WO2020161786A1 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
WO2020161786A1
WO2020161786A1 PCT/JP2019/003976 JP2019003976W WO2020161786A1 WO 2020161786 A1 WO2020161786 A1 WO 2020161786A1 JP 2019003976 W JP2019003976 W JP 2019003976W WO 2020161786 A1 WO2020161786 A1 WO 2020161786A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation angle
unit
communication
value
output
Prior art date
Application number
PCT/JP2019/003976
Other languages
French (fr)
Japanese (ja)
Inventor
直人 新村
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2019/003976 priority Critical patent/WO2020161786A1/en
Priority to JP2020570230A priority patent/JP7258920B2/en
Publication of WO2020161786A1 publication Critical patent/WO2020161786A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Definitions

  • the present invention relates to a power converter used for driving an electric motor, and more particularly to a power converter used for controlling a motor by digitally converting a rotation angle with a rotation angle sensor.
  • rotation angle sensors such as resolvers and absolute encoders are used to control the electric motors.
  • the power conversion device detects the rotation angle by converting the rotation angle into a digital value in the power conversion device in synchronization with the control cycle of the power conversion device for motor control. It is possible to reduce the delay.
  • the communication cycle is not necessarily the same as that of the power conversion device. It is not synchronized with the control cycle.
  • control performance deterioration such as increase in speed ripple and torque ripple may occur.
  • the present invention has been made to solve the above problems, and in a power conversion device that transmits the output of a rotation angle sensor to a power conversion device using digital communication and performs control, a rotation angle sensor
  • the present invention provides a power conversion device that can accurately obtain a rotation angle even when the communication cycle between the power conversion devices and the control cycle are different, and that can stably drive the electric motor.
  • a power conversion device includes an inverter unit that supplies AC power to an AC motor, and a control unit that controls the inverter unit, and the control unit is a digital rotation angle obtained by digitizing a rotation angle value of the motor.
  • a rotation angle receiving unit that receives by communication, the rotation angle receiving unit includes a restoration unit that calculates a rotation angle signal at a calculation timing that is temporally independent of the communication cycle of the communication, and the control unit, It is a power conversion device that generates a gate pulse of the inverter unit based on a rotation angle signal output from the restoration unit.
  • a power conversion device can be provided.
  • FIG. 3 is a block diagram of a rotation angle restoration unit according to the first embodiment of the present invention.
  • 3 is an operation example waveform of the rotation angle restoration unit according to the first embodiment of the present invention.
  • the whole block diagram of the power converter device which concerns on the 2nd Embodiment of this invention.
  • the block diagram of the rotation angle restoration part which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 is a block diagram of a power conversion device and a drive system according to a first embodiment of the present invention.
  • the power conversion device according to the first embodiment is a power conversion device that frequency-converts AC power from a commercial three-phase AC power supply 1 by a power converter 2 and supplies the converted power to the electric motor 3.
  • the power converter 2 is composed of a main circuit unit 20 and a control unit 25.
  • the main circuit unit 20 is composed of a converter 21, an inverter 22, a current detector 23, and the like.
  • the AC power input to the power converter 2 is converted into DC power by the converter 21.
  • the DC power output from the converter 21 is converted into AC power by the inverter 22 and output from the power converter 2 to the electric motor 3.
  • the electric motor 3 is driven at a variable speed by the AC power output from the power converter 3.
  • the electric motor 3 is, for example, a synchronous electric motor.
  • the main circuit unit 20 is controlled by the control unit 25.
  • the inverter 22 of the power converter 2 is a PWM converter.
  • a power device (not shown) forming the inverter 22 is on/off controlled by a gate signal supplied from the control unit 25.
  • a rotation angle sensor 100 is attached to the electric motor 3, and its output is given to the control unit 25.
  • a current detector (inverter output current detector) 23 is provided on the output side of the inverter 22, and this output is also given to the control unit 25.
  • the control unit 25 includes an inverter control unit 50, a rotation angle receiving unit 60, and the like.
  • the rotation angle sensor 100 attached to the electric motor 3 detects the rotation angle of the electric motor 3 and transmits the detected rotation angle to the rotation angle receiving unit 60 by communication.
  • a speed reference is given to the control unit 25 from the outside.
  • the speed reference given from the outside is input to the first input of the subtracter 51.
  • the speed feedback ⁇ F obtained by the speed calculator 56 is input to the second input of the subtractor 51.
  • the difference between the first input and the second input is calculated and given to the current reference circuit 52.
  • the current reference circuit 52 is, for example, a PI controller, and outputs a torque current reference so that a speed feedback ⁇ F described later follows the speed reference.
  • the speed feedback ⁇ F is the output of the speed calculator 56, and it is possible to obtain the rotation angle ⁇ (m) described later by calculating such as differentiation.
  • the suffix (m) represents the timing of control described later.
  • the rotation angle ⁇ (m) represents the rotation angle used by the inverter control unit 50 for control at the control timing m.
  • the inverter control unit 50 is composed of a digital circuit, and the cycle of its control timing is the control cycle.
  • the torque current reference is input to the voltage reference circuit 53.
  • the output of the current detector 23 is also input to the voltage reference circuit 53.
  • the voltage reference circuit 53 generates a three-phase voltage command so that the torque current component of the output current of the inverter 22 follows the torque current reference with reference to the rotation angle ⁇ (m), and the three-phase voltage command is generated.
  • the PWM controller 54 supplies a PWM-modulated gate signal to each power device of the inverter 22 such that the output voltage of each phase of the inverter 22 becomes a given three-phase voltage command. In this way, the inverter 22 is controlled.
  • the rotation angle sensor 100 will be described.
  • the rotation angle sensor 100 includes an angle detection unit 101, an A/D conversion unit 102, a communication unit 103, and the like.
  • the angle detector 101 detects the rotation angle of the rotation shaft of the electric motor 3.
  • the rotation angle ⁇ (t0) calculated by the angle detection unit 101 is digitized by the A/D conversion unit 102 and sent to the communication unit 103.
  • the notation of the suffix (t) and the suffix (t0) indicates that they are continuous values in terms of time.
  • the digitized rotation angle is transmitted to the control unit 25 of the power converter 2 by the communication unit 103.
  • the communication unit 103 is not particularly limited as long as it can transmit a digital signal, and may perform communication at regular intervals, or may perform transmission in response to a request from the power converter 2.
  • the rotation angle receiving unit 60 includes a communication unit 111, a latch circuit 112, a restoring unit 113, and the like.
  • the rotation angle signal transmitted by communication from the communication unit 103 is received by the communication unit 111 in the rotation angle receiving unit 60.
  • the rotation angle ⁇ (n) is held in the latch circuit 112.
  • the notation of suffix (n) indicates that the value is updated in the communication cycle. That is, the rotation angle ⁇ (n) is updated every communication cycle of the communication unit 103, is used as the rotation angle by the rotation angle receiving unit 60 in the communication cycle n, and means that a constant value is maintained within the communication cycle. ..
  • the restoration unit 113 restores a continuous rotation angle signal ⁇ (t) that is temporally continuous.
  • the latch circuit 55 in the inverter control unit 50 holds the value of the rotation angle in the control cycle of the inverter control unit 50 by the motor control synchronization signal S2(m), and the inverter control unit 50 Used within.
  • the suffix (m) indicates that the value is updated in the control cycle of the inverter control unit 50.
  • the continuous rotation angle signal ⁇ (t) can be regarded as a continuous value by making the calculation cycle of the rotation angle receiving section 60 shorter than the calculation cycle of the inverter control section.
  • the continuous rotation angle signal ⁇ (t) can be regarded as a continuous value. That is, to obtain a continuous rotation angle or a continuous rotation angle means to obtain a rotation angle at an arbitrary calculation timing independent of the communication cycle.
  • FIG. 2 is a block diagram of the restoration unit 113 according to the first embodiment of this invention.
  • the speed calculator 201 calculates the rotation speed ⁇ (n) from the rotation angle ⁇ (n) and the communication cycle.
  • the rotation speed ⁇ (n) may be calculated, for example, simply from the amount of change in the rotation angle ⁇ (n) and the time involved in the communication cycle, or the delay due to the communication means or the A/ It is also possible to use a value that is corrected by taking into consideration the conversion delay of the D conversion unit 102 and the value related to the acceleration of the rotation speed.
  • the rotation speed ⁇ (n) at the communication timing n may be calculated by the following procedure.
  • the time when the communication timing n is completed is t(n).
  • the rotation angle received by the communication unit 111 at the communication timing n is the rotation angle ⁇ (n).
  • the time at which the communication unit 103 transmits the data of the rotation angle ⁇ (n) received by the communication unit 111 at the communication timing n is t103(n).
  • t(n-1) be the time when the previous communication timing n-1 was completed.
  • the rotation angle received by the communication unit 111 at the communication timing n ⁇ 1 is the rotation angle ⁇ (n ⁇ 1).
  • the time at which the communication unit 103 transmits the data of the rotation angle ⁇ (n-1) received by the communication unit 111 at the communication timing n-1 is t103(n-1).
  • the delay time from actual rotation angle detection to AD conversion to the communication unit 103 is Td. It is assumed that the communication unit 103 transmits the time when the rotation angle is transmitted as communication data, and the communication unit 111 receives the time when the communication unit 103 transmits together with the rotation angle as the communication data.
  • the rotation speed ⁇ (n) may be calculated by the following formula (1), for example.
  • the first term corresponds to the value calculated by the change amount of the rotation angle and the time related to the communication cycle
  • the second term is the value related to the acceleration of the rotation axis and the detection and communication delay time. If a dedicated line or the like is used between the communication unit 103 and the communication unit 111 and the communication cycle can be regarded as fixed, in the formula (1), t103(n)-t103(n-1) or The fixed value may be t(n)-(t103(n)-Td).
  • a rotation angle compensation speed ⁇ 1(n) which will be described later, is added to the rotation speed ⁇ (n) by an adder 205, and then integrated by an integrator 202 to generate a continuous rotation angle signal ⁇ (t).
  • the rotation angle compensating speed ⁇ 1(n) is intended to eliminate the difference between the continuous rotation angle signal ⁇ (t) and the rotation angle ⁇ (n) received from the rotation angle sensor 100, and particularly reduces the detection error when the rotation angle suddenly changes. effective.
  • the rotation angle compensating speed ⁇ 1(n) is the output of the rotation angle compensator 203, and the rotation angle compensator 203 outputs the rotation angle ⁇ (n) and the continuous rotation angle signal ⁇ (t) to the latch circuit 204 (claims).
  • the holding circuit outputs the rotation angle compensation speed ⁇ 1(n) according to the difference in the rotation angle ⁇ 1(n) latched by the communication completion signal S1(n).
  • the rotation angle compensation speed ⁇ 1(n) can be calculated by multiplying the difference between the rotation angle ⁇ (n) and the rotation angle ⁇ 1(n) by a predetermined gain K. That is, for example, the rotation compensation angular velocity ⁇ 1(n) can be calculated by the following equation (2).
  • ⁇ 1(n) K ⁇ [ ⁇ (n)- ⁇ 1(n)] ⁇ (2)
  • FIG. 3 is a diagram showing the operation of the rotation angle compensator 203, and the horizontal axis represents time (t).
  • the white circles represent the rotation angle ⁇ (n)
  • the black circles represent the rotation angle ⁇ (m)
  • the solid line represents the continuous rotation angle ⁇ (t).
  • the communication cycle timing of the communication unit 103 at time T1 is denoted by nT1.
  • FIG. 3 shows a case where the rotation angle ⁇ (n) suddenly changes at time T1 to reach the values of rotation angle ⁇ (nT1) and rotation speed ⁇ (nT1)
  • the rotation angle ⁇ (nT1) at time T1 is shown.
  • the rotation angle compensation speed ⁇ 1(nT1) is output based on the difference between the rotation angle ⁇ 1(nT1), which is the latched value of the continuous rotation angle signal ⁇ (t), and the rotation angle ⁇ ( It is shown that the difference between n) and the continuous rotation angle signal ⁇ (t) can be quickly reduced.
  • the second term of the equation (1) may be omitted by appropriately selecting the gain of the rotation angle compensator 203.
  • the conversion from a mechanical rotation angle (not shown) to an electric rotation angle is performed in consideration of the number of poles of the electric motor 3. Conversion from mechanical rotation angle to electrical rotation angle
  • the conversion may be performed by the inverter control unit 50, or may be performed by another portion.
  • the rotation angle can be accurately obtained, and the stability of the electric motor can be improved. It is possible to provide a power conversion device capable of performing such driving.
  • FIG. 4 is a block diagram of a power conversion device and a drive system according to the second embodiment of the present invention.
  • FIG. 5 is a block diagram of the restoration unit 413 according to the second embodiment of the present invention.
  • elements common to those of the first embodiment are designated by the same reference numerals. In the following description, the configuration already described in the first embodiment will be omitted, and the configuration unique to the second embodiment will be described.
  • a rotation angle sensor 400 is provided instead of the rotation angle sensor 100. Further, a rotation angle receiving unit 70 is provided instead of the rotation angle receiving unit 60.
  • the rotation angle sensor 400 will be described.
  • the rotation angle sensor 400 includes an angle detection unit 401, an A/D conversion unit 402, a communication unit 403, a speed calculator 404, and the like.
  • the angle detector 401 detects the rotation angle of the rotation shaft of the electric motor 3.
  • the rotation angle ⁇ (t0) calculated by the angle detection unit 401 is digitized by the A/D conversion unit 402 to be the rotation angle ⁇ (u).
  • the suffix (u) notation indicates that the value is updated in the detection cycle of the A/D conversion unit 402.
  • the rotation angle ⁇ (u) is sent to the communication unit 403 and the speed calculator 404.
  • the speed calculator 404 calculates the rotation speed ⁇ (u) from the rotation angle ⁇ (u) and the detection cycle of the A/D conversion unit 402.
  • the digitized rotation angle ⁇ (u) and rotation speed ⁇ (u) are transmitted to the control unit 25 of the power converter 2 by the communication unit 403.
  • the communication unit 403 is not particularly limited as long as it can transmit a digital signal, and may perform communication at regular intervals or may perform transmission in response to a request from the power converter 2.
  • the operation of the speed calculator 404 is similar to the operation of the speed calculator 201, and is calculated, for example, by the following equation (3).
  • the time when the A/D conversion timing u is completed is defined as t(u).
  • the rotation angle received by the speed calculator 404 at the A/D conversion timing u is the rotation angle ⁇ (u).
  • the time when the previous AD conversion timing n ⁇ 1 is completed is t(u ⁇ 1).
  • the rotation angle received by the speed calculator 404 at the A/D conversion timing u-1 is the rotation angle ⁇ (u-1).
  • the AD conversion cycle of the A/D converter 402 is Tad
  • the delay between the phase detector and the A/D converter is Td2.
  • the first term corresponds to the value calculated by the amount of change in the rotation angle and the time related to the communication cycle
  • the second term is the value related to the acceleration of the rotation angle and the delay time such as detection.
  • the rotation angle receiving unit 70 includes a communication unit 411, a latch circuit 412, a restoring unit 413, and the like.
  • the signals (the rotation angle ⁇ (n) and the rotation speed ⁇ (n)) transmitted by communication from the communication unit 403 are received by the communication unit 411 in the rotation angle receiving unit 70, and the communication completion signal S3 from the communication unit 411 is received.
  • the rotation angle ⁇ (n) and the rotation speed ⁇ (n) are held in the latch circuit 412.
  • the notation of suffix (n) indicates that the value is updated in the communication cycle.
  • the rotation angle ⁇ (n) and the rotation speed ⁇ (n), which are the outputs of the latch circuit 412, are restored by the restoration unit 413 to a continuous rotation angle signal ⁇ (t) which is temporally continuous by the communication completion signal S3(n). To do.
  • the operation after generating the continuous rotation angle signal ⁇ (t) is the same as in the first embodiment.
  • FIG. 5 is a block diagram of the restoration unit 413 according to the second embodiment of this invention.
  • the rotation speed ⁇ 3(n) is a value received from the rotation angle sensor 400 via the communication unit 411 and the latch circuit 412, and the adder is not provided.
  • the adder is not provided.
  • Other than the above, which is input to 305, is the same as in the first embodiment.
  • the integrator 302 in FIG. 5 corresponds to the integrator 202 in FIG. 2
  • the rotation angle compensator 303 in FIG. 5 corresponds to the rotation angle compensator 203 in FIG. 2
  • the latch circuit 304 in FIG. 2 corresponds to the latch circuit 204 in FIG. 2
  • the adder 305 in FIG. 5 corresponds to the adder 205 in FIG.
  • ⁇ 3(n) in FIG. 5 corresponds to ⁇ (n) in FIG. 2
  • ⁇ 4(n) in FIG. 5 corresponds to ⁇ 1(n) in FIG. 2
  • S3(n) in FIG. 5 corresponds to S1(n) in FIG. 2
  • ⁇ 4(n) in FIG. 5 corresponds to ⁇ 1(n) in FIG.
  • the rotation angle can be accurately obtained, and the stability of the electric motor can be improved. It is possible to provide a power conversion device capable of performing such driving.
  • the electric motor 3 is described as a synchronous electric motor, but it is clear that the present invention can be applied to a system for driving an induction motor by providing the inverter control unit 50 with a slip calculation unit and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inverter Devices (AREA)

Abstract

When a rotation angle of an electric motor is detected by a rotation angle sensor and used for controlling a power converter, the communication cycle thereof is not necessarily synchronized with the control cycle of the power converter. Thus, a rotation angle that is out of synch with the control cycle of the power converter is used for controlling the power converter. The present invention addresses the problem occurring therefrom, that is, deterioration of control performance such as an increase in torque ripple or speed ripple. This power converter 2 for driving an electric motor is configured to receive, via communication units 103, 111, a rotation angle that has been digitized by a rotation angle sensor 100, and is provided with: a restoration unit 113 which restores, at a calculation cycle independent of the communication cycle, the digitalized rotation angle to a rotation angle signal; and an inverter control unit 50 which controls an inverter 22 using the restored rotation angle signal.

Description

電力変換装置Power converter
 本発明は、電動機駆動に使用する電力変換装置に係り、特に回転角センサにて回転角をディジタル変換して電動機制御に用いる電力変換装置に関する。 The present invention relates to a power converter used for driving an electric motor, and more particularly to a power converter used for controlling a motor by digitally converting a rotation angle with a rotation angle sensor.
 電動機駆動に使用する電力変換装置において、電動機制御のため、レゾルバやアブソリュートエンコーダなどの回転角センサを使用する場合がある。電力変換装置は、回転角センサがアナログ量を出力する場合、電力変換装置内において、電力変換装置の制御周期に同期して回転角をディジタル変換して電動機制御に用いることで、回転角の検出遅延を低減することが可能である。  In electric power converters used to drive electric motors, there are cases where rotation angle sensors such as resolvers and absolute encoders are used to control the electric motors. When the rotation angle sensor outputs an analog amount, the power conversion device detects the rotation angle by converting the rotation angle into a digital value in the power conversion device in synchronization with the control cycle of the power conversion device for motor control. It is possible to reduce the delay.
特開平7-218290Japanese Patent Laid-Open No. 7-218290
 上記のようなアナログ出力ではなく、回転角センサにおいてディジタル変換を実施し、そのディジタル量をシリアル通信等で電力変換装置に伝送する回転角センサを用いた場合、その通信周期は必ずしも電力変換装置の制御周期には同期しない。電力変換装置の制御周期と非同期の回転角を電力変換装置の制御に用いた場合、速度リップルやトルクリップル増加などの制御性能低下が懸念され、課題となっている。 When a rotation angle sensor that performs digital conversion in the rotation angle sensor and transmits the digital amount to the power conversion device by serial communication or the like is used instead of the analog output as described above, the communication cycle is not necessarily the same as that of the power conversion device. It is not synchronized with the control cycle. When a rotation angle that is not synchronized with the control cycle of the power converter is used for controlling the power converter, there is a concern that control performance deterioration such as increase in speed ripple and torque ripple may occur.
 上記通信周期と上記制御周期を一致させることが可能であれば、上記の課題は解決するが、通信周期と制御周期に要求される仕様は異なるため、両者を一致させることは一般に困難である。 If it is possible to match the communication cycle with the control cycle, the above problem will be solved, but it is generally difficult to match the two because the specifications required for the communication cycle and the control cycle are different.
 本発明は、以上のような課題を解決するためになされたもので、回転角センサの出力をディジタル通信を用いて電力変換装置に送信し制御を行う電力変換装置に於いて、回転角センサと電力変換装置間の通信周期と、制御周期が異なる場合にも、精度よく回転角を得ることができ、安定した電動機の駆動が可能な電力変換装置を提供するものである。 The present invention has been made to solve the above problems, and in a power conversion device that transmits the output of a rotation angle sensor to a power conversion device using digital communication and performs control, a rotation angle sensor The present invention provides a power conversion device that can accurately obtain a rotation angle even when the communication cycle between the power conversion devices and the control cycle are different, and that can stably drive the electric motor.
 本発明に係る電力変換装置は、交流電動機に交流電力を供給するインバータ部と前記インバータ部を制御する制御部を備え、前記制御部は、前記電動機の回転角の値をディジタル化したディジタル回転角を通信により受信する回転角受信部を備え、前記回転角受信部は、前記通信の通信周期とは時間的に独立した演算タイミングで回転角信号を演算する復元部を備え、前記制御部は、前記復元部の出力する回転角信号により前記インバータ部のゲートパルスを生成する電力変換装装置である。 A power conversion device according to the present invention includes an inverter unit that supplies AC power to an AC motor, and a control unit that controls the inverter unit, and the control unit is a digital rotation angle obtained by digitizing a rotation angle value of the motor. A rotation angle receiving unit that receives by communication, the rotation angle receiving unit includes a restoration unit that calculates a rotation angle signal at a calculation timing that is temporally independent of the communication cycle of the communication, and the control unit, It is a power conversion device that generates a gate pulse of the inverter unit based on a rotation angle signal output from the restoration unit.
 本発明によれば、回転角センサと電力変換装置間の通信周期と、電力変換装置の制御周期が異なる場合にも、回転角を精度よく得ることが可能となり、電動機の安定した駆動が可能な電力変換装置を提供することをすることができる。 According to the present invention, even when the communication cycle between the rotation angle sensor and the power converter and the control cycle of the power converter are different, it is possible to obtain the rotation angle with high accuracy and to stably drive the electric motor. A power conversion device can be provided.
本発明の第1の実施形態に係る電力変換装置の全体ブロック図。The whole block diagram of the power converter concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る回転角の復元部のブロック図。FIG. 3 is a block diagram of a rotation angle restoration unit according to the first embodiment of the present invention. 本発明の第1の実施形態に係る回転角の復元部の動作例波形。3 is an operation example waveform of the rotation angle restoration unit according to the first embodiment of the present invention. 本発明の第2の実施形態に係る電力変換装置の全体ブロック図。The whole block diagram of the power converter device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る回転角の復元部のブロック図。The block diagram of the rotation angle restoration part which concerns on the 2nd Embodiment of this invention.
 以下、図面を参照して本発明の実施形態を説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(第1の実施形態)
 以下、本発明の第1の実施形態に係る電力変換装置を、図1から図3を参照して説明する。図1は本発明の第1の実施形態に係る電力変換装置のおよびドライブシステムのブロック図である。第1の実施形態に係る電力変換装置は、商用の3相の交流電源1からの交流電力を電力変換器2によって周波数変換して電動機3に供給する電力変換装置である。
(First embodiment)
Hereinafter, a power conversion device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a block diagram of a power conversion device and a drive system according to a first embodiment of the present invention. The power conversion device according to the first embodiment is a power conversion device that frequency-converts AC power from a commercial three-phase AC power supply 1 by a power converter 2 and supplies the converted power to the electric motor 3.
 電力変換器2は、主回路部20と制御部25で構成される。主回路部20は、コンバータ21、インバータ22、電流検出器23等により構成される。電力変換器2に入力された交流電力は、コンバータ21で直流電力に変換される。コンバータ21から出力された直流電力は、インバータ22により交流電力に変換されて電力変換器2から電動機3に出力される。電動機3は、電力変換器3から出力される交流電力により可変速駆動される。電動機3は例えば同期電動機である。 The power converter 2 is composed of a main circuit unit 20 and a control unit 25. The main circuit unit 20 is composed of a converter 21, an inverter 22, a current detector 23, and the like. The AC power input to the power converter 2 is converted into DC power by the converter 21. The DC power output from the converter 21 is converted into AC power by the inverter 22 and output from the power converter 2 to the electric motor 3. The electric motor 3 is driven at a variable speed by the AC power output from the power converter 3. The electric motor 3 is, for example, a synchronous electric motor.
 主回路部20は制御部25によって制御される。電力変換器2のインバータ22は、PWM変換器である。インバータ22を構成するパワーデバイス(図示しない)は、制御部25から与えられるゲート信号によりオンオフ制御されている。電動機3には回転角センサ100が取り付けられており、この出力は制御部25に与えられる。また、インバータ22の出力側には電流検出器(インバータ出力電流検出器)23が設けられ、この出力も制御部25に与えられる。 The main circuit unit 20 is controlled by the control unit 25. The inverter 22 of the power converter 2 is a PWM converter. A power device (not shown) forming the inverter 22 is on/off controlled by a gate signal supplied from the control unit 25. A rotation angle sensor 100 is attached to the electric motor 3, and its output is given to the control unit 25. A current detector (inverter output current detector) 23 is provided on the output side of the inverter 22, and this output is also given to the control unit 25.
 制御部25は、インバータ制御部50と回転角受信部60等から構成される。電動機3に取り付けられた回転角センサ100は、電動機3の回転角を検出し、検出した回転角を通信により回転角受信部60に送信する。 The control unit 25 includes an inverter control unit 50, a rotation angle receiving unit 60, and the like. The rotation angle sensor 100 attached to the electric motor 3 detects the rotation angle of the electric motor 3 and transmits the detected rotation angle to the rotation angle receiving unit 60 by communication.
 制御部25には外部から速度基準が与えられる。外部から与えられた速度基準は減算器51の第1入力に入力されている。減算器51の第2入力には、速度演算器56で得られる速度帰還ωFが入力されている。減算器51では第1入力と第2入力との差分が演算され、電流基準回路52に与えられる。電流基準回路52は、例えばPI制御器であって、速度基準に後述の速度帰還ωFが追従するようにトルク電流基準を出力する。 A speed reference is given to the control unit 25 from the outside. The speed reference given from the outside is input to the first input of the subtracter 51. The speed feedback ωF obtained by the speed calculator 56 is input to the second input of the subtractor 51. In the subtractor 51, the difference between the first input and the second input is calculated and given to the current reference circuit 52. The current reference circuit 52 is, for example, a PI controller, and outputs a torque current reference so that a speed feedback ωF described later follows the speed reference.
 速度帰還ωFは、速度演算器56の出力であり、後述の回転角θ(m)を微分等の演算をし、求めることができる。ここでサフィックス(m)は後述する制御のタイミングを表す。回転角θ(m)とは、インバータ制御部50が制御タイミングmにおいて制御に使用する回転角をあらわしている。インバータ制御部50は、ディジタル回路で構成され、その制御タイミングの周期が制御周期である。 The speed feedback ωF is the output of the speed calculator 56, and it is possible to obtain the rotation angle θ (m) described later by calculating such as differentiation. Here, the suffix (m) represents the timing of control described later. The rotation angle θ(m) represents the rotation angle used by the inverter control unit 50 for control at the control timing m. The inverter control unit 50 is composed of a digital circuit, and the cycle of its control timing is the control cycle.
 トルク電流基準は、電圧基準回路53に入力されている。電流検出器23の出力も電圧基準回路53に入力されている。電圧基準回路53は、回転角θ(m)を基準にインバータ22の出力電流のトルク電流成分が、トルク電流基準に追従するように3相の電圧指令を生成して、この3相の電圧指令をPWM制御器54に与える。PWM制御器54は、インバータ22の各相の出力電圧が与えられた3相の電圧指令となるように、インバータ22の各パワーデバイスに対してPWM変調されたゲート信号を供給する。このようにしてインバータ22は制御される。 The torque current reference is input to the voltage reference circuit 53. The output of the current detector 23 is also input to the voltage reference circuit 53. The voltage reference circuit 53 generates a three-phase voltage command so that the torque current component of the output current of the inverter 22 follows the torque current reference with reference to the rotation angle θ(m), and the three-phase voltage command is generated. To the PWM controller 54. The PWM controller 54 supplies a PWM-modulated gate signal to each power device of the inverter 22 such that the output voltage of each phase of the inverter 22 becomes a given three-phase voltage command. In this way, the inverter 22 is controlled.
 回転角センサ100について説明する。回転角センサ100は、角度検出部101、A/D変換部102、通信部103などを備える。角度検出部101は、電動機3の回転軸の回転角を検出する。角度検出部101で算出された回転角θ(t0)はA/D変換部102でディジタル化され、通信部103に送られる。ここで、サフィックス(t)およびサフィックス(t0)の表記は時間的に連続値であることを表している。ディジタル化した回転角を、通信部103により電力変換器2の制御部25へ伝送する。通信部103についてはディジタル信号を伝送できるものであれば特に制限はなく、一定周期毎に通信するものでも、或いは、電力変換器2からの要求に応じて伝送を実施するものでもよい。 The rotation angle sensor 100 will be described. The rotation angle sensor 100 includes an angle detection unit 101, an A/D conversion unit 102, a communication unit 103, and the like. The angle detector 101 detects the rotation angle of the rotation shaft of the electric motor 3. The rotation angle θ(t0) calculated by the angle detection unit 101 is digitized by the A/D conversion unit 102 and sent to the communication unit 103. Here, the notation of the suffix (t) and the suffix (t0) indicates that they are continuous values in terms of time. The digitized rotation angle is transmitted to the control unit 25 of the power converter 2 by the communication unit 103. The communication unit 103 is not particularly limited as long as it can transmit a digital signal, and may perform communication at regular intervals, or may perform transmission in response to a request from the power converter 2.
 回転角受信部60は、通信部111とラッチ回路112と復元部113などを備える。通信部103から通信で送信された回転角の信号は、回転角受信部60内の通信部111で受信される。通信部111からの通信完了信号S1(n)により、ラッチ回路112にて回転角θ(n)として保持される。ここで、サフィックス(n)の表記は通信周期で更新される値であることを表している。すなわち回転角θ(n)は通信部103の通信周期ごとに更新され、通信周期nにおいて回転角受信部60で、回転角として使用され、通信周期内は一定値を保つことを意味している。ラッチ回路112の出力である回転角θ(n)と通信完了信号S1(n)により、復元部113にて時間的に連続な連続回転角信号θ(t)を復元する。 The rotation angle receiving unit 60 includes a communication unit 111, a latch circuit 112, a restoring unit 113, and the like. The rotation angle signal transmitted by communication from the communication unit 103 is received by the communication unit 111 in the rotation angle receiving unit 60. In response to the communication completion signal S1(n) from the communication unit 111, the rotation angle θ(n) is held in the latch circuit 112. Here, the notation of suffix (n) indicates that the value is updated in the communication cycle. That is, the rotation angle θ(n) is updated every communication cycle of the communication unit 103, is used as the rotation angle by the rotation angle receiving unit 60 in the communication cycle n, and means that a constant value is maintained within the communication cycle. .. Based on the rotation angle θ(n) output from the latch circuit 112 and the communication completion signal S1(n), the restoration unit 113 restores a continuous rotation angle signal θ(t) that is temporally continuous.
 連続回転角信号θ(t)は、インバータ制御部50内のラッチ回路55にて電動機制御同期信号S2(m)でインバータ制御部50の制御周期で回転角の値が保持され、インバータ制御部50内で使用される。ここで、サフィックス(m)の表記はインバータ制御部50の制御周期で更新される値であることを表している。 Regarding the continuous rotation angle signal θ(t), the latch circuit 55 in the inverter control unit 50 holds the value of the rotation angle in the control cycle of the inverter control unit 50 by the motor control synchronization signal S2(m), and the inverter control unit 50 Used within. Here, the suffix (m) indicates that the value is updated in the control cycle of the inverter control unit 50.
 ここで、回転角受信部60での演算周期をインバータ制御部の演算周期より短くすることにより、連続回転角信号θ(t)は連続値として見なす事ができる。特に積分器202の演算を高速で実施することにより連続回転角信号θ(t)は連続値として見なす事ができる。すなわち連続的な回転角あるいは連続回転角が得られるとは、通信周期と独立した任意の演算タイミングでの回転角が得られるということである。 The continuous rotation angle signal θ(t) can be regarded as a continuous value by making the calculation cycle of the rotation angle receiving section 60 shorter than the calculation cycle of the inverter control section. In particular, by performing the calculation of the integrator 202 at high speed, the continuous rotation angle signal θ(t) can be regarded as a continuous value. That is, to obtain a continuous rotation angle or a continuous rotation angle means to obtain a rotation angle at an arbitrary calculation timing independent of the communication cycle.
 このように、通信周期の回転角θ(n)から、連続回転角信号θ(t)を復元し、ラッチ回路55で回転角θ(m)を生成することにより、インバータ制御部50の制御周期に同期した回転角を電動機制御に使用することが可能となる。 In this way, the continuous rotation angle signal θ(t) is restored from the rotation angle θ(n) of the communication cycle, and the rotation angle θ(m) is generated by the latch circuit 55. It becomes possible to use the rotation angle in synchronization with the motor control.
 図2は、本発明の第1の実施形態の復元部113のブロック図である。まず、速度演算器201により、回転角θ(n)と通信周期から回転速度ω(n)を演算する。回転速度ω(n)の演算は例えば、単純に回転角θ(n)の変化量と通信周期にかかわる時間から演算してもよいし、通信手段による遅延や、回転角センサ100内のA/D変換部102の変換遅延などと回転速度の加速度に係わる値を加味して補正したものを用いてもよい。 FIG. 2 is a block diagram of the restoration unit 113 according to the first embodiment of this invention. First, the speed calculator 201 calculates the rotation speed ω(n) from the rotation angle θ(n) and the communication cycle. The rotation speed ω(n) may be calculated, for example, simply from the amount of change in the rotation angle θ(n) and the time involved in the communication cycle, or the delay due to the communication means or the A/ It is also possible to use a value that is corrected by taking into consideration the conversion delay of the D conversion unit 102 and the value related to the acceleration of the rotation speed.
 たとえば通信タイミングnにおける回転速度ω(n)は以下の手順で演算してもよい。 For example, the rotation speed ω(n) at the communication timing n may be calculated by the following procedure.
 ここで通信タイミングnが完了した時刻をt(n)とする。このときに通信タイミングnで通信部111が受信した回転角が回転角θ(n)である。 Here, the time when the communication timing n is completed is t(n). At this time, the rotation angle received by the communication unit 111 at the communication timing n is the rotation angle θ(n).
 また、通信タイミングnで通信部111が受信した回転角θ(n)のデータを通信部103が発信した時刻をt103(n)とする。前回の通信タイミングn-1が完了した時刻をt(n-1)とする。このときに通信タイミングn-1で通信部111が受信した回転角が回転角θ(n-1)である。 Further, the time at which the communication unit 103 transmits the data of the rotation angle θ(n) received by the communication unit 111 at the communication timing n is t103(n). Let t(n-1) be the time when the previous communication timing n-1 was completed. At this time, the rotation angle received by the communication unit 111 at the communication timing n−1 is the rotation angle θ(n−1).
 また、通信タイミングn-1で通信部111が受信した回転角θ(n-1)のデータを通信部103が発信した時刻をt103(n-1)とする。 Further, it is assumed that the time at which the communication unit 103 transmits the data of the rotation angle θ(n-1) received by the communication unit 111 at the communication timing n-1 is t103(n-1).
 また、実際の回転角検出からAD変換して通信部103までの遅延時間をTdとする。通信部103は通信データとして回転角ともに発信した時刻を送信し、通信部111は通信データとして回転角とともに通信部103の発信した時刻を受け取るものとする。 Also, the delay time from actual rotation angle detection to AD conversion to the communication unit 103 is Td. It is assumed that the communication unit 103 transmits the time when the rotation angle is transmitted as communication data, and the communication unit 111 receives the time when the communication unit 103 transmits together with the rotation angle as the communication data.
 この場合、回転速度ω(n)は例えば以下の式(1)で計算してもよい。
Figure JPOXMLDOC01-appb-I000001
In this case, the rotation speed ω(n) may be calculated by the following formula (1), for example.
Figure JPOXMLDOC01-appb-I000001
 ここで例えば第1項が回転角の変化量と通信周期にかかわる時間で演算される値に相当し、第2項が回転軸の加速度や検出および通信の遅延時間に係わる値である。尚、通信部103と通信部111間が専用回線などを使用し、通信周期が固定とみなすことができる場合は、式(1)に於いて、t103(n)-t103(n-1)やt(n)-(t103(n)-Td)を固定値としても良い。 Here, for example, the first term corresponds to the value calculated by the change amount of the rotation angle and the time related to the communication cycle, and the second term is the value related to the acceleration of the rotation axis and the detection and communication delay time. If a dedicated line or the like is used between the communication unit 103 and the communication unit 111 and the communication cycle can be regarded as fixed, in the formula (1), t103(n)-t103(n-1) or The fixed value may be t(n)-(t103(n)-Td).
 次に、回転速度ω(n)に後述する回転角補償速度ω1(n)を加算器205で加算したのち、積分器202で積分することで連続回転角信号θ(t)を生成する。回転角補償速度ω1(n)は連続回転角信号θ(t)と回転角センサ100より受信した回転角θ(n)の差異をなくす目的のものであり、特に回転角急変時に検出誤差低減に効果がある。 Next, a rotation angle compensation speed ω1(n), which will be described later, is added to the rotation speed ω(n) by an adder 205, and then integrated by an integrator 202 to generate a continuous rotation angle signal θ(t). The rotation angle compensating speed ω1(n) is intended to eliminate the difference between the continuous rotation angle signal θ(t) and the rotation angle θ(n) received from the rotation angle sensor 100, and particularly reduces the detection error when the rotation angle suddenly changes. effective.
 回転角補償速度ω1(n)は回転角補償器203の出力であり、回転角補償器203では回転角θ(n)と、連続回転角信号θ(t)をラッチ回路204(請求項記載の保持回路)により通信完了信号S1(n)でラッチした回転角θ1(n)の差分に応じて回転角補償速度ω1(n)を出力する。例えば、回転角補償速度ω1(n)は回転角θ(n)と回転角θ1(n)の差分に所定のゲインKを乗算することによって演算することができる。すなわち例えば下式(2)にて回転補償角速度ω1(n)を演算することができる。
ω1(n)=K・[θ(n)-θ1(n)]・・・・・・・・・・・・(2)
The rotation angle compensating speed ω1(n) is the output of the rotation angle compensator 203, and the rotation angle compensator 203 outputs the rotation angle θ(n) and the continuous rotation angle signal θ(t) to the latch circuit 204 (claims). The holding circuit) outputs the rotation angle compensation speed ω1(n) according to the difference in the rotation angle θ1(n) latched by the communication completion signal S1(n). For example, the rotation angle compensation speed ω1(n) can be calculated by multiplying the difference between the rotation angle θ(n) and the rotation angle θ1(n) by a predetermined gain K. That is, for example, the rotation compensation angular velocity ω1(n) can be calculated by the following equation (2).
ω1(n)=K・[θ(n)-θ1(n)] ・・・・・・・・・・(2)
 図3は、回転角補償器203の動作を示した図で、横軸は時間(t)である。図中の白丸は回転角θ(n)を、黒丸は回転角θ(m)を表しており、実線は連続回転角θ(t)を表している。図3において時刻T1における通信部103の通信周期タイミングをnT1と記す。 FIG. 3 is a diagram showing the operation of the rotation angle compensator 203, and the horizontal axis represents time (t). In the figure, the white circles represent the rotation angle θ(n), the black circles represent the rotation angle θ(m), and the solid line represents the continuous rotation angle θ(t). In FIG. 3, the communication cycle timing of the communication unit 103 at time T1 is denoted by nT1.
 図3では、時刻T1に回転角θ(n)が急変し回転角θ(nT1)そして回転速度ω(nT1)という値になった場合を示しているが、時刻T1における回転角θ(nT1)と連続回転角信号θ(t)のラッチされた値である回転角θ1(nT1)との差分に基づき回転角補償速度ω1(nT1)を出力することにより、時刻T1以降において、回転角θ(n)と連続回転角信号θ(t)の差分をすみやかに減少させることができることを示している。 Although FIG. 3 shows a case where the rotation angle θ(n) suddenly changes at time T1 to reach the values of rotation angle θ(nT1) and rotation speed ω(nT1), the rotation angle θ(nT1) at time T1 is shown. The rotation angle compensation speed ω1(nT1) is output based on the difference between the rotation angle θ1(nT1), which is the latched value of the continuous rotation angle signal θ(t), and the rotation angle θ( It is shown that the difference between n) and the continuous rotation angle signal θ(t) can be quickly reduced.
 尚、回転角補償器203のゲインを適切に選択することにより、式(1)の第2項を省略しても良い。尚、図示されていない機械的回転角から電気的回転角への変換は、電動機3の極数を考慮の上行う。機械的回転角から電気的回転角への変換例えば、インバータ制御部50で実施してもよく、あるいは他の部分で実施しても良い。 The second term of the equation (1) may be omitted by appropriately selecting the gain of the rotation angle compensator 203. The conversion from a mechanical rotation angle (not shown) to an electric rotation angle is performed in consideration of the number of poles of the electric motor 3. Conversion from mechanical rotation angle to electrical rotation angle For example, the conversion may be performed by the inverter control unit 50, or may be performed by another portion.
 以上の様に本実施形態によれば、回転角センサと電力変換装置間の通信周期と、電力変換装置の制御周期が異なる場合にも、回転角を精度よく得ることが可能となり、電動機の安定した駆動が可能な電力変換装置を提供することができる。 As described above, according to the present embodiment, even if the communication cycle between the rotation angle sensor and the power converter and the control cycle of the power converter are different, the rotation angle can be accurately obtained, and the stability of the electric motor can be improved. It is possible to provide a power conversion device capable of performing such driving.
(第2の実施形態)
 図4および図5を用いて、本発明の第2の実施形態について説明する。図4は、本発明の第2の実施形態に係る電力変換装置およびドライブシステムのブロック図である。第5図は、本発明の第2の実施形態に係る復元部413のブロック図である。この図において、第1の実施形態のものと共通する要素には同一の符号が振られている。以下の説明では、第1の実施形態で既に説明した構成については省略し、第2の実施形態に特有の構成について説明する。
(Second embodiment)
A second embodiment of the present invention will be described with reference to FIGS. 4 and 5. FIG. 4 is a block diagram of a power conversion device and a drive system according to the second embodiment of the present invention. FIG. 5 is a block diagram of the restoration unit 413 according to the second embodiment of the present invention. In this figure, elements common to those of the first embodiment are designated by the same reference numerals. In the following description, the configuration already described in the first embodiment will be omitted, and the configuration unique to the second embodiment will be described.
 第2の実施形態においては回転角センサ100の代わりに回転角センサ400が設けられる。さらに回転角受信部60の代わりに回転角受信部70が設けられる。 In the second embodiment, a rotation angle sensor 400 is provided instead of the rotation angle sensor 100. Further, a rotation angle receiving unit 70 is provided instead of the rotation angle receiving unit 60.
 回転角センサ400について説明する。回転角センサ400は、角度検出部401、A/D変換部402、通信部403および速度演算器404などを備える。角度検出部401は、電動機3の回転軸の回転角を検出する。角度検出部401で算出された回転角θ(t0)はA/D変換部402でディジタル化され、回転角θ(u)とする。ここで、サフィックス(u)の表記は、A/D変換部402の検出周期で更新される値であることを表している。 The rotation angle sensor 400 will be described. The rotation angle sensor 400 includes an angle detection unit 401, an A/D conversion unit 402, a communication unit 403, a speed calculator 404, and the like. The angle detector 401 detects the rotation angle of the rotation shaft of the electric motor 3. The rotation angle θ(t0) calculated by the angle detection unit 401 is digitized by the A/D conversion unit 402 to be the rotation angle θ(u). Here, the suffix (u) notation indicates that the value is updated in the detection cycle of the A/D conversion unit 402.
 回転角θ(u)は、通信部403と速度演算器404に送られる。同時に速度演算器404にて、回転角θ(u)とA/D変換部402の検出周期から回転速度ω(u)を計算する。ディジタル化した回転角θ(u)と回転速度ω(u)は通信部403により電力変換器2の制御部25へ伝送される。通信部403についてはディジタル信号を伝送できるものであれば特に制限はなく、一定周期毎に通信するものでも、或いは、電力変換器2からの要求に応じて伝送を実施するものでもよい。 The rotation angle θ(u) is sent to the communication unit 403 and the speed calculator 404. At the same time, the speed calculator 404 calculates the rotation speed ω(u) from the rotation angle θ(u) and the detection cycle of the A/D conversion unit 402. The digitized rotation angle θ(u) and rotation speed ω(u) are transmitted to the control unit 25 of the power converter 2 by the communication unit 403. The communication unit 403 is not particularly limited as long as it can transmit a digital signal, and may perform communication at regular intervals or may perform transmission in response to a request from the power converter 2.
 速度演算器404の動作は、速度演算器201の動作と同様であり、例えば以下の式(3)で計算される。
Figure JPOXMLDOC01-appb-I000002
The operation of the speed calculator 404 is similar to the operation of the speed calculator 201, and is calculated, for example, by the following equation (3).
Figure JPOXMLDOC01-appb-I000002
 ここでA/D変換タイミングuが完了した時刻をt(u)とする。このときにA/D変換タイミングuで速度演算器404が受信した回転角が回転角θ(u)とする。また、前回のAD変換タイミングn-1が完了した時刻をt(u-1)とする。このときにA/D変換タイミングu-1で速度演算器404が受信した回転角が回転角θ(u-1)とする。また、A/D変換部402のAD変換周期をTadとし、位相検出部とA/D変換部の遅延をTd2とする。ここで例えば第1項が回転角の変化量と通信周期にかかわる時間で演算される値に相当し、第2項が回転角の加速度や検出等の遅延時間に係わる値である。 Here, the time when the A/D conversion timing u is completed is defined as t(u). At this time, the rotation angle received by the speed calculator 404 at the A/D conversion timing u is the rotation angle θ(u). Further, the time when the previous AD conversion timing n−1 is completed is t(u−1). At this time, the rotation angle received by the speed calculator 404 at the A/D conversion timing u-1 is the rotation angle θ(u-1). Further, the AD conversion cycle of the A/D converter 402 is Tad, and the delay between the phase detector and the A/D converter is Td2. Here, for example, the first term corresponds to the value calculated by the amount of change in the rotation angle and the time related to the communication cycle, and the second term is the value related to the acceleration of the rotation angle and the delay time such as detection.
 回転角受信部70は通信部411とラッチ回路412と復元部413などを備える。通信部403から通信で送信された信号(回転角θ(n)および回転速度ω(n))は、回転角受信部70内の通信部411で受信され、通信部411からの通信完了信号S3(n)によりラッチ回路412にて回転角θ(n)と回転速度ω(n)として保持される。ここで、サフィックス(n)の表記は通信周期で更新される値であることを示している。 The rotation angle receiving unit 70 includes a communication unit 411, a latch circuit 412, a restoring unit 413, and the like. The signals (the rotation angle θ(n) and the rotation speed ω(n)) transmitted by communication from the communication unit 403 are received by the communication unit 411 in the rotation angle receiving unit 70, and the communication completion signal S3 from the communication unit 411 is received. By (n), the rotation angle θ(n) and the rotation speed ω(n) are held in the latch circuit 412. Here, the notation of suffix (n) indicates that the value is updated in the communication cycle.
 ラッチ回路412の出力である回転角θ(n)と回転速度ω(n)は通信完了信号S3(n)により、復元部413にて時間的に連続な連続回転角信号θ(t)を復元する。連続回転角信号θ(t)を生成した後の動作としては、第1の実施形態と同様である。 The rotation angle θ(n) and the rotation speed ω(n), which are the outputs of the latch circuit 412, are restored by the restoration unit 413 to a continuous rotation angle signal θ(t) which is temporally continuous by the communication completion signal S3(n). To do. The operation after generating the continuous rotation angle signal θ(t) is the same as in the first embodiment.
 図5は本発明の第2の実施形態の復元部413のブロック図である。回転速度ω3(n)は、第1の実施形態の復元部113と異なり、速度演算器201が省略され、回転角センサ400より通信部411とラッチ回路412経由で受信した値であり、加算器305に入力されている、上記以外は第1実施形態と同様となる。 FIG. 5 is a block diagram of the restoration unit 413 according to the second embodiment of this invention. Unlike the restoration unit 113 of the first embodiment, the rotation speed ω3(n) is a value received from the rotation angle sensor 400 via the communication unit 411 and the latch circuit 412, and the adder is not provided. Other than the above, which is input to 305, is the same as in the first embodiment.
 すなわち、図5の積分器302は図2の積分器202に相当し、図5の回転角補償器303は図2の回転角補償器203に相当し、図5のラッチ回路304(請求項記載の保持回路)は図2のラッチ回路204に相当し、図5の加算器305は図2の加算器205に相当する。さらに図5のω3(n)は図2のω(n)に相当し、図5のω4(n)は図2のω1(n)に相当し、図5のθ3(n)は図2のθ(n)に相当し、図5のS3(n)は図2のS1(n)に相当し、図5のθ4(n)は図2のθ1(n)に相当する。 That is, the integrator 302 in FIG. 5 corresponds to the integrator 202 in FIG. 2, the rotation angle compensator 303 in FIG. 5 corresponds to the rotation angle compensator 203 in FIG. 2, and the latch circuit 304 in FIG. 2) corresponds to the latch circuit 204 in FIG. 2, and the adder 305 in FIG. 5 corresponds to the adder 205 in FIG. Further, ω3(n) in FIG. 5 corresponds to ω(n) in FIG. 2, ω4(n) in FIG. 5 corresponds to ω1(n) in FIG. 2, and θ3(n) in FIG. This corresponds to θ(n), S3(n) in FIG. 5 corresponds to S1(n) in FIG. 2, and θ4(n) in FIG. 5 corresponds to θ1(n) in FIG.
 以上の様に本実施形態によれば、回転角センサと電力変換装置間の通信周期と、電力変換装置の制御周期が異なる場合にも、回転角を精度よく得ることが可能となり、電動機の安定した駆動が可能な電力変換装置を提供することをすることができる。 As described above, according to the present embodiment, even if the communication cycle between the rotation angle sensor and the power converter and the control cycle of the power converter are different, the rotation angle can be accurately obtained, and the stability of the electric motor can be improved. It is possible to provide a power conversion device capable of performing such driving.
 尚、以上の説明では電動機3を同期電動機として説明したが、インバータ制御部50にすべり演算部等を設けることにより、本発明が誘導電動機を駆動するためのシステムに適用できることは明らかである。 In the above description, the electric motor 3 is described as a synchronous electric motor, but it is clear that the present invention can be applied to a system for driving an induction motor by providing the inverter control unit 50 with a slip calculation unit and the like.
1…交流電源
2…電力変換器
3…電動機
20…主回路部
21…コンバータ
22…インバータ
23…電流検出器
25…制御部
50…インバータ制御部
51…減算器
52…電流基準回路
53…電圧基準回路
54…PWM制御器
55…ラッチ回路
56…速度演算器
60…回転角受信部
70…回転角受信部
100…回転角センサ
101…角度検出部
102…A/D変換部
103…通信部
111…通信部
112…ラッチ回路
113…復元部
201…速度演算器
202…積分器
203…回転角補償器203
204…ラッチ回路
205…加算器
302…積分器
303…回転角補償器
304…ラッチ回路
305…加算器
400…回転角センサ
401…角度検出部
402…A/D変換部
403…通信部
404…速度演算器
411…通信部
412…ラッチ回路
413…復元部
DESCRIPTION OF SYMBOLS 1... AC power supply 2... Power converter 3... Electric motor 20... Main circuit part 21... Converter 22... Inverter 23... Current detector 25... Control part 50... Inverter control part 51... Subtractor 52... Current reference circuit 53... Voltage reference Circuit 54... PWM controller 55... Latch circuit 56... Speed calculator 60... Rotation angle receiver 70... Rotation angle receiver 100... Rotation angle sensor 101... Angle detector 102... A/D converter 103... Communication unit 111... Communication unit 112... Latch circuit 113... Restoring unit 201... Speed calculator 202... Integrator 203... Rotation angle compensator 203
204... Latch circuit 205... Adder 302... Integrator 303... Rotation angle compensator 304... Latch circuit 305... Adder 400... Rotation angle sensor 401... Angle detection unit 402... A/D conversion unit 403... Communication unit 404... Speed Computing unit 411... Communication unit 412... Latch circuit 413... Restoration unit

Claims (5)

  1.  交流電動機に交流電力を供給するインバータ部と前記インバータ部を制御する制御部を備え、
    前記制御部は、
    前記電動機の回転角の値をディジタル化したディジタル回転角を通信により受信する回転角受信部を備え、
    前記回転角受信部は、
    前期通信の通信周期とは時間的に独立した演算タイミングで回転角信号を演算する復元部を備え
    前記制御部はさらに、
    前記復元部の出力する回転角信号により前記インバータ部のゲートパルスを生成することを特徴とする電力変換装置。
    An inverter unit for supplying AC power to the AC motor and a control unit for controlling the inverter unit are provided,
    The control unit is
    A rotation angle receiving unit that receives a digital rotation angle obtained by digitizing a rotation angle value of the electric motor by communication;
    The rotation angle receiving unit,
    The control unit further includes a restoration unit that calculates a rotation angle signal at a calculation timing that is temporally independent of the communication cycle of the previous period communication.
    A power conversion device, wherein a gate pulse of the inverter unit is generated based on a rotation angle signal output from the restoration unit.
  2.  前記復元部は、
    速度演算器と、
    積分器と、を備え、
    前記速度演算器は、
    前記ディジタル化された回転角の受信値の変化量と、
    受信された通信周期に係わる値と、
    に基づき回転速度を計算し、
    前記積分器は、
    前記速度演算器の出力に基づく値により演算することを特徴とする請求項1に記載の電力変換装置。
    The restoration unit is
    A speed calculator,
    And an integrator,
    The speed calculator is
    The amount of change in the received value of the digitized rotation angle,
    A value related to the received communication cycle,
    Calculate the rotation speed based on
    The integrator is
    The power conversion device according to claim 1, wherein the power conversion device is operated by a value based on the output of the speed calculator.
  3.  前記復元部はまた、
    速度演算器と、
    積分器と、を備え、
    前記速度演算器は、
    前記ディジタル化された回転角の受信値の変化量と、
    受信された通信周期に係わる値と、
    遅延時間と、
    加速度に係わる値と、
    に基づき回転速度を計算し、
    前記積分器は、
    前記速度演算器の出力に基づく値により演算することを特徴とする請求項1に記載の電力変換装置。
    The restoration unit also includes
    A speed calculator,
    And an integrator,
    The speed calculator is
    The amount of change in the received value of the digitized rotation angle,
    A value related to the received communication cycle,
    Delay time,
    A value related to acceleration,
    Calculate the rotation speed based on
    The integrator is
    The power conversion device according to claim 1, wherein the power conversion device is operated by a value based on the output of the speed calculator.
  4.  前記復元部はさらに、
    前記積分器の出力を前記回転角の受信周期毎に保持する保持回路をさらに備え、
    前記積分器は、
    前記速度演算器の出力に補正値として前記保持回路の出力を加算した値に基づく値により演算することを特徴とする請求項2に記載の電力変換装置。
    The restoration unit further includes
    Further comprising a holding circuit that holds the output of the integrator for each reception cycle of the rotation angle,
    The integrator is
    The power conversion device according to claim 2, wherein the power conversion device is operated by a value based on a value obtained by adding an output of the holding circuit as a correction value to an output of the speed calculator.
  5.  前記回転角受信部は、
    前記電動機の回転速度を通信によりさらに受信し、
    前記復元部は、
    加算器と積分器と保持回路をさらに備え、
    前記加算器は前記通信受信部から入力される前記ディジタル化された回転速度と前記保持回路の出力値を加算し、
    前記保持回路は前記積分器の出力を前記回転角の受信周期毎に保持し、
    前記積分器は前記加算器の出力に基づく値により演算することを特徴とする請求項1に記載の電力変換装置。
    The rotation angle receiving unit,
    Further receives the rotation speed of the electric motor by communication,
    The restoration unit is
    Further comprising an adder, an integrator, and a holding circuit,
    The adder adds the digitized rotation speed input from the communication receiving unit and the output value of the holding circuit,
    The holding circuit holds the output of the integrator for each reception cycle of the rotation angle,
    The power converter according to claim 1, wherein the integrator performs an operation based on a value based on the output of the adder.
PCT/JP2019/003976 2019-02-05 2019-02-05 Power converter WO2020161786A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/003976 WO2020161786A1 (en) 2019-02-05 2019-02-05 Power converter
JP2020570230A JP7258920B2 (en) 2019-02-05 2019-02-05 power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003976 WO2020161786A1 (en) 2019-02-05 2019-02-05 Power converter

Publications (1)

Publication Number Publication Date
WO2020161786A1 true WO2020161786A1 (en) 2020-08-13

Family

ID=71946930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003976 WO2020161786A1 (en) 2019-02-05 2019-02-05 Power converter

Country Status (2)

Country Link
JP (1) JP7258920B2 (en)
WO (1) WO2020161786A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972534B1 (en) * 2004-09-03 2005-12-06 General Motors Corporation Delay compensation for stable current regulation when using variable-delay random PWM switching
JP2006180587A (en) * 2004-12-21 2006-07-06 Yaskawa Electric Corp Control method of servo motor
JP2008271740A (en) * 2007-04-24 2008-11-06 Honda Motor Co Ltd Motor controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972534B1 (en) * 2004-09-03 2005-12-06 General Motors Corporation Delay compensation for stable current regulation when using variable-delay random PWM switching
JP2006180587A (en) * 2004-12-21 2006-07-06 Yaskawa Electric Corp Control method of servo motor
JP2008271740A (en) * 2007-04-24 2008-11-06 Honda Motor Co Ltd Motor controller

Also Published As

Publication number Publication date
JP7258920B2 (en) 2023-04-17
JPWO2020161786A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
JP3442316B2 (en) How to convert analog signals to digital
JP2006288076A (en) Control unit
KR100636419B1 (en) Motor controller
KR101526391B1 (en) Motor controlling systen and motor controlling method
JP6652204B2 (en) Electric power steering device
EP2678940B1 (en) Method and system for controlling an electric motor with compensation for time delay in position determination
JP5510842B2 (en) Three-phase motor control device, three-phase motor system, three-phase motor control method and program
WO2014199994A1 (en) Automatic suppression device for cyclic disturbance
KR100693152B1 (en) Vector control invertor
JP2010246260A (en) Motor control device and method
WO2020161786A1 (en) Power converter
JP5808199B2 (en) Motor control device and motor drive system
JP2005224051A (en) Motor controller
JP2002315389A (en) Motor controller
JP4946886B2 (en) Analog / digital converter
JP2007143276A (en) Rotor angle estimating method and controller of dc brushless motor
EP2242174A2 (en) Control apparatus and control method for AC motor
JP2000324879A (en) Motor controller
JP2008306801A (en) Controller of permanent magnet motor
JP5408918B2 (en) Motor control method and control apparatus
JP4710634B2 (en) Motor control device
JP2015173547A (en) Motor controller
JPH07123800A (en) Vector control system for induction motor
JP2896280B2 (en) Motor control device
JP2002291297A (en) Motor controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020570230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914670

Country of ref document: EP

Kind code of ref document: A1