WO2021012247A1 - Uplink preemption cancellation with uplink shared channel repetitions - Google Patents

Uplink preemption cancellation with uplink shared channel repetitions Download PDF

Info

Publication number
WO2021012247A1
WO2021012247A1 PCT/CN2019/097635 CN2019097635W WO2021012247A1 WO 2021012247 A1 WO2021012247 A1 WO 2021012247A1 CN 2019097635 W CN2019097635 W CN 2019097635W WO 2021012247 A1 WO2021012247 A1 WO 2021012247A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink channel
uplink
channel repetitions
repetitions
cancelled
Prior art date
Application number
PCT/CN2019/097635
Other languages
French (fr)
Inventor
Qiaoyu Li
Chao Wei
Yu Zhang
Liangming WU
Hao Xu
Chenxi HAO
Min Huang
Yuwei REN
Changlong Xu
Wanshi Chen
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/097635 priority Critical patent/WO2021012247A1/en
Publication of WO2021012247A1 publication Critical patent/WO2021012247A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1664Details of the supervisory signal the supervisory signal being transmitted together with payload signals; piggybacking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, an indication of a set of encoding candidates for the UE to transmit the adjusted uplink channel repetitions based on the uplink cancellation indication.
  • the set of encoding candidates may be transmitted with the configuration scheduling a set of uplink channel repetitions.
  • the set of encoding candidates include separate configurations of resource quantities, target coding rates, or a combination thereof for the uplink control information of the set of uplink channel repetitions.
  • FIG. 1 illustrates an example of a system for wireless communications that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a PUSCH resource configuration that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • FIG. 9 shows a diagram of a system including a device that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • FIGs. 10 and 11 show block diagrams of devices that support uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • FIG. 13 shows a diagram of a system including a device that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • FIGs. 14 through 20 show flowcharts illustrating methods that support uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • a UE may adjust a set of uplink channel repetitions (e.g., PUSCH repetitions) for communications with a base station based on receiving an uplink cancellation indication (e.g., uplink preemption indication) that indicates one or more uplink channel repetitions have been cancelled.
  • an uplink cancellation indication e.g., uplink preemption indication
  • the UE may determine to make the adjustments to the set of uplink channel repetitions based on parameters associated with the cancelled uplink channel repetitions.
  • the base station may indicate how the UE is to adjust the set of uplink channel repetitions (e.g., via an adjustment indication) .
  • aspects of the disclosure are initially described in the context of a wireless communications system. Additionally, aspects of the disclosure are illustrated by an additional wireless communications system, a PUSCH repetition configuration, a PUSCH resource configuration, and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to uplink preemption cancellation with uplink shared channel repetitions.
  • the geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell.
  • each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-APro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
  • the term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices.
  • MTC machine-type communication
  • NB-IoT narrowband Internet-of-Things
  • eMBB enhanced mobile broadband
  • the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC massive machine type communications
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
  • critical functions e.g., mission critical functions
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out between UEs 115 without the involvement of a base
  • Base stations 105 may communicate with the core network 130 and with one another.
  • base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) .
  • Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MU-MIMO multiple-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • some signals e.g. synchronization signals, reference signals, beam selection signals, or other control signals
  • Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
  • wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack.
  • PDCP Packet Data Convergence Protocol
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • HARQ hybrid automatic repeat request
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) .
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023.
  • SFN system frame number
  • Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms.
  • a subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) .
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols.
  • a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling.
  • Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
  • carrier refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125.
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology.
  • Each physical layer channel may carry user data, control information, or other signaling.
  • a carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • E-UTRA absolute radio frequency channel number
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-APro, NR) .
  • communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) .
  • each served UE 115 may be configured for operating over portions or all of the carrier bandwidth.
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
  • a spatial resource e.g., spatial layers
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
  • Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • wireless communications system 100 may utilize enhanced component carriers (eCCs) .
  • eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration.
  • an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) .
  • An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) .
  • An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
  • an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers.
  • a shorter symbol duration may be associated with increased spacing between adjacent subcarriers.
  • a device such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) .
  • a TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
  • Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others.
  • the flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums.
  • NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
  • one or more UEs 115 may be designed to operate at lower transmit power, in a smaller bandwidth for uplink and downlink communications, with reduced computational complexity, etc.
  • These UEs 115 e.g., NR-Light, Low-Tier NR UE, etc.
  • these UEs 115 may include smart wearable devices, industrial sensors, video surveillance devices, etc. Accordingly, these UEs 115 may operate using batteries and/or be in continuous operation, such that a reduced transmit power may increase battery life for the UEs 115 and/or provide less drain on power.
  • these UEs 115 may operate at an uplink transmit power lower (e.g., at least 10 dB less) than conventional UEs 115 (e.g., legacy enhanced mobile broadband (eMBB) UEs) . Additionally, these UEs 115 may use a reduced transmit/receive bandwidth (e.g., 5 MHz bandwidth) for both transmitting and receiving communications with a base station 105.
  • an uplink transmit power lower e.g., at least 10 dB less
  • conventional UEs 115 e.g., legacy enhanced mobile broadband (eMBB) UEs
  • eMBB legacy enhanced mobile broadband
  • the lower transmit power UEs 115 may use uplink channel repetitions for transmitting uplink messages to a base station 105.
  • the lower transmit power UEs 115 may use the uplink channel repetitions for physical random access channel (PRACH) transmissions, reference signals (RSs) , physical uplink control channel (PUCCH) messages, PUSCH messages, etc.
  • PRACH physical random access channel
  • RSs reference signals
  • PUCCH physical uplink control channel
  • the base station 105 may combine the uplink channel repetitions to successfully detect/decode uplink signals from the lower transmit power UEs 115 (e.g., for coverage enhancement) .
  • one or more of the uplink channel repetitions from the lower transmit power UEs 115 may be cancelled due to transmissions with a higher priority (e.g., URLLC traffic) than the uplink signals transmitted by the lower transmit power UEs 115 occurring at the same time and/or one or more of the uplink channel repetitions experiencing interference that cause the base station 105 to unsuccessfully receive or decode the uplink signals from the lower transmit power UEs 115.
  • a higher priority e.g., URLLC traffic
  • base station 105-a may configure UE 115-a with a set of PUSCH repetitions 210 (e.g., uplink channel repetitions via an uplink grant) to increase the chances that base station 105-acan receive and decode an uplink message (e.g., indicated by the uplink grant) from UE 115-a, where the same uplink message is transmitted on each PUSCH 215 of the PUSCH repetitions 210.
  • PUSCH repetitions 210 e.g., uplink channel repetitions via an uplink grant
  • base station 105-a may combine (e.g., soft combine) the PUSCH repetitions 210 to receive and decode an uplink message from UE 115-a.
  • base station 105-a may use one or more ways of combining the received PUSCH repetitions 210.
  • base station 105-a may combine modulated resource elements (REs) received in the PUSCHs 215, where base station 105-a may filter the PUSCHs 215 (e.g., received repetitions) over each RE and obtain an enhanced modulated RE estimation.
  • base station 105-a may combine log-likelihood ratios (LLRs) from the coded bits of the PUSCHs 215.
  • LLRs log-likelihood ratios
  • base station 105-a may use separate decoding of the LLRs, where base station 105-a separately decodes each codeword (e.g., coded bits, encoded bits, etc. ) in each PUSCH 215 (e.g., received codeword repetitions) at first to obtain an LLR of the respective coded bits and then the LLRs of each PUSCH coded bits are further combined. Subsequently, base station 105-a may obtain the final information bits by decoding the combined LLRs.
  • each codeword e.g., coded bits, encoded bits, etc.
  • each PUSCH 215 e.g., received codeword repetitions
  • base station 105-a may use joint decoding of the LLRs, where base station 105-a may jointly decode all received codewords from each PUSCH 215 (e.g., codeword repetitions) and combine LLRs of the coded bits during the joint decoding.
  • base station 105-a may combine LLRs from information bits in each PUSCH 215. For example, base station 105-a may separately decode a codeword in each PUSCH 215 (e.g., each received codeword repetition) at first to obtain an LLR for the information bits of each PUSCH 215. Subsequently, base station 105-a may then further combine the LLRs for the information bits over all the PUSCHs 215 (e.g., the multiple repetitions) and may then obtain the final information bits by evaluating the combined LLRs from the information bits.
  • base station 105-a may separately decode a codeword in each PUSCH 215 (e.g., each received codeword repetition) at first to obtain an LLR for the information bits of each PUSCH 215. Subsequently, base station 105-a may then further combine the LLRs for the information bits over all the PUSCHs 215 (e.g., the multiple repetitions) and may then obtain the final information bits by evaluating the combined LLRs from
  • Each PUSCH 215 may include uplink control information (e.g., HARQ acknowledgement (ACK) transmissions, CSI reports, etc. ) and uplink scheduled data (e.g., indicated by base station 105-a, identified by UE 115-a, etc. ) that base station 105-auses for combining the PUSCH repetitions 210.
  • uplink control information e.g., HARQ acknowledgement (ACK) transmissions, CSI reports, etc.
  • uplink scheduled data e.g., indicated by base station 105-a, identified by UE 115-a, etc.
  • UE 115-a may multiplex the uplink control information with the uplink scheduled data in one or more of the PUSCHs 215.
  • UE 115-a may transmit uplink control information but no uplink scheduled data in a PUSCH 215.
  • base station 105-a may configure resources of the multiplexed uplink control information to UE 115-a.
  • base station 105-a may dynamically or semi-persistently (e.g., for a semi-persistent scheduling (SPS) uplink transmission) indicate beta-offsets (e.g., modulation and coding scheme (MCS) offset values) as parameters regarding the uplink control information (e.g., HARQ-ACK and/or CSI-reports, such as for a CSI-Part-1 and/or CSI-Part-2) .
  • beta-offsets e.g., modulation and coding scheme (MCS) offset values
  • MCS modulation and coding scheme
  • resources of the respective uplink control information components may further be determined according to these parameters.
  • the beta-offsets may indicate a number of resources for multiplexing HARQ-ACK information and for multiplexing CSI reports in a PUSCH 215 (e.g., signaled by base station 105-avia a DCI format scheduling the PUSCH transmission or by higher layers) .
  • UE 115-a may determine to transmit and/or multiplex different parts of a PUSCH 215 according to a priority (e.g., signaled by base station 105-a, configured in UE 115-a, etc. ) .
  • the priority may include HARQ-ACK first, CSI reports second, and uplink scheduled data third.
  • CSI reports may have different priorities, and a same CSI report may include a CSI-Part-1 and CSI-Part-2, where CSI-Part-2 has a lower priority.
  • UE 115-a may map payloads for the uplink control information (e.g., HARQ-ACK, CSI-part-1, CSI-part-2, etc. ) sequentially to corresponding resources determined as above (e.g., based on the priority) , where HARQ-ACK payload may not need omission (e.g., based on including the highest priority) .
  • uplink control information e.g., HARQ-ACK, CSI-part-1, CSI-part-2, etc.
  • UE 115-a may determine a channel coding rate when transmitting each PUSCH 215. For example, UE 115-a may determine a channel coding rate for HARQ-ACK based on a number of HARQ-ACK information bits, the modulation order, and the resource in the PUSCH 215 for HARQ-ACK payload. In some cases, UE 115-a may determine target channel coding rates for CSI reports in a PUSCH 215 based on adjusting an MCS indication in the uplink grant scheduling the PUSCH 215 and adjusting the resources for CSI reports according to:
  • c T is the adjusted target channel coding rate for the CSI reports
  • c MCS is the target code rate for the PUSCH 215 given from the MCS field in the uplink grant, and is the associated beta-offset for CSI-Part-2 of a CSI report.
  • certain parts of information bits of the CSI reports may be omitted (e.g., dropped information bits based on the priority rules) until an actual coding rate of the CSI report can be lower than the identified target coding rate (c T ) .
  • one or more REs in a PUSCH 215 may be cancelled or have an additional transmission interfere with the REs, where the REs are not received correctly by base station 105-a.
  • base station 105-a may transmit an uplink preemption indication (e.g., PUSCH cancellation indication) if one or more REs of a PUSCH 215 are cancelled.
  • uplink preemption indication e.g., PUSCH cancellation indication
  • UESCH radio access technologies
  • base station 105-a may transmit the uplink preemption indication to indicate that one or more PUSCHs 215 (e.g., eMBB traffic) are preempted by higher priority traffic (e.g., URLLC traffic) .
  • base station 105-a may identify that an eMBB UE transmission PUSCH (e.g., a PUSCH 215) is operating in time-frequency resources overlapping with time-frequency resources of an upcoming URLLC UE transmission PUSCH.
  • base station 105-a may configure PUSCH repetitions 210-a for UE 115-a to transmit, but higher priority traffic (e.g., or another type of interference) may cause PUSCHs 215-c and 215-d to be preempted, such that UE 115-a transmits the PUSCHs 215 according to PUSCH repetitions 210-b with PUSCH 215-c and 215-d cancelled based on the signaling from base station 105-a.
  • This signaling may be referred to as an uplink cancellation indication.
  • a power boosting value for the URLLC UE transmission may be adjusted.
  • base station 105-a may determine the number of repetitions (e.g., number of PUSCHs 215) based on obtaining a repetition gain such that the uplink message (e.g., PUSCH) can be successfully decoded. Additionally, each repetition may contain at least one of uplink control information and uplink scheduled data as described above.
  • base station 105-a transmits an uplink cancellation indication that causes UE 115-a to stop transmitting a PUSCH 215 at least for a certain part of PUSCH repetitions 210-a (e.g., even one or several whole PUSCHs 215 of PUSCH repetitions 210-a)
  • base station 105-a may no longer be able to successfully decode the complete uplink message based on the remaining PUSCH 215 repetitions, since the original determined repetition gain may no longer be guaranteed.
  • PUSCHs 215-c and 215-d may be cancelled by UE 115-a when transmitting PUSCH repetition 210-b.
  • additional PUSCHs 215 may not be pre-reserved before the uplink cancellation, as base station 105-a may not identify the uplink traffic associated with the URLLC in advance.
  • base station 105-a may use the combining methods as described above to attempt decoding the PUSCH repetitions 210-a or 210-b.
  • the eight (8) PUSCHs 215 of PUSCH repetitions 210-a are combined and decoded by base station 105-a to obtain control and information bits transmitted by UE 115-a.
  • the six (6) PUSCHs 215 of PUSCH repetitions 210-b (e.g., excluding the cancelled/skipped PUSCHs 215-c and 215-d) may not be sufficient for base station 105-a to combine and successfully decode to obtain the control and information bits transmitted by UE 115-a.
  • the different priorities for the data included in a PUSCH 215 may include priority for HARQ-ACK first, CSI-reports with higher priorities second, CSI-reports with lower priorities third, and uplink scheduled data fourth.
  • UE 115-a may introduce additional PUSCHs 215 (e.g., repetitions) , adjust resource quantity for uplink control information, adjust coding rate for CSI-reports and further omit CSI-reports, or a combination thereof.
  • additional PUSCHs 215 when an uplink cancellation indication is received by UE 115-a, an additional number of PUSCH repetitions may be transmitted by UE 115-a following the last original scheduled repetition of the configured PUSCH repetitions 210-a, where the number of additional repetitions is determined based on the quantity of resources being cancelled.
  • the associated beta-offsets may be adjusted such that HARQ-ACK and/or CSI-reports may have more resources (e.g., therefore lowering the coding rate for HARQ-ACK) .
  • the uplink scheduled data may be rate matched in accordance to the remaining resources for the uplink scheduled data.
  • the adjusted resource quantity for uplink control information (e.g., and rate matched uplink scheduled data) may be applied to at least one of the remaining original scheduled PUSCH repetitions and the newly introduced PUSCH repetitions.
  • At least CSI-reports for at least CSI-reports (e.g., as part of the uplink control information) multiplexed with the uplink scheduled data, at least one new lower target coding rate may be identified for the additional repetitions, where CSI-reports are further omitted according to this new coding rate in the additional repetitions.
  • adjusting the coding rate for CSI-reports and further omitting CSI-reports may be applied to at least one of the remaining original scheduled PUSCH repetitions and the newly introduced PUSCH repetitions. Additionally, the above described techniques may be deployed in parallel.
  • FIG. 3 illustrates an example of a PUSCH repetition configuration 300 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • PUSCH repetition configuration 300 may implement aspects of wireless communications systems 100 and/or 200.
  • a UE 115 may use PUSCH repetition configuration 300 to add one or more PUSCHs 305 to a set of PUSCH repetitions 310 that include one or more PUSCHs 315.
  • one or more PUSCHs 315 e.g., PUSCH 315-c and 315-d
  • another communications e.g., URLLC traffic
  • the added PUSCHs 305 may be introduced to the PUSCH repetitions.
  • the additional number of PUSCH repetitions may be transmitted by the UE 115 following a last original scheduled repetition (e.g., after PUSCH 315-h of PUSCH repetitions 310) , where the number of additional repetitions is determined based on the quantity of resource being cancelled.
  • the association between the number of additional repetitions and the quantity of PUSCH resources being cancelled may be based on a predefined association, a network configuration/indication (e.g., the base station 105/network may preconfigure the association together with signaling indicating the uplink repetition scheduling or using separate signaling) , parameters associated with the cancelled PUSCHs 315 and the PUSCH repetitions 310, or a combination thereof.
  • a network configuration/indication e.g., the base station 105/network may preconfigure the association together with signaling indicating the uplink repetition scheduling or using separate signaling
  • the parameters may include a quantity of resources being cancelled, a number of previous and remaining repetitions before and after the cancelled PUSCHs 315, whether the resource quantity for uplink control information is adjusted, whether the coding rate for CSI-reports is adjusted (e.g., and further CSI-reports are omitted) , or a combination thereof.
  • the base station 105 may also indicate (e.g., with the uplink cancellation indication) whether additional repetitions associated with the current uplink cancellation are allowed or not.
  • the uplink cancellation indication may explicitly indicate the number/resource allocation/frequency hopping pattern of the additional repetitions (e.g., added PUSCHs 305) .
  • the UE 115 may increase a transmit power for the remaining repetitions after the cancelled PUSCHs (e.g., PUSCHs 315-e, 315-f, 315-g, and 315-h occurring after PUSCH 315-d) and/or for added PUSCHs 305 (e.g., when the UE 115 is not power limited) .
  • the cancelled PUSCHs e.g., PUSCHs 315-e, 315-f, 315-g, and 315-h occurring after PUSCH 315-d
  • added PUSCHs 305 e.g., when the UE 115 is not power limited
  • FIG. 4 illustrates an example of a PUSCH resource configuration 400 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • PUSCH resource configuration 400 may implement aspects of wireless communications systems 100 and/or 200.
  • a UE 115 may use PUSCH resource configuration 400 when at least a portion (e.g., at least one symbol) of an originally configured PUSCH allocation 405-a is cancelled (e.g., based on preemption from another transmission as described above) for a multiple PUSCH repetition configuration.
  • PUSCH allocation 405-a may include a first portion (e.g., one or more symbols at the beginning of the PUSCH) allocated for a demodulation reference signal 410, a second portion allocated for uplink control information resources 415 (e.g., for HARQ-ACK, CSI reports, etc. ) , and a third portion allocated for uplink data resources 420.
  • a first portion e.g., one or more symbols at the beginning of the PUSCH
  • uplink control information resources 415 e.g., for HARQ-ACK, CSI reports, etc.
  • PUSCH allocation 405-a may include cancelled resources 425 of uplink control information resources 415.
  • the base station 105 may indicate cancelled resources 425 (e.g., one or more resource elements) for PUSCH allocation 405-a (e.g., resources preempted by a higher priority communication) .
  • the UE 115 may not transmit a PUSCH corresponding to PUSCH allocation 405-a based on cancelled resources 425 occurring within PUSCH allocation 405-a. Additionally or alternatively, the UE 115 may not transmit the cancelled resources 425 but may transmit the rest of the resources in PUSCH allocation 405-a.
  • PUSCH allocation 405-a may illustrate a resource allocation in PUSCH repetitions for the repetitions involving (or earlier than) an uplink cancellation (e.g., cancelled resources 425) .
  • the UE 115 may use an adjusted PUSCH allocation 405-b for remaining PUSCHs in a PUSCH repetition after the uplink cancellation or for added PUSCHs as described above with reference to FIG. 3.
  • PUSCH allocation 405-b may include resources for DMRS 410 and an adjusted resource quantity for uplink control information in adjusted uplink control information resources 430.
  • uplink control information multiplexed with uplink scheduled data when uplink cancellation is involved for the resources allocated for the uplink control information (e.g., uplink control information resources 415 of PUSCH allocation 405-a) , associated beta-offsets (e.g., beta_offsets) may be adjusted such that the uplink control information (e.g., HARQ-ACK and/or CSI-reports) may have more resources (e.g., while the information bits remain the same as in previous repetitions) , thereby lowering a coding rate for the uplink control information.
  • beta_offsets e.g., beta_offsets
  • Adjusting the resource quantity for the uplink control information may be applied to at least one of the remaining original scheduled PUSCH repetitions (e.g., after the PUSCH (s) with cancelled resources) and any newly introduced PUSCH repetitions (e.g., added PUSCHs as described above with reference to FIG. 3) .
  • the adjustment of beta-offsets associated with the uplink control information may be determined based on parameters of the cancelled resources 425 and originally configured PUSCH repetitions.
  • the parameters may include a quantity of resources carrying the related uplink control information being cancelled (e.g., cancelled resources 425) , original beta-offsets, original coding rate, original modulation order, original quantity of resource for the uplink scheduled data (e.g., uplink data resources 420) , original quantity of resource for the related uplink control information (e.g., uplink control information resources 415) , a number of previous repetitions before the PUSCH with the cancelled resources 425, a number of remaining repetitions after the PUSCH with the cancelled resources 425, or a combination thereof.
  • the adjustment of beta-offsets associated with the uplink control information may further be determined based on if additional PUSCHs are added to the PUSCH repetitions (e.g., as described above with reference to FIG. 3) and/or if the coding rate for CSI-reports is adjusted (e.g., and further CSI-reports are omitted) .
  • 36 resource elements may carry HARQ-ACK (e.g., uplink control information) where the original coding rate for the HARQ-ACK is 1/2.
  • HARQ-ACK e.g., uplink control information
  • 1/3 of the resources carrying the HARQ-ACK e.g., one symbol of 12 resource elements
  • may be cancelled e.g., cancelled resources 425) , where two (2) remaining PUSCH repetitions may occur after PUSCH with the cancelled HARQ-ACK resources.
  • the association between the beta-offset adjustment and the above parameters may be predetermined or indicated/configured by the base station 105. Additionally, a new coding rate for a certain uplink control information part may be identified by replacing the corresponding beta-offset into the adjusted uplink control information resources 430.
  • the uplink scheduled data may be rate matched in accordance to the remaining resources for the uplink scheduled data.
  • PUSCH allocation 405-b may include an amount of adjusted uplink data resources 440 that is rate matched based on the remaining resources of PUSCH allocation 405-b after added resources 435 are included in adjusted uplink control information resources 430.
  • UE 115-b may transmit, to base station 105-b, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
  • base station 105-b may combine the received adjusted uplink channel repetitions and may decode an uplink channel transmission from UE 115-b based on the combined uplink channel repetitions.
  • the UE communications manager 615 may receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. Additionally, the UE communications manager 615 may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled. In some cases, the UE communications manager 615 may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. Subsequently, the UE communications manager 615 may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions. The UE communications manager 615 may be an example of aspects of the UE communications manager 910 described herein.
  • the processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 940 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 940.
  • the processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting uplink preemption cancellation with uplink shared channel repetitions) .
  • the receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to uplink preemption cancellation with uplink shared channel repetitions, etc. ) . Information may be passed on to other components of the device 1105.
  • the receiver 1110 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the receiver 1110 may utilize a single antenna or a set of antennas.
  • the uplink cancellation indicator 1130 may transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled.
  • the uplink channel repetition adjuster 1135 may identify an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions.
  • the adjusted uplink channel repetition component 1140 may receive, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
  • the transmitter 1145 may transmit signals generated by other components of the device 1105.
  • the transmitter 1145 may be collocated with a receiver 1110 in a transceiver module.
  • the transmitter 1145 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the transmitter 1145 may utilize a single antenna or a set of antennas.
  • the uplink cancellation indicator 1220 may transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled.
  • the adjusted uplink channel repetition component 1230 may receive, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions. In some examples, the adjusted uplink channel repetition component 1230 may combine the received adjusted uplink channel repetitions. Additionally, the adjusted uplink channel repetition component 1230 may decode an uplink channel transmission from the UE based on the combined uplink channel repetitions.
  • the encoding candidate indicator 1235 may transmit, to the UE, an indication of a set of encoding candidates for the UE to transmit the adjusted uplink channel repetitions based on the uplink cancellation indication.
  • the encoding candidate indicator 1235 may transmit, to the UE, an indication of one configuration of the separate configurations for a default configuration of the uplink channel repetitions, of different configurations of the separate configurations for remaining uplink channel repetitions that are not cancelled based on the uplink cancellation indication, or a combination thereof.
  • the set of encoding candidates may be transmitted with the configuration scheduling a set of uplink channel repetitions.
  • the set of encoding candidates may include separate configurations of beta offsets, target coding rates, or a combination thereof for the uplink control information of the set of uplink channel repetitions.
  • FIG. 13 shows a diagram of a system 1300 including a device 1305 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • the device 1305 may be an example of or include the components of device 1005, device 1105, or a base station 105 as described herein.
  • the device 1305 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a base station communications manager 1310, a network communications manager 1315, a transceiver 1320, an antenna 1325, memory 1330, a processor 1340, and an inter-station communications manager 1345. These components may be in electronic communication via one or more buses (e.g., bus 1350) .
  • buses e.g., bus 1350
  • the base station communications manager 1310 may transmit, to a UE, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. In some cases, the base station communications manager 1310 may determine that at least a portion of one uplink channel repetition is preempted by a first communications. Additionally, the base station communications manager 1310 may transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled. In some cases, the base station communications manager 1310 may identify an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. Subsequently, the base station communications manager 1310 may receive, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
  • the network communications manager 1315 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1315 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the code 1335 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1335 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1335 may not be directly executable by the processor 1340 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a UE communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below.
  • a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a repetition configuration component as described with reference to FIGs. 6 through 9.
  • the UE may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by an uplink cancellation indication component as described with reference to FIGs. 6 through 9.
  • the UE may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by an adjusted repetition component as described with reference to FIGs. 6 through 9.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a UE communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below.
  • a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by an uplink cancellation indication component as described with reference to FIGs. 6 through 9.
  • the UE may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a repetition adjuster as described with reference to FIGs. 6 through 9.
  • the UE may receive, from the base station, an adjustment indication to adjust the set of uplink channel repetitions based on the cancelled one or more uplink channel repetitions.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a repetition adjuster as described with reference to FIGs. 6 through 9.
  • the UE may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by an adjusted repetition component as described with reference to FIGs. 6 through 9.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a UE communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below.
  • a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a repetition adjuster as described with reference to FIGs. 6 through 9.
  • the UE may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by an adjusted repetition component as described with reference to FIGs. 6 through 9.
  • the UE may transmit one or more additional uplink channel repetitions following a last scheduled uplink channel repetition of the set of uplink channel repetitions based on a number of uplink channel repetitions that are cancelled.
  • the operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by an additional repetition component as described with reference to FIGs. 6 through 9.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1700 may be performed by a UE communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a repetition configuration component as described with reference to FIGs. 6 through 9.
  • the UE may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by an uplink cancellation indication component as described with reference to FIGs. 6 through 9.
  • the UE may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a repetition adjuster as described with reference to FIGs. 6 through 9.
  • the UE may determine that the uplink control information and the uplink scheduled data are multiplexed in the set of uplink channel repetitions, where the cancelled one or more uplink channel repetitions include at least the uplink control information.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a resource quantity adjuster as described with reference to FIGs. 6 through 9.
  • the UE may increase a resource quantity for the uplink control information in at least one uplink channel repetition of the set of uplink channel repetitions that is not cancelled, in an additional one or more uplink channel repetition added to the set of uplink channel repetitions, or a combination thereof based on the determination, where the increased resource quantity is greater than an initial resource quantity configured for the set of uplink channel repetitions.
  • the operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a resource quantity adjuster as described with reference to FIGs. 6 through 9.
  • the UE may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
  • the operations of 1730 may be performed according to the methods described herein. In some examples, aspects of the operations of 1730 may be performed by an adjusted repetition component as described with reference to FIGs. 6 through 9.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1800 may be performed by a UE communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below.
  • a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by an uplink cancellation indication component as described with reference to FIGs. 6 through 9.
  • the UE may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a repetition adjuster as described with reference to FIGs. 6 through 9.
  • the UE may determine that the uplink control information includes at least channel state information reports and that the channel state information reports are multiplexed with the uplink scheduled data, where the cancelled one or more uplink channel repetitions include at least one channel state information report.
  • the operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a coding rate adjuster as described with reference to FIGs. 6 through 9.
  • the UE may determine a new target coding rate for channel state information reports lower than an initial target coding rate for the channel state information reports in the uplink channel repetitions before the cancelled uplink channel repetitions, for one or more additional uplink channel repetitions added to the set of uplink channel repetitions to transmit, for one or more uplink channel repetitions following the cancelled uplink channel repetitions, or a combination thereof.
  • the operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a coding rate adjuster as described with reference to FIGs. 6 through 9.
  • the UE may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
  • the operations of 1830 may be performed according to the methods described herein. In some examples, aspects of the operations of 1830 may be performed by an adjusted repetition component as described with reference to FIGs. 6 through 9.
  • the base station may transmit, to a UE, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data.
  • the operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by an uplink channel repetition component as described with reference to FIGs. 10 through 13.
  • the base station may transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled.
  • the operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by an uplink cancellation indicator as described with reference to FIGs. 10 through 13.
  • the base station may identify an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions.
  • the operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by an uplink channel repetition adjuster as described with reference to FIGs. 10 through 13.
  • the base station may receive, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
  • the operations of 2025 may be performed according to the methods described herein. In some examples, aspects of the operations of 2025 may be performed by an adjusted uplink channel repetition component as described with reference to FIGs. 10 through 13.
  • FIG. 20 shows a flowchart illustrating a method 2000 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
  • the operations of method 2000 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 2000 may be performed by a base station communications manager as described with reference to FIGs. 10 through 13.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit, to a UE, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data.
  • the operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by an uplink channel repetition component as described with reference to FIGs. 10 through 13.
  • the base station may determine that at least a portion of one uplink channel repetition is preempted by a first communications.
  • the operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by an uplink preemption component as described with reference to FIGs. 10 through 13.
  • the base station may transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled.
  • the operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by an uplink cancellation indicator as described with reference to FIGs. 10 through 13.
  • the base station may identify an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions.
  • the operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by an uplink channel repetition adjuster as described with reference to FIGs. 10 through 13.
  • the base station may receive, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
  • the operations of 2025 may be performed according to the methods described herein. In some examples, aspects of the operations of 2025 may be performed by an adjusted uplink channel repetition component as described with reference to FIGs. 10 through 13.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GP
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
  • the wireless communications systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • magnetic disk storage or other magnetic storage devices
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may adjust a set of uplink channel repetitions for communications with a base station based on receiving an uplink cancellation indication that indicates one or more uplink channel repetitions have been cancelled. In some cases, the UE may determine to make the adjustments to the set of uplink channel repetitions based on parameters associated with the cancelled uplink channel repetitions. Additionally, the base station may indicate how the UE is to adjust the set of uplink channel repetitions. For example, the UE may transmit one or more additional uplink channel repetitions based on the number of cancelled uplink channel repetitions, increase a resource quantity allocated for uplink control information, use a new coding rate for the uplink control information of at least one uplink channel repetition, or a combination thereof.

Description

UPLINK PREEMPTION CANCELLATION WITH UPLINK SHARED CHANNEL REPETITIONS BACKGROUND
The following relates generally to wireless communications, and more specifically to uplink preemption cancellation with uplink shared channel repetitions.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some wireless communications systems, a base station may configure a UE to transmit the same uplink message in multiple uplink channel repetitions to increase chances that the base station can successfully decode the uplink message. For example, if the UE transmits the uplink message once on a single uplink channel, different interferences (e.g., caused by other transmissions occurring at the same time as the single uplink channel) may impact the uplink message received at the base station (e.g., if the UE transmits the uplink message at a reduced power) . Accordingly, by transmitting the same uplink message in multiple uplink channel repetitions may enable the base station to combine multiple instances of the same uplink message such that the impact of the different interferences is reduced. Efficient techniques are desired for enabling the base station to combine the multiple uplink channel repetitions for difference scenarios (e.g., low powered UEs) .
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support uplink preemption cancellation with uplink shared channel repetitions. Generally, the described techniques provide for a UE to adjust a set of uplink channel repetitions for communications with a base station based on receiving an uplink cancellation indication (e.g., uplink preemption indication) that indicates one or more uplink channel repetitions have been cancelled. In some cases, the UE may determine to make the adjustments to the set of uplink channel repetitions based on parameters associated with the cancelled uplink channel repetitions. Additionally or alternatively, the base station may indicate how the UE is to adjust the set of uplink channel repetitions (e.g., via an adjustment indication) . Accordingly, for adjusting the set of uplink channel repetitions, the UE may transmit one or more additional uplink channel repetitions based on the number of cancelled uplink channel repetitions, increase a resource quantity allocated for uplink control information in at least one uplink channel repetition (e.g., by adjusting a beta offset value) , use a new coding rate for the uplink control information of at least one uplink channel repetition (e.g., and omit uplink reports based on the new code rate) , or a combination thereof. In some cases, the UE and/or base station may determine to make the adjustments to the set of uplink channel repetitions based on whether the uplink control information is multiplexed with uplink data in the uplink channel repetitions.
A method of wireless communications at a UE is described. The method may include receiving, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data, receiving, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled, identifying an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions, and transmitting, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to  receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data, receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled, identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions, and transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for receiving, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data, receiving, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled, identifying an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions, and transmitting, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data, receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled, identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions, and transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the adjusting configuration to adjust the set of uplink channel repetitions further may include operations, features, means, or instructions for  receiving, from the base station, an adjustment indication to adjust the set of uplink channel repetitions based on the cancelled one or more uplink channel repetitions.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the adjustment indication may be received via radio resource control (RRC) signaling, a medium access control (MAC) control element (MAC-CE) , downlink control indication (DCI) signaling, may be prestored in the UE, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, adjusting the set of uplink channel repetitions may include operations, features, means, or instructions for transmitting one or more additional uplink channel repetitions following a last scheduled uplink channel repetition of the set of uplink channel repetitions based on a number of uplink channel repetitions that may be cancelled.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for increasing a transmit power for the one or more additional uplink channel repetitions, for one or more uplink channel repetitions following the cancelled uplink channel repetitions, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a resource allocation and a frequency hopping pattern of the one or more additional uplink channel repetitions may be based on a resource allocation and a frequency hopping pattern of the scheduled set of uplink channel repetitions.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a number of the one or more additional uplink channel repetitions may be based on a number of symbols of a single uplink channel repetition that may be cancelled, a number of consecutive uplink channel repetitions that may be cancelled, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the parameters associated with the cancelled one or more uplink channel repetitions include a quantity of resources cancelled, a number of previous  uplink channel repetitions of the set of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the set of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, adjusting a resource quantity for uplink control information, adjusting a coding rate of channel state information (CSI) reports, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, adjusting the set of uplink channel repetitions may include operations, features, means, or instructions for determining that the uplink control information and the uplink scheduled data may be multiplexed in the set of uplink channel repetitions, where the cancelled one or more uplink channel repetitions include at least the uplink control information, and increasing a resource quantity for the uplink control information in at least one uplink channel repetition of the set of uplink channel repetitions that may be not cancelled, in an additional one or more uplink channel repetition added to the set of uplink channel repetitions, or a combination thereof based on the determination, where the increased resource quantity may be greater than an initial resource quantity configured for the set of uplink channel repetitions.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a coding rate for the uplink control information based on an increased resource quantity for the uplink control information.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the coding rate may be decreased based on the increased resource quantity for the uplink control information.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for rating matching the uplink scheduled data based on a remaining number of resources in an uplink channel repetition after increasing the resource quantity for the uplink control information.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the parameters associated with the cancelled one or more uplink channel repetitions include a quantity of resources carrying the uplink control  information being cancelled, an original resource quantity for the set of uplink channel repetitions, a coding rate for the set of uplink channel repetitions, a modulation order for the set of uplink channel repetitions, a quantity of resources of the uplink scheduled data for the set of uplink channel repetitions, a quantity of resources of the uplink control information for the set of uplink channel repetitions, a number of previous uplink channel repetitions of the set of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the set of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, transmitting one or more additional uplink channel repetitions, adjusting a coding rate of CSI reports, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, adjusting the set of uplink channel repetitions may include operations, features, means, or instructions for determining that the uplink control information includes at least CSI reports and that the CSI reports may be multiplexed with the uplink scheduled data, where the cancelled one or more uplink channel repetitions include at least one CSI report, determining a new target coding rate for CSI reports lower than an initial target coding rate for the CSI reports in the uplink channel repetitions before the cancelled uplink channel repetitions, for one or more additional uplink channel repetitions added to the set of uplink channel repetitions to transmit, for one or more uplink channel repetitions following the cancelled uplink channel repetitions, or a combination thereof, and transmitting the one or more additional uplink channel repetitions according to the target code rate.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for omitting one or more CSI reports from the one or more additional uplink channel repetitions based on the determined new target coding rate.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for increasing a resource quantity for the uplink control information in at least one uplink channel repetition of the set of uplink channel repetitions that may be not cancelled, in the additional one or more uplink channel repetitions, or a combination thereof, and transmitting  one or more CSI reports in the one or more additional uplink channel repetitions based on the increased resource quantity for the uplink control information.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the parameters associated with the cancelled one or more uplink channel repetitions include a quantity of resources carrying the uplink control information being cancelled, an original resource quantity for the set of uplink channel repetitions, a coding rate for the set of uplink channel repetitions, a modulation order for the set of uplink channel repetitions, a quantity of resources of the uplink control information for the set of uplink channel repetitions, a number of previous uplink channel repetitions of the set of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the set of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, transmitting one or more additional uplink channel repetitions, increasing a resource quantity for the uplink control information, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the determined new target coding rate may be determined for a CSI part one and a CSI part two jointly or separately.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for adapting resource allocations for remaining uplink channel repetitions after the at least one uplink channel repetition to decrease a coding rate for the uplink control information, the uplink scheduled data, or a combination thereof in the remaining uplink channel repetitions.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for adjusting a redundancy version of at least one uplink channel repetition of the set of uplink channel repetitions that may be not cancelled, in the additional one or more uplink channel repetitions, or a combination thereof based on an original redundancy version of the cancelled one or more uplink channel repetitions.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining to use a preconfigured encoding candidate from a set of encoding candidates for  transmitting the adjusted uplink channel repetitions based on receiving the uplink cancellation indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, an indication of the set of encoding candidates.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of encoding candidates may be received with the configuration scheduling a set of uplink channel repetitions.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of encoding candidates include separate configurations of resource quantity increasing levels, target coding rates, or a combination thereof for the uplink control information of the set of uplink channel repetitions.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, an indication of one configuration of the separate configurations for a default configuration of the uplink channel repetitions, of different configurations of the separate configurations for remaining uplink channel repetitions that may be not cancelled based on the uplink cancellation indication, or a combination thereof.
A method of wireless communications at a base station is described. The method may include transmitting, to a UE, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data, determining that at least a portion of one uplink channel repetition is preempted by a first communications, transmitting, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled, identifying an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions, and receiving, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
An apparatus for wireless communications at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, to a UE, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data, determine that at least a portion of one uplink channel repetition is preempted by a first communications, transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled, identify an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions, and receive, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
Another apparatus for wireless communications at a base station is described. The apparatus may include means for transmitting, to a UE, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data, determining that at least a portion of one uplink channel repetition is preempted by a first communications, transmitting, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled, identifying an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions, and receiving, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
A non-transitory computer-readable medium storing code for wireless communications at a base station is described. The code may include instructions executable by a processor to transmit, to a UE, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data, determine that at least a portion of one uplink channel repetition is preempted by a first communications, transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled, identify an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more  parameters associated with the cancelled uplink channel repetitions, and receive, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for combining the received adjusted uplink channel repetitions, and decoding an uplink channel transmission from the UE based on the combined uplink channel repetitions.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the adjusting configuration to adjust the set of uplink channel repetitions further may include operations, features, means, or instructions for transmitting, to the UE, an adjustment indication to adjust the set of uplink channel repetitions based on the cancelled one or more uplink channel repetitions.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the adjustment indication may be transmitted via RRC signaling, a MAC-CE, DCI signaling, may be prestored in the UE, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the adjustment indication for the UE to adjust the set of uplink channel repetitions includes an indication for the UE to transmit one or more additional uplink channel repetitions following a last scheduled uplink channel repetition of the set of uplink channel repetitions based on a number of uplink channel repetitions that may be cancelled.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the adjustment indication for the UE to adjust the set of uplink channel repetitions includes an indication for the UE to increase a resource quantity for the uplink control information in at least one uplink channel repetition of the set of uplink channel repetitions that may be not cancelled, in an additional one or more uplink channel repetition added to the set of uplink channel repetitions, or a combination thereof, the increased resource quantity being greater than an initial resource quantity configured for the set of uplink channel repetitions.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the adjustment indication for the UE to adjust the set of  uplink channel repetitions includes an indication for the UE to transmit one or more additional uplink channel repetitions according to a new target code rate.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the uplink control information and the uplink scheduled data may be multiplexed by the UE in the set of uplink channel repetitions, the cancelled one or more uplink channel repetitions include at least the uplink control information, the uplink control information includes at least CSI reports, the cancelled one or more uplink channel repetitions include at least one CSI report, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a target coding rate may be used for a CSI part one and a CSI part two jointly or separately.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, an indication of a set of encoding candidates for the UE to transmit the adjusted uplink channel repetitions based on the uplink cancellation indication.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of encoding candidates may be transmitted with the configuration scheduling a set of uplink channel repetitions.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of encoding candidates include separate configurations of resource quantities, target coding rates, or a combination thereof for the uplink control information of the set of uplink channel repetitions.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, an indication of one configuration of the separate configurations for a default configuration of the uplink channel repetitions, of different configurations of the separate configurations for remaining uplink channel repetitions that may be not cancelled based on the uplink cancellation indication, or a combination thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a physical uplink shared channel (PUSCH) repetition configuration that supports uplink preemption cancellation in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a PUSCH resource configuration that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a process flow that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
FIGs. 6 and 7 show block diagrams of devices that support uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
FIG. 8 shows a block diagram of a user equipment (UE) communications manager that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
FIG. 9 shows a diagram of a system including a device that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
FIGs. 10 and 11 show block diagrams of devices that support uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
FIG. 12 shows a block diagram of a base station communications manager that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
FIG. 13 shows a diagram of a system including a device that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
FIGs. 14 through 20 show flowcharts illustrating methods that support uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some wireless communications systems, a user equipment (UE) may be configured to transmit an uplink message according to an uplink channel (e.g., physical uplink shared channel (PUSCH) ) repetition scheme. For example, the UE may operate at a lower transmit power or on a smaller bandwidth than a conventional UE, and a base station may configure the uplink channel repetitions for the UE to transmit an uplink message to the base station, where the uplink channel repetitions increase the chances that the base station correctly receives and decodes the uplink message based on the base station combining the uplink channel repetitions. Based on the lower transmit power and/or smaller bandwidth, uplink transmissions from the UE (e.g., the uplink message described previously) may be more susceptible to interferences from other transmissions occurring on the same bandwidths (e.g., from nearby UEs, other base stations, etc. ) . Additionally or alternatively, any uplink transmissions from a UE may be preempted or cancelled (e.g., interfered with) due to additional transmissions that have a higher priority than the uplink transmissions from the UE and that occur at the same time. Accordingly, one or more uplink channel repetitions from the UE may be cancelled, thereby impacting the ability of the base station to combine the uplink channel repetitions and reducing the chances that the uplink message is correctly received and decoded.
As described herein, a UE may adjust a set of uplink channel repetitions (e.g., PUSCH repetitions) for communications with a base station based on receiving an uplink cancellation indication (e.g., uplink preemption indication) that indicates one or more uplink  channel repetitions have been cancelled. In some cases, the UE may determine to make the adjustments to the set of uplink channel repetitions based on parameters associated with the cancelled uplink channel repetitions. Additionally or alternatively, the base station may indicate how the UE is to adjust the set of uplink channel repetitions (e.g., via an adjustment indication) . Accordingly, when adjusting the set of uplink channel repetitions, the UE may transmit one or more additional uplink channel repetitions based on the number of cancelled uplink channel repetitions, increase a resource quantity allocated for uplink control information in at least one uplink channel repetition (e.g., by adjusting a beta offset value) , use a new coding rate for the uplink control information (e.g., channel state information (CSI) reports) of at least one uplink channel repetition (e.g., and omit CSI reports based on the new code rate) , or a combination thereof. In some cases, the UE and/or base station may determine to make the adjustments to the set of uplink channel repetitions based on whether the uplink control information is multiplexed with uplink data in the uplink channel repetitions.
Aspects of the disclosure are initially described in the context of a wireless communications system. Additionally, aspects of the disclosure are illustrated by an additional wireless communications system, a PUSCH repetition configuration, a PUSCH resource configuration, and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to uplink preemption cancellation with uplink shared channel repetitions.
FIG. 1 illustrates an example of a wireless communications system 100 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Base stations 105 described herein may include or may be referred to  by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) . The UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
The geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell. For example, each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof. In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-APro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
The term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier  (VCID) ) operating via the same or a different carrier. In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices. In some cases, the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client. A UE 115 may be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
In some cases, a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105. In some cases, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some cases, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a base station 105.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The MME may manage non-access stratum  (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC. User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Streaming Service.
At least some of the network devices, such as a base station 105, may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) . Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band. The SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115. However, the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
In some cases, wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data. In some cases, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these. Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
In some examples, base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. For example, wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas. MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple  signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In one example, a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality. Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115, which may be an example of a mmW receiving device) may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions. In some examples a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) . The single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
In some cases, the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co- located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
In some cases, wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data. At the Physical layer, transport channels may be mapped to physical channels.
In some cases, UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) . In some cases, a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of T s = 1/30, 720,000 seconds. Time intervals of a communications resource may be organized according to radio frames each  having a duration of 10 milliseconds (ms) , where the frame period may be expressed as T f = 307, 200 T s. The radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023. Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms. A subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases, a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) . In other cases, a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols. In some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example. Further, some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
The term “carrier” refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling. A carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115. Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) . In some examples, signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques  such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-APro, NR) . For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) . In some examples, each served UE 115 may be configured for operating over portions or all of the carrier bandwidth. In other examples, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by  each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
Devices of the wireless communications system 100 (e.g., base stations 105 or UEs 115) may have a hardware configuration that supports communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both FDD and TDD component carriers.
In some cases, wireless communications system 100 may utilize enhanced component carriers (eCCs) . An eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration. In some cases, an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) . An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) . An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
In some cases, an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with  symbol durations of the other component carriers. A shorter symbol duration may be associated with increased spacing between adjacent subcarriers. A device, such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) . A TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others. The flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums. In some examples, NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
In some wireless communications systems, one or more UEs 115 may be designed to operate at lower transmit power, in a smaller bandwidth for uplink and downlink communications, with reduced computational complexity, etc. These UEs 115 (e.g., NR-Light, Low-Tier NR UE, etc. ) may include smart wearable devices, industrial sensors, video surveillance devices, etc. Accordingly, these UEs 115 may operate using batteries and/or be in continuous operation, such that a reduced transmit power may increase battery life for the UEs 115 and/or provide less drain on power. For example, these UEs 115 may operate at an uplink transmit power lower (e.g., at least 10 dB less) than conventional UEs 115 (e.g., legacy enhanced mobile broadband (eMBB) UEs) . Additionally, these UEs 115 may use a reduced transmit/receive bandwidth (e.g., 5 MHz bandwidth) for both transmitting and receiving communications with a base station 105.
To accommodate these lower transmit power UEs 115 as described above in addition to conventional UEs 115 (e.g., legacy eMBB/ultra-reliable low latency communications (URLLC) UEs 115) in a same cell (e.g., for communications with a same base station 105) , the lower transmit power UEs 115 may use uplink channel repetitions for transmitting uplink messages to a base station 105. For example, the lower transmit power UEs 115 may use the uplink channel repetitions for physical random access channel (PRACH) transmissions, reference signals (RSs) , physical uplink control channel (PUCCH)  messages, PUSCH messages, etc. Accordingly, the base station 105 may combine the uplink channel repetitions to successfully detect/decode uplink signals from the lower transmit power UEs 115 (e.g., for coverage enhancement) . However, as described herein, one or more of the uplink channel repetitions from the lower transmit power UEs 115 may be cancelled due to transmissions with a higher priority (e.g., URLLC traffic) than the uplink signals transmitted by the lower transmit power UEs 115 occurring at the same time and/or one or more of the uplink channel repetitions experiencing interference that cause the base station 105 to unsuccessfully receive or decode the uplink signals from the lower transmit power UEs 115.
FIG. 2 illustrates an example of a wireless communications system 200 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. Wireless communications system 200 may include a base station 105-a and a UE 115-a, which may be examples of corresponding base stations 105 and UEs 115, respectively, as described above with reference to FIG. 1. Additionally, UE 115-a may be a lower transmit power UE 115 described above in FIG. 1. As such, when communicating on resources of a carrier 205, base station 105-a may configure UE 115-a with a set of PUSCH repetitions 210 (e.g., uplink channel repetitions via an uplink grant) to increase the chances that base station 105-acan receive and decode an uplink message (e.g., indicated by the uplink grant) from UE 115-a, where the same uplink message is transmitted on each PUSCH 215 of the PUSCH repetitions 210. As shown, PUSCH repetitions 210 may include eight (8) PUSCHs 215 (e.g., PUSCHs 215-a, 215-b, 215-c, 215-d, 215-e, 215-f, 215-g, and 215-h) but may include more or fewer PUSCHs 215.
Accordingly, base station 105-a may combine (e.g., soft combine) the PUSCH repetitions 210 to receive and decode an uplink message from UE 115-a. In some cases, base station 105-a may use one or more ways of combining the received PUSCH repetitions 210. For example, base station 105-a may combine modulated resource elements (REs) received in the PUSCHs 215, where base station 105-a may filter the PUSCHs 215 (e.g., received repetitions) over each RE and obtain an enhanced modulated RE estimation. Additionally or alternatively, base station 105-a may combine log-likelihood ratios (LLRs) from the coded bits of the PUSCHs 215. In some cases, base station 105-a may use separate decoding of the  LLRs, where base station 105-a separately decodes each codeword (e.g., coded bits, encoded bits, etc. ) in each PUSCH 215 (e.g., received codeword repetitions) at first to obtain an LLR of the respective coded bits and then the LLRs of each PUSCH coded bits are further combined. Subsequently, base station 105-a may obtain the final information bits by decoding the combined LLRs. Alternatively, base station 105-a may use joint decoding of the LLRs, where base station 105-a may jointly decode all received codewords from each PUSCH 215 (e.g., codeword repetitions) and combine LLRs of the coded bits during the joint decoding.
Additionally or alternatively, for combining the PUSCHs 215, base station 105-amay combine LLRs from information bits in each PUSCH 215. For example, base station 105-a may separately decode a codeword in each PUSCH 215 (e.g., each received codeword repetition) at first to obtain an LLR for the information bits of each PUSCH 215. Subsequently, base station 105-a may then further combine the LLRs for the information bits over all the PUSCHs 215 (e.g., the multiple repetitions) and may then obtain the final information bits by evaluating the combined LLRs from the information bits.
Each PUSCH 215 may include uplink control information (e.g., HARQ acknowledgement (ACK) transmissions, CSI reports, etc. ) and uplink scheduled data (e.g., indicated by base station 105-a, identified by UE 115-a, etc. ) that base station 105-auses for combining the PUSCH repetitions 210. In some cases, UE 115-a may multiplex the uplink control information with the uplink scheduled data in one or more of the PUSCHs 215. Additionally or alternatively, UE 115-a may transmit uplink control information but no uplink scheduled data in a PUSCH 215. In some cases, for a modulation order of the multiplexed uplink control information, UE 115-a may use a same modulation order as a modulation order of the uplink scheduled data (e.g., as indicated in an uplink grant scheduling the corresponding PUSCH 215) . If a PUSCH 215 does not include uplink scheduled data, the modulation order of the uplink control information may still follow the modulation order indicated in the uplink grant for the uplink scheduled data.
In some cases, base station 105-a may configure resources of the multiplexed uplink control information to UE 115-a. For example, base station 105-a may dynamically or semi-persistently (e.g., for a semi-persistent scheduling (SPS) uplink transmission) indicate beta-offsets (e.g., modulation and coding scheme (MCS) offset values) as parameters  regarding the uplink control information (e.g., HARQ-ACK and/or CSI-reports, such as for a CSI-Part-1 and/or CSI-Part-2) . Additionally, resources of the respective uplink control information components may further be determined according to these parameters. For example, the beta-offsets (e.g., beta_offsets) may indicate a number of resources for multiplexing HARQ-ACK information and for multiplexing CSI reports in a PUSCH 215 (e.g., signaled by base station 105-avia a DCI format scheduling the PUSCH transmission or by higher layers) . Additionally, UE 115-a may determine to transmit and/or multiplex different parts of a PUSCH 215 according to a priority (e.g., signaled by base station 105-a, configured in UE 115-a, etc. ) . For example, the priority may include HARQ-ACK first, CSI reports second, and uplink scheduled data third. Additionally, different CSI reports may have different priorities, and a same CSI report may include a CSI-Part-1 and CSI-Part-2, where CSI-Part-2 has a lower priority. Accordingly, UE 115-a may map payloads for the uplink control information (e.g., HARQ-ACK, CSI-part-1, CSI-part-2, etc. ) sequentially to corresponding resources determined as above (e.g., based on the priority) , where HARQ-ACK payload may not need omission (e.g., based on including the highest priority) .
Additionally, UE 115-a may determine a channel coding rate when transmitting each PUSCH 215. For example, UE 115-a may determine a channel coding rate for HARQ-ACK based on a number of HARQ-ACK information bits, the modulation order, and the resource in the PUSCH 215 for HARQ-ACK payload. In some cases, UE 115-a may determine target channel coding rates for CSI reports in a PUSCH 215 based on adjusting an MCS indication in the uplink grant scheduling the PUSCH 215 and adjusting the resources for CSI reports according to:
Figure PCTCN2019097635-appb-000001
where c T is the adjusted target channel coding rate for the CSI reports, c MCS is the target code rate for the PUSCH 215 given from the MCS field in the uplink grant, and
Figure PCTCN2019097635-appb-000002
is the associated beta-offset for CSI-Part-2 of a CSI report. In some cases, following priority rules for determining priorities of different CSI reports, certain parts of information bits of the CSI reports may be omitted (e.g., dropped information bits based on the priority rules) until an actual coding rate of the CSI report can be lower than the identified target coding rate (c T) . Additionally, one or more REs in a PUSCH 215 may be cancelled or have an additional  transmission interfere with the REs, where the REs are not received correctly by base station 105-a.
In some cases, base station 105-a may transmit an uplink preemption indication (e.g., PUSCH cancellation indication) if one or more REs of a PUSCH 215 are cancelled. For example, when multiplexing data from different radio access technologies (RATs) (e.g., eMBB and URLLC traffic) in uplink communications, base station 105-a may transmit the uplink preemption indication to indicate that one or more PUSCHs 215 (e.g., eMBB traffic) are preempted by higher priority traffic (e.g., URLLC traffic) . For example, base station 105-a may identify that an eMBB UE transmission PUSCH (e.g., a PUSCH 215) is operating in time-frequency resources overlapping with time-frequency resources of an upcoming URLLC UE transmission PUSCH.
Accordingly, base station 105-a may transmit signaling to the eMBB UE (e.g., UE 115-a) to indicate for the eMBB UE to stop transmitting a whole PUSCH 215 that corresponds to the overlapping time-frequency resources or skip the overlapping time-frequency resources. For example, as shown, base station 105-a may configure PUSCH repetitions 210-a for UE 115-a to transmit, but higher priority traffic (e.g., or another type of interference) may cause PUSCHs 215-c and 215-d to be preempted, such that UE 115-a transmits the PUSCHs 215 according to PUSCH repetitions 210-b with PUSCH 215-c and 215-d cancelled based on the signaling from base station 105-a. This signaling may be referred to as an uplink cancellation indication. Additionally or alternatively, a power boosting value for the URLLC UE transmission may be adjusted.
When scheduling PUSCH repetitions 210-a, base station 105-a may determine the number of repetitions (e.g., number of PUSCHs 215) based on obtaining a repetition gain such that the uplink message (e.g., PUSCH) can be successfully decoded. Additionally, each repetition may contain at least one of uplink control information and uplink scheduled data as described above. However, if base station 105-a transmits an uplink cancellation indication that causes UE 115-a to stop transmitting a PUSCH 215 at least for a certain part of PUSCH repetitions 210-a (e.g., even one or several whole PUSCHs 215 of PUSCH repetitions 210-a) , base station 105-a may no longer be able to successfully decode the complete uplink message based on the remaining PUSCH 215 repetitions, since the original determined repetition gain may no longer be guaranteed. For example, as described above, PUSCHs 215-c and 215-d  may be cancelled by UE 115-a when transmitting PUSCH repetition 210-b. In some cases, due to the bursty nature of PUSCHs for URLLC, additional PUSCHs 215 (e.g., additional repetitions) may not be pre-reserved before the uplink cancellation, as base station 105-a may not identify the uplink traffic associated with the URLLC in advance.
Accordingly, base station 105-a may use the combining methods as described above to attempt decoding the PUSCH repetitions 210-a or 210-b. For example, the eight (8) PUSCHs 215 of PUSCH repetitions 210-a are combined and decoded by base station 105-a to obtain control and information bits transmitted by UE 115-a. However, the six (6) PUSCHs 215 of PUSCH repetitions 210-b (e.g., excluding the cancelled/skipped PUSCHs 215-c and 215-d) may not be sufficient for base station 105-a to combine and successfully decode to obtain the control and information bits transmitted by UE 115-a.
As described herein, techniques may be described to enable at least part of the payloads in the PUSCH repetitions 210 to be successfully decoded by base station 105-a when at least part of the PUSCH repetitions 210 are cancelled. In some cases, payloads with higher priorities may receive better protections in remaining/additional repetitions after cancelling the at least part of the PUSCH repetitions 210. For example, such payloads may be assigned with more resources and thus with a lower coding rate. Additionally, the different priorities for the data included in a PUSCH 215 may include priority for HARQ-ACK first, CSI-reports with higher priorities second, CSI-reports with lower priorities third, and uplink scheduled data fourth.
When one or more PUSCHs 215 (e.g., or a portion of one or more PUSCHs 215) is cancelled, UE 115-a may introduce additional PUSCHs 215 (e.g., repetitions) , adjust resource quantity for uplink control information, adjust coding rate for CSI-reports and further omit CSI-reports, or a combination thereof. For the additional PUSCHs 215, when an uplink cancellation indication is received by UE 115-a, an additional number of PUSCH repetitions may be transmitted by UE 115-a following the last original scheduled repetition of the configured PUSCH repetitions 210-a, where the number of additional repetitions is determined based on the quantity of resources being cancelled.
Additionally or alternatively, when adjusting the resource quantity for uplink control information, for uplink control information multiplexed with uplink scheduled data, the associated beta-offsets may be adjusted such that HARQ-ACK and/or CSI-reports may  have more resources (e.g., therefore lowering the coding rate for HARQ-ACK) . Accordingly, when additional resources are allocated for HARQ-ACK and/or CSI-report, the uplink scheduled data may be rate matched in accordance to the remaining resources for the uplink scheduled data. In some cases, the adjusted resource quantity for uplink control information (e.g., and rate matched uplink scheduled data) may be applied to at least one of the remaining original scheduled PUSCH repetitions and the newly introduced PUSCH repetitions. Additionally or alternatively, when adjusting the coding rate for CSI-reports and further omitting CSI-reports, for at least CSI-reports (e.g., as part of the uplink control information) multiplexed with the uplink scheduled data, at least one new lower target coding rate may be identified for the additional repetitions, where CSI-reports are further omitted according to this new coding rate in the additional repetitions. In some cases, adjusting the coding rate for CSI-reports and further omitting CSI-reports may be applied to at least one of the remaining original scheduled PUSCH repetitions and the newly introduced PUSCH repetitions. Additionally, the above described techniques may be deployed in parallel.
FIG. 3 illustrates an example of a PUSCH repetition configuration 300 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. In some examples, PUSCH repetition configuration 300 may implement aspects of wireless communications systems 100 and/or 200. As described herein, a UE 115 may use PUSCH repetition configuration 300 to add one or more PUSCHs 305 to a set of PUSCH repetitions 310 that include one or more PUSCHs 315. For example, one or more PUSCHs 315 (e.g., PUSCH 315-c and 315-d) may be cancelled by a base station 105 based on another communications (e.g., URLLC traffic) interfering with the PUSCH repetitions 310. Accordingly, to enable the base station 105 to combine PUSCHs 315 to decode and obtain an uplink message (e.g., indicated by an uplink grant) from the UE 115, the added PUSCHs 305 may be introduced to the PUSCH repetitions.
When an uplink cancellation (e.g., uplink preemption indication, uplink cancellation indication, etc. ) is received by the UE 115, the additional number of PUSCH repetitions (e.g., added PUSCHs 305-a and 305-b) may be transmitted by the UE 115 following a last original scheduled repetition (e.g., after PUSCH 315-h of PUSCH repetitions 310) , where the number of additional repetitions is determined based on the quantity of resource being cancelled. Additionally, the resource allocation and frequency hopping-pattern of the additional repetitions (e.g., added PUSCHs 305-a and 305-b) may be based on (e.g., be  the same as) the resource allocation and frequency hopping-pattern of the original scheduled repetitions (e.g., PUSCHs 315 of PUSCH repetitions 310) . For example, if one symbol of one PUSCH repetition is cancelled, one additional repetition (e.g., added PUSCH 305-a) may be added. If an additional symbol (e.g., or multiple symbols) of another PUSCH repetition is further cancelled, another additional repetition may be added (e.g., added PUSCH 305-b) . Additionally, if two consecutive/distributed whole PUSCH repetitions are cancelled, multiple additional repetitions (e.g., two, four, eight, etc. added PUSCHs 305) may be added.
In some cases, the association between the number of additional repetitions and the quantity of PUSCH resources being cancelled may be based on a predefined association, a network configuration/indication (e.g., the base station 105/network may preconfigure the association together with signaling indicating the uplink repetition scheduling or using separate signaling) , parameters associated with the cancelled PUSCHs 315 and the PUSCH repetitions 310, or a combination thereof. For example, the parameters may include a quantity of resources being cancelled, a number of previous and remaining repetitions before and after the cancelled PUSCHs 315, whether the resource quantity for uplink control information is adjusted, whether the coding rate for CSI-reports is adjusted (e.g., and further CSI-reports are omitted) , or a combination thereof. In some cases, the base station 105 may also indicate (e.g., with the uplink cancellation indication) whether additional repetitions associated with the current uplink cancellation are allowed or not. Additionally, the uplink cancellation indication may explicitly indicate the number/resource allocation/frequency hopping pattern of the additional repetitions (e.g., added PUSCHs 305) . In some cases, the UE 115 may increase a transmit power for the remaining repetitions after the cancelled PUSCHs (e.g., PUSCHs 315-e, 315-f, 315-g, and 315-h occurring after PUSCH 315-d) and/or for added PUSCHs 305 (e.g., when the UE 115 is not power limited) .
FIG. 4 illustrates an example of a PUSCH resource configuration 400 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. In some examples, PUSCH resource configuration 400 may implement aspects of wireless communications systems 100 and/or 200. As described herein, a UE 115 may use PUSCH resource configuration 400 when at least a portion (e.g., at least one symbol) of an originally configured PUSCH allocation 405-a is cancelled (e.g., based on preemption from another transmission as described above) for a multiple PUSCH repetition configuration. For example, PUSCH allocation 405-a may include a first portion  (e.g., one or more symbols at the beginning of the PUSCH) allocated for a demodulation reference signal 410, a second portion allocated for uplink control information resources 415 (e.g., for HARQ-ACK, CSI reports, etc. ) , and a third portion allocated for uplink data resources 420.
However, PUSCH allocation 405-a may include cancelled resources 425 of uplink control information resources 415. For example, the base station 105 may indicate cancelled resources 425 (e.g., one or more resource elements) for PUSCH allocation 405-a (e.g., resources preempted by a higher priority communication) . Accordingly, in some cases, the UE 115 may not transmit a PUSCH corresponding to PUSCH allocation 405-a based on cancelled resources 425 occurring within PUSCH allocation 405-a. Additionally or alternatively, the UE 115 may not transmit the cancelled resources 425 but may transmit the rest of the resources in PUSCH allocation 405-a. PUSCH allocation 405-a may illustrate a resource allocation in PUSCH repetitions for the repetitions involving (or earlier than) an uplink cancellation (e.g., cancelled resources 425) . In some cases, the UE 115 may use an adjusted PUSCH allocation 405-b for remaining PUSCHs in a PUSCH repetition after the uplink cancellation or for added PUSCHs as described above with reference to FIG. 3.
As shown, PUSCH allocation 405-b may include resources for DMRS 410 and an adjusted resource quantity for uplink control information in adjusted uplink control information resources 430. For uplink control information multiplexed with uplink scheduled data, when uplink cancellation is involved for the resources allocated for the uplink control information (e.g., uplink control information resources 415 of PUSCH allocation 405-a) , associated beta-offsets (e.g., beta_offsets) may be adjusted such that the uplink control information (e.g., HARQ-ACK and/or CSI-reports) may have more resources (e.g., while the information bits remain the same as in previous repetitions) , thereby lowering a coding rate for the uplink control information. Adjusting the resource quantity for the uplink control information may be applied to at least one of the remaining original scheduled PUSCH repetitions (e.g., after the PUSCH (s) with cancelled resources) and any newly introduced PUSCH repetitions (e.g., added PUSCHs as described above with reference to FIG. 3) .
Additionally, the adjustment of beta-offsets associated with the uplink control information (e.g., HARQ-ACK, CSI-reports, etc. ) may be determined based on parameters of the cancelled resources 425 and originally configured PUSCH repetitions. For example, the  parameters may include a quantity of resources carrying the related uplink control information being cancelled (e.g., cancelled resources 425) , original beta-offsets, original coding rate, original modulation order, original quantity of resource for the uplink scheduled data (e.g., uplink data resources 420) , original quantity of resource for the related uplink control information (e.g., uplink control information resources 415) , a number of previous repetitions before the PUSCH with the cancelled resources 425, a number of remaining repetitions after the PUSCH with the cancelled resources 425, or a combination thereof. Additionally, the adjustment of beta-offsets associated with the uplink control information may further be determined based on if additional PUSCHs are added to the PUSCH repetitions (e.g., as described above with reference to FIG. 3) and/or if the coding rate for CSI-reports is adjusted (e.g., and further CSI-reports are omitted) .
As an example, 36 resource elements (e.g., 3 symbols for one physical resource block (PRB) of 12 resource elements each) may carry HARQ-ACK (e.g., uplink control information) where the original coding rate for the HARQ-ACK is 1/2. In some cases, 1/3 of the resources carrying the HARQ-ACK (e.g., one symbol of 12 resource elements) may be cancelled (e.g., cancelled resources 425) , where two (2) remaining PUSCH repetitions may occur after PUSCH with the cancelled HARQ-ACK resources. Accordingly, another 12 resource elements for HARQ-ACK may be supplied for the remaining PUSCH repetitions by identifying a new beta-offset for the remaining PUSCH repetitions (e.g., and/or in added PUSCH repetitions) as shown by added resources 435.
In some cases, the association between the beta-offset adjustment and the above parameters may be predetermined or indicated/configured by the base station 105. Additionally, a new coding rate for a certain uplink control information part may be identified by replacing the corresponding beta-offset into the adjusted uplink control information resources 430. When additional resources are allocated for uplink control information via added resources 435, the uplink scheduled data may be rate matched in accordance to the remaining resources for the uplink scheduled data. For example, PUSCH allocation 405-b may include an amount of adjusted uplink data resources 440 that is rate matched based on the remaining resources of PUSCH allocation 405-b after added resources 435 are included in adjusted uplink control information resources 430. If a new coding rate less than 1 cannot be obtained, the uplink scheduled data may be dropped. For example, in added PUSCH repetitions, resources for uplink scheduled data may become 1/2 of the  previous repetitions (e.g., originally configured resources for uplink scheduled data) . Accordingly, the new coding rate may become twice the original coding rate (e.g., 2*original rate) , and if the calculated new coding rate is greater than 1 (e.g., 2*original rate >1) , the uplink scheduled data may be dropped.
Additionally or alternatively, to enable the base station 105 to combine PUSCH repetitions when one or more PUSCH repetitions are cancelled (e.g., or a portion of one or more PUSCH repetitions) , the UE 115 may adjust a coding rate for CSI-reports and further omit CSI-reports. For CSI-reports (e.g., uplink control information) multiplexed with the uplink scheduled data, when an uplink cancellation is involved for the resource allocated for the uplink control information, at least one new lower target coding rate may be identified for the additional (e.g., and/or remaining) repetitions (e.g., added PUSCHs) . Accordingly, the UE 115 may further omit CSI-reports based on their priorities according to this new coding rate in the additional repetitions.
Alternatively, if a resource quantity for uplink control information has been adjusted as described above (e.g., which lead to more resources available for the CSI reports/uplink control information) , a new target coding rate higher than the coding rate determined as described above (e.g., calculated based on the original coding rate) can also be identified. In such a case, CSI-omission may not be not needed. Otherwise, if a new target coding rate lower than the coding rate default as described above is identified, CSI-omission may still be needed. The adjusted coding rate for CSI reports may be applied to at least one of the remaining original scheduled PUSCH repetitions (e.g., after the PUSCH (s) with cancelled resources) and the newly introduced PUSCH repetitions (e.g., added PUSCHs as described above with reference to FIG. 3) .
In some cases, the adjustment of the coding rate associated with CSI-reports may be determined based on parameters of the cancelled resources 425 and originally configured PUSCH repetitions. For example, the parameters may include a quantity of resources carrying the related CSI-reports being cancelled (e.g., cancelled resources 425) , original beta-offsets, original coding rate, original modulation order, original quantity of resource for the uplink scheduled data (e.g., uplink data resources 420) , original quantity of resource for the related uplink control information (e.g., uplink control information resources 415) , a number of previous repetitions before the PUSCH with the cancelled resources 425, a number of  remaining repetitions after the PUSCH with the cancelled resources 425, or a combination thereof. Additionally, the adjustment of beta-offsets associated with the uplink control information may further be determined based on if additional PUSCHs are added to the PUSCH repetitions (e.g., as described above with reference to FIG. 3) and/or if the resources for the uplink control information is adjusted.
Similar to the example described above, 36 resource elements (e.g., 3 symbols for one PRB of 12 resource elements each) may carry CSI-Part-2 (e.g., uplink control information) where the original coding rate for the CSI-Part-2 is 1/2. In some cases, 1/3 of the resources carrying the CSI-RS (e.g., one symbol of 12 resource elements) may be cancelled (e.g., cancelled resources 425) , where two (2) remaining PUSCH repetitions may occur after PUSCH with the cancelled CSI-RS resources. If the resources for the uplink control information have not been adjusted, a new coding rate may be identified as 1/4 for CSI-reports in the remaining/additional PUSCH repetitions, which may lead to omitting at least 1/2 of the CSI-Part-2 in the remaining/additional repetitions. Alternatively, if the resources for the uplink control information have been adjusted by adding 12 resource elements for CSI-Part-2 (e.g., added resources 435) and a new coding rate is identified as 1/3 (e.g., greater than the 1/4 coding rate determined above) , then the UE 115 may not carry out further CSI omission. However, if a new coding rate is identified as 1/4 after adding the resource elements for CSI-Part-2, the UE 115 may omit at least 1/3 of the CSI-Part-2 in remaining/additional repetitions is needed. In some cases, the association between the coding rate adjustment and the above parameters may be predetermined or indicated/configured by the base station 105. Additionally, the adjustment of coding rates may be carried out for CSI-Part-1 and CSI-Part-2 jointly or separately.
In some cases, the UE 115 may further adapt the resource allocation of the remaining/additional repetitions. For example, for the remaining/additional repetitions, the frequency domain resource may be further enlarged, such that the coding rate for uplink control information and/or the uplink scheduled data may be lower. Additionally or alternatively, if a certain redundancy version is punctured, redundancy versions for the remaining/additional repetitions may be updated/adapted (e.g., if the repetitions include different redundancy versions) . For example, an initially configured (e.g., original) redundancy version order may be 0, 2, 3, 1. Accordingly, if redundancy version 0 (e.g., RV0) is punctured, the UE may use a redundancy version of 0, 2, 3 for the next 3 transmissions  (e.g., PUSCH repetitions, other uplink messages, etc. ) instead of 2, 3, 1. The above adaptations may be based on parameters similar to the parameters for adjusting resources for the uplink control information and/or adjusting the coding rate associated with CSI-reports as described above. Additionally, the association between the above adaptations and the parameters may be configured by the network and/or predefined for the UE 115.
In some cases, the UE 115 may have several pre-stored encoding candidates for adjusting the uplink control resources, adjusting the coding rate associated with CSI-reports, and/or adapting the resource allocation of the remaining/additional repetitions, which may reduce a computational complexity of the UE 115. Additionally, buffered candidates may be directly deployed without encoding/mapping urgently after receiving the uplink cancellation indication. The possible encoding candidates may be indicated/configured by the base station 105 together (or separately) with the signaling scheduling the PUSCH repetitions. For example, the base station 105 may configure several beta-offsets and/or target coding rates for each of the uplink control information payloads (e.g., including HARQ-ACK and CSI-reports) and may indicate one of them as the default encoding candidate (e.g., candidate parameters, such as beta-offsets and/or target coding rates) for PUSCH repetitions without uplink cancellations. The other encoding candidates may be configured for additional/remaining repetitions regarding different situations involving uplink cancellations. The associations between the situations and the encoding candidates (e.g., candidate parameters) may be predefined and/or configured by the base station 105.
If the remaining/additional repetitions have a same number of modulated resource elements, the base station 105 may use any combination methods as described above with reference to FIG. 2 (e.g., combining modulated resource elements, combining LLRs of coded bits, combining LLRs of information bits, etc. ) . Alternatively, if the remaining/additional repetitions have a different number of modulated resource elements, the base station 105 may not combine the modulated resource elements for combining over all the resource elements. Further, the base station 105 may combine the LLRs of coded bits and/or the LLRs of information bits for a certain part of the payload (e.g., if the payload has unchanged coded bits over the repetitions) . In some cases, the base station 105 may combine the LLRs of information bits for a certain part of the payload (e.g., if the payload has unchanged information bits over the repetitions) .
Due to better protection achieved through lower coding rates or greater beta-offsets for the uplink control information, the base station 105 may be able to combine the LLRs for the information bits and still obtain an originally configured repetition gain so that decoding of the uplink control information may be successful. Additionally or alternatively, the decoding of the uplink scheduled data may not be successful as the coding rate of the uplink scheduled data becomes higher than the previous repetitions. The base station 105 may further schedule other repetitions of the uplink scheduled data, which may introduce further delay of the data. For the related uplink control information, the delay requirement of the feedback may still be met, where the uplink control information has a higher priority than the uplink scheduled data. For example, no extra resources may be available for further repetitions or the delay requirement of the uplink control information may be short (e.g., tight) , so meeting the delay requirement of the feedback for the related uplink control information may be needed.
FIG. 5 illustrates an example of a process flow 500 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. In some examples, process flow 500 may implement aspects of wireless communications systems 100 and/or 200. Process flow 500 may include a base station 105-b and a UE 115-b, which may be examples of corresponding base stations 105 and UEs 115, as described above with reference to FIGs. 1-4. Additionally, UE 115-b may be a lower transmit power UE 115 described above in FIGs. 1 and 2.
In the following description of the process flow 500, the operations between UE 115-b and base station 105-b may be transmitted in a different order than the order shown, or the operations performed by base station 105-b and UE 115-b may be performed in different orders or at different times. Certain operations may also be left out of the process flow 500, or other operations may be added to the process flow 500. It is to be understood that while base station 105-b and UE 115-b are shown performing a number of the operations of process flow 500, any wireless device may perform the operations shown.
At 505, UE 115-b may receive, from base station 105-b, a configuration scheduling a set (e.g., plurality) of uplink channel repetitions (e.g., PUSCH repetitions) for communications with base station 105-b, the uplink channel repetitions including at least uplink control information and uplink scheduled data.
At 510, UE 115-b may receive, from base station 105-b, an uplink cancellation indication (e.g., uplink preemption indication) that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled. In some cases, base station 105-b may determine that at least a portion of one uplink channel repetition is preempted by a first communications (e.g., URLLC communications) and may transmit the uplink cancellation indication based on the preemption determination.
At 515, UE 115-b may receive, from base station 105-b, an adjustment indication to adjust the set of uplink channel repetitions based on the cancelled one or more uplink channel repetitions. where the adjustment indication is received via RRC signaling, a medium access control (MAC) control element (MAC-CE) , downlink control indication (DCI) signaling, is prestored in UE 115-b, or a combination thereof.
At 520, UE 115-b and/or base station 105-b may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. For example, in some cases, UE 115-b may transmit one or more additional uplink channel repetitions following a last scheduled uplink channel repetition of the set of uplink channel repetitions based on a number of uplink channel repetitions that are cancelled. Additionally, UE 115-b may increase a transmit power for the one or more additional uplink channel repetitions, for one or more uplink channel repetitions following the cancelled uplink channel repetitions, or a combination thereof. In some cases, a resource allocation and a frequency hopping pattern of the one or more additional uplink channel repetitions may be based on a resource allocation and a frequency hopping pattern of the scheduled set of uplink channel repetitions.
In some cases, a number of the one or more additional uplink channel repetitions may be based on a number of symbols of a single uplink channel repetition that is cancelled, a number of consecutive uplink channel repetitions that are cancelled, or a combination thereof. Additionally, when transmitting the one or more additional uplink channel repetitions, the parameters associated with the cancelled one or more uplink channel repetitions may include a quantity of resources cancelled, a number of previous uplink channel repetitions of the set of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the set of uplink channel repetitions occurring after the cancelled one or more uplink channel  repetitions, adjusting a resource quantity for uplink control information, adjusting a coding rate of CSI reports, or a combination thereof.
Additionally or alternatively, when adjusting the set of uplink channel repetitions, UE 115-b may determine that the uplink control information and the uplink scheduled data are multiplexed in the set of uplink channel repetitions (e.g., where the cancelled one or more uplink channel repetitions include at least the uplink control information) . Subsequently, UE 115-b may increase a resource quantity for the uplink control information in at least one uplink channel repetition of the set of uplink channel repetitions that is not cancelled, in an additional one or more uplink channel repetition added to the set of uplink channel repetitions, or a combination thereof based on the determination. In some cases, the increased resource quantity may be greater than an initial resource quantity configured for the set of uplink channel repetitions. Additionally, UE 115-b may adjust a beta-offset of the uplink control information to increase the resource quantity. In some cases, UE 115-b may determine a coding rate for the uplink control information based on the increased resource quantity for the uplink control information, where the coding rate is decreased based on the increased resource quantity for the uplink control information. Additionally, UE 115-b may rate match the uplink scheduled data based on a remaining number of resources in an uplink channel repetition after increasing the resource quantity for the uplink control information.
In some cases, when increasing the resource quantity for the uplink control information, the parameters associated with the cancelled one or more uplink channel repetitions may include a quantity of resources carrying the uplink control information being cancelled, an original beta offset for the set of uplink channel repetitions, a coding rate for the set of uplink channel repetitions, a modulation order for the set of uplink channel repetitions, a quantity of resources of the uplink scheduled data for the plurality of uplink channel repetitions, a quantity of resources of the uplink control information for the set of uplink channel repetitions, a number of previous uplink channel repetitions of the set of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the set of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, transmitting one or more additional uplink channel repetitions, adjusting a coding rate of CSI reports, or a combination thereof.
Additionally or alternatively, when adjusting the set of uplink channel repetitions, UE 115-b may determine that the uplink control information includes at least CSI reports and that the CSI reports are multiplexed with the uplink scheduled data (e.g., where the cancelled one or more uplink channel repetitions include at least one CSI report) . Subsequently, UE 115-b may determine a new target coding rate for CSI reports lower than an initial target coding rate for the CSI reports in the uplink channel repetitions before the cancelled uplink channel repetitions, for one or more additional uplink channel repetitions added to the set of uplink channel repetitions to transmit, for one or more uplink channel repetitions following the cancelled uplink channel repetitions, or a combination thereof. UE 115-b may then transmit the one or more additional uplink channel repetitions according to the target code rate. In some cases, UE 115-b may omit one or more CSI reports from the one or more additional uplink channel repetitions based on the determined new target coding rate. Additionally, UE 115-b may increase a resource quantity for the uplink control information in at least one uplink channel repetition of the set of uplink channel repetitions that is not cancelled, in the additional one or more uplink channel repetitions, or a combination thereof. Accordingly, UE 115-b may transmit one or more CSI reports in the one or more additional uplink channel repetitions based on the increased resource quantity for the uplink control information.
In some cases, when determining the new target coding rate for CSI reports, the parameters associated with the cancelled one or more uplink channel repetitions may include a quantity of resources carrying the uplink control information being cancelled, an original beta offset for the set of uplink channel repetitions, a coding rate for the set of uplink channel repetitions, a modulation order for the set of uplink channel repetitions, a quantity of resources of the uplink control information for the set of uplink channel repetitions, a number of previous uplink channel repetitions of the set of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the set of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, transmitting one or more additional uplink channel repetitions, increasing a resource quantity for the uplink control information, or a combination thereof. Additionally, the determined new target coding rate may be determined for a CSI-Part-1 and a CSI-Part-2 jointly or separately.
Additionally, UE 115-b may adapt resource allocations for remaining uplink channel repetitions after the at least one uplink channel repetition to decrease a coding rate for the uplink control information, the uplink scheduled data, or a combination thereof in the remaining uplink channel repetitions. In some cases, UE 115-b may adjust a redundancy version of at least one uplink channel repetition of the set of uplink channel repetitions that is not cancelled, in the additional one or more uplink channel repetitions, or a combination thereof based on an original redundancy version of the cancelled one or more uplink channel repetitions.
In some cases, UE 115-b may determine to use a preconfigured encoding candidate from a set of encoding candidates for transmitting the adjusted uplink channel repetitions based on receiving the uplink cancellation indication. For example, UE 115-b may receive, from base station 105-b, an indication of the set of encoding candidates to use for adjusting the uplink channel repetitions. In some cases, the set of encoding candidates may be received with the configuration scheduling a plurality of uplink channel repetitions. Additionally or alternatively, the set of encoding candidates may include separate configurations of resource quantity increasing levels, target coding rates, or a combination thereof for the uplink control information of the set of uplink channel repetitions. In some cases, UE 115-b may receive, from base station 105-b, an indication of one configuration of the separate configurations for a default configuration of the uplink channel repetitions, of different configurations of the separate configurations for remaining uplink channel repetitions that are not cancelled based on the uplink cancellation indication, or a combination thereof.
At 525, UE 115-b may transmit, to base station 105-b, the uplink channel repetitions according to the adjusted set of uplink channel repetitions. In some cases, base station 105-b may combine the received adjusted uplink channel repetitions and may decode an uplink channel transmission from UE 115-b based on the combined uplink channel repetitions.
FIG. 6 shows a block diagram 600 of a device 605 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a UE 115 as described herein. The device 605 may include a receiver 610, a UE communications manager  615, and a transmitter 620. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to uplink preemption cancellation with uplink shared channel repetitions, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The receiver 610 may utilize a single antenna or a set of antennas.
The UE communications manager 615 may receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. Additionally, the UE communications manager 615 may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled. In some cases, the UE communications manager 615 may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. Subsequently, the UE communications manager 615 may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions. The UE communications manager 615 may be an example of aspects of the UE communications manager 910 described herein.
The UE communications manager 615, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the UE communications manager 615, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The UE communications manager 615, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some  examples, the UE communications manager 615, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the UE communications manager 615, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 620 may transmit signals generated by other components of the device 605. In some examples, the transmitter 620 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 620 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The transmitter 620 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a device 705 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a device 605, or a UE 115 as described herein. The device 705 may include a receiver 710, a UE communications manager 715, and a transmitter 740. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to uplink preemption cancellation with uplink shared channel repetitions, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The receiver 710 may utilize a single antenna or a set of antennas.
The UE communications manager 715 may be an example of aspects of the UE communications manager 615 as described herein. The UE communications manager 715 may include a repetition configuration component 720, an uplink cancellation indication component 725, a repetition adjuster 730, and an adjusted repetition component 735. The UE communications manager 715 may be an example of aspects of the UE communications manager 910 described herein.
The repetition configuration component 720 may receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data.
The uplink cancellation indication component 725 may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled.
The repetition adjuster 730 may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions.
The adjusted repetition component 735 may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
The transmitter 740 may transmit signals generated by other components of the device 705. In some examples, the transmitter 740 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 740 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The transmitter 740 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a UE communications manager 805 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The UE communications manager 805 may be an example of aspects of a UE communications manager 615, a UE communications manager 715, or a UE communications manager 910 described herein. The UE communications manager 805 may include a repetition configuration component 810, an uplink cancellation indication component 815, a repetition adjuster 820, an adjusted repetition component 825, an additional repetition component 830, a resource quantity adjuster 835, a coding rate adjuster 840, and an encoding candidate component 845. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The repetition configuration component 810 may receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base  station, the uplink channel repetitions including at least uplink control information and uplink scheduled data.
The uplink cancellation indication component 815 may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled.
The repetition adjuster 820 may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. In some examples, the repetition adjuster 820 may receive, from the base station, an adjustment indication to adjust the set of uplink channel repetitions based on the cancelled one or more uplink channel repetitions. In some cases, the adjustment indication may be received via RRC signaling, a MAC-CE, DCI signaling, is prestored in the UE, or a combination thereof.
Additionally or alternatively, the repetition adjuster 820 may adapt resource allocations for remaining uplink channel repetitions after the at least one uplink channel repetition to decrease a coding rate for the uplink control information, the uplink scheduled data, or a combination thereof in the remaining uplink channel repetitions. In some examples, the repetition adjuster 820 may adjust a redundancy version of at least one uplink channel repetition of the set of uplink channel repetitions that is not cancelled, in the additional one or more uplink channel repetitions, or a combination thereof based on an original redundancy version of the cancelled one or more uplink channel repetitions.
The adjusted repetition component 825 may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
The additional repetition component 830 may transmit one or more additional uplink channel repetitions following a last scheduled uplink channel repetition of the set of uplink channel repetitions based on a number of uplink channel repetitions that are cancelled. In some examples, the additional repetition component 830 may increase a transmit power for the one or more additional uplink channel repetitions, for one or more uplink channel repetitions following the cancelled uplink channel repetitions, or a combination thereof. In some cases, a resource allocation and a frequency hopping pattern of the one or more additional uplink channel repetitions may be based on a resource allocation and a frequency hopping pattern of the scheduled set of uplink channel repetitions. Additionally or  alternatively, a number of the one or more additional uplink channel repetitions may be based on a number of symbols of a single uplink channel repetition that is cancelled, a number of consecutive uplink channel repetitions that are cancelled, or a combination thereof.
In some cases, when transmitting the one or more additional uplink channel repetitions, the parameters associated with the cancelled one or more uplink channel repetitions used for identifying the adjusting configuration to adjust the set of uplink channel repetitions may include a quantity of resources cancelled, a number of previous uplink channel repetitions of the set of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the set of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, adjusting a resource quantity for uplink control information, adjusting a coding rate of channel state information reports, or a combination thereof.
The resource quantity adjuster 835 may determine that the uplink control information and the uplink scheduled data are multiplexed in the set of uplink channel repetitions, where the cancelled one or more uplink channel repetitions include at least the uplink control information. Accordingly, the resource quantity adjuster 835 may increase a resource quantity for the uplink control information in at least one uplink channel repetition of the set of uplink channel repetitions that is not cancelled, in an additional one or more uplink channel repetition added to the set of uplink channel repetitions, or a combination thereof based on the determination, where the increased resource quantity is greater than an initial resource quantity configured for the set of uplink channel repetitions.
In some examples, the resource quantity adjuster 835 may adjust a beta offset of the uplink control information to increase the resource quantity. Additionally, the resource quantity adjuster 835 may determine a coding rate for the uplink control information based on the increased resource quantity for the uplink control information. In some cases, the coding rate may be decreased based on the increased resource quantity for the uplink control information. In some examples, the resource quantity adjuster 835 may rate match the uplink scheduled data based on a remaining number of resources in an uplink channel repetition after increasing the resource quantity for the uplink control information.
In some cases, when increasing resource quantity for the uplink control information, the parameters associated with the cancelled one or more uplink channel  repetitions used for identifying the adjusting configuration to adjust the set of uplink channel repetitions may include a quantity of resources carrying the uplink control information being cancelled, an original beta offset for the set of uplink channel repetitions, a coding rate for the set of uplink channel repetitions, a modulation order for the set of uplink channel repetitions, a quantity of resources of the uplink scheduled data for the set of uplink channel repetitions, a quantity of resources of the uplink control information for the set of uplink channel repetitions, a number of previous uplink channel repetitions of the set of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the set of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, transmitting one or more additional uplink channel repetitions, adjusting a coding rate of channel state information reports, or a combination thereof.
The coding rate adjuster 840 may determine that the uplink control information includes at least CSI reports and that the CSI reports are multiplexed with the uplink scheduled data, where the cancelled one or more uplink channel repetitions include at least one CSI report. Accordingly, the coding rate adjuster 840 may determine a new target coding rate for CSI reports lower than an initial target coding rate for the CSI reports in the uplink channel repetitions before the cancelled uplink channel repetitions, for one or more additional uplink channel repetitions added to the set of uplink channel repetitions to transmit, for one or more uplink channel repetitions following the cancelled uplink channel repetitions, or a combination thereof. In some examples, the coding rate adjuster 840 may transmit the one or more additional uplink channel repetitions according to the target code rate.
Additionally, the coding rate adjuster 840 may omit one or more CSI reports from the one or more additional uplink channel repetitions based on the determined new target coding rate. In some examples, the coding rate adjuster 840 may increase a resource quantity for the uplink control information in at least one uplink channel repetition of the set of uplink channel repetitions that is not cancelled, in the additional one or more uplink channel repetitions, or a combination thereof. Accordingly, the coding rate adjuster 840 may transmit one or more CSI reports in the one or more additional uplink channel repetitions based on the increased resource quantity for the uplink control information.
In some cases, when determining the new target coding rate for CSI reports, the parameters associated with the cancelled one or more uplink channel repetitions used for identifying the adjusting configuration to adjust the set of uplink channel repetitions may include a quantity of resources carrying the uplink control information being cancelled, an original beta offset for the set of uplink channel repetitions, a coding rate for the set of uplink channel repetitions, a modulation order for the set of uplink channel repetitions, a quantity of resources of the uplink control information for the set of uplink channel repetitions, a number of previous uplink channel repetitions of the set of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the set of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, transmitting one or more additional uplink channel repetitions, increasing a resource quantity for the uplink control information, or a combination thereof. Additionally, the determined new target coding rate may be determined for a CSI part one and a CSI part two jointly or separately.
The encoding candidate component 845 may determine to use a preconfigured encoding candidate from a set of encoding candidates for transmitting the adjusted uplink channel repetitions based on receiving the uplink cancellation indication.
In some examples, the encoding candidate component 845 may receive, from the base station, an indication of the set of encoding candidates. Additionally, the encoding candidate component 845 may receive, from the base station, an indication of one configuration of the separate configurations for a default configuration of the uplink channel repetitions, of different configurations of the separate configurations for remaining uplink channel repetitions that are not cancelled based on the uplink cancellation indication, or a combination thereof. In some cases, the set of encoding candidates may be received with the configuration scheduling a set of uplink channel repetitions. Additionally, the set of encoding candidates may include separate configurations of resource quantity increasing levels, target coding rates, or a combination thereof for the uplink control information of the set of uplink channel repetitions.
FIG. 9 shows a diagram of a system 900 including a device 905 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The device 905 may be an example of or include the  components of device 605, device 705, or a UE 115 as described herein. The device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a UE communications manager 910, an I/O controller 915, a transceiver 920, an antenna 925, memory 930, and a processor 940. These components may be in electronic communication via one or more buses (e.g., bus 945) .
The UE communications manager 910 may receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. Additionally, the UE communications manager 910 may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled. In some cases, the UE communications manager 910 may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. Subsequently, the UE communications manager 910 may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
The I/O controller 915 may manage input and output signals for the device 905. The I/O controller 915 may also manage peripherals not integrated into the device 905. In some cases, the I/O controller 915 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 915 may utilize an operating system such as 
Figure PCTCN2019097635-appb-000003
or another known operating system. In other cases, the I/O controller 915 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 915 may be implemented as part of a processor. In some cases, a user may interact with the device 905 via the I/O controller 915 or via hardware components controlled by the I/O controller 915.
The transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 920 may also include a modem to modulate the packets and provide the  modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 930 may include random-access memory (RAM) and read-only memory (ROM) . The memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 930 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 940 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 940. The processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting uplink preemption cancellation with uplink shared channel repetitions) .
The code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a base station 105 as described herein. The device 1005 may include a receiver 1010, a base station communications manager 1015, and a transmitter 1020. The device 1005 may also include a  processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to uplink preemption cancellation with uplink shared channel repetitions, etc. ) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The receiver 1010 may utilize a single antenna or a set of antennas.
The base station communications manager 1015 may transmit, to a UE, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. In some cases, the base station communications manager 1015 may determine that at least a portion of one uplink channel repetition is preempted by a first communications. Additionally, the base station communications manager 1015 may transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled. In some cases, the base station communications manager 1015 may identify an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. Subsequently, the base station communications manager 1015 may receive, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions. The base station communications manager 1015 may be an example of aspects of the base station communications manager 1310 described herein.
The base station communications manager 1015, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the base station communications manager 1015, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The base station communications manager 1015, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the base station communications manager 1015, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the base station communications manager 1015, or its sub-components, may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1020 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1020 may be collocated with a receiver 1010 in a transceiver module. For example, the transmitter 1020 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The transmitter 1020 may utilize a single antenna or a set of antennas.
FIG. 11 shows a block diagram 1100 of a device 1105 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The device 1105 may be an example of aspects of a device 1005, or a base station 105 as described herein. The device 1105 may include a receiver 1110, a base station communications manager 1115, and a transmitter 1145. The device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to uplink preemption cancellation with uplink shared channel repetitions, etc. ) . Information may be passed on to other components of the device 1105. The receiver 1110 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The receiver 1110 may utilize a single antenna or a set of antennas.
The base station communications manager 1115 may be an example of aspects of the base station communications manager 1015 as described herein. The base station communications manager 1115 may include an uplink channel repetition component 1120, an  uplink preemption component 1125, an uplink cancellation indicator 1130, an uplink channel repetition adjuster 1135, and an adjusted uplink channel repetition component 1140. The base station communications manager 1115 may be an example of aspects of the base station communications manager 1310 described herein.
The uplink channel repetition component 1120 may transmit, to a UE, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data.
The uplink preemption component 1125 may determine that at least a portion of one uplink channel repetition is preempted by a first communications.
The uplink cancellation indicator 1130 may transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled.
The uplink channel repetition adjuster 1135 may identify an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions.
The adjusted uplink channel repetition component 1140 may receive, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
The transmitter 1145 may transmit signals generated by other components of the device 1105. In some examples, the transmitter 1145 may be collocated with a receiver 1110 in a transceiver module. For example, the transmitter 1145 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The transmitter 1145 may utilize a single antenna or a set of antennas.
FIG. 12 shows a block diagram 1200 of a base station communications manager 1205 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The base station communications manager 1205 may be an example of aspects of a base station communications manager 1015, a base station communications manager 1115, or a base station communications manager 1310 described herein. The base station communications manager 1205 may include an uplink channel repetition component 1210, an uplink preemption component 1215, an uplink  cancellation indicator 1220, an uplink channel repetition adjuster 1225, an adjusted uplink channel repetition component 1230, and an encoding candidate indicator 1235. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The uplink channel repetition component 1210 may transmit, to a UE, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. In some cases, the uplink control information and the uplink scheduled data may be multiplexed by the UE in the set of uplink channel repetitions, the cancelled one or more uplink channel repetitions include at least the uplink control information, the uplink control information includes at least CSI reports, the cancelled one or more uplink channel repetitions include at least one CSI report, or a combination thereof. Additionally, a target coding rate may be used for a CSI part one and a CSI part two jointly or separately.
The uplink preemption component 1215 may determine that at least a portion of one uplink channel repetition is preempted by a first communications.
The uplink cancellation indicator 1220 may transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled.
The uplink channel repetition adjuster 1225 may identify an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. In some examples, the uplink channel repetition adjuster 1225 may transmit, to the UE, an adjustment indication to adjust the set of uplink channel repetitions based on the cancelled one or more uplink channel repetitions. In some cases, the adjustment indication may be transmitted via RRC signaling, a MAC-CE, DCI signaling, is prestored in the UE, or a combination thereof.
In some cases, the adjustment indication for the UE to adjust the set of uplink channel repetitions may include an indication for the UE to transmit one or more additional uplink channel repetitions following a last scheduled uplink channel repetition of the set of uplink channel repetitions based on a number of uplink channel repetitions that are cancelled.
Additionally or alternatively, the adjustment indication for the UE to adjust the set of uplink channel repetitions may include an indication for the UE to increase a resource quantity for the uplink control information in at least one uplink channel repetition of the set of uplink channel repetitions that is not cancelled, in an additional one or more uplink channel repetition added to the set of uplink channel repetitions, or a combination thereof, the increased resource quantity being greater than an initial resource quantity configured for the set of uplink channel repetitions.
Additionally or alternatively, the adjustment indication for the UE to adjust the set of uplink channel repetitions may include an indication for the UE to transmit one or more additional uplink channel repetitions according to a new target code rate.
The adjusted uplink channel repetition component 1230 may receive, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions. In some examples, the adjusted uplink channel repetition component 1230 may combine the received adjusted uplink channel repetitions. Additionally, the adjusted uplink channel repetition component 1230 may decode an uplink channel transmission from the UE based on the combined uplink channel repetitions.
The encoding candidate indicator 1235 may transmit, to the UE, an indication of a set of encoding candidates for the UE to transmit the adjusted uplink channel repetitions based on the uplink cancellation indication. In some examples, the encoding candidate indicator 1235 may transmit, to the UE, an indication of one configuration of the separate configurations for a default configuration of the uplink channel repetitions, of different configurations of the separate configurations for remaining uplink channel repetitions that are not cancelled based on the uplink cancellation indication, or a combination thereof. In some cases, the set of encoding candidates may be transmitted with the configuration scheduling a set of uplink channel repetitions. Additionally, the set of encoding candidates may include separate configurations of beta offsets, target coding rates, or a combination thereof for the uplink control information of the set of uplink channel repetitions.
FIG. 13 shows a diagram of a system 1300 including a device 1305 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The device 1305 may be an example of or include the components of device 1005, device 1105, or a base station 105 as described herein. The  device 1305 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a base station communications manager 1310, a network communications manager 1315, a transceiver 1320, an antenna 1325, memory 1330, a processor 1340, and an inter-station communications manager 1345. These components may be in electronic communication via one or more buses (e.g., bus 1350) .
The base station communications manager 1310 may transmit, to a UE, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. In some cases, the base station communications manager 1310 may determine that at least a portion of one uplink channel repetition is preempted by a first communications. Additionally, the base station communications manager 1310 may transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled. In some cases, the base station communications manager 1310 may identify an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. Subsequently, the base station communications manager 1310 may receive, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions.
The network communications manager 1315 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1315 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1320 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1320 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1320 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1325. However, in some cases the device may have more than one antenna 1325, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1330 may include RAM, ROM, or a combination thereof. The memory 1330 may store computer-readable code 1335 including instructions that, when executed by a processor (e.g., the processor 1340) cause the device to perform various functions described herein. In some cases, the memory 1330 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1340 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1340 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1340. The processor 1340 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1330) to cause the device 1305 to perform various functions (e.g., functions or tasks supporting uplink preemption cancellation with uplink shared channel repetitions) .
The inter-station communications manager 1345 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1345 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1345 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1335 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1335 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1335 may not be directly executable by the processor 1340  but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 14 shows a flowchart illustrating a method 1400 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a UE communications manager as described with reference to FIGs. 6 through 9.In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1405, the UE may receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a repetition configuration component as described with reference to FIGs. 6 through 9.
At 1410, the UE may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by an uplink cancellation indication component as described with reference to FIGs. 6 through 9.
At 1415, the UE may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a repetition adjuster as described with reference to FIGs. 6 through 9.
At 1420, the UE may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the  operations of 1420 may be performed by an adjusted repetition component as described with reference to FIGs. 6 through 9.
FIG. 15 shows a flowchart illustrating a method 1500 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a UE communications manager as described with reference to FIGs. 6 through 9.In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE may receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a repetition configuration component as described with reference to FIGs. 6 through 9.
At 1510, the UE may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by an uplink cancellation indication component as described with reference to FIGs. 6 through 9.
At 1515, the UE may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a repetition adjuster as described with reference to FIGs. 6 through 9.
At 1520, the UE may receive, from the base station, an adjustment indication to adjust the set of uplink channel repetitions based on the cancelled one or more uplink channel repetitions. The operations of 1520 may be performed according to the methods described  herein. In some examples, aspects of the operations of 1520 may be performed by a repetition adjuster as described with reference to FIGs. 6 through 9.
At 1525, the UE may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by an adjusted repetition component as described with reference to FIGs. 6 through 9.
FIG. 16 shows a flowchart illustrating a method 1600 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1600 may be performed by a UE communications manager as described with reference to FIGs. 6 through 9.In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1605, the UE may receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a repetition configuration component as described with reference to FIGs. 6 through 9.
At 1610, the UE may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by an uplink cancellation indication component as described with reference to FIGs. 6 through 9.
At 1615, the UE may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. The operations of 1615 may be performed according to the methods  described herein. In some examples, aspects of the operations of 1615 may be performed by a repetition adjuster as described with reference to FIGs. 6 through 9.
At 1620, the UE may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by an adjusted repetition component as described with reference to FIGs. 6 through 9.
At 1625, the UE may transmit one or more additional uplink channel repetitions following a last scheduled uplink channel repetition of the set of uplink channel repetitions based on a number of uplink channel repetitions that are cancelled. The operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by an additional repetition component as described with reference to FIGs. 6 through 9.
FIG. 17 shows a flowchart illustrating a method 1700 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1700 may be performed by a UE communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1705, the UE may receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a repetition configuration component as described with reference to FIGs. 6 through 9.
At 1710, the UE may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be  performed by an uplink cancellation indication component as described with reference to FIGs. 6 through 9.
At 1715, the UE may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a repetition adjuster as described with reference to FIGs. 6 through 9.
At 1720, the UE may determine that the uplink control information and the uplink scheduled data are multiplexed in the set of uplink channel repetitions, where the cancelled one or more uplink channel repetitions include at least the uplink control information. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a resource quantity adjuster as described with reference to FIGs. 6 through 9.
At 1725, the UE may increase a resource quantity for the uplink control information in at least one uplink channel repetition of the set of uplink channel repetitions that is not cancelled, in an additional one or more uplink channel repetition added to the set of uplink channel repetitions, or a combination thereof based on the determination, where the increased resource quantity is greater than an initial resource quantity configured for the set of uplink channel repetitions. The operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a resource quantity adjuster as described with reference to FIGs. 6 through 9.
At 1730, the UE may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions. The operations of 1730 may be performed according to the methods described herein. In some examples, aspects of the operations of 1730 may be performed by an adjusted repetition component as described with reference to FIGs. 6 through 9.
FIG. 18 shows a flowchart illustrating a method 1800 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1800 may be performed by a UE communications manager as described with reference to FIGs. 6 through  9.In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1805, the UE may receive, from a base station, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a repetition configuration component as described with reference to FIGs. 6 through 9.
At 1810, the UE may receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the set of uplink channel repetitions are to be cancelled. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by an uplink cancellation indication component as described with reference to FIGs. 6 through 9.
At 1815, the UE may identify an adjusting configuration to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a repetition adjuster as described with reference to FIGs. 6 through 9.
At 1820, the UE may determine that the uplink control information includes at least channel state information reports and that the channel state information reports are multiplexed with the uplink scheduled data, where the cancelled one or more uplink channel repetitions include at least one channel state information report. The operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a coding rate adjuster as described with reference to FIGs. 6 through 9.
At 1825, the UE may determine a new target coding rate for channel state information reports lower than an initial target coding rate for the channel state information reports in the uplink channel repetitions before the cancelled uplink channel repetitions, for one or more additional uplink channel repetitions added to the set of uplink channel  repetitions to transmit, for one or more uplink channel repetitions following the cancelled uplink channel repetitions, or a combination thereof. The operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a coding rate adjuster as described with reference to FIGs. 6 through 9.
At 1830, the UE may transmit, to the base station, the uplink channel repetitions according to the adjusted set of uplink channel repetitions. The operations of 1830 may be performed according to the methods described herein. In some examples, aspects of the operations of 1830 may be performed by an adjusted repetition component as described with reference to FIGs. 6 through 9.
At 1835, the UE may transmit the one or more additional uplink channel repetitions according to the target code rate. The operations of 1835 may be performed according to the methods described herein. In some examples, aspects of the operations of 1835 may be performed by a coding rate adjuster as described with reference to FIGs. 6 through 9.
FIG. 19 shows a flowchart illustrating a method 2000 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The operations of method 2000 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 2000 may be performed by a base station communications manager as described with reference to FIGs. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 2005, the base station may transmit, to a UE, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. The operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by an uplink channel repetition component as described with reference to FIGs. 10 through 13.
At 2010, the base station may determine that at least a portion of one uplink channel repetition is preempted by a first communications. The operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by an uplink preemption component as described with reference to FIGs. 10 through 13.
At 2015, the base station may transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled. The operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by an uplink cancellation indicator as described with reference to FIGs. 10 through 13.
At 2020, the base station may identify an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. The operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by an uplink channel repetition adjuster as described with reference to FIGs. 10 through 13.
At 2025, the base station may receive, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions. The operations of 2025 may be performed according to the methods described herein. In some examples, aspects of the operations of 2025 may be performed by an adjusted uplink channel repetition component as described with reference to FIGs. 10 through 13.
FIG. 20 shows a flowchart illustrating a method 2000 that supports uplink preemption cancellation with uplink shared channel repetitions in accordance with aspects of the present disclosure. The operations of method 2000 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 2000 may be performed by a base station communications manager as described with reference to FIGs. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 2005, the base station may transmit, to a UE, a configuration scheduling a set of uplink channel repetitions for communications with the base station, the uplink channel repetitions including at least uplink control information and uplink scheduled data. The operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by an uplink channel repetition component as described with reference to FIGs. 10 through 13.
At 2010, the base station may determine that at least a portion of one uplink channel repetition is preempted by a first communications. The operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by an uplink preemption component as described with reference to FIGs. 10 through 13.
At 2015, the base station may transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled. The operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by an uplink cancellation indicator as described with reference to FIGs. 10 through 13.
At 2020, the base station may identify an adjusting configuration for the UE to adjust the set of uplink channel repetitions based on one or more parameters associated with the cancelled uplink channel repetitions. The operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by an uplink channel repetition adjuster as described with reference to FIGs. 10 through 13.
At 2025, the base station may receive, from the UE, the uplink channel repetitions according to the adjusted set of uplink channel repetitions. The operations of 2025 may be performed according to the methods described herein. In some examples, aspects of the operations of 2025 may be performed by an adjusted uplink channel repetition component as described with reference to FIGs. 10 through 13.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise  modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g.,  licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
The wireless communications systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or  AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (80)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    receiving, from a base station, a configuration scheduling a plurality of uplink channel repetitions for communications with the base station, the uplink channel repetitions comprising at least uplink control information and uplink scheduled data;
    receiving, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the plurality of uplink channel repetitions are to be cancelled;
    identifying an adjusting configuration to adjust the plurality of uplink channel repetitions based at least in part on one or more parameters associated with the cancelled uplink channel repetitions; and
    transmitting, to the base station, the uplink channel repetitions according to the adjusted plurality of uplink channel repetitions.
  2. The method of claim 1, wherein identifying the adjusting configuration to adjust the plurality of uplink channel repetitions further comprises:
    receiving, from the base station, an adjustment indication to adjust the plurality of uplink channel repetitions based at least in part on the cancelled one or more uplink channel repetitions.
  3. The method of claim 2, wherein the adjustment indication is received via radio resource control signaling, a medium access control (MAC) control element (MAC-CE) , downlink control indication signaling, is prestored in the UE, or a combination thereof.
  4. The method of claim 1, wherein adjusting the plurality of uplink channel repetitions comprises:
    transmitting one or more additional uplink channel repetitions following a last scheduled uplink channel repetition of the plurality of uplink channel repetitions based at least in part on a number of uplink channel repetitions that are cancelled.
  5. The method of claim 4, further comprising:
    increasing a transmit power for the one or more additional uplink channel repetitions, for one or more uplink channel repetitions following the cancelled uplink channel repetitions, or a combination thereof.
  6. The method of claim 4, wherein a resource allocation and a frequency hopping pattern of the one or more additional uplink channel repetitions are based at least in part on a resource allocation and a frequency hopping pattern of the scheduled plurality of uplink channel repetitions.
  7. The method of claim 4, wherein a number of the one or more additional uplink channel repetitions is based at least in part on a number of symbols of a single uplink channel repetition that is cancelled, a number of consecutive uplink channel repetitions that are cancelled, or a combination thereof.
  8. The method of claim 4, wherein the parameters associated with the cancelled one or more uplink channel repetitions comprise a quantity of resources cancelled, a number of previous uplink channel repetitions of the plurality of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the plurality of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, adjusting a resource quantity for uplink control information, adjusting a coding rate of channel state information reports, or a combination thereof.
  9. The method of claim 1, wherein adjusting the plurality of uplink channel repetitions comprises:
    determining that the uplink control information and the uplink scheduled data are multiplexed in the plurality of uplink channel repetitions, wherein the cancelled one or more uplink channel repetitions comprise at least the uplink control information; and
    increasing a resource quantity for the uplink control information in at least one uplink channel repetition of the plurality of uplink channel repetitions that is not cancelled, in an additional one or more uplink channel repetition added to the plurality of uplink channel repetitions, or a combination thereof based at least in part on the determination, wherein the increased resource quantity is greater than an initial resource quantity configured for the plurality of uplink channel repetitions.
  10. The method of claim 9, further comprising:
    determining a coding rate for the uplink control information based at least in part on an increased resource quantity for the uplink control information.
  11. The method of claim 10, wherein the coding rate is decreased based at least in part on the increased resource quantity for the uplink control information.
  12. The method of claim 9, further comprising:
    rate matching the uplink scheduled data based at least in part on a remaining number of resources in an uplink channel repetition after increasing the resource quantity for the uplink control information.
  13. The method of claim 9, wherein the parameters associated with the cancelled one or more uplink channel repetitions comprise a quantity of resources carrying the uplink control information being cancelled, an original resource quantity for the plurality of uplink channel repetitions, a coding rate for the plurality of uplink channel repetitions, a modulation order for the plurality of uplink channel repetitions, a quantity of resources of the uplink scheduled data for the plurality of uplink channel repetitions, a quantity of resources of the uplink control information for the plurality of uplink channel repetitions, a number of previous uplink channel repetitions of the plurality of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the plurality of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, transmitting one or more additional uplink channel repetitions, adjusting a coding rate of channel state information reports, or a combination thereof.
  14. The method of claim 1, wherein adjusting the plurality of uplink channel repetitions comprises:
    determining that the uplink control information comprises at least channel state information reports and that the channel state information reports are multiplexed with the uplink scheduled data, wherein the cancelled one or more uplink channel repetitions comprise at least one channel state information report;
    determining a new target coding rate for channel state information reports lower than an initial target coding rate for the channel state information reports in the uplink  channel repetitions before the cancelled uplink channel repetitions, for one or more additional uplink channel repetitions added to the plurality of uplink channel repetitions to transmit, for one or more uplink channel repetitions following the cancelled uplink channel repetitions, or a combination thereof; and
    transmitting the one or more additional uplink channel repetitions according to the target code rate.
  15. The method of claim 14, further comprising:
    omitting one or more channel state information reports from the one or more additional uplink channel repetitions based at least in part on the determined new target coding rate.
  16. The method of claim 14, further comprising:
    increasing a resource quantity for the uplink control information in at least one uplink channel repetition of the plurality of uplink channel repetitions that is not cancelled, in the additional one or more uplink channel repetitions, or a combination thereof; and
    transmitting one or more channel state information reports in the one or more additional uplink channel repetitions based at least in part on the increased resource quantity for the uplink control information.
  17. The method of claim 14, wherein the parameters associated with the cancelled one or more uplink channel repetitions comprise a quantity of resources carrying the uplink control information being cancelled, an original resource quantity for the plurality of uplink channel repetitions, a coding rate for the plurality of uplink channel repetitions, a modulation order for the plurality of uplink channel repetitions, a quantity of resources of the uplink control information for the plurality of uplink channel repetitions, a number of previous uplink channel repetitions of the plurality of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the plurality of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, transmitting one or more additional uplink channel repetitions, increasing a resource quantity for the uplink control information, or a combination thereof.
  18. The method of claim 14, wherein the determined new target coding rate is determined for a channel state information part one and a channel state information part two jointly or separately.
  19. The method of claim 1, further comprising:
    adapting resource allocations for remaining uplink channel repetitions after the at least one uplink channel repetition to decrease a coding rate for the uplink control information, the uplink scheduled data, or a combination thereof in the remaining uplink channel repetitions.
  20. The method of claim 1, further comprising:
    adjusting a redundancy version of at least one uplink channel repetition of the plurality of uplink channel repetitions that is not cancelled, in the additional one or more uplink channel repetitions, or a combination thereof based at least in part on an original redundancy version of the cancelled one or more uplink channel repetitions.
  21. The method of claim 1, further comprising:
    determining to use a preconfigured encoding candidate from a set of encoding candidates for transmitting the adjusted uplink channel repetitions based at least in part on receiving the uplink cancellation indication.
  22. The method of claim 21, further comprising:
    receiving, from the base station, an indication of the set of encoding candidates.
  23. The method of claim 22, wherein the set of encoding candidates is received with the configuration scheduling a plurality of uplink channel repetitions.
  24. The method of claim 22, wherein the set of encoding candidates comprise separate configurations of resource quantity increasing levels, target coding rates, or a combination thereof for the uplink control information of the plurality of uplink channel repetitions.
  25. The method of claim 24, further comprising:
    receiving, from the base station, an indication of one configuration of the separate configurations for a default configuration of the uplink channel repetitions, of different configurations of the separate configurations for remaining uplink channel repetitions that are not cancelled based at least in part on the uplink cancellation indication, or a combination thereof.
  26. A method for wireless communications at a base station, comprising:
    transmitting, to a user equipment (UE) , a configuration scheduling a plurality of uplink channel repetitions for communications with the base station, the uplink channel repetitions comprising at least uplink control information and uplink scheduled data;
    determining that at least a portion of one uplink channel repetition is preempted by a first communications;
    transmitting, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled;
    identifying an adjusting configuration for the UE to adjust the plurality of uplink channel repetitions based at least in part on one or more parameters associated with the cancelled uplink channel repetitions; and
    receiving, from the UE, the uplink channel repetitions according to the adjusted plurality of uplink channel repetitions.
  27. The method of claim 26, further comprising:
    combining the received adjusted uplink channel repetitions; and
    decoding an uplink channel transmission from the UE based at least in part on the combined uplink channel repetitions.
  28. The method of claim 26, wherein identifying the adjusting configuration to adjust the plurality of uplink channel repetitions further comprises:
    transmitting, to the UE, an adjustment indication to adjust the plurality of uplink channel repetitions based at least in part on the cancelled one or more uplink channel repetitions.
  29. The method of claim 28, wherein the adjustment indication is transmitted via radio resource control signaling, a medium access control (MAC) control  element (MAC-CE) , downlink control indication signaling, is prestored in the UE, or a combination thereof.
  30. The method of claim 28, wherein the adjustment indication for the UE to adjust the plurality of uplink channel repetitions comprises an indication for the UE to transmit one or more additional uplink channel repetitions following a last scheduled uplink channel repetition of the plurality of uplink channel repetitions based at least in part on a number of uplink channel repetitions that are cancelled.
  31. The method of claim 28, wherein the adjustment indication for the UE to adjust the plurality of uplink channel repetitions comprises an indication for the UE to increase a resource quantity for the uplink control information in at least one uplink channel repetition of the plurality of uplink channel repetitions that is not cancelled, in an additional one or more uplink channel repetition added to the plurality of uplink channel repetitions, or a combination thereof, the increased resource quantity being greater than an initial resource quantity configured for the plurality of uplink channel repetitions.
  32. The method of claim 28, wherein the adjustment indication for the UE to adjust the plurality of uplink channel repetitions comprises an indication for the UE to transmit one or more additional uplink channel repetitions according to a new target code rate.
  33. The method of claim 26, wherein the uplink control information and the uplink scheduled data are multiplexed by the UE in the plurality of uplink channel repetitions, the cancelled one or more uplink channel repetitions comprise at least the uplink control information, the uplink control information comprises at least channel state information reports, the cancelled one or more uplink channel repetitions comprise at least one channel state information report, or a combination thereof.
  34. The method of claim 33, wherein a target coding rate is used for a channel state information part one and a channel state information part two jointly or separately.
  35. The method of claim 26, further comprising:
    transmitting, to the UE, an indication of a set of encoding candidates for the UE to transmit the adjusted uplink channel repetitions based at least in part on the uplink cancellation indication.
  36. The method of claim 35, wherein the set of encoding candidates is transmitted with the configuration scheduling a plurality of uplink channel repetitions.
  37. The method of claim 35, wherein the set of encoding candidates comprise separate configurations of resource quantities, target coding rates, or a combination thereof for the uplink control information of the plurality of uplink channel repetitions.
  38. The method of claim 37, further comprising:
    transmitting, to the UE, an indication of one configuration of the separate configurations for a default configuration of the uplink channel repetitions, of different configurations of the separate configurations for remaining uplink channel repetitions that are not cancelled based at least in part on the uplink cancellation indication, or a combination thereof.
  39. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a base station, a configuration scheduling a plurality of uplink channel repetitions for communications with the base station, the uplink channel repetitions comprising at least uplink control information and uplink scheduled data;
    receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the plurality of uplink channel repetitions are to be cancelled;
    identify an adjusting configuration to adjust the plurality of uplink channel repetitions based at least in part on one or more parameters associated with the cancelled uplink channel repetitions; and
    transmit, to the base station, the uplink channel repetitions according to the adjusted plurality of uplink channel repetitions.
  40. The apparatus of claim 39, wherein the instructions to identify the adjusting configuration to adjust the plurality of uplink channel repetitions further are executable by the processor to cause the apparatus to:
    receive, from the base station, an adjustment indication to adjust the plurality of uplink channel repetitions based at least in part on the cancelled one or more uplink channel repetitions.
  41. The apparatus of claim 40, wherein the adjustment indication is received via radio resource control signaling, a medium access control (MAC) control element (MAC-CE) , downlink control indication signaling, is prestored in the UE, or a combination thereof.
  42. The apparatus of claim 39, wherein the instructions to adjust the plurality of uplink channel repetitions are executable by the processor to cause the apparatus to:
    transmit one or more additional uplink channel repetitions following a last scheduled uplink channel repetition of the plurality of uplink channel repetitions based at least in part on a number of uplink channel repetitions that are cancelled.
  43. The apparatus of claim 42, wherein the instructions are further executable by the processor to cause the apparatus to:
    increase a transmit power for the one or more additional uplink channel repetitions, for one or more uplink channel repetitions following the cancelled uplink channel repetitions, or a combination thereof.
  44. The apparatus of claim 42, wherein a resource allocation and a frequency hopping pattern of the one or more additional uplink channel repetitions are based at least in part on a resource allocation and a frequency hopping pattern of the scheduled plurality of uplink channel repetitions.
  45. The apparatus of claim 42, wherein a number of the one or more additional uplink channel repetitions is based at least in part on a number of symbols of a  single uplink channel repetition that is cancelled, a number of consecutive uplink channel repetitions that are cancelled, or a combination thereof.
  46. The apparatus of claim 42, wherein the parameters associated with the cancelled one or more uplink channel repetitions comprise a quantity of resources cancelled, a number of previous uplink channel repetitions of the plurality of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the plurality of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, adjusting a resource quantity for uplink control information, adjusting a coding rate of channel state information reports, or a combination thereof.
  47. The apparatus of claim 39, wherein the instructions to adjust the plurality of uplink channel repetitions are executable by the processor to cause the apparatus to:
    determine that the uplink control information and the uplink scheduled data are multiplexed in the plurality of uplink channel repetitions, wherein the cancelled one or more uplink channel repetitions comprise at least the uplink control information; and
    increase a resource quantity for the uplink control information in at least one uplink channel repetition of the plurality of uplink channel repetitions that is not cancelled, in an additional one or more uplink channel repetition added to the plurality of uplink channel repetitions, or a combination thereof based at least in part on the determination, wherein the increased resource quantity is greater than an initial resource quantity configured for the plurality of uplink channel repetitions.
  48. The apparatus of claim 47, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a coding rate for the uplink control information based at least in part on an increased resource quantity for the uplink control information.
  49. The apparatus of claim 48, wherein the coding rate is decreased based at least in part on the increased resource quantity for the uplink control information.
  50. The apparatus of claim 47, wherein the instructions are further executable by the processor to cause the apparatus to:
    rate matching the uplink scheduled data based at least in part on a remaining number of resources in an uplink channel repetition after increasing the resource quantity for the uplink control information.
  51. The apparatus of claim 47, wherein the parameters associated with the cancelled one or more uplink channel repetitions comprise a quantity of resources carrying the uplink control information being cancelled, an original resource quantity for the plurality of uplink channel repetitions, a coding rate for the plurality of uplink channel repetitions, a modulation order for the plurality of uplink channel repetitions, a quantity of resources of the uplink scheduled data for the plurality of uplink channel repetitions, a quantity of resources of the uplink control information for the plurality of uplink channel repetitions, a number of previous uplink channel repetitions of the plurality of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the plurality of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, transmitting one or more additional uplink channel repetitions, adjusting a coding rate of channel state information reports, or a combination thereof.
  52. The apparatus of claim 39, wherein the instructions to adjust the plurality of uplink channel repetitions are executable by the processor to cause the apparatus to:
    determine that the uplink control information comprises at least channel state information reports and that the channel state information reports are multiplexed with the uplink scheduled data, wherein the cancelled one or more uplink channel repetitions comprise at least one channel state information report;
    determine a new target coding rate for channel state information reports lower than an initial target coding rate for the channel state information reports in the uplink channel repetitions before the cancelled uplink channel repetitions, for one or more additional uplink channel repetitions added to the plurality of uplink channel repetitions to transmit, for one or more uplink channel repetitions following the cancelled uplink channel repetitions, or a combination thereof; and
    transmit the one or more additional uplink channel repetitions according to the target code rate.
  53. The apparatus of claim 52, wherein the instructions are further executable by the processor to cause the apparatus to:
    omit one or more channel state information reports from the one or more additional uplink channel repetitions based at least in part on the determined new target coding rate.
  54. The apparatus of claim 52, wherein the instructions are further executable by the processor to cause the apparatus to:
    increase a resource quantity for the uplink control information in at least one uplink channel repetition of the plurality of uplink channel repetitions that is not cancelled, in the additional one or more uplink channel repetitions, or a combination thereof; and
    transmit one or more channel state information reports in the one or more additional uplink channel repetitions based at least in part on the increased resource quantity for the uplink control information.
  55. The apparatus of claim 52, wherein the parameters associated with the cancelled one or more uplink channel repetitions comprise a quantity of resources carrying the uplink control information being cancelled, an original resource quantity for the plurality of uplink channel repetitions, a coding rate for the plurality of uplink channel repetitions, a modulation order for the plurality of uplink channel repetitions, a quantity of resources of the uplink control information for the plurality of uplink channel repetitions, a number of previous uplink channel repetitions of the plurality of uplink channel repetitions occurring before the cancelled one or more uplink channel repetitions, a number of remaining uplink channel repetitions of the plurality of uplink channel repetitions occurring after the cancelled one or more uplink channel repetitions, transmitting one or more additional uplink channel repetitions, increasing a resource quantity for the uplink control information, or a combination thereof.
  56. The apparatus of claim 52, wherein the determined new target coding rate is determined for a channel state information part one and a channel state information part two jointly or separately.
  57. The apparatus of claim 39, wherein the instructions are further executable by the processor to cause the apparatus to:
    adapt resource allocations for remaining uplink channel repetitions after the at least one uplink channel repetition to decrease a coding rate for the uplink control information, the uplink scheduled data, or a combination thereof in the remaining uplink channel repetitions.
  58. The apparatus of claim 39, wherein the instructions are further executable by the processor to cause the apparatus to:
    adjust a redundancy version of at least one uplink channel repetition of the plurality of uplink channel repetitions that is not cancelled, in the additional one or more uplink channel repetitions, or a combination thereof based at least in part on an original redundancy version of the cancelled one or more uplink channel repetitions.
  59. The apparatus of claim 39, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine to use a preconfigured encoding candidate from a set of encoding candidates for transmitting the adjusted uplink channel repetitions based at least in part on receiving the uplink cancellation indication.
  60. The apparatus of claim 59, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the base station, an indication of the set of encoding candidates.
  61. The apparatus of claim 60, wherein the set of encoding candidates is received with the configuration scheduling a plurality of uplink channel repetitions.
  62. The apparatus of claim 60, wherein the set of encoding candidates comprise separate configurations of resource quantity increasing levels, target coding rates, or a combination thereof for the uplink control information of the plurality of uplink channel repetitions.
  63. The apparatus of claim 62, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the base station, an indication of one configuration of the separate configurations for a default configuration of the uplink channel repetitions, of different configurations of the separate configurations for remaining uplink channel  repetitions that are not cancelled based at least in part on the uplink cancellation indication, or a combination thereof.
  64. An apparatus for wireless communications at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, to a user equipment (UE) , a configuration scheduling a plurality of uplink channel repetitions for communications with the base station, the uplink channel repetitions comprising at least uplink control information and uplink scheduled data;
    determine that at least a portion of one uplink channel repetition is preempted by a first communications;
    transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled;
    identify an adjusting configuration for the UE to adjust the plurality of uplink channel repetitions based at least in part on one or more parameters associated with the cancelled uplink channel repetitions; and
    receive, from the UE, the uplink channel repetitions according to the adjusted plurality of uplink channel repetitions.
  65. The apparatus of claim 64, wherein the instructions are further executable by the processor to cause the apparatus to:
    combine the received adjusted uplink channel repetitions; and
    decode an uplink channel transmission from the UE based at least in part on the combined uplink channel repetitions.
  66. The apparatus of claim 64, wherein the instructions to identify the adjusting configuration to adjust the plurality of uplink channel repetitions further are executable by the processor to cause the apparatus to:
    transmit, to the UE, an adjustment indication to adjust the plurality of uplink channel repetitions based at least in part on the cancelled one or more uplink channel repetitions.
  67. The apparatus of claim 66, wherein the adjustment indication is transmitted via radio resource control signaling, a medium access control (MAC) control element (MAC-CE) , downlink control indication signaling, is prestored in the UE, or a combination thereof.
  68. The apparatus of claim 66, wherein the adjustment indication for the UE to adjust the plurality of uplink channel repetitions comprises an indication for the UE to transmit one or more additional uplink channel repetitions following a last scheduled uplink channel repetition of the plurality of uplink channel repetitions based at least in part on a number of uplink channel repetitions that are cancelled.
  69. The apparatus of claim 66, wherein the adjustment indication for the UE to adjust the plurality of uplink channel repetitions comprises an indication for the UE to increase a resource quantity for the uplink control information in at least one uplink channel repetition of the plurality of uplink channel repetitions that is not cancelled, in an additional one or more uplink channel repetition added to the plurality of uplink channel repetitions, or a combination thereof, the increased resource quantity being greater than an initial resource quantity configured for the plurality of uplink channel repetitions.
  70. The apparatus of claim 66, wherein the adjustment indication for the UE to adjust the plurality of uplink channel repetitions comprises an indication for the UE to transmit one or more additional uplink channel repetitions according to a new target code rate.
  71. The apparatus of claim 64, wherein the uplink control information and the uplink scheduled data are multiplexed by the UE in the plurality of uplink channel repetitions, the cancelled one or more uplink channel repetitions comprise at least the uplink control information, the uplink control information comprises at least channel state information reports, the cancelled one or more uplink channel repetitions comprise at least one channel state information report, or a combination thereof.
  72. The apparatus of claim 71, wherein a target coding rate is used for a channel state information part one and a channel state information part two jointly or separately.
  73. The apparatus of claim 64, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the UE, an indication of a set of encoding candidates for the UE to transmit the adjusted uplink channel repetitions based at least in part on the uplink cancellation indication.
  74. The apparatus of claim 73, wherein the set of encoding candidates is transmitted with the configuration scheduling a plurality of uplink channel repetitions.
  75. The apparatus of claim 73, wherein the set of encoding candidates comprise separate configurations of resource quantities, target coding rates, or a combination thereof for the uplink control information of the plurality of uplink channel repetitions.
  76. The apparatus of claim 75, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the UE, an indication of one configuration of the separate configurations for a default configuration of the uplink channel repetitions, of different configurations of the separate configurations for remaining uplink channel repetitions that are not cancelled based at least in part on the uplink cancellation indication, or a combination thereof.
  77. An apparatus for wireless communications at a user equipment (UE) , comprising:
    means for receiving, from a base station, a configuration scheduling a plurality of uplink channel repetitions for communications with the base station, the uplink channel repetitions comprising at least uplink control information and uplink scheduled data;
    means for receiving, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the plurality of uplink channel repetitions are to be cancelled;
    means for identifying an adjusting configuration to adjust the plurality of uplink channel repetitions based at least in part on one or more parameters associated with the cancelled uplink channel repetitions; and
    means for transmitting, to the base station, the uplink channel repetitions according to the adjusted plurality of uplink channel repetitions.
  78. An apparatus for wireless communications at a base station, comprising:
    means for transmitting, to a user equipment (UE) , a configuration scheduling a plurality of uplink channel repetitions for communications with the base station, the uplink channel repetitions comprising at least uplink control information and uplink scheduled data;
    means for determining that at least a portion of one uplink channel repetition is preempted by a first communications;
    means for transmitting, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled;
    means for identifying an adjusting configuration for the UE to adjust the plurality of uplink channel repetitions based at least in part on one or more parameters associated with the cancelled uplink channel repetitions; and
    means for receiving, from the UE, the uplink channel repetitions according to the adjusted plurality of uplink channel repetitions.
  79. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive, from a base station, a configuration scheduling a plurality of uplink channel repetitions for communications with the base station, the uplink channel repetitions comprising at least uplink control information and uplink scheduled data;
    receive, from the base station, an uplink cancellation indication that indicates one or more uplink channel repetitions of the plurality of uplink channel repetitions are to be cancelled;
    identify an adjusting configuration to adjust the plurality of uplink channel repetitions based at least in part on one or more parameters associated with the cancelled uplink channel repetitions; and
    transmit, to the base station, the uplink channel repetitions according to the adjusted plurality of uplink channel repetitions.
  80. A non-transitory computer-readable medium storing code for wireless communications at a base station, the code comprising instructions executable by a processor to:
    transmit, to a user equipment (UE) , a configuration scheduling a plurality of uplink channel repetitions for communications with the base station, the uplink channel repetitions comprising at least uplink control information and uplink scheduled data;
    determine that at least a portion of one uplink channel repetition is preempted by a first communications;
    transmit, to the UE, an uplink cancellation indication that indicates the at least a portion of one uplink channel repetition preempted by the first communications is to be cancelled;
    identify an adjusting configuration for the UE to adjust the plurality of uplink channel repetitions based at least in part on one or more parameters associated with the cancelled uplink channel repetitions; and
    receive, from the UE, the uplink channel repetitions according to the adjusted plurality of uplink channel repetitions.
PCT/CN2019/097635 2019-07-25 2019-07-25 Uplink preemption cancellation with uplink shared channel repetitions WO2021012247A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/097635 WO2021012247A1 (en) 2019-07-25 2019-07-25 Uplink preemption cancellation with uplink shared channel repetitions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/097635 WO2021012247A1 (en) 2019-07-25 2019-07-25 Uplink preemption cancellation with uplink shared channel repetitions

Publications (1)

Publication Number Publication Date
WO2021012247A1 true WO2021012247A1 (en) 2021-01-28

Family

ID=74192605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097635 WO2021012247A1 (en) 2019-07-25 2019-07-25 Uplink preemption cancellation with uplink shared channel repetitions

Country Status (1)

Country Link
WO (1) WO2021012247A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4064605A1 (en) * 2021-03-26 2022-09-28 KT Corporation Method and device for transmitting/receiving signal in half-duplex scheme
WO2023154605A1 (en) * 2022-02-11 2023-08-17 Qualcomm Incorporated Uplink channel repetitions across different network power modes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105917598A (en) * 2013-11-13 2016-08-31 三星电子株式会社 Transmission of control channel and data channels for coverage enhancements
EP3113404A1 (en) * 2014-02-24 2017-01-04 LG Electronics Inc. Method for repetitive transmission of channel for coverage extension, and terminal
CN107534834A (en) * 2015-04-19 2018-01-02 阿尔卡特朗讯 Method and apparatus for preventing the conflict between the uplink control message for LC MTC devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105917598A (en) * 2013-11-13 2016-08-31 三星电子株式会社 Transmission of control channel and data channels for coverage enhancements
EP3113404A1 (en) * 2014-02-24 2017-01-04 LG Electronics Inc. Method for repetitive transmission of channel for coverage extension, and terminal
CN107534834A (en) * 2015-04-19 2018-01-02 阿尔卡特朗讯 Method and apparatus for preventing the conflict between the uplink control message for LC MTC devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "Transmission in preconfigured UL resources", 3GPP TSG-RAN WG1 MEETING #97, 17 May 2019 (2019-05-17) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4064605A1 (en) * 2021-03-26 2022-09-28 KT Corporation Method and device for transmitting/receiving signal in half-duplex scheme
WO2023154605A1 (en) * 2022-02-11 2023-08-17 Qualcomm Incorporated Uplink channel repetitions across different network power modes

Similar Documents

Publication Publication Date Title
US11963144B2 (en) Feedback design for multi-transmission reception point transmission
EP3791524B1 (en) Transport block size scaling factor indication for ultra-reliable low-latency communication
US20200205192A1 (en) Acknowledgement feedback in unlicensed new radio
EP3718236B1 (en) Reference signal and preempted resources collision handling
US11140575B2 (en) Modifying CSI transmissions over uplink shared resources
US20230037246A1 (en) User equipment-specific scheduling request repetitions
AU2019217447B2 (en) Collision avoidance for scheduling requests and uplink control information
US11792811B2 (en) Techniques for base and extended grants
US11438917B2 (en) Uplink control channel resource allocation for new radio (NR)
US11929961B2 (en) Handling collisions between multiple acknowledgement transmissions and an uplink data transmission
US20190238257A1 (en) Modulation table determination and channel quality indicator reporting
US11283548B2 (en) Physical downlink control channel retransmission for ultra-reliable low-latency communications
US10945294B2 (en) Transmitting uplink control information in a two-step random access procedure
US20230327799A1 (en) User equipment shift randomization for uplink control channel transmission
US20190109676A1 (en) Transport block size, soft channel bit buffer size, and rate matching for short transmission time intervals
WO2021012247A1 (en) Uplink preemption cancellation with uplink shared channel repetitions
US11039465B2 (en) Uplink control information piggybacking in wireless systems
WO2020087431A1 (en) Hybrid code design for wireless communications
CN113994604A (en) Techniques to update beams in periodic transmissions
WO2020042028A1 (en) Multiple downlink control information design for multiple transceiver nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938727

Country of ref document: EP

Kind code of ref document: A1