WO2020160698A1 - 磁动能惯性发电装置 - Google Patents

磁动能惯性发电装置 Download PDF

Info

Publication number
WO2020160698A1
WO2020160698A1 PCT/CN2020/073602 CN2020073602W WO2020160698A1 WO 2020160698 A1 WO2020160698 A1 WO 2020160698A1 CN 2020073602 W CN2020073602 W CN 2020073602W WO 2020160698 A1 WO2020160698 A1 WO 2020160698A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
power generation
kinetic energy
magnetic
generation device
Prior art date
Application number
PCT/CN2020/073602
Other languages
English (en)
French (fr)
Inventor
刘世刚
Original Assignee
刘世刚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘世刚 filed Critical 刘世刚
Publication of WO2020160698A1 publication Critical patent/WO2020160698A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators

Definitions

  • the invention relates to a mechanical kinetic energy power generation device, in particular to a permanent magnet kinetic energy power generation device.
  • the existing mechanical kinetic energy power generation devices all have a bearing structure, and the space where the rotor is located is not vacuum. Therefore, when the rotor rotates, due to the bearing structure and air friction, resistance and heat are always generated, and there is always unnecessary energy loss. .
  • the purpose of the present invention is to provide a mechanical kinetic energy power generation device with higher energy conversion efficiency.
  • vacuum in the present invention refers to "approximately vacuum”.
  • This invention is hereinafter referred to as "device”. It uses the principle of repulsive magnetic poles of the same sex and the principle of inertia to drive the rotor to rotate with the repulsive torque of the same magnetic poles, suspends the rotor with the repulsive force of the same magnetic poles, and does not require traditional mechanical bearings.
  • the space where the rotor is located is kept in vacuum.
  • the structure avoids the loss of mechanical energy caused by the structure, and converts magnetic energy and mechanical energy (inertial kinetic energy) into electrical energy to achieve stable, efficient and long-term power supply function.
  • the power generation efficiency and working life of the device depend on the residual magnetism of the permanent magnet in the device. With the passage of time, the residual magnetism of the permanent magnets naturally decays slowly. When the magnetic force is weakened to the extent that it is insufficient to drive the rotor, the device no longer outputs electrical energy. Therefore, the present invention is not a "perpetual motion machine".
  • the permanent magnet kinetic energy inertial power generation device is composed of a housing, a stator, a rotor, a permanent magnet, a power generation conductor, and a current output interface.
  • Each permanent magnet in the device is a powerful permanent magnet, and its shape has no special requirements (preferably “tile shape” or “brick shape”), and is composed of high remanence materials (for example, the now common “high-performance neodymium iron boron permanent magnet” "Magnet”, at room temperature or low temperature, has the advantages of "high remanence, high coercivity, and high energy product", and is the most magnetic permanent magnet material so far).
  • the basic configuration of the rotor is a cylinder (based on the cylinder, it can have a disk shape, a column shape, a cone shape, an olive shape, an oval shape, a cylindrical shape, a ring shape, etc.).
  • the rotor is composed of diamagnetic material and multiple permanent magnets of the same specification; the permanent magnets are symmetrically and uniformly distributed around the center of the circle, with one end of the magnetic pole facing the center and the other end facing the stator; each pole facing the stator must have the same polarity.
  • the stator on the side of the rotor is composed of diamagnetic material and multiple permanent magnets of the same specification; the permanent magnets are symmetrically and uniformly distributed around the center of the circle; one end of each permanent magnet faces the rotor, and the other end faces the shell; each pole faces the rotor , And the poles of the permanent magnets facing the stator in the rotor must be the same, forming a repulsive structure, generating repulsive force in the circumferential tangential direction of the rotor, and driving the rotor to rotate on its own.
  • the stators located on the two bottom surfaces of the rotor are also inlaid with permanent magnets, respectively, which form a repulsive structure with the permanent magnets on the bottom surface of the rotor, generating repulsive force in the direction of the rotation axis of the rotor, so that the rotor is suspended without mechanical contact.
  • the components also do not have direct surface contact, so there is no need for traditional mechanical bearing structures to avoid unnecessary loss of inertial kinetic energy and mechanical energy.
  • the space between the stator and the rotor is kept in a vacuum state.
  • the rotation of the rotor is not affected by air resistance, and there is no air friction, which further avoids the loss of inertial kinetic energy and mechanical energy.
  • due to the vacuum no friction, the movement of the rotor (rotation and vibration) ) No noise is produced.
  • the diamagnetic material of the rotor preferably high-strength and lightweight titanium or aluminum and alloys, can be made into a frame (or hollow) structure to install permanent magnets to reduce the weight of the rotor and make it easier to drive and suspend.
  • the magnetic field of the permanent magnet is a static stable magnetic field, non-alternating magnetic field, so neither magnetic materials nor diamagnetic materials will oscillate crystal molecules, nor eddy currents, nor will the stator and rotor "self-heat".
  • the power generation conductor is preferably a diamagnetic high-conductivity material, such as silver, copper, etc., in order to reduce heat generation and lower resistance to obtain more electrical energy, and to avoid adverse effects on the rotation of the rotor.
  • the heat generated by the resistor is relatively low and is transferred to the outside through the housing and auxiliary heat dissipation structure. Because the vacuum and bearingless structure has the effect of preventing heat conduction, and there is no friction heating, crystal molecular oscillation heating, so in the absence of other heat sources, the temperature of the stator and rotor are not much different from the ambient temperature level. As long as the temperature of the permanent magnet is kept far below the upper limit of the heat-resistant working temperature, rapid demagnetization (demagnetization) can be avoided.
  • the power generation conductor is not embedded in the stator groove, nor is it wound around the stator or the permanent magnet poles of the stator, but is fixed relative to the stator, between the stator and the rotor, and distributed around the rotor.
  • the configuration is preferably "birdcage". In order to obtain more electrical energy, the distribution of power generation conductors should be as many and dense as possible.
  • the power-generating conductor When the rotor rotates, the power-generating conductor generates an induced current due to the magnetic field lines of the cutting motion, and generates a magnetic field opposite to the rotation direction of the rotor. Therefore, it is necessary to control the density of the power generation conductors and the strength of the reverse magnetic field to ensure that the repulsive torque is sufficient to drive the rotor to continuously rotate without being offset or changed.
  • the rotor speed can reach a higher level.
  • the higher the speed of the rotor the greater the current output power of the device, but the greater the centrifugal force generated by the rotation.
  • Part of the centrifugal force can be offset with part of the magnetic field repulsion, and the other part of the centrifugal force acts on the structural material of the rotor.
  • the rotor will not disintegrate due to high speed; if the speed is too high, the centrifugal force will be too large, and the mechanical strength of the material may be exceeded, which may cause the rotor to disintegrate. Therefore, it is necessary to use high-strength and lightweight titanium or Aluminum and various alloys are used as the structural material of the rotor.
  • the permanent magnets in the stator can be set as a "telescopic structure". By reducing or increasing the distance from the rotor, the repulsive torque can be increased or decreased (the smaller the distance between the same-same magnetic poles, the greater the repulsive force). To increase or decrease the speed of the rotor, it can also be used to start or stop the control device.
  • the diamagnetic materials in the housing, stator, and rotor can be made of aluminum, copper, titanium, high-strength engineering plastics, alloys and other materials; the entire device can be manufactured into a "disc” or “long cylindrical” structure. Meet different power supply requirements, and adapt to the restrictions of location, space and shape.
  • Strong permanent magnets have a strong static and stable magnetic field, and within a certain range of the device, they may have magnetic effects, interference or even damage to other equipment. Although there is currently no low-cost magnetic field shielding material, the magnetic field can be isolated simply and effectively by keeping a certain distance.
  • the working conditions of the device are subject to certain temperature restrictions.
  • the Curie temperature of ordinary NdFeB permanent magnets is 310°C, and the upper limit of heat-resistant working temperature is 80°C;
  • the Curie temperature of high-temperature resistant NdFeB permanent magnets is 340 ⁇ 400°C, and the upper limit of heat-resistant working temperature is 200°C .
  • the common NdFeB permanent magnets still maintain extremely high magnetic properties.
  • the device can operate and generate electricity after being assembled. It can be used in artificial satellites, deep space or deep sea exploration equipment, and military equipment.
  • the applicable environment is relatively wide, especially in special environments such as deep space and deep sea.
  • Figure 1 is a schematic top view of the structure of the present invention.
  • Figure 2 is a schematic side view of the structure of the present invention.
  • Figure 3 is a schematic diagram of the "birdcage" structure of the power generation conductor of the present invention.
  • the stator on the side of the rotor is made of diamagnetic material and 12 permanent magnets of the same size; the rotor is made of diamagnetic material and 7 permanent magnets of the same size; the permanent magnets in the stator and the rotor, opposite ends
  • the polarity of the magnetic poles must be the same to form a repulsive structure.
  • the permanent magnets in the stator and rotor are evenly distributed. The angle between each permanent magnet and the diameter is greater than 0° and less than 90°, which will provide the maximum repulsive torque for rotor rotation.
  • the upper and lower parts of the rotor (that is, the two bottom surfaces of the cylinder) are respectively installed with permanent magnets to form a repulsive structure with the permanent magnets in the stator, so that the repulsive force is greater than the gravity received by the rotor, and the rotor can be suspended Inside the device.
  • the space where the rotor is located should be kept vacuum and the shell sealed. If the internal space of the device is not in a vacuum state, the device can still operate and supply power by itself, but the performance is greatly reduced and noise and heat are generated.
  • the number of permanent magnets in the figure is just an example, not a fixed index, and can be adjusted for practical applications.
  • the permanent magnets in the stator and the permanent magnets in the rotor form a repulsive structure.
  • the rotor can continue to rotate by itself.
  • the rotor is suspended inside the device.

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种磁动能惯性发电装置,包括外壳(1)、定子(2)、转子(3)、永磁体(4)、发电导体(5)、电流输出接口(6)。磁动能惯性发电装置利用同性磁极相斥结构,驱动转子自行持续旋转、使转子悬浮,转子所在的空间是真空状态。

Description

磁动能惯性发电装置 技术领域
本发明涉及一种机械式动能发电装置,尤其涉及永磁动能发电装置。
背景技术
现有的机械式动能发电装置均存在轴承结构,转子所在的空间不是真空的,因此,当转子转动时,由于轴承结构和空气摩擦,总是产生阻力和发热,总是存在不必要的能量损失。
发明内容
本发明目的是:提供一种能量转换效率更高的机械式动能发电装置。
本发明所述的“真空”,是指“近似真空”。
本发明下文简称“装置”,利用同性磁极相斥原理、惯性原理,以“同性磁极斥力扭矩驱动转子自转,利用同性磁极斥力悬浮转子,无需传统的机械轴承,转子所在的空间保持真空状态”的结构,避免因结构导致的机械能损耗,将磁能、机械能(惯性动能)转化为电能,实现稳定、高效、长时间的供电功能。
装置的发电效能、工作寿命,取决于装置中永磁体的剩磁强度。随着时间推移,永磁体的剩磁自然缓慢衰减,当磁力衰弱到不足以驱动转子的程度,则装置不再输出电能。因此,本发明并非“永动机”。
本发明的技术方案是:
永磁动能惯性发电装置,由外壳、定子、转子、永磁体、发电导体、电流输出接口构成。
装置中的各个永磁体均为强力永磁体,其形状无特殊要求(优选“瓦形”或“砖形”),由高剩磁材料构成(例如,现已常见的“高性能钕铁硼永磁体”,在常温或低温条件下,具有“高剩磁密度、高矫顽力、高磁能积”的优点,是迄今为止磁性最强的永磁材料)。
转子的基本构形为圆柱体(以圆柱体为基础,可以有盘形、柱形、锥形、橄榄形、卵形、楞柱形、环形等变形)。
转子由抗磁性材料与多个规格相同的永磁体构成;永磁体围绕圆心呈中心对称均匀分布,一端磁极朝向圆心,另一端磁极朝向定子;朝向定子的各个磁极极性必须相同。
位于转子侧面的定子由抗磁性材料与多个规格相同的永磁体构成;永磁体围绕圆心呈中心对称均匀分布;各个永磁体一端磁极朝向转子,另一端磁极朝向外壳;朝向转子的各个磁极极性,与转子中朝向定子的永磁体磁极极性必须相同,形成相斥结构,在转子的圆周切线方向产生斥力,驱动转子自行旋转。
位于转子2个底面的定子亦分别镶嵌着永磁体,分别与转子底面的永磁体形成相斥结构,在转子的旋转轴方向产生斥力,使转子悬浮而不存在机械接触,转子与装置的其他任何部件也不存在直接的表面接触,因而无需传统的机械轴承结构,以避免惯性动能与机械能的非必要损耗。
定子与转子之间的空间保持真空状态,转子的旋转不受空气阻力作用,且不存在空气摩擦,进一步避免惯性动能与机械能的损耗,同时,因真空、无摩擦,转子的运动(旋转及振动)不产生噪音。
由于真空、无轴承结构,不存在机械摩擦、空气摩擦导致的发热。
转子的抗磁性材料,优选高强度且轻质的钛或铝以及合金,可制成框架(或空心)结构安装永磁体,以减轻转子重量,更易于驱动、悬浮。
永磁体的磁场为静态稳定磁场,非交变磁场,所以磁性材料与抗磁性材料均不发生晶体分子振荡,也不会出现涡流,定子与转子也就不会出现“自发热”情形。
发电导体优选抗磁性的高电导率材料,例如:银、铜等,以降低发热与降低电阻而获得更多电能,并避免对转子的旋转产生不利影响。电阻产生的热量较低,通过壳体和辅助散热结构传递到外部。由于真空、无轴承结构具有阻止热量传导的作用,且不存在摩擦发热、晶体分子振荡发热,所以,在没有其他热源的情况下,定子与转子的温度,均与环境温度水平相差不大。只要保持永磁体的温度远低于耐热工作温度上限,即可避免急剧退磁(消磁)。
与传统的电枢绕组不同,发电导体并非镶嵌于定子凹槽内,亦不缠绕于定子或定子的永磁体磁极,而是相对于定子固定、介于定子与转子之间,围绕着转子分布,其构形优选“鸟笼形”,为获得更多电能,发电导体的分布应尽可能的多、密。
当转子旋转时,发电导体由于切割运动的磁力线而产生感生电流,并产生与转子旋转方向相反的磁场。因此,必须控制发电导体的密度、控制反向磁场的强度,保证斥力扭矩足以驱动转子持续自转而不被抵消或改变。
由于真空、无轴承结构,不存在空气阻力、摩擦阻力,转子的转速可 达到较高水平。转子的转速越高,装置的电流输出功率越大,但旋转产生的离心力也越大。一部分离心力可与部分磁场斥力抵消,另一部分离心力作用于转子的结构材料。在结构材料的机械强度安全范围内,转子不因高转速而解体;若转速过高,离心力过大,超出材料的机械强度,可能导致转子解体,因而有必要采用高强度且轻质的钛或铝以及各类合金,作为转子的结构材料。
可将定子中的永磁体,设置为“可伸缩结构”,通过减少或增加与转子的间距,使斥力扭矩增大或减小(同性磁极之间的距离越小,斥力越大),既能实现增加或降低转子的转速,也可用于控制装置的启动或停止。
根据不同需要,外壳、定子、转子中的抗磁性材料,可采用铝、铜、钛、高强度工程塑料、合金等材质;整个装置可制造成“圆盘形”或“长柱形”结构,满足不同的供电需求,以及适应位置、空间、形状的限制。
强力永磁体具有较强的静态稳定磁场,在距离装置一定范围内,可能对其他设备产生磁性影响、干扰甚至破坏。虽然,目前尚无低成本的磁场屏蔽材料,但可以通过保持一定的距离的方法,简单有效地隔离磁场。
因磁性材料存在居里温度,所以,装置的工作条件受到一定的温度限制。例如,普通钕铁硼永磁体的居里温度为310℃,耐热工作温度上限为80℃;耐高温钕铁硼永磁体的居里温度为340~400℃,耐热工作温度上限为200℃。而常温至零下30℃的低温环境中,常见的钕铁硼永磁体仍然稳定保持极高的磁性能。
本发明的有益效果是:
1、无需外源性动力,装置组装完成即可自行运转、发电,可应用于人造卫星、深空或深海探测设备以及军事装备等领域。
2、易于生产、制造,所需材料、构件工艺技术已普及,成本低廉。
3、储能较多,供电输出稳定,可长时间连续供电,工作寿命长。
4、低发热、无噪音、无放射性辐射,不产生有害物质或废料,对环境友好,无损耗、无破坏、无损害、无危险。
5、安全性、可靠性极高。
6、适用环境较为广泛,尤其深空、深海等特殊环境。
附图说明
图1是本发明的结构俯视示意图。
图2是本发明的结构侧视示意图。
图3是本发明的发电导体“鸟笼形”结构示意图。
图中标记:
1、外壳      2、定子      3、转子      4、永磁体
5、发电导体      6、电流输出接口
具体实施方式
参照图1所示,位于转子侧面的定子由抗磁性材料与12个规格相同的永磁体构成;转子由抗磁性材料与7个规格相同的永磁体构成;定子与转子中的永磁体,相对端磁极极性必须相同,形成相斥结构。定子与转子中的永磁体分别均匀分布。各个永磁体与直径之间的夹角大于0°且小于90°,将为转子自转提供最大化的斥力扭矩。
参照图2所示,转子的上部与下部(即圆柱体的2个底面),分别安装着永磁体,与定子中的永磁体形成相斥结构,使斥力大于转子受到的重力,转子即可悬浮于装置内部。
为获得更高性能,转子所在的空间应保持真空并密封壳体。若装置内部空间非真空状态,装置仍能自行运转、供电,但效能大大降低并产生噪音与发热。
图中永磁体的数量仅为示例,并非固定指标,实际应用可调整。
本发明的创新之处(也是关键、重要之处)有:
1、定子中的永磁体与转子中的永磁体形成相斥结构。
2、利用同性磁极相斥结构,结合惯性作用,使转子自行持续旋转。
3、利用同性磁极相斥结构,使转子悬浮于装置内部。
4、转子所在的空间保持真空状态。
虽然选择所选定的实施例来说明本发明,但对于本领域技术人员显而易见的是,在不偏离权利要求所限定的本发明的范围的情况下,能作出各种修改和变型。
并且,先前对于根据本发明的实施例的描述仅是为了说明的目的,而不是为了限制由权利要求及其等效内容所限定的本发明。

Claims (6)

  1. 一种磁动能惯性发电装置,包括外壳、定子、转子、永磁体、发电导体、电流输出接口构成,其特征在于:利用同性磁极相斥结构,驱动转子自行持续旋转、使转子悬浮;转子所在的空间是真空状态。
  2. 根据权利要求1所述的磁动能惯性发电装置,其特征在于:定子中与转子中均安装着永磁体。
  3. 根据权利要求1所述的磁动能惯性发电装置,其特征在于:定子中的永磁体与转子中的永磁体形成相斥结构,产生磁场斥力。
  4. 根据权利要求1所述的磁动能惯性发电装置,其特征在于:利用同性磁极相斥结构产生的磁场斥力,驱动转子自行持续旋转。
  5. 根据权利要求1所述的磁动能惯性发电装置,其特征在于:利用同性磁极相斥结构产生的磁场斥力,使转子悬浮。
  6. 根据权利要求1所述的磁动能惯性发电装置,其特征在于:转子所在的空间是真空状态。
PCT/CN2020/073602 2019-02-07 2020-01-21 磁动能惯性发电装置 WO2020160698A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910109273.2 2019-02-07
CN201910109273.2A CN109639182A (zh) 2019-02-07 2019-02-07 磁动能惯性发电装置

Publications (1)

Publication Number Publication Date
WO2020160698A1 true WO2020160698A1 (zh) 2020-08-13

Family

ID=66065053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073602 WO2020160698A1 (zh) 2019-02-07 2020-01-21 磁动能惯性发电装置

Country Status (2)

Country Link
CN (1) CN109639182A (zh)
WO (1) WO2020160698A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11811274B1 (en) 2022-06-06 2023-11-07 Magnetech S.A.C. Power generating device by magnetic collapse

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109639182A (zh) * 2019-02-07 2019-04-16 刘世刚 磁动能惯性发电装置
TWI724514B (zh) * 2019-08-27 2021-04-11 李受勳 電動磁力馬達

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001924A1 (en) * 1992-07-02 1994-01-20 Darrell Reginald Whitehall Magnetic turbine
CN1247407A (zh) * 1998-09-08 2000-03-15 李学思 磁能动力体系及应用
CN101630932A (zh) * 2009-05-16 2010-01-20 张广成 扰磁板式旋转磁能动力机
CN107070145A (zh) * 2017-04-13 2017-08-18 王坤义 超导无轴多极悬浮磁发电机
CN109639182A (zh) * 2019-02-07 2019-04-16 刘世刚 磁动能惯性发电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001924A1 (en) * 1992-07-02 1994-01-20 Darrell Reginald Whitehall Magnetic turbine
CN1247407A (zh) * 1998-09-08 2000-03-15 李学思 磁能动力体系及应用
CN101630932A (zh) * 2009-05-16 2010-01-20 张广成 扰磁板式旋转磁能动力机
CN107070145A (zh) * 2017-04-13 2017-08-18 王坤义 超导无轴多极悬浮磁发电机
CN109639182A (zh) * 2019-02-07 2019-04-16 刘世刚 磁动能惯性发电装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11811274B1 (en) 2022-06-06 2023-11-07 Magnetech S.A.C. Power generating device by magnetic collapse

Also Published As

Publication number Publication date
CN109639182A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020160698A1 (zh) 磁动能惯性发电装置
CN107222131B (zh) 一种转子重力卸载型磁轴承复合电机
WO2018000869A1 (zh) 一种磁体径向移动式可调速磁力耦合器
CN204186801U (zh) 一种低功耗轴向混合磁轴承
US8368271B2 (en) Magnetically suspended flywheel energy storage system with magnetic drive
CN102148592A (zh) 一种用于垂直轴盘式电机的磁悬浮支撑结构
CN106979225B (zh) 一种锥形轴向磁轴承
CN106958531B (zh) 一种低损耗磁悬浮涡轮分子泵
CN102678745A (zh) 永磁轴承
CN103925291A (zh) 一种永磁偏置混合轴向磁轴承
CN204113899U (zh) 一种全永磁轴承转子系统
CN114198403B (zh) 一种五自由度混合磁轴承
CN206432791U (zh) 一种薄盘式单边结构轴向磁通永磁风力发电机
CN103427587A (zh) 一种大推力圆筒型直线电机
CN204284204U (zh) 一种低功耗永磁偏置轴向混合磁轴承
CN103368326A (zh) 一种低功耗磁悬浮飞轮储能装置
WO2017158710A1 (ja) フライホイール装置及び、発電及び駆動モータ装置
CN109026995B (zh) 一种抗磁悬浮微型轴承转子系统
CN108506343A (zh) 一种半自由度的轴向充磁的混合型轴向磁轴承
CN104319975A (zh) 单槽单极圆筒动磁直线交流发电机
JP2016039733A (ja) フライホイール装置及び、発電及び駆動モータ装置
CN108547868A (zh) 一种半自由度的径向充磁的混合型轴向磁轴承
CN107465363B (zh) 改进的利用磁悬浮系统的平面发电机
CN208285177U (zh) 一种悬浮力可调的错齿双凸极电机
CN208401728U (zh) 真空电磁动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752163

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20752163

Country of ref document: EP

Kind code of ref document: A1