8 corroded parts, 9 remaining parts, 10 zinc remaining areas, 100 outdoor heat exchanger, 200 air conditioner, 201 compressor, 202 muffler, 203 four-way valve, 204 refrigerant pipe, 205 capillary tube, 206 strainer, 207 electronically controlled Expansion valve, 208a stop valve, 208b stop valve, 209 indoor heat exchanger, 210 auxiliary muffler, 211 control device, 300 corrosion resistance diagnostic device, 312 imaging unit, 313 detection unit, 314 storage unit, 315 comparison unit, 316 notification unit, 400 core part, 411 heat transfer tube, 412 fin, 413 surface exposed part, 414 fin contact part, 500 material for corrosion resistance diagnostic parts.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Ecology (AREA)
  • Biochemistry (AREA)
  • Environmental Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thermal Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

This corrosion resistance diagnostic component is used for diagnosing the corrosion state of a material subjected to diagnosis, the material comprising an aluminum-containing core and a zinc-containing sacrificial layer formed on the surface of the core. This corrosion resistance diagnostic component comprises a first core that contains aluminum, and a first sacrificial layer formed on the surface of the first core and including zinc having lower corrosion resistance than the first core. The corrosion resistance diagnostic component is configured such that an exposed section where the first core is exposed is formed, at a location adjacent to the first sacrificial layer, by removing a portion starting from the surface of the first sacrificial layer, to the boundary between the first sacrificial layer and the first core, and further advancing into the inside of the first core.

Description

耐食性診断部品、耐食性診断器、熱交換器、空気調和機、耐食性診断部品の製造方法、及び診断方法Corrosion resistance diagnostic component, corrosion resistance diagnostic device, heat exchanger, air conditioner, corrosion resistance diagnostic component manufacturing method, and diagnostic method
 本発明は、アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成された被診断材料の腐食状況の診断に用いられる耐食性診断部品、該耐食性診断部品を備えた耐食性診断器、該耐食性診断部品を備えた熱交換器、該耐食性診断部品を備えた空気調和機、該耐食性診断部品の製造方法、及び該耐食性診断部品を用いた診断方法に関する。 The present invention relates to a corrosion resistance diagnostic component used for diagnosing a corrosion state of a material to be diagnosed in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum, a corrosion resistance diagnostic device including the corrosion resistance diagnostic component, and the corrosion resistance diagnostic. The present invention relates to a heat exchanger including components, an air conditioner including the corrosion-resistant diagnostic component, a method for manufacturing the corrosion-resistant diagnostic component, and a diagnostic method using the corrosion-resistant diagnostic component.
 従来、アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成された材料を用いた製品が存在する。例えば、空気調和機の熱交換器においては、アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成された伝熱管が用いられる場合がある。以下、アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成された伝熱管を、単にアルミニウム伝熱管と称する場合がある。アルミニウム伝熱管は、局部腐食が発生して該アルミニウム伝熱管に貫通孔が形成され、冷媒漏れが発生することが懸念される。このため、アルミニウム伝熱管の腐食の進展状況を把握することにより、未然に冷媒漏れに繋がる腐食を検知する技術が求められている。 Conventionally, there are products that use a material in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum. For example, in a heat exchanger of an air conditioner, a heat transfer tube in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum may be used. Hereinafter, the heat transfer tube in which the sacrificial layer containing zinc is formed on the surface of the core material containing aluminum may be simply referred to as an aluminum heat transfer tube. There is a concern that the aluminum heat transfer tube may have local corrosion, a through hole may be formed in the aluminum heat transfer tube, and a refrigerant leak may occur. For this reason, there is a demand for a technique for detecting corrosion leading to refrigerant leakage by grasping the progress of corrosion of the aluminum heat transfer tube.
 そこで、例えば特許文献1には、耐食性寿命診断部品を用いて、アルミニウム伝熱管を用いた熱交換器の寿命を診断する技術が開示されている。詳しくは、耐食性寿命診断部品は、表面にアルミニウム層を有する板状の母材を備えている。そして、耐食性寿命診断部品は、母材の表面の一部に、亜鉛-アルミニウム合金で構成された犠牲陽極層が形成されている。すなわち、耐食性寿命診断部品は、表面の一部に、母材が露出している母材露出部が形成されている。そして、耐食性寿命診断部品の母材露出部を観察し、製造当初に犠牲陽極層が形成されていた箇所から規定距離以内となる範囲に局部腐食痕が出現した際、アルミニウム伝熱管を用いた熱交換器が寿命に到達したと診断している。 Therefore, for example, Patent Document 1 discloses a technique for diagnosing the life of a heat exchanger using an aluminum heat transfer tube by using a corrosion resistance life diagnosis component. Specifically, the corrosion resistance life diagnosis component includes a plate-shaped base material having an aluminum layer on the surface. The corrosion-resistant life diagnostic component has a sacrificial anode layer made of a zinc-aluminum alloy formed on a part of the surface of the base material. That is, in the corrosion-resistant life diagnostic component, the base material exposed portion where the base material is exposed is formed on a part of the surface. Then, by observing the exposed part of the base metal of the corrosion resistance life diagnosis part, when local corrosion marks appeared within the specified distance from the place where the sacrificial anode layer was formed at the beginning of manufacturing, the heat generated using the aluminum heat transfer tube was used. It is diagnosed that the exchanger has reached the end of its life.
特許第6058154号公報Japanese Patent No. 6058154
 特許文献1に記載の耐食性寿命診断部品では、母材の表面に亜鉛を溶射して、あるいは母材の表面に亜鉛を含有する塗料を塗布して、母材の表面に亜鉛-アルミニウム合金である犠牲陽極層を形成する。この犠牲陽極層を形成する際、母材側に亜鉛が拡散する。すなわち、特許文献1に記載の耐食性寿命診断部品では、犠牲陽極層を形成する際、寿命診断する際に観察する母材露出部の少なくとも一部に、拡散した亜鉛が存在することとなる。このため、特許文献1に記載の耐食性寿命診断部品は、母材露出部に存在する亜鉛によって局部腐食が抑制されてしまい、アルミニウム伝熱管を用いた熱交換器の腐食状況の診断精度が低下してしまうという課題があった。 The corrosion resistance life diagnosis component described in Patent Document 1 is a zinc-aluminum alloy on the surface of the base material by spraying zinc on the surface of the base material or by applying a coating containing zinc on the surface of the base material. A sacrificial anode layer is formed. When forming the sacrificial anode layer, zinc diffuses to the base material side. That is, in the corrosion-resistant life diagnosis component described in Patent Document 1, diffused zinc is present in at least a part of the base material exposed portion observed when forming the sacrificial anode layer and performing life diagnosis. Therefore, in the corrosion resistance life diagnosis component described in Patent Document 1, local corrosion is suppressed by the zinc present in the exposed portion of the base metal, and the accuracy of diagnosing the corrosion state of the heat exchanger using the aluminum heat transfer tube decreases. There was a problem that it would end up.
 本発明は上述の課題を解決するためになされたものであり、アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成された被診断材料の腐食状況を従来よりも正確に診断することが可能な耐食性診断部品を得ることを第1の目的とする。また、本発明は、該耐食性診断部品を備えた耐食性診断器、該耐食性診断部品を備えた熱交換器、該耐食性診断部品を備えた空気調和機、該耐食性診断部品の製造方法、及び該耐食性診断部品を用いた診断方法を提供することを第2の目的とする。 The present invention has been made to solve the above-mentioned problems, and it is possible to more accurately diagnose the corrosion state of a material to be diagnosed in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum than in the past. A first object is to obtain a possible corrosion resistance diagnostic component. The present invention also provides a corrosion resistance diagnostic device including the corrosion resistance diagnostic component, a heat exchanger including the corrosion resistance diagnostic component, an air conditioner including the corrosion resistance diagnostic component, a method of manufacturing the corrosion resistance diagnostic component, and the corrosion resistance. A second object is to provide a diagnostic method using a diagnostic component.
 本発明に係る耐食性診断部品は、アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成された被診断材料の腐食状況の診断に用いられる耐食性診断部品であって、当該耐食性診断部品は、アルミニウムを含む第1芯材と、前記第1芯材の表面に形成され、前記第1芯材よりも耐食性が低い亜鉛を含む第1犠牲層と、を備え、当該耐食性診断部品には、前記第1犠牲層に隣接する位置に、前記第1犠牲層の表面から前記第1犠牲層と前記第1芯材との境界よりも前記第1芯材の内部側まで除去されて、前記第1芯材が露出した露出部が形成されている構成となっている。 The corrosion-resistant diagnostic component according to the present invention is a corrosion-resistant diagnostic component used for diagnosing a corrosion condition of a material to be diagnosed in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum, and the corrosion-resistant diagnostic component is A first core material containing aluminum and a first sacrificial layer formed on the surface of the first core material and containing zinc having a lower corrosion resistance than the first core material are provided, and the corrosion resistance diagnostic component includes At a position adjacent to the first sacrificial layer, the first sacrificial layer is removed from the surface to the inside of the first core material with respect to the boundary between the first sacrificial layer and the first core material, and the first core material is removed. It has a configuration in which an exposed portion where the core material is exposed is formed.
 また、本発明に係る耐食性診断器は、本発明に係る耐食性診断部品と、前記露出部の表面を撮影する撮影部と、前記撮影部で撮影された画像データから、前記露出部の表面の腐食状況を検出する検出部と、を備えている。 In addition, the corrosion resistance diagnostic device according to the present invention is a corrosion resistance diagnostic component according to the present invention, a photographing unit for photographing the surface of the exposed portion, and corrosion of the surface of the exposed portion from image data photographed by the photographing unit. And a detection unit that detects the situation.
 また、本発明に係る熱交換器は、本発明に係る耐食性診断部品と、アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成され、冷媒が流れる冷媒配管と、を備え、前記耐食性診断部品は、前記冷媒配管と同じ部材で形成されている。 Further, the heat exchanger according to the present invention includes the corrosion resistance diagnostic component according to the present invention, and a refrigerant pipe in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum, and a refrigerant flows, the corrosion resistance diagnosis The component is formed of the same member as the refrigerant pipe.
 また、本発明に係る空気調和機は、本発明に係る耐食性診断部品と、アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成された伝熱管を有する熱交換器と、アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成され、前記熱交換器へ流入する冷媒又は前記熱交換器から流出した冷媒が流れる冷媒配管と、を備え、前記耐食性診断部品は、前記冷媒配管と同じ部材で形成されている。 Further, an air conditioner according to the present invention is a corrosion resistance diagnostic component according to the present invention, a heat exchanger having a heat transfer tube in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum, and a core containing aluminum. A sacrificial layer containing zinc is formed on the surface of the material, and a refrigerant pipe in which the refrigerant flowing into the heat exchanger or the refrigerant flowing out of the heat exchanger flows is provided, and the corrosion-resistant diagnostic component is the same as the refrigerant pipe. It is formed of a member.
 また、本発明に係る耐食性診断部品の製造方法は、前記第1芯材の表面に前記第1犠牲層が形成された耐食性診断部品用材料を準備する準備工程と、前記第1犠牲層の表面から前記第1犠牲層と前記第1芯材との境界よりも前記第1芯材の内部側まで除去し、前記第1犠牲層に隣接する位置に前記露出部を形成する形成工程と、を備えている。 Further, the method for manufacturing a corrosion-resistant diagnostic component according to the present invention comprises a preparation step of preparing a material for a corrosion-resistant diagnostic component in which the first sacrificial layer is formed on the surface of the first core material, and a surface of the first sacrificial layer. From the boundary between the first sacrificial layer and the first core material to the inside of the first core material, and forming the exposed portion at a position adjacent to the first sacrificial layer. I have it.
 また、本発明に係る診断方法は、本発明に係る耐食性診断部品を用い、アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成された被診断材料の腐食状況を診断する診断方法であって、前記露出部の表面において、前記第1犠牲層から規定距離以内となっている範囲を第1範囲とし、前記第1範囲に局部腐食痕が出現した際、前記被診断材料の用いられた製品が寿命であると診断する。 Further, the diagnostic method according to the present invention is a diagnostic method for diagnosing a corrosion state of a material to be diagnosed in which a sacrificial layer containing zinc is formed on a surface of a core material containing aluminum using the corrosion resistance diagnostic component according to the present invention. Then, on the surface of the exposed portion, a range within a specified distance from the first sacrificial layer is defined as a first range, and when a local corrosion mark appears in the first range, the material to be diagnosed is used. Diagnose the product is at end of life.
 本発明に係る耐食性診断部品においては、露出部は、第1犠牲層の表面から該第1犠牲層と第1芯材との境界よりも第1芯材の内部側まで除去されて、第1芯材が露出している。すなわち、本発明に係る耐食性診断部品の露出部は、第1犠牲層と第1芯材との境界部分が完全に除去されている。換言すると、本発明に係る耐食性診断部品の露出部は、第1犠牲層の形成時に第1芯材に拡散した亜鉛が完全に除去されている。このため、本発明に係る耐食性診断部品においては、露出部の表面の腐食状況に基づき、被診断材料の腐食状況を従来よりも正確に診断することができる。 In the corrosion resistance diagnostic component according to the present invention, the exposed portion is removed from the surface of the first sacrificial layer to the inside of the first core material with respect to the boundary between the first sacrificial layer and the first core material. The core material is exposed. That is, in the exposed portion of the corrosion-resistant diagnostic component according to the present invention, the boundary portion between the first sacrificial layer and the first core member is completely removed. In other words, in the exposed portion of the corrosion-resistant diagnostic component according to the present invention, zinc diffused in the first core material during the formation of the first sacrificial layer is completely removed. Therefore, in the corrosion-resistant diagnostic component according to the present invention, the corrosion status of the material to be diagnosed can be diagnosed more accurately than before based on the corrosion status of the surface of the exposed portion.
本発明の実施の形態1に係る空気調和機の概略構成を示す冷媒回路図である。It is a refrigerant circuit diagram showing a schematic structure of an air conditioner concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る耐食性診断器の機能ブロック図である。It is a functional block diagram of the corrosion-resistant diagnostic device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る耐食性診断部品の概略を示す平面図である。It is a top view which shows the outline of the corrosion-resistant diagnostic component which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る耐食性診断部品の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the corrosion-resistant diagnostic component which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る耐食性診断部品の腐食進行時に起こる反応を説明するためのモデル図である。It is a model figure for demonstrating the reaction which arises at the time of corrosion progress of the corrosion-resistant diagnostic component concerning Embodiment 1 of this invention. 本発明の実施の形態1に係る耐食性診断部品の露出部の変化過程を示す図である。It is a figure which shows the changing process of the exposed part of the corrosion-resistant diagnostic component which concerns on Embodiment 1 of this invention. 本実施の形態1に係る耐食性診断部品の縦断面図であり、耐食性診断部品の第1犠牲層に全面腐食が発生している状態を示す図である。FIG. 4 is a vertical cross-sectional view of the corrosion resistance diagnostic component according to the first embodiment, showing a state in which general corrosion has occurred in the first sacrificial layer of the corrosion resistance diagnostic component. 本発明の実施の形態1に係る耐食性診断部品の第1犠牲層の表面の変化過程を示す図である。It is a figure which shows the changing process of the surface of the 1st sacrificial layer of the corrosion resistance diagnostic component which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る耐食性診断部品の製造工程を示すフローチャートである。3 is a flowchart showing a manufacturing process of the corrosion resistance diagnostic component according to the first embodiment of the present invention. 本発明の実施の形態1に係る耐食性診断部品の露出部の形成工程を示す図である。It is a figure which shows the formation process of the exposed part of the corrosion-resistant diagnostic component which concerns on Embodiment 1 of this invention. 本発明の実施の形態1で行った複合サイクル試験を示すフローチャートである。3 is a flowchart showing a combined cycle test performed in the first embodiment of the present invention. 本発明の実施の形態4に係る室外熱交換器のコア部の一部分を示す側面図である。It is a side view which shows a part of core part of the outdoor heat exchanger which concerns on Embodiment 4 of this invention.
 以下の各実施の形態で、本発明の一例について、図面等を参照しながら説明する。なお、以下の実施の形態で記載されている各構成の形態は、あくまでも例示である。本発明は、以下の各実施の形態で記載されている構成に限定されるものではない。また、以下の各図面では、各構成部材の大きさの関係が本発明を実施した実物とは異なる場合がある。 An example of the present invention will be described in each of the following embodiments with reference to the drawings. In addition, the form of each configuration described in the following embodiments is merely an example. The present invention is not limited to the configurations described in the following embodiments. Further, in each of the following drawings, the relationship of the size of each component may be different from the actual product in which the present invention is implemented.
実施の形態1.
[耐食性診断部品の構成、耐食性診断器の構成、及びこれらを設ける目的について]
 本実施の形態1に係る空気調和機200においては、室外熱交換器100の伝熱管として、アルミニウムを含む材料で形成された伝熱管が用いられている。この伝熱管は、表面に亜鉛を含む犠牲層が形成され、伝熱管の腐食が抑制される構成となっている。すなわち、室外熱交換器100の伝熱管は、アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成された構成となっている。なお、以下では、亜鉛を含む犠牲層を、亜鉛犠牲層と称する場合もある。また、以下では、アルミニウムを含む芯材の表面に亜鉛犠牲層が形成された部材を、亜鉛犠牲層付アルミニウム材と称する場合がある。また、以下では、アルミニウムを含む芯材が用いられた伝熱管を、アルミニウム伝熱管と称する場合がある。ここで、本実施の形態1では、室外熱交換器100のアルミニウム伝熱管の芯材は、亜鉛を含まないアルミニウム合金となっている。アルミニウム合金は、例えばアルミニウム-マンガン合金である。また、室外熱交換器100の伝熱管の亜鉛犠牲層は、アルミニウム-亜鉛合金層となっている。
Embodiment 1.
[About the structure of the corrosion resistance diagnostic component, the structure of the corrosion resistance diagnostic device, and the purpose of providing these]
In the air conditioner 200 according to the first embodiment, a heat transfer tube made of a material containing aluminum is used as the heat transfer tube of the outdoor heat exchanger 100. This heat transfer tube has a structure in which a sacrificial layer containing zinc is formed on the surface and corrosion of the heat transfer tube is suppressed. That is, the heat transfer tube of the outdoor heat exchanger 100 has a structure in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum. In the following, the sacrificial layer containing zinc may be referred to as a zinc sacrificial layer. Further, hereinafter, a member having a zinc sacrificial layer formed on the surface of a core material containing aluminum may be referred to as an aluminum material with a zinc sacrificial layer. Moreover, below, the heat transfer tube using the core material containing aluminum may be called an aluminum heat transfer tube. Here, in the first embodiment, the core material of the aluminum heat transfer tube of the outdoor heat exchanger 100 is an aluminum alloy containing no zinc. The aluminum alloy is, for example, an aluminum-manganese alloy. The zinc sacrificial layer of the heat transfer tube of the outdoor heat exchanger 100 is an aluminum-zinc alloy layer.
 亜鉛犠牲層は、芯材のアルミニウム合金よりも電位的に卑である。このため、室外熱交換器100の伝熱管では、犠牲層が優先的に腐食され、芯材のアルミニウム合金の腐食を抑制できる。後述のように、亜鉛犠牲層の腐食形態は、表面側から内部側へ表層が一様に腐食していく全面腐食となる。また、アルミニウム合金である芯材の腐食形態は、局部腐食となる。このため、室外熱交換器100のアルミニウム伝熱管の表面に亜鉛を含む犠牲層を形成することにより、室外熱交換器100のアルミニウム伝熱管の耐食性を向上させることができる。 The zinc sacrificial layer is lower in potential than the aluminum alloy as the core material. Therefore, in the heat transfer tube of the outdoor heat exchanger 100, the sacrificial layer is preferentially corroded, and the corrosion of the aluminum alloy of the core material can be suppressed. As described later, the corrosion mode of the zinc sacrificial layer is a general corrosion in which the surface layer is uniformly corroded from the surface side to the inside side. Moreover, the corrosion form of the core material which is an aluminum alloy becomes a local corrosion. Therefore, by forming a sacrificial layer containing zinc on the surface of the aluminum heat transfer tube of the outdoor heat exchanger 100, the corrosion resistance of the aluminum heat transfer tube of the outdoor heat exchanger 100 can be improved.
 亜鉛犠牲層で芯材の表面が覆われたアルミニウム伝熱管においては、芯材の表面の一部で亜鉛犠牲層が剥がれてしまう場合がある。また、亜鉛犠牲層で芯材の表面が覆われたアルミニウム伝熱管においては、製造当初から、表面の一部に芯材であるアルミニウム合金がむき出しになっている場合もある。このように、アルミニウム伝熱管の表面において芯材であるアルミニウム合金がむき出しになっている部分も、上述の亜鉛犠牲層の優先腐食により保護される。すなわち、この亜鉛犠牲層で芯材の表面が覆われたアルミニウム伝熱管の耐食性が、室外熱交換器100及び該室外熱交換器100を搭載した室外機の製品寿命に大きく影響する。本実施の形態1に係る耐食性診断部品及び耐食性診断器は、亜鉛犠牲層で芯材の表面が覆われたアルミニウム伝熱管の腐食状況を診断する目的で用いられる。換言すると、本実施の形態1に係る耐食性診断部品及び耐食性診断器は、亜鉛犠牲層で芯材の表面が覆われたアルミニウム伝熱管を用いた室外熱交換器100及び該室外熱交換器100を搭載した室外機の寿命を把握する目的で用いられる。すなわち、本実施の形態1では、亜鉛犠牲層で芯材の表面が覆われたアルミニウム伝熱管が、被診断材料となっている。 In an aluminum heat transfer tube in which the surface of the core material is covered with the zinc sacrificial layer, the zinc sacrificial layer may peel off at a part of the surface of the core material. Further, in the aluminum heat transfer tube in which the surface of the core material is covered with the zinc sacrificial layer, the aluminum alloy as the core material may be exposed on a part of the surface from the beginning of manufacturing. As described above, the exposed portion of the aluminum alloy as the core material on the surface of the aluminum heat transfer tube is also protected by the preferential corrosion of the zinc sacrificial layer. That is, the corrosion resistance of the aluminum heat transfer tube whose surface of the core material is covered with the zinc sacrificial layer greatly affects the product life of the outdoor heat exchanger 100 and the outdoor unit equipped with the outdoor heat exchanger 100. The corrosion resistance diagnostic component and the corrosion resistance diagnostic device according to the first embodiment are used for the purpose of diagnosing the corrosion state of the aluminum heat transfer tube in which the surface of the core material is covered with the zinc sacrificial layer. In other words, the corrosion-resistant diagnostic component and the corrosion-resistant diagnostic device according to the first embodiment include the outdoor heat exchanger 100 and the outdoor heat exchanger 100 that use the aluminum heat transfer tube whose surface of the core material is covered with the zinc sacrificial layer. It is used for the purpose of grasping the life of the installed outdoor unit. That is, in the first embodiment, the aluminum heat transfer tube whose surface is covered with the zinc sacrificial layer is the material to be diagnosed.
 図1は、本発明の実施の形態1に係る空気調和機の概略構成を示す冷媒回路図である。 図1に示すように、空気調和機200は、圧縮機201と、マフラー202と、四方弁203と、室外熱交換器100と、毛細管205と、ストレーナ206と、電子制御式膨張弁207と、ストップバルブ208aと、室内熱交換器209と、ストップバルブ208bと、補助マフラー210とを、冷媒配管204により接続して構成される冷媒回路を備えている。 1 is a refrigerant circuit diagram showing a schematic configuration of an air conditioner according to Embodiment 1 of the present invention. As shown in FIG. 1, the air conditioner 200 includes a compressor 201, a muffler 202, a four-way valve 203, an outdoor heat exchanger 100, a capillary tube 205, a strainer 206, an electronically controlled expansion valve 207, The refrigerant circuit is configured by connecting the stop valve 208a, the indoor heat exchanger 209, the stop valve 208b, and the auxiliary muffler 210 with the refrigerant pipe 204.
 空気調和機200の室内熱交換器209を有する室内機には、外気、室内空気及び冷媒等の各温度に基づいて、圧縮機201、電子制御式膨張弁207等のアクチュエータ類の制御を司る制御装置211が設けられている。四方弁203は、冷房と暖房の冷凍サイクルを切り替える弁であり、制御装置211によって制御される。なお、後述のように、制御装置211は、耐食性診断器300の制御装置としても機能している。空気調和機200の制御装置と耐食性診断器300の制御装置とを別体で構成しても勿論よい。 The indoor unit having the indoor heat exchanger 209 of the air conditioner 200 controls the actuators such as the compressor 201 and the electronically controlled expansion valve 207 based on the temperatures of the outside air, the indoor air, the refrigerant, and the like. A device 211 is provided. The four-way valve 203 is a valve that switches a refrigeration cycle for cooling and heating, and is controlled by the control device 211. As will be described later, the control device 211 also functions as a control device for the corrosion resistance diagnostic device 300. Of course, the control device of the air conditioner 200 and the control device of the corrosion resistance diagnostic device 300 may be separately configured.
 制御装置211は、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPU(Central Processing Unit)で構成されている。なお、CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はプロセッサともいう。 The control device 211 is composed of dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in a memory. Note that the CPU is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor.
 制御装置211が専用のハードウェアである場合、制御装置211は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものが該当する。制御装置211が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。 When the control device 211 is dedicated hardware, the control device 211 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable Each of the functional units realized by the control device 211 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
 制御装置211がCPUの場合、制御装置211が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行することにより、制御装置211の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、又はEEPROM等の、不揮発性又は揮発性の半導体メモリである。 When the control device 211 is a CPU, each function executed by the control device 211 is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in memory. The CPU realizes each function of the control device 211 by reading and executing the program stored in the memory. Here, the memory is, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
 制御装置211の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 A part of the functions of the control device 211 may be realized by dedicated hardware and a part thereof may be realized by software or firmware.
 次に、図1を参照して、空気調和機200の冷房運転時の動作例について説明する。制御装置211によって四方弁203が冷房運転時の流路に切り替えられた場合には、冷媒が圧縮機201により圧縮されて高温高圧のガス冷媒となり、四方弁203を介して室外熱交換器100に流入する。室外熱交換器100に流入した高温高圧のガス冷媒は、室外熱交換器100を通過する室外空気と熱交換し、高圧の液冷媒となって流出する。室外熱交換器100から流出した高圧の液冷媒は、毛細管205及び電子制御式膨張弁207で減圧され、低圧の気液二相の冷媒となり、室内熱交換器209に流入する。室内熱交換器209に流入した気液二相の冷媒は、室内熱交換器209を通過する室内空気と熱交換し、室内空気を冷却して低温低圧のガス冷媒となって圧縮機201に吸入される。 Next, an operation example of the air conditioner 200 during a cooling operation will be described with reference to FIG. When the four-way valve 203 is switched to the flow path during the cooling operation by the control device 211, the refrigerant is compressed by the compressor 201 to become a high-temperature and high-pressure gas refrigerant, and is transferred to the outdoor heat exchanger 100 via the four-way valve 203. Inflow. The high-temperature high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 100 exchanges heat with the outdoor air passing through the outdoor heat exchanger 100, and flows out as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 100 is decompressed by the capillary 205 and the electronically controlled expansion valve 207, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 209. The gas-liquid two-phase refrigerant flowing into the indoor heat exchanger 209 exchanges heat with the indoor air passing through the indoor heat exchanger 209, cools the indoor air, becomes a low-temperature low-pressure gas refrigerant, and is sucked into the compressor 201. To be done.
 次に、図1を参照して空気調和機200の暖房運転時の動作例について説明する。制御装置211によって四方弁203が暖房運転の流路に切り替えられた場合には、冷媒は、上記と同様に圧縮機201により圧縮されて高温高圧のガス冷媒となり、四方弁203を介して室内熱交換器209に流入する。室内熱交換器209に流入した高温高圧のガス冷媒は、室内熱交換器209を通過する室内空気と熱交換し、室内空気を暖めて高圧の液冷媒となる。室内熱交換器209から流出した高圧の液冷媒は、電子制御式膨張弁207及び毛細管205で減圧され、低圧の気液二相の冷媒となり、室外熱交換器100に流入する。室外熱交換器100に流入した低圧の気液二相の冷媒は、室外熱交換器100を通過する室外空気と熱交換し、低温低圧のガス冷媒となって圧縮機201に吸入される。 Next, an operation example of the air conditioner 200 during heating operation will be described with reference to FIG. When the four-way valve 203 is switched to the flow path of the heating operation by the control device 211, the refrigerant is compressed by the compressor 201 into a high-temperature and high-pressure gas refrigerant in the same manner as described above, and the indoor heat is transferred via the four-way valve 203. It flows into the exchanger 209. The high-temperature and high-pressure gas refrigerant flowing into the indoor heat exchanger 209 exchanges heat with the indoor air passing through the indoor heat exchanger 209 to warm the indoor air and become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flowing out from the indoor heat exchanger 209 is decompressed by the electronically controlled expansion valve 207 and the capillary tube 205, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the outdoor heat exchanger 100. The low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 100 exchanges heat with the outdoor air that passes through the outdoor heat exchanger 100, becomes a low-temperature low-pressure gas refrigerant, and is sucked into the compressor 201.
 図2は、本発明の実施の形態1に係る耐食性診断器の機能ブロック図である。
 耐食性診断器300は、撮影部312と、検出部313と、記憶部314と、比較部315と、報知部316と、制御装置211と、後述する耐食性診断部品1とを備えている。撮影部312は、例えば、デジタルカメラ又はテレビカメラ等の撮影装置である。制御装置211からの制御信号に基づいて、撮影部312により、後述する耐食性診断部品1の表面が撮影される。より詳しくは、撮影部312は、少なくとも、耐食性診断部品1の後述する露出部3aの表面を撮影する。撮影部312により撮影された耐食性診断部品1の表面の画像データは、検出部313に入力される。検出部313は、制御装置211からの制御信号に基づいて、撮影部312から出力された画像データをA/D(Analog/Digital)変換することによりデジタルの画像信号を得て、耐食性診断部品1の表面の画像データを解析する。すなわち、検出部313は、撮影部312で撮影された画像データから、耐食性診断部品1の露出部3aの表面の腐食状況を検出する。
FIG. 2 is a functional block diagram of the corrosion resistance diagnostic device according to the first embodiment of the present invention.
The corrosion resistance diagnostic device 300 includes a photographing unit 312, a detection unit 313, a storage unit 314, a comparison unit 315, a notification unit 316, a control device 211, and a corrosion resistance diagnosis component 1 described below. The imaging unit 312 is an imaging device such as a digital camera or a television camera, for example. Based on a control signal from the control device 211, the image capturing unit 312 captures an image of the surface of the corrosion resistance diagnostic component 1 described later. More specifically, the image capturing unit 312 captures at least the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 described below. The image data of the surface of the corrosion resistance diagnostic component 1 photographed by the photographing unit 312 is input to the detection unit 313. The detection unit 313 obtains a digital image signal by A/D (Analog/Digital) conversion of the image data output from the imaging unit 312 based on the control signal from the control device 211, and the corrosion resistance diagnostic component 1 The image data of the surface of is analyzed. That is, the detection unit 313 detects the corrosion state of the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 from the image data captured by the imaging unit 312.
 検出部313で解析された画像データは、比較部315及び記憶部314へ出力される。記憶部314は、例えばメモリであり、耐食性診断部品1の露出部3aの表面の腐食状況を示すパラメータを記憶する。本実施の形態1では、記憶部314は、耐食性診断部品1の露出部3aの表面の腐食状況を示すパラメータとして、検出部313から出力された画像データが記憶される。比較部315は、検出部313の検出結果と記憶部314に記憶されているパラメータとを比較する。本実施の形態1の場合、比較部315は、検出部313から送られてきた画像データと、記憶部314に記憶されている画像データとを比較する。報知部316は、比較部315での比較結果を報知する。本実施の形態1では、空気調和機200の図示せぬ運転パネル又は操作パネルを、報知部316として用いている。すなわち、本実施の形態1では、報知部316は、比較部315での比較結果を表示するという形態で、比較部315での比較結果を報知する。 The image data analyzed by the detection unit 313 is output to the comparison unit 315 and the storage unit 314. The storage unit 314 is, for example, a memory, and stores a parameter indicating the corrosion state of the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1. In the first embodiment, the storage unit 314 stores the image data output from the detection unit 313 as a parameter indicating the corrosion state of the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1. The comparison unit 315 compares the detection result of the detection unit 313 with the parameter stored in the storage unit 314. In the case of the first embodiment, the comparison unit 315 compares the image data sent from the detection unit 313 with the image data stored in the storage unit 314. The notification unit 316 notifies the comparison result of the comparison unit 315. In the first embodiment, the operation panel or operation panel (not shown) of the air conditioner 200 is used as the notification unit 316. That is, in the first embodiment, the notification unit 316 notifies the comparison result of the comparison unit 315 by displaying the comparison result of the comparison unit 315.
 検出部313及び比較部315は、例えば、制御装置211と同様に、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPUで構成される。検出部313及び比較部315は、制御装置211の機能部の一部としてもよいし、制御装置211とは別体で構成してもよい。また例えば、検出部313は、撮影部312と組み合わせたハードウェアとして構成することもできる。撮影部312と検出部313とを組み合わせたハードウェアとは、例えば、ラインスキャンカメラ、3次元画像処理システム、又は画像判別センサ等である。 Like the control device 211, the detection unit 313 and the comparison unit 315 are configured by dedicated hardware or a CPU that executes a program stored in a memory, for example. The detection unit 313 and the comparison unit 315 may be a part of the functional unit of the control device 211 or may be configured separately from the control device 211. Further, for example, the detection unit 313 can also be configured as hardware combined with the image capturing unit 312. The hardware in which the imaging unit 312 and the detection unit 313 are combined is, for example, a line scan camera, a three-dimensional image processing system, an image discrimination sensor, or the like.
 このように構成された耐食性診断器300は、上述の空気調和機200に搭載される。なお、耐食性診断器300は、空気調和機200と共に販売等されてもよいし、室外熱交換器100と共に販売等されてもよい。すなわち、耐食性診断器300は、空気調和機200の構成として扱われてもよいし、室外熱交換器100の構成として扱われてもよい。 The corrosion resistance diagnostic device 300 configured as described above is mounted on the air conditioner 200 described above. The corrosion resistance diagnostic device 300 may be sold together with the air conditioner 200, or may be sold together with the outdoor heat exchanger 100. That is, the corrosion resistance diagnostic device 300 may be treated as a configuration of the air conditioner 200 or may be treated as a configuration of the outdoor heat exchanger 100.
[アルミニウム伝熱管に用いられる亜鉛犠牲層付アルミニウム材]
 アルミニウム伝熱管に用いられる亜鉛犠牲層付アルミニウム材を製造する場合、まず、アルミニウムを含む材料を用いた芯材を準備する。そして、耐食性が芯材より低い亜鉛犠牲層を芯材の表面に形成することにより、アルミニウム伝熱管に用いられる亜鉛犠牲層付アルミニウム材が製造される。具体的には、例えばアルミニウム-マンガン合金等のアルミニウム合金を芯材として用い、該芯材の表面にアルミニウム-亜鉛合金の犠牲層を形成して、アルミニウム伝熱管に用いられる亜鉛犠牲層付アルミニウム材が製造される。
[Aluminum material with zinc sacrificial layer used for aluminum heat transfer tubes]
When manufacturing an aluminum material with a zinc sacrificial layer used for an aluminum heat transfer tube, first, a core material using a material containing aluminum is prepared. Then, by forming a zinc sacrificial layer having lower corrosion resistance than the core material on the surface of the core material, an aluminum material with a zinc sacrificial layer used for an aluminum heat transfer tube is manufactured. Specifically, for example, an aluminum alloy such as an aluminum-manganese alloy is used as a core material, a sacrificial layer of an aluminum-zinc alloy is formed on the surface of the core material, and an aluminum material with a zinc sacrificial layer used for an aluminum heat transfer tube. Is manufactured.
 亜鉛犠牲層付アルミニウム材として、アルミニウムクラッド材又は亜鉛溶射アルミニウム材が使用される。アルミニウムクラッド材は、芯材となるアルミニウムを含む材料と亜鉛犠牲層となるアルミニウム-亜鉛合金材とを併せて圧延及び熱処理を施し、両者を接合して製造される。亜鉛溶射アルミニウム材は、アルミニウムを含む芯材の表面に金属亜鉛を溶射し、熱処理によって亜鉛を芯材に拡散させて製造される。 An aluminum clad material or a zinc sprayed aluminum material is used as the aluminum material with a zinc sacrificial layer. The aluminum clad material is manufactured by rolling and heat treating a material containing aluminum as a core material and an aluminum-zinc alloy material as a zinc sacrificial layer, and joining the both. The zinc-sprayed aluminum material is manufactured by spraying metallic zinc on the surface of a core material containing aluminum and diffusing the zinc into the core material by heat treatment.
 熱交換器の伝熱管として円管を用いる場合は、アルミニウムクラッド材及び亜鉛溶射アルミニウム材の双方を用いることができる。 When using a circular tube as the heat transfer tube of the heat exchanger, both aluminum clad material and zinc sprayed aluminum material can be used.
 一方、熱交換器の伝熱管として、扁平管が用いられる場合もある。扁平管は、断面形状が扁平で、外部形状の一部に対向する一対の平面部を有している。また、扁平管は、内部に、複数の冷媒流路が形成されている。このように構成された扁平管は、例えば、フィン材を組み合わせたフィンチューブ型熱交換器として用いられる。熱交換器の伝熱管に扁平管を用いることにより、円管を用いた熱交換器と比較して、冷媒に接触する管内面積を大きくとることができ、更に通風抵抗を小さくできるという利点がある。扁平管は、複雑な形状をしているためにアルミニウムクラッド材を用いることが困難なため、亜鉛溶射アルミニウム材が用いられる。 On the other hand, flat tubes may be used as the heat transfer tubes of the heat exchanger. The flat tube has a flat cross section, and has a pair of flat portions facing a part of the external shape. Further, the flat tube has a plurality of refrigerant flow paths formed therein. The flat tube thus configured is used as, for example, a fin tube type heat exchanger in which fin materials are combined. By using a flat tube as the heat transfer tube of the heat exchanger, there is an advantage that the internal area of the tube in contact with the refrigerant can be increased and the ventilation resistance can be reduced, as compared with the heat exchanger using a circular tube. .. Since the flat tube has a complicated shape and it is difficult to use an aluminum clad material, a zinc sprayed aluminum material is used.
 亜鉛溶射アルミニウム材で伝熱管を構成する場合、芯材となるアルミニウムを含む管状部材の両側に亜鉛を溶射するためのノズルが設置され、これらのノズルから管状部材の表面に溶融した亜鉛が吹き付けられる。このため、管状部材の表面において、ノズルの対向方向に対して垂直方向を向く部分周辺に、亜鉛の未溶射部分が形成される場合がある。すなわち、亜鉛溶射アルミニウム材で構成された伝熱管は、表面の一部に芯材が露出する場合がある。しかしながら、表面に芯材が露出した部分に対して、該部分周辺の亜鉛犠牲層が防食機能を発揮する。溶射する亜鉛目付量と熱処理による亜鉛拡散度合いにより芯材に対する亜鉛犠牲層の防食性能が決まることから、製品寿命に応じた亜鉛犠牲層設計が施される。 When constructing a heat transfer tube with a zinc sprayed aluminum material, nozzles for spraying zinc are installed on both sides of a tubular member containing aluminum as a core material, and molten zinc is sprayed onto the surface of the tubular member from these nozzles. .. Therefore, on the surface of the tubular member, an unsprayed portion of zinc may be formed around the portion that is oriented in the direction perpendicular to the facing direction of the nozzle. That is, in the heat transfer tube made of zinc sprayed aluminum material, the core material may be exposed on a part of the surface. However, for the portion where the core material is exposed on the surface, the zinc sacrificial layer around the portion exhibits the anticorrosion function. Since the anticorrosion performance of the zinc sacrificial layer with respect to the core material is determined by the sprayed zinc basis weight and the degree of zinc diffusion by heat treatment, the zinc sacrificial layer is designed according to the product life.
 本実施の形態1に係る耐食性診断器300が備える耐食性診断部品1は、特に、表面に芯材が露出した部分に対する亜鉛犠牲層の防食機能の有無を診断する際に有効である。このため、本実施の形態1では、室外熱交換器100のアルミニウム伝熱管として亜鉛溶射アルミニウム材を用いた場合を例に、以下説明していく。 The corrosion resistance diagnostic component 1 included in the corrosion resistance diagnostic device 300 according to the first embodiment is particularly effective in diagnosing the presence or absence of the anticorrosion function of the zinc sacrificial layer for the portion where the core material is exposed on the surface. Therefore, in the first embodiment, the case where a zinc sprayed aluminum material is used as the aluminum heat transfer tube of the outdoor heat exchanger 100 will be described below as an example.
[耐食性診断部品の概要]
 図3は、本発明の実施の形態1に係る耐食性診断部品の概略を示す平面図である。図4は、本発明の実施の形態1に係る耐食性診断部品の概略を示す縦断面図である。
 ここで、以下では、耐食性診断部品1の芯材と被診断材料の芯材とを区別するため、耐食性診断部品1の芯材を第1芯材3と称する。また、以下では、耐食性診断部品1の亜鉛犠牲層と被診断材料の亜鉛犠牲層とを区別するため、耐食性診断部品1の亜鉛犠牲層を第1犠牲層2と称する。なお、図3及び図4では、第1犠牲層2中の亜鉛の濃度をハッチングで示している。このため、図4の断面図では、断面部分のハッチングを省略している。なお、ハッチングが密なほど、亜鉛濃度が濃い状態を示している。また、図4に示す二点鎖線は、第1犠牲層2と第1芯材3との境界を示している。
[Outline of corrosion resistance diagnostic parts]
FIG. 3 is a plan view showing an outline of the corrosion resistance diagnostic component according to the first embodiment of the present invention. FIG. 4 is a vertical cross-sectional view showing an outline of the corrosion resistance diagnostic component according to the first embodiment of the present invention.
Here, in the following, in order to distinguish the core material of the corrosion resistance diagnostic component 1 from the core material of the material to be diagnosed, the core material of the corrosion resistance diagnostic component 1 is referred to as a first core material 3. Further, hereinafter, in order to distinguish the zinc sacrificial layer of the corrosion resistance diagnostic component 1 from the zinc sacrificial layer of the material to be diagnosed, the zinc sacrificial layer of the corrosion resistant diagnostic component 1 is referred to as a first sacrificial layer 2. 3 and 4, the concentration of zinc in the first sacrificial layer 2 is shown by hatching. Therefore, in the cross-sectional view of FIG. 4, hatching of the cross-section portion is omitted. The denser the hatching, the higher the zinc concentration. The two-dot chain line shown in FIG. 4 indicates the boundary between the first sacrificial layer 2 and the first core material 3.
 耐食性診断部品1は、被診断材料の腐食状況の診断に用いられる。本実施の形態1では、耐食性診断部品1の素材として、被診断材料である室外熱交換器100のアルミニウム伝熱管に用いられる亜鉛犠牲層付アルミニウム材を使用する。この亜鉛犠牲層付アルミニウム材は、亜鉛溶射アルミニウム材である。この亜鉛溶射アルミニウム材は、アルミニウムを含む芯材の表面に対して一様に溶射された金属亜鉛を熱処理し、亜鉛を芯材に拡散させる。この亜鉛の拡散により、芯材の表面にアルミニウム-亜鉛合金である亜鉛犠牲層が形成される。熱処理の際、亜鉛は、芯材の表層から内部に向かって拡散していく。このため、亜鉛犠牲層は、最表層の亜鉛濃度が最も高く、芯材方向に進むほどその濃度が減少する濃度勾配を持った所定厚のアルミニウム-亜鉛合金層となる。 The corrosion resistance diagnostic component 1 is used to diagnose the corrosion state of the material to be diagnosed. In the first embodiment, as a material of the corrosion resistance diagnostic component 1, an aluminum material with a zinc sacrificial layer used for an aluminum heat transfer tube of the outdoor heat exchanger 100, which is a material to be diagnosed, is used. This aluminum material with a zinc sacrificial layer is a zinc sprayed aluminum material. This zinc-sprayed aluminum material heat-treats metallic zinc that has been uniformly sprayed onto the surface of a core material containing aluminum, and diffuses zinc into the core material. By this diffusion of zinc, a zinc sacrificial layer which is an aluminum-zinc alloy is formed on the surface of the core material. During heat treatment, zinc diffuses from the surface layer of the core material toward the inside. Therefore, the zinc sacrificial layer is an aluminum-zinc alloy layer having a predetermined thickness with a highest concentration of zinc in the outermost layer and a concentration gradient in which the concentration decreases as it goes in the direction of the core material.
 このように製作された亜鉛溶射アルミニウム材を耐食性診断部品1の素材とする場合、熱処理によって亜鉛が拡散しなかった芯材部分が、第1芯材3となる。また、亜鉛が拡散した部分が、第1犠牲層2となる。すなわち、耐食性診断部品1は、アルミニウムを含む第1芯材3と、第1芯材3の表面に形成され、第1芯材3よりも耐食性が低い亜鉛を含む第1犠牲層2と、を備えた構成となる。 When using the zinc sprayed aluminum material manufactured in this way as the material of the corrosion resistance diagnostic component 1, the core material portion where the zinc has not diffused by the heat treatment becomes the first core material 3. Further, the portion where zinc is diffused becomes the first sacrificial layer 2. That is, the corrosion resistance diagnostic component 1 includes a first core material 3 containing aluminum and a first sacrificial layer 2 formed on the surface of the first core material 3 and containing zinc having a lower corrosion resistance than the first core material 3. It will be equipped.
 また、耐食性診断部品1は、表面の一部が深さ方向に切削等で除去され、第1犠牲層2に隣接する位置に露出部3aが形成されている。露出部3aは、第1犠牲層2の表面から第1犠牲層2と第1芯材3との境界よりも第1芯材3の内部側まで例えば切削によって除去されて、第1芯材3が露出している。このように露出部3aを形成することにより、露出部3aの表面は、亜鉛が完全に除去されている。すなわち、耐食性診断部品1における第1犠牲層2が形成されている箇所は、亜鉛が拡散している第1犠牲層2と亜鉛が拡散していない第1芯材3とが積層された状態となっている。また、耐食性診断部品1における露出部3a部分は、第1芯材3に第1犠牲層2が積層されていない状態となっている。 Further, in the corrosion resistance diagnostic component 1, a part of the surface is removed by cutting in the depth direction, and an exposed portion 3a is formed at a position adjacent to the first sacrificial layer 2. The exposed portion 3a is removed, for example, by cutting from the surface of the first sacrificial layer 2 to the inside of the first core material 3 with respect to the boundary between the first sacrificial layer 2 and the first core material 3, and the first core material 3 is removed. Is exposed. By forming the exposed portion 3a in this manner, zinc is completely removed from the surface of the exposed portion 3a. That is, in the portion where the first sacrificial layer 2 is formed in the corrosion resistance diagnostic component 1, a state in which the first sacrificial layer 2 in which zinc is diffused and the first core material 3 in which zinc is not diffused are laminated. Has become. The exposed portion 3a of the corrosion resistance diagnostic component 1 is in a state where the first sacrificial layer 2 is not laminated on the first core material 3.
 耐食性診断部品1は、室外熱交換器100と共に、室外熱交換器100を有する室外機に設けられる。例えば、耐食性診断部品1は、室外熱交換器100に取り付けられる。 The corrosion resistance diagnostic component 1 is provided in an outdoor unit having the outdoor heat exchanger 100 together with the outdoor heat exchanger 100. For example, the corrosion resistance diagnostic component 1 is attached to the outdoor heat exchanger 100.
 なお、耐食性診断部品1は、空気調和機200と共に販売等されてもよいし、室外熱交換器100と共に販売等されてもよい。すなわち、耐食性診断部品1は、空気調和機200の構成として扱われてもよいし、室外熱交換器100の構成として扱われてもよい。 The corrosion resistance diagnostic component 1 may be sold together with the air conditioner 200 or may be sold together with the outdoor heat exchanger 100. That is, the corrosion resistance diagnostic component 1 may be treated as a configuration of the air conditioner 200 or as a configuration of the outdoor heat exchanger 100.
[耐食性診断部品における腐食の進行について]
 図5は、本発明の実施の形態1に係る耐食性診断部品の腐食進行時に起こる反応を説明するためのモデル図である。
 上述のように、本実施の形態1に係る耐食性診断部品1は、室外熱交換器100のアルミニウム伝熱管に用いられる亜鉛犠牲層付アルミニウム材を使用している。このため、図5は、室外熱交換器100のアルミニウム伝熱管の腐食進行時に起こる反応を説明するためのモデル図ということもできる。
[Progress of corrosion in corrosion resistance diagnostic parts]
FIG. 5 is a model diagram for explaining a reaction that occurs when corrosion progresses in the corrosion resistance diagnostic component according to the first embodiment of the present invention.
As described above, the corrosion resistance diagnostic component 1 according to the first embodiment uses the aluminum material with the zinc sacrificial layer used for the aluminum heat transfer tube of the outdoor heat exchanger 100. Therefore, FIG. 5 can also be regarded as a model diagram for explaining the reaction that occurs when corrosion of the aluminum heat transfer tube of the outdoor heat exchanger 100 progresses.
 耐食性診断部品1は、電位の異なる2つの金属が電気的に接続された構成と見ることができる。具体的には、アルミニウム-マンガン合金等のアルミニウム合金である第1芯材3と、アルミニウム-亜鉛合金である第1犠牲層2とが、電気的に接続された構成と見ることができる。このため、第1芯材3と第1犠牲層2とに跨がる液絡4が形成された場合、アルミニウム-亜鉛合金である第1犠牲層2は、アルミニウム合金である第1芯材3よりも電位が低いため、酸化反応の進むアノードとして機能する。また、第1芯材3と第1犠牲層2とに跨がる液絡4が形成された場合、アルミニウム合金である第1芯材3は、アルミニウム-亜鉛合金である第1犠牲層2よりも電位が高いため、還元反応の進むカソードとして機能する。 The corrosion resistance diagnostic component 1 can be regarded as a structure in which two metals having different electric potentials are electrically connected. Specifically, it can be considered that the first core material 3 which is an aluminum alloy such as an aluminum-manganese alloy and the first sacrificial layer 2 which is an aluminum-zinc alloy are electrically connected. Therefore, when the liquid junction 4 extending over the first core material 3 and the first sacrificial layer 2 is formed, the first sacrificial layer 2 that is an aluminum-zinc alloy is the first core material 3 that is an aluminum alloy. Since it has a lower potential than that, it functions as an anode in which the oxidation reaction proceeds. In addition, when the liquid junction 4 extending over the first core material 3 and the first sacrificial layer 2 is formed, the first core material 3 which is an aluminum alloy is more than the first sacrificial layer 2 which is an aluminum-zinc alloy. Since it also has a high potential, it functions as a cathode in which the reduction reaction proceeds.
 具体的には、アノード側では式(1)及び式(2)に示すアルミニウム-亜鉛合金の酸化反応が進行する。
 Al→Al3++3e ・・・(1)
 Zn→Zn2++2e ・・・(2)
Specifically, the oxidation reaction of the aluminum-zinc alloy represented by the formulas (1) and (2) proceeds on the anode side.
Al → Al 3+ + 3e - ··· (1)
Zn → Zn 2+ + 2e - ··· (2)
 一方、カソード側では式(3)及び式(4)に示す酸素の還元反応が進行する。
 O+2HO+4e→4OH ・・・(3)
 2H+2e→H ・・・(4)
On the other hand, on the cathode side, the oxygen reduction reaction represented by the formulas (3) and (4) proceeds.
O 2 + 2H 2 O + 4e - → 4OH - ··· (3)
2H + +2e →H 2 (4)
 図5に示すように、式(1)及び式(2)に示す酸化反応と、式(3)及び式(4)に示す還元反応とが、電子の移動を伴って進行する。これらの酸化反応及び還元反応は、アルミニウム合金である第1芯材3の表面が第1犠牲層2に覆われていない範囲であっても、電子の移動が届く範囲であれば進行する。一方、この電子の移動が届かない領域では、酸素の還元反応は進行せず、第1芯材3単体の腐食反応が進行してしまう。この電子の移動が届く範囲を「芯材に対する亜鉛犠牲層の防食範囲」又は単に「防食範囲」と呼ぶ。この防食範囲は、耐食性診断部品1における製品寿命の診断に大きく影響するものである。製品寿命と防食範囲の相関については後述する。 As shown in FIG. 5, the oxidation reaction shown in Formula (1) and Formula (2) and the reduction reaction shown in Formula (3) and Formula (4) proceed with electron transfer. These oxidation reaction and reduction reaction proceed even if the surface of the first core material 3 which is an aluminum alloy is not covered with the first sacrificial layer 2 as long as the movement of electrons can reach the surface. On the other hand, in the region where the movement of electrons does not reach, the reduction reaction of oxygen does not proceed, and the corrosion reaction of the single first core material 3 proceeds. The range where the movement of the electrons reaches is referred to as "corrosion prevention range of the zinc sacrificial layer with respect to the core material" or simply "corrosion prevention range". This anticorrosion range has a great influence on the diagnosis of the product life of the corrosion resistance diagnostic component 1. The correlation between the product life and the corrosion protection range will be described later.
 アルミニウム-亜鉛合金である第1犠牲層2及びアルミニウム合金である第1芯材3は、それぞれの腐食形態について特長がある。亜鉛犠牲層である第1犠牲層2が腐食することにより、防食範囲内にある第1芯材3の腐食は抑制される。一方、防食範囲外にある第1芯材3の腐食は進行する。 The first sacrificial layer 2, which is an aluminum-zinc alloy, and the first core material 3, which is an aluminum alloy, have features in their respective corrosion forms. Corrosion of the first sacrificial layer 2 that is a zinc sacrificial layer suppresses corrosion of the first core material 3 that is within the corrosion protection range. On the other hand, the corrosion of the first core material 3 outside the anticorrosion range proceeds.
 亜鉛犠牲層である第1犠牲層2に発生する腐食は、アルミニウムに亜鉛が添加されているために、アルミニウム合金の特長である表面の耐食性の不動態被膜の耐食性が脆弱化され、全面腐食の形態をとる。この全面腐食は、亜鉛濃度に対応した速度で進行する。このため、表面から内部に向かって一様に亜鉛濃度が減少していく第1犠牲層2では、表面から一様に、深さ方向に所定の速度で全面腐食が進行する。所定時間で深さ方向へ全面腐食がどれだけ進行するのかについては、所定時間における第1犠牲層2の断面を観察することにより把握が可能である。 Corrosion that occurs in the first sacrificial layer 2, which is a zinc sacrificial layer, is caused by the addition of zinc to aluminum, which weakens the corrosion resistance of the passivation film, which is the feature of aluminum alloys, and thus the corrosion resistance of the overall surface. Take a form. This general corrosion proceeds at a rate corresponding to the zinc concentration. For this reason, in the first sacrificial layer 2 in which the zinc concentration decreases uniformly from the surface to the inside, general corrosion progresses uniformly from the surface in the depth direction at a predetermined rate. How much the general corrosion progresses in the depth direction in a predetermined time can be grasped by observing the cross section of the first sacrificial layer 2 in the predetermined time.
 一方、第1芯材3では、防食範囲内では上述のように防食され腐食は進行しないが、防食範囲外では腐食が進行する。アルミニウム合金である第1芯材3では、アルミニウム合金の特長である表面の不動態被膜の影響で、局部的に被膜が破壊されるいわゆる「局部腐食」が進行する。この局部腐食の出現については、表面観察により、局部腐食痕として把握が可能である。 On the other hand, in the first core material 3, in the anticorrosion range, the corrosion is performed as described above and the corrosion does not proceed, but the corrosion progresses outside the anticorrosion range. In the first core material 3, which is an aluminum alloy, so-called "local corrosion" in which the film is locally destroyed due to the influence of the surface passive film, which is a feature of the aluminum alloy, progresses. The appearance of this local corrosion can be grasped as a local corrosion mark by observing the surface.
[亜鉛犠牲層付アルミニウム材を伝熱管として使用した熱交換器及び室外機の製品寿命]
 室外熱交換器100のアルミニウム伝熱管を構成する亜鉛犠牲層付アルミニウム材においても、アルミニウムを含む芯材の表面において防食範囲外となる場所には、上述した第1芯材3の防食範囲外に発生する局部腐食と同じように、局部腐食が発生する。不動態被膜が腐食因子の付着等により破壊されて、芯材に局部腐食が発生すると、局部腐食は、芯材内部にて任意に進行する。特に、不動態被膜はアルミ酸化物で構成されているために、アルミニウムを含む芯材よりも電位が高い。このため、不動態被膜と芯材とで局部電池を形成し、電位の低い芯材側への腐食が促進される。また、不動態被膜の表面では酸素が存在し、芯材内部では酸素が欠乏する。このため、不動態被膜と芯材内部との間でいわゆる酸素濃淡電池が形成され、同じく芯材側への腐食が促進される。したがって、アルミニウム伝熱管においては、局部腐食が発生するとその腐食進行については制御できず、貫通孔形成から冷媒漏れに繋がり、結果として室外熱交換器100の故障となる。このため、局部腐食の発生を製品寿命ポイントとすることが、室外熱交換器100及び室外機の信頼性を確保するために安全な設計と考えられる。
[Product life of heat exchanger and outdoor unit using aluminum material with zinc sacrificial layer as heat transfer tube]
Also in the aluminum material with a zinc sacrificial layer that constitutes the aluminum heat transfer tube of the outdoor heat exchanger 100, a place outside the corrosion protection range on the surface of the core material containing aluminum is outside the corrosion protection range of the first core material 3 described above. Similar to the localized corrosion that occurs, localized corrosion occurs. When the passivation film is destroyed due to adhesion of a corrosion factor or the like and local corrosion occurs in the core material, the local corrosion arbitrarily progresses inside the core material. In particular, since the passivation film is composed of aluminum oxide, it has a higher potential than the core material containing aluminum. Therefore, a local battery is formed by the passivation film and the core material, and corrosion to the core material side having a low potential is promoted. Further, oxygen is present on the surface of the passivation film, and oxygen is deficient inside the core material. Therefore, a so-called oxygen concentration battery is formed between the passivation film and the inside of the core material, and corrosion to the core material side is also promoted. Therefore, in the aluminum heat transfer tube, when local corrosion occurs, the progress of the corrosion cannot be controlled, and the formation of the through hole leads to refrigerant leakage, resulting in failure of the outdoor heat exchanger 100. Therefore, setting the occurrence of local corrosion as the product life point is considered to be a safe design for ensuring the reliability of the outdoor heat exchanger 100 and the outdoor unit.
 したがって、本実施の形態1に係る耐食性診断部品1においては、「第1犠牲層2の第1芯材3に対する防食範囲内の領域に局部腐食が発現した時点」を、室外熱交換器100及び室外機の寿命ポイントとする。具体的には、室外熱交換器100のアルミニウム伝熱管が亜鉛溶射アルミニウム材の扁平管である場合、外部形状の一部を構成する一対の平面部に、亜鉛が溶射される。このため、亜鉛溶射アルミニウム材の扁平管においては、一対の平面部を接続する側面部に、製造当初から芯材の露出部が形成される。すなわち、この側面部は耐食性について最も不利な部分であり、経時変化と共に亜鉛犠牲層が徐々に消失すると、側面部の芯材の露出部部分に局部腐食が最初に出現すると考えられる。したがって、この側面部に局部腐食が出現した時点を室外熱交換器100の寿命ポイントとする。 Therefore, in the corrosion resistance diagnostic component 1 according to the first embodiment, the “time point when local corrosion appears in the region within the corrosion protection range of the first sacrificial layer 2 with respect to the first core material 3” is defined as the outdoor heat exchanger 100 and It is the life point of the outdoor unit. Specifically, when the aluminum heat transfer tube of the outdoor heat exchanger 100 is a flat tube of zinc-sprayed aluminum material, zinc is sprayed on the pair of flat portions that form a part of the external shape. Therefore, in the flat tube of the zinc sprayed aluminum material, the exposed portion of the core material is formed on the side surface portion connecting the pair of flat surface portions from the beginning of manufacturing. That is, this side surface portion is the most unfavorable portion for corrosion resistance, and it is considered that when the zinc sacrificial layer gradually disappears with the lapse of time, local corrosion first appears in the exposed portion of the core material on the side surface portion. Therefore, the time when the local corrosion appears on the side surface is the life point of the outdoor heat exchanger 100.
[防食範囲の減少に伴う製品寿命の到達と耐食性診断部品による検出]
 亜鉛犠牲層付アルミニウム材を伝熱管に適用した室外熱交換器100、及び該室外熱交換器100を有する室外機は、空気調和機200設置後の運転時間の増加と共に、換言すると室外熱交換器100及び室外機を設置してからの時間経過と共に、腐食の進行に伴う製品劣化が進む。そして、亜鉛犠牲層付アルミニウム材を伝熱管に適用した室外熱交換器100、及び該室外熱交換器100を有する室外機は、最後には製品寿命に至る。亜鉛犠牲層付アルミニウム材において腐食が進行すると、亜鉛犠牲層ではアルミニウム-亜鉛合金がその表層から腐食により消失し、亜鉛犠牲層の亜鉛濃度が徐々に減少する。亜鉛濃度が減少した亜鉛犠牲層は、その電位が高くなるために、芯材との電位差が小さくなる。すなわち、アノードとカソードとの間における電子の移動が減衰し、芯材における亜鉛犠牲層の防食範囲が減少する。
[Achieving product life due to reduced corrosion protection range and detection by corrosion resistance diagnostic parts]
An outdoor heat exchanger 100 in which an aluminum material with a zinc sacrificial layer is applied to a heat transfer tube, and an outdoor unit having the outdoor heat exchanger 100, the operating time after the air conditioner 200 is installed increases, in other words, the outdoor heat exchanger. With the lapse of time since the installation of 100 and the outdoor unit, product deterioration due to the progress of corrosion progresses. The outdoor heat exchanger 100 in which the aluminum material with the zinc sacrificial layer is applied to the heat transfer tube and the outdoor unit including the outdoor heat exchanger 100 finally reach the product life. When corrosion progresses in the aluminum material with the zinc sacrificial layer, the aluminum-zinc alloy disappears from the surface layer of the zinc sacrificial layer due to corrosion, and the zinc concentration of the zinc sacrificial layer gradually decreases. Since the zinc sacrificial layer having a reduced zinc concentration has a higher potential, the potential difference from the core material becomes smaller. That is, the movement of electrons between the anode and the cathode is attenuated, and the corrosion protection range of the zinc sacrificial layer in the core material is reduced.
 室外熱交換器100及び室外機を設置してから所定期間が経過し、亜鉛犠牲層が腐食によって消失してくると、亜鉛溶射アルミニウム材の扁平管の表面において芯材が露出している箇所の一部は、亜鉛犠牲層の防食範囲外となる。そして、亜鉛溶射アルミニウム材の扁平管の表面において芯材が露出している箇所では、亜鉛犠牲層の防食範囲外となった領域に局部腐食が発生し、室外熱交換器100及び室外機の寿命となる。このため、製造された当初の亜鉛溶射アルミニウム材の扁平管における亜鉛犠牲層の防食範囲は、製造された当初の亜鉛溶射アルミニウム材の扁平管において表面に芯材が露出している範囲以上の大きさとなるように、設定される必要がある。 When a predetermined period has passed since the outdoor heat exchanger 100 and the outdoor unit were installed and the zinc sacrificial layer disappears due to corrosion, the core material is exposed on the surface of the flat tube of the zinc sprayed aluminum material. Some of them are outside the corrosion protection range of the zinc sacrificial layer. Then, at the location where the core material is exposed on the surface of the flat tube of the zinc sprayed aluminum material, local corrosion occurs in the area outside the corrosion protection range of the zinc sacrificial layer, and the life of the outdoor heat exchanger 100 and the outdoor unit. Becomes Therefore, the anticorrosion range of the zinc sacrificial layer in the initially manufactured flat tube of zinc sprayed aluminum material is larger than the range in which the core material is exposed on the surface of the initially manufactured flat tube of zinc sprayed aluminum material. Needs to be set so that
 図6は、本発明の実施の形態1に係る耐食性診断部品の露出部の変化過程を示す図である。この図6は、耐食性診断部品1の平面図となっている。また、図6では、亜鉛犠牲層である第1犠牲層2中の亜鉛の濃度をハッチングで示しており、ハッチングが密なほど亜鉛濃度が濃い状態を示している。また、図6に示す黒点は、局部腐食痕5である。また、図6(a)は、耐食性診断部品1の取り付けられた室外熱交換器100を有する室外機の運転が開始される前の状態における、耐食性診断部品1を示している。換言すると、図6(a)は、室外機が設置される前の状態の耐食性診断部品1を示している。さらに換言すると、図6(a)は、製造当初の耐食性診断部品1を示している。図6(b)は、室外機が設置されてから所定時間経過後の耐食性診断部品1を示している。図6(c)は、図6(b)の状態からさらに所定時間経過後の耐食性診断部品1を示している。図6(d)は、図6(c)の状態からさらに所定時間経過後の耐食性診断部品1を示しており、室外熱交換器100及び室外機が寿命に至ったことを耐食性診断部品1が示している状態の図である。 FIG. 6 is a diagram showing a changing process of the exposed portion of the corrosion resistance diagnostic component according to the first embodiment of the present invention. FIG. 6 is a plan view of the corrosion resistance diagnostic component 1. Further, in FIG. 6, the concentration of zinc in the first sacrificial layer 2, which is a zinc sacrificial layer, is indicated by hatching, and the denser the hatching, the higher the zinc concentration. Further, the black dots shown in FIG. 6 are local corrosion marks 5. Further, FIG. 6A shows the corrosion resistance diagnostic component 1 in a state before the operation of the outdoor unit having the outdoor heat exchanger 100 to which the corrosion resistance diagnostic component 1 is attached is started. In other words, FIG. 6A shows the corrosion resistance diagnostic component 1 in a state before the outdoor unit is installed. In other words, FIG. 6(a) shows the corrosion resistance diagnostic component 1 at the beginning of manufacture. FIG. 6B shows the corrosion resistance diagnostic component 1 after a predetermined time has elapsed since the outdoor unit was installed. FIG. 6C shows the corrosion resistance diagnostic component 1 after a predetermined time has elapsed from the state of FIG. 6B. FIG. 6(d) shows the corrosion resistance diagnostic component 1 after a predetermined time has elapsed from the state of FIG. 6(c). The corrosion resistance diagnostic component 1 indicates that the outdoor heat exchanger 100 and the outdoor unit have reached the end of their lives. It is a figure of the state shown.
 図6に示すように、耐食性診断部品1の露出部3aの表面には、亜鉛犠牲層である第1犠牲層2と隣接する位置に、第1範囲6aが配置されている。詳しくは、耐食性診断部品1の露出部3aの表面は、第1犠牲層2から規定距離L以内となっている範囲が第1範囲6aとなっている。また、耐食性診断部品1の露出部3aの表面には、第1範囲6aを基準として第1犠牲層2の反対側となる位置に、第2範囲6bが配置されている。第1範囲6aの規定距離Lは、製造された当初の亜鉛溶射アルミニウム材の扁平管の表面で芯材が露出している範囲内において亜鉛犠牲層から最も離れている箇所と、亜鉛犠牲層との間の距離と同じになっている。換言すると、第1範囲6aの規定距離Lは、室外機が設置される前の亜鉛溶射アルミニウム材の扁平管の表面で芯材が露出している範囲内において亜鉛犠牲層から最も離れている箇所と、亜鉛犠牲層との間の距離と同じになっている。 As shown in FIG. 6, a first range 6a is arranged on the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 at a position adjacent to the first sacrificial layer 2 which is a zinc sacrificial layer. Specifically, on the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1, the range within the specified distance L from the first sacrificial layer 2 is the first range 6a. Further, on the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1, a second range 6b is arranged at a position opposite to the first sacrificial layer 2 with respect to the first range 6a. The prescribed distance L of the first range 6a is the most distant part from the zinc sacrificial layer within the range where the core material is exposed on the surface of the flat tube of the initially manufactured zinc sprayed aluminum material, and the zinc sacrificial layer. It is the same as the distance between. In other words, the specified distance L of the first range 6a is the position farthest from the zinc sacrificial layer within the range where the core material is exposed on the surface of the flat tube of the zinc sprayed aluminum material before the outdoor unit is installed. And the distance between the zinc sacrificial layer and.
 室外機の運転が開始されると、換言すると空気調和機200の運転が開始されると、第1範囲6aよりも先に、第2範囲6bに局部腐食痕5が出現する。その後、第1範囲6aに局部腐食痕5が発生する。そして、第1範囲6aに局部腐食痕5が出現した際、被診断材料である亜鉛溶射アルミニウム材の扁平管が用いられた室外熱交換器100が、換言すると該室外熱交換器100を有する室外が寿命であると診断することができる。なお、安全率を見積もって、第1範囲6aの規定距離Lを、室外機が設置される前の亜鉛溶射アルミニウム材の扁平管の表面で芯材が露出している範囲内において亜鉛犠牲層から最も離れている箇所と、亜鉛犠牲層との間の距離よりも長くしてもよい。 When the operation of the outdoor unit is started, in other words, when the operation of the air conditioner 200 is started, the local corrosion mark 5 appears in the second range 6b before the first range 6a. After that, the local corrosion mark 5 is generated in the first range 6a. When the local corrosion mark 5 appears in the first range 6a, the outdoor heat exchanger 100 using the flat tube of the zinc sprayed aluminum material as the material to be diagnosed, in other words, the outdoor heat exchanger 100 having the outdoor heat exchanger 100 is used. Can be diagnosed as lifespan. In addition, by estimating the safety factor, the specified distance L of the first range 6a from the zinc sacrificial layer within the range in which the core material is exposed on the surface of the flat tube of the zinc sprayed aluminum material before the outdoor unit is installed. It may be longer than the distance between the most distant part and the zinc sacrificial layer.
 具体的には、図6(a)に示す耐食性診断部品1は、室外機が運転を開始する前の状態であり、露出部3aの第1範囲6a及び第2範囲6bのいずれにおいても、局部腐食痕5が出現していない。室外機が設置されて運転が開始されると、亜鉛犠牲層である第1犠牲層2の腐食が進行していく。そして、第1犠牲層2の防食範囲が次第に減少していく。このため、室外機の運転が開始され、所定時間が経過すると、図6(b)に示すように、耐食性診断部品1の露出部3aの表面には、第1犠牲層2の防食範囲の外側となる第2範囲6bに局部腐食痕5が出現する。また、図6(b)の状態からさらに時間が経過し、第1犠牲層2の腐食がさらに進行すると、図6(c)に示すように、耐食性診断部品1の露出部3aの表面の第2範囲6bには、局部腐食痕5が増え、図6(b)よりも第1範囲6aにより近い位置にも局部腐食痕5が出現する。 Specifically, the corrosion resistance diagnostic component 1 shown in FIG. 6A is in a state before the outdoor unit starts to operate, and in any of the first range 6a and the second range 6b of the exposed portion 3a, No corrosion mark 5 appears. When the outdoor unit is installed and the operation is started, the corrosion of the first sacrificial layer 2, which is the zinc sacrificial layer, proceeds. Then, the anticorrosion range of the first sacrificial layer 2 gradually decreases. Therefore, when the operation of the outdoor unit is started and a predetermined time elapses, as shown in FIG. 6( b ), the surface of the exposed portion 3 a of the corrosion-resistant diagnostic component 1 is outside the anticorrosion range of the first sacrificial layer 2. The local corrosion mark 5 appears in the second range 6b. Further, when time further elapses from the state of FIG. 6(b) and the corrosion of the first sacrificial layer 2 further progresses, as shown in FIG. 6(c), the first surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 is exposed. The local corrosion marks 5 increase in the second range 6b, and the local corrosion marks 5 also appear at a position closer to the first range 6a than in FIG. 6B.
 図6(c)の状態からさらに時間が経過し、第1犠牲層2の腐食がさらに進行すると、図6(d)に示すように、耐食性診断部品1の露出部3aの表面には、第2範囲6bのみならず、第1範囲6aにも局部腐食痕5が出現する。これは、被診断材料である室外熱交換器100の亜鉛溶射アルミニウム材の扁平管においても、表面において芯材が露出している箇所に局部腐食が出現したと考えられる。そして、その後に、当該局部腐食が芯材の内部へ急速に進展し、亜鉛溶射アルミニウム材の扁平管に貫通孔が形成されてしまうと考えられる。このように第1範囲6aへの局部腐食痕5の出現を検知する方法が、被診断材料である亜鉛溶射アルミニウム材の扁平管が用いられた室外熱交換器100及び該室外熱交換器100を有する室外機の寿命診断方法である。 When the time further elapses from the state of FIG. 6C and the corrosion of the first sacrificial layer 2 further progresses, as shown in FIG. 6D, the surface of the exposed portion 3a of the corrosion-resistant diagnostic component 1 may have a The local corrosion marks 5 appear not only in the second range 6b but also in the first range 6a. It is considered that even in the flat tube made of the zinc sprayed aluminum material of the outdoor heat exchanger 100, which is the material to be diagnosed, local corrosion appeared at the portion where the core material was exposed on the surface. Then, after that, the localized corrosion rapidly progresses into the core material, and a through hole is formed in the flat tube of the zinc sprayed aluminum material. As described above, the method of detecting the appearance of the local corrosion traces 5 in the first range 6a includes the outdoor heat exchanger 100 and the outdoor heat exchanger 100 using the flat tube of the zinc sprayed aluminum material as the material to be diagnosed. This is a method for diagnosing the life of an outdoor unit that the user has.
 なお、この寿命診断方法は、人が行うこともできるし、上述の耐食性診断器300で行うこともできる。この寿命診断方法の詳細な一例は、実施の形態5で後述する。 Note that this life diagnosis method can be performed by a person or the corrosion resistance diagnostic device 300 described above. A detailed example of the life diagnosis method will be described later in the fifth embodiment.
[耐食性診断部品による製品余寿命の診断]
 亜鉛犠牲層である第1犠牲層2の腐食の進行に伴い、第1芯材3に対する第1犠牲層2の防食範囲が減少していく。これに伴い、露出部3aの第1範囲6aの外部で発生していた局部腐食が、時間経過と共に第1範囲6a内でも発生する。上述のように、耐食性診断部品1がこのような状態になった際、室外熱交換器100及び室外器が寿命に至ったと判断される。すなわち、耐食性診断部品1の露出部3aの第1範囲6aに局部腐食が発生した状態が、製品寿命の到達ポイントとなる。この耐食性診断部品1の腐食進行過程を利用することにより、室外熱交換器100及び室外器の余寿命の診断が可能となる。具体的には、製品寿命の到達ポイントまでの耐食性診断部品1の露出部3aでの局部腐食痕5の出現様子と、第1犠牲層2の腐食の進行具合との相関を把握することにより、耐食性診断部品1の観察によって室外熱交換器100及び室外器の余寿命の診断が可能となる。以下、耐食性診断部品1を用いた室外熱交換器100及び室外器の余寿命の診断について説明する。
[Diagnosis of remaining product life with corrosion resistance diagnostic parts]
As the corrosion of the first sacrificial layer 2 which is a zinc sacrificial layer progresses, the corrosion prevention range of the first sacrificial layer 2 with respect to the first core material 3 decreases. Along with this, local corrosion that has occurred outside the first range 6a of the exposed portion 3a also occurs within the first range 6a over time. As described above, when the corrosion resistance diagnostic component 1 is in such a state, it is determined that the outdoor heat exchanger 100 and the outdoor unit have reached the end of their lives. That is, the state where local corrosion occurs in the first area 6a of the exposed portion 3a of the corrosion resistance diagnostic component 1 is the point at which the product life is reached. By utilizing the corrosion progressing process of the corrosion resistance diagnostic component 1, it becomes possible to diagnose the remaining life of the outdoor heat exchanger 100 and the outdoor unit. Specifically, by grasping the correlation between the appearance of the local corrosion mark 5 on the exposed portion 3a of the corrosion resistance diagnostic component 1 up to the reaching point of the product life and the progress of corrosion of the first sacrificial layer 2, By observing the corrosion resistance diagnostic component 1, it is possible to diagnose the remaining life of the outdoor heat exchanger 100 and the outdoor unit. Hereinafter, the diagnosis of the remaining life of the outdoor heat exchanger 100 and the outdoor unit using the corrosion resistance diagnostic component 1 will be described.
 耐食性診断部品1の腐食の進行過程のうち、第1芯材3の進行過程については[防食範囲の減少に伴う製品寿命の到達と耐食性診断部品による検出]で説明したように、第1芯材3の露出部3aの表面を観察すればよい。第1犠牲層2は表面から深さ方向に全面腐食が進行するが、腐食生成物が表面に残る又は脱落することがあり、第1犠牲層2の腐食深さについて測定が困難になることが多い。そこで、本実施の形態1では、以下のように第1犠牲層2の腐食深さを測定している。 Of the progress of the corrosion of the corrosion resistance diagnostic component 1, the progress of the first core material 3 is as described in [Achieving the product life due to the reduction of the corrosion prevention range and detection by the corrosion resistance diagnostic component]. The surface of the exposed portion 3a of 3 may be observed. Although the first sacrificial layer 2 undergoes general corrosion in the depth direction from the surface, corrosion products may remain on the surface or fall off, which makes it difficult to measure the corrosion depth of the first sacrificial layer 2. Many. Therefore, in the first embodiment, the corrosion depth of the first sacrificial layer 2 is measured as follows.
 図7は、本実施の形態1に係る耐食性診断部品の縦断面図であり、耐食性診断部品の第1犠牲層に全面腐食が発生している状態を示す図である。なお、図7には、二点鎖線で、第1犠牲層2に全面腐食が発生する前の状態の耐食性診断部品1の形状も示している。 FIG. 7 is a vertical cross-sectional view of the corrosion resistance diagnostic component according to the first embodiment, showing a state in which general corrosion occurs in the first sacrificial layer of the corrosion resistance diagnostic component. Note that, in FIG. 7, the shape of the corrosion resistance diagnostic component 1 in a state before the general corrosion occurs in the first sacrificial layer 2 is also indicated by a chain double-dashed line.
 第1犠牲層2の腐食深さを測定する際、露出部3aの表面を高さの基準とする。換言すると、露出部3aの表面の高さを0とする。このように高さの基準を規定した場合、製造された当初においては、露出部3aの表面から第1犠牲層2の表面までの高さはd1となる。このd1は、上述のように耐食性診断部品1を製造した場合、露出部3a形成時の切削深さとなる。 When measuring the corrosion depth of the first sacrificial layer 2, the surface of the exposed portion 3a is used as the height standard. In other words, the height of the surface of the exposed portion 3a is set to 0. When the height reference is defined in this way, the height from the surface of the exposed portion 3a to the surface of the first sacrificial layer 2 is d1 at the beginning of manufacture. When the corrosion resistance diagnostic component 1 is manufactured as described above, this d1 is the cutting depth when the exposed portion 3a is formed.
 また、第1犠牲層2の腐食深さを測定する際、図7のように、基準点7a及び基準線7を規定する。基準点7aは、露出部3aの表面に規定される。すなわち、露出部3aの表面から基準点7aまでの高さは0となる。この基準点7aは、耐食性診断部品1が製品寿命の到達ポイントに至るまで腐食しないよう、製品寿命の到達ポイントに至るまで第1犠牲層2の防食範囲内となる位置に規定する。このため、基準点7aは、第1犠牲層2と露出部3aとの境界2aになるべく近い位置に設定することが好ましい。このような位置に基準点7aを規定することにより、耐食性診断部品1が製品寿命の到達ポイントに至るまで、基準点7aの高さに変化が生じず、第1犠牲層2の腐食深さを正確に測定することができる。基準線7は、基準点7aから製造された当初の第1犠牲層2の表面と平行に伸びる仮想直線である。すなわち、露出部3aの表面から基準線7までの高さも、基準点7aと同じく0となる。 Also, when measuring the corrosion depth of the first sacrificial layer 2, a reference point 7a and a reference line 7 are defined as shown in FIG. The reference point 7a is defined on the surface of the exposed portion 3a. That is, the height from the surface of the exposed portion 3a to the reference point 7a is 0. The reference point 7a is defined as a position within the corrosion prevention range of the first sacrificial layer 2 until the end point of the product life is reached so that the corrosion resistance diagnostic component 1 does not corrode until the end point of the product life. Therefore, it is preferable to set the reference point 7a at a position as close as possible to the boundary 2a between the first sacrificial layer 2 and the exposed portion 3a. By defining the reference point 7a at such a position, the height of the reference point 7a does not change until the corrosion resistance diagnostic component 1 reaches the end point of the product life, and the corrosion depth of the first sacrificial layer 2 is reduced. Can be measured accurately. The reference line 7 is an imaginary straight line extending parallel to the surface of the first first sacrificial layer 2 manufactured from the reference point 7a. That is, the height from the surface of the exposed portion 3a to the reference line 7 is also 0, like the reference point 7a.
 図7に示す腐食部分8は、時間の経過に伴って腐食により消失した第1犠牲層2部分である。また、図7に示す残存部分9は、その時点において残っている第1犠牲層2部分である。境界2aからの任意の距離L1における縦断面では、基準線7から残存部分9の表面までの高さがd2となる。このため、当該断面での腐食部分8の高さdは、換言すると当該断面での第1犠牲層2の腐食深さdは、次式(5)となる。
 d=d1-d2 ・・・(5)
 したがって、境界2aからの距離L1を変化させていき、各位置における第1犠牲層2の腐食深さdを式(5)で測定していくことにより、測定時点での第1犠牲層2の腐食深さを把握することができる。
The corroded portion 8 shown in FIG. 7 is the portion of the first sacrificial layer 2 that disappears due to corrosion over time. The remaining portion 9 shown in FIG. 7 is the portion of the first sacrificial layer 2 remaining at that time. In a vertical cross section at an arbitrary distance L1 from the boundary 2a, the height from the reference line 7 to the surface of the remaining portion 9 is d2. Therefore, the height d of the corroded portion 8 in the cross section, in other words, the corrosion depth d of the first sacrificial layer 2 in the cross section is given by the following equation (5).
d=d1-d2 (5)
Therefore, by changing the distance L1 from the boundary 2a and measuring the corrosion depth d of the first sacrificial layer 2 at each position by the formula (5), the first sacrificial layer 2 at the time of measurement is measured. It is possible to grasp the corrosion depth.
 図8は、本発明の実施の形態1に係る耐食性診断部品の第1犠牲層の表面の変化過程を示す図である。図8の横軸は、境界2aからの距離L1を示している。図8の縦軸は、第1犠牲層2の腐食深さdを示している。また、図8に示す線(a)は、図6(a)の状態の耐食性診断部品1の第1犠牲層2の腐食深さdの測定結果を示している。図8に示す線(b)は、図6(b)の状態の耐食性診断部品1の第1犠牲層2の腐食深さdの測定結果を示している。図8に示す線(c)は、図6(c)の状態の耐食性診断部品1の第1犠牲層2の腐食深さdの測定結果を示している。図8に示す線(d)は、図6(d)の状態の耐食性診断部品1の第1犠牲層2の腐食深さdの測定結果を示している。 FIG. 8 is a diagram showing a process of changing the surface of the first sacrificial layer of the corrosion resistance diagnostic component according to the first embodiment of the present invention. The horizontal axis of FIG. 8 indicates the distance L1 from the boundary 2a. The vertical axis of FIG. 8 indicates the corrosion depth d of the first sacrificial layer 2. Further, the line (a) shown in FIG. 8 shows the measurement result of the corrosion depth d of the first sacrificial layer 2 of the corrosion resistance diagnostic component 1 in the state of FIG. 6(a). The line (b) shown in FIG. 8 shows the measurement result of the corrosion depth d of the first sacrificial layer 2 of the corrosion resistance diagnostic component 1 in the state of FIG. 6(b). The line (c) shown in FIG. 8 shows the measurement result of the corrosion depth d of the first sacrificial layer 2 of the corrosion resistance diagnostic component 1 in the state of FIG. 6(c). The line (d) shown in FIG. 8 shows the measurement result of the corrosion depth d of the first sacrificial layer 2 of the corrosion resistance diagnostic component 1 in the state of FIG. 6(d).
 図8の線(a)が示すように、室外熱交換器100が運転を開始する前の状態では、耐食性診断部品1の第1犠牲層2に腐食は発生していない。室外機が設置されて運転が開始されると、図8の線(b)が示すように、亜鉛犠牲層である第1犠牲層2の腐食が進行していく。そして、第1犠牲層2の防食範囲が次第に減少していく。このため、図6(b)に示すように、耐食性診断部品1の露出部3aの表面には、第1犠牲層2の防食範囲の外側となる第2範囲6bに局部腐食痕5が出現する。また、図6(b)の状態からさらに時間が経過すると、図8の線(c)が示すように、亜鉛犠牲層である第1犠牲層2の腐食が進行し、腐食深さdが深くなる。そして、図6(b)の状態と比べ、第1犠牲層2の防食範囲がさらに減少していく。このため、図6(c)に示すように、耐食性診断部品1の露出部3aの表面の第2範囲6bには、局部腐食痕5が増え、図6(b)よりも第1範囲6aにより近い位置にも局部腐食痕5が出現する。 As shown by the line (a) in FIG. 8, in the state before the outdoor heat exchanger 100 starts to operate, the first sacrificial layer 2 of the corrosion resistance diagnostic component 1 has no corrosion. When the outdoor unit is installed and the operation is started, the corrosion of the first sacrificial layer 2, which is the zinc sacrificial layer, progresses as shown by the line (b) in FIG. 8. Then, the anticorrosion range of the first sacrificial layer 2 gradually decreases. Therefore, as shown in FIG. 6B, the local corrosion mark 5 appears on the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 in the second range 6b which is outside the corrosion protection range of the first sacrificial layer 2. .. When time further elapses from the state of FIG. 6B, the corrosion of the first sacrificial layer 2, which is a zinc sacrificial layer, progresses and the corrosion depth d becomes deeper, as indicated by the line (c) of FIG. Become. Then, the anticorrosion range of the first sacrificial layer 2 is further reduced as compared with the state of FIG. Therefore, as shown in FIG. 6C, the local corrosion mark 5 is increased in the second range 6b on the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1, and the first range 6a is larger than that in FIG. 6B. Local corrosion marks 5 also appear at a close position.
 図6(c)の状態からさらに時間が経過すると、図8の線(d)が示すように、亜鉛犠牲層である第1犠牲層2の腐食がさらに進行し、腐食深さdがさらに深くなる。そして、図6(c)の状態と比べ、第1犠牲層2の防食範囲がさらに減少していく。このため、図6(d)に示すように、耐食性診断部品1の露出部3aの表面には、第2範囲6bのみならず、第1範囲6aにも、局部腐食痕5が出現する。 When time further elapses from the state of FIG. 6C, as shown by the line (d) of FIG. 8, the corrosion of the first sacrificial layer 2 that is the zinc sacrificial layer further progresses, and the corrosion depth d becomes deeper. Become. Then, the anticorrosion range of the first sacrificial layer 2 is further reduced as compared with the state of FIG. Therefore, as shown in FIG. 6D, not only the second range 6b but also the local corrosion mark 5 appears on the surface of the exposed part 3a of the corrosion resistance diagnostic component 1 not only in the second range 6b.
 このように、時間経過による露出部3aでの局部腐食痕5の出現具合と第1犠牲層2の腐食深さdとの間には相関がある。このため、露出部3aでの局部腐食痕5の出現具合と第1犠牲層2の腐食深さdとの関係を示す表等のデータを作成してもよい。なお、局部腐食痕5の出現具合とは、例えば、局部腐食痕5の数、局部腐食痕5と第1犠牲層2との距離等である。このようなデータを作成することにより、耐食性診断器300の記憶部314に記憶されている耐食性診断部品1の露出部3aの表面の腐食状況を示すパラメータと、第1犠牲層2の腐食深さとを関連付けることができる。 Thus, there is a correlation between the appearance of the local corrosion mark 5 on the exposed portion 3a over time and the corrosion depth d of the first sacrificial layer 2. Therefore, data such as a table showing the relationship between the appearance of the local corrosion mark 5 on the exposed portion 3a and the corrosion depth d of the first sacrificial layer 2 may be created. The appearance of the local corrosion traces 5 is, for example, the number of local corrosion traces 5, the distance between the local corrosion traces 5 and the first sacrificial layer 2, and the like. By creating such data, the parameters indicating the corrosion state of the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 stored in the storage unit 314 of the corrosion resistance diagnostic device 300, and the corrosion depth of the first sacrificial layer 2 Can be associated with.
 そして、このようなデータを作成することにより、露出部3aでの局部腐食痕5の出現具合と当該データとを比較することにより、第1犠牲層2の腐食深さdを診断でき、室外熱交換器100及び室外器の余寿命を診断することができる。換言すると、露出部3aの第2範囲6bに出現する局部腐食痕5によって、室外熱交換器100及び室外器の余寿命を診断することができる。また、時間経過と第1犠牲層2の腐食深さdとの関係を示すデータを作成しておくことにより、第1犠牲層2の腐食深さdを測定し、測定した第1犠牲層2の腐食深さdと当該データとを比較することで、室外熱交換器100及び室外器の余寿命を診断することができる。 Then, by creating such data, the corrosion depth d of the first sacrificial layer 2 can be diagnosed by comparing the appearance of the local corrosion mark 5 in the exposed portion 3a with the data, and the outdoor heat The remaining life of the exchanger 100 and the outdoor unit can be diagnosed. In other words, the residual life of the outdoor heat exchanger 100 and the outdoor unit can be diagnosed by the local corrosion marks 5 appearing in the second range 6b of the exposed portion 3a. Moreover, the corrosion depth d of the first sacrificial layer 2 is measured by creating data indicating the relationship between the elapsed time and the corrosion depth d of the first sacrificial layer 2, and the measured first sacrificial layer 2 is measured. The remaining life of the outdoor heat exchanger 100 and the outdoor unit can be diagnosed by comparing the corrosion depth d of Eq.
 例えば、露出部3aの第1範囲6aに局部腐食が発生していない状態の耐食性診断部品1において、第1犠牲層2の腐食深さdを観察する。このときの腐食深さdが、図8に線c1で示す状態であったとする。この場合、上述のデータに基づき、線c1で示す腐食深さdが図8の線(d)の状態になるまでの時間を予測できる。すなわち、室外熱交換器100及び室外器の余寿命を診断することができる。したがって、図6(a)に示す状態と図6(d)で示す状態との間に、耐食性診断部品1をなるべく多くの回数測定することにより、室外熱交換器100及び室外器の余寿命をより正確に診断するためのデータを作成することができる。 For example, the corrosion depth d of the first sacrificial layer 2 is observed in the corrosion resistance diagnostic component 1 in a state where the local corrosion does not occur in the first range 6a of the exposed portion 3a. It is assumed that the corrosion depth d at this time is in the state indicated by the line c1 in FIG. In this case, the time until the corrosion depth d indicated by the line c1 reaches the state of the line (d) in FIG. 8 can be predicted based on the above data. That is, the remaining life of the outdoor heat exchanger 100 and the outdoor unit can be diagnosed. Therefore, by measuring the corrosion resistance diagnostic component 1 as many times as possible between the state shown in FIG. 6(a) and the state shown in FIG. 6(d), the remaining life of the outdoor heat exchanger 100 and the outdoor unit is reduced. Data for more accurate diagnosis can be created.
 ここで、露出部3aでの局部腐食痕5の出現具合と第1犠牲層2の腐食深さdとの関係を示すデータを作成するには、露出部3aの第1犠牲層2からの距離をなるべく長くした方が好ましい。露出部3aの第1犠牲層2からの距離とは、露出部3aにおける第1犠牲層2及び露出部3aの並設方向の距離であり、例えば図6では露出部3aの横方向の距離である。なぜならば、露出部3aの第1犠牲層2からの距離が短い場合、室外機が設置される前の亜鉛溶射アルミニウム材の扁平管の表面で芯材が露出している範囲内において亜鉛犠牲層から最も離れている箇所と亜鉛犠牲層との間の距離と比べ、露出部3aの第1犠牲層2からの距離の方が短くなる場合があるからである。このような場合、露出部3aに局部腐食痕5が出現したときには、室外熱交換器100及び室外器の寿命がすでに過ぎてしまっている。したがって、室外熱交換器100及び室外器が寿命に至るまでの露出部3aでの局部腐食痕5の出現具合を把握することができない。このため、露出部3aでの局部腐食痕5の出現具合と第1犠牲層2の腐食深さdとの関係を示すデータを作成するには、露出部3aの第1犠牲層2からの距離は、室外機が設置される前の亜鉛溶射アルミニウム材の扁平管の表面で芯材が露出している範囲内において亜鉛犠牲層から最も離れている箇所と亜鉛犠牲層との間の距離よりも、長くする必要がある。 Here, in order to create data indicating the relationship between the appearance of the local corrosion mark 5 on the exposed portion 3a and the corrosion depth d of the first sacrificial layer 2, the distance of the exposed portion 3a from the first sacrificial layer 2 is used. Is preferably as long as possible. The distance of the exposed portion 3a from the first sacrificial layer 2 is the distance in the juxtaposed direction of the first sacrificial layer 2 and the exposed portion 3a in the exposed portion 3a. For example, in FIG. 6, it is the lateral distance of the exposed portion 3a. is there. This is because, when the distance of the exposed portion 3a from the first sacrificial layer 2 is short, the zinc sacrificial layer is exposed in the range where the core material is exposed on the surface of the flat tube of the zinc sprayed aluminum material before the outdoor unit is installed. This is because the distance between the exposed portion 3a and the first sacrificial layer 2 may be shorter than the distance between the zinc sacrificial layer and the most distant portion. In such a case, when the local corrosion mark 5 appears on the exposed portion 3a, the lives of the outdoor heat exchanger 100 and the outdoor unit have already passed. Therefore, it is not possible to grasp the appearance of the local corrosion mark 5 on the exposed portion 3a until the outdoor heat exchanger 100 and the outdoor unit reach the end of their lives. Therefore, in order to create data indicating the relationship between the appearance of the local corrosion marks 5 on the exposed portion 3a and the corrosion depth d of the first sacrificial layer 2, the distance of the exposed portion 3a from the first sacrificial layer 2 is calculated. Is more than the distance between the zinc sacrificial layer and the part farthest from the zinc sacrificial layer within the range where the core material is exposed on the surface of the flat tube of the zinc sprayed aluminum material before the outdoor unit is installed. , Need to be long.
 なお、室外熱交換器100及び室外器の余寿命の診断方法は、人が行うこともできるし、上述の耐食性診断器300で行うこともできる。この余寿命の診断方法の詳細な一例は、実施の形態5で後述する。 Note that the method of diagnosing the remaining life of the outdoor heat exchanger 100 and the outdoor unit can be performed by a person, or can be performed by the above-described corrosion resistance diagnostic device 300. A detailed example of this remaining life diagnosis method will be described later in the fifth embodiment.
[耐食性診断部品による製品寿命評価の実施例]
 本実施の形態1に係る耐食性診断部品1を室外機に搭載し、耐食性診断部品1の性能について検証した。上述のように、本実施の形態1に係る被診断材料は、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材の扁平管である。この実施例では、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材の扁平管と同じ部材で、耐食性診断部品1を形成した。以下、具体的に、耐食性診断部品1の製造方法について説明する。
[Example of product life evaluation using corrosion resistance diagnostic parts]
The corrosion resistance diagnostic component 1 according to the first embodiment was mounted on an outdoor unit, and the performance of the corrosion resistance diagnostic component 1 was verified. As described above, the material to be diagnosed according to the first embodiment is the flat tube of zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100. In this example, the corrosion resistance diagnostic component 1 was formed of the same member as the flat tube of zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100. Hereinafter, a method of manufacturing the corrosion resistance diagnostic component 1 will be specifically described.
 図9は、本発明の実施の形態1に係る耐食性診断部品の製造工程を示すフローチャートである。また、図10は、本発明の実施の形態1に係る耐食性診断部品の露出部の形成工程を示す図である。なお、図10は、耐食性診断部品1となる耐食性診断部品用材料500を、図4に示す矢印Z方向から観察した図であり、耐食性診断部品用材料500の端面を示す図である。 FIG. 9 is a flowchart showing a manufacturing process of the corrosion resistance diagnostic component according to the first embodiment of the present invention. FIG. 10 is a diagram showing a process of forming an exposed portion of the corrosion resistance diagnostic component according to the first embodiment of the present invention. Note that FIG. 10 is a view of the material 500 for the corrosion-resistant diagnostic component, which is the corrosion-resistant diagnostic component 1, observed in the direction of the arrow Z shown in FIG. 4, and is a diagram showing an end surface of the material 500 for the corrosion-resistant diagnostic component.
 耐食性診断部品1を製造する際、まず、準備工程であるステップS10において、耐食性診断部品1となる耐食性診断部品用材料500を準備する。すなわち、第1芯材3の表面に第1犠牲層2が形成された耐食性診断部品用材料500を準備する。本実施の形態1では、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材の扁平管と同じ部材を長さ50mmに切断し、耐食性診断部品用材料500とする。なお、長さ50mmは、図10では紙面直交方向の長さである。すなわち、亜鉛溶射アルミニウム材の扁平管の芯材が、耐食性診断部品用材料500から形成される耐食性診断部品1の第1芯材3となる。また、亜鉛溶射アルミニウム材の扁平管の亜鉛犠牲層が、耐食性診断部品用材料500から形成される耐食性診断部品1の第1犠牲層2となる。図10(a)に示すように、この耐食性診断部品用材料500は、板状であり、幅が10mm、厚さが4mm、肉厚が500μm、第1犠牲層2の厚さが50μmとなっている。また、耐食性診断部品用材料500は、第1犠牲層2の表面部分の亜鉛濃度が10wt%となっている。 When manufacturing the corrosion resistance diagnostic component 1, first, in step S10, which is a preparatory step, the material 500 for the corrosion resistance diagnostic component that becomes the corrosion resistance diagnostic component 1 is prepared. That is, the corrosion-resistant diagnostic component material 500 in which the first sacrificial layer 2 is formed on the surface of the first core material 3 is prepared. In the first embodiment, the same member as the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100 is cut to a length of 50 mm to obtain the corrosion resistance diagnostic component material 500. Note that the length of 50 mm is the length in the direction orthogonal to the paper surface in FIG. That is, the core material of the flat tube of the zinc sprayed aluminum material becomes the first core material 3 of the corrosion resistance diagnostic component 1 formed from the material 500 for corrosion resistance diagnostic component. Further, the zinc sacrificial layer of the flat tube of the zinc sprayed aluminum material becomes the first sacrificial layer 2 of the corrosion resistance diagnostic component 1 formed of the material 500 for corrosion resistance diagnostic component. As shown in FIG. 10( a ), this corrosion resistance diagnostic component material 500 is plate-shaped and has a width of 10 mm, a thickness of 4 mm, a wall thickness of 500 μm, and a thickness of the first sacrificial layer 2 of 50 μm. ing. Further, in the corrosion resistance diagnostic component material 500, the zinc concentration in the surface portion of the first sacrificial layer 2 is 10 wt %.
 なお、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材の扁平管は、購入してきてもよいが、自ら製造してもよい。自ら製造する場合、準備工程であるステップS10は、ステップS11及びステップS12を備えることとなる。ステップS11は、第1芯材3を準備する芯材準備工程である。換言すると、ステップS11は、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材の扁平管と同じ芯材を準備する工程である。ステップS12は、第1芯材3の表面に第1犠牲層2を形成する犠牲層形成工程である。換言すると、ステップS12は、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材の扁平管と同じ芯材の表面に、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材の亜鉛犠牲層と同じ亜鉛犠牲層を形成する工程である。これにより、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材の扁平管を製造することができる。 The flat tube made of zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100 may be purchased or may be manufactured by itself. In the case of manufacturing itself, step S10, which is a preparation step, includes step S11 and step S12. Step S11 is a core material preparing step of preparing the first core material 3. In other words, step S11 is a step of preparing the same core material as the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100. Step S12 is a sacrificial layer forming step of forming the first sacrificial layer 2 on the surface of the first core material 3. In other words, in step S12, the zinc spraying used as the heat transfer tube of the outdoor heat exchanger 100 is formed on the surface of the same core material as the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100. This is a step of forming the same zinc sacrificial layer as the zinc sacrificial layer of an aluminum material. As a result, a flat tube of zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100 can be manufactured.
 耐食性診断部品1を製造する際、準備工程であるステップS10の後、露出部3aを形成する形成工程であるステップS20を行う。ステップS20では、第1犠牲層2の表面から第1犠牲層2と第1芯材3との境界よりも第1芯材3の内部側まで除去し、第1犠牲層2に隣接する位置に露出部3aを形成する。本実施の形態1では、板状である耐食性診断部品用材料500の一部を切削加工によって除去することにより、露出部3aを形成する。この場合、露出部3aを形成する形成工程であるステップS20は、ステップS21及びステップS22を備えることとなる。 When manufacturing the corrosion resistance diagnostic component 1, after step S10 which is a preparatory step, step S20 which is a forming step for forming the exposed portion 3a is performed. In step S20, the first sacrificial layer 2 is removed from the surface thereof to the inside of the first sacrificial layer 3 beyond the boundary between the first sacrificial layer 2 and the first sacrificial layer 3, and is located at a position adjacent to the first sacrificial layer 2. The exposed portion 3a is formed. In the first embodiment, the exposed portion 3a is formed by removing a part of the plate-shaped material 500 for corrosion-resistant diagnostic parts by cutting. In this case, step S20, which is a forming step of forming the exposed portion 3a, includes steps S21 and S22.
 ステップS21は、図10(b)に示すように、耐食性診断部品用材料500の平面部を切削し、平面部において第1芯材3を露出させる第1切削工程である。本実施の形態1では、耐食性診断部品用材料500の端面から図10の紙面奥行き方向に25mmまでの範囲を、第1犠牲層2の表面から第1芯材3方向に120μm切削し、露出部3aを形成する。この切削加工は、例えば、フライス加工によって行われる。上述のように、第1犠牲層2の厚さが50μmとなっている。このため、耐食性診断部品用材料500の平面部において第1犠牲層2の表面から第1芯材3方向に120μm切削することにより、露出部3aのうち、平面部を切削加工して形成された範囲では、亜鉛を完全に除去することができる。 Step S21 is, as shown in FIG. 10(b), a first cutting step of cutting the flat surface portion of the corrosion-resistant diagnostic component material 500 and exposing the first core material 3 at the flat surface portion. In the first embodiment, the range from the end surface of the material 500 for corrosion-resistant diagnostic parts to 25 mm in the depth direction of the paper surface of FIG. 10 is cut by 120 μm from the surface of the first sacrificial layer 2 in the first core material 3 direction to expose the exposed portion. 3a is formed. This cutting process is performed, for example, by milling. As described above, the thickness of the first sacrificial layer 2 is 50 μm. Therefore, the flat portion of the exposed portion 3a is formed by cutting the flat portion of the corrosion-resistant diagnostic component material 500 by 120 μm from the surface of the first sacrificial layer 2 in the first core 3 direction. In the range, zinc can be completely removed.
 上述のように、亜鉛溶射アルミニウム材の扁平管である場合、外部形状の一部を構成する一対の平面部に、亜鉛が溶射される。平面部に溶射された亜鉛は、熱処理の際に側面部の一部にも拡散する。このため、図10(b)に示すように、耐食性診断部品用材料500の平面部を切削加工した後において、側面部の一部に、亜鉛が残存する亜鉛残存領域10が存在することとなる。このため、図10(c)に示すように、第2切削工程であるステップS22において、亜鉛残存領域10を除去する。具体的には、第2切削工程であるステップS22では、平面部において第1芯材3が露出している部分と連なるように、耐食性診断部品用材料500の両側面部を切削し、両側面部において第1芯材3を露出させる。これにより、露出部3aの表面から亜鉛を完全に除去することができ、耐食性診断部品1が完成する。 As described above, in the case of a flat tube made of zinc-sprayed aluminum material, zinc is sprayed on the pair of flat parts that form a part of the external shape. The zinc sprayed onto the flat surface portion also diffuses into a part of the side surface portion during the heat treatment. Therefore, as shown in FIG. 10B, after cutting the flat surface portion of the material 500 for corrosion-resistant diagnostic parts, the zinc residual region 10 where zinc remains is present in a part of the side surface portion. .. Therefore, as shown in FIG. 10C, the zinc remaining region 10 is removed in step S22 which is the second cutting process. Specifically, in step S22, which is the second cutting step, both side surface portions of the corrosion-resistant diagnostic component material 500 are cut so as to be continuous with the exposed portion of the first core material 3 in the flat surface portion. The first core material 3 is exposed. As a result, zinc can be completely removed from the surface of the exposed portion 3a, and the corrosion resistance diagnostic component 1 is completed.
 このように製造された耐食性診断部品1において、第1範囲6aは次のように決定した。換言すると、図6で示した耐食性診断部品1の露出部3aにおける第1犠牲層2からの規定距離Lは、次のように決定した。上述のように、亜鉛溶射アルミニウム材の扁平管である場合、外部形状の一部を構成する一対の平面部に、亜鉛が溶射される。このため、製造された当初の亜鉛溶射アルミニウム材の扁平管において、側面部の表面全域に芯材が露出している可能性がある。 In the corrosion resistance diagnostic component 1 manufactured in this way, the first range 6a was determined as follows. In other words, the specified distance L from the first sacrificial layer 2 in the exposed portion 3a of the corrosion resistance diagnostic component 1 shown in FIG. 6 was determined as follows. As described above, in the case of the flat tube made of zinc-sprayed aluminum material, zinc is sprayed on the pair of flat surface portions that form a part of the external shape. Therefore, in the initially manufactured flat tube of zinc sprayed aluminum material, the core material may be exposed on the entire surface of the side surface portion.
 ここで、上述のように、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材の扁平管は、厚みが4mmとなっている。換言すると、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材の扁平管は、一対の平面部の表面間距離が4mmとなっている。また、図10からわかるように、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材の扁平管は、一対の平面部を接続する側面部の断面形状が円弧形状となっている。このため、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材の扁平管の側面部の断面形状は、半径2mmの円弧形状となっている。そして、この側面部の円弧長さは、6.28mmとなる。 Here, as described above, the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100 has a thickness of 4 mm. In other words, the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100 has a surface distance between the pair of flat surfaces of 4 mm. Further, as can be seen from FIG. 10, in the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100, the cross-sectional shape of the side surface portion connecting the pair of flat surface portions is an arc shape. .. Therefore, the cross-sectional shape of the side surface of the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100 is an arc shape with a radius of 2 mm. The arc length of the side surface portion is 6.28 mm.
 また、側面部において表面に芯材が露出している箇所は、平面部に形成された亜鉛犠牲層の防食範囲内に存在している間、局部腐食が抑制される。したがって、断面形状において側面部の中心となる位置が、側面部において両平面部から最も離れた位置となるため、最も早く防食範囲外となり、局部腐食が発生する。すなわち、側面部において平面部から表面上の距離が3.14mm離れた位置が、最も早くに局部腐食が発生する。このため、本実施の形態1では、図6で示した耐食性診断部品1の露出部3aにおける第1犠牲層2からの規定距離Lを、3.14mmとした。 Also, local corrosion is suppressed at the part where the core material is exposed on the surface of the side surface while it is within the corrosion protection range of the zinc sacrificial layer formed on the flat part. Therefore, the center of the side surface portion in the cross-sectional shape is the farthest position from both of the flat surface portions on the side surface portion, so that it is the earliest outside the anticorrosion range and local corrosion occurs. That is, the local corrosion occurs earliest at a position on the side surface where the distance on the surface from the flat surface is 3.14 mm. Therefore, in the first embodiment, the specified distance L from the first sacrificial layer 2 in the exposed portion 3a of the corrosion resistance diagnostic component 1 shown in FIG. 6 is set to 3.14 mm.
 このように構成された耐食性診断部品1は、アルミニウム伝熱管を用いた熱交換器の製品寿命を診断する従来の部品と異なり、露出部3aから亜鉛が完全に除去されている。このため、本実施の形態1に係る耐食性診断部品1においては、露出部3aの表面の腐食状況に基づき、被診断材料の腐食状況を従来よりも正確に診断することができる。したがって、本実施の形態1に係る耐食性診断部品1を用いることにより、室外熱交換器100及び該室外熱交換器100を有する室外機の寿命及び余寿命を正確に診断することができる。また、アルミニウム伝熱管を用いた熱交換器の製品寿命を診断する従来の部品は、被診断材料とは異なる部材で製造されていた。このため、従来の部品は、被診断材料の腐食状況を正確に診断しようとすると、複雑な設計が必要となり、製造コストが増加していた。一方、本実施の形態1に係る耐食性診断部品1は、被診断材料である室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材の扁平管と同じ部材で形成されているため、製造コストを抑制しつつ、室外熱交換器100及び該室外熱交換器100を有する室外機の寿命をより正確に診断することができる。 Unlike the conventional component that diagnoses the product life of a heat exchanger using an aluminum heat transfer tube, the corrosion resistance diagnostic component 1 configured in this way has zinc completely removed from the exposed portion 3a. Therefore, in the corrosion resistance diagnostic component 1 according to the first embodiment, the corrosion status of the material to be diagnosed can be diagnosed more accurately than before based on the corrosion status of the surface of the exposed portion 3a. Therefore, by using the corrosion resistance diagnostic component 1 according to the first embodiment, it is possible to accurately diagnose the service life and the remaining service life of the outdoor heat exchanger 100 and the outdoor unit having the outdoor heat exchanger 100. Further, the conventional component for diagnosing the product life of the heat exchanger using the aluminum heat transfer tube is manufactured by a member different from the material to be diagnosed. For this reason, in order to accurately diagnose the corrosion state of the material to be diagnosed, the conventional component requires a complicated design, which increases the manufacturing cost. On the other hand, since the corrosion resistance diagnostic component 1 according to the first embodiment is formed of the same member as the flat tube of the zinc sprayed aluminum material used as the heat transfer tube of the outdoor heat exchanger 100 which is the material to be diagnosed, The life of the outdoor heat exchanger 100 and the outdoor unit having the outdoor heat exchanger 100 can be diagnosed more accurately while suppressing the manufacturing cost.
 図11は、本発明の実施の形態1で行った複合サイクル試験を示すフローチャートである。
 上述のように製造された耐食性診断部品1を室外熱交換器100と共に空気調和機200の室外機内に設け、塩害地域における腐食形態を再現する加速試験として、図11に示す複合サイクル試験を実施した。
FIG. 11 is a flowchart showing the combined cycle test performed in the first embodiment of the present invention.
The corrosion resistance diagnostic component 1 manufactured as described above was provided in the outdoor unit of the air conditioner 200 together with the outdoor heat exchanger 100, and the combined cycle test shown in FIG. 11 was performed as an accelerated test for reproducing the corrosion pattern in the salt damage area. ..
 まず、ステップS31において、塩水の噴霧処理を行った。具体的には、室外機の設置環境を、温度35℃、相対湿度100%の環境とした。そして、この状態において、室外機に食塩濃度5重量%の水溶液を噴霧しながら、室外機を2時間運転した。ステップS31の後のステップS32では、乾燥処理を行った。具体的には、室外機の設置環境を、温度60℃、相対湿度30%の環境とした。そして、この状態において、室外機を4時間運転した。ステップS32の後のステップS33では、湿潤処理を行った。具体的には、室外機の設置環境を、温度50℃、相対湿度95%の環境とした。そして、この状態において、室外機を2時間運転した。 First, in step S31, a spray process of salt water was performed. Specifically, the installation environment of the outdoor unit was set to an environment of a temperature of 35° C. and a relative humidity of 100%. Then, in this state, the outdoor unit was operated for 2 hours while spraying an aqueous solution having a salt concentration of 5% by weight on the outdoor unit. In step S32 after step S31, a drying process was performed. Specifically, the installation environment of the outdoor unit was set to an environment of a temperature of 60° C. and a relative humidity of 30%. Then, in this state, the outdoor unit was operated for 4 hours. In step S33 after step S32, a wetting process was performed. Specifically, the installation environment of the outdoor unit was set to an environment of a temperature of 50° C. and a relative humidity of 95%. Then, in this state, the outdoor unit was operated for 2 hours.
 ステップS33の後のステップS34では、室外機の運転時間が規定時間に到達したか否かを判断する。室外機の運転時間が規定時間に到達していない場合、ステップS31に戻る。一方、室外機の運転時間が規定時間に到達している場合、複合サイクル試験を終了する。すなわち、本実施の形態1で行った複合サイクル試験では、室外機の運転時間が規定時間に到達するまで、ステップS31~ステップS33の処理を繰り返す。なお、本実施の形態1では、規定時間を2000時間に設定した。 In step S34 after step S33, it is determined whether the operating time of the outdoor unit has reached the specified time. When the operating time of the outdoor unit has not reached the specified time, the process returns to step S31. On the other hand, when the operating time of the outdoor unit has reached the specified time, the combined cycle test ends. That is, in the combined cycle test performed in the first embodiment, the processes of steps S31 to S33 are repeated until the operating time of the outdoor unit reaches the specified time. In addition, in the first embodiment, the specified time is set to 2000 hours.
 上述の複合サイクル試験を行いながら、耐食性診断部品1の腐食状況を周期的に観察した。なお、本実施の形態1では、250時間毎に耐食性診断部品1の腐食状況を観察した。また、耐食性診断部品1の露出部3aの第1範囲6aに局部腐食痕5が発生するまで、耐食性診断部品1の腐食状況の周期的な観察を繰り返した。 While performing the above-mentioned combined cycle test, the corrosion state of the corrosion resistance diagnostic component 1 was periodically observed. In the first embodiment, the corrosion state of the corrosion resistance diagnostic component 1 was observed every 250 hours. In addition, the periodic observation of the corrosion state of the corrosion resistance diagnostic component 1 was repeated until the local corrosion mark 5 was generated in the first area 6a of the exposed portion 3a of the corrosion resistance diagnostic component 1.
 運転経過時間に伴う耐食性診断部品1の腐食状況を観察した結果、室外機の運転を開始してから250時間経過後、耐食性診断部品1の露出部3aの第2範囲6bに局部腐食痕5が出現している様子を確認した。また、この耐食性診断部品1において、亜鉛犠牲層である第1犠牲層2の腐食深さを測定した。室外機の運転開始から500時間経過後、750時間経過後、1000時間経過後、1250時間経過後においても耐食性診断部品1を観察した結果、露出部3aの第2範囲6bに局部腐食痕5が発生している様子を確認した。また、運転時間が増えるに伴って、露出部3aの第2範囲6bにおいて、局部腐食痕5の出現範囲が露出部3aの第1範囲6aに向かって拡がっていく様子を確認した。また、運転時間が増えるに伴って、第1犠牲層2の腐食が深さ方向に進行している様子を確認した。 As a result of observing the corrosion state of the corrosion resistance diagnostic component 1 with the elapsed time of operation, 250 hours after the start of the operation of the outdoor unit, a local corrosion mark 5 was found in the second range 6b of the exposed portion 3a of the corrosion resistance diagnostic component 1. I confirmed the appearance. In addition, in this corrosion resistance diagnostic component 1, the corrosion depth of the first sacrificial layer 2, which is a zinc sacrificial layer, was measured. As a result of observing the corrosion resistance diagnostic component 1 after 500 hours, 750 hours, 1000 hours, and 1250 hours from the start of operation of the outdoor unit, local corrosion marks 5 were found in the second range 6b of the exposed portion 3a. I confirmed how it is occurring. In addition, it was confirmed that the appearance range of the local corrosion mark 5 spreads toward the first range 6a of the exposed portion 3a in the second range 6b of the exposed portion 3a as the operating time increases. It was also confirmed that the corrosion of the first sacrificial layer 2 progressed in the depth direction as the operating time increased.
 室外機の運転開始から1500時間後の耐食性診断部品1を観察した結果、露出部3aの第1範囲6aに局部腐食痕5が出現している様子を確認した。また、この耐食性診断部品1において第1犠牲層2を観察したところ、腐食によりほぼ全面にわたって第1犠牲層2が消失している様子を確認した。第1犠牲層2が消失し、露出部3aに対する防食機能が消失したことから、露出部3aの第1範囲6aに内に局部腐食が進行したと考えられる。同じく、室外機の運転開始から1500時間後の室外熱交換器100の伝熱管を観察した結果、表面に芯材が露出している箇所に局部腐食が出現しており、耐食性診断部品1が被診断材料を用いた製品寿命を正確に診断できることを検証した。 As a result of observing the corrosion resistance diagnostic component 1 1500 hours after the start of operation of the outdoor unit, it was confirmed that the local corrosion mark 5 appeared in the first range 6a of the exposed portion 3a. Further, when the first sacrificial layer 2 was observed in the corrosion resistance diagnostic component 1, it was confirmed that the first sacrificial layer 2 disappeared over almost the entire surface due to corrosion. Since the first sacrificial layer 2 disappeared and the anticorrosion function for the exposed portion 3a disappeared, it is considered that the local corrosion proceeded within the first range 6a of the exposed portion 3a. Similarly, as a result of observing the heat transfer tube of the outdoor heat exchanger 100 1500 hours after the start of operation of the outdoor unit, local corrosion appears at the portion where the core material is exposed on the surface, and the corrosion resistance diagnostic component 1 is not covered. It was verified that the product life using the diagnostic material can be accurately diagnosed.
 以上から、室外機の運転開始から1500時間が、本複合サイクル試験における室外熱交換器100及び室外機の寿命であると判断される。そして、例えば本複合サイクル試験が、ある環境での室外熱交換器100及び室外機の腐食に対して所定の加速倍率で進行することが把握できている場合、その加速倍率に基づいて室外熱交換器100及び室外機の寿命を推定することができる。また、予め本複合サイクル試験の試験結果に基づいて、露出部3aでの局部腐食痕5の出現具合と第1犠牲層2の腐食深さdとの関係を示すデータを作成しておくことにより、当該データに基づいて室外熱交換器100及び室外器の余寿命を診断することができる。 From the above, it is determined that 1500 hours from the start of operation of the outdoor unit is the life of the outdoor heat exchanger 100 and the outdoor unit in this combined cycle test. Then, for example, when it is known that the present combined cycle test proceeds at a predetermined acceleration rate for corrosion of the outdoor heat exchanger 100 and the outdoor unit in a certain environment, the outdoor heat exchange is performed based on the acceleration rate. The life of the unit 100 and the outdoor unit can be estimated. In addition, based on the test results of the present combined cycle test, data indicating the relationship between the appearance of the local corrosion mark 5 on the exposed portion 3a and the corrosion depth d of the first sacrificial layer 2 is created in advance. The remaining life of the outdoor heat exchanger 100 and the outdoor unit can be diagnosed based on the data.
実施の形態2.
 耐食性診断部品1に用いられる部材は、実施の形態1で示した部材に限定されない。また、耐食性診断部品1の製造方法は、実施の形態1で示した製造方法に限定されない。本実施の形態2では、耐食性診断部品1に用いることができる部材の他の一例について紹介する。また、本実施の形態2では、耐食性診断部品1の他の製造方法の一例について説明する。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、実施の形態1と同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 2.
The members used for the corrosion resistance diagnostic component 1 are not limited to the members shown in the first embodiment. Further, the manufacturing method of the corrosion resistance diagnostic component 1 is not limited to the manufacturing method shown in the first embodiment. In the second embodiment, another example of members that can be used for the corrosion resistance diagnostic component 1 will be introduced. In addition, in the second embodiment, an example of another method of manufacturing the corrosion resistance diagnostic component 1 will be described. In the second embodiment, items not particularly described are the same as those in the first embodiment, and the same functions and configurations as those in the first embodiment will be described using the same reference numerals.
 室外機は、室外熱交換器100へ流入する冷媒又は室外熱交換器100から流出した冷媒が流れる冷媒配管を備えている。この冷媒配管の一部が、亜鉛犠牲層付アルミニウム材で形成されている場合がある。例えば、冷媒分配器が室外機の冷媒配管の一部を構成する場合がある。冷媒分配器は、主管と、該主管に接続された複数の枝管とを備えている。冷媒分配器は、複雑な形状をしているため、亜鉛溶射による犠牲層の形成が困難である。このため、冷媒分配器は、アルミニウムを含む芯材の表面に亜鉛を含有する塗料を塗布し、芯材の表面に亜鉛犠牲層が形成される。 The outdoor unit is equipped with a refrigerant pipe through which the refrigerant flowing into the outdoor heat exchanger 100 or the refrigerant flowing out of the outdoor heat exchanger 100 flows. A part of this refrigerant pipe may be formed of an aluminum material with a zinc sacrificial layer. For example, the refrigerant distributor may form a part of the refrigerant pipe of the outdoor unit. The refrigerant distributor includes a main pipe and a plurality of branch pipes connected to the main pipe. Since the refrigerant distributor has a complicated shape, it is difficult to form the sacrificial layer by spraying zinc. Therefore, in the refrigerant distributor, the zinc-containing paint is applied to the surface of the core material containing aluminum, and the zinc sacrificial layer is formed on the surface of the core material.
 また、伝熱管は室外熱交換器100の冷媒配管の一部であり、室外熱交換器100は、各伝熱管を接続する冷媒配管等、伝熱管以外の冷媒配管も備えている。このような伝熱管以外の冷媒配管に亜鉛犠牲層付アルミニウム材が用いられる場合もある。伝熱管以外の冷媒配管は、室外熱交換器100の高性能化のために亜鉛溶射アルミニウム材の扁平管が伝熱管として用いられている場合でも、形状が簡素な円管が用いられる場合がある。伝熱管以外の冷媒配管を亜鉛犠牲層付アルミニウム材の円管とする場合、亜鉛溶射アルミニウム材を用いることもできるし、アルミニウムクラッド材を用いることもできる。 The heat transfer tubes are a part of the refrigerant pipes of the outdoor heat exchanger 100, and the outdoor heat exchanger 100 also includes refrigerant pipes other than the heat transfer tubes, such as the refrigerant pipes connecting the heat transfer tubes. An aluminum material with a zinc sacrificial layer may be used for the refrigerant pipe other than the heat transfer pipe. As the refrigerant pipes other than the heat transfer pipe, a circular pipe having a simple shape may be used even when a flat pipe made of zinc sprayed aluminum material is used as the heat transfer pipe for improving the performance of the outdoor heat exchanger 100. .. When the refrigerant pipes other than the heat transfer pipes are circular pipes of aluminum material with a zinc sacrificial layer, zinc sprayed aluminum material or aluminum clad material can be used.
 亜鉛犠牲層付アルミニウム材で形成された室外機の冷媒配管と同じ部材を用いて、耐食性診断部品1を製造することも可能である。この場合、亜鉛犠牲層付アルミニウム材で形成された室外機の冷媒配管が、被診断材料となる。また、亜鉛犠牲層付アルミニウム材で形成された室外熱交換器100の伝熱管以外の冷媒配管と同じ部材を用いて、耐食性診断部品1を製造することも可能である。この場合、亜鉛犠牲層付アルミニウム材で形成された室外熱交換器100の伝熱管以外の冷媒配管が、被診断材料となる。本実施の形態2では、このような亜鉛犠牲層付アルミニウム材で形成された冷媒配管と同じ部材によって耐食性診断部品1を製造する方法について説明する。 It is also possible to manufacture the corrosion resistance diagnostic component 1 using the same member as the refrigerant pipe of the outdoor unit, which is formed of an aluminum material with a zinc sacrificial layer. In this case, the refrigerant pipe of the outdoor unit formed of the aluminum material with the zinc sacrificial layer serves as the material to be diagnosed. Further, the corrosion resistance diagnostic component 1 can be manufactured using the same member as the refrigerant pipe other than the heat transfer pipe of the outdoor heat exchanger 100 formed of the aluminum material with the zinc sacrificial layer. In this case, the refrigerant pipes other than the heat transfer pipes of the outdoor heat exchanger 100 formed of the aluminum material with the zinc sacrificial layer serve as the material to be diagnosed. In the second embodiment, a method of manufacturing the corrosion resistance diagnostic component 1 using the same member as the refrigerant pipe formed of such an aluminum material with a zinc sacrificial layer will be described.
 亜鉛犠牲層付アルミニウム材の扁平管と同じ部材を用いて耐食性診断部品1を製造する場合、平面部に亜鉛犠牲層が形成されているため、切削加工によって亜鉛犠牲層を除去し、露出部3aを形成することができる。一方、本実施の形態2において上述した亜鉛犠牲層付アルミニウム材で形成された冷媒配管と同じ部材を用いて耐食性診断部品1を製造する場合、切削加工によって亜鉛犠牲層を除去するのは難しい場合がある。この場合、化学エッチングによって亜鉛犠牲層を除去し、露出部3aを形成する方法が有効である。化学エッチングでは、薬液をアルミニウム材に接触させ、両者が反応することにより、アルミニウム材が溶解する。この化学エッチングを亜鉛犠牲層付アルミニウム材に適用すれば、耐食性診断部品1の製造が可能である。すなわち、亜鉛犠牲層付アルミニウム材で形成された冷媒配管と同じ部材に対して、その表面に薬液を接触させることにより、芯材を表面に露出させることができる。そして、露出した芯材の表面から亜鉛を完全に除去することができ、露出部3aを形成することができる。 When the corrosion-resistant diagnostic component 1 is manufactured using the same member as the flat tube made of an aluminum material with a zinc sacrificial layer, the zinc sacrificial layer is formed on the flat surface portion, so the zinc sacrificial layer is removed by cutting and the exposed portion 3a is removed. Can be formed. On the other hand, when manufacturing the corrosion-resistant diagnostic component 1 using the same member as the refrigerant pipe formed of the aluminum material with the zinc sacrificial layer described in the second embodiment, it is difficult to remove the zinc sacrificial layer by cutting. There is. In this case, a method of removing the zinc sacrificial layer by chemical etching and forming the exposed portion 3a is effective. In chemical etching, a chemical solution is brought into contact with an aluminum material and both react with each other, whereby the aluminum material is dissolved. If this chemical etching is applied to an aluminum material with a zinc sacrificial layer, the corrosion resistance diagnostic component 1 can be manufactured. That is, the core material can be exposed on the surface of the same member as the refrigerant pipe formed of the aluminum material with a zinc sacrificial layer by bringing the surface of the member into contact with the chemical solution. Then, zinc can be completely removed from the exposed surface of the core material, and the exposed portion 3a can be formed.
 亜鉛犠牲層付アルミニウム材で形成された冷媒配管と同じ部材が円管等のように一様な形状である場合、当該部材を薬液に浸漬して、芯材を表面に露出させればよい。一方、亜鉛犠牲層付アルミニウム材で形成された冷媒配管と同じ部材が冷媒分配器のように複雑な形状をしている場合、当該部材を単純に薬液に浸漬して芯材を表面に露出させるのは困難である。このような場合、例えば、露出部3aを形成したい箇所に薬液を含ませたガーゼ等を当て、ガーゼ等を当てた箇所を化学エッチングすることにより、芯材を表面に露出させればよい。また例えば、亜鉛犠牲層付アルミニウム材で形成された冷媒配管と同じ部材が複雑な形状をしている場合、亜鉛犠牲層を残したい箇所にマスキングを施し、その他の箇所に薬液を接触させて、芯材を表面に露出させればよい。 If the same member as the refrigerant pipe made of an aluminum material with a zinc sacrificial layer has a uniform shape such as a circular pipe, the member may be immersed in a chemical solution to expose the core material on the surface. On the other hand, when the same member as the refrigerant pipe formed of the aluminum material with a zinc sacrificial layer has a complicated shape like a refrigerant distributor, the member is simply immersed in a chemical solution to expose the core material on the surface. Is difficult. In such a case, for example, the core material may be exposed on the surface by applying gauze impregnated with a chemical solution to the place where the exposed portion 3a is to be formed and chemically etching the place where the gauze or the like is applied. In addition, for example, when the same member as the refrigerant pipe formed of an aluminum material with a zinc sacrificial layer has a complicated shape, masking is applied to a portion where the zinc sacrificial layer is to be left, and the chemical solution is contacted with other portions, The core material may be exposed on the surface.
 化学エッチングに用いられる薬液は、アルミニウム材を溶解させる材料であればよく、pH5以下の酸性の薬液又はpH10以上のアルカリ性の薬液が好ましい。また、亜鉛犠牲層付アルミニウム材と薬液とを接触させて芯材を露出させるまでの時間については、用いる薬液及び亜鉛犠牲層付アルミニウム材に応じて、適宜決定すればよい。 The chemical solution used for chemical etching may be any material that dissolves an aluminum material, and an acidic chemical solution having a pH of 5 or less or an alkaline chemical solution having a pH of 10 or more is preferable. Further, the time until the core material is exposed by bringing the zinc sacrificial layer-provided aluminum material into contact with the chemical solution may be appropriately determined depending on the chemical solution used and the zinc sacrificial layer-provided aluminum material.
 以上、本実施の形態2に係る耐食性診断部品1も、被診断材料と同じ部材で形成されているため、製造コストを抑制しつつ、室外熱交換器100及び室外機の寿命を正確に診断することができる。 As described above, since the corrosion resistance diagnostic component 1 according to the second embodiment is also formed of the same material as the material to be diagnosed, the life of the outdoor heat exchanger 100 and the outdoor unit is accurately diagnosed while suppressing the manufacturing cost. be able to.
 なお、切削加工で露出部3aを形成する場合であっても、化学エッチングによって露出部3aを形成する場合であっても、露出部3aの表面粗さが大きい場合、局部腐食痕5の検出が難しくなる場合がある。このため、切削加工又は化学エッチングによって露出部3aを形成後、露出部3aに電解研磨、化学研磨又はバフ研磨等を施し、露出部3aの表面粗さを小さくするのが好ましい。これにより、露出部3aに出現する局部腐食痕5を正確に確認することができ、被診断材料が用いられた製品の腐食状況の診断精度を向上させることができる。 Whether the exposed portion 3a is formed by cutting or the exposed portion 3a is formed by chemical etching, if the surface roughness of the exposed portion 3a is large, the local corrosion mark 5 cannot be detected. It can be difficult. For this reason, it is preferable to reduce the surface roughness of the exposed portion 3a by performing electrolytic polishing, chemical polishing, buffing, or the like on the exposed portion 3a after forming the exposed portion 3a by cutting or chemical etching. Thereby, the local corrosion mark 5 appearing on the exposed portion 3a can be accurately confirmed, and the accuracy of diagnosing the corrosion state of the product using the material to be diagnosed can be improved.
実施の形態3.
 実施の形態1では、断面において亜鉛犠牲層である第1犠牲層2の腐食深さを測定し、時間経過に伴う第1犠牲層2の腐食の進行を把握した。しかしながら、時間経過に伴う第1犠牲層2の腐食の進行の把握方法は、この方法に限定されない。本実施の形態3では、時間経過に伴う第1犠牲層2の腐食の進行を把握する別の一例について幾つか紹介する。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とし、実施の形態1又は実施の形態2と同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 3.
In the first embodiment, the corrosion depth of the first sacrificial layer 2 which is the zinc sacrificial layer was measured in the cross section, and the progress of corrosion of the first sacrificial layer 2 with the passage of time was grasped. However, the method of ascertaining the progress of corrosion of the first sacrificial layer 2 over time is not limited to this method. In the third embodiment, some other examples for grasping the progress of corrosion of the first sacrificial layer 2 over time will be introduced. In the third embodiment, items not particularly described are the same as those in the first or second embodiment, and the same reference numerals are used for the same functions and configurations as those in the first or second embodiment. Will be described.
[腐食量による第1犠牲層の腐食の進行の把握]
 例えば、第1犠牲層2の腐食量に基づいて、時間経過に伴う第1犠牲層2の腐食の進行を把握することもできる。以下では、第1犠牲層2の腐食量に基づいて時間経過に伴う第1犠牲層2の腐食の進行を把握する2つの方法を紹介する。
[Understanding the progress of corrosion of the first sacrificial layer based on the amount of corrosion]
For example, based on the amount of corrosion of the first sacrificial layer 2, it is possible to grasp the progress of corrosion of the first sacrificial layer 2 over time. In the following, two methods for grasping the progress of corrosion of the first sacrificial layer 2 over time based on the amount of corrosion of the first sacrificial layer 2 will be introduced.
 第1の方法は、第1犠牲層2の所定断面において、第1犠牲層2が腐食した領域の面積を測定することにより、第1犠牲層2の腐食量を把握する方法である。第1犠牲層2の腐食は、全面腐食が深さ方向に進展する。このため、所定断面を設定し、この断面において第1犠牲層2の腐食面積を測定することにより、第1犠牲層2全体の腐食量に変換することが可能と考えられる。所定断面において、腐食部分8と残存部分9との割合を二値化等により把握しておけば、第1犠牲層2全体の腐食部分8を導出することができる。したがって、結果として、時間経過に伴う第1犠牲層2の腐食の進行を把握することができる。 The first method is a method of grasping the amount of corrosion of the first sacrificial layer 2 by measuring the area of the region where the first sacrificial layer 2 has corroded in a predetermined cross section of the first sacrificial layer 2. Regarding the corrosion of the first sacrificial layer 2, general corrosion progresses in the depth direction. Therefore, by setting a predetermined cross section and measuring the corroded area of the first sacrificial layer 2 in this cross section, it is considered possible to convert it into the corrosion amount of the entire first sacrificial layer 2. If the ratio between the corroded portion 8 and the remaining portion 9 is grasped by binarization or the like in the predetermined cross section, the corroded portion 8 of the entire first sacrificial layer 2 can be derived. Therefore, as a result, it is possible to grasp the progress of corrosion of the first sacrificial layer 2 over time.
 そして、露出部3aでの局部腐食痕5の出現具合と第1犠牲層2の所定断面における腐食面積との関係を示す表等のデータを作成することにより、耐食性診断器300の記憶部314に記憶されている耐食性診断部品1の露出部3aの表面の腐食状況を示すパラメータと、第1犠牲層2の所定断面における腐食面積とを関連付けることができる。そして、このようなデータを作成することにより、露出部3aでの局部腐食痕5の出現具合と当該データとを比較することにより、室外熱交換器100及び室外器の余寿命を診断することができる。換言すると、露出部3aの第2範囲6bに出現する局部腐食痕5によって、室外熱交換器100及び室外器の余寿命を診断することができる。 Then, by creating data such as a table showing the relationship between the appearance of the local corrosion marks 5 on the exposed portion 3a and the corrosion area of the first sacrificial layer 2 in a predetermined cross section, the storage unit 314 of the corrosion resistance diagnostic device 300 stores the data. The stored parameter indicating the corrosion state of the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 can be associated with the corrosion area of the first sacrificial layer 2 in the predetermined cross section. Then, by creating such data, it is possible to diagnose the remaining life of the outdoor heat exchanger 100 and the outdoor unit by comparing the appearance of the local corrosion mark 5 on the exposed portion 3a with the data. it can. In other words, the residual life of the outdoor heat exchanger 100 and the outdoor unit can be diagnosed by the local corrosion marks 5 appearing in the second range 6b of the exposed portion 3a.
 また、時間経過と第1犠牲層2の所定断面における腐食面積との関係を示すデータを作成しておくことにより、第1犠牲層2の所定断面における腐食面積を測定し、測定した第1犠牲層2の所定断面における腐食面積と当該データとを比較することで、室外熱交換器100及び室外器の余寿命を診断することができる。 In addition, by creating data indicating the relationship between the passage of time and the corroded area of the first sacrificial layer 2 in the predetermined cross section, the corroded area of the first sacrificial layer 2 in the predetermined cross section is measured, and the measured first sacrificial layer 2 is measured. The remaining life of the outdoor heat exchanger 100 and the outdoor unit can be diagnosed by comparing the corroded area in the predetermined cross section of the layer 2 with the data.
 第2の方法は、耐食性診断部品1の重量測定により、第1犠牲層2の腐食量を把握する方法である。室外機が運転を開始する前の耐食性診断部品1の重量と室外機が所定時間運転した後の耐食性診断部品1の重量とを測定し、耐食性診断部品1の重量変化から、第1犠牲層2の腐食量を把握する。第1芯材3の腐食は、腐食量そのものについてはμmオーダーであって、第1犠牲層2の腐食量に比べて少量である。したがって、耐食性診断部品1の重量変化を、第1犠牲層2の腐食量とみて差し支えない。このため、耐食性診断部品1の重量変化から、第1犠牲層2の腐食量を把握することができる。したがって、結果として、時間経過に伴う第1犠牲層2の腐食の進行を把握することができる。 The second method is to measure the corrosion amount of the first sacrificial layer 2 by measuring the weight of the corrosion resistance diagnostic component 1. The weight of the corrosion resistance diagnostic component 1 before the outdoor unit starts to operate and the weight of the corrosion resistance diagnostic component 1 after the outdoor unit has operated for a predetermined time are measured, and the weight change of the corrosion resistance diagnostic component 1 indicates the first sacrificial layer 2 Understand the amount of corrosion of. The amount of corrosion of the first core material 3 is on the order of μm in terms of the amount of corrosion itself, which is smaller than the amount of corrosion of the first sacrificial layer 2. Therefore, the change in weight of the corrosion resistance diagnostic component 1 may be regarded as the amount of corrosion of the first sacrificial layer 2. Therefore, the amount of corrosion of the first sacrificial layer 2 can be grasped from the weight change of the corrosion resistance diagnostic component 1. Therefore, as a result, it is possible to grasp the progress of corrosion of the first sacrificial layer 2 over time.
 第1犠牲層2が腐食すると、耐食性診断部品1に腐食性生物が堆積する。このため、耐食性診断部品1の重量を測定する際、腐食性生物を除去する必要がある。除去方法としては、JISZ2371規格にある「化学的腐食生成物除去方法」又はブラシ等による機械的除去等が適している。室外機の運転開始後、耐食性診断部品1からこれらの方法によって腐食生成物を除去し、耐食性診断部品の重量を測定する。そして、この重量と室外機が運転を開始する前の耐食性診断部品1の重量とを比較することにより、時間経過に伴う第1犠牲層2の腐食の進行を把握することができる。 When the first sacrificial layer 2 corrodes, corrosive organisms accumulate on the corrosion resistance diagnostic component 1. Therefore, when measuring the weight of the corrosion resistance diagnostic component 1, it is necessary to remove corrosive organisms. As the removal method, the “chemical corrosion product removal method” in JIS Z2371 standard or mechanical removal with a brush or the like is suitable. After starting the operation of the outdoor unit, the corrosion products are removed from the corrosion resistance diagnostic component 1 by these methods, and the weight of the corrosion resistance diagnostic component is measured. Then, by comparing this weight with the weight of the corrosion resistance diagnostic component 1 before the operation of the outdoor unit, it is possible to grasp the progress of corrosion of the first sacrificial layer 2 over time.
 そして、露出部3aでの局部腐食痕5の出現具合と耐食性診断部品1の重量変化との関係を示す表等のデータを作成することにより、耐食性診断器300の記憶部314に記憶されている耐食性診断部品1の露出部3aの表面の腐食状況を示すパラメータと、耐食性診断部品1の重量変化とを関連付けることができる。そして、このようなデータを作成することにより、露出部3aでの局部腐食痕5の出現具合と当該データとを比較することにより、室外熱交換器100及び室外器の余寿命を診断することができる。換言すると、露出部3aの第2範囲6bに出現する局部腐食痕5によって、室外熱交換器100及び室外器の余寿命を診断することができる。 Then, by creating data such as a table showing the relationship between the appearance of the local corrosion marks 5 on the exposed portion 3a and the weight change of the corrosion resistance diagnostic component 1, the data is stored in the storage unit 314 of the corrosion resistance diagnostic device 300. The parameter indicating the corrosion state of the surface of the exposed portion 3a of the corrosion resistance diagnostic component 1 can be associated with the weight change of the corrosion resistance diagnostic component 1. Then, by creating such data, it is possible to diagnose the remaining life of the outdoor heat exchanger 100 and the outdoor unit by comparing the appearance of the local corrosion mark 5 on the exposed portion 3a with the data. it can. In other words, the residual life of the outdoor heat exchanger 100 and the outdoor unit can be diagnosed by the local corrosion marks 5 appearing in the second range 6b of the exposed portion 3a.
 また、時間経過と耐食性診断部品1の重量変化との関係を示すデータを作成しておくことにより、耐食性診断部品1の重量変化を測定し、測定した耐食性診断部品1の重量変化と当該データとを比較することで、室外熱交換器100及び室外器の余寿命を診断することができる。 In addition, by creating data indicating the relationship between the passage of time and the weight change of the corrosion resistance diagnostic component 1, the weight change of the corrosion resistance diagnostic component 1 is measured, and the measured weight change of the corrosion resistance diagnostic component 1 and the data By comparing, it is possible to diagnose the remaining life of the outdoor heat exchanger 100 and the outdoor unit.
[焦点深度法による腐食深さ測定]
 実施の形態1では、断面において亜鉛犠牲層である第1犠牲層2の腐食深さを測定した。第1犠牲層2の腐食深さの測定方法は、当該方法に限定されず、例えば焦点深度法によって第1犠牲層2の腐食深さを測定してもよい。焦点深度法によって第1犠牲層2の腐食深さを測定する際、まず、上述のように、耐食性診断部品1から腐食性生物を除去する。そして、腐食生成物を除去した耐食性診断部品1に対して、焦点深度法により第1犠牲層2の腐食深さを測定する。この方法は、第1犠牲層2と露出部3aとの境界から各位置における腐食深さを連続的に測定することが可能であり、しかも簡便に第1犠牲層2の腐食深さを測定できることから、第1犠牲層2の腐食深さを測定する方法として有用な方法である。
[Corrosion depth measurement by depth of focus method]
In the first embodiment, the corrosion depth of the first sacrificial layer 2, which is a zinc sacrificial layer, was measured in the cross section. The method for measuring the corrosion depth of the first sacrificial layer 2 is not limited to this method, and the corrosion depth of the first sacrificial layer 2 may be measured by, for example, the depth of focus method. When measuring the corrosion depth of the first sacrificial layer 2 by the depth of focus method, first, as described above, the corrosive organisms are removed from the corrosion resistance diagnostic component 1. Then, the corrosion depth of the first sacrificial layer 2 is measured by the depth of focus method for the corrosion resistance diagnostic component 1 from which the corrosion product has been removed. This method can continuously measure the corrosion depth at each position from the boundary between the first sacrificial layer 2 and the exposed portion 3a, and can easily measure the corrosion depth of the first sacrificial layer 2. Therefore, it is a useful method for measuring the corrosion depth of the first sacrificial layer 2.
実施の形態4.
 室外機が備えている亜鉛犠牲層付アルミニウム材の冷媒配管は、大気腐食の腐食因子である飛来塩分の付着量が多い部位ほど腐食が進行しやすい。したがって、信頼性の高い寿命診断をするためには、換言すると、亜鉛犠牲層付アルミニウム材の冷媒配管に貫通孔が形成される前に確実に製品寿命と診断できるようにするためには、最も腐食が進行しやすい位置に耐食性診断部品1を設置するのが好ましい。本実施の形態4では、耐食性診断部品1の好適な設置位置の一例について紹介する。なお、本実施の形態4において、特に記述しない項目については実施の形態1~実施の形態3のいずれかと同様とし、実施の形態1~実施の形態3のいずれかと同一の機能及び構成については同一の符号を用いて述べることとする。
Fourth Embodiment
In the refrigerant pipe made of an aluminum material with a zinc sacrificial layer, which is provided in the outdoor unit, corrosion is more likely to occur at a portion where the amount of adhering salt that is a corrosion factor of atmospheric corrosion is greater. Therefore, in order to make a reliable life diagnosis, in other words, in order to make sure that the product life is diagnosed before the through hole is formed in the refrigerant pipe of the aluminum material with the zinc sacrificial layer, it is most important. It is preferable to install the corrosion resistance diagnostic component 1 at a position where corrosion easily progresses. In the fourth embodiment, an example of a suitable installation position of the corrosion resistance diagnostic component 1 will be introduced. In the fourth embodiment, items that are not particularly described are the same as those in the first to third embodiments, and the same functions and configurations as those in the first to third embodiments are the same. Will be described using the reference sign.
 例えば、室外熱交換器100の冷媒配管の少なくとも一部に亜鉛犠牲層付アルミニウム材が用いられている場合、亜鉛犠牲層付アルミニウム材の冷媒配管のうちで、飛来塩分が最も付着しやすい箇所に、耐食性診断部品1を設置するとよい。例えば、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材で耐食性診断部品1が形成されている場合、次のような位置に耐食性診断部品1を設置するとよい。 For example, when an aluminum material with a zinc sacrificial layer is used for at least a part of the refrigerant pipe of the outdoor heat exchanger 100, a portion of the refrigerant pipe of the aluminum material with a zinc sacrificial layer where fly salt is most likely to adhere It is advisable to install the corrosion resistance diagnostic component 1. For example, when the corrosion resistance diagnostic component 1 is formed of a zinc sprayed aluminum material used as a heat transfer tube of the outdoor heat exchanger 100, the corrosion resistance diagnostic component 1 may be installed at the following position.
 図12は、本発明の実施の形態4に係る室外熱交換器のコア部の一部分を示す側面図である。
 本実施の形態4に係る室外熱交換器100のコア部400は、伝熱管411を備えている。伝熱管411は、亜鉛溶射アルミニウム材の扁平管となっている。また、伝熱管411の一部の範囲の表面には、伝熱管411内を流れる冷媒と外気との熱交換量を向上させるため、例えばアルミニウムを含む材料で形成された複数のフィン412が取り付けられている。すなわち、伝熱管411には、表面にフィン412が取り付けられていない表面剥き出し部分413と、表面がフィン412で覆われているフィン接触部分414とが存在することとなる。
FIG. 12: is a side view which shows a part of core part of the outdoor heat exchanger which concerns on Embodiment 4 of this invention.
The core section 400 of the outdoor heat exchanger 100 according to the fourth embodiment includes the heat transfer tube 411. The heat transfer tube 411 is a flat tube of zinc sprayed aluminum material. Further, a plurality of fins 412 made of, for example, a material containing aluminum is attached to the surface of a part of the heat transfer tube 411 in order to improve the amount of heat exchange between the refrigerant flowing in the heat transfer tube 411 and the outside air. ing. That is, the heat transfer tube 411 has the exposed surface portion 413 where the fin 412 is not attached to the surface and the fin contact portion 414 where the surface is covered with the fin 412.
 表面剥き出し部分413では、伝熱管411の表面がフィン412で覆われていない。このため、伝熱管411の表面剥き出し部分413は、フィン接触部分414と比べ、飛来塩分が付着しやすい。したがって、伝熱管411の表面剥き出し部分413は、フィン接触部分414と比べ、腐食しやすい。このため、室外熱交換器100の伝熱管として用いられている亜鉛溶射アルミニウム材で耐食性診断部品1が形成されている場合、伝熱管411の表面剥き出し部分413に耐食性診断部品1を取り付けるとよい。これにより、伝熱管411に貫通孔が形成される前に室外熱交換器100が寿命に至ったと確実に診断することができ、耐食性診断部品1を用いた製品寿命診断の信頼性が向上する。 In the exposed surface portion 413, the surface of the heat transfer tube 411 is not covered with the fins 412. Therefore, flying salt is more likely to adhere to the exposed surface 413 of the heat transfer tube 411 than the fin contact portion 414. Therefore, the exposed surface portion 413 of the heat transfer tube 411 is more likely to corrode than the fin contact portion 414. Therefore, when the corrosion resistance diagnostic component 1 is formed of the zinc sprayed aluminum material used as the heat transfer pipe of the outdoor heat exchanger 100, the corrosion resistance diagnostic component 1 may be attached to the exposed surface portion 413 of the heat transfer pipe 411. As a result, it can be reliably diagnosed that the outdoor heat exchanger 100 has reached the end of its life before the through hole is formed in the heat transfer tube 411, and the reliability of the product life diagnosis using the corrosion resistance diagnosis component 1 is improved.
 また、室外機運転時における室外機内の風の流れに着目し、耐食性診断部品1の設置位置を検討してもよい。室外機運転時に室外機内で最も風速の大きい部位は、室外機運転時に室外機内で最も飛来塩分が付着しやすい部位と考えることができる。このため、室外機運転時に室外機内で最も風速の大きい部位に耐食性診断部品1設置することにより、室外機内に設けられた亜鉛犠牲層付アルミニウム材の冷媒配管と比べ、耐食性診断部品1の腐食の進行が早くなる。したがって、このような位置に耐食性診断部品1を設置しても、亜鉛犠牲層付アルミニウム材の冷媒配管に貫通孔が形成される前に室外機が寿命に至ったと確実に診断することができ、耐食性診断部品1を用いた製品寿命診断の信頼性が向上する。 Also, paying attention to the wind flow inside the outdoor unit when operating the outdoor unit, you may consider the installation position of the corrosion resistance diagnostic component 1. It can be considered that the portion with the highest wind speed in the outdoor unit during operation of the outdoor unit is the portion where the flying salt is most likely to adhere in the outdoor unit during operation of the outdoor unit. Therefore, when the corrosion resistance diagnostic component 1 is installed in the portion of the outdoor unit having the highest wind speed during operation of the outdoor unit, the corrosion resistance diagnostic component 1 is less likely to corrode than the refrigerant pipe made of aluminum material with a zinc sacrificial layer provided in the outdoor unit. It will progress faster. Therefore, even if the corrosion resistance diagnostic component 1 is installed at such a position, it can be reliably diagnosed that the outdoor unit has reached the end of life before the through hole is formed in the refrigerant pipe of the aluminum material with the zinc sacrificial layer, Reliability of product life diagnosis using the corrosion resistance diagnosis component 1 is improved.
実施の形態5.
 上述のように、室外熱交換器100及び室外機の寿命及び余寿命の診断は、人が行うこともできるし、耐食性診断器300が行うこともできる。本実施の形態5では、人が行う室外熱交換器100及び室外機の寿命及び余寿命の診断の一例と、耐食性診断器300が行う室外熱交換器100及び室外機の寿命及び余寿命の診断の一例とを紹介する。なお、本実施の形態5において、特に記述しない項目については実施の形態1~実施の形態4のいずれかと同様とし、実施の形態1~実施の形態4のいずれかと同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 5.
As described above, the life and the remaining life of the outdoor heat exchanger 100 and the outdoor unit can be diagnosed by a person or the corrosion resistance diagnosing device 300. In the fifth embodiment, an example of the life and remaining life diagnosis of the outdoor heat exchanger 100 and the outdoor unit performed by a person, and the life and remaining life diagnosis of the outdoor heat exchanger 100 and the outdoor unit performed by the corrosion resistance diagnosing device 300. I will introduce an example. In the fifth embodiment, items not particularly described are the same as those in any of the first to fourth embodiments, and the same functions and configurations as those in any of the first to fourth embodiments are the same. Will be described using the reference sign.
 人が室外熱交換器100及び室外機の寿命を診断する場合、メンテナンスメーカー等の人が、耐食性診断部品1の露出部に出現する局部腐食痕5を確認する。耐食性診断部品1の露出部3aに出現する局部腐食痕5は、例えば、目視によって確認される。目視によって露出部3aに出現する局部腐食痕5を確認する場合、例えば、人は、耐食性診断部品1を一旦取り外し、耐食性診断部品1の露出部3aに出現する局部腐食痕5を確認する。また例えば、露出部3aに出現する局部腐食痕5を直接目視できる位置に耐食性診断部品1が設置されている場合、人は、耐食性診断部品1を取り外すことなく、露出部3aに出現する局部腐食痕5を確認してもよい。また例えば、鏡等を設置することによっても、人は、耐食性診断部品1を取り外すことなく、露出部3aに出現する局部腐食痕5を確認することができる。また例えば、少なくとも撮影部312及び検出部313を備えた耐食性診断器300が設けられている場合、人は、検出部313の画像データを目視することによっても、露出部3aに出現する局部腐食痕5を確認することができる。そして、人は、露出部3aの第1範囲6aに局部腐食痕5を確認した際、室外熱交換器100及び室外機が寿命に至ったと診断する。 When a person diagnoses the life of the outdoor heat exchanger 100 and the outdoor unit, a person such as a maintenance maker checks the local corrosion mark 5 that appears on the exposed portion of the corrosion resistance diagnostic component 1. The local corrosion mark 5 that appears on the exposed portion 3a of the corrosion resistance diagnostic component 1 is visually confirmed, for example. When visually confirming the local corrosion traces 5 appearing on the exposed portion 3a, for example, a person temporarily removes the corrosion resistance diagnostic component 1 and confirms the local corrosion traces 5 appearing on the exposed portion 3a of the corrosion resistance diagnostic component 1. Further, for example, when the corrosion resistance diagnostic component 1 is installed at a position where the local corrosion mark 5 appearing on the exposed portion 3a can be directly viewed, a person does not remove the corrosion resistance diagnostic component 1 and the local corrosion appearing on the exposed portion 3a is removed. The mark 5 may be confirmed. Further, for example, even by installing a mirror or the like, a person can confirm the local corrosion marks 5 appearing on the exposed portion 3a without removing the corrosion resistance diagnostic component 1. In addition, for example, when the corrosion resistance diagnostic device 300 including at least the imaging unit 312 and the detection unit 313 is provided, a person can visually check the image data of the detection unit 313 to see the local corrosion mark appearing on the exposed portion 3a. 5 can be confirmed. Then, when confirming the local corrosion mark 5 in the first range 6a of the exposed portion 3a, the person diagnoses that the outdoor heat exchanger 100 and the outdoor unit have reached the end of their lives.
 なお、室外熱交換器100及び室外機が寿命に至ったと診断された場合、室外機のメンテナンスを実行すればよい。室外機のメンテナンスとは、亜鉛犠牲層付アルミニウム材の冷媒配管の交換、亜鉛犠牲層付アルミニウム材の冷媒配管に発生した局部腐食箇所の修復、室外熱交換器100の交換等である。 Note that if it is diagnosed that the outdoor heat exchanger 100 and the outdoor unit have reached the end of their lives, maintenance of the outdoor unit may be executed. The maintenance of the outdoor unit includes replacement of the refrigerant pipe of the aluminum material with the zinc sacrificial layer, repair of a local corrosion portion generated in the refrigerant pipe of the aluminum material with the zinc sacrificial layer, replacement of the outdoor heat exchanger 100, and the like.
 人が室外熱交換器100及び室外機の余寿命を診断する場合、第1犠牲層2の腐食の進行を測定できる環境に、耐食性診断部品1を一旦持ち帰る。そして、例えば、時間経過と第1犠牲層2の腐食深さdとの関係を示すデータが作成されている場合、人は、第1犠牲層2の腐食深さdを測定する。そして、測定した第1犠牲層2の腐食深さdと当該データとを比較することで、室外熱交換器100及び室外器の余寿命を診断する。また例えば、時間経過と第1犠牲層2の所定断面における腐食面積との関係を示すデータが作成されている場合、人は、第1犠牲層2の所定断面における腐食面積を測定する。そして、測定した第1犠牲層2の所定断面における腐食面積と当該データとを比較することで、室外熱交換器100及び室外器の余寿命を診断する。また例えば、時間経過と耐食性診断部品1の重量変化との関係を示すデータが作成されている場合、人は、耐食性診断部品1の重量変化を測定する。そして、測定した耐食性診断部品1の重量変化と当該データとを比較することで、室外熱交換器100及び室外器の余寿命を診断する。 When a person diagnoses the remaining life of the outdoor heat exchanger 100 and the outdoor unit, the corrosion resistance diagnostic component 1 is once brought back to the environment where the progress of corrosion of the first sacrificial layer 2 can be measured. Then, for example, when the data indicating the relationship between the elapsed time and the corrosion depth d of the first sacrificial layer 2 is created, a person measures the corrosion depth d of the first sacrificial layer 2. Then, by comparing the measured corrosion depth d of the first sacrificial layer 2 with the data, the remaining life of the outdoor heat exchanger 100 and the outdoor unit is diagnosed. Further, for example, when data indicating the relationship between the elapsed time and the corroded area of the first sacrificial layer 2 in the predetermined cross section is created, a person measures the corroded area of the first sacrificial layer 2 in the predetermined cross section. Then, the remaining area of the outdoor heat exchanger 100 and the outdoor unit is diagnosed by comparing the measured corrosion area in the predetermined cross section of the first sacrificial layer 2 with the data. Further, for example, when data indicating the relationship between the passage of time and the weight change of the corrosion resistance diagnostic component 1 is created, a person measures the weight change of the corrosion resistance diagnostic component 1. Then, the remaining weight of the outdoor heat exchanger 100 and the outdoor unit is diagnosed by comparing the measured weight change of the corrosion resistance diagnostic component 1 with the data.
 耐食性診断器300が室外熱交換器100及び室外機の寿命を診断する場合について説明する。耐食性診断部品1の露出部3aに出現する局部腐食痕5は、第1芯材3とは色及び形状が異なる。このため、検出部313は、撮影部312で撮影された露出部3aの画像データを、色及び形状のうちの少なくとも1つで構成される画像データに変換し、露出部3aに出現する局部腐食痕5を判別可能なデータとする。 The case where the corrosion resistance diagnostic device 300 diagnoses the life of the outdoor heat exchanger 100 and the outdoor unit will be described. The local corrosion mark 5 that appears on the exposed portion 3 a of the corrosion resistance diagnostic component 1 is different in color and shape from the first core material 3. Therefore, the detection unit 313 converts the image data of the exposed portion 3a photographed by the photographing unit 312 into image data composed of at least one of color and shape, and the local corrosion appearing on the exposed portion 3a. The trace 5 is used as discriminable data.
 検出部313で生成された画像データは、例えば所定時間毎に記憶部314及び比較部315に送られる。比較部315は、検出部313から画像データが送られてくる毎に、記憶部314に保存されている画像データと比較する。そして、比較部315は、露出部3aの第1範囲6aに局部腐食痕5が出現したことを確認すると、室外熱交換器100及び室外機が寿命に至ったと診断する。また、報知部316は、室外熱交換器100及び室外機が寿命に至ったことを報知する。 The image data generated by the detection unit 313 is sent to the storage unit 314 and the comparison unit 315 at predetermined time intervals, for example. The comparing unit 315 compares with the image data stored in the storage unit 314 every time the image data is sent from the detecting unit 313. When the comparison unit 315 confirms that the local corrosion mark 5 appears in the first range 6a of the exposed portion 3a, the comparison unit 315 diagnoses that the outdoor heat exchanger 100 and the outdoor unit have reached the end of their lives. In addition, the notification unit 316 notifies that the outdoor heat exchanger 100 and the outdoor unit have reached the end of their lives.
 耐食性診断器300が室外熱交換器100及び室外機の余寿命を診断する場合、予め、記憶部314に、室外熱交換器100及び室外機の余寿命を導くデータを保存しておく。室外熱交換器100及び室外機の余寿命を導くデータとは、例えば、上述した露出部3aでの局部腐食痕5の出現具合と第1犠牲層2の腐食深さdとの関係を示すデータ、上述した露出部3aでの局部腐食痕5の出現具合と第1犠牲層2の所定断面における腐食面積との関係を示すデータ、あるいは、上述した露出部3aでの局部腐食痕5の出現具合と耐食性診断部品1の重量変化との関係を示すデータである。また例えば、露出部3aでの局部腐食痕5の出現具合と室外熱交換器100及び室外機の余寿命との関係を示すデータを、室外熱交換器100及び室外機の余寿命を導くデータとして記憶部314に保存してもよい。 When the corrosion resistance diagnosing device 300 diagnoses the remaining life of the outdoor heat exchanger 100 and the outdoor unit, the storage unit 314 stores data for guiding the remaining life of the outdoor heat exchanger 100 and the outdoor unit in advance. The data that indicates the remaining life of the outdoor heat exchanger 100 and the outdoor unit is, for example, data indicating the relationship between the appearance of the local corrosion trace 5 on the exposed portion 3a and the corrosion depth d of the first sacrificial layer 2 described above. , Data showing the relationship between the appearance of the local corrosion marks 5 on the exposed portion 3a and the corrosion area of the first sacrificial layer 2 in a predetermined cross section, or the appearance of the local corrosion marks 5 on the exposed portion 3a. 2 is data showing the relationship between the weight change of the corrosion resistance diagnostic component 1 and. Further, for example, data indicating the relationship between the appearance of the local corrosion mark 5 on the exposed portion 3a and the remaining life of the outdoor heat exchanger 100 and the outdoor unit is used as data for guiding the remaining life of the outdoor heat exchanger 100 and the outdoor unit. It may be stored in the storage unit 314.
 比較部315は、検出部313から画像データが送られてきた際、当該データにおける露出部3aでの局部腐食痕5の出現具合と、記憶部314に記憶されている室外熱交換器100及び室外機の余寿命を導くデータとを比較し、室外熱交換器100及び室外機の余寿命を診断する。また、報知部316は、室外熱交換器100及び室外機の余寿命を報知する。 When the image data is sent from the detection unit 313, the comparison unit 315 determines how the local corrosion mark 5 appears in the exposed portion 3 a in the data and the outdoor heat exchanger 100 and the outdoor stored in the storage unit 314. The remaining lifespan of the outdoor heat exchanger 100 and the outdoor unit are diagnosed by comparing with the data that guides the remaining lifespan of the machine. In addition, the notification unit 316 notifies the remaining life of the outdoor heat exchanger 100 and the outdoor unit.
 このように、耐食性診断器300を用いることにより、人の作業及び判断が行われることなく、室外熱交換器100及び室外機の余寿命を診断することができる。 As described above, by using the corrosion resistance diagnosing device 300, it is possible to diagnose the remaining life of the outdoor heat exchanger 100 and the outdoor unit without human work and judgment.
実施の形態6.
 耐食性診断部品1を用いて、室外機の設置環境における大気中の腐食性物質の有無と、大気中の腐食性物質が室外機に設けられたアルミニウムを含む部材への影響度と、を把握することも可能である。本実施の形態6では、室外機の設置環境の腐食性を診断する方法について紹介する。なお、本実施の形態6において、特に記述しない項目については実施の形態1~実施の形態5のいずれかと同様とし、実施の形態1~実施の形態5のいずれかと同一の機能及び構成については同一の符号を用いて述べることとする。
Sixth Embodiment
By using the corrosion resistance diagnostic component 1, the presence or absence of corrosive substances in the atmosphere in the installation environment of the outdoor unit and the degree of influence of the corrosive substances in the atmosphere on the members including aluminum provided in the outdoor unit are grasped. It is also possible. In the sixth embodiment, a method of diagnosing the corrosiveness of the installation environment of the outdoor unit will be introduced. In the sixth embodiment, items not particularly described are the same as those in any of the first to fifth embodiments, and the same functions and configurations as those in any of the first to fifth embodiments are the same. Will be described using the reference sign.
 従来、室外機に設けられたアルミニウムを含む部材への影響を把握していない地域に室外機を設置する場合、既に環境調査等で把握している腐食性物質の有無等から設置環境の腐食性を判断し、環境に応じて亜鉛犠牲層付アルミニウム材の使用等を行っていた。上記のような地域において耐食性診断器300又は耐食性診断部品1単体を室外機と共に設置することで、室外機に設けられたアルミニウムを含む部材への影響を把握することができる。 Conventionally, when installing an outdoor unit in an area where the effect on the aluminum-containing components installed in the outdoor unit is not known, the corrosiveness of the installation environment may be affected by the presence or absence of corrosive substances that have already been identified in environmental surveys. Therefore, the aluminum material with the zinc sacrificial layer was used according to the environment. By installing the corrosion resistance diagnosing device 300 or the corrosion resistance diagnosing component 1 alone together with the outdoor unit in the above-mentioned region, it is possible to grasp the influence on the member including aluminum provided in the outdoor unit.
 具体的には、室外機据付時に耐食性診断器300又は耐食性診断部品1単体を室外機内部に設置しておく。そして、空気調和機の運転開始後、定期的に耐食性診断部品1の腐食状況を調査する。 Specifically, the corrosion resistance diagnostic device 300 or the corrosion resistance diagnostic component 1 alone is installed inside the outdoor unit when the outdoor unit is installed. Then, after the operation of the air conditioner is started, the corrosion state of the corrosion resistance diagnostic component 1 is regularly investigated.
 具体的には、室外機に設けられたアルミニウムを含む部材に対する腐食性を把握している地域の1つを標準地域とする。そして、標準地域における空気調和機の運転開始後からの時間経過と耐食性診断部品1の露出部3aの局部腐食痕5の発生具合との関係を示すデータを作成する。そして、新たな地域に室外機が設置され、空気調和機の運転が開始された際、室外機内部に設置された耐食性診断部品1の露出部3aの局部腐食痕5の発生具合と上述のデータとを比較する。これにより、室外機が設置された新たな地域の腐食性が標準地域と比べて大きいか小さいかを診断することができる。 Specifically, one of the areas where the corrosiveness of the aluminum-containing members installed in the outdoor unit is known is set as the standard area. Then, data indicating the relationship between the passage of time from the start of operation of the air conditioner in the standard area and the degree of occurrence of the local corrosion mark 5 on the exposed portion 3a of the corrosion resistance diagnostic component 1 is created. Then, when the outdoor unit is installed in a new area and the operation of the air conditioner is started, the degree of occurrence of the local corrosion marks 5 on the exposed portion 3a of the corrosion resistance diagnostic component 1 installed inside the outdoor unit and the above-mentioned data. Compare with. This makes it possible to diagnose whether the corrosiveness of the new area where the outdoor unit is installed is larger or smaller than that of the standard area.
 なお、室外機内部に耐食性診断器300が設置されている場合、標準地域における空気調和機の運転開始後からの時間経過と耐食性診断部品1の露出部3aの局部腐食痕5の発生具合との関係を示すデータは、記憶部314に記憶させておく。そして、比較部315は、検出部313から送られてきた画像データと記憶部314に記憶されている当該データとを比較することにより、室外機が設置された新たな地域の腐食性が標準地域と比べて大きいか小さいかを診断する。 In addition, when the corrosion resistance diagnostic device 300 is installed inside the outdoor unit, the time elapsed from the start of operation of the air conditioner in the standard area and the occurrence of the local corrosion mark 5 on the exposed portion 3a of the corrosion resistance diagnostic component 1 Data indicating the relationship is stored in the storage unit 314. Then, the comparison unit 315 compares the image data sent from the detection unit 313 with the data stored in the storage unit 314, so that the corrosiveness of the new area where the outdoor unit is installed is the standard area. Diagnose whether it is larger or smaller than.
 また、標準地域における空気調和機の運転開始後からの時間経過と耐食性診断部品1の第1犠牲層2の腐食進行度合いとの関係を示すデータを作成してもよい。そして、新たな地域に室外機が設置され、空気調和機の運転が開始された際、室外機内部に設置された耐食性診断部品1を持ち帰り、第1犠牲層2の腐食進行度合いを測定してもよい。測定された第1犠牲層2の腐食進行度合いと上述のデータとを比較することにより、室外機が設置された環境の腐食性をより精度高く診断することができる。なお、第1犠牲層2の腐食進行度合いは、上述した第1犠牲層2の腐食深さ等で測定することができる。 Further, it is possible to create data indicating the relationship between the elapsed time from the start of operation of the air conditioner in the standard area and the degree of progress of corrosion of the first sacrificial layer 2 of the corrosion resistance diagnostic component 1. Then, when the outdoor unit is installed in a new area and the operation of the air conditioner is started, the corrosion resistance diagnostic component 1 installed inside the outdoor unit is brought back and the degree of corrosion progress of the first sacrificial layer 2 is measured. Good. By comparing the measured degree of corrosion progress of the first sacrificial layer 2 with the above data, the corrosiveness of the environment in which the outdoor unit is installed can be diagnosed with higher accuracy. The degree of progress of corrosion of the first sacrificial layer 2 can be measured by the above-described corrosion depth of the first sacrificial layer 2 or the like.
 以上、本発明は、上記の各実施の形態で示した構成を適宜組み合わせてもよい。また、上記の各実施の形態で示された構成はあくまでも例示であって、本発明の構成を限定するものではない。また、本発明の範囲は、請求の範囲によって示されている範囲であり、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 As described above, the present invention may appropriately combine the configurations shown in the above embodiments. Further, the configurations shown in the above-described respective embodiments are merely examples, and do not limit the configurations of the present invention. The scope of the present invention is defined by the scope of the claims, and includes meanings equivalent to the scope of the claims and all modifications within the scope.
 1 耐食性診断部品、2 第1犠牲層、2a 境界、3 第1芯材、3a 露出部、4 液絡、5 局部腐食痕、6a 第1範囲、6b 第2範囲、7 基準線、7a 基準点、8 腐食部分、9 残存部分、10 亜鉛残存領域、100 室外熱交換器、200 空気調和機、201 圧縮機、202 マフラー、203 四方弁、204 冷媒配管、205 毛細管、206 ストレーナ、207 電子制御式膨張弁、208a ストップバルブ、208b ストップバルブ、209 室内熱交換器、210 補助マフラー、211 制御装置、300 耐食性診断器、312 撮影部、313 検出部、314 記憶部、315 比較部、316 報知部、400 コア部、411 伝熱管、412 フィン、413 表面剥き出し部分、414 フィン接触部分、500 耐食性診断部品用材料。 1 Corrosion resistance diagnostic part, 2 1st sacrifice layer, 2a boundary, 3 1st core material, 3a exposed part, 4 liquid junction, 5 local corrosion mark, 6a 1st range, 6b 2nd range, 7 reference line, 7a reference point , 8 corroded parts, 9 remaining parts, 10 zinc remaining areas, 100 outdoor heat exchanger, 200 air conditioner, 201 compressor, 202 muffler, 203 four-way valve, 204 refrigerant pipe, 205 capillary tube, 206 strainer, 207 electronically controlled Expansion valve, 208a stop valve, 208b stop valve, 209 indoor heat exchanger, 210 auxiliary muffler, 211 control device, 300 corrosion resistance diagnostic device, 312 imaging unit, 313 detection unit, 314 storage unit, 315 comparison unit, 316 notification unit, 400 core part, 411 heat transfer tube, 412 fin, 413 surface exposed part, 414 fin contact part, 500 material for corrosion resistance diagnostic parts.

Claims (19)

  1.  アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成された被診断材料の腐食状況の診断に用いられる耐食性診断部品であって、
     当該耐食性診断部品は、
     アルミニウムを含む第1芯材と、
     前記第1芯材の表面に形成され、前記第1芯材よりも耐食性が低い亜鉛を含む第1犠牲層と、
     を備え、
     当該耐食性診断部品には、前記第1犠牲層に隣接する位置に、前記第1犠牲層の表面から前記第1犠牲層と前記第1芯材との境界よりも前記第1芯材の内部側まで除去されて、前記第1芯材が露出した露出部が形成されている
     耐食性診断部品。
    A corrosion resistance diagnostic component used for diagnosing a corrosion state of a material to be diagnosed, wherein a sacrificial layer containing zinc is formed on a surface of a core material containing aluminum,
    The corrosion resistance diagnostic parts are
    A first core material containing aluminum;
    A first sacrificial layer formed on the surface of the first core material and containing zinc having a lower corrosion resistance than the first core material;
    Equipped with
    In the corrosion resistance diagnostic component, at a position adjacent to the first sacrificial layer, the inner side of the first core material is more than the boundary between the first sacrificial layer and the first core material from the surface of the first sacrificial layer. The corrosion-resistant diagnostic component, wherein the exposed portion is formed by removing the first core material.
  2.  前記露出部の表面には、
     前記第1犠牲層と隣接する位置に、局部腐食痕が出現した際、前記被診断材料が用いられた製品が寿命と診断される第1範囲が配置され、
     前記第1範囲を基準として前記第1犠牲層の反対側となる位置に、前記第1範囲よりも先に局部腐食痕が出現する第2範囲が配置されている
     請求項1に記載の耐食性診断部品。
    On the surface of the exposed portion,
    When a local corrosion mark appears at a position adjacent to the first sacrificial layer, a first range in which the product using the material to be diagnosed is diagnosed as a life is arranged,
    The corrosion resistance diagnosis according to claim 1, wherein a second range in which a local corrosion mark appears before the first range is arranged at a position opposite to the first sacrificial layer with respect to the first range. parts.
  3.  前記第1犠牲層は、アルミニウム-亜鉛合金であり、
     前記第1芯材は、亜鉛を含まないアルミニウム合金である
     請求項1又は請求項2に記載の耐食性診断部品。
    The first sacrificial layer is an aluminum-zinc alloy,
    The corrosion resistance diagnostic component according to claim 1, wherein the first core material is an aluminum alloy that does not contain zinc.
  4.  請求項1~請求項3のいずれか一項に記載の耐食性診断部品と、
     前記露出部の表面を撮影する撮影部と、
     前記撮影部で撮影された画像データから、前記露出部の表面の腐食状況を検出する検出部と、
     を備えた耐食性診断器。
    A corrosion-resistant diagnostic component according to any one of claims 1 to 3,
    A photographing unit for photographing the surface of the exposed portion,
    From the image data taken by the imaging unit, a detection unit that detects a corrosion state of the surface of the exposed portion,
    Corrosion resistance diagnostic device equipped with.
  5.  前記露出部の表面の腐食状況を示すパラメータを記憶する記憶部と、
     前記検出部の検出結果と前記記憶部に記憶されている前記パラメータとを比較する比較部と、
     前記比較部での比較結果を報知する報知部と、
     を備えた請求項4に記載の耐食性診断器。
    A storage unit that stores a parameter indicating the corrosion state of the surface of the exposed portion,
    A comparison unit that compares the detection result of the detection unit and the parameter stored in the storage unit,
    An informing section for informing the comparison result in the comparing section,
    The corrosion resistance diagnostic device according to claim 4, further comprising:
  6.  前記パラメータは、前記第1犠牲層の断面における該第1犠牲層の腐食面積と関連付けられている
     請求項5に記載の耐食性診断器。
    The corrosion resistance diagnostic device according to claim 5, wherein the parameter is associated with a corrosion area of the first sacrificial layer in a cross section of the first sacrificial layer.
  7.  前記パラメータは、前記第1犠牲層の断面における該第1犠牲層の腐食深さと関連付けられている
     請求項5に記載の耐食性診断器。
    The corrosion resistance diagnosing device according to claim 5, wherein the parameter is associated with a corrosion depth of the first sacrificial layer in a cross section of the first sacrificial layer.
  8.  前記パラメータは、前記耐食性診断部品の重量変化と関連付けられている
     請求項5に記載の耐食性診断器。
    The corrosion resistance diagnostic device according to claim 5, wherein the parameter is associated with a weight change of the corrosion resistance diagnostic component.
  9.  請求項1~請求項3のいずれか一項に記載の耐食性診断部品と、
     アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成され、冷媒が流れる冷媒配管と、
     を備え、
     前記耐食性診断部品は、前記冷媒配管と同じ部材で形成されている
     熱交換器。
    A corrosion-resistant diagnostic component according to any one of claims 1 to 3,
    A sacrificial layer containing zinc is formed on the surface of the core material containing aluminum, and a refrigerant pipe through which the refrigerant flows,
    Equipped with
    The said corrosion-resistant diagnostic component is a heat exchanger formed with the same member as the said refrigerant pipe.
  10.  前記冷媒配管の一部を構成する伝熱管を備え、
     前記耐食性診断部品は、前記伝熱管と同じ部材で形成されている
     請求項9に記載の熱交換器。
    A heat transfer tube forming a part of the refrigerant pipe,
    The heat exchanger according to claim 9, wherein the corrosion resistance diagnostic component is formed of the same member as the heat transfer tube.
  11.  請求項4~請求項8のいずれか一項に記載の耐食性診断器と、
     アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成され、冷媒が流れる冷媒配管と、
     を備え、
     前記耐食性診断部品は、前記冷媒配管と同じ部材で形成されている
     熱交換器。
    A corrosion resistance diagnostic device according to any one of claims 4 to 8,
    A sacrificial layer containing zinc is formed on the surface of the core material containing aluminum, and a refrigerant pipe through which the refrigerant flows,
    Equipped with
    The said corrosion-resistant diagnostic component is a heat exchanger formed with the same member as the said refrigerant pipe.
  12.  前記冷媒配管の一部を構成する伝熱管を備え、
     前記耐食性診断部品は、前記伝熱管と同じ部材で形成されている
     請求項11に記載の熱交換器。
    A heat transfer tube forming a part of the refrigerant pipe,
    The heat exchanger according to claim 11, wherein the corrosion resistance diagnostic component is formed of the same member as the heat transfer tube.
  13.  請求項1~請求項3のいずれか一項に記載の耐食性診断部品と、
     アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成された伝熱管を有する熱交換器と、
     アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成され、前記熱交換器へ流入する冷媒又は前記熱交換器から流出した冷媒が流れる冷媒配管と、
     を備え、
     前記耐食性診断部品は、前記冷媒配管と同じ部材で形成されている
     空気調和機。
    A corrosion-resistant diagnostic component according to any one of claims 1 to 3,
    A heat exchanger having a heat transfer tube in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum;
    A sacrificial layer containing zinc is formed on the surface of the core material containing aluminum, and a refrigerant pipe in which the refrigerant flowing into the heat exchanger or the refrigerant flowing out from the heat exchanger flows.
    Equipped with
    An air conditioner in which the corrosion resistance diagnostic component is formed of the same member as the refrigerant pipe.
  14.  請求項4~請求項8のいずれか一項に記載の耐食性診断器と、
     アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成された伝熱管を有する熱交換器と、
     アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成され、前記熱交換器へ流入する冷媒又は前記熱交換器から流出した冷媒が流れる冷媒配管と、
     を備え、
     前記耐食性診断部品は、前記冷媒配管と同じ部材で形成されている
     空気調和機。
    A corrosion resistance diagnostic device according to any one of claims 4 to 8,
    A heat exchanger having a heat transfer tube in which a sacrificial layer containing zinc is formed on the surface of a core material containing aluminum;
    A sacrificial layer containing zinc is formed on the surface of the core material containing aluminum, and a refrigerant pipe in which the refrigerant flowing into the heat exchanger or the refrigerant flowing out from the heat exchanger flows.
    Equipped with
    An air conditioner in which the corrosion resistance diagnostic component is formed of the same member as the refrigerant pipe.
  15.  請求項1~請求項3のいずれか一項に記載の耐食性診断部品の製造方法であって、
     前記第1芯材の表面に前記第1犠牲層が形成された耐食性診断部品用材料を準備する準備工程と、
     前記第1犠牲層の表面から前記第1犠牲層と前記第1芯材との境界よりも前記第1芯材の内部側まで除去し、前記第1犠牲層に隣接する位置に前記露出部を形成する形成工程と、
     を備えた耐食性診断部品の製造方法。
    A method of manufacturing a corrosion-resistant diagnostic component according to any one of claims 1 to 3,
    A preparatory step of preparing a material for a corrosion-resistant diagnostic component in which the first sacrificial layer is formed on the surface of the first core material;
    The exposed portion is removed from the surface of the first sacrificial layer to the inside of the first core material with respect to the boundary between the first sacrificial layer and the first core material, and the exposed portion is provided at a position adjacent to the first sacrificial layer. A forming process for forming,
    And a method for manufacturing a corrosion-resistant diagnostic component.
  16.  前記準備工程は、
     前記第1芯材を準備する芯材準備工程と、
     前記第1芯材の表面に前記第1犠牲層を形成する犠牲層形成工程と、
     を備えた請求項15に記載の耐食性診断部品の製造方法。
    The preparation step is
    A core material preparing step of preparing the first core material,
    A sacrificial layer forming step of forming the first sacrificial layer on the surface of the first core material;
    The method for manufacturing a corrosion-resistant diagnostic component according to claim 15, further comprising:
  17.  前記耐食性診断部品用材料は板状であり、
     前記形成工程は、
     前記耐食性診断部品用材料の平面部を切削し、前記平面部において前記第1芯材を露出させる第1切削工程と、
     前記平面部において前記第1芯材が露出している部分と連なるように、前記耐食性診断部品用材料の両側面部を切削し、前記両側面部において前記第1芯材を露出させる第2切削工程と、
     を備えた請求項15又は請求項16に記載の耐食性診断部品の製造方法。
    The material for corrosion-resistant diagnostic parts is plate-shaped,
    The forming step includes
    A first cutting step of cutting a flat surface portion of the material for corrosion-resistant diagnostic parts and exposing the first core material in the flat surface portion;
    A second cutting step in which both side surface portions of the material for a corrosion-resistant diagnostic component are cut and the first core material is exposed at both side surface portions so as to be continuous with the exposed portion of the first core material in the flat surface portion; ,
    The method for manufacturing a corrosion-resistant diagnostic component according to claim 15 or 16, further comprising:
  18.  請求項1~請求項3のいずれか一項に記載の耐食性診断部品を用い、アルミニウムを含む芯材の表面に亜鉛を含む犠牲層が形成された被診断材料の腐食状況を診断する診断方法であって、
     前記露出部の表面において、前記第1犠牲層から規定距離以内となっている範囲を第1範囲とし、
     前記第1範囲に局部腐食痕が出現した際、前記被診断材料の用いられた製品が寿命であると診断する
     診断方法。
    A diagnostic method for diagnosing a corrosion state of a material to be diagnosed, wherein the corrosion-resistant diagnostic component according to any one of claims 1 to 3 is used, and a sacrificial layer containing zinc is formed on a surface of a core material containing aluminum. There
    On the surface of the exposed portion, a range within a specified distance from the first sacrificial layer is defined as a first range,
    A diagnostic method for diagnosing that the product using the material to be diagnosed has reached the end of its life when a local corrosion mark appears in the first range.
  19.  前記露出部の表面において、前記第1犠牲層から規定距離よりも遠い範囲を第2範囲とし、
     前記第2範囲に出現する局部腐食痕によって前記製品の余寿命を診断する
     請求項18に記載の診断方法。
    On the surface of the exposed portion, a range farther than a specified distance from the first sacrificial layer is defined as a second range,
    The diagnostic method according to claim 18, wherein the residual life of the product is diagnosed by a local corrosion mark appearing in the second range.
PCT/JP2019/004197 2019-02-06 2019-02-06 Corrosion resistance diagnostic component, corrosion resistance diagnostic device, heat exchanger, air conditioner, method for manufacturing corrosion resistance diagnostic component and diagnosis method WO2020161817A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/004197 WO2020161817A1 (en) 2019-02-06 2019-02-06 Corrosion resistance diagnostic component, corrosion resistance diagnostic device, heat exchanger, air conditioner, method for manufacturing corrosion resistance diagnostic component and diagnosis method
JP2019536610A JPWO2020161817A1 (en) 2019-02-06 2019-02-06 Manufacturing method of corrosion resistance diagnostic parts and diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004197 WO2020161817A1 (en) 2019-02-06 2019-02-06 Corrosion resistance diagnostic component, corrosion resistance diagnostic device, heat exchanger, air conditioner, method for manufacturing corrosion resistance diagnostic component and diagnosis method

Publications (1)

Publication Number Publication Date
WO2020161817A1 true WO2020161817A1 (en) 2020-08-13

Family

ID=71947699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004197 WO2020161817A1 (en) 2019-02-06 2019-02-06 Corrosion resistance diagnostic component, corrosion resistance diagnostic device, heat exchanger, air conditioner, method for manufacturing corrosion resistance diagnostic component and diagnosis method

Country Status (2)

Country Link
JP (1) JPWO2020161817A1 (en)
WO (1) WO2020161817A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6968317B1 (en) * 2021-01-08 2021-11-17 三菱電機株式会社 Corrosion resistance diagnostic device, manufacturing method of corrosion resistance diagnostic device, and corrosion resistance diagnostic method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132962A (en) * 1997-10-31 1999-05-21 Tokyo Electric Power Co Inc:The Method and system apparatus for judgment of degradation and corrosion of surface treated steel product
WO2015063903A1 (en) * 2013-10-31 2015-05-07 三菱電機株式会社 Corrosion resistance life diagnosis component, heat exchanger, and refrigeration and air conditioning device
JP2015113991A (en) * 2013-12-09 2015-06-22 日立アプライアンス株式会社 Corrosion diagnostic method for air conditioner and heat exchanger for air conditioner
JP2017198357A (en) * 2016-04-25 2017-11-02 三菱電機株式会社 Outdoor equipment of air conditioner
WO2017199569A1 (en) * 2016-05-18 2017-11-23 三菱電機株式会社 Corrosion resistance diagnosis device, heat exchanger, air conditioner, method for manufacturing corrosion resistance diagnosis device, and diagnosis method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095524A (en) * 2012-11-12 2014-05-22 Hitachi Appliances Inc Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132962A (en) * 1997-10-31 1999-05-21 Tokyo Electric Power Co Inc:The Method and system apparatus for judgment of degradation and corrosion of surface treated steel product
WO2015063903A1 (en) * 2013-10-31 2015-05-07 三菱電機株式会社 Corrosion resistance life diagnosis component, heat exchanger, and refrigeration and air conditioning device
JP2015113991A (en) * 2013-12-09 2015-06-22 日立アプライアンス株式会社 Corrosion diagnostic method for air conditioner and heat exchanger for air conditioner
JP2017198357A (en) * 2016-04-25 2017-11-02 三菱電機株式会社 Outdoor equipment of air conditioner
WO2017199569A1 (en) * 2016-05-18 2017-11-23 三菱電機株式会社 Corrosion resistance diagnosis device, heat exchanger, air conditioner, method for manufacturing corrosion resistance diagnosis device, and diagnosis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6968317B1 (en) * 2021-01-08 2021-11-17 三菱電機株式会社 Corrosion resistance diagnostic device, manufacturing method of corrosion resistance diagnostic device, and corrosion resistance diagnostic method

Also Published As

Publication number Publication date
JPWO2020161817A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
WO2017199569A1 (en) Corrosion resistance diagnosis device, heat exchanger, air conditioner, method for manufacturing corrosion resistance diagnosis device, and diagnosis method
JP6058154B2 (en) Corrosion resistance life diagnosis parts, heat exchanger, refrigeration air conditioner
JP5401685B2 (en) Air conditioner outdoor unit
JP2009250510A (en) Heat exchanger and its manufacturing method
WO2020161817A1 (en) Corrosion resistance diagnostic component, corrosion resistance diagnostic device, heat exchanger, air conditioner, method for manufacturing corrosion resistance diagnostic component and diagnosis method
US10175009B2 (en) Method for manufacturing refrigerant distributor, refrigerant distributor manufacturing apparatus, refrigerant distributor, heat exchanger, and air-conditioning device
JP7281866B2 (en) Fin-and-tube heat exchanger and manufacturing method thereof
CN104364412A (en) Method for producing a metal sheet having zn-al-mg coatings, comprising the application of an acid solution and an adhesive, and corresponding metal sheet and assembly
JPS61186164A (en) Production of aluminum heat exchanger
CN104613555B (en) Heat exchanger and its manufacturing method for air-conditioner outdoor unit
US9464363B2 (en) Method and an assembly for electrolytically depositing a coating
JP2011085516A (en) Outer air introduction device and outdoor structure including the same
JP5572128B2 (en) Corrosion-resistant aluminum alloy member and open rack type vaporizer heat transfer tube or header tube
JP2003329594A (en) Method for diagnosing degradation in coated surface of building
JP2003239085A (en) Inorganic film clad copper or copper alloy member, method of forming inorganic film to surface of copper or copper alloy member, heat exchanger for hot-water supply device, and method of manufacturing the same
WO2022149266A1 (en) Corrosion resistance diagnostic device, manufacturing method of corrosion resistance diagnostic device, and corrosion resistance diagnostic method
JP4287798B2 (en) Al-alloy heat transfer tube for open rack type vaporizer and method for manufacturing the Al-alloy heat transfer tube
JP2007071526A (en) Heat exchanger with corrosion resistant coating, and latent heat recovery type water heater
JP2021008656A (en) Thermal barrier coating component and manufacturing method of thermal barrier coating component
JP2007191800A (en) Welded plated steel pipe having excellent weld zone corrosion resistance
JP2004012261A (en) Corrosion diagnosing method for heat exchanger
CN103511058A (en) Channel marker and related methods
JP2011137759A (en) Outdoor structure
US20130341557A1 (en) Method for refreshing an acid bath solution
JP6012040B2 (en) Wax application range evaluation method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019536610

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914548

Country of ref document: EP

Kind code of ref document: A1