WO2020160692A1 - Control information reliability improvement through multi-beam transmissions - Google Patents

Control information reliability improvement through multi-beam transmissions Download PDF

Info

Publication number
WO2020160692A1
WO2020160692A1 PCT/CN2019/074744 CN2019074744W WO2020160692A1 WO 2020160692 A1 WO2020160692 A1 WO 2020160692A1 CN 2019074744 W CN2019074744 W CN 2019074744W WO 2020160692 A1 WO2020160692 A1 WO 2020160692A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
control information
shared channel
delay value
instance
Prior art date
Application number
PCT/CN2019/074744
Other languages
French (fr)
Inventor
Chun Chung Patrick Chan
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/074744 priority Critical patent/WO2020160692A1/en
Publication of WO2020160692A1 publication Critical patent/WO2020160692A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the following relates generally to wireless communications, and more specifically to control information reliability improvement through multi-beam transmissions.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • wireless devices may use beamformed or precoded signals for transmission and/or reception of wireless communications.
  • a base station may utilize beamformed or precoded transmissions to provide directional transmissions that may mitigate path losses that may be experienced by non-beamformed or non-precoded transmissions which may have a relatively wide beam or omnidirectional transmission pattern.
  • control information may be transmitted to a UE via a beamformed transmission which may provide, for example, a resource allocation for a subsequent downlink transmission (e.g. a physical downlink shared channel (PDSCH) transmission) from a base station, for a subsequent uplink transmission (e.g.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • a user equipment may, in some cases, be configured to monitor two or more beams for control information, and determine a subsequent resource allocation based on information in one or more of the control information transmissions.
  • a base station may allocate downlink or uplink resources (e.g., physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) resources) , and transmit control information with the allocation via multiple downlink transmission beams.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the multiple instances of the control information may have delay values that correspond to a number of transmission slots such that each instance of the control information indicates the same resource allocation within time domain resources.
  • the UE may monitor for the control information in each of the beams, and identify the allocated resources based on one or multiple received instances of the control information.
  • the multiple instances of the control information may be provided in a same transmission slot, using frequency division multiplexing (FDM) .
  • each instance of the control information may include a same delay value and indicate a same resource allocation to the UE.
  • each instance of the control information may indicate a same beam that is used for the subsequent resource allocation.
  • multiple instances of the control information may indicate a different resource allocation, which may further enhance reliability of communications.
  • a UE may provide one or more measurements (e.g., channel quality measurements of multiple beams, mobility information that indicates rapid beam changes, etc. ) to the base station, and the base station may enable multi-beam transmissions based on the one or more measurements.
  • a method of wireless communication at a UE may include monitoring for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE, monitoring for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE, and determining the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE, monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE, and determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • the apparatus may include means for monitoring for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE, monitoring for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE, and determining the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE, monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE, and determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for decoding the first control information received in a first transmission slot and the second control information received in a second transmission slot that may be subsequent to the first transmission slot, and identifying a third transmission slot as an initial transmission slot of the shared channel resource allocation based on the first delay value and the second delay value, and where the first control information and the second control information each include one or more parameters of the shared channel resource allocation that may be the same.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for combining portions of the first control information and the second control information that include the one or more parameters, and where the decoding may be based on the combining.
  • the first delay value and the second delay value may be different, and a difference between the first delay value and the second delay value corresponds to a number of transmission slots between the first transmission slot and the second transmission slot.
  • the first delay value and the second delay value each indicate a K0 delay value for a number of transmission slots between a downlink grant and a corresponding PDSCH allocation for the UE.
  • the first control information and the second control information may be frequency division multiplexed in a first transmission slot.
  • the first control information provides a first downlink shared channel allocation for the UE using the first transmission beam and the second control information provides a second downlink shared channel allocation for the UE using the second transmission beam, and where the first downlink shared channel allocation and the second downlink shared channel allocation each provide a same downlink transmission to the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for attempting to decode a downlink transmission from the base station via the first transmission beam based on the shared channel resource allocation, transmitting a negative acknowledgment to the base station responsive to determining that the downlink transmission is unsuccessfully decoded, and monitoring for a retransmission of the downlink transmission via the second transmission beam.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first control information provides a first downlink shared channel allocation for a first instance of a downlink transmission in a first transmission slot using the first transmission beam and the second control information provides a second downlink shared channel allocation for a second instance of the downlink transmission in a second transmission slot subsequent to the first transmission slot using the second transmission beam, combining downlink receptions in the first transmission slot and the second transmission slot, and decoding the downlink transmission based on the combined downlink receptions.
  • the first delay value and the second delay value each indicate a K2 delay value for a number of transmission slots between an uplink grant and a corresponding PUSCH allocation for the UE.
  • the first control information and the second control information may be frequency division multiplexed in a first transmission slot and each provide a same uplink shared channel allocation for the UE.
  • the first control information and the second control information may be frequency division multiplexed in a first transmission slot and each provide a different uplink shared channel allocation for the UE on a different uplink beam, and where the UE selects which uplink shared channel allocation to use based on channel conditions of the first control information and the second control information.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that the first transmission beam has better channel conditions than the second transmission beam, selecting, based on the identifying, the first transmission beam for an uplink transmission to the base station, and transmitting, via the first transmission beam, the uplink transmission to the base station using uplink resources indicated in the shared channel resource allocation.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving signaling from the base station that indicates that multiple control information transmissions via multiple transmission beams will be transmitted by the base station, and where the monitoring may be performed responsive to the signaling.
  • a method of wireless communication at a base station may include determining to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam, transmitting a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation, transmitting a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation, and communicating with the UE using the shared channel resource allocation.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam, transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation, transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation, and communicate with the UE using the shared channel
  • the apparatus may include means for determining to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam, transmitting a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation, transmitting a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation, and communicating with the UE using the shared channel resource allocation.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam, transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation, transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation, and communicate with the UE using the shared channel resource allocation.
  • the first instance of the control information may be transmitted in a first transmission slot and the second instance of the control information may be transmitted in a second transmission slot that is subsequent to the first transmission slot, and a third transmission slot is an initial transmission slot of the shared channel resource allocation and is indicated by each of the first delay value and the second delay value.
  • the first delay value and the second delay value are different, and a difference between the first delay value and the second delay value corresponds to a number of transmission slots between the first transmission slot and the second transmission slot.
  • the first delay value and the second delay value each indicate a K0 delay value for a number of transmission slots between a downlink grant and a corresponding PDSCH allocation for the UE.
  • the first instance of the control information and the second instance of the control information may be frequency division multiplexed in a first transmission slot.
  • the first instance of the control information provides a first downlink shared channel allocation for the UE using the first transmission beam and the second instance of the control information provides a second downlink shared channel allocation for the UE using the second transmission beam, and where the first downlink shared channel allocation and the second downlink shared channel allocation each provide a same downlink transmission to the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a negative acknowledgment that indicates a downlink communication transmitted via the first transmission beam using the shared channel resource allocation was unsuccessfully decoded at the UE, and retransmitting the downlink communication via the second transmission beam.
  • the first delay value and the second delay value each indicate a K2 delay value for a number of transmission slots between an uplink grant and a corresponding PUSCH allocation for the UE.
  • the first instance of the control information and the second instance of the control information may be frequency division multiplexed in a first transmission slot and each provide a same uplink shared channel allocation for the UE.
  • the first instance of the control information and the second instance of the control information may be frequency division multiplexed in a first transmission slot and each provide a different uplink shared channel allocation for the UE on a different uplink beam, and where the UE selects which uplink shared channel allocation to use based on channel conditions of the first control information and the second control information.
  • the determining may include operations, features, means, or instructions for determining that the UE is near a coverage boundary between the first transmission beam and the second transmission beam, determining that the UE is moving at a speed above a threshold value, determining that the first transmission beam and the second transmission beam have reported channel qualities that are within a predetermined range of each other, determining that the UE has missed a predetermined number of control channel transmissions from the base station, or any combinations thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting signaling to the UE that indicates that multiple control information transmissions via multiple transmission beams will be transmitted by the base station.
  • FIG. 1 illustrates an example of a system for wireless communications that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of wide beam and narrow beam transmissions that support control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • FIGs. 3 through 11 illustrates examples of beamformed communications techniques that support control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • FIG. 12 illustrates an example of a process flow that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • FIGs. 13 and 14 show block diagrams of devices that support control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • FIG. 15 shows a block diagram of a communications manager that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • FIG. 16 shows a diagram of a system including a device that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • FIGs. 17 and 18 show block diagrams of devices that support control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • FIG. 19 shows a block diagram of a communications manager that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • FIG. 20 shows a diagram of a system including a device that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • FIGs. 21 through 24 show flowcharts illustrating methods that support control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • a UE and base station may establish a connection via beamformed transmission beams in which one or more uplink beams and downlink beams are identified as available beams for communications.
  • the base station may transmit multiple instances of control information to the UE, via multiple beams, which may be monitored at the UE.
  • the UE may decode the control information on one or more of the beams, and identify resources associated with a resource allocation to the UE (e.g., a physical downlink shared channel (PDSCH) allocation or physical uplink shared channel (PUSCH) allocation) .
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the multiple instances of the control information may have delay values that correspond to a number of transmission slots such that each instance of the control information indicates the same resource allocation within a time domain slot.
  • the UE may monitor for the control information in each of the beams, and identify the allocated resources based on one or multiple received instances of the control information.
  • the multiple instances of the control information may be provided in a same transmission slot, using frequency division multiplexing (FDM) .
  • FDM frequency division multiplexing
  • each instance of the control information may include a same delay value and indicate a same resource allocation to the UE.
  • each instance of the control information may indicate a same beam that is used for the subsequent resource allocation.
  • multiple instances of the control information may indicate a different resource allocation, which may further enhance reliability of communications.
  • a UE may provide one or more measurements (e.g., channel quality measurements of multiple beams, mobility information that indicates rapid beam changes, etc. ) to the base station, and the base station may enable multi-beam transmissions based on the one or more measurements.
  • measurements e.g., channel quality measurements of multiple beams, mobility information that indicates rapid beam changes, etc.
  • the network may bias the system towards downlink transmissions from base stations to UEs.
  • NR new radio
  • TDD time division duplexing
  • the network may bias the system towards downlink transmissions from base stations to UEs.
  • Such biasing may allow for efficient usage of system resources in situations where served UEs receive more data than they transmit.
  • downlink-to-uplink slots may have a three-to-one ratio, a four-to-one ratio, or even an eight-to-two ratio.
  • the next available uplink slot for transmission may be a number of slots away and may result in increased latency in the system.
  • different services may be served by a wireless communications system, which may include services that have relatively stringent reliability and latency targets (e.g., ultra-reliable low latency communications (URLLC) services) , and services that have more relaxed reliability and latency targets (e.g., enhanced mobile broadband (eMBB) services) .
  • URLLC ultra-reliable low latency communications
  • eMBB enhanced mobile broadband
  • UEs in some systems may have relatively few antennas and may have limited transmit power (e.g., 23dBm) .
  • transmit power e.g. 23dBm
  • selection of favorable beams for uplink transmissions of such UEs may help to further enhance system efficiency and reliability.
  • downlink control information may be important because it can carry an aperiodic channel quality information (CQI) request to request UE to report latest channel condition information for scheduling, and also power control commands.
  • CQI channel quality information
  • variable delay parameters may be set to provide the UE information on a same resource allocation.
  • a variable delay indicated by a K0 value may provide a delay value, in a number of slots, between a downlink grant and the corresponding downlink data reception
  • a variable delay indicated by a K1 value may provide a delay between reception of an uplink grant and the corresponding uplink transmission.
  • a base station may transmit control information, in some cases, in consecutive slots with different delay values that the UE may receive to identify the same allocated resources.
  • such techniques may allow a base station to transmit the same or adaptive downlink or uplink grants (DCIs) multiple times to improve the downlink control channel (e.g., PDCCH) reliability.
  • DCIs downlink control channel
  • PDCCH downlink control channel
  • such techniques may be enabled only in certain situations in order to conserve resources. For example, such techniques may be implemented when a UE is between two beams having similar signal levels with fading fluctuations, is moving at high mobility speeds, is near a cell edge, has poor RF conditions, is experiencing high interference, has poor PDCCH decoding performance (e.g., the UE is missing ACKs on the uplink, has unutilized uplink grants, etc. ) , or any combinations thereof.
  • a UE may be configured to monitor for multiple instances of control information via multiple beams, and such monitoring may be enabled or disabled through signaling to the UE (e.g., through radio resource control (RRC) signaling) .
  • RRC radio resource control
  • the UE may be enabled to monitor for multiple instances of control information and may combine portions of receptions over multiple transmission beams. For example, due to the different signaled delay value, the UE may be unable to perform soft combining of the entire control information, but may combine certain portions or information fields from multiple instances of the control information.
  • the UE may identify that one of the beams being monitored has more favorable channel conditions, and the UE may select the better beam and attempt to decode the control information from that beam.
  • the control information may indicate different allocated resources via different beams, and the UE may select one of the resource allocations based on associated beam quality of the beams used in the multi-beam control information transmission.
  • Wireless communications systems using techniques as discussed herein may thus have more reliable communications in cases where a UE may not reliably receive and decode a single transmission beam. Further, through enabling multi-beam transmission techniques only in cases where unreliable communications are relatively highly likely, system efficiency may be enhanced through reduced numbers of missed downlink transmissions or missed uplink grants. Additionally, high reliability services may be more efficiently and reliably served, which may enable quality of service targets to be achieved in cases where a UE may have challenging channel conditions or high mobility.
  • aspects of the disclosure are initially described in the context of a wireless communications system. Various beamformed communications techniques are then discussed that provide multiple instances of control information in multi-beam transmissions. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to control information reliability improvement through multi-beam transmissions.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-Advanced Pro
  • NR New Radio
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • Base stations 105 and UEs 115 may, in some cases, use multi-beam transmissions to enhance communications reliability in accordance with techniques as discussed herein.
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas.
  • Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology.
  • Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) .
  • the UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
  • Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
  • the geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell.
  • each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
  • the term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices.
  • MTC machine-type communication
  • NB-IoT narrowband Internet-of-Things
  • eMBB enhanced mobile broadband
  • the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC massive machine type communications
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out between UEs 115 without the involvement of a base
  • Base stations 105 may communicate with the core network 130 and with one another.
  • base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) .
  • Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) .
  • the MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC.
  • User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Stream
  • At least some of the network devices may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) .
  • Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) .
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz ISM band.
  • wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data.
  • LBT listen-before-talk
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these.
  • Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MU-MIMO multiple-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • some signals e.g. synchronization signals, reference signals, beam selection signals, or other control signals
  • Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality.
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
  • a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
  • the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack.
  • PDCP Packet Data Convergence Protocol
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • HARQ hybrid automatic repeat request
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) .
  • a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023.
  • SFN system frame number
  • Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms.
  • a subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) .
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols.
  • a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling.
  • Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
  • carrier refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125.
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology.
  • Each physical layer channel may carry user data, control information, or other signaling.
  • a carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • E-UTRA absolute radio frequency channel number
  • Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM)) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) .
  • each served UE 115 may be configured for operating over portions or all of the carrier bandwidth.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) .
  • the more resource elements that a UE 115 receives and the higher the order of the modulation scheme the higher the data rate may be for the UE 115.
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
  • a spatial resource e.g., spatial layers
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
  • UEs 115 and base stations 105 may use beamformed communications, and a UE 115 may be configured to monitor two or more beams for control information. In such cases, the UE 115 may determine a subsequent resource allocation based on information in one or more of the control information transmissions.
  • a base station 105 may allocate downlink or uplink resources (e.g., PDSCH or PUSCH resources) , and transmit multiple instances of the control information with the allocation via multiple downlink transmission beams.
  • the multiple instances of the control information may have delay values that correspond to a number of transmission slots between the control information and the resource allocation, such that each instance of the control information indicates the same slot for the resource allocation.
  • the UE 115 may monitor for the control information in each of the beams, and identify the allocated resources based on one or multiple received instances of the control information.
  • FIG. 2 illustrates an example of a wireless communications system 200 that uses wide beam and narrow beam transmissions in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • the wireless communications system 200 may include base station 105-a, a first UE 115-a, a second UE 115-b, and a third UE 115-c which each may be examples of a base station 105 and a UE 115, as described with reference to FIG. 1.
  • Base station 105-a may provide network coverage for geographic area 110-a.
  • Base station 105-a may use beamformed communications, which may include a relatively wide beam 205 having a lower beamforming gain, and a relatively narrow beam 210 having higher beamforming gain.
  • the base station 105-a may transmit control information 215 (e.g., PDCCH) via the narrow beam 210 that is directed to first UE 115-a, which may use a corresponding receive beam 220 to receive the control information 215.
  • the first UE 115-a may also transmit using an uplink transmit beam that has beamforming parameters that correspond to the beamforming parameters of the receive beam 220.
  • the second UE 115-b may be relatively close to the base station 115-a such that it may receive and decode the wide beam 205, and thus if control information is provided by the wide beam 205, it could be received at the second UE 115-b.
  • third UE 115-c may be located a relatively large distance from the base station 105-a such that the lower beamforming gain of the wide beam 205 is not sufficient to be reliably received at the third UE 115-c.
  • the third UE 11-c may be located outside of a beam direction in which the narrow beam 210 may be reliably received. Thus, the third UE 115-c may not be able to decode the control information 215.
  • the third UE 115-c may have moved from a location where it could have received the narrow beam 210, and the base station 115-a may be unaware of this new location.
  • the first UE 115-a and the third UE 115-c may be located near a cell edge or an edge of coverage area110-a, and thus relatively high beamforming gain such as used for narrow beam 210 may be necessary for beamformed communications with such UEs 115.
  • Various aspects of the present disclosure provide techniques that may allow more reliable transmission of control information 215 to UEs 115 such as the first UE 115-a and the third UE 115-c.
  • FIG. 3 illustrates an example of a beamformed communications technique 300 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • beamformed communications technique 300 may implement aspects of wireless communications system 100 or 200.
  • a base station 105-b may communicate with a UE 115-d using beamformed communications, such as via a first beam 305 and a second beam 310.
  • the UE 115-d may use a receive beams 315 to receive transmissions from the base station 105-b.
  • the base station 105-b may transmit multiple instances of control information to the UE 115-d via the first beam 305 and the second beam 310.
  • a number of slots may be used for transmissions, including a first downlink slot 320, a second downlink slot 325, a third downlink slot 330, a fourth downlink slot 335, and an uplink slot 340.
  • the base station 105-a may transmit a first instance of downlink control information (DCI) 345 in the first downlink slot 320 using the first beam 305.
  • DCI downlink control information
  • the base station 105-b may transmit a second instance of the DCI 350 in the second downlink slot 325 using the second beam 310.
  • the UE 115-d may monitor for each instance of the control information using downlink beams 315 that correspond to the first beam 305 and the second beam 310.
  • the variable slot delay parameter allows the UE 115-d to attempt to receive multiple instances of the control information which each provide a same resource allocation.
  • the UE 115-d based on successfully decoding one or both of the first instance of the DCI 345 or the second instance of the DCI 350, may identify the downlink resource allocation 355 and receive the PDSCH in the third downlink slot 330. While examples discussed herein show two transmission beams that may include multiple instances of control information the techniques discussed herein are also applicable to cases where three or more transmission beams may be used to transmit multiple instances of control information.
  • examples discussed herein are directed to DCI that may be transmitted to a UE 115, techniques provided herein may also be used for uplink control information (UCI) or uplink data transmissions from the UE 115-d to the base station 105-b.
  • UCI uplink control information
  • uplink data transmissions from the UE 115-d to the base station 105-b.
  • FIG. 4 illustrates another example of a beamformed communications technique 400 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • beamformed communications technique 400 may implement aspects of wireless communications system 100 or 200.
  • a base station 105-c may communicate with a UE 115-e using beamformed communications, such as via a first beam 405 and a second beam 410.
  • the UE 115-e may use a receive beams 415 to receive transmissions from the base station 105-c.
  • the base station 105-c may transmit multiple instances of control information to the UE 115-e via the first beam 405 and the second beam 410.
  • a number of slots may be used for transmissions, including a first downlink slot 420, a second downlink slot 425, a third downlink slot 430, a fourth downlink slot 435, and an uplink slot 440.
  • the base station 105-a may transmit a first instance of downlink control information (DCI) 445 in the first downlink slot 420 using the first beam 405.
  • DCI downlink control information
  • the base station 105-c may transmit a second instance of the DCI 450 in the second downlink slot 425 using the second beam 410.
  • the UE 115-e may monitor for each instance of the control information using downlink beams 415 that correspond to the first beam 405 and the second beam 410.
  • the variable slot delay parameter allows the UE 115-e to attempt to receive multiple instances of the control information which each provide a same resource allocation.
  • the UE 115-e based on successfully decoding one or both of the first instance of the DCI 445 or the second instance of the DCI 450, may identify the downlink resource allocation 455 and receive the PDSCH in the third downlink slot 430.
  • the UE 115-e may combine portions of the first instance of the DCI 445 and the second instance of the DCI 450 at combiner 460 to determine the DCI.
  • soft combining may not be employed, but the UE 115-e may combine one or more information fields from different instances of the DCI to identify the resource allocation to the UE 115-e.
  • Such combining techniques may be useful, for example, in cases where one beam is not substantially better than another beam (e.g., if the UE 115-e is between beams, near a cell edge, etc. ) , and joint decoding may help the UE 115-e to decode the DCI.
  • FIG. 5 illustrates another example of a beamformed communications technique 500 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • beamformed communications technique 500 may implement aspects of wireless communications system 100 or 200.
  • a base station 105-d may communicate with a UE 115-f using beamformed communications, such as via a first beam 505 and a second beam 510.
  • the UE 115-f may use a receive beams 515 to receive transmissions from the base station 105-d.
  • the base station 105-d may transmit multiple instances of control information to the UE 115-f via the first beam 505 and the second beam 510.
  • a number of slots may be used for transmissions, including a first downlink slot 520, a second downlink slot 525, a third downlink slot 530, a fourth downlink slot 535, and an uplink slot 540.
  • the base station 105-d may FDM instances of control information that are transmitted using different beams.
  • the base station 105-d may transmit a first instance of downlink control information (DCI) 545 in a first frequency band of the first downlink slot 520 using the first beam 505.
  • DCI downlink control information
  • the base station 105-d may transmit a second instance of the DCI 550 in a second frequency band of the first downlink slot 520 using the second beam 510.
  • the delay values for each instance of the control information is a same value, to indicate the resource allocation in the third downlink slot 530.
  • the UE 115-f may monitor for each instance of the control information using downlink beams 515 that correspond to the first beam 505 and the second beam 510.
  • the UE 115-f based on successfully decoding one or both of the first instance of the DCI 545 or the second instance of the DCI 550, may identify the downlink resource allocation 555 and receive the PDSCH in the third downlink slot 530.
  • the UE 115-f may combine the control information to jointly decode the control information.
  • the UE 115-f may use soft buffering to accumulate received signals for each instance of the control information in a soft buffer and perform decoding operations based on the soft buffering.
  • Such FDM techniques of multiple instances of control information may provide additional latency reduction while also providing multiple instances of control information for enhanced reliability.
  • the shared channel resource allocation to the UE 115 may be on one of the beams.
  • the base station 105 may allocate PDSCH resources on the first beam and may transmit multiple instances of the DCI that provides the resource allocation on multiple beams.
  • the UE 115 may attempt to decode the PDSCH on the first beam, and if unsuccessful, may transmit a HARQ NACK back to the base station 115 to initiate a retransmission. In such cases, even though the PDSCH transmission not successfully received, latency associated with the retransmission is still reduced relative to cases where the UE 115 misses the downlink control information transmission entirely.
  • the base station 105 upon receiving the NACK, may attempt retransmission using a different beam (e.g., using a second beam) based on the UE 115 providing a negative acknowledgment (NACK) on a beam that is preferred at the UE 115, such as discussed below with respect to FIG. 7.
  • NACK negative acknowledgment
  • a NACK may indicate that the UE 115 successfully received the DCI, which the base station 105 may assume was successfully received via a different beam than was used to transmit the PDSCH.
  • a base station 105 may also transmit multiple instances of the PDSCH using multiple beams. An example of such a technique is discussed with respect to FIG. 6.
  • FIG. 6 illustrates another example of a beamformed communications technique 600 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • beamformed communications technique 600 may implement aspects of wireless communications system 100 or 200.
  • a base station 105-e may communicate with a UE 115-g using beamformed communications, such as via a first beam 605 and a second beam 610.
  • the UE 115-g may use a receive beams 615 to receive transmissions from the base station 105-e.
  • the base station 105-e may transmit multiple instances of control information to the UE 115-g via the first beam 605 and the second beam 610.
  • a number of slots may be used for transmissions, including a first downlink slot 620, a second downlink slot 625, a third downlink slot 630, a fourth downlink slot 635, and an uplink slot 640.
  • the base station 105-e may FDM instances of control information that are transmitted using different beams.
  • the base station 105-e may transmit a first downlink control information (DCI) 645 in a first frequency band of the first downlink slot 620 using the first beam 605.
  • DCI downlink control information
  • the base station 105-e may transmit a second DCI 650 in a second frequency band of the first downlink slot 620 using the second beam 610.
  • the base station 105-e may also allocate separate downlink resources for PDSCH via the first beam 605 and the second beam 610 using FDM in the third downlink slot 630.
  • the UE 115-g may monitor for each instance of the control information using downlink beams 615 that correspond to the first beam 605 and the second beam 610.
  • the UE 115-g based on successfully decoding one or both of the first instance of the DCI 645 or the second instance of the DCI 650, may identify one of both of the first downlink resource allocation 655 or the second downlink resource allocation 660.
  • the UE 115-g may determine which beam has more favorable channel conditions, and attempt to decode the PDSCH on that beam.
  • the UE 115-g may combine the control information to jointly decode the control information and may combine the PDSCH to jointly decode the PDSCH.
  • the UE 115-g may use soft buffering to accumulate received signals for each downlink slot in a soft buffer and perform decoding operations based on the soft buffering.
  • Such FDM techniques of multiple instances of control information and PDSCH may provide enhanced reliability.
  • techniques such as illustrated in FIG. 6 may be used for mission critical services (e.g., URLLC services) in which reliability of PDSCH is important.
  • FIG. 7 illustrates an example of a beamformed communications technique 700 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • beamformed communications technique 700 may implement aspects of wireless communications system 100 or 200.
  • a base station 105-f may communicate with a UE 115-h using beamformed communications, such as via a first beam 705 and a second beam 710.
  • the UE 115-h may use a receive beams 715 to receive transmissions from the base station 105-f.
  • the base station 105-f may transmit multiple instances of control information to the UE 115-h via the first beam 705 and the second beam 710.
  • a number of slots may be used for transmissions, including a first downlink slot 720, a second downlink slot 725, a third downlink slot 730, a fourth downlink slot 735, an uplink slot 740 and, in this example, a fifth downlink slot 770.
  • the base station 105-f may FDM instances of control information that are transmitted using different beams.
  • the base station 105-f may transmit a first instance of downlink control information (DCI) 745 in a first frequency band of the first downlink slot 720 using the first beam 705.
  • the base station 105-f may transmit a second instance of the DCI 750 in a second frequency band of the first downlink slot 720 using the second beam 710.
  • the delay values for each instance of the control information is a same value, to indicate the resource allocation in the third downlink slot 730.
  • the UE 115-h may monitor for each instance of the control information using downlink beams 715 that correspond to the first beam 705 and the second beam 710.
  • the UE 115-h based on successfully decoding one or both of the first instance of the DCI 745 or the second instance of the DCI 750, may identify the downlink resource allocation 755 and attempt to receive the PDSCH in the third downlink slot 730.
  • the UE 115-h may not successfully decode the PDSCH, and may transmit a NACK 760 in the uplink slot 740.
  • the NACK 760 may be transmitted by the UE 115-h using beamforming parameters associated with the second beam 710, and the base station 105-f may monitor for a NACK via beams corresponding to each of the downlink beams 705 and 710. Based on receiving the NACK on the beam that corresponds to the second beam 710, the base station 105-f may retransmit the PDSCH 765 in the fifth downlink slot 770.
  • RRC signaling may be used to indicate to the UE 115-h that such multiple instances of control information are to be transmitted, and that uplink HARQ ACK/NACK data are to be monitored, using multiple beams.
  • FIG. 8 illustrates an example of a beamformed communications technique 800 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • beamformed communications technique 800 may implement aspects of wireless communications system 100 or 200.
  • a base station 105-g may communicate with a UE 115-i using beamformed communications, such as via a first beam 805 and a second beam 810.
  • the UE 115-i may use a receive beams 815 to receive transmissions from the base station 105-g.
  • the base station 105-g may transmit multiple instances of control information to the UE 115-i via the first beam 805 and the second beam 810.
  • a number of slots may be used for transmissions, including a first downlink slot 820, a second downlink slot 825, a third downlink slot 830, a fourth downlink slot 835, and an uplink slot 840.
  • the base station 105-g may FDM instances of control information that are transmitted using different beams.
  • the base station 105-g may transmit a first downlink control information (DCI) 845 in a first frequency band of the first downlink slot 820 using the first beam 805.
  • DCI downlink control information
  • the base station 105-g may transmit a second DCI 850 in a second frequency band of the first downlink slot 820 using the second beam 810.
  • the base station 105-g may also allocate separate downlink resources for PDSCH via the first beam 805 in the third downlink slot 830 and via second beam 810 in the fourth downlink slot 835.
  • the UE 115-i may monitor for each instance of the control information using downlink beams 815 that correspond to the first beam 805 and the second beam 810.
  • the UE 115-i based on successfully decoding one or both of the first instance of the DCI 845 or the second instance of the DCI 850, may identify one of both of the first downlink resource allocation 855 or the second downlink resource allocation 860.
  • the UE 115-i may determine which beam has more favorable channel conditions, and attempt to decode the PDSCH on that beam in its associated slot.
  • the UE 115-e may perform soft combining of the multiple instances of the PDSCH. In some cases, techniques such as illustrated in FIG.
  • the base station 105-g may configure the UE 115-i (e.g., via RRC signaling) for multiple PDSCH transmissions over multiple beams, and may also configure additional HARQ resources for providing ACK/NACK feedback in time domain.
  • mission critical services e.g., URLLC services
  • the base station 105-g may configure the UE 115-i (e.g., via RRC signaling) for multiple PDSCH transmissions over multiple beams, and may also configure additional HARQ resources for providing ACK/NACK feedback in time domain.
  • FIG. 9 illustrates an example of a beamformed communications technique 900 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • beamformed communications technique 900 may implement aspects of wireless communications system 100 or 200.
  • a base station 105-h may communicate with a UE 115-j using beamformed communications, such as via a first beam 905 and a second beam 910.
  • the UE 115-j may use a receive beams 915 to receive transmissions from the base station 105-h.
  • the base station 105-h may transmit multiple instances of control information to the UE 115-j via the first beam 905 and the second beam 910.
  • a number of slots may be used for transmissions, including a first downlink slot 920, a second downlink slot 925, a third downlink slot 930, a fourth downlink slot 935, and an uplink slot 940.
  • the base station 105-a may transmit a first instance of downlink control information (DCI) 945 in the first downlink slot 920 using the first beam 905.
  • DCI downlink control information
  • the base station 105-h may transmit a second instance of the DCI 950 in the second downlink slot 925 using the second beam 910.
  • the UE 115-j may monitor for each instance of the control information using downlink beams 915 that correspond to the first beam 905 and the second beam 910.
  • the variable slot delay parameter allows the UE 115-j to attempt to receive multiple instances of the control information which each provide a same resource allocation.
  • the UE 115-j based on successfully decoding one or both of the first instance of the DCI 945 or the second instance of the DCI 950, may identify the uplink resource allocation 955 and transmit the PUSCH in the uplink slot 940.
  • the UE 115-j may combine portions of the first instance of the DCI 945 and the second instance of the DCI 950 at combiner 960 to determine the DCI.
  • soft combining may not be employed, but the UE 115-j may combine one or more information fields from different instances of the DCI to identify the resource allocation to the UE 115-j.
  • Such combining techniques may be useful, for example, in cases where one beam is not substantially better than another beam (e.g., if the UE 115-j is between beams, near a cell edge, etc. ) , and joint decoding may help the UE 115-j to decode the DCI.
  • FIG. 10 illustrates an example of a beamformed communications technique 1000 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • beamformed communications technique 1000 may implement aspects of wireless communications system 100 or 200.
  • a base station 105-i may communicate with a UE 115-k using beamformed communications, such as via a first beam 1005 and a second beam 1010.
  • the UE 115-k may use a receive beams 1015 to receive transmissions from the base station 105-i.
  • the base station 105-i may transmit multiple instances of control information to the UE 115-k via the first beam 1005 and the second beam 1010.
  • a number of slots may be used for transmissions, including a first downlink slot 1020, a second downlink slot 1025, a third downlink slot 1030, a fourth downlink slot 1035, and an uplink slot 1040.
  • the base station 105-i may FDM instances of control information that are transmitted using different beams.
  • the base station 105-i may transmit a first instance of downlink control information (DCI) 1045 in a first frequency band of the first downlink slot 1020 using the first beam 1005.
  • DCI downlink control information
  • the base station 105-i may transmit a second instance of the DCI 1050 in a second frequency band of the first downlink slot 1020 using the second beam 1010.
  • the delay values for each instance of the control information is a same value, to indicate the resource allocation in the uplink slot 1040.
  • the UE 115-k may monitor for each instance of the control information using downlink beams 1015 that correspond to the first beam 1005 and the second beam 1010.
  • the UE 115-k based on successfully decoding one or both of the first instance of the DCI 1045 or the second instance of the DCI 1050, may identify the uplink resource allocation 1055 and transmit the PUSCH in the uplink slot 1040.
  • the UE 115-k may combine the control information to jointly decode the control information.
  • the UE 115-k may use soft buffering to accumulate received signals for each instance of the control information in a soft buffer and perform decoding operations based on the soft buffering.
  • Such FDM techniques of multiple instances of control information may provide additional latency reduction while also providing multiple instances of control information for enhanced reliability.
  • FIG. 11 illustrates an example of a beamformed communications technique 1100 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • beamformed communications technique 1100 may implement aspects of wireless communications system 100 or 200.
  • a base station 105-j may communicate with a UE 115-l using beamformed communications, such as via a first beam 1105 and a second beam 1110.
  • the UE 115-l may use a receive beams 1115 to receive transmissions from the base station 105-j.
  • the base station 105-j may transmit multiple instances of control information to the UE 115-l via the first beam 1105 and the second beam 1110.
  • a number of slots may be used for transmissions, including a first downlink slot 1120, a second downlink slot 1125, a third downlink slot 1130, a fourth downlink slot 1135, and an uplink slot 1140.
  • the base station 105-j may transmit a first instance of downlink control information (DCI) 1145 in the first downlink slot 1120 using the first beam 1105.
  • DCI downlink control information
  • the base station 105-j may transmit a second instance of the DCI 1150 in the second downlink slot 1125 using the second beam 1110.
  • the delay values for each instance of the control information indicate the resource allocation in the uplink slot 1140.
  • the UE 115-l may monitor for each instance of the control information using downlink beams 1115 that correspond to the first beam 1105 and the second beam 1110.
  • the UE 115-l in this case may identify which of the first beam 1105 or the second beam 1110 has better channel conditions and use the identified beam for transmission of the PUSCH.
  • the base station 105-j may monitor for the PUSCH on both beams.
  • FIG. 12 illustrates an example of a process flow 1200 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • process flow 1200 may implement aspects of wireless communications system 100 or 200.
  • process flow 1200 includes UE 115-m and base station 105-k, which may examples of the corresponding devices described with reference to FIGs. 1 and 2.
  • the base station 105-k and UE 115-m may establish a connection via one or more transmission beams.
  • a connection establishment may be performed in accordance with established techniques for connection establishment (e.g., through a random access channel request and connection establishment process such as used in NR systems) .
  • the UE 115-m may transmit measurement information to the base station 105-k.
  • measurement information may include, for example, channel quality measurements performed by the UE 115-m for one or more beams.
  • the UE 115-m may measure reference signal transmissions (e.g., reference signal received power (RSRP) , reference signal strength indicator (RSSI) , etc. ) and provide such measurements to the base station 105-k.
  • the UE 115-m may make such measurements for multiple beams transmitted by the base station 105-k (e.g., as part of a beam management or beam refinement procedure) .
  • Such measurements may be periodic measurements made by the UE 115-m or may be triggered (e.g., by the base station 105-k, based on the UE 115-m detecting high mobility, and the like) .
  • the base station 105-k may determine to trigger multi-beam transmissions. In some cases, the base station 105-k may make such a determination based on the measurements provided by the UE 115-m. In some cases, the base station 105-k may determine two or more beams that are to be used to carry multiple instances of control information
  • the base station 105-k may transmit configuration information to the UE 115-m to trigger the UE 115-m to begin monitoring multiple beams for control information transmissions.
  • the configuration information may include an indication of which beams to monitor at the UE 115-m, a time duration for performing such monitoring, conditions for starting or stopping such monitoring, or combinations thereof.
  • the UE 115-m may monitor for DCI via multiple beams, in accordance with techniques as discussed herein. Such monitoring may be performed in two or more transmission slots, or may be performed fir FDMed DCI that may be transmitted in a same slot.
  • the base station 105-k may transmit multiple instances of DCI to the UE 115-m, including a first instance 1230 and an nth instance 1235 via the configured beams.
  • the UE 115-m may determine shared channel resources based on decoded DCI from the base station 105-k, in accordance with techniques as discussed herein.
  • FIG. 13 shows a block diagram 1300 of a device 1305 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • the device 1305 may be an example of aspects of a UE 115 as described herein.
  • the device 1305 may include a receiver 1310, a communications manager 1315, and a transmitter 1320.
  • the device 1305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to control information reliability improvement through multi-beam transmissions, etc. ) . Information may be passed on to other components of the device 1305.
  • the receiver 1310 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16.
  • the receiver 1310 may utilize a single antenna or a set of antennas.
  • the communications manager 1315 may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE, monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE, and determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • the communications manager 1315 may be an example of aspects of the communications manager 1610 described herein.
  • the communications manager 1315 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1315, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 1315 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1315, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1315, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 1320 may transmit signals generated by other components of the device 1305.
  • the transmitter 1320 may be collocated with a receiver 1310 in a transceiver module.
  • the transmitter 1320 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16.
  • the transmitter 1320 may utilize a single antenna or a set of antennas.
  • FIG. 14 shows a block diagram 1400 of a device 1405 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • the device 1405 may be an example of aspects of a device 1305, or a UE 115 as described herein.
  • the device 1405 may include a receiver 1410, a communications manager 1415, and a transmitter 1430.
  • the device 1405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to control information reliability improvement through multi-beam transmissions, etc. ) . Information may be passed on to other components of the device 1405.
  • the receiver 1410 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16.
  • the receiver 1410 may utilize a single antenna or a set of antennas.
  • the communications manager 1415 may be an example of aspects of the communications manager 1315 as described herein.
  • the communications manager 1415 may include a beam monitoring manager 1420 and a resource allocation manager 1425.
  • the communications manager 1415 may be an example of aspects of the communications manager 1610 described herein.
  • the beam monitoring manager 1420 may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE and monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE.
  • the resource allocation manager 1425 may determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • the transmitter 1430 may transmit signals generated by other components of the device 1405.
  • the transmitter 1430 may be collocated with a receiver 1410 in a transceiver module.
  • the transmitter 1430 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16.
  • the transmitter 1430 may utilize a single antenna or a set of antennas.
  • FIG. 15 shows a block diagram 1500 of a communications manager 1505 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • the communications manager 1505 may be an example of aspects of a communications manager 1315, a communications manager 1415, or a communications manager 1610 described herein.
  • the communications manager 1505 may include a beam monitoring manager 1510, a resource allocation manager 1515, a decoder 1520, a combining component 1525, a retransmission manager 1530, and a configuration manager 1535. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the beam monitoring manager 1510 may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE. In some examples, the beam monitoring manager 1510 may monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE.
  • the first control information and the second control information are frequency division multiplexed in a first transmission slot. In some cases, the first control information and the second control information are frequency division multiplexed in a first transmission slot and each provide a same uplink shared channel allocation for the UE.
  • the resource allocation manager 1515 may determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation. In some examples, the resource allocation manager 1515 may identify a third transmission slot as an initial transmission slot of the shared channel resource allocation based on the first delay value and the second delay value, and where the first control information and the second control information each include one or more parameters of the shared channel resource allocation that are the same.
  • the resource allocation manager 1515 may determine that the first control information provides a first downlink shared channel allocation for a first instance of a downlink transmission in a first transmission slot using the first transmission beam and the second control information provides a second downlink shared channel allocation for a second instance of the downlink transmission in a second transmission slot subsequent to the first transmission slot using the second transmission beam.
  • the resource allocation manager 1515 may identify that the first transmission beam has better channel conditions than the second transmission beam. In some examples, the resource allocation manager 1515 may select, based on the identifying, the first transmission beam for an uplink transmission to the base station. In some examples, the resource allocation manager 1515 may transmit, via the first transmission beam, the uplink transmission to the base station using uplink resources indicated in the shared channel resource allocation.
  • the first delay value and the second delay value are different, and a difference between the first delay value and the second delay value corresponds to a number of transmission slots between the first transmission slot and the second transmission slot.
  • the first delay value and the second delay value each indicate a K0 delay value for a number of transmission slots between a downlink grant and a corresponding PDSCH allocation for the UE.
  • the first delay value and the second delay value each indicate a K2 delay value for a number of transmission slots between an uplink grant and a corresponding PUSCH allocation for the UE.
  • the first control information provides a first downlink shared channel allocation for the UE using the first transmission beam and the second control information provides a second downlink shared channel allocation for the UE using the second transmission beam, and where the first downlink shared channel allocation and the second downlink shared channel allocation each provide a same downlink transmission to the UE.
  • the first control information and the second control information are frequency division multiplexed in a first transmission slot and each provide a different uplink shared channel allocation for the UE on a different uplink beam, and where the UE selects which uplink shared channel allocation to use based on channel conditions of the first control information and the second control information.
  • the decoder 1520 may decode the first control information received in a first transmission slot and the second control information received in a second transmission slot that is subsequent to the first transmission slot. In some examples, the decoder 1520 may decode the downlink transmission based on combined downlink receptions.
  • the combining component 1525 may combine portions of the first control information and the second control information that include the one or more parameters, and where the decoding is based on the combining. In some examples, the combining component 1525 may combine downlink receptions in the first transmission slot and the second transmission slot.
  • the retransmission manager 1530 may attempt to decode a downlink transmission from the base station via the first transmission beam based on the shared channel resource allocation. In some examples, the retransmission manager 1530 may transmit a negative acknowledgment to the base station responsive to determining that the downlink transmission is unsuccessfully decoded. In some examples, the retransmission manager 1530 may monitor for a retransmission of the downlink transmission via the second transmission beam.
  • the configuration manager 1535 may receive signaling from the base station that indicates that multiple control information transmissions via multiple transmission beams will be transmitted by the base station, and where the monitoring is performed responsive to the signaling.
  • FIG. 16 shows a diagram of a system 1600 including a device 1605 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • the device 1605 may be an example of or include the components of device 1305, device 1405, or a UE 115 as described herein.
  • the device 1605 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1610, an I/O controller 1615, a transceiver 1620, an antenna 1625, memory 1630, and a processor 1640. These components may be in electronic communication via one or more buses (e.g., bus 1645) .
  • buses e.g., bus 1645
  • the communications manager 1610 may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE, monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE, and determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • the I/O controller 1615 may manage input and output signals for the device 1605.
  • the I/O controller 1615 may also manage peripherals not integrated into the device 1605.
  • the I/O controller 1615 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1615 may utilize an operating system such as or another known operating system.
  • the I/O controller 1615 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1615 may be implemented as part of a processor.
  • a user may interact with the device 1605 via the I/O controller 1615 or via hardware components controlled by the I/O controller 1615.
  • the transceiver 1620 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1620 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1620 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1625. However, in some cases the device may have more than one antenna 1625, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1630 may include RAM and ROM.
  • the memory 1630 may store computer-readable, computer-executable code 1635 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1630 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1640 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1640 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1640.
  • the processor 1640 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1630) to cause the device 1605 to perform various functions (e.g., functions or tasks supporting control information reliability improvement through multi-beam transmissions) .
  • the code 1635 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1635 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1635 may not be directly executable by the processor 1640 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 17 shows a block diagram 1700 of a device 1705 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • the device 1705 may be an example of aspects of a base station 105 as described herein.
  • the device 1705 may include a receiver 1710, a communications manager 1715, and a transmitter 1720.
  • the device 1705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to control information reliability improvement through multi-beam transmissions, etc. ) . Information may be passed on to other components of the device 1705.
  • the receiver 1710 may be an example of aspects of the transceiver 2020 described with reference to FIG. 20.
  • the receiver 1710 may utilize a single antenna or a set of antennas.
  • the communications manager 1715 may determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam, communicate with the UE using the shared channel resource allocation, transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation, and transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • the communications manager 1715 may be an example of aspects of the communications manager 2010 described herein.
  • the communications manager 1715 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1715, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 1715 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1715, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1715, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 1720 may transmit signals generated by other components of the device 1705.
  • the transmitter 1720 may be collocated with a receiver 1710 in a transceiver module.
  • the transmitter 1720 may be an example of aspects of the transceiver 2020 described with reference to FIG. 20.
  • the transmitter 1720 may utilize a single antenna or a set of antennas.
  • FIG. 18 shows a block diagram 1800 of a device 1805 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • the device 1805 may be an example of aspects of a device 1705, or a base station 105 as described herein.
  • the device 1805 may include a receiver 1810, a communications manager 1815, and a transmitter 1830.
  • the device 1805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to control information reliability improvement through multi-beam transmissions, etc. ) . Information may be passed on to other components of the device 1805.
  • the receiver 1810 may be an example of aspects of the transceiver 2020 described with reference to FIG. 20.
  • the receiver 1810 may utilize a single antenna or a set of antennas.
  • the communications manager 1815 may be an example of aspects of the communications manager 1715 as described herein.
  • the communications manager 1815 may include a resource allocation manager 1820 and a beam manager 1825.
  • the communications manager 1815 may be an example of aspects of the communications manager 2010 described herein.
  • the resource allocation manager 1820 may determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam and communicate with the UE using the shared channel resource allocation.
  • the beam manager 1825 may transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation and transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • the transmitter 1830 may transmit signals generated by other components of the device 1805.
  • the transmitter 1830 may be collocated with a receiver 1810 in a transceiver module.
  • the transmitter 1830 may be an example of aspects of the transceiver 2020 described with reference to FIG. 20.
  • the transmitter 1830 may utilize a single antenna or a set of antennas.
  • FIG. 19 shows a block diagram 1900 of a communications manager 1905 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • the communications manager 1905 may be an example of aspects of a communications manager 1715, a communications manager 1815, or a communications manager 2010 described herein.
  • the communications manager 1905 may include a resource allocation manager 1910, a beam manager 1915, a retransmission manager 1920, and a configuration manager 1925. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the resource allocation manager 1910 may determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam. In some examples, the resource allocation manager 1910 may communicate with the UE using the shared channel resource allocation.
  • the resource allocation manager 1910 may determine that the UE is near a coverage boundary between the first transmission beam and the second transmission beam. In some examples, the resource allocation manager 1910 may determine that the UE is moving at a speed above a threshold value. In some examples, the resource allocation manager 1910 may determine that the first transmission beam and the second transmission beam have reported channel qualities that are within a predetermined range of each other. In some examples, the resource allocation manager 1910 may determine that the UE has missed a predetermined number of control channel transmissions from the base station.
  • the first delay value and the second delay value are different, and a difference between the first delay value and the second delay value corresponds to a number of transmission slots between the first transmission slot and the second transmission slot.
  • the first delay value and the second delay value each indicate a K0 delay value for a number of transmission slots between a downlink grant and a corresponding PDSCH allocation for the UE.
  • the first delay value and the second delay value each indicate a K2 delay value for a number of transmission slots between an uplink grant and a corresponding PUSCH allocation for the UE.
  • the first instance of the control information and the second instance of the control information are frequency division multiplexed in a first transmission slot.
  • the first instance of the control information provides a first downlink shared channel allocation for the UE using the first transmission beam and the second instance of the control information provides a second downlink shared channel allocation for the UE using the second transmission beam, and where the first downlink shared channel allocation and the second downlink shared channel allocation each provide a same downlink transmission to the UE.
  • the first instance of the control information and the second instance of the control information are frequency division multiplexed in a first transmission slot and each provide a same uplink shared channel allocation for the UE.
  • the first instance of the control information and the second instance of the control information are frequency division multiplexed in a first transmission slot and each provide a different uplink shared channel allocation for the UE on a different uplink beam, and where the UE selects which uplink shared channel allocation to use based on channel conditions of the first control information and the second control information.
  • the beam manager 1915 may transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation.
  • the beam manager 1915 may transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • the first instance of the control information is transmitted in a first transmission slot and the second instance of the control information is transmitted in a second transmission slot that is subsequent to the first transmission slot.
  • a third transmission slot is an initial transmission slot of the shared channel resource allocation and is indicated by each of the first delay value and the second delay value.
  • the retransmission manager 1920 may receive, from the UE, a negative acknowledgment that indicates a downlink communication transmitted via the first transmission beam using the shared channel resource allocation was unsuccessfully decoded at the UE. In some examples, the retransmission manager 1920 may retransmit the downlink communication via the second transmission beam.
  • the configuration manager 1925 may transmit signaling to the UE that indicates that multiple control information transmissions via multiple transmission beams will be transmitted by the base station.
  • FIG. 20 shows a diagram of a system 2000 including a device 2005 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • the device 2005 may be an example of or include the components of device 1705, device 1805, or a base station 105 as described herein.
  • the device 2005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 2010, a network communications manager 2015, a transceiver 2020, an antenna 2025, memory 2030, a processor 2040, and an inter-station communications manager 2045. These components may be in electronic communication via one or more buses (e.g., bus 2050) .
  • buses e.g., bus 2050
  • the communications manager 2010 may determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam, communicate with the UE using the shared channel resource allocation, transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation, and transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • the network communications manager 2015 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 2015 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 2020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 2020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 2020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 2025. However, in some cases the device may have more than one antenna 2025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 2030 may include RAM, ROM, or a combination thereof.
  • the memory 2030 may store computer-readable code 2035 including instructions that, when executed by a processor (e.g., the processor 2040) cause the device to perform various functions described herein.
  • a processor e.g., the processor 2040
  • the memory 2030 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 2040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 2040 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 2040.
  • the processor 2040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 2030) to cause the device 2005 to perform various functions (e.g., functions or tasks supporting control information reliability improvement through multi-beam transmissions) .
  • the inter-station communications manager 2045 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 2045 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 2045 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between base stations 105.
  • the code 2035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 2035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 2035 may not be directly executable by the processor 2040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 21 shows a flowchart illustrating a method 2100 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • the operations of method 2100 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 2100 may be performed by a communications manager as described with reference to FIGs. 13 through 16.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE.
  • the operations of 2105 may be performed according to the methods described herein. In some examples, aspects of the operations of 2105 may be performed by a beam monitoring manager as described with reference to FIGs. 13 through 16.
  • the UE may monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE.
  • the operations of 2110 may be performed according to the methods described herein. In some examples, aspects of the operations of 2110 may be performed by a beam monitoring manager as described with reference to FIGs. 13 through 16.
  • the UE may determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • the operations of 2115 may be performed according to the methods described herein. In some examples, aspects of the operations of 2115 may be performed by a resource allocation manager as described with reference to FIGs. 13 through 16.
  • FIG. 22 shows a flowchart illustrating a method 2200 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • the operations of method 2200 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 2200 may be performed by a communications manager as described with reference to FIGs. 13 through 16.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE.
  • the operations of 2205 may be performed according to the methods described herein. In some examples, aspects of the operations of 2205 may be performed by a beam monitoring manager as described with reference to FIGs. 13 through 16.
  • the UE may monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE.
  • the operations of 2210 may be performed according to the methods described herein. In some examples, aspects of the operations of 2210 may be performed by a beam monitoring manager as described with reference to FIGs. 13 through 16.
  • the UE may decode the first control information received in a first transmission slot and the second control information received in a second transmission slot that is subsequent to the first transmission slot.
  • the operations of 2215 may be performed according to the methods described herein. In some examples, aspects of the operations of 2215 may be performed by a decoder as described with reference to FIGs. 13 through 16.
  • the UE may identify a third transmission slot as an initial transmission slot of the shared channel resource allocation based on the first delay value and the second delay value, and where the first control information and the second control information each include one or more parameters of the shared channel resource allocation that are the same.
  • the operations of 2220 may be performed according to the methods described herein. In some examples, aspects of the operations of 2220 may be performed by a resource allocation manager as described with reference to FIGs. 13 through 16. In some cases, the UE may combine portions of the first control information and the second control information that include the one or more parameters, and where the decoding is based on the combining.
  • FIG. 23 shows a flowchart illustrating a method 2300 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • the operations of method 2300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 2300 may be performed by a communications manager as described with reference to FIGs. 13 through 16.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE.
  • the operations of 2305 may be performed according to the methods described herein. In some examples, aspects of the operations of 2305 may be performed by a beam monitoring manager as described with reference to FIGs. 13 through 16.
  • the UE may monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE.
  • the operations of 2310 may be performed according to the methods described herein. In some examples, aspects of the operations of 2310 may be performed by a beam monitoring manager as described with reference to FIGs. 13 through 16.
  • the UE may determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • the operations of 2315 may be performed according to the methods described herein. In some examples, aspects of the operations of 2315 may be performed by a resource allocation manager as described with reference to FIGs. 13 through 16.
  • the UE may identify that the first transmission beam has better channel conditions than the second transmission beam.
  • the operations of 2320 may be performed according to the methods described herein. In some examples, aspects of the operations of 2320 may be performed by a resource allocation manager as described with reference to FIGs. 13 through 16.
  • the UE may select, based on the identifying, the first transmission beam for an uplink transmission to the base station.
  • the operations of 2325 may be performed according to the methods described herein. In some examples, aspects of the operations of 2325 may be performed by a resource allocation manager as described with reference to FIGs. 13 through 16.
  • the UE may transmit, via the first transmission beam, the uplink transmission to the base station using uplink resources indicated in the shared channel resource allocation.
  • the operations of 2330 may be performed according to the methods described herein. In some examples, aspects of the operations of 2330 may be performed by a resource allocation manager as described with reference to FIGs. 13 through 16.
  • FIG. 24 shows a flowchart illustrating a method 2400 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
  • the operations of method 2400 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 2400 may be performed by a communications manager as described with reference to FIGs. 17 through 20.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam.
  • the operations of 2405 may be performed according to the methods described herein. In some examples, aspects of the operations of 2405 may be performed by a resource allocation manager as described with reference to FIGs. 17 through 20.
  • the base station may transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation.
  • the operations of 2410 may be performed according to the methods described herein. In some examples, aspects of the operations of 2410 may be performed by a beam manager as described with reference to FIGs. 17 through 20.
  • the base station may transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  • the operations of 2415 may be performed according to the methods described herein. In some examples, aspects of the operations of 2415 may be performed by a beam manager as described with reference to FIGs. 17 through 20.
  • the base station may communicate with the UE using the shared channel resource allocation.
  • the operations of 2420 may be performed according to the methods described herein. In some examples, aspects of the operations of 2420 may be performed by a resource allocation manager as described with reference to FIGs. 17 through 20.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GP
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
  • the wireless communications systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • magnetic disk storage or other magnetic storage devices
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described that provide for multiple instances of control information transmissions via multiple different transmission beams. A user equipment (UE) may be configured to monitor two or more beams for control information, and determine a subsequent resource allocation based on information in one or more of the control information transmissions. A base station may allocate downlink or uplink resources and transmit control information with the allocation via multiple downlink transmission beams. The multiple instances of the control information may have delay values that correspond to a number of transmission slots such that each instance of the control information indicates the same resource allocation within time domain resources. The UE may monitor for the control information in each of the beams, and identify the allocated resources based on one or multiple received instances of the control information.

Description

CONTROL INFORMATION RELIABILITY IMPROVEMENT THROUGH MULTI-BEAM TRANSMISSIONS BACKGROUND
The following relates generally to wireless communications, and more specifically to control information reliability improvement through multi-beam transmissions.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some cases, wireless devices (e.g., base stations, UEs, etc. ) may use beamformed or precoded signals for transmission and/or reception of wireless communications. For example, a base station may utilize beamformed or precoded transmissions to provide directional transmissions that may mitigate path losses that may be experienced by non-beamformed or non-precoded transmissions which may have a relatively wide beam or omnidirectional transmission pattern. In some cases, control information may be transmitted to a UE via a beamformed transmission which may provide, for example, a resource allocation for a subsequent downlink transmission (e.g. a physical downlink shared channel (PDSCH) transmission) from a base station, for a subsequent uplink transmission (e.g. a physical uplink shared channel (PUSCH) transmission) from the UE to the base station, or combinations thereof. In cases where the UE does not successfully receive the control information (e.g., due to mobility of the UE away from a transmission direction of the  beam used to transmit the control information) , the UE may be unaware of the resource allocation and may miss the subsequent downlink or uplink transmission. In cases where relatively high reliability and low latency communications are exchanged between the UE and the base station, such missed resource allocations can have a negative impact. Thus, efficient techniques for enhancing reliability of beamformed communications may help enhance reliability and efficiency of a network utilizing beamforming.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support control information reliability improvement through multi-beam transmissions. In various aspects, described techniques provide for multiple instances of control information transmissions via multiple different transmission beams. A user equipment (UE) may, in some cases, be configured to monitor two or more beams for control information, and determine a subsequent resource allocation based on information in one or more of the control information transmissions. In some cases, a base station may allocate downlink or uplink resources (e.g., physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) resources) , and transmit control information with the allocation via multiple downlink transmission beams. The multiple instances of the control information may have delay values that correspond to a number of transmission slots such that each instance of the control information indicates the same resource allocation within time domain resources. The UE may monitor for the control information in each of the beams, and identify the allocated resources based on one or multiple received instances of the control information.
In some cases, the multiple instances of the control information may be provided in a same transmission slot, using frequency division multiplexing (FDM) . In such cases, each instance of the control information may include a same delay value and indicate a same resource allocation to the UE. In some cases, each instance of the control information may indicate a same beam that is used for the subsequent resource allocation. In other cases, multiple instances of the control information may indicate a different resource allocation, which may further enhance reliability of communications. In some cases, a UE may provide one or more measurements (e.g., channel quality measurements of multiple beams, mobility  information that indicates rapid beam changes, etc. ) to the base station, and the base station may enable multi-beam transmissions based on the one or more measurements.
A method of wireless communication at a UE is described. The method may include monitoring for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE, monitoring for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE, and determining the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE, monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE, and determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for monitoring for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE, monitoring for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE, and determining the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE, monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE, and determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for decoding the first control information received in a first transmission slot and the second control information received in a second transmission slot that may be subsequent to the first transmission slot, and identifying a third transmission slot as an initial transmission slot of the  shared channel resource allocation based on the first delay value and the second delay value, and where the first control information and the second control information each include one or more parameters of the shared channel resource allocation that may be the same.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for combining portions of the first control information and the second control information that include the one or more parameters, and where the decoding may be based on the combining.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first delay value and the second delay value may be different, and a difference between the first delay value and the second delay value corresponds to a number of transmission slots between the first transmission slot and the second transmission slot. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first delay value and the second delay value each indicate a K0 delay value for a number of transmission slots between a downlink grant and a corresponding PDSCH allocation for the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first control information and the second control information may be frequency division multiplexed in a first transmission slot.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first control information provides a first downlink shared channel allocation for the UE using the first transmission beam and the second control information provides a second downlink shared channel allocation for the UE using the second transmission beam, and where the first downlink shared channel allocation and the second downlink shared channel allocation each provide a same downlink transmission to the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for attempting to decode a downlink transmission from the base station via the first transmission beam based on the shared channel resource allocation, transmitting a negative acknowledgment to the base station responsive to determining that the downlink transmission  is unsuccessfully decoded, and monitoring for a retransmission of the downlink transmission via the second transmission beam.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first control information provides a first downlink shared channel allocation for a first instance of a downlink transmission in a first transmission slot using the first transmission beam and the second control information provides a second downlink shared channel allocation for a second instance of the downlink transmission in a second transmission slot subsequent to the first transmission slot using the second transmission beam, combining downlink receptions in the first transmission slot and the second transmission slot, and decoding the downlink transmission based on the combined downlink receptions.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first delay value and the second delay value each indicate a K2 delay value for a number of transmission slots between an uplink grant and a corresponding PUSCH allocation for the UE. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first control information and the second control information may be frequency division multiplexed in a first transmission slot and each provide a same uplink shared channel allocation for the UE. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first control information and the second control information may be frequency division multiplexed in a first transmission slot and each provide a different uplink shared channel allocation for the UE on a different uplink beam, and where the UE selects which uplink shared channel allocation to use based on channel conditions of the first control information and the second control information.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that the first transmission beam has better channel conditions than the second transmission beam, selecting, based on the identifying, the first transmission beam for an uplink transmission to the base station, and transmitting, via the first transmission beam, the uplink transmission to the base station using uplink resources indicated in the shared channel  resource allocation. Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving signaling from the base station that indicates that multiple control information transmissions via multiple transmission beams will be transmitted by the base station, and where the monitoring may be performed responsive to the signaling.
A method of wireless communication at a base station is described. The method may include determining to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam, transmitting a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation, transmitting a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation, and communicating with the UE using the shared channel resource allocation.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam, transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation, transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the  shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation, and communicate with the UE using the shared channel resource allocation.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for determining to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam, transmitting a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation, transmitting a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation, and communicating with the UE using the shared channel resource allocation.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam, transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation, transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay  value indicate a same transmission slot for the shared channel resource allocation, and communicate with the UE using the shared channel resource allocation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first instance of the control information may be transmitted in a first transmission slot and the second instance of the control information may be transmitted in a second transmission slot that is subsequent to the first transmission slot, and a third transmission slot is an initial transmission slot of the shared channel resource allocation and is indicated by each of the first delay value and the second delay value. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first delay value and the second delay value are different, and a difference between the first delay value and the second delay value corresponds to a number of transmission slots between the first transmission slot and the second transmission slot. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first delay value and the second delay value each indicate a K0 delay value for a number of transmission slots between a downlink grant and a corresponding PDSCH allocation for the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first instance of the control information and the second instance of the control information may be frequency division multiplexed in a first transmission slot.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first instance of the control information provides a first downlink shared channel allocation for the UE using the first transmission beam and the second instance of the control information provides a second downlink shared channel allocation for the UE using the second transmission beam, and where the first downlink shared channel allocation and the second downlink shared channel allocation each provide a same downlink transmission to the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a negative acknowledgment that indicates a downlink communication transmitted via the first transmission beam using the shared channel resource  allocation was unsuccessfully decoded at the UE, and retransmitting the downlink communication via the second transmission beam.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first delay value and the second delay value each indicate a K2 delay value for a number of transmission slots between an uplink grant and a corresponding PUSCH allocation for the UE. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first instance of the control information and the second instance of the control information may be frequency division multiplexed in a first transmission slot and each provide a same uplink shared channel allocation for the UE. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first instance of the control information and the second instance of the control information may be frequency division multiplexed in a first transmission slot and each provide a different uplink shared channel allocation for the UE on a different uplink beam, and where the UE selects which uplink shared channel allocation to use based on channel conditions of the first control information and the second control information.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the determining may include operations, features, means, or instructions for determining that the UE is near a coverage boundary between the first transmission beam and the second transmission beam, determining that the UE is moving at a speed above a threshold value, determining that the first transmission beam and the second transmission beam have reported channel qualities that are within a predetermined range of each other, determining that the UE has missed a predetermined number of control channel transmissions from the base station, or any combinations thereof. Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting signaling to the UE that indicates that multiple control information transmissions via multiple transmission beams will be transmitted by the base station.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of wide beam and narrow beam transmissions that support control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
FIGs. 3 through 11 illustrates examples of beamformed communications techniques that support control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
FIG. 12 illustrates an example of a process flow that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
FIGs. 13 and 14 show block diagrams of devices that support control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
FIG. 15 shows a block diagram of a communications manager that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
FIG. 16 shows a diagram of a system including a device that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
FIGs. 17 and 18 show block diagrams of devices that support control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
FIG. 19 shows a block diagram of a communications manager that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
FIG. 20 shows a diagram of a system including a device that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
FIGs. 21 through 24 show flowcharts illustrating methods that support control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the present disclosure relate to methods, systems, devices, and apparatuses that support multi-beam transmissions of control information and shared channel information for beamformed communications between a user equipment (UE) and a base station. In some cases, a UE and base station may establish a connection via beamformed transmission beams in which one or more uplink beams and downlink beams are identified as available beams for communications. The base station may transmit multiple instances of control information to the UE, via multiple beams, which may be monitored at the UE. The UE may decode the control information on one or more of the beams, and identify resources associated with a resource allocation to the UE (e.g., a physical downlink shared channel (PDSCH) allocation or physical uplink shared channel (PUSCH) allocation) .
In some cases, the multiple instances of the control information may have delay values that correspond to a number of transmission slots such that each instance of the control information indicates the same resource allocation within a time domain slot. The UE may monitor for the control information in each of the beams, and identify the allocated resources based on one or multiple received instances of the control information. In some cases, the multiple instances of the control information may be provided in a same transmission slot, using frequency division multiplexing (FDM) . In such cases, each instance of the control information may include a same delay value and indicate a same resource allocation to the UE. In some cases, each instance of the control information may indicate a same beam that is used for the subsequent resource allocation. In other cases, multiple instances of the control information may indicate a different resource allocation, which may further enhance reliability of communications. In some cases, a UE may provide one or more measurements (e.g., channel quality measurements of multiple beams, mobility information that indicates  rapid beam changes, etc. ) to the base station, and the base station may enable multi-beam transmissions based on the one or more measurements.
Techniques as discussed herein may provide enhanced reliability and efficiency for wireless communications systems. For example, in some systems (e.g., a 5G new radio (NR) system in a time division duplexing (TDD) deployment) the network may bias the system towards downlink transmissions from base stations to UEs. Such biasing may allow for efficient usage of system resources in situations where served UEs receive more data than they transmit. In some cases, downlink-to-uplink slots may have a three-to-one ratio, a four-to-one ratio, or even an eight-to-two ratio. In such cases, if a UE misses an uplink grant, due to the relative scarcity of uplink resources, the next available uplink slot for transmission may be a number of slots away and may result in increased latency in the system. Further, in some cases, different services may be served by a wireless communications system, which may include services that have relatively stringent reliability and latency targets (e.g., ultra-reliable low latency communications (URLLC) services) , and services that have more relaxed reliability and latency targets (e.g., enhanced mobile broadband (eMBB) services) . In cases where high reliability services have data to be transmitted, missed control information transmissions may significantly impact quality of service. In addition to impacts from missed control information transmissions, UEs in some systems may have relatively few antennas and may have limited transmit power (e.g., 23dBm) . Thus, selection of favorable beams for uplink transmissions of such UEs may help to further enhance system efficiency and reliability.
Further, in cases where a UE is moving at a relatively high speed, beam switching between transmission beams may occur relatively frequently. In such situations, UE measurement reports may become out of date relatively quickly, and a base station may transmit downlink communications to the UE using the most recently identified beam, but the UE may still miss the downlink communication due to its mobility. In cases where the downlink communication includes control information, the UE may also miss an associated resource grant for an uplink or downlink transmission, which may result in the UE missing the downlink data from a downlink transmission or missing an uplink transmission opportunity. Additionally, downlink control information may be important because it can carry an aperiodic channel quality information (CQI) request to request UE to report latest channel condition information for scheduling, and also power control commands.
As indicated above, various aspects of the present disclosure provide multi-beam transmissions which may enhance reliability of communications between a base station and a UE. In cases where multiple instances of control information is transmitted to a UE, variable delay parameters may be set to provide the UE information on a same resource allocation. For example, a variable delay indicated by a K0 value may provide a delay value, in a number of slots, between a downlink grant and the corresponding downlink data reception, and a variable delay indicated by a K1 value may provide a delay between reception of an uplink grant and the corresponding uplink transmission. A base station may transmit control information, in some cases, in consecutive slots with different delay values that the UE may receive to identify the same allocated resources. Thus, such techniques may allow a base station to transmit the same or adaptive downlink or uplink grants (DCIs) multiple times to improve the downlink control channel (e.g., PDCCH) reliability. In some cases, such techniques may be enabled only in certain situations in order to conserve resources. For example, such techniques may be implemented when a UE is between two beams having similar signal levels with fading fluctuations, is moving at high mobility speeds, is near a cell edge, has poor RF conditions, is experiencing high interference, has poor PDCCH decoding performance (e.g., the UE is missing ACKs on the uplink, has unutilized uplink grants, etc. ) , or any combinations thereof.
In some cases, a UE may be configured to monitor for multiple instances of control information via multiple beams, and such monitoring may be enabled or disabled through signaling to the UE (e.g., through radio resource control (RRC) signaling) . In some cases, the UE may be enabled to monitor for multiple instances of control information and may combine portions of receptions over multiple transmission beams. For example, due to the different signaled delay value, the UE may be unable to perform soft combining of the entire control information, but may combine certain portions or information fields from multiple instances of the control information. In some cases, the UE may identify that one of the beams being monitored has more favorable channel conditions, and the UE may select the better beam and attempt to decode the control information from that beam. In some cases, the control information may indicate different allocated resources via different beams, and the UE may select one of the resource allocations based on associated beam quality of the beams used in the multi-beam control information transmission.
Wireless communications systems using techniques as discussed herein may thus have more reliable communications in cases where a UE may not reliably receive and decode a single transmission beam. Further, through enabling multi-beam transmission techniques only in cases where unreliable communications are relatively highly likely, system efficiency may be enhanced through reduced numbers of missed downlink transmissions or missed uplink grants. Additionally, high reliability services may be more efficiently and reliably served, which may enable quality of service targets to be achieved in cases where a UE may have challenging channel conditions or high mobility.
Aspects of the disclosure are initially described in the context of a wireless communications system. Various beamformed communications techniques are then discussed that provide multiple instances of control information in multi-beam transmissions. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to control information reliability improvement through multi-beam transmissions.
FIG. 1 illustrates an example of a wireless communications system 100 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices. Base stations 105 and UEs 115 may, in some cases, use multi-beam transmissions to enhance communications reliability in accordance with techniques as discussed herein.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system 100 may include base stations  105 of different types (e.g., macro or small cell base stations) . The UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
The geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell. For example, each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof. In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
The term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier. In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of  devices. In some cases, the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client. A UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
In some cases, a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from  a base station 105. In some cases, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some cases, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a base station 105.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC. User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Streaming Service.
At least some of the network devices, such as a base station 105, may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) . Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band. The SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115. However, the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
In some cases, wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base  stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data. In some cases, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these. Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
In some examples, base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. For example, wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas. MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience  constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In one example, a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality. Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115, which may be an example of a mmW receiving device) may try multiple receive beams when receiving various signals from the  base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions. In some examples a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) . The single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
In some cases, the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
In some cases, wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection  between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data. At the Physical layer, transport channels may be mapped to physical channels.
In some cases, UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) . In some cases, a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of T s = 1/30,720,000 seconds. Time intervals of a communications resource may be organized according to radio frames each having a duration of 10 milliseconds (ms) , where the frame period may be expressed as T f = 307,200 T s. The radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023. Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms. A subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases, a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) . In other cases, a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols. In some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration  depending on the subcarrier spacing or frequency band of operation, for example. Further, some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
The term “carrier” refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling. A carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115. Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) . In some examples, signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM)) .
The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) . For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, control information transmitted in a physical control channel may be  distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) . In some examples, each served UE 115 may be configured for operating over portions or all of the carrier bandwidth. In other examples, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
Devices of the wireless communications system 100 (e.g., base stations 105 or UEs 115) may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
In some cases, UEs 115 and base stations 105 may use beamformed communications, and a UE 115 may be configured to monitor two or more beams for control  information. In such cases, the UE 115 may determine a subsequent resource allocation based on information in one or more of the control information transmissions. In some cases, a base station 105 may allocate downlink or uplink resources (e.g., PDSCH or PUSCH resources) , and transmit multiple instances of the control information with the allocation via multiple downlink transmission beams. The multiple instances of the control information may have delay values that correspond to a number of transmission slots between the control information and the resource allocation, such that each instance of the control information indicates the same slot for the resource allocation. The UE 115 may monitor for the control information in each of the beams, and identify the allocated resources based on one or multiple received instances of the control information.
FIG. 2 illustrates an example of a wireless communications system 200 that uses wide beam and narrow beam transmissions in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. The wireless communications system 200 may include base station 105-a, a first UE 115-a, a second UE 115-b, and a third UE 115-c which each may be examples of a base station 105 and a UE 115, as described with reference to FIG. 1.
Base station 105-a may provide network coverage for geographic area 110-a. Base station 105-a may use beamformed communications, which may include a relatively wide beam 205 having a lower beamforming gain, and a relatively narrow beam 210 having higher beamforming gain. In some cases, the base station 105-a may transmit control information 215 (e.g., PDCCH) via the narrow beam 210 that is directed to first UE 115-a, which may use a corresponding receive beam 220 to receive the control information 215. In some cases, the first UE 115-a may also transmit using an uplink transmit beam that has beamforming parameters that correspond to the beamforming parameters of the receive beam 220.
In this example, the second UE 115-b may be relatively close to the base station 115-a such that it may receive and decode the wide beam 205, and thus if control information is provided by the wide beam 205, it could be received at the second UE 115-b. However, in this example, third UE 115-c may be located a relatively large distance from the base station 105-a such that the lower beamforming gain of the wide beam 205 is not sufficient to be reliably received at the third UE 115-c. Likewise, the third UE 11-c may be located outside of  a beam direction in which the narrow beam 210 may be reliably received. Thus, the third UE 115-c may not be able to decode the control information 215. In some cases, the third UE 115-c may have moved from a location where it could have received the narrow beam 210, and the base station 115-a may be unaware of this new location. In some cases, the first UE 115-a and the third UE 115-c may be located near a cell edge or an edge of coverage area110-a, and thus relatively high beamforming gain such as used for narrow beam 210 may be necessary for beamformed communications with such UEs 115. Various aspects of the present disclosure provide techniques that may allow more reliable transmission of control information 215 to UEs 115 such as the first UE 115-a and the third UE 115-c.
FIG. 3 illustrates an example of a beamformed communications technique 300 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. In some examples, beamformed communications technique 300 may implement aspects of  wireless communications system  100 or 200. In this example, a base station 105-b may communicate with a UE 115-d using beamformed communications, such as via a first beam 305 and a second beam 310. The UE 115-d may use a receive beams 315 to receive transmissions from the base station 105-b.
In this example, the base station 105-b may transmit multiple instances of control information to the UE 115-d via the first beam 305 and the second beam 310. In this case, a number of slots may be used for transmissions, including a first downlink slot 320, a second downlink slot 325, a third downlink slot 330, a fourth downlink slot 335, and an uplink slot 340. In this example, the base station 105-a may transmit a first instance of downlink control information (DCI) 345 in the first downlink slot 320 using the first beam 305. The first instance of the DCI 345 may have a first delay value (e.g., K 0 = 2) that indicates a downlink resource allocation 355 (e.g., a PDSCH allocation) in the third downlink slot 330. In order to enhance reliability in the UE 115-d successfully receiving and decoding the control information, the base station 105-b may transmit a second instance of the DCI 350 in the second downlink slot 325 using the second beam 310. The second instance of the DCI 350 may have a second delay value (e.g., K 0 = 1) that indicates the downlink resource allocation 355 (e.g., PDSCH allocation) in the third downlink slot 330.
The UE 115-d may monitor for each instance of the control information using downlink beams 315 that correspond to the first beam 305 and the second beam 310. The  variable slot delay parameter allows the UE 115-d to attempt to receive multiple instances of the control information which each provide a same resource allocation. The UE 115-d, based on successfully decoding one or both of the first instance of the DCI 345 or the second instance of the DCI 350, may identify the downlink resource allocation 355 and receive the PDSCH in the third downlink slot 330. While examples discussed herein show two transmission beams that may include multiple instances of control information the techniques discussed herein are also applicable to cases where three or more transmission beams may be used to transmit multiple instances of control information. Additionally, while examples discussed herein are directed to DCI that may be transmitted to a UE 115, techniques provided herein may also be used for uplink control information (UCI) or uplink data transmissions from the UE 115-d to the base station 105-b.
FIG. 4 illustrates another example of a beamformed communications technique 400 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. In some examples, beamformed communications technique 400 may implement aspects of  wireless communications system  100 or 200. In this example, a base station 105-c may communicate with a UE 115-e using beamformed communications, such as via a first beam 405 and a second beam 410. The UE 115-e may use a receive beams 415 to receive transmissions from the base station 105-c.
In this example, again the base station 105-c may transmit multiple instances of control information to the UE 115-e via the first beam 405 and the second beam 410. In this case, similarly as discussed in the example of FIG. 3, a number of slots may be used for transmissions, including a first downlink slot 420, a second downlink slot 425, a third downlink slot 430, a fourth downlink slot 435, and an uplink slot 440. In this example, the base station 105-a may transmit a first instance of downlink control information (DCI) 445 in the first downlink slot 420 using the first beam 405. The first instance of the DCI 445 may have a first delay value (e.g., K 0 = 2) that indicates a downlink resource allocation 455 (e.g., a PDSCH allocation) in the third downlink slot 430. In order to enhance reliability in the UE 115-e successfully receiving and decoding the control information, the base station 105-c may transmit a second instance of the DCI 450 in the second downlink slot 425 using the second beam 410. The second instance of the DCI 450 may have a second delay value (e.g.,  K 0 = 1) that indicates the downlink resource allocation 455 (e.g., PDSCH allocation) in the third downlink slot 430.
The UE 115-e may monitor for each instance of the control information using downlink beams 415 that correspond to the first beam 405 and the second beam 410. The variable slot delay parameter allows the UE 115-e to attempt to receive multiple instances of the control information which each provide a same resource allocation. The UE 115-e, based on successfully decoding one or both of the first instance of the DCI 445 or the second instance of the DCI 450, may identify the downlink resource allocation 455 and receive the PDSCH in the third downlink slot 430. In this example, in order to further enhance reliability of the DCI transmission, the UE 115-e may combine portions of the first instance of the DCI 445 and the second instance of the DCI 450 at combiner 460 to determine the DCI. In this example, due to the different delay values, soft combining may not be employed, but the UE 115-e may combine one or more information fields from different instances of the DCI to identify the resource allocation to the UE 115-e. Such combining techniques may be useful, for example, in cases where one beam is not substantially better than another beam (e.g., if the UE 115-e is between beams, near a cell edge, etc. ) , and joint decoding may help the UE 115-e to decode the DCI.
FIG. 5 illustrates another example of a beamformed communications technique 500 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. In some examples, beamformed communications technique 500 may implement aspects of  wireless communications system  100 or 200. In this example, a base station 105-d may communicate with a UE 115-f using beamformed communications, such as via a first beam 505 and a second beam 510. The UE 115-f may use a receive beams 515 to receive transmissions from the base station 105-d.
In this example, again the base station 105-d may transmit multiple instances of control information to the UE 115-f via the first beam 505 and the second beam 510. In this case, similarly as discussed in the example of FIGs. 3 and 4, a number of slots may be used for transmissions, including a first downlink slot 520, a second downlink slot 525, a third downlink slot 530, a fourth downlink slot 535, and an uplink slot 540. In this example, the base station 105-d may FDM instances of control information that are transmitted using  different beams. In this example, the base station 105-d may transmit a first instance of downlink control information (DCI) 545 in a first frequency band of the first downlink slot 520 using the first beam 505. The first instance of the DCI 545 may have a first delay value (e.g., K 0 = 2) that indicates a downlink resource allocation 555 (e.g., a PDSCH allocation) in the third downlink slot 530. In order to enhance reliability in the UE 115-f successfully receiving and decoding the control information, the base station 105-d may transmit a second instance of the DCI 550 in a second frequency band of the first downlink slot 520 using the second beam 510. The second instance of the DCI 550 may have a second delay value (e.g., K 0 = 2) that indicates the downlink resource allocation 555 (e.g., PDSCH allocation) in the third downlink slot 530. Thus, in this example, the delay values for each instance of the control information is a same value, to indicate the resource allocation in the third downlink slot 530.
The UE 115-f may monitor for each instance of the control information using downlink beams 515 that correspond to the first beam 505 and the second beam 510. The UE 115-f, based on successfully decoding one or both of the first instance of the DCI 545 or the second instance of the DCI 550, may identify the downlink resource allocation 555 and receive the PDSCH in the third downlink slot 530. In some cases, similarly as discussed with respect to FIG. 4, the UE 115-f may combine the control information to jointly decode the control information. Further, because the delay values are the same, in some cases the UE 115-f may use soft buffering to accumulate received signals for each instance of the control information in a soft buffer and perform decoding operations based on the soft buffering. Such FDM techniques of multiple instances of control information may provide additional latency reduction while also providing multiple instances of control information for enhanced reliability.
In some cases, such as in the example of FIGs. 3 through 5, the shared channel resource allocation to the UE 115 may be on one of the beams. For example, the base station 105 may allocate PDSCH resources on the first beam and may transmit multiple instances of the DCI that provides the resource allocation on multiple beams. The UE 115 may attempt to decode the PDSCH on the first beam, and if unsuccessful, may transmit a HARQ NACK back to the base station 115 to initiate a retransmission. In such cases, even though the PDSCH transmission not successfully received, latency associated with the retransmission is still reduced relative to cases where the UE 115 misses the downlink control information  transmission entirely. Further, in some cases the base station 105 upon receiving the NACK, may attempt retransmission using a different beam (e.g., using a second beam) based on the UE 115 providing a negative acknowledgment (NACK) on a beam that is preferred at the UE 115, such as discussed below with respect to FIG. 7. In other cases, a NACK may indicate that the UE 115 successfully received the DCI, which the base station 105 may assume was successfully received via a different beam than was used to transmit the PDSCH. In other cases, in order to further enhance the reliability of a PDSCH transmission, a base station 105 may also transmit multiple instances of the PDSCH using multiple beams. An example of such a technique is discussed with respect to FIG. 6.
FIG. 6 illustrates another example of a beamformed communications technique 600 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. In some examples, beamformed communications technique 600 may implement aspects of  wireless communications system  100 or 200. In this example, a base station 105-e may communicate with a UE 115-g using beamformed communications, such as via a first beam 605 and a second beam 610. The UE 115-g may use a receive beams 615 to receive transmissions from the base station 105-e.
In this example, again the base station 105-e may transmit multiple instances of control information to the UE 115-g via the first beam 605 and the second beam 610. In this case, similarly as discussed in the example of FIGs. 3 through 5, a number of slots may be used for transmissions, including a first downlink slot 620, a second downlink slot 625, a third downlink slot 630, a fourth downlink slot 635, and an uplink slot 640. In this example, the base station 105-e may FDM instances of control information that are transmitted using different beams. In this example, the base station 105-e may transmit a first downlink control information (DCI) 645 in a first frequency band of the first downlink slot 620 using the first beam 605. The first DCI 645 may have a first delay value (e.g., K 0 = 2) that indicates a first downlink resource allocation 655 (e.g., a PDSCH allocation) in the third downlink slot 630. In order to enhance reliability in the UE 115-g successfully receiving and decoding the control information and the PDSCH transmission, the base station 105-e may transmit a second DCI 650 in a second frequency band of the first downlink slot 620 using the second beam 610. The second DCI 650 may have a second delay value (e.g., K 0 = 2) that indicates a second downlink resource allocation 660 (e.g., PDSCH allocation) in the third downlink slot  630. In this example, the base station 105-e may also allocate separate downlink resources for PDSCH via the first beam 605 and the second beam 610 using FDM in the third downlink slot 630.
The UE 115-g may monitor for each instance of the control information using downlink beams 615 that correspond to the first beam 605 and the second beam 610. The UE 115-g, based on successfully decoding one or both of the first instance of the DCI 645 or the second instance of the DCI 650, may identify one of both of the first downlink resource allocation 655 or the second downlink resource allocation 660. In some cases, the UE 115-g may determine which beam has more favorable channel conditions, and attempt to decode the PDSCH on that beam. In other cases, the UE 115-g may combine the control information to jointly decode the control information and may combine the PDSCH to jointly decode the PDSCH. Further, because the instances of the control information and PDSCH are the same, in some cases the UE 115-g may use soft buffering to accumulate received signals for each downlink slot in a soft buffer and perform decoding operations based on the soft buffering. Such FDM techniques of multiple instances of control information and PDSCH may provide enhanced reliability. In some cases, techniques such as illustrated in FIG. 6 may be used for mission critical services (e.g., URLLC services) in which reliability of PDSCH is important.
FIG. 7 illustrates an example of a beamformed communications technique 700 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. In some examples, beamformed communications technique 700 may implement aspects of  wireless communications system  100 or 200. In this example, a base station 105-f may communicate with a UE 115-h using beamformed communications, such as via a first beam 705 and a second beam 710. The UE 115-h may use a receive beams 715 to receive transmissions from the base station 105-f.
In this example, again the base station 105-f may transmit multiple instances of control information to the UE 115-h via the first beam 705 and the second beam 710. In this case, similarly as discussed in the example of FIGs. 3 through 6, a number of slots may be used for transmissions, including a first downlink slot 720, a second downlink slot 725, a third downlink slot 730, a fourth downlink slot 735, an uplink slot 740 and, in this example, a fifth downlink slot 770. Further, the base station 105-f may FDM instances of control information that are transmitted using different beams. In this example, the base station 105-f  may transmit a first instance of downlink control information (DCI) 745 in a first frequency band of the first downlink slot 720 using the first beam 705. The first instance of the DCI 745 may have a first delay value (e.g., K 0 = 2) that indicates a downlink resource allocation 755 (e.g., a PDSCH allocation) in the third downlink slot 730. In order to enhance reliability in the UE 115-h successfully receiving and decoding the control information, the base station 105-f may transmit a second instance of the DCI 750 in a second frequency band of the first downlink slot 720 using the second beam 710. The second instance of the DCI 750 may have a second delay value (e.g., K 0 = 2) that indicates the downlink resource allocation 755 (e.g., PDSCH allocation) in the third downlink slot 730. Thus, in this example, the delay values for each instance of the control information is a same value, to indicate the resource allocation in the third downlink slot 730.
The UE 115-h may monitor for each instance of the control information using downlink beams 715 that correspond to the first beam 705 and the second beam 710. The UE 115-h, based on successfully decoding one or both of the first instance of the DCI 745 or the second instance of the DCI 750, may identify the downlink resource allocation 755 and attempt to receive the PDSCH in the third downlink slot 730. In this example, the UE 115-h may not successfully decode the PDSCH, and may transmit a NACK 760 in the uplink slot 740. In this example, the NACK 760 may be transmitted by the UE 115-h using beamforming parameters associated with the second beam 710, and the base station 105-f may monitor for a NACK via beams corresponding to each of the downlink beams 705 and 710. Based on receiving the NACK on the beam that corresponds to the second beam 710, the base station 105-f may retransmit the PDSCH 765 in the fifth downlink slot 770. Such a technique may be used, for example, to further enhance reliability and latency for mission critical services. In some case, RRC signaling may be used to indicate to the UE 115-h that such multiple instances of control information are to be transmitted, and that uplink HARQ ACK/NACK data are to be monitored, using multiple beams.
FIG. 8 illustrates an example of a beamformed communications technique 800 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. In some examples, beamformed communications technique 800 may implement aspects of  wireless communications system  100 or 200. In this example, a base station 105-g may communicate with a UE 115-i using  beamformed communications, such as via a first beam 805 and a second beam 810. The UE 115-i may use a receive beams 815 to receive transmissions from the base station 105-g.
In this example, again the base station 105-g may transmit multiple instances of control information to the UE 115-i via the first beam 805 and the second beam 810. In this case, similarly as discussed in the example of FIGs. 3 through 7, a number of slots may be used for transmissions, including a first downlink slot 820, a second downlink slot 825, a third downlink slot 830, a fourth downlink slot 835, and an uplink slot 840. In this example, the base station 105-g may FDM instances of control information that are transmitted using different beams. In this example, the base station 105-g may transmit a first downlink control information (DCI) 845 in a first frequency band of the first downlink slot 820 using the first beam 805. The first DCI 845 may have a first delay value (e.g., K 0 = 2) that indicates a first downlink resource allocation 855 (e.g., a PDSCH allocation) in the third downlink slot 830. In order to enhance reliability in the UE 115-i successfully receiving and decoding the control information and the PDSCH transmission, the base station 105-g may transmit a second DCI 850 in a second frequency band of the first downlink slot 820 using the second beam 810. The second DCI 850 may have a second delay value (e.g., K 0 = 3) that indicates a second downlink resource allocation 860 (e.g., PDSCH allocation) in the fourth downlink slot 835. In this example, the base station 105-g may also allocate separate downlink resources for PDSCH via the first beam 805 in the third downlink slot 830 and via second beam 810 in the fourth downlink slot 835.
The UE 115-i may monitor for each instance of the control information using downlink beams 815 that correspond to the first beam 805 and the second beam 810. The UE 115-i, based on successfully decoding one or both of the first instance of the DCI 845 or the second instance of the DCI 850, may identify one of both of the first downlink resource allocation 855 or the second downlink resource allocation 860. In some cases, the UE 115-i may determine which beam has more favorable channel conditions, and attempt to decode the PDSCH on that beam in its associated slot. In some cases, the UE 115-e may perform soft combining of the multiple instances of the PDSCH. In some cases, techniques such as illustrated in FIG. 8 may be used for mission critical services (e.g., URLLC services) in which reliability of PDSCH is important. In some cases, the base station 105-g may configure the UE 115-i (e.g., via RRC signaling) for multiple PDSCH transmissions over multiple  beams, and may also configure additional HARQ resources for providing ACK/NACK feedback in time domain.
FIG. 9 illustrates an example of a beamformed communications technique 900 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. In some examples, beamformed communications technique 900 may implement aspects of  wireless communications system  100 or 200. In this example, a base station 105-h may communicate with a UE 115-j using beamformed communications, such as via a first beam 905 and a second beam 910. The UE 115-j may use a receive beams 915 to receive transmissions from the base station 105-h.
In this example, again the base station 105-h may transmit multiple instances of control information to the UE 115-j via the first beam 905 and the second beam 910. In this case, similarly as discussed in the examples of FIGs. 3 through 8, a number of slots may be used for transmissions, including a first downlink slot 920, a second downlink slot 925, a third downlink slot 930, a fourth downlink slot 935, and an uplink slot 940. In this example, the base station 105-a may transmit a first instance of downlink control information (DCI) 945 in the first downlink slot 920 using the first beam 905. The first instance of the DCI 945 may have a first delay value (e.g., K 2 = 4) that indicates an uplink resource allocation 955 (e.g., a PUSCH allocation) in the uplink slot 940. In order to enhance reliability in the UE 115-j successfully receiving and decoding the control information, the base station 105-h may transmit a second instance of the DCI 950 in the second downlink slot 925 using the second beam 910. The second instance of the DCI 950 may have a second delay value (e.g., K 2 = 3) that indicates the uplink resource allocation 955 (e.g., PUSCH allocation) in the uplink slot 940.
The UE 115-j may monitor for each instance of the control information using downlink beams 915 that correspond to the first beam 905 and the second beam 910. The variable slot delay parameter allows the UE 115-j to attempt to receive multiple instances of the control information which each provide a same resource allocation. The UE 115-j, based on successfully decoding one or both of the first instance of the DCI 945 or the second instance of the DCI 950, may identify the uplink resource allocation 955 and transmit the PUSCH in the uplink slot 940. In this example, in order to further enhance reliability of the DCI transmission, the UE 115-j may combine portions of the first instance of the DCI 945  and the second instance of the DCI 950 at combiner 960 to determine the DCI. In this example, due to the different delay values, soft combining may not be employed, but the UE 115-j may combine one or more information fields from different instances of the DCI to identify the resource allocation to the UE 115-j. Such combining techniques may be useful, for example, in cases where one beam is not substantially better than another beam (e.g., if the UE 115-j is between beams, near a cell edge, etc. ) , and joint decoding may help the UE 115-j to decode the DCI.
FIG. 10 illustrates an example of a beamformed communications technique 1000 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. In some examples, beamformed communications technique 1000 may implement aspects of  wireless communications system  100 or 200. In this example, a base station 105-i may communicate with a UE 115-k using beamformed communications, such as via a first beam 1005 and a second beam 1010. The UE 115-k may use a receive beams 1015 to receive transmissions from the base station 105-i.
In this example, again the base station 105-i may transmit multiple instances of control information to the UE 115-k via the first beam 1005 and the second beam 1010. In this case, similarly as discussed in the example of FIGs. 3 through 9, a number of slots may be used for transmissions, including a first downlink slot 1020, a second downlink slot 1025, a third downlink slot 1030, a fourth downlink slot 1035, and an uplink slot 1040. In this example, the base station 105-i may FDM instances of control information that are transmitted using different beams. In this example, the base station 105-i may transmit a first instance of downlink control information (DCI) 1045 in a first frequency band of the first downlink slot 1020 using the first beam 1005. The first instance of the DCI 1045 may have a first delay value (e.g., K 2 = 4) that indicates an uplink resource allocation 1055 (e.g., a PUSCH allocation) in the uplink slot 1040. In order to enhance reliability in the UE 115-k successfully receiving and decoding the control information, the base station 105-i may transmit a second instance of the DCI 1050 in a second frequency band of the first downlink slot 1020 using the second beam 1010. The second instance of the DCI 1050 may have a second delay value (e.g., K 2 = 4) that indicates the uplink resource allocation 1055 (e.g., PUSCH allocation) in the uplink slot 1040. Thus, in this example, the delay values for each instance of the control information is a same value, to indicate the resource allocation in the uplink slot 1040.
The UE 115-k may monitor for each instance of the control information using downlink beams 1015 that correspond to the first beam 1005 and the second beam 1010. The UE 115-k, based on successfully decoding one or both of the first instance of the DCI 1045 or the second instance of the DCI 1050, may identify the uplink resource allocation 1055 and transmit the PUSCH in the uplink slot 1040. In some cases, similarly as discussed herein, the UE 115-k may combine the control information to jointly decode the control information. Further, because the delay values are the same, in some cases the UE 115-k may use soft buffering to accumulate received signals for each instance of the control information in a soft buffer and perform decoding operations based on the soft buffering. Such FDM techniques of multiple instances of control information may provide additional latency reduction while also providing multiple instances of control information for enhanced reliability.
FIG. 11 illustrates an example of a beamformed communications technique 1100 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. In some examples, beamformed communications technique 1100 may implement aspects of  wireless communications system  100 or 200. In this example, a base station 105-j may communicate with a UE 115-l using beamformed communications, such as via a first beam 1105 and a second beam 1110. The UE 115-l may use a receive beams 1115 to receive transmissions from the base station 105-j.
In this example, again the base station 105-j may transmit multiple instances of control information to the UE 115-l via the first beam 1105 and the second beam 1110. In this case, similarly as discussed in the example of FIGs. 3 through 9, a number of slots may be used for transmissions, including a first downlink slot 1120, a second downlink slot 1125, a third downlink slot 1130, a fourth downlink slot 1135, and an uplink slot 1140. In this example, the base station 105-j may transmit a first instance of downlink control information (DCI) 1145 in the first downlink slot 1120 using the first beam 1105. The first instance of the DCI 1145 may have a first delay value (e.g., K 2 = 4) that indicates an uplink resource allocation 1160 (e.g., a PUSCH allocation) in the uplink slot 1140. In order to enhance reliability in the UE 115-l successfully receiving and decoding the control information, the base station 105-j may transmit a second instance of the DCI 1150 in the second downlink slot 1125 using the second beam 1110. The second instance of the DCI 1150 may have a second delay value (e.g., K 2 = 3) that indicates the uplink resource allocation 1160 (e.g.,  PUSCH allocation) in the uplink slot 1140. Thus, in this example, the delay values for each instance of the control information indicate the resource allocation in the uplink slot 1140.
The UE 115-l may monitor for each instance of the control information using downlink beams 1115 that correspond to the first beam 1105 and the second beam 1110. At indicated at 1155, the UE 115-l in this case may identify which of the first beam 1105 or the second beam 1110 has better channel conditions and use the identified beam for transmission of the PUSCH. In such cases, the base station 105-j may monitor for the PUSCH on both beams.
FIG. 12 illustrates an example of a process flow 1200 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. In some examples, process flow 1200 may implement aspects of  wireless communications system  100 or 200. In this example, process flow 1200 includes UE 115-m and base station 105-k, which may examples of the corresponding devices described with reference to FIGs. 1 and 2.
At 1205, the base station 105-k and UE 115-m may establish a connection via one or more transmission beams. Such a connection establishment may be performed in accordance with established techniques for connection establishment (e.g., through a random access channel request and connection establishment process such as used in NR systems) .
At 1210, the UE 115-m may transmit measurement information to the base station 105-k. Such measurement information may include, for example, channel quality measurements performed by the UE 115-m for one or more beams. For example, the UE 115-m may measure reference signal transmissions (e.g., reference signal received power (RSRP) , reference signal strength indicator (RSSI) , etc. ) and provide such measurements to the base station 105-k. The UE 115-m may make such measurements for multiple beams transmitted by the base station 105-k (e.g., as part of a beam management or beam refinement procedure) . Such measurements may be periodic measurements made by the UE 115-m or may be triggered (e.g., by the base station 105-k, based on the UE 115-m detecting high mobility, and the like) .
At 1215, the base station 105-k may determine to trigger multi-beam transmissions. In some cases, the base station 105-k may make such a determination based on the measurements provided by the UE 115-m. In some cases, the base station 105-k may  determine two or more beams that are to be used to carry multiple instances of control information
At 1220, the base station 105-k may transmit configuration information to the UE 115-m to trigger the UE 115-m to begin monitoring multiple beams for control information transmissions. In some case, the configuration information may include an indication of which beams to monitor at the UE 115-m, a time duration for performing such monitoring, conditions for starting or stopping such monitoring, or combinations thereof.
At 1225, the UE 115-m may monitor for DCI via multiple beams, in accordance with techniques as discussed herein. Such monitoring may be performed in two or more transmission slots, or may be performed fir FDMed DCI that may be transmitted in a same slot. The base station 105-k may transmit multiple instances of DCI to the UE 115-m, including a first instance 1230 and an nth instance 1235 via the configured beams. At 1240, the UE 115-m may determine shared channel resources based on decoded DCI from the base station 105-k, in accordance with techniques as discussed herein.
FIG. 13 shows a block diagram 1300 of a device 1305 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. The device 1305 may be an example of aspects of a UE 115 as described herein. The device 1305 may include a receiver 1310, a communications manager 1315, and a transmitter 1320. The device 1305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to control information reliability improvement through multi-beam transmissions, etc. ) . Information may be passed on to other components of the device 1305. The receiver 1310 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16. The receiver 1310 may utilize a single antenna or a set of antennas.
The communications manager 1315 may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of  transmission slots between the first control information transmission and a shared channel resource allocation for the UE, monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE, and determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation. The communications manager 1315 may be an example of aspects of the communications manager 1610 described herein.
The communications manager 1315, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1315, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 1315, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 1315, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1315, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1320 may transmit signals generated by other components of the device 1305. In some examples, the transmitter 1320 may be collocated with a receiver 1310 in a transceiver module. For example, the transmitter 1320 may be an example of aspects of  the transceiver 1620 described with reference to FIG. 16. The transmitter 1320 may utilize a single antenna or a set of antennas.
FIG. 14 shows a block diagram 1400 of a device 1405 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. The device 1405 may be an example of aspects of a device 1305, or a UE 115 as described herein. The device 1405 may include a receiver 1410, a communications manager 1415, and a transmitter 1430. The device 1405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to control information reliability improvement through multi-beam transmissions, etc. ) . Information may be passed on to other components of the device 1405. The receiver 1410 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16. The receiver 1410 may utilize a single antenna or a set of antennas.
The communications manager 1415 may be an example of aspects of the communications manager 1315 as described herein. The communications manager 1415 may include a beam monitoring manager 1420 and a resource allocation manager 1425. The communications manager 1415 may be an example of aspects of the communications manager 1610 described herein.
The beam monitoring manager 1420 may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE and monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE.
The resource allocation manager 1425 may determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
The transmitter 1430 may transmit signals generated by other components of the device 1405. In some examples, the transmitter 1430 may be collocated with a receiver 1410 in a transceiver module. For example, the transmitter 1430 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16. The transmitter 1430 may utilize a single antenna or a set of antennas.
FIG. 15 shows a block diagram 1500 of a communications manager 1505 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. The communications manager 1505 may be an example of aspects of a communications manager 1315, a communications manager 1415, or a communications manager 1610 described herein. The communications manager 1505 may include a beam monitoring manager 1510, a resource allocation manager 1515, a decoder 1520, a combining component 1525, a retransmission manager 1530, and a configuration manager 1535. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The beam monitoring manager 1510 may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE. In some examples, the beam monitoring manager 1510 may monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE.
In some cases, the first control information and the second control information are frequency division multiplexed in a first transmission slot. In some cases, the first control  information and the second control information are frequency division multiplexed in a first transmission slot and each provide a same uplink shared channel allocation for the UE.
The resource allocation manager 1515 may determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation. In some examples, the resource allocation manager 1515 may identify a third transmission slot as an initial transmission slot of the shared channel resource allocation based on the first delay value and the second delay value, and where the first control information and the second control information each include one or more parameters of the shared channel resource allocation that are the same.
In some examples, the resource allocation manager 1515 may determine that the first control information provides a first downlink shared channel allocation for a first instance of a downlink transmission in a first transmission slot using the first transmission beam and the second control information provides a second downlink shared channel allocation for a second instance of the downlink transmission in a second transmission slot subsequent to the first transmission slot using the second transmission beam.
In some examples, the resource allocation manager 1515 may identify that the first transmission beam has better channel conditions than the second transmission beam. In some examples, the resource allocation manager 1515 may select, based on the identifying, the first transmission beam for an uplink transmission to the base station. In some examples, the resource allocation manager 1515 may transmit, via the first transmission beam, the uplink transmission to the base station using uplink resources indicated in the shared channel resource allocation.
In some cases, the first delay value and the second delay value are different, and a difference between the first delay value and the second delay value corresponds to a number of transmission slots between the first transmission slot and the second transmission slot. In some cases, the first delay value and the second delay value each indicate a K0 delay value for a number of transmission slots between a downlink grant and a corresponding PDSCH allocation for the UE. In some cases, the first delay value and the second delay value each  indicate a K2 delay value for a number of transmission slots between an uplink grant and a corresponding PUSCH allocation for the UE.
In some cases, the first control information provides a first downlink shared channel allocation for the UE using the first transmission beam and the second control information provides a second downlink shared channel allocation for the UE using the second transmission beam, and where the first downlink shared channel allocation and the second downlink shared channel allocation each provide a same downlink transmission to the UE.
In some cases, the first control information and the second control information are frequency division multiplexed in a first transmission slot and each provide a different uplink shared channel allocation for the UE on a different uplink beam, and where the UE selects which uplink shared channel allocation to use based on channel conditions of the first control information and the second control information.
The decoder 1520 may decode the first control information received in a first transmission slot and the second control information received in a second transmission slot that is subsequent to the first transmission slot. In some examples, the decoder 1520 may decode the downlink transmission based on combined downlink receptions.
The combining component 1525 may combine portions of the first control information and the second control information that include the one or more parameters, and where the decoding is based on the combining. In some examples, the combining component 1525 may combine downlink receptions in the first transmission slot and the second transmission slot.
The retransmission manager 1530 may attempt to decode a downlink transmission from the base station via the first transmission beam based on the shared channel resource allocation. In some examples, the retransmission manager 1530 may transmit a negative acknowledgment to the base station responsive to determining that the downlink transmission is unsuccessfully decoded. In some examples, the retransmission manager 1530 may monitor for a retransmission of the downlink transmission via the second transmission beam.
The configuration manager 1535 may receive signaling from the base station that indicates that multiple control information transmissions via multiple transmission beams will  be transmitted by the base station, and where the monitoring is performed responsive to the signaling.
FIG. 16 shows a diagram of a system 1600 including a device 1605 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. The device 1605 may be an example of or include the components of device 1305, device 1405, or a UE 115 as described herein. The device 1605 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1610, an I/O controller 1615, a transceiver 1620, an antenna 1625, memory 1630, and a processor 1640. These components may be in electronic communication via one or more buses (e.g., bus 1645) .
The communications manager 1610 may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE, monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE, and determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
The I/O controller 1615 may manage input and output signals for the device 1605. The I/O controller 1615 may also manage peripherals not integrated into the device 1605. In some cases, the I/O controller 1615 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1615 may utilize an operating system such as 
Figure PCTCN2019074744-appb-000001
or another known operating system. In other cases, the I/O controller 1615 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the  I/O controller 1615 may be implemented as part of a processor. In some cases, a user may interact with the device 1605 via the I/O controller 1615 or via hardware components controlled by the I/O controller 1615.
The transceiver 1620 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1620 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1620 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1625. However, in some cases the device may have more than one antenna 1625, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1630 may include RAM and ROM. The memory 1630 may store computer-readable, computer-executable code 1635 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 1630 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1640 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1640 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1640. The processor 1640 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1630) to cause the device 1605 to perform various functions (e.g., functions or tasks supporting control information reliability improvement through multi-beam transmissions) .
The code 1635 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1635 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1635 may not be directly executable by the processor 1640  but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 17 shows a block diagram 1700 of a device 1705 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. The device 1705 may be an example of aspects of a base station 105 as described herein. The device 1705 may include a receiver 1710, a communications manager 1715, and a transmitter 1720. The device 1705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to control information reliability improvement through multi-beam transmissions, etc. ) . Information may be passed on to other components of the device 1705. The receiver 1710 may be an example of aspects of the transceiver 2020 described with reference to FIG. 20. The receiver 1710 may utilize a single antenna or a set of antennas.
The communications manager 1715 may determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam, communicate with the UE using the shared channel resource allocation, transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation, and transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation. The communications manager 1715 may be an example of aspects of the communications manager 2010 described herein.
The communications manager 1715, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1715, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 1715, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 1715, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1715, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1720 may transmit signals generated by other components of the device 1705. In some examples, the transmitter 1720 may be collocated with a receiver 1710 in a transceiver module. For example, the transmitter 1720 may be an example of aspects of the transceiver 2020 described with reference to FIG. 20. The transmitter 1720 may utilize a single antenna or a set of antennas.
FIG. 18 shows a block diagram 1800 of a device 1805 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. The device 1805 may be an example of aspects of a device 1705, or a base station 105 as described herein. The device 1805 may include a receiver 1810, a communications manager 1815, and a transmitter 1830. The device 1805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data  channels, and information related to control information reliability improvement through multi-beam transmissions, etc. ) . Information may be passed on to other components of the device 1805. The receiver 1810 may be an example of aspects of the transceiver 2020 described with reference to FIG. 20. The receiver 1810 may utilize a single antenna or a set of antennas.
The communications manager 1815 may be an example of aspects of the communications manager 1715 as described herein. The communications manager 1815 may include a resource allocation manager 1820 and a beam manager 1825. The communications manager 1815 may be an example of aspects of the communications manager 2010 described herein.
The resource allocation manager 1820 may determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam and communicate with the UE using the shared channel resource allocation.
The beam manager 1825 may transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation and transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
The transmitter 1830 may transmit signals generated by other components of the device 1805. In some examples, the transmitter 1830 may be collocated with a receiver 1810 in a transceiver module. For example, the transmitter 1830 may be an example of aspects of the transceiver 2020 described with reference to FIG. 20. The transmitter 1830 may utilize a single antenna or a set of antennas.
FIG. 19 shows a block diagram 1900 of a communications manager 1905 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. The communications manager 1905 may be an example of aspects of a communications manager 1715, a communications manager 1815, or a communications manager 2010 described herein. The communications manager 1905 may include a resource allocation manager 1910, a beam manager 1915, a retransmission manager 1920, and a configuration manager 1925. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The resource allocation manager 1910 may determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam. In some examples, the resource allocation manager 1910 may communicate with the UE using the shared channel resource allocation.
In some examples, the resource allocation manager 1910 may determine that the UE is near a coverage boundary between the first transmission beam and the second transmission beam. In some examples, the resource allocation manager 1910 may determine that the UE is moving at a speed above a threshold value. In some examples, the resource allocation manager 1910 may determine that the first transmission beam and the second transmission beam have reported channel qualities that are within a predetermined range of each other. In some examples, the resource allocation manager 1910 may determine that the UE has missed a predetermined number of control channel transmissions from the base station.
In some cases, the first delay value and the second delay value are different, and a difference between the first delay value and the second delay value corresponds to a number of transmission slots between the first transmission slot and the second transmission slot. In some cases, the first delay value and the second delay value each indicate a K0 delay value for a number of transmission slots between a downlink grant and a corresponding PDSCH allocation for the UE. In some cases, the first delay value and the second delay value each indicate a K2 delay value for a number of transmission slots between an uplink grant and a corresponding PUSCH allocation for the UE.
In some cases, the first instance of the control information and the second instance of the control information are frequency division multiplexed in a first transmission slot. In some cases, the first instance of the control information provides a first downlink shared channel allocation for the UE using the first transmission beam and the second instance of the control information provides a second downlink shared channel allocation for the UE using the second transmission beam, and where the first downlink shared channel allocation and the second downlink shared channel allocation each provide a same downlink transmission to the UE. In some cases, the first instance of the control information and the second instance of the control information are frequency division multiplexed in a first transmission slot and each provide a same uplink shared channel allocation for the UE.
In some cases, the first instance of the control information and the second instance of the control information are frequency division multiplexed in a first transmission slot and each provide a different uplink shared channel allocation for the UE on a different uplink beam, and where the UE selects which uplink shared channel allocation to use based on channel conditions of the first control information and the second control information.
The beam manager 1915 may transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation. In some examples, the beam manager 1915 may transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
In some cases, the first instance of the control information is transmitted in a first transmission slot and the second instance of the control information is transmitted in a second transmission slot that is subsequent to the first transmission slot. In some cases, a third transmission slot is an initial transmission slot of the shared channel resource allocation and is indicated by each of the first delay value and the second delay value.
The retransmission manager 1920 may receive, from the UE, a negative acknowledgment that indicates a downlink communication transmitted via the first transmission beam using the shared channel resource allocation was unsuccessfully decoded at the UE. In some examples, the retransmission manager 1920 may retransmit the downlink communication via the second transmission beam.
The configuration manager 1925 may transmit signaling to the UE that indicates that multiple control information transmissions via multiple transmission beams will be transmitted by the base station.
FIG. 20 shows a diagram of a system 2000 including a device 2005 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. The device 2005 may be an example of or include the components of device 1705, device 1805, or a base station 105 as described herein. The device 2005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 2010, a network communications manager 2015, a transceiver 2020, an antenna 2025, memory 2030, a processor 2040, and an inter-station communications manager 2045. These components may be in electronic communication via one or more buses (e.g., bus 2050) .
The communications manager 2010 may determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam, communicate with the UE using the shared channel resource allocation, transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation, and transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay  value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
The network communications manager 2015 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 2015 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 2020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 2020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 2020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 2025. However, in some cases the device may have more than one antenna 2025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 2030 may include RAM, ROM, or a combination thereof. The memory 2030 may store computer-readable code 2035 including instructions that, when executed by a processor (e.g., the processor 2040) cause the device to perform various functions described herein. In some cases, the memory 2030 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 2040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 2040 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 2040. The processor 2040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 2030) to cause the device 2005 to perform various functions (e.g., functions or tasks supporting control information reliability improvement through multi-beam transmissions) .
The inter-station communications manager 2045 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 2045 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 2045 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between base stations 105.
The code 2035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 2035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 2035 may not be directly executable by the processor 2040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 21 shows a flowchart illustrating a method 2100 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. The operations of method 2100 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 2100 may be performed by a communications manager as described with reference to FIGs. 13 through 16. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 2105, the UE may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE. The operations of 2105 may be performed according to the methods described herein. In some examples, aspects of the operations of 2105 may be performed by a beam monitoring manager as described with reference to FIGs. 13 through 16.
At 2110, the UE may monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE. The operations of 2110 may be performed according to the methods described herein. In some examples, aspects of the operations of 2110 may be performed by a beam monitoring manager as described with reference to FIGs. 13 through 16.
At 2115, the UE may determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation. The operations of 2115 may be performed according to the methods described herein. In some examples, aspects of the operations of 2115 may be performed by a resource allocation manager as described with reference to FIGs. 13 through 16.
FIG. 22 shows a flowchart illustrating a method 2200 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. The operations of method 2200 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 2200 may be performed by a communications manager as described with reference to FIGs. 13 through 16. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 2205, the UE may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE. The operations of 2205 may be performed according to the methods described herein. In some examples, aspects of the operations of 2205 may be performed by a beam monitoring manager as described with reference to FIGs. 13 through 16.
At 2210, the UE may monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE. The operations of 2210 may be performed according to the methods described herein. In some examples, aspects of the operations of 2210 may be performed by a beam monitoring manager as described with reference to FIGs. 13 through 16.
At 2215, the UE may decode the first control information received in a first transmission slot and the second control information received in a second transmission slot that is subsequent to the first transmission slot. The operations of 2215 may be performed according to the methods described herein. In some examples, aspects of the operations of 2215 may be performed by a decoder as described with reference to FIGs. 13 through 16.
At 2220, the UE may identify a third transmission slot as an initial transmission slot of the shared channel resource allocation based on the first delay value and the second delay value, and where the first control information and the second control information each include one or more parameters of the shared channel resource allocation that are the same. The operations of 2220 may be performed according to the methods described herein. In some examples, aspects of the operations of 2220 may be performed by a resource allocation manager as described with reference to FIGs. 13 through 16. In some cases, the UE may combine portions of the first control information and the second control information that include the one or more parameters, and where the decoding is based on the combining.
FIG. 23 shows a flowchart illustrating a method 2300 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. The operations of method 2300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 2300 may be performed by a communications manager as described with reference to FIGs. 13 through 16. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 2305, the UE may monitor for a first control information transmission from a base station via a first transmission beam, where the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE. The operations of 2305 may be performed according to the methods described herein. In some examples, aspects of the operations of 2305 may be performed by a beam monitoring manager as described with reference to FIGs. 13 through 16.
At 2310, the UE may monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, where the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE. The operations of 2310 may be performed according to the methods described herein. In some examples, aspects of the operations of 2310 may be performed by a beam monitoring manager as described with reference to FIGs. 13 through 16.
At 2315, the UE may determine the shared channel resource allocation for the UE based on one or more of the first control information transmission or the second control information transmission, where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation. The operations of 2315 may be performed according to the methods described herein. In some examples, aspects of the operations of 2315 may be performed by a resource allocation manager as described with reference to FIGs. 13 through 16.
At 2320, the UE may identify that the first transmission beam has better channel conditions than the second transmission beam. The operations of 2320 may be performed according to the methods described herein. In some examples, aspects of the operations of 2320 may be performed by a resource allocation manager as described with reference to FIGs. 13 through 16.
At 2325, the UE may select, based on the identifying, the first transmission beam for an uplink transmission to the base station. The operations of 2325 may be performed according to the methods described herein. In some examples, aspects of the operations of  2325 may be performed by a resource allocation manager as described with reference to FIGs. 13 through 16.
At 2330, the UE may transmit, via the first transmission beam, the uplink transmission to the base station using uplink resources indicated in the shared channel resource allocation. The operations of 2330 may be performed according to the methods described herein. In some examples, aspects of the operations of 2330 may be performed by a resource allocation manager as described with reference to FIGs. 13 through 16.
FIG. 24 shows a flowchart illustrating a method 2400 that supports control information reliability improvement through multi-beam transmissions in accordance with aspects of the present disclosure. The operations of method 2400 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 2400 may be performed by a communications manager as described with reference to FIGs. 17 through 20. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 2405, the base station may determine to transmit control information for a shared resource allocation to a UE via at least a first transmission beam and a second transmission beam, where the first transmission beam has a different beam direction than the second transmission beam. The operations of 2405 may be performed according to the methods described herein. In some examples, aspects of the operations of 2405 may be performed by a resource allocation manager as described with reference to FIGs. 17 through 20.
At 2410, the base station may transmit a first instance of the control information to the UE via the first transmission beam, where the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation. The operations of 2410 may be performed according to the methods described herein. In some examples, aspects of the operations of 2410 may be performed by a beam manager as described with reference to FIGs. 17 through 20.
At 2415, the base station may transmit a second instance of the control information to the UE via the second transmission beam, where the second instance of the control information transmission includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and where the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation. The operations of 2415 may be performed according to the methods described herein. In some examples, aspects of the operations of 2415 may be performed by a beam manager as described with reference to FIGs. 17 through 20.
At 2420, the base station may communicate with the UE using the shared channel resource allocation. The operations of 2420 may be performed according to the methods described herein. In some examples, aspects of the operations of 2420 may be performed by a resource allocation manager as described with reference to FIGs. 17 through 20.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.  UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
The wireless communications systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can  be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or  “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (54)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    monitoring for a first control information transmission from a base station via a first transmission beam, wherein the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE;
    monitoring for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, wherein the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE; and
    determining the shared channel resource allocation for the UE based at least in part on one or more of the first control information transmission or the second control information transmission, wherein the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  2. The method of claim 1, further comprising:
    decoding the first control information received in a first transmission slot and the second control information received in a second transmission slot that is subsequent to the first transmission slot; and
    identifying a third transmission slot as an initial transmission slot of the shared channel resource allocation based at least in part on the first delay value and the second delay value, and wherein the first control information and the second control information each include one or more parameters of the shared channel resource allocation that are the same.
  3. The method of claim 2, further comprising:
    combining portions of the first control information and the second control information that include the one or more parameters, and wherein the decoding is based at least in part on the combining.
  4. The method of claim 2, wherein the first delay value and the second delay value are different, and a difference between the first delay value and the second delay value corresponds to a number of transmission slots between the first transmission slot and the second transmission slot.
  5. The method of claim 1, wherein the first delay value and the second delay value each indicate a K0 delay value for a number of transmission slots between a downlink grant and a corresponding physical downlink shared channel (PDSCH) allocation for the UE.
  6. The method of claim 1, wherein the first control information and the second control information are frequency division multiplexed in a first transmission slot.
  7. The method of claim 6, wherein the first control information provides a first downlink shared channel allocation for the UE using the first transmission beam and the second control information provides a second downlink shared channel allocation for the UE using the second transmission beam, and wherein the first downlink shared channel allocation and the second downlink shared channel allocation each provide a same downlink transmission to the UE.
  8. The method of claim 6, further comprising:
    attempting to decode a downlink transmission from the base station via the first transmission beam based at least in part on the shared channel resource allocation;
    transmitting a negative acknowledgment to the base station responsive to determining that the downlink transmission is unsuccessfully decoded; and
    monitoring for a retransmission of the downlink transmission via the second transmission beam.
  9. The method of claim 6, further comprising:
    determining that the first control information provides a first downlink shared channel allocation for a first instance of a downlink transmission in the first transmission slot using the first transmission beam and the second control information provides a second downlink shared channel allocation for a second instance of the downlink transmission in a  second transmission slot subsequent to the first transmission slot using the second transmission beam;
    combining downlink receptions in the first transmission slot and the second transmission slot; and
    decoding the downlink transmission based on the combined downlink receptions.
  10. The method of claim 1, wherein the first delay value and the second delay value each indicate a K2 delay value for a number of transmission slots between an uplink grant and a corresponding physical uplink shared channel (PUSCH) allocation for the UE.
  11. The method of claim 1, wherein the first control information and the second control information are frequency division multiplexed in a first transmission slot and each provide a same uplink shared channel allocation for the UE.
  12. The method of claim 1, wherein the first control information and the second control information are frequency division multiplexed in a first transmission slot and each provide a different uplink shared channel allocation for the UE on a different uplink beam, and wherein the UE selects which uplink shared channel allocation to use based at least in part on channel conditions of the first control information and the second control information.
  13. The method of claim 1, further comprising:
    identifying that the first transmission beam has better channel conditions than the second transmission beam;
    selecting, based at least in part on the identifying, the first transmission beam for an uplink transmission to the base station; and
    transmitting, via the first transmission beam, the uplink transmission to the base station using uplink resources indicated in the shared channel resource allocation.
  14. The method of claim 1, further comprising:
    receiving signaling from the base station that indicates that multiple control information transmissions via multiple transmission beams will be transmitted by the base station, and wherein the monitoring is performed responsive to the signaling.
  15. A method for wireless communication at a base station, comprising:
    determining to transmit control information for a shared channel resource allocation to a user equipment (UE) via at least a first transmission beam and a second transmission beam, wherein the first transmission beam has a different beam direction than the second transmission beam;
    transmitting a first instance of the control information to the UE via the first transmission beam, wherein the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation;
    transmitting a second instance of the control information to the UE via the second transmission beam, wherein the second instance of the control information includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and wherein the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation; and
    communicating with the UE using the shared channel resource allocation.
  16. The method of claim 15, wherein:
    the first instance of the control information is transmitted in a first transmission slot and the second instance of the control information is transmitted in a second transmission slot that is subsequent to the first transmission slot; and
    a third transmission slot is an initial transmission slot of the shared channel resource allocation and is indicated by each of the first delay value and the second delay value.
  17. The method of claim 16, wherein the first delay value and the second delay value are different, and a difference between the first delay value and the second delay value corresponds to a number of transmission slots between the first transmission slot and the second transmission slot.
  18. The method of claim 15, wherein the first delay value and the second delay value each indicate a K0 delay value for a number of transmission slots between a  downlink grant and a corresponding physical downlink shared channel (PDSCH) allocation for the UE.
  19. The method of claim 15, wherein the first instance of the control information and the second instance of the control information are frequency division multiplexed in a first transmission slot.
  20. The method of claim 19, wherein the first instance of the control information provides a first downlink shared channel allocation for the UE using the first transmission beam and the second instance of the control information provides a second downlink shared channel allocation for the UE using the second transmission beam, and wherein the first downlink shared channel allocation and the second downlink shared channel allocation each provide a same downlink transmission to the UE.
  21. The method of claim 19, further comprising:
    receiving, from the UE, a negative acknowledgment that indicates a downlink communication transmitted via the first transmission beam using the shared channel resource allocation was unsuccessfully decoded at the UE; and
    retransmitting the downlink communication via the second transmission beam.
  22. The method of claim 15, wherein the first delay value and the second delay value each indicate a K2 delay value for a number of transmission slots between an uplink grant and a corresponding physical uplink shared channel (PUSCH) allocation for the UE.
  23. The method of claim 15, wherein the first instance of the control information and the second instance of the control information are frequency division multiplexed in a first transmission slot and each provide a same uplink shared channel allocation for the UE.
  24. The method of claim 15, wherein the first instance of the control information and the second instance of the control information are frequency division multiplexed in a first transmission slot and each provide a different uplink shared channel allocation for the UE on a different uplink beam, and wherein the UE selects which uplink  shared channel allocation to use based at least in part on channel conditions of the first control information and the second control information.
  25. The method of claim 15, wherein the determining comprises one or more of:
    determining that the UE is near a coverage boundary between the first transmission beam and the second transmission beam;
    determining that the UE is moving at a speed above a threshold value;
    determining that the first transmission beam and the second transmission beam have reported channel qualities that are within a predetermined range of each other;
    determining that the UE has missed a predetermined number of control channel transmissions from the base station; or; and
    any combinations thereof.
  26. The method of claim 25, further comprising:
    transmitting signaling to the UE that indicates that multiple control information transmissions via multiple transmission beams will be transmitted by the base station.
  27. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory in electronic communication with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    monitor for a first control information transmission from a base station via a first transmission beam, wherein the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE;
    monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, wherein the second control information transmission includes a second delay  value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE; and
    determine the shared channel resource allocation for the UE based at least in part on one or more of the first control information transmission or the second control information transmission, wherein the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  28. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    decode the first control information received in a first transmission slot and the second control information received in a second transmission slot that is subsequent to the first transmission slot; and
    identify a third transmission slot as an initial transmission slot of the shared channel resource allocation based at least in part on the first delay value and the second delay value, and wherein the first control information and the second control information each include one or more parameters of the shared channel resource allocation that are the same.
  29. The apparatus of claim 28, wherein the instructions are further executable by the processor to cause the apparatus to:
    combine portions of the first control information and the second control information that include the one or more parameters, and wherein the decoding is based at least in part on the combining.
  30. The apparatus of claim 28, wherein the first delay value and the second delay value are different, and a difference between the first delay value and the second delay value corresponds to a number of transmission slots between the first transmission slot and the second transmission slot.
  31. The apparatus of claim 27, wherein the first delay value and the second delay value each indicate a K0 delay value for a number of transmission slots between a downlink grant and a corresponding physical downlink shared channel (PDSCH) allocation for the UE.
  32. The apparatus of claim 27, wherein the first control information and the second control information are frequency division multiplexed in a first transmission slot.
  33. The apparatus of claim 32, wherein the first control information provides a first downlink shared channel allocation for the UE using the first transmission beam and the second control information provides a second downlink shared channel allocation for the UE using the second transmission beam, and wherein the first downlink shared channel allocation and the second downlink shared channel allocation each provide a same downlink transmission to the UE.
  34. The apparatus of claim 32, wherein the instructions are further executable by the processor to cause the apparatus to:
    attempt to decode a downlink transmission from the base station via the first transmission beam based at least in part on the shared channel resource allocation;
    transmit a negative acknowledgment to the base station responsive to determining that the downlink transmission is unsuccessfully decoded; and
    monitor for a retransmission of the downlink transmission via the second transmission beam.
  35. The apparatus of claim 32, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the first control information provides a first downlink shared channel allocation for a first instance of a downlink transmission in the first transmission slot using the first transmission beam and the second control information provides a second downlink shared channel allocation for a second instance of the downlink transmission in a second transmission slot subsequent to the first transmission slot using the second transmission beam;
    combine downlink receptions in the first transmission slot and the second transmission slot; and
    decode the downlink transmission based on the combined downlink receptions.
  36. The apparatus of claim 27, wherein the first delay value and the second delay value each indicate a K2 delay value for a number of transmission slots between an uplink grant and a corresponding physical uplink shared channel (PUSCH) allocation for the UE.
  37. The apparatus of claim 27, wherein the first control information and the second control information are frequency division multiplexed in a first transmission slot and each provide a same uplink shared channel allocation for the UE.
  38. The apparatus of claim 27, wherein the first control information and the second control information are frequency division multiplexed in a first transmission slot and each provide a different uplink shared channel allocation for the UE on a different uplink beam, and wherein the UE selects which uplink shared channel allocation to use based at least in part on channel conditions of the first control information and the second control information.
  39. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify that the first transmission beam has better channel conditions than the second transmission beam;
    select, based at least in part on the identifying, the first transmission beam for an uplink transmission to the base station; and
    transmit, via the first transmission beam, the uplink transmission to the base station using uplink resources indicated in the shared channel resource allocation.
  40. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive signaling from the base station that indicates that multiple control information transmissions via multiple transmission beams will be transmitted by the base station, and wherein the monitoring is performed responsive to the signaling.
  41. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory in electronic communication with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    determine to transmit control information for a shared channel resource allocation to a user equipment (UE) via at least a first transmission beam and a second  transmission beam, wherein the first transmission beam has a different beam direction than the second transmission beam;
    transmit a first instance of the control information to the UE via the first transmission beam, wherein the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation;
    transmit a second instance of the control information to the UE via the second transmission beam, wherein the second instance of the control information includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and wherein the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation; and
    communicate with the UE using the shared channel resource allocation.
  42. The apparatus of claim 41, wherein:
    the first instance of the control information is transmitted in a first transmission slot and the second instance of the control information is transmitted in a second transmission slot that is subsequent to the first transmission slot; and
    a third transmission slot is an initial transmission slot of the shared channel resource allocation and is indicated by each of the first delay value and the second delay value.
  43. The apparatus of claim 42, wherein the first delay value and the second delay value are different, and a difference between the first delay value and the second delay value corresponds to a number of transmission slots between the first transmission slot and the second transmission slot.
  44. The apparatus of claim 41, wherein the first delay value and the second delay value each indicate a K0 delay value for a number of transmission slots between a downlink grant and a corresponding physical downlink shared channel (PDSCH) allocation for the UE.
  45. The apparatus of claim 41, wherein the first instance of the control information and the second instance of the control information are frequency division multiplexed in a first transmission slot.
  46. The apparatus of claim 45, wherein the first instance of the control information provides a first downlink shared channel allocation for the UE using the first transmission beam and the second instance of the control information provides a second downlink shared channel allocation for the UE using the second transmission beam, and wherein the first downlink shared channel allocation and the second downlink shared channel allocation each provide a same downlink transmission to the UE.
  47. The apparatus of claim 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the UE, a negative acknowledgment that indicates a downlink communication transmitted via the first transmission beam using the shared channel resource allocation was unsuccessfully decoded at the UE; and
    retransmit the downlink communication via the second transmission beam.
  48. The apparatus of claim 41, wherein the first delay value and the second delay value each indicate a K2 delay value for a number of transmission slots between an uplink grant and a corresponding physical uplink shared channel (PUSCH) allocation for the UE.
  49. The apparatus of claim 41, wherein the first instance of the control information and the second instance of the control information are frequency division multiplexed in a first transmission slot and each provide a same uplink shared channel allocation for the UE.
  50. The apparatus of claim 41, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit signaling to the UE that indicates that multiple control information transmissions via multiple transmission beams will be transmitted by the base station.
  51. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for monitoring for a first control information transmission from a base station via a first transmission beam, wherein the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE;
    means for monitoring for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, wherein the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE; and
    means for determining the shared channel resource allocation for the UE based at least in part on one or more of the first control information transmission or the second control information transmission, wherein the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  52. An apparatus for wireless communication at a base station, comprising:
    means for determining to transmit control information for a shared channel resource allocation to a user equipment (UE) via at least a first transmission beam and a second transmission beam, wherein the first transmission beam has a different beam direction than the second transmission beam;
    means for transmitting a first instance of the control information to the UE via the first transmission beam, wherein the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation;
    means for transmitting a second instance of the control information to the UE via the second transmission beam, wherein the second instance of the control information includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and wherein the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation; and
    means for communicating with the UE using the shared channel resource allocation.
  53. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    monitor for a first control information transmission from a base station via a first transmission beam, wherein the first control information transmission includes a first delay value that identifies a first number of transmission slots between the first control information transmission and a shared channel resource allocation for the UE;
    monitor for a second control information transmission from the base station via a second transmission beam that is different than the first transmission beam, wherein the second control information transmission includes a second delay value that identifies a second number of transmission slots between the second control information transmission and the shared channel resource allocation for the UE; and
    determine the shared channel resource allocation for the UE based at least in part on one or more of the first control information transmission or the second control information transmission, wherein the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation.
  54. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    determine to transmit control information for a shared channel resource allocation to a user equipment (UE) via at least a first transmission beam and a second transmission beam, wherein the first transmission beam has a different beam direction than the second transmission beam;
    transmit a first instance of the control information to the UE via the first transmission beam, wherein the first instance of the control information includes a first delay value that identifies a first number of transmission slots between the first instance of the control information and the shared channel resource allocation;
    transmit a second instance of the control information to the UE via the second transmission beam, wherein the second instance of the control information includes a second delay value that identifies a second number of transmission slots between the second instance of the control information and the shared channel resource allocation for the UE, and wherein  the first delay value and the second delay value indicate a same transmission slot for the shared channel resource allocation; and
    communicate with the UE using the shared channel resource allocation.
PCT/CN2019/074744 2019-02-09 2019-02-09 Control information reliability improvement through multi-beam transmissions WO2020160692A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074744 WO2020160692A1 (en) 2019-02-09 2019-02-09 Control information reliability improvement through multi-beam transmissions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074744 WO2020160692A1 (en) 2019-02-09 2019-02-09 Control information reliability improvement through multi-beam transmissions

Publications (1)

Publication Number Publication Date
WO2020160692A1 true WO2020160692A1 (en) 2020-08-13

Family

ID=71948071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074744 WO2020160692A1 (en) 2019-02-09 2019-02-09 Control information reliability improvement through multi-beam transmissions

Country Status (1)

Country Link
WO (1) WO2020160692A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151108A1 (en) * 2021-01-13 2022-07-21 北京小米移动软件有限公司 Downlink control information transmission method and apparatus, and communication device
WO2022225640A1 (en) * 2021-04-21 2022-10-27 Qualcomm Incorporated Sib pdsch beam clustering for initial access information

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130051302A1 (en) * 2011-08-24 2013-02-28 Samsung Electronics Co. Ltd. Apparatus and method for selecting beam in wireless communication system
US20140177561A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system
WO2017054569A1 (en) * 2015-09-28 2017-04-06 华为技术有限公司 Method for transmitting control information in wireless communication system, base station and user equipment
WO2018016907A1 (en) * 2016-07-21 2018-01-25 엘지전자 주식회사 Method for transmitting or receiving downlink control information in wireless communication system and device therefor
WO2018082520A1 (en) * 2016-11-03 2018-05-11 株式会社Ntt都科摩 Beam determination method, downlink transmission demodulation method, user equipment and base station
CN109089315A (en) * 2017-06-14 2018-12-25 维沃移动通信有限公司 A kind of data transmission method and device based on multi-beam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130051302A1 (en) * 2011-08-24 2013-02-28 Samsung Electronics Co. Ltd. Apparatus and method for selecting beam in wireless communication system
US20140177561A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system
WO2017054569A1 (en) * 2015-09-28 2017-04-06 华为技术有限公司 Method for transmitting control information in wireless communication system, base station and user equipment
WO2018016907A1 (en) * 2016-07-21 2018-01-25 엘지전자 주식회사 Method for transmitting or receiving downlink control information in wireless communication system and device therefor
WO2018082520A1 (en) * 2016-11-03 2018-05-11 株式会社Ntt都科摩 Beam determination method, downlink transmission demodulation method, user equipment and base station
CN109089315A (en) * 2017-06-14 2018-12-25 维沃移动通信有限公司 A kind of data transmission method and device based on multi-beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151108A1 (en) * 2021-01-13 2022-07-21 北京小米移动软件有限公司 Downlink control information transmission method and apparatus, and communication device
WO2022225640A1 (en) * 2021-04-21 2022-10-27 Qualcomm Incorporated Sib pdsch beam clustering for initial access information
US11617178B2 (en) 2021-04-21 2023-03-28 Qualcomm Incorporated Sib PDSCH beam clustering for initial access information

Similar Documents

Publication Publication Date Title
US11109380B2 (en) Uplink control channel beam switch procedure
EP3989454A1 (en) Duplexing modes based on beam configurations for wireless communications
CA3073087A1 (en) Listen-before-talk and channel reservation for millimeter wave systems
US10959232B2 (en) Physical uplink control channel reliability enhancements
US11856432B2 (en) Acknowledgement design for multi-transmission configuration indicator state transmission
US20190141539A1 (en) Techniques for carrier feedback in wireless systems
US11722181B2 (en) Default quasi co-location assumption for cross carrier reference signal triggering
US20210036743A1 (en) Signaling to assist waveform selection
WO2021035457A1 (en) Full-duplex techniques in wireless communications
WO2019113833A1 (en) Soft-combining for control channels
EP3850768B1 (en) Power control optimization for wireless communications
WO2020113143A1 (en) Acknowledgment feedback techniques in wireless communications
WO2020237213A1 (en) Synchronization signal blocks for beam failure detection
WO2020222920A1 (en) Control resource set determination for multiple transmission-reception point configurations
WO2020023617A1 (en) Enhanced clear channel assessment for shared radio frequency spectrum band
EP3949203A2 (en) On-demand relaying of messages for side-link communications
WO2020146633A2 (en) Priority-based feedback triggering
WO2021037043A1 (en) Acknowledgment feedback for carrier aggregation
WO2020160692A1 (en) Control information reliability improvement through multi-beam transmissions
US20200205092A1 (en) Techniques for concurrent uplink transmissions to multiple transmission reception points
WO2021012247A1 (en) Uplink preemption cancellation with uplink shared channel repetitions
US20190191327A1 (en) Cell quality measurement reporting for cells with mismatched beam numbers
WO2020019125A1 (en) Channel state feedback handling for multi-subscriber identity module device
WO2020168922A1 (en) Transmission diversity enhancement for uplink control channel
WO2020168923A1 (en) Scheme for associating a reference signal with an uplink control channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914562

Country of ref document: EP

Kind code of ref document: A1