WO2020159029A1 - 전기차 충전 로봇, 로봇의 제어 방법 및 프로그램, 로봇의 도킹을 위한 정밀 제어 방법 및 프로그램 - Google Patents

전기차 충전 로봇, 로봇의 제어 방법 및 프로그램, 로봇의 도킹을 위한 정밀 제어 방법 및 프로그램 Download PDF

Info

Publication number
WO2020159029A1
WO2020159029A1 PCT/KR2019/011440 KR2019011440W WO2020159029A1 WO 2020159029 A1 WO2020159029 A1 WO 2020159029A1 KR 2019011440 W KR2019011440 W KR 2019011440W WO 2020159029 A1 WO2020159029 A1 WO 2020159029A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
feature point
position sensor
electric vehicle
docking
Prior art date
Application number
PCT/KR2019/011440
Other languages
English (en)
French (fr)
Inventor
이훈
신동혁
김기재
Original Assignee
(주)에바
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190013388A external-priority patent/KR102014340B1/ko
Priority claimed from KR1020190013387A external-priority patent/KR102014338B1/ko
Application filed by (주)에바 filed Critical (주)에바
Publication of WO2020159029A1 publication Critical patent/WO2020159029A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present invention relates to a control method for an electric vehicle charging robot and a precise control method for docking an electric vehicle charging robot.
  • the mobile charging device has emerged as an alternative due to the above problems, but in the case of the mobile charging device, there is a hassle that the user has to walk to the charging station and bring the mobile charging device directly to the vehicle.
  • the charging terminal of the charging device must be accurately docked to the charging terminal of the vehicle, but a precise control method for such docking in the field is not presented.
  • the electric vehicle charging robot moves to the parked area, and when the feature point of the docking terminal mounted on the license plate or the front charging port of the vehicle is recognized, it moves to the first position in front of the vehicle and poses. It is possible to provide a control method of the electric vehicle charging robot to change the.
  • the present invention measures the distance between the distance sensor and the feature point using the feature point image sensed by the robot using the distance sensor at the first position, and controls the electric vehicle charging robot that moves to the second position so that the robot approaches the vehicle. You can provide a method.
  • the present invention by driving the robot arm to dock the second docking terminal of the robot arm to the first docking terminal mounted on the vehicle in the second position, and docking the first docking terminal and the second docking terminal, It is possible to provide a control method of an electric vehicle charging robot that performs electric charging on a vehicle.
  • the present invention is to move the robot arm of the electric vehicle charging robot moved to a predetermined distance from the vehicle at a predetermined distance to calculate the distance and alignment error of the feature point and the camera, make up for the error and advance the robot arm to dock without error. It can provide a precise control method for docking the electric vehicle charging robot.
  • a control method of an electric vehicle charging robot for solving the above-described problem is a method performed by an electric vehicle charging robot, wherein the robot moves to a parking area in which the user's vehicle is parked; Sensing the surroundings by the robot through a position sensor; Searching for a target feature point from the sensing data of the position sensor, and when the feature point is recognized, the robot moves to a first position; Changing the posture of the robot from the first position toward the feature point and moving to the second position; And driving the robot arm to dock the second docking terminal of the robot arm to the charging port of the vehicle or the first docking terminal mounted on the vehicle at the second position.
  • the position sensor is provided on the robot, the first position sensor for sensing the surroundings; It characterized in that it comprises a; second position sensor provided on the robot arm.
  • the moving of the first position may include deriving position information of at least one of the feature point, the charging port of the vehicle, and the first docking terminal from data sensed through the first position sensor; And calculating the first position to be moved by the robot through the position information and moving to the first position.
  • the moving of the second position may include calculating an alignment error between the second position sensor and the feature point using the sensing data of the second position sensor, and controlling the robot to make up for the error. .
  • the posture changing step may include changing the robot to a first posture such that the robot arm faces the feature point in the first position;
  • the robot acquiring a feature point image in the sensing data of the second position sensor at a first posture;
  • the robot rotating at a first angle to change to a second posture, and acquiring sensing data of the second position sensor at the second posture;
  • the robot stops movement of the robot when a specific object is detected within a certain distance through one or more distance sensors provided on the outer surface of the robot, and a predetermined time elapses after the specific object disappears from the monitoring range of the distance sensor.
  • a predetermined time elapses after the specific object disappears from the monitoring range of the distance sensor.
  • the step of driving the robot arm may include: driving the robot arm to move the second position sensor by a first distance in a specific direction; The first distance and the distance that the feature point image is moved in the sensing data are frozen through the number of pixels in which the feature point image is moved within the sensing data of the second position sensor according to the first distance movement of the second position sensor. Phosphorus; And docking the second docking terminal of the robot arm with the first docking terminal.
  • the moving of the parking area includes moving the robot to the parking area by a user's order signal.
  • An electric vehicle charging robot for solving the above-described problems searches for a target feature point from data sensed from a position sensor and moves the robot to a parking zone in which the user vehicle is parked, and when the corresponding feature point is recognized
  • the robot arm is driven to dock the second docking terminal of the robot arm to the first docking terminal mounted on the vehicle at a second position.
  • the electric vehicle charging robot control program according to an aspect of the present invention for solving the above-described problem is combined with a computer that is hardware, and is stored in a medium to execute a control method of the electric vehicle charging robot.
  • a precise control method for docking an electric vehicle according to an aspect of the present invention for solving the above-described problem is a precise control method performed by an electric vehicle charging robot moved to a predetermined distance (second position) from the vehicle, the second position
  • the position sensor In the step of driving the robot arm to move the position sensor by a first distance in a specific direction, the position sensor is provided on the robot arm to sense the feature point of the first docking terminal; The first distance and the distance that the feature point image is moved in the sensing data are frozen through the number of pixels in which the feature point image is moved within the sensing data of the second position sensor according to the first distance movement of the second position sensor. Phosphorus; And moving the robot arm a predetermined distance in the direction of the feature point.
  • the robot moves to the parking area where the user's vehicle is parked; Sensing the surroundings by the robot through a position sensor; Searching for a target feature point from the sensing data of the position sensor, and when the feature point is recognized, the robot moves to a first position; Changing the posture of the robot such that the robot arm faces the feature point in the first position; The method further includes measuring a distance between the position sensor and the feature point using the feature point image in the sensing data of the position sensor provided in the robot arm and moving the robot to a second position.
  • the position sensor is provided on the robot, the first position sensor for sensing the surroundings; It characterized in that it comprises a; second position sensor provided on the robot arm.
  • the moving of the first position may include deriving position information of at least one of the feature point, the charging port of the vehicle, and the first docking terminal from a feature point image in data sensed by the first position sensor; And calculating a first position to be moved by the robot through the position information, and moving the robot to a first position.
  • the moving of the second position may include: calculating an alignment error between the second position sensor and the feature point using the feature point image in the sensing data of the second position sensor, and controlling the robot to make up for the error; It includes.
  • the posture changing step may include: changing the robot to a first posture so that the robot arm faces the feature point in the first position; The robot acquiring a feature point image in the sensing data of the second position sensor at a first posture; The robot rotating at a first angle to change to a second posture, and acquiring a feature point image in the sensing data of the second position sensor at the second posture; And calculating a parallel alignment posture of the second position sensor and the feature point through the feature point images acquired in the first posture and the second posture, and correcting the posture by the robot.
  • the robot stops movement of the robot when a specific object is detected within a certain distance through one or more distance sensors provided on the outer surface of the robot, and a predetermined time elapses after the specific object disappears from the monitoring range of the distance sensor.
  • a predetermined time elapses after the specific object disappears from the monitoring range of the distance sensor.
  • the moving of the parking area includes moving the robot to the parking area by a user's order signal.
  • An electric vehicle charging robot for solving the above-described problems is moved to a predetermined distance (second position) from the vehicle to perform precise control for docking, the robot arm of the robot It is provided in the position sensor for sensing the feature point formed on the first docking terminal;
  • the control unit controls the robot arm to make up for the calculated alignment error.
  • a precision control program for docking an electric vehicle charging robot according to an aspect of the present invention for solving the above-described problem is combined with a hardware computer, and is stored in a medium in order to execute a precision control method for docking the electric vehicle.
  • the electric vehicle charging robot when a user mounts a docking terminal on a vehicle's license plate or front charging port and connects a charging cable, the electric vehicle charging robot automatically moves and docks to perform charging.
  • the robot moves to the parking space of the vehicle, when the feature point is recognized, moves to the first position in front of the vehicle to change the posture, and makes up for errors using the feature point image captured by the position sensor to approach the vehicle Because it has the effect of being able to succeed in docking accurately.
  • the present invention has an effect of safely autonomous driving to the position of the vehicle because it stops operation when an object or person is detected through one or more distance sensors provided on the outer surface of the robot and resumes operation when it is determined that the target has disappeared.
  • the robot arm of the electric vehicle charging robot is arbitrarily moved a predetermined distance to calculate the distance between the feature point and the camera and the alignment error, the error is compensated, and the robot arm is advanced and the docking is performed. There is an effect that can charge the electric vehicle.
  • FIG. 1 is a flowchart of a precise control method for docking an electric vehicle charging robot according to an embodiment of the present invention.
  • FIG. 2 is a view illustrating that the first docking terminal is mounted on the license plate of the electric vehicle according to the embodiment of the present invention.
  • FIG 3 is a view illustrating that the first docking terminal is mounted on the charging port of the electric vehicle according to the embodiment of the present invention.
  • FIG. 4 is a view illustrating that the electric vehicle charging robot according to an embodiment of the present invention moves to a parking area where a vehicle is parked.
  • FIG 5 is a diagram illustrating that the robot moves to the first position by recognizing the feature point through the first position sensor.
  • FIG. 6 is a view illustrating that the electric vehicle charging robot changes the posture at the first position.
  • FIG. 7 is a flowchart of a posture correction step according to an embodiment of the present invention.
  • FIG 8 is a view illustrating that the electric vehicle charging robot moves to the second position.
  • FIG. 9 is a view illustrating a feature point image in a captured image of the second position sensor at the first position.
  • FIG. 10 is a view illustrating that the electric vehicle charging robot drives the robot arm for docking in the second position.
  • FIG. 11 is a flowchart of a precise control method for docking an electric vehicle charging robot according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a feature point image in a captured image of the second position sensor at the second position.
  • FIG. 13 is a diagram illustrating that a specific target is detected through a distance sensor while the electric vehicle charging robot is moving.
  • FIG. 14 is a block diagram of an electric vehicle charging robot according to an embodiment of the present invention.
  • Feature point 42 Marked on the first docking terminal 40 mounted on the vehicle, means a marker marked for identification, and a QR code (Quick Response Code) can be applied as shown in the figure. , Bar code, two-dimensional barcode, images, etc. Anything that can be identified through the camera can be applied.
  • QR code Quick Response Code
  • the feature point 42 means a physical object marked on the first docking terminal 40, and the feature point image 43 is within the data (shooting image) sensed by the position sensor 20. It means the data of the feature point 42.
  • FIG. 1 is a flowchart of a precise control method for docking an electric vehicle charging robot according to an embodiment of the present invention
  • FIGS. 2 to 13 are views illustrating an actual application of the control method of the electric vehicle charging robot of FIG. 1.
  • the electric vehicle charging robot 10 receives a user's order signal. (Step S505)
  • FIG. 2 is a view illustrating that the first docking terminal 40 is mounted on a license plate of an electric vehicle (user vehicle, 99) according to an embodiment of the present invention
  • FIG. 3 is a charging port of an electric vehicle according to an embodiment of the present invention Is a diagram illustrating that the first docking terminal 40 is mounted on.
  • the first docking terminal 40 is mounted on the license plate of the vehicle as shown in FIG. 2, and the second terminal 84 is mounted (connected) to the charging port of the vehicle.
  • the first docking terminal 40 may be mounted (connected) to the front charging port of the vehicle as shown in FIG. 3.
  • the docking terminal mounted on the front charging port of the vehicle may be a form in which the first docking terminal 40 and the second terminal 84 are integrated.
  • the vehicle means an electric vehicle.
  • the charging connector 80 includes a cable 86, and the cable 86 has a first terminal 82 at one end and a second terminal 84 at the other end.
  • the first terminal 82 is mounted on the first docking terminal 40 mounted on the license plate of the vehicle, and the second terminal 84 is mounted on the charging terminal (charger) of the vehicle. Due to the characteristics of the charging connector 80, the first terminal 82 and the second terminal 84 may be distinguished or the same.
  • the first docking terminal 40 is mounted on the license plate of the vehicle, and the first docking terminal 40 has a feature point 42 formed on the upper side.
  • the server receives an order signal from the user terminal to check the location of the zone where the user's vehicle is parked.
  • the user's order signal means a signal that the user calls the electric vehicle charging robot to charge the electric vehicle.
  • the order signal is a user selecting the parking space code of the parking zone of the electric vehicle with the terminal.
  • It may be an electronic signal generated accordingly, in this case, receiving the user's order signal may mean receiving a parking space code for a parking zone in which the user's vehicle is parked, but is not limited thereto.
  • various methods may be applied to the communication method of the order signal and the parking space code.
  • a user after a user installs a service application on a user terminal, when a user tags the user terminal on an NFC tag attached to a pillar of a parking space, it is transmitted as a parking space code, and the server parks the parking space code. To analyze the location of the area where the vehicle is parked.
  • a user accesses a service application and photographs an image and a code attached to a pillar of a parking space through a photographing unit of a user terminal, it is transmitted as a parking space code, and the server analyzes the parking space code to analyze the vehicle You can check the location of this parked area.
  • the user may access the service application and directly enter the parking space code and transmit it to the server.
  • the service application it is possible to select the building name (address), parking floor, and space number of the parking lot.
  • a server in charge of the electric vehicle charging robot 10 may be connected to a parking lot server and receive a parking space code directly from the parking lot server.
  • the parking lot server analyzes the CCTV photographing images provided in various places in the parking lot to check the location where the vehicle is parked, and when the vehicle is confirmed to be parked, the electric vehicle charging robot 10 through the server ) To send the parking space code.
  • the parking space code can identify the location where the vehicle is parked.
  • the electric vehicle charging robot 10 moves to a parking area in which the user's vehicle is parked. (Step S510)
  • the electric vehicle charging robot 10 moves to the parking area corresponding to the parking space code included in the user's order signal.
  • the parking area means a certain area based on the location where the vehicle is parked.
  • FIG. 4 is a view illustrating that the electric vehicle charging robot 10 according to an embodiment of the present invention moves to a parking area where a vehicle is parked.
  • the electric vehicle charging robot 10 is provided with a distance sensor 25 in the front, the first position sensor 22 and the second position sensor 32 are provided on both sides of the left and right, the robot on the back.
  • the arm 30 is formed.
  • the electric vehicle charging robot is provided with one position sensor 20 and can perform various operations using the position sensor 20.
  • the position sensor 20 may be a concept including the first position sensor 22 and the second position sensor 32.
  • the position sensor 20 may be representatively applied to a photographing and imaging device such as a camera, but is not limited thereto, and various devices capable of sensing a feature point may be applied.
  • two or more position sensors may be provided as the first position sensor 22 and the second position sensor 32, which can be easily selected by a practitioner of the present invention.
  • 1st position sensor 22 1st camera
  • 2nd position sensor 2nd camera
  • the robot will be described as having a first position sensor 22 and a second position sensor 32.
  • FIGS. 4 to 13 are illustrated at an angle viewed from the upper side to describe the operation of the electric vehicle charging robot 10.
  • the first docking on the license plate or front charging port of the user vehicle 99 It is assumed that the terminal 40 is mounted and will be described.
  • the electric vehicle charging robot 10 starts autonomous driving into a parking space where a vehicle is parked.
  • the electric vehicle charging robot 10 operates the distance sensor 25 to monitor the surroundings (front, side, rear) of the robot 10.
  • Electric vehicle charging robot 10 is provided with at least one distance sensor 25 on at least one surface, the distance sensor 250 is typically a lidar device, an ultrasonic device, an image sensor can be applied In addition, any sensor or device capable of detecting an object may be applied.
  • the parking lot is provided with a charging station for charging at least one electric vehicle charging robot 10 and waiting for the electric vehicle charging robot 10.
  • the electric vehicle charging robot 10 is charged and waits at the charging station, and when the charging signal is assigned, it moves to the parking position of the vehicle.
  • the electric vehicle charging robot 10 when charging of the corresponding vehicle is finished, the electric vehicle charging robot 10 returns to the charging station again to charge the battery and wait. At this time, if the charging request signal of another vehicle is allocated while the battery of the electric vehicle charging robot 10 is sufficient, it may move to the parking position of another vehicle without returning to the charging station.
  • step S510 corresponds to the starting step for docking, and means that the vehicle moves roughly to the parked position. Through each of the following steps, the robot 10 will be moved more and more precisely for docking, which will be described.
  • step S510 the robot 10 senses (shoots) the surroundings through the first position sensor 22, and when the target feature point image 43 is recognized from the sensing data (shooting image), the robot 10 Is moved to the first position 51. (Step S520)
  • control unit 60 recognizes the feature point 42 from the sensing data (shooting image) of the first position sensor 22 and moves the robot 10 to the first position 51. .
  • the first position 51 means a position spaced a predetermined distance on a straight line in front of the user vehicle 99.
  • the distance between the first position 51 and the user vehicle 99 may be changed flexibly according to the situation of the parking lot.
  • step S520 the controller 60 derives at least one location information of the feature point, the charging port of the vehicle, and the first docking terminal from the feature point image in the sensing data (shooting image) of the first position sensor 22,
  • the calculating unit 63 may include the step of calculating the first position to be moved by the robot through the derived location information, and moving the robot 10 to the first position 51.
  • the calculator 63 may calculate the distance and angle between the robot 10 and the feature point 42 using the feature point image in the sensing data (shooting image), and use this to determine the optimal first position 51. Can be calculated.
  • step S520 the control unit 60 changes the posture of the robot 10 so that the robot arm 30 faces the feature point 42 at the first position 51.
  • FIG. 6 is a view illustrating that the electric vehicle charging robot 10 changes the posture at the first position 51.
  • the electric vehicle charging robot 10 has a robot arm 30 formed therein, and the rear opening/closing member 27 on the rear is opened so that the robot arm 30 is drawn out to the outside (back of the robot). It works. Therefore, the electric vehicle charging robot 10 changes the posture and moves backward in order to bring the robot arm 30 closer to the vehicle.
  • the electric vehicle charging robot 10 includes a driving unit 65 and wheels, and the driving unit 65 operates the wheels.
  • step S530 is a flowchart of a posture correction step (step S530) according to an embodiment of the present invention.
  • step S530 may further include the following steps.
  • the control unit 60 changes the robot 10 to the first position so that the robot arm 30 faces the feature point 42 at the first position 51. (Step S530)
  • step S530 the controller 60 acquires the feature point image 43 in the sensing data (shooting image) of the second position sensor 32 at the first posture of the robot 10. (Step S532)
  • step S532 the control unit 60 rotates the robot 10 at a first angle to change it to a second posture, and acquires a feature point image 43 in the captured image of the second position sensor 32 at the second posture.
  • Step S535 the control unit 60 rotates the robot 10 at a first angle to change it to a second posture, and acquires a feature point image 43 in the captured image of the second position sensor 32 at the second posture.
  • step S535 the control unit 60 calculates the parallel alignment posture of the second position sensor 32 and the feature point 42 through the feature point image 43 acquired in the first posture and the second posture, and the robot ( Correct the posture of 10). (Step S537)
  • step S530 Even if steps S532, S535, and S537 are not included, if the robot 10 accurately changes the posture in step S530, the robot 10 moves to the second position 52, but it is not unreasonable. Depending on the situation, wheel slip may occur, and the angle may be slightly changed.
  • control unit 60 arbitrarily drives the wheel of the robot 10 to rotate the robot 10 at a first angle from the first posture to change the second posture to the second posture, and feature points in the first posture and the second posture.
  • step S530 the calculator 63 and the second position sensor 32 using the feature point image 43 in the sensing data (shooting image) of the second position sensor 32 provided in the robot arm 30.
  • the distance and angle of the feature point 42 are measured, and the control unit 60 moves the robot 10 to the second position 52.
  • FIG 8 is a view illustrating that the electric vehicle charging robot 10 moves to the second position 52.
  • the robot arm 30 provided in the robot 10 according to an embodiment of the present invention has a feature point 42 together with a second docking terminal 35 for docking to the first docking terminal 40 mounted on the license plate of the vehicle.
  • a second position sensor 32 for sensing (shooting) is formed.
  • step S540 the calculator 63 aligns the second position sensor 32 and the feature point 42 using the feature point image 43 in the sensing data (shooting image) of the second position sensor 32. ) Calculating an error, and further comprising the step of controlling the robot 10 so that the controller 60 retrieves the calculated error (step S543).
  • the calculation unit 63 uses the feature point image 43 in the sensing data (shooting image) of the second position sensor 32 to align the error between the second position sensor 32 and the feature point 42. Calculate
  • the alignment means the same as the commonly used alignment (Align)
  • the calculation unit 63 calculates the alignment error is the center point (72) of the sensing data (shooting image) of the second position sensor 32 ) Means that the center of the feature point image 43 coincides.
  • the Z-axis direction is the direction in which the robot 10 retracts
  • the X-axis direction is the horizontal direction of the robot 10
  • the Y-axis direction is the vertical direction.
  • steps S540 and S543 since the driving unit 65 drives the wheels to align and reverse the alignment in order to correct the alignment error, more specifically, the alignment error in the X-axis direction is measured and the error is measured.
  • the driving unit 65 controls the wheels to make up for.
  • the driving unit 65 controls the wheel to make up for the error, and gradually moves (reverses) in the Z-axis direction.
  • FIG. 9 is a diagram illustrating a feature point image 43 in the captured image 70 of the second position sensor 32 in the first position 51 according to an embodiment of the present invention.
  • the feature point image 43 in the captured image 70 of the second position sensor 32 at the first position 51 is not positioned at the center point 72 and is biased to the right and top. .
  • the calculation unit 63 calculates the alignment error using the feature point image 43 in the captured image of the second position sensor 32, and the control unit 60 controls the driving unit 65 to adjust the alignment error. Try to make up for it.
  • the robot 10 will move a predetermined distance to the right to make up for the error, and the feature point image 43 in the captured image of the second position sensor 32 approximates the center point 72. Will be located.
  • control unit 60 makes up for the alignment error, reverses the robot 10 by a predetermined distance, and performs a process of measuring the error again, until the robot 10 is moved to the second position 52. You will perform these processes.
  • control unit 60 may control the robot arm 30 upward or downward.
  • the robot 10 performs step S540 until the distance between the second position sensor 32 and the feature point 42 becomes 11 cm or less.
  • the calculator 63 calculates an alignment error between the second position sensor 32 and the feature point 42, The robot 10 is controlled to make up for the error, and the robot 10 is reversed by 1 cm.
  • the calculator 63 calculates the alignment error again, controls the robot 10 to make up for the error, and moves the robot 10 backward by 1 cm to 11 cm, the second position 52.
  • the robot 10 is positioned.
  • Step S550 the control unit 60 in order to dock the second docking terminal 35 of the robot arm 30 to the first docking terminal 40 mounted on the vehicle at the second position 52, the robot arm 30 ).
  • FIG. 10 is a view illustrating that the electric vehicle charging robot 10 drives the robot arm 30 for docking at the second position 52.
  • the driving unit 65 of the robot 10 controls the wheel to move the robot 10 to the second position 52.
  • step S550 the robot arm 30 is controlled while the wheel of the robot 10 is stopped, so that the first docking terminal 40 and the second docking terminal 35 are perfectly docked. Corresponds to the precision control process.
  • the robot 10 has already gone through the process of retrieving the error in the process of moving to the second position 52, but slip may occur due to the characteristics of the wheel, and some error may occur depending on the floor condition of the parking lot. Can.
  • step S550 the robot arm 30 is precisely controlled while the wheel is stopped, so that there is an effect to make perfect docking without error.
  • FIG. 11 is a flowchart of a step of driving a robot arm 30 according to an embodiment of the present invention.
  • the robot arm 30 driving step includes the following precise control steps.
  • the control unit 60 drives the robot arm 30 to move the second position sensor 32 by a first distance in a specific direction. (Step S552)
  • Step S554 Through the number of pixels in which the feature point image 43 in the sensing data (shooting image) of the second position sensor 32 according to the first distance movement of the second position sensor 32 is shifted by the calculator 63, the second The alignment error between the position sensor 32 and the feature point 42 is calculated. (Step S554)
  • (S552 step) and (S554 step) is repeatedly performed, it is possible to calculate a substantial alignment error, in this case, at least one of the moving direction and distance of the second position sensor 32 One may be changed for each repeated order, and for example, the second position sensor 32 may reciprocate a predetermined distance in the x-axis direction and at the same time a predetermined distance in the y-axis direction.
  • Step S556 After the control unit 60 controls the robot arm 30 to make up for the error calculated in step S554, the robot arm 30 is moved a predetermined distance in the direction of the feature point 42. (Step S556)
  • the feature point image 43 in the sensing data Aligns (matches) the moved distance and the first distance, thereby accurately matching the second docking terminal 35 and the first docking terminal 40.
  • FIG. 12 is a diagram illustrating a feature point image 43 in the captured image 70 of the second position sensor 32 at the second position 52 according to an embodiment of the present invention.
  • the controller 60 randomly drives the robot arm 30 to move the second position sensor 32 by a first distance in a specific direction, the second position sensor 32 is moved by the first distance. Therefore, the feature point image 43 in the captured image 70 of the second position sensor 32 may have been moved by a specific number of pixels.
  • the alignment error can also be calculated.
  • control unit 60 controls the robot arm 30 to make up for the calculated alignment error, and moves the robot arm 30 a predetermined distance in the direction of the feature point 42.
  • the robot arm 30 can be driven in the X-axis, Y-axis, and Z-axis, it can be finely adjusted in each direction even when the electric vehicle charging robot 10 is stopped and in the direction of the feature point image 43 Can be moved.
  • the robot arm 30 may be applied in a multi-joint (eg, 6-axis) driving form in some cases.
  • control unit 60 performs the above steps one or more times, if it is determined that the distance and alignment error between the second position sensor 32 and the feature point 42 is below the reference range, the second of the robot arm 30 Docking terminal 35 is docked to first docking terminal 40.
  • control unit 60 determines that the second docking terminal 35 is within a distance and an error range that may be pushed into the first docking terminal 40, and the docking is performed because the reliability to successfully dock is secured. do.
  • the controller 60 drives the robot arm 30 to move the second position sensor 32 in the left direction (X-axis direction) 4 mm ( First distance).
  • the calculation unit 63 is the second position sensor 32 through the 4mm (first distance) movement of the second position sensor 32 in the captured image of the feature point image 43 is moved through the number of pixels through the second The alignment error between the position sensor 32 and the feature point 42 is calculated.
  • the calculation unit 63 knows that the first distance is 4 mm, the second position sensor 32 and the feature point 42 through the number of pixels and 4 mm of the feature point image 43 are moved. Distance and alignment errors can be calculated.
  • control unit 60 controls the robot arm 30 so that the calculated error is retrieved, and then the robot arm 30 is advanced 5 mm in the direction of the feature point 42.
  • the controller 60 does not perform the error retrieval operation, and only performs an operation of advancing the robot arm 30 in the direction of the feature point 42.
  • the controller 60 repeatedly performs the above operations once or more, and when it is determined that the distance between the second position sensor 32 and the feature point 42 is 8.8 cm or less, removes the second docking terminal 35. Docked to the 1 docking terminal (40).
  • the calculation unit 63 is a parallel angle between the second position sensor 32 and the feature point 42 through the angle of the feature point image 43 in the sensing data (shooting image) of the second position sensor 32.
  • the calculating of the error and the control unit 60 may further include a step of controlling the angle of the robot arm 30 to make up for the calculated parallel angle error.
  • the feature point 42 may be a square or rectangular image. If the second position sensor 32 and the feature point 42 are not horizontal and are at a predetermined angle, within the captured image of the second position sensor 32 The feature point image 43 will be displaced at a predetermined angle in a square or rectangular shape.
  • the calculation unit 63 analyzes the distortion of the feature point image 43 in the sensing data (shooting image) of the second position sensor 32 to calculate the angle error between the second position sensor 32 and the feature point 42 And, by correcting the angular error, the alignment error and the angular error can be corrected together to perform perfect docking.
  • control unit 60 may further include the step of moving the second position sensor 32 by a specific angle by driving the robot arm 30.
  • 13 is a diagram illustrating that a specific target is detected through the distance sensor 25 while the electric vehicle charging robot 10 is moving.
  • the electric vehicle charging robot 10 is provided with one or more distance sensors 25 on at least one surface, and typically a lidar device, an ultrasonic device, and an image sensor may be applied.
  • a lidar device typically a lidar device, an ultrasonic device, and an image sensor may be applied.
  • any sensor or device capable of detecting an object can be applied.
  • a distance sensor 25 is provided on each of the front, left, right, and rear surfaces of the robot 10 to monitor the surroundings of the robot 10.
  • the distance sensor 25 is a representative example.
  • the lidar since the range close to 180 degrees can be monitored, the lidar is provided on the front, left, right, and rear surfaces of the robot 10 to monitor the blind spot. You can monitor without rent.
  • the controller 60 stops the movement of the robot 10, and when a certain time elapses after the specific object disappears from the monitoring range of the distance sensor 25 The robot 10 is restarted.
  • the control unit 60 may stop the movement of the robot 10 because an accident may occur when driving continues in the current state.
  • the robot 10 may be moved again to prevent an accident that may occur.
  • the electric vehicle charging robot 10 may include the robot 10 and the bumper sensor 67.
  • the control unit 60 stops the movement of the robot 10, and when it is determined that the impact is no longer detected or the specific object that applied the impact disappears from the monitoring range, after a predetermined time, the robot 10 Try to resume operation.
  • the bumper sensor may be sensed by forming a bumper capable of detecting an external impact on the outer surface of the robot 10, or detecting an impact, a tilt, etc. of the robot 10 inside the robot 10.
  • a sensor is provided to detect the impact applied to the robot 10.
  • the robot 10 may include a tilt sensor or an acceleration sensor that can sense the tilt of the robot 10 because a specific object may tilt or shake the robot 10 without applying an impact of a predetermined intensity or higher. .
  • FIG. 14 is a block diagram of an electric vehicle charging robot 10 according to an embodiment of the present invention.
  • the electric vehicle charging robot 10 includes a driving unit 65, a first position sensor 22, a distance sensor 25, a robot arm 30, a second position sensor ( 32), a second docking terminal 35, a control unit 60 and a calculation unit 63.
  • the server may include fewer components or more components than those illustrated in FIG. 14.
  • the driving unit 65 controls the wheel of the electric vehicle charging robot 10 to move the robot 10 forward or backward, and controls the wheel to change the posture of the robot 10.
  • the driving unit 65 controls the robot arm 30 to dock the second docking terminal 35 to the first docking terminal 40.
  • the first position sensor 22 is provided on the left and right sides of the robot 10 to photograph the left and right of the robot 10.
  • the distance sensor 25 is provided on one or more outer surfaces of the robot 10 to monitor the periphery of the robot 10, and the control unit 60 is a robot 10 when a specific object within a certain distance is detected through the distance sensor 25 ) Is stopped and the robot 10 resumes operation when a predetermined time has elapsed since the target disappears from the monitoring range of the distance sensor 25.
  • the control unit searches the target feature point 42 from the data sensed from the first position sensor 22, moves the robot 10 to the parking area where the user vehicle is parked, and senses data from the first position sensor 22.
  • the robot 10 is moved to the first position 51, and the robot arm 30 of the robot 10 at the first position 51 faces the feature point 42.
  • the posture of the robot 10 is changed.
  • control unit 60 uses the second position sensor 32 and the feature point 42 using the feature point image 43 in the sensing data (shooting image) of the second position sensor 32 provided in the robot arm 30. Measure the distance of and move the robot 10 to the second position 52, the second docking terminal of the robot arm 30 to the first docking terminal 40 mounted on the vehicle at the second position 52 ( The robot arm 30 is driven to dock 35).
  • the robot arm 30 is formed inside the robot 10, and a second position sensor 32 and a second docking terminal 35 are formed.
  • the second position sensor 32 is formed on the robot arm 30, and photographs the feature point 42 provided on the second docking terminal 35 mounted on the vehicle license plate or charging port.
  • the second docking terminal 35 is provided on the robot arm 30 and docked to the first docking terminal 40 mounted on the license plate of the vehicle to charge the electric vehicle by supplying electricity to the vehicle.
  • the electric vehicle charging robot 10 according to the embodiment of the present invention described above is only the same as the control method of the electric vehicle charging robot 10 described through FIGS. 1 to 13 and the category of the invention, and is the same, thus overlapping description and example Is omitted.
  • control method of the electric vehicle charging robot according to the embodiment of the present invention described above may be implemented as a control program (or application) of the electric vehicle charging robot to be executed in combination with a server that is hardware, and stored in a medium.
  • the above-described program is C, C++, JAVA, machine language, etc., in which a processor (CPU) of the computer can be read through a device interface of the computer in order for the computer to read the program and execute the methods implemented as a program.
  • It may include a code (Code) coded in the computer language of the.
  • code may include functional code related to a function defining functions necessary to execute the above methods, and control code related to an execution procedure necessary for the processor of the computer to execute the functions according to a predetermined procedure. can do.
  • the code may further include a memory reference-related code as to which location (address address) of the computer's internal or external memory should be referred to additional information or media necessary for the computer's processor to perform the functions. have.
  • the code can be used to communicate with any other computer or server in the remote using the communication module of the computer. It may further include a communication-related code for whether to communicate, what information or media to transmit and receive during communication, and the like.
  • the storage medium refers to a medium that stores data semi-permanently and that can be read by a device, rather than a medium that stores data for a short time, such as registers, caches, and memory.
  • examples of the storage medium include, but are not limited to, ROM, RAM, CD-ROM, magnetic tape, floppy disk, and optical data storage device. That is, the program may be stored in various recording media on various servers that the computer can access or various recording media on the user's computer.
  • the medium may be distributed over a computer system connected through a network, and code readable by a computer in a distributed manner may be stored.
  • the steps of a method or algorithm described in connection with an embodiment of the present invention may be implemented directly in hardware, a software module executed by hardware, or a combination thereof.
  • the software modules may include random access memory (RAM), read only memory (ROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory, hard disk, removable disk, CD-ROM, or It may reside on any type of computer readable recording medium well known in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Robotics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 본 발명은 전기차 충전 로봇이 차량이 주차된 구역으로 이동하고, 로봇이 위치센서의 특징점 센싱 데이터를 이용하여 도킹단자에 정확하게 도킹함으로써, 전기차를 충전할 수 있는 전기차 충전 로봇의 제어 방법에 관한 것이다.

Description

전기차 충전 로봇, 로봇의 제어 방법 및 프로그램, 로봇의 도킹을 위한 정밀 제어 방법 및 프로그램
본 발명은 전기차 충전 로봇의 제어 방법 및 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법에 관한 것이다.
최근 들어, 화석 연료의 고갈, 환경 오염 등 각종 문제들로 인해서 이를 대체하기 위한 운송 수단에 대한 연구, 개발이 활발하게 이뤄지고 있다.
그리고, 이미 상용화가 이루어진 운송 수단으로 전기차(Electric Vehicle)가 대표적이지만, 전기차가 등장할때마다 함께 언급되는 것이 전기차의 충전에 대한 것이다.
아파트, 빌딩과 같은 건물 주차장의 모든 주차공간에 전기차 충전 장치를 설치하는 것은 현실적으로 너무 많은 비용이 들게 되며, 전기차가 아닌 자동차도 많다는 점에서 상당히 비효율적이다.
그렇다면, 일부 주차공간에만 전기차 충전 장치를 설치하는 것이 대안이 될 수 있는데, 이 경우에는 주차공간이 남게되는 효율성의 문제점과 주차장에 전기차가 많이 진입할 경우 충전 장치가 모자랄 수 있다는 문제점이 발생하게 된다.
위와 같은 문제점들로 인해 대안으로 떠오른 것이 이동식 충전 장치인데, 이동식 충전 장치의 경우 사용자가 충전 스테이션까지 걸어가서 이동식 충전 장치를 차량까지 직접 가져와야 한다는 번거로움이 존재한다.
이와 같이, 전기차는 이미 상용화되어 사용자가 매년 급증하고 있는 상황에서 위와 같은 문제점들을 해결할 만한 대안은 제시되지 못하고 있다.
또한, 이동식 충전 장치를 구현한다 하여도 결국 차량의 충전 단자에 충전 장치의 충전 단자를 정확하게 도킹해야 하는데, 해당 분야에서 이와 같은 도킹을 위한 정밀 제어 방법은 제시되어 있지 않은 실정이다.
상술한 바와 같은 문제점을 해결하기 위한 본 발명은 전기차 충전 로봇이 주차된 구역으로 이동하며, 차량의 번호판 또는 전면 충전구에 장착된 도킹단자의 특징점이 인식되면 차량의 전방 제1위치까지 이동하여 자세를 변경하는 전기차 충전 로봇의 제어 방법을 제공할 수 있다.
또한, 본 발명은 로봇이 제1위치에서 거리센서를 이용하여 센싱되는 특징점 이미지를 이용하여 거리센서와 특징점의 거리를 측정하고, 로봇이 차량에 근접하도록 제2위치까지 이동하는 전기차 충전 로봇의 제어 방법을 제공할 수 있다.
또한, 본 발명은 로봇이 제2위치에서 차량에 장착된 제1도킹단자에 로봇암의 제2도킹단자를 도킹하기 위해 로봇암을 구동하고, 제1도킹단자와 제2도킹단자를 도킹함으로써, 차량에 전기 충전을 수행하는 전기차 충전 로봇의 제어 방법을 제공할 수 있다.
또한, 본 발명은 차량과 기 설정된 거리까지 이동된 전기차 충전 로봇의 로봇암을 임의로 소정 거리 이동시켜 특징점과 카메라의 거리 및 얼라인 오차를 산출하고, 오차를 만회하며 로봇암을 전진시켜 오차 없이 도킹하는 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법을 제공할 수 있다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 전기차 충전 로봇의 제어 방법은, 전기차 충전 로봇에 의해 수행되는 방법으로, 상기 로봇이 사용자의 차량이 주차된 주차 구역으로 이동하는 단계; 상기 로봇이 위치센서를 통해 주변을 센싱하는 단계; 상기 위치센서의 센싱 데이터에서 목표로 하는 특징점을 검색하고, 해당 특징점이 인식되면 상기 로봇이 제1위치까지 이동하는 단계; 상기 제1위치에서 상기 특징점을 향하도록 상기 로봇이 자세를 변경하고, 제2위치까지 이동하는 단계; 상기 제2위치에서 상기 차량의 충전구 또는 상기 차량에 장착된 제1도킹단자에 로봇암의 제2도킹단자를 도킹하기 위해 상기 로봇암을 구동하는 단계;를 포함한다.
상기 위치센서는, 상기 로봇에 마련되어 주변을 센싱하는 제1위치센서; 상기 로봇암에 마련된 제2위치센서;를 포함하는 것을 특징으로 한다.
상기 제1위치 이동 단계는, 상기 제1위치센서를 통해 센싱된 데이터로부터 상기 특징점, 상기 차량의 충전구 및 제1도킹단자 중 적어도 하나의 위치 정보를 도출하는 단계; 상기 위치 정보를 통해 로봇이 이동해야 할 제1위치를 산출하고, 제1위치까지 이동하는 단계;를 포함한다.
상기 제2위치 이동 단계는, 상기 제2위치센서의 센싱 데이터를 이용하여 상기 제2위치센서와 상기 특징점의 얼라인 오차를 산출하고, 상기 오차를 만회하도록 상기 로봇을 제어하는 단계;를 포함한다.
상기 자세 변경 단계는, 상기 제1위치에서 로봇암이 상기 특징점을 향하도록 상기 로봇이 제1자세로 변경하는 단계; 상기 로봇이 제1자세에서 상기 제2위치센서의 센싱 데이터 내 특징점 이미지를 획득하는 단계; 상기 로봇이 제1각도 회전하여 제2자세로 변경하고, 상기 제2자세에서 상기 제2위치센서의 센싱 데이터를 획득하는 단계; 상기 제1자세와 제2자세 중 적어도 하나에서 획득한 센싱 데이터를 통해 상기 제2위치센서와 상기 특징점의 평행 얼라인 자세를 산출하고, 상기 로봇이 자세를 보정하는 단계;를 포함한다.
상기 로봇은, 상기 로봇의 외면에 마련된 하나 이상의 거리센서를 통해 일정 거리 내 특정 대상이 감지될 경우, 상기 로봇의 이동을 중지시키고 상기 특정 대상이 상기 거리센서의 감시 범위에서 사라진 후 소정시간이 경과하면 상기 로봇의 작동을 재개하며, 상기 로봇의 외면에 마련된 하나 이상의 범퍼센서를 통해 충격이 감지되는 경우, 상기 로봇의 이동을 중지시키고 더 이상 충격이 감지되지 않거나 충격을 가한 특정 대상이 감시범위에서 사라진 것으로 판단되면 소정 시간 후에 로봇의 작동을 재개하는 것을 특징으로 한다.
상기 로봇암 구동 단계는, 상기 로봇암을 구동하여 상기 제2위치센서를 특정 방향으로 제1거리만큼 이동시키는 단계; 상기 제2위치센서의 상기 제1거리 이동에 따른 상기 제2위치센서의 센싱 데이터 내에서 특징점 이미지가 이동된 픽셀수를 통해, 센싱 데이터 내에서의 특징점 이미지가 이동된 거리와 제1거리를 얼라인시키는 단계; 상기 로봇암의 제2도킹단자를 상기 제1도킹단자에 도킹하는 단계;를 포함한다.
상기 주차 구역 이동 단계는, 상기 로봇이 사용자의 오더 신호에 의해 주차 구역으로 이동하는 단계;를 포함한다.
상술한 과제를 해결하기 위한 본 발명의 일 면에 따른 전기차 충전 로봇은 위치센서로부터 센싱되는 데이터에서 목표로 하는 특징점을 검색하며 로봇을 사용자 차량이 주차된 주차 구역으로 이동시키며, 해당 특징점이 인식되면 상기 로봇을 제1위치까지 이동시키고, 상기 제1위치에서 상기 로봇의 로봇암이 상기 특징점을 향하도록 로봇의 자세를 변경하는 제어부; 상기 제1위치에서 상기 로봇암에 구비된 위치센서의 센싱 데이터를 이용하여 위치센서와 상기 특징점의 거리 및 각도를 산출하는 산출부;를 포함하며, 상기 제어부는, 상기 로봇을 제2위치까지 이동시키고, 제2위치에서 상기 차량에 장착된 제1도킹단자에 상기 로봇암의 제2도킹단자를 도킹하기 위해 상기 로봇암을 구동시킨다.
상술한 과제를 해결하기 위한 본 발명의 일 면에 따른 전기차 충전 로봇 제어 프로그램은 하드웨어인 컴퓨터와 결합되어, 상기 전기차 충전 로봇의 제어 방법을 실행시키기 위하여 매체에 저장된다.
상술한 과제를 해결하기 위한 본 발명의 일 면에 따른 전기차 도킹을 위한 정밀 제어 방법은 차량과 기 설정된 거리(제2위치)까지 이동된 전기차 충전 로봇에 의해 수행되는 정밀 제어 방법으로, 제2위치에서 상기 로봇암을 구동하여 위치센서를 특정 방향으로 제1거리만큼 이동시키되, 상기 위치센서는 상기 로봇암에 구비되어 제1도킹단자의 특징점을 센싱하는 것인, 단계; 상기 제2위치센서의 상기 제1거리 이동에 따른 상기 제2위치센서의 센싱 데이터 내에서 특징점 이미지가 이동된 픽셀수를 통해, 센싱 데이터 내에서의 특징점 이미지가 이동된 거리와 제1거리를 얼라인시키는 단계; 상기 로봇암을 상기 특징점 방향으로 소정 거리 이동시키는 단계;를 포함한다.
상기 위치센서와 상기 특징점의 얼라인 오차가 기준범위 이하인 것으로 판단되면, 상기 로봇암의 제2도킹단자를 상기 제1도킹단자에 도킹하는 단계;를 포함한다.
상기 제1거리 이동 단계 이전에, 상기 로봇이 사용자의 차량이 주차된 주차 구역으로 이동하는 단계; 상기 로봇이 위치센서를 통해 주변을 센싱하는 단계; 상기 위치센서의 센싱 데이터에서 목표로 하는 특징점을 검색하고, 해당 특징점이 인식되면 상기 로봇이 제1위치까지 이동하는 단계; 상기 제1위치에서 상기 로봇암이 상기 특징점을 향하도록 상기 로봇이 자세를 변경하는 단계; 상기 로봇암에 구비된 위치센서의 센싱 데이터 내 특징점 이미지를 이용하여 상기 위치센서와 상기 특징점의 거리를 측정하고, 상기 로봇이 제2위치까지 이동하는 단계;를 더 포함한다.
상기 위치센서는, 상기 로봇에 마련되어 주변을 센싱하는 제1위치센서; 상기 로봇암에 마련된 제2위치센서;를 포함하는 것을 특징으로 한다.
상기 제1위치 이동 단계는, 상기 제1위치센서를 통해 센싱된 데이터 내 특징점 이미지로부터 상기 특징점, 상기 차량의 충전구 및 제1도킹단자 중 적어도 하나의 위치 정보를 도출하는 단계; 상기 위치 정보를 통해 로봇이 이동해야 할 제1위치를 산출하고, 로봇이 제1위치까지 이동하는 단계;를 포함한다.
상기 제2위치 이동 단계는, 상기 제2위치센서의 센싱 데이터 내 특징점 이미지를 이용하여 상기 제2위치센서와 상기 특징점의 얼라인 오차를 산출하고, 상기 오차를 만회하도록 상기 로봇을 제어하는 단계;를 포함한다.
상기 자세 변경 단계는, 상기 제1위치에서 상기 로봇암이 상기 특징점을 향하도록 상기 로봇이 제1자세로 변경하는 단계; 상기 로봇이 제1자세에서 상기 제2위치센서의 센싱 데이터 내 특징점 이미지를 획득하는 단계; 상기 로봇이 제1각도 회전하여 제2자세로 변경하고, 상기 제2자세에서 상기 제2위치센서의 센싱 데이터 내 특징점 이미지를 획득하는 단계; 상기 제1자세와 제2자세에서 획득한 특징점 이미지를 통해 상기 제2위치센서와 상기 특징점의 평행 얼라인 자세를 산출하고, 상기 로봇이 자세를 보정하는 단계;를 포함한다.
상기 로봇은, 상기 로봇의 외면에 마련된 하나 이상의 거리 센서를 통해 일정 거리 내 특정 대상이 감지될 경우, 상기 로봇의 이동을 중지시키고 상기 특정 대상이 상기 거리 센서의 감시 범위에서 사라진 후 소정시간이 경과하면 상기 로봇의 작동을 재개하며, 상기 로봇의 외면에 마련된 하나 이상의 범퍼센서를 통해 충격이 감지되는 경우, 상기 로봇의 이동을 중지시키고 더 이상 충격이 감지되지 않거나 충격을 가한 특정 대상이 감시범위에서 사라진 것으로 판단되면 소정 시간 후에 로봇의 작동을 재개하는 것을 특징으로 한다.
상기 주차 구역 이동 단계는, 상기 로봇이 사용자의 오더 신호에 의해 주차 구역으로 이동하는 단계;를 포함한다.
상술한 과제를 해결하기 위한 본 발명의 일 면에 따른 전기차 충전 로봇은 차량과 기 설정된 거리(제2위치)까지 이동되어 도킹을 위한 정밀 제어를 수행하는 전기차 충전 로봇에 있어서, 상기 로봇의 로봇암에 구비되어 제1도킹단자에 형성된 특징점을 센싱하는 위치센서; 제2위치에서 상기 로봇암을 구동하여 상기 위치센서를 특정 방향으로 제1거리만큼 이동시키는 제어부; 상기 위치센서의 상기 제1거리 이동에 따른 상기 위치센서의 센싱 데이터 내에서 특징점 이미지가 이동된 픽셀수를 통해, 상기 위치센서와 상기 특징점의 얼라인 오차를 산출하는 산출부;를 포함하며, 상기 제어부는, 상기 산출된 얼라인 오차를 만회하도록 상기 로봇암을 제어한다.
상술한 과제를 해결하기 위한 본 발명의 일 면에 따른 전기차 충전 로봇의 도킹을 위한 정밀 제어 프로그램은 하드웨어인 컴퓨터와 결합되어, 상기 전기차 도킹을 위한 정밀 제어 방법을 실행시키기 위하여 매체에 저장된다.
상기와 같은 본 발명에 따르면, 사용자가 차량의 번호판 또는 전면 충전구에 도킹단자를 장착하고, 충전 케이블을 연결하면, 전기차 충전 로봇이 자동으로 이동하여 도킹하여 충전을 수행하는 효과가 있다.
또한, 본 발명은 로봇이 차량의 주차공간으로 이동하고, 특징점이 인식되면 차량 전방의 제1위치까지 이동하여 자세를 변경하고, 위치센서로 촬영되는 특징점 이미지를 이용하여 오차를 만회하며 차량에 접근하기 때문에 도킹을 정확하게 성공할 수 있는 효과가 있다.
또한, 본 발명은 로봇의 외면에 구비된 하나 이상의 거리센서를 통해 물체, 사람이 감지되면 동작을 중지하고 타겟이 사라진 것으로 판단되면 동작을 재개하기 때문에 차량의 위치까지 안전하게 자율주행하는 효과가 있다.
또한, 전기차 충전 로봇의 로봇암을 임의로 소정 거리 이동시켜 특징점과 카메라의 거리 및 얼라인 오차를 산출하고, 오차를 만회하며 로봇암을 전진시킨 후에 도킹을 수행하기 때문에, 오차 없이 완벽한 도킹을 성공시키고 전기차를 충전할 수 있는 효과가 있다.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 실시예에 따른 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법의 흐름도이다.
도 2는 본 발명의 실시예에 따른 전기차의 번호판에 제1도킹단자가 장착된 것을 예시한 도면이다.
도 3은 본 발명의 실시예에 따른 전기차의 충전구에 제1도킹단자가 장착된 것을 예시한 도면이다.
도 4는 본 발명의 실시예에 따른 전기차 충전 로봇이 차량이 주차된 주차 구역으로 이동하는 것을 예시한 도면이다.
도 5는 제1위치센서를 통해 특징점이 인식되어 로봇이 제1위치까지 이동하는 것을 예시한 도면이다.
도 6은 전기차 충전 로봇이 제1위치에서 자세를 변경하는 것을 예시한 도면이다.
도 7은 본 발명의 실시예에 따른 자세 보정 단계의 흐름도이다.
도 8은 전기차 충전 로봇이 제2위치까지 이동하는 것을 예시한 도면이다.
도 9는 제1위치에서 제2위치센서의 촬영 영상 내 특징점 이미지를 예시한 도면이다.
도 10은 전기차 충전 로봇이 제2위치에서 도킹을 위해 로봇암을 구동하는 것을 예시한 도면이다.
도 11은 본 발명의 실시예에 따른 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법의 흐름도이다.
도 12는 제2위치에서 제2위치센서의 촬영 영상 내 특징점 이미지를 예시한 도면이다.
도 13은 전기차 충전 로봇의 이동중에 거리 센서를 통해 특정 타겟이 감지된 것을 예시한 도면이다.
도 14는 본 발명의 실시예에 따른 전기차 충전 로봇의 블록도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된01 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
설명에 앞서 본 명세서에서 사용하는 용어의 의미를 간략히 설명한다. 그렇지만 용어의 설명은 본 명세서의 이해를 돕기 위한 것이므로, 명시적으로 본 발명을 한정하는 사항으로 기재하지 않은 경우에 본 발명의 기술적 사상을 한정하는 의미로 사용하는 것이 아님을 주의해야 한다.
특징점(42): 차량에 장착되는 제1도킹단자(40)에 마킹된 것으로, 식별을 위해 마킹된 마커(Marker)를 의미하며, 대표적으로 도면과 같이 QR코드(Quick Response Code)가 적용될 수 있으며, 바코드(Bar code), 2차원 바코드, 이미지 등 카메라를 통해 식별될 수 있는 것이라면 무엇이든 적용 가능하다.
또한, 본 발명의 실시예에서 특징점(42)은 제1도킹단자(40)에 마킹된 물리적 대상을 의미하는 것이고, 특징점 이미지(43)는 위치센서(20)에서 센싱된 데이터(촬영 영상) 내 특징점(42)의 데이터를 의미하는 것이다.
도 1은 본 발명의 실시예에 따른 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법의 흐름도이고, 도 2 내지 도 13은 도 1의 전기차 충전 로봇의 제어 방법을 실제 적용한 것을 예시한 도면이다.
특히, 차량과 기 설정된 거리(제2위치)까지 이동된 전기차 충전 로봇에 의해 수행되는 정밀 제어 방법에 관한 구체적인 단계들은 도 11에 예시되어 있다.
하지만, 차량과 기 설정된 거리(제2위치)까지 전기차 충전 로봇이 이동하는 과정들 또한 정밀 제어를 위해 선행되는 과정으로 함께 설명이 필요하므로, 도 1부터 참조하여 설명을 시작하도록 하고, 도 11에서 정밀 제어에 대해서 상세하게 설명하도록 한다.
먼저, 전기차 충전 로봇(10)이 사용자의 오더 신호를 수신한다. (S505단계)
도 2는 본 발명의 실시예에 따른 전기차(사용자 차량, 99)의 번호판에 제1도킹단자(40)가 장착된 것을 예시한 도면이고, 도 3은 본 발명의 실시예에 따른 전기차의 충전구에 제1도킹단자(40)가 장착된 것을 예시한 도면이다.
사용자는 차량을 주차장의 주차 공간에 주차한 후, 도 2와 같이 제1도킹단자(40)를 차량의 번호판에 장착하고, 제2단자(84)를 차량의 충전구에 장착(연결)한다.
또는, 도 3과 같이 제1도킹단자(40)를 차량의 전면 충전구에 장착(연결)할 수도 있다. 이때, 차량의 전면 충전구에 장착하는 도킹단자는 제1도킹단자(40)와 제2단자(84)가 통합된 형태도 가능하다.
본 발명의 실시예에서 차량은 전기차를 의미한다. 그리고, 충전커넥터(80)는 케이블(86)을 포함하며 케이블(86)은 일단에 제1단자(82), 타단에 제2단자(84)가 형성되어 있다.
제1단자(82)는 차량의 번호판에 장착되는 제1도킹단자(40)에 장착되고, 제2단자(84)는 차량의 충전 단자(충전구)에 장착된다. 충전커넥터(80)의 특성상 제1단자(82)와 제2단자(84)는 구분될 수도 있고 동일할 수도 있다.
도 2 및 도 3을 참조하면, 차량의 번호판에 제1도킹단자(40)가 장착된 것이 예시되어 있으며, 제1도킹단자(40)는 상측에 특징점(42)이 형성되어 있다.
그리고, 서버는 사용자 단말로부터 오더 신호를 수신하여 사용자의 차량이 주차된 구역 위치를 확인하게 된다.
이때, 사용자의 오더 신호란, 사용자가 전기차를 충전하기 위해 전기차 충전 로봇을 콜(Call)하는 신호를 의미하며, 일 예로, 오더 신호는 사용자가 단말기로 전기차의 주차 구역의 주차공간코드를 선택하고, 이에 따라 발생하는 전자 신호일 수 있으며, 이 경우, 사용자의 오더 신호를 수신하는 것은 사용자의 차량이 주차된 주차 구역에 대한 주차공간코드를 수신하는 것을 의미할 수 있지만, 이에 한정되는 것은 아니다. 한편, 오더 신호, 주차공간코드의 통신 방법에는 다양한 방법이 적용될 수 있다.
일 실시예로, 사용자가 사용자 단말에 서비스 애플리케이션을 설치한 뒤, 사용자 단말을 주차 공간의 기둥에 부착된 NFC Tag에 태깅(tagging)하면, 이를 주차공간코드로 전송하게 되고, 서버가 주차공간코드를 분석하여 차량이 주차된 구역의 위치를 확인한다.
또 다른 예로, 사용자가 서비스 애플리케이션에 접속하고, 사용자 단말의 촬영부를 통해 주차 공간의 기둥에 부착된 이미지, 코드를 촬영하면, 이를 주차공간코드로 전송하게 되고, 서버가 주차공간코드를 분석하여 차량이 주차된 구역의 위치를 확인할 수 있다.
또 다른 예로, 사용자가 서비스 애플리케이션에 접속하여 주차공간코드를 직접 입력하여 서버로 전송할 수 있다. 이때, 서비스 애플리케이션에 접속하면 주차장의 건물명(주소), 주차 층, 공간번호 등을 선택하도록 할 수 있다.
또 다른 예로, 전기차 충전 로봇(10)을 담당하는 서버가 주차장 서버와 연계되어 주차장 서버로부터 직접 주차공간코드를 수신할 수 있다.
예를 들어, 주차장에 차량이 진입하는 것이 확인되면 주차장 서버가 주차장 곳곳에 마련되어 있는 CCTV 촬영 영상을 분석하여 차량이 주차된 위치를 확인하고 차량이 주차된 것이 확인되면 서버를 통해 전기차 충전 로봇(10)으로 주차공간코드를 전송하도록 할 수 있다.
이외에도, 주차공간코드를 통해 차량이 주차된 위치를 확인할 수 있다면 무엇이든 적용 가능하다.
전기차 충전 로봇(10)이 사용자의 차량이 주차된 주차 구역으로 이동한다. (S510단계)
보다 상세하게는, 전기차 충전 로봇(10)이 사용자의 오더 신호에 포함되어 있는 주차공간코드에 해당하는 주차 구역으로 이동하는 것을 의미한다.
이때, 주차 구역이란 차량이 주차된 위치를 기준으로 한 일정 영역을 의미한다.
도 4는 본 발명의 실시예에 따른 전기차 충전 로봇(10)이 차량이 주차된 주차 구역으로 이동하는 것을 예시한 도면이다.
도 4를 참조하면, 전기차 충전 로봇(10)은 전방에 거리센서(25)가 마련되어 있으며, 좌우 양 측면에는 제1위치센서(22)와 제2위치센서(32)가 마련되어 있고, 후면에는 로봇암(30)이 형성되어 있다.
본 발명의 실시예에서 전기차 충전 로봇은 하나의 위치센서(20)가 마련되고, 위치센서(20)를 이용하여 각종 동작들을 수행할 수 있다. 이 경우, 위치센서(20)는 제1위치센서(22)와 제2위치센서(32)를 포함하는 개념일 수 있다.
그리고, 위치센서(20)는 대표적으로 카메라와 같은 촬영, 촬상 장치가 적용될 수 있으나, 이에 한정되는 것은 아니고, 이 외에 특징점을 센싱할 수 있는 다양한 장치들이 적용 가능하다.
또한, 제1위치센서(22) 및 제2위치센서(32)로 2개 이상의 위치센서가 마련될 수도 있으며, 이는 발명의 실시자가 용이하게 선택할 수 있다. (예: 제1위치센서(22): 제1카메라, 제2위치센서: 제2카메라)
이하 실시예에서는 로봇이 제1위치센서(22), 제2위치센서(32)를 구비하고 있는 것으로 설명하도록 한다.
참고로, 도 4 내지 도 13은 전기차 충전 로봇(10)의 작동을 설명하기 위해서 상측에서 바라본 각도로 예시한 것으로, 도면상으로는 도시되지 않았지만 사용자 차량(99)의 번호판 또는 전면 충전구에 제1도킹단자(40)가 장착되어 있는 것으로 가정하고 설명하도록 한다.
전기차 충전 로봇(10)은 차량이 주차된 주차 공간으로 자율주행을 시작한다.
또한, 전기차 충전 로봇(10)은 거리센서(25)를 작동시켜 로봇(10)의 주변(전방, 측방, 후방)을 감시하도록 한다.
본 발명의 실시예에 따른 전기차 충전 로봇(10)은 적어도 하나의 면에 하나 이상의 거리센서(25)가 마련되어 있으며, 거리센서(250)는 대표적으로 라이다 장치, 초음파 장치, 이미지 센서가 적용될 수 있으며, 이외에도 물체를 감지할 수 있는 센서, 장치라면 무엇이든 적용 가능하다.
본 발명의 실시예에 따르면, 주차장에는 하나 이상의 전기차 충전 로봇(10)을 충전하고, 전기차 충전 로봇(10)이 대기하는 충전 스테이션이 마련되어 있다.
따라서, 전기차 충전 로봇(10)은 충전 스테이션에서 충전되어 대기하고, 충전신호가 할당되면 해당 차량의 주차위치로 이동하게 된다.
또한, 해당 차량의 충전이 종료되면 전기차 충전 로봇(10)은 다시 충전 스테이션으로 돌아와서 배터리를 충전하고 대기하게 된다. 이때, 전기차 충전 로봇(10)의 배터리가 충분한 상태에서 다른 차량의 충전 요청신호가 할당되면 충전 스테이션으로 돌아오지 않고 다른 차량의 주차위치로 이동할 수도 있다.
위와 같은 S510단계는 도킹을 위한 출발 단계에 해당하며, 차량이 주차된 위치로 대략적인 이동을 하는 것을 의미한다. 이하의 각 단계들을 통해 도킹을 위해 로봇(10)이 점점 정밀하게 이동될 것이며 이에 대하여 설명하도록 한다.
S510단계 다음으로, 로봇(10)이 제1위치센서(22)를 통해 주변을 센싱(촬영)하고, 센싱 데이터(촬영 영상)에서 목표로 하는 특징점 이미지(43)가 인식되면, 로봇(10)을 제1위치(51)까지 이동시킨다. (S520단계)
도 5는 제어부(60)가 제1위치센서(22)의 센싱 데이터(촬영 영상)에서 특징점(42)을 인식하여, 로봇(10)을 제1위치(51)까지 이동시키는 것을 예시한 도면이다.
도 5를 참조하면, 보다 상세하게는, 제1위치(51)는 사용자 차량(99)의 전방 일직선 상에 소정 거리 떨어진 위치를 의미한다.
제1위치(51)와 사용자 차량(99)과의 거리는 주차장의 상황에 따라서 유동적으로 변화할 수 있다.
S520단계는, 제어부(60)가 제1위치센서(22)의 센싱 데이터(촬영 영상) 내 특징점 이미지로부터 특징점, 차량의 충전구 및 제1도킹단자 중 적어도 하나의 위치 정보를 도출하는 단계와, 산출부(63)가 상기 도출된 위치 정보를 통해 로봇이 이동해야 할 제1위치를 산출하고, 로봇(10)을 제1위치(51)까지 이동시키는 단계를 포함할 수 있다.
이때, 산출부(63)는 센싱 데이터(촬영 영상) 내 특징점 이미지를 이용하여 로봇(10)과 특징점(42)의 거리 및 각도를 산출할 수 있고 이를 이용하여 최적의 제1위치(51)를 산출할 수 있다.
이후 단계에서 로봇(10)이 차량 방향으로 이동할 때 오차를 보정하며 이동하게 될 것이지만, 오차 보정의 부담을 덜기 위해서 위와 같이 보다 정확하게 제1위치(51)를 산출하는 단계가 더 포함될 수 있다.
S520단계 다음으로, 제어부(60)가 제1위치(51)에서 로봇암(30)이 특징점(42)을 향하도록 로봇(10)의 자세를 변경한다. (S530단계)
도 6은 전기차 충전 로봇(10)이 제1위치(51)에서 자세를 변경하는 것을 예시한 도면이다.
보다 상세하게는, 전기차 충전 로봇(10)은 내부에 로봇암(30)이 형성되어 있으며, 후면의 후면개폐부재(27)가 오픈되어 로봇암(30)이 외부(로봇의 후방)로 인출되어 작동하게 된다. 따라서, 전기차 충전 로봇(10)은 로봇암(30)을 차량과 근접시키기 위해서 자세를 변경하고 후진을 하게 된다.
이때, 전기차 충전 로봇(10)은 구동부(65)와 바퀴를 포함하여 구동부(65)가 바퀴를 작동시키게 된다.
도 7은 본 발명의 실시예에 따른 자세 보정 단계(S530단계)의 흐름도이다.
도 7을 참조하면, S530단계는, 하기와 같은 단계들을 더 포함할 수 있다.
제어부(60)가 제1위치(51)에서 로봇암(30)이 특징점(42)을 향하도록 로봇(10)을 제1자세로 변경시킨다. (S530단계)
S530단계 다음으로, 제어부(60)가 로봇(10)의 제1자세에서 제2위치센서(32)의 센싱 데이터(촬영 영상) 내 특징점 이미지(43)를 획득한다. (S532단계)
S532단계 다음으로, 제어부(60)가 로봇(10)을 제1각도 회전시켜 제2자세로 변경시키고, 제2자세에서 제2위치센서(32)의 촬영 영상 내 특징점 이미지(43)를 획득한다. (S535단계)
S535단계 다음으로, 제어부(60)가 제1자세와 제2자세에서 획득한 특징점 이미지(43)를 통해 제2위치센서(32)와 특징점(42)의 평행 얼라인 자세를 산출하고, 로봇(10)의 자세를 보정한다. (S537단계)
S532, S535, S537단계를 포함하지 않아도, S530단계에서 정확하게 로봇(10)이 자세를 변경하였다면 로봇(10)이 제2위치(52)까지 이동하는데 무리가 따르지 않지만, 주차장의 상황, 바닥면의 상황에 따라서 바퀴슬립이 발생하여 각도가 미세하게 틀어질 수 있다.
또한, 제1위치(51)에서는 로봇(10)과 특징점(42)의 거리가 어느 정도 벌어져있는 상태이기 때문에, 상황에 따라서는 그대로 직진하였을 경우 로봇(10)과 특징점(42)의 각도를 바로잡기 위해서 보정 단계가 많이 추가될 수도 있다.
따라서, 위와 같이 제어부(60)가 임의로 로봇(10)의 바퀴를 구동하여 제1자세에서 로봇(10)을 제1각도 회전시켜 제2자세로 변경시키고, 제1자세와 제2자세에서의 특징점 이미지(43)를 통해 평행 얼라인 자세를 산출하고, 산출된 평행 얼라인 자세로 로봇(10)의 자세를 보정하는 단계를 수행함으로써, 혹시나 벌어질 수 있는 위와 같은 상황들을 방지할 수 있는 효과가 있다.
S530단계 다음으로, 산출부(63)가 로봇암(30)에 구비된 제2위치센서(32)의 센싱 데이터(촬영 영상) 내 특징점 이미지(43)를 이용하여 제2위치센서(32)와 특징점(42)의 거리와 각도를 측정하고, 제어부(60)가 로봇(10)을 제2위치(52)까지 이동시킨다. (S540단계)
도 8은 전기차 충전 로봇(10)이 제2위치(52)까지 이동하는 것을 예시한 도면이다.
본 발명의 실시예에 따른 로봇(10)에 구비된 로봇암(30)에는 차량의 번호판에 장착된 제1도킹단자(40)에 도킹하기 위한 제2도킹단자(35)와 함께 특징점(42)을 센싱(촬영)하기 위한 제2위치센서(32)가 형성되어 있다.
S540단계는, 산출부(63)가 제2위치센서(32)의 센싱 데이터(촬영 영상) 내 특징점 이미지(43)를 이용하여 제2위치센서(32)와 특징점(42)의 얼라인(Align) 오차를 산출하고, 제어부(60)가 상기 산출된 오차를 만회하도록 로봇(10)을 제어하는 단계(S543단계)를 더 포함한다.
보다 상세하게는, 산출부(63)가 제2위치센서(32)의 센싱 데이터(촬영 영상) 내 특징점 이미지(43)를 이용하여 제2위치센서(32)와 특징점(42)의 얼라인 오차를 산출한다.
이때, 얼라인이란 일반적으로 사용되는 얼라인(Align)과 동일한 의미로, 산출부(63)가 얼라인 오차를 산출하는 것은 제2위치센서(32)의 센싱 데이터(촬영 영상)의 중심점(72)과 특징점 이미지(43)의 중심이 일치하는지 산출하는 것을 의미한다.
본 발명의 실시예에서 Z축 방향을 로봇(10)이 후진하는 방향, X축 방향을 로봇(10)의 가로 방향, Y축 방향을 세로 방향이라고 가정한다.
또한, S540단계, S543단계에서는 얼라인 오차를 보정하기 위해서 구동부(65)가 바퀴를 구동하여 얼라인을 맞추며 후진하는 과정이기 때문에, 보다 상세하게는 X축 방향의 얼라인 오차를 측정하고, 오차를 만회하도록 구동부(65)가 바퀴를 제어하게 된다.
그리고, 구동부(65)가 바퀴를 제어하여 오차를 만회하며, 서서히 Z축 방향으로 이동(후진)하게 된다.
도 9는 본 발명의 실시예에 따른 제1위치(51)에서 제2위치센서(32)의 촬영 영상(70) 내 특징점 이미지(43)를 예시한 도면이다.
도 9를 참조하면, 제1위치(51)에서 제2위치센서(32)의 촬영 영상(70) 내 특징점 이미지(43)가 중심점(72)에 위치하지 않고 우측과 상측으로 치우친 것을 알 수 있다.
따라서, 산출부(63)는 제2위치센서(32)의 촬영 영상 내 특징점 이미지(43)를 이용하여 얼라인 오차를 산출하고, 제어부(60)가 구동부(65)를 제어하여 얼라인 오차를 만회하도록 한다.
도 9의 예시를 참고하면, 로봇(10)은 우측으로 소정 거리 이동하여 오차를 만회하게 될 것이고, 제2위치센서(32)의 촬영 영상 내 특징점 이미지(43)가 중심점(72)과 근사하게 위치하게 될 것이다.
그리고, 제어부(60)는 얼라인 오차를 만회하며 로봇(10)을 소정 거리 후진시키고, 다시 오차를 측정하는 과정을 수행하게 되며, 로봇(10)이 제2위치(52)까지 이동될 때까지 이 과정들을 수행하게 된다.
또한, 추가적인 실시예로, Y축 방향의 오차를 만회하기 위해서 제어부(60)가 로봇암(30)을 상측 또는 하측으로 제어할 수도 있다.
실 적용 예시로, 제2거리가 11cm라고 가정한다면, 로봇(10)은 제2위치센서(32)와 특징점(42)의 거리가 11cm 이하가 될 때까지 S540단계를 수행하게 된다.
예를 들어, 제2위치센서(32)와 특징점(42)의 거리가 13cm로 산출되면, 산출부(63)가 제2위치센서(32)와 특징점(42)의 얼라인 오차를 산출하고, 오차를 만회하도록 로봇(10)을 제어하고, 로봇(10)을 1cm 후진시키게 된다.
다음으로, 12cm 지점에서 산출부(63)가 얼라인 오차를 다시 산출하고, 오차를 만회하도록 로봇(10)을 제어하고, 로봇(10)을 1cm 후진시켜 제2위치(52)인 11cm 지점에 로봇(10)이 위치하게 된다.
S540단계 다음으로, 제어부(60)가 제2위치(52)에서 차량에 장착된 제1도킹단자(40)에 로봇암(30)의 제2도킹단자(35)를 도킹하기 위해 로봇암(30)을 구동한다. (S550단계)
도 10은 전기차 충전 로봇(10)이 제2위치(52)에서 도킹을 위해 로봇암(30)을 구동하는 것을 예시한 도면이다.
이전 단계들에서는 로봇(10)의 구동부(65)가 바퀴를 제어하여 로봇(10)을 제2위치(52)까지 이동시키는 과정이었다.
그리고, 도 10을 참조하면, S550단계에서는 로봇(10)의 바퀴가 정지한 상태에서 로봇암(30)을 제어하여 제1도킹단자(40)와 제2도킹단자(35)가 완벽하게 도킹되도록 하는 정밀 제어 과정에 해당한다.
이미 로봇(10)은 제2위치(52)까지 이동하는 과정에서 오차를 만회하는 과정을 거쳤지만, 바퀴의 특성상 슬립(Slip)이 발생할 수 있고, 주차장의 바닥 상태에 따라서도 약간의 오차가 발생할 수 있다.
따라서, S550단계에서는 바퀴를 정지시킨 상태에서 로봇암(30)을 정밀하게 제어함으로써 오차없이 완벽한 도킹이 이루어지도록 하는 효과가 있다.
도 11은 본 발명의 실시예에 따른 로봇암(30) 구동 단계의 흐름도이다.
도 11을 참조하면, 로봇암(30) 구동 단계(S550단계)는 하기와 같은 정밀 제어 단계들을 포함한다.
제어부(60)가 로봇암(30)을 구동하여 제2위치센서(32)를 특정 방향으로 제1거리만큼 이동시킨다. (S552단계)
산출부(63)가 제2위치센서(32)의 제1거리 이동에 따른 제2위치센서(32)의 센싱 데이터(촬영 영상) 내 특징점 이미지(43)가 이동된 픽셀수를 통해, 제2위치센서(32)와 특징점(42)의 얼라인 오차를 산출한다. (S554단계)
한편, 정밀한 결과를 얻기 위해서, (S552단계)와 (S554단계)는 반복적으로 수행되어, 실질적인 얼라인 오차를 산출할 수 있고, 이 경우, 제2위치센서(32)의 이동 방향과 거리 중 적어도 하나는 매번 반복되는 차수마다 변경될 수 있으며, 일 예로, 제2위치센서(32)는 x축 방향으로 일정 거리 왕복할 수 있는 동시에 y축 방향으로 일정 거리 왕복할 수 있다.
제어부(60)가 S554단계에서 산출된 오차를 만회하도록 로봇암(30)을 제어한 다음, 로봇암(30)을 특징점(42) 방향으로 소정 거리 이동시킨다. (S556단계)
제어부(60)가 제2위치센서(32)와 특징점(42)의 얼라인 오차가 기준범위 이하인 것으로 판단되면, 로봇암(30)의 제2도킹단자(35)를 제1도킹단자(40)에 도킹한다. (S558단계)
즉, 제2위치센서(32)의 제1거리 이동에 따른 제2위치센서(32)의 센싱데이터 내에서 특징점 이미지(43)가 이동된 픽셀수를 통해, 센싱 데이터 내에서의 특징점 이미지(43)가 이동된 거리와 제1거리를 얼라인(일치)시켜, 제2도킹단자(35)와 제1도킹단자(40)를 정확하게 일치시키는 것이다.
좀 더 상세하게, 도 12는 본 발명의 실시예에 따른 제2위치(52)에서 제2위치센서(32)의 촬영 영상(70) 내 특징점 이미지(43)를 예시한 도면이다.
도 9와 도 12를 비교하면, 제2위치센서(32)와 특징점(42)의 거리가 상당히 가까워졌기 때문에, 제2위치센서(32)의 촬영 영상(70) 내 특징점 이미지(43)가 도 9에 비해서 커진것을 확인할 수 있다.
이 상태에서, 제어부(60)가 임의로 로봇암(30)을 구동하여 제2위치센서(32)를 특정 방향으로 제1거리만큼 이동시키면, 제2위치센서(32)가 제1거리만큼 이동되었기 때문에 제2위치센서(32)의 촬영 영상(70) 내 특징점 이미지(43)가 특정 픽셀수만큼 이동되었을 것이다.
그리고, 산출부(63)는 제1거리와 특징점 이미지(43)가 이동된 픽셀수를 알고 있기 때문에, 얼라인 오차 또한 산출할 수 있게 된다.
다음으로, 제어부(60)는 로봇암(30)을 제어하여 산출된 얼라인 오차를 만회하도록 하고, 로봇암(30)을 특징점(42) 방향으로 소정 거리 이동시킨다.
이때, 로봇암(30)은 X축, Y축, Z축으로의 구동이 가능하기 때문에, 전기차 충전 로봇(10)이 정지된 상태에서도 각 방향으로 미세하게 조정이 가능하며 특징점 이미지(43) 방향으로 이동할 수 있다. 또한, 로봇암(30)은 경우에 따라서 다관절(예: 6축) 구동 형태로 적용될 수도 있다.
그리고, 제어부(60)는 위 단계들을 1회 이상 실시하여, 제2위치센서(32)와 특징점(42)의 거리 및 얼라인 오차가 기준범위 이하인 것으로 판단되면, 로봇암(30)의 제2도킹단자(35)를 제1도킹단자(40)에 도킹한다.
이는, 제어부(60)가 제2도킹단자(35)를 제1도킹단자(40)로 밀어넣어도 되는 거리와 오차범위 내에 속한다고 판단하였고, 도킹을 성공할 신뢰도가 확보되었기 때문에 도킹을 실시하는 것을 의미한다.
아래에서는 실 적용예로 보다 상세하게 설명하도록 한다. 이때, 도킹 기준거리를 8.8cm라고 가정하도록 한다.
전기차 충전 로봇(10)이 제2위치(52)에 정지한 상태에서, 제어부(60)가 로봇암(30)을 구동하여 제2위치센서(32)를 왼쪽 방향(X축 방향)으로 4mm(제1거리)를 이동시킨다.
그리고, 산출부(63)가 제2위치센서(32)의 4mm(제1거리) 이동에 따른 제2위치센서(32)의 촬영 영상 내 특징점 이미지(43)가 이동된 픽셀수를 통해 제2위치센서(32)와 특징점(42)의 얼라인 오차를 산출한다.
이때, 위에서 설명한 바와 같이 산출부(63)는 제1거리가 4mm인 것을 알고 있기 때문에, 특징점 이미지(43)가 이동된 픽셀수와 4mm를 통해 제2위치센서(32)와 특징점(42)의 거리와 얼라인 오차를 산출할 수 있다.
다음으로, 제어부(60)가 로봇암(30)을 제어하여 산출된 오차가 만회되도록 한 다음, 로봇암(30)을 특징점(42) 방향으로 5mm 전진시킨다.
물론, 이때 얼라인 오차가 없는 것으로 산출된 경우, 제어부(60)는 오차 만회 동작을 수행하지 않고, 로봇암(30)을 특징점(42) 방향으로 전진시키는 동작만 수행하도록 한다.
그리고, 제어부(60)는 위 동작들을 1회 이상 반복하여 수행하고, 제2위치센서(32)와 특징점(42)의 거리가 8.8cm 이하가 되었다고 판단되면, 제2도킹단자(35)를 제1도킹단자(40)에 도킹시킨다.
추가 실시예로, 산출부(63)가 제2위치센서(32)의 센싱 데이터(촬영 영상) 내 특징점 이미지(43)의 각도를 통해 제2위치센서(32)와 특징점(42)의 평행 각도 오차를 산출하는 단계 및 제어부(60)가 로봇암(30)의 각도를 제어하여 산출된 평행 각도 오차를 만회하도록 하는 단계를 더 포함할 수 있다.
예를 들어, 특징점(42)는 정사각형 또는 직사각형의 이미지일 수 있는데, 제2위치센서(32)와 특징점(42)이 수평을 이루지 못하고 소정 각도 틀어져있다면 제2위치센서(32)의 촬영 영상 내 특징점 이미지(43)가 정사각형 또는 직사각형의 형상에서 소정 각도 틀어져있을 것이다.
따라서, 산출부(63)는 제2위치센서(32)의 센싱 데이터(촬영 영상) 내 특징점 이미지(43)의 틀어짐을 분석하여 제2위치센서(32)와 특징점(42)의 각도 오차를 산출하고, 각도 오차를 보정함으로써 얼라인 오차와 각도 오차를 함께 보정하여 완벽한 도킹이 수행할 수 있다.
또한, 거리 및 얼라인 오차 산출 단계와 동일하게 제어부(60)가 로봇암(30)을 구동하여 제2위치센서(32)를 특정 각도만큼 이동시키는 단계를 더 포함할 수도 있다.
도 13은 전기차 충전 로봇(10)의 이동중에 거리센서(25)를 통해 특정 타겟이 감지된 것을 예시한 도면이다.
보다 상세하게는, 본 발명의 실시예에 따른 전기차 충전 로봇(10)은 적어도 하나의 면에 하나 이상의 거리센서(25)가 마련되어 있으며, 대표적으로 라이다 장치, 초음파 장치, 이미지 센서가 적용될 수 있으며, 이외에도 물체를 감지할 수 있는 센서, 장치라면 무엇이든 적용 가능하다.
또한, 로봇(10)의 정면, 좌우 측면, 후면 각각에 거리센서(25)가 마련되어 로봇(10)의 주변을 모두 감시할 수 있다.
상술한 바와 같이, 거리센서(25)는 대표적인 예로, 라이다의 경우 180도에 가까운 범위를 감시할 수 있기 때문에, 로봇(10)의 정면, 좌우 측면, 후면에 라이다가 마련되어 감시할 경우 사각지대가 없이 감시할 수 있게 된다.
제어부(60)는 거리센서(25)를 통해 일정 거리 내 특정 대상이 감지될 경우, 로봇(10)의 이동을 중지시키고 특정 대상이 거리센서(25)의 감시범위에서 사라진 후 소정 시간이 경과하면 로봇(10)의 작동을 재개하도록 한다.
주차장의 특성상 전기차 충전 로봇(10)의 주변에 다른 차량이 있거나, 사람이 통행중일 수 있다. 따라서, 제어부(60)는 거리센서(25)를 통해 로봇(10)과 일정 거리 내에 특정 대상이 감지되면, 현상태에서 주행을 계속할 경우 사고가 발생할 수도 있으므로 로봇(10)의 이동을 중지시키고, 해당 대상이 사라지고 일정 시간이 경과하면 로봇(10)을 다시 이동시켜, 혹시나 발생할 수 있는 사고를 미연에 방지할 수 있다.
일 실시예로, 전기차 충전 로봇(10)은 로봇(10)은 범퍼센서(67)를 포함할 수 있다.
제어부(60)는 범퍼센서에 의해 충격이 감지되면 로봇(10)의 이동을 중지시키고 더 이상 충격이 감지되지 않거나 충격을 가한 특정 대상이 감시범위에서 사라진 것으로 판단되면 소정 시간 후에 로봇(10)의 작동을 재개하도록 한다.
이때, 범퍼센서는 로봇(10)의 외면에 외부 충격을 감지할 수 있는 범퍼가 형성되어 센싱할 수도 있고, 로봇(10)의 내부에 로봇(10)의 충격, 기울기 등을 감지할 수 있는 감지센서가 구비되어 로봇(10)에 가해지는 충격을 감지할 수도 있다.
경우에 따라서, 특정 대상이 소정 강도 이상의 충격을 가하지 않고 로봇(10)을 기울이거나 흔들 수도 있으므로, 로봇(10)은 로봇(10)의 기울기를 감지할 수 있는 기울기 센서 또는 가속도 센서가 포함될 수도 있다.
도 14는 본 발명의 실시예에 따른 전기차 충전 로봇(10)의 블록도이다.
도 14을 참조하면, 본 발명의 실시예에 따른 전기차 충전 로봇(10)은 구동부(65), 제1위치센서(22), 거리센서(25), 로봇암(30), 제2위치센서(32), 제2도킹단자(35), 제어부(60) 및 산출부(63)를 포함한다.
다만, 몇몇 실시예에서 서버는 도 14에 도시된 구성요소보다 더 적은 수의 구성요소나 더 많은 구성요소를 포함할 수도 있다.
구동부(65)는 전기차 충전 로봇(10)의 바퀴를 제어하여 로봇(10)을 전진 또는 후진시키며, 바퀴를 제어하여 로봇(10)의 자세를 변경시킨다.
또한, 구동부(65)는 로봇암(30)을 제어하여 제2도킹단자(35)를 제1도킹단자(40)에 도킹한다.
제1위치센서(22)는 로봇(10)의 좌우 측면에 마련되어 로봇(10)의 좌우를 촬영한다.
거리센서(25)는 로봇(10)의 외면에 하나 이상 마련되어 로봇(10)의 주변을 감시하며, 제어부(60)는 거리센서(25)를 통해 일정 거리 내 특정 대상이 감지될 경우 로봇(10)의 이동을 중지시키고 해당 대상이 거리센서(25)의 감시 범위에서 사라진 후 소정 시간이 경과하면 로봇(10)의 작동을 재개한다.
제어부는 제1위치센서(22)로부터 센싱되는 데이터에서 목표로 하는 특징점(42)을 검색하며 로봇(10)을 사용자 차량이 주차된 주차 구역으로 이동시키며, 제1위치센서(22)의 센싱 데이터 내에서 해당 특징점(42)이 인식되면 로봇(10)을 제1위치(51)까지 이동시키고, 제1위치(51)에서 로봇(10)의 로봇암(30)이 특징점(42)을 향하도록 로봇(10)의 자세를 변경시킨다.
또한, 제어부(60)는 로봇암(30)에 구비된 제2위치센서(32)의 센싱 데이터(촬영 영상) 내 특징점 이미지(43)를 이용하여 제2위치센서(32)와 특징점(42)의 거리를 측정하고 로봇(10)을 제2위치(52)까지 이동시키며, 제2위치(52)에서 차량에 장착된 제1도킹단자(40)에 로봇암(30)의 제2도킹단자(35)를 도킹하기 위해 로봇암(30)을 구동시킨다.
로봇암(30)은 로봇(10)의 내부에 형성되어 있으며, 제2위치센서(32)와 제2도킹단자(35)가 형성되어 있다.
제2위치센서(32)는 로봇암(30)에 형성되어 있으며, 차량의 번호판 또는 충전구에 장착된 제2도킹단자(35)에 마련된 특징점(42)을 촬영한다.
제2도킹단자(35)는 로봇암(30)에 마련되어 있으며, 차량의 번호판에 장착된 제1도킹단자(40)에 도킹되어 차량에 전기를 공급함으로써 전기차를 충전시킨다.
이상으로 설명한 본 발명의 실시예에 따른 전기차 충전 로봇(10)은 도 1 내지 도 13을 통해 설명한 전기차 충전 로봇(10)의 제어 방법과 발명의 카테고리만 다를 뿐, 동일한 내용이므로 중복되는 설명, 예시는 생략하도록 한다.
이상에서 전술한 본 발명의 일 실시예에 따른 전기차 충전 로봇의 제어 방법은, 하드웨어인 서버와 결합되어 실행되기 위해 전기차 충전 로봇의 제어 프로그램(또는 어플리케이션)으로 구현되어 매체에 저장될 수 있다.
상기 전술한 프로그램은, 상기 컴퓨터가 프로그램을 읽어 들여 프로그램으로 구현된 상기 방법들을 실행시키기 위하여, 상기 컴퓨터의 프로세서(CPU)가 상기 컴퓨터의 장치 인터페이스를 통해 읽힐 수 있는 C, C++, JAVA, 기계어 등의 컴퓨터 언어로 코드화된 코드(Code)를 포함할 수 있다. 이러한 코드는 상기 방법들을 실행하는 필요한 기능들을 정의한 함수 등과 관련된 기능적인 코드(Functional Code)를 포함할 수 있고, 상기 기능들을 상기 컴퓨터의 프로세서가 소정의 절차대로 실행시키는데 필요한 실행 절차 관련 제어 코드를 포함할 수 있다. 또한, 이러한 코드는 상기 기능들을 상기 컴퓨터의 프로세서가 실행시키는데 필요한 추가 정보나 미디어가 상기 컴퓨터의 내부 또는 외부 메모리의 어느 위치(주소 번지)에서 참조되어야 하는지에 대한 메모리 참조관련 코드를 더 포함할 수 있다. 또한, 상기 컴퓨터의 프로세서가 상기 기능들을 실행시키기 위하여 원격(Remote)에 있는 어떠한 다른 컴퓨터나 서버 등과 통신이 필요한 경우, 코드는 상기 컴퓨터의 통신 모듈을 이용하여 원격에 있는 어떠한 다른 컴퓨터나 서버 등과 어떻게 통신해야 하는지, 통신 시 어떠한 정보나 미디어를 송수신해야 하는지 등에 대한 통신 관련 코드를 더 포함할 수 있다.
상기 저장되는 매체는, 레지스터, 캐쉬, 메모리 등과 같이 짧은 순간 동안 데이터를 저장하는 매체가 아니라 반영구적으로 데이터를 저장하며, 기기에 의해 판독(reading)이 가능한 매체를 의미한다. 구체적으로는, 상기 저장되는 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있지만, 이에 제한되지 않는다. 즉, 상기 프로그램은 상기 컴퓨터가 접속할 수 있는 다양한 서버 상의 다양한 기록매체 또는 사용자의 상기 컴퓨터상의 다양한 기록매체에 저장될 수 있다. 또한, 상기 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장될 수 있다.
본 발명의 실시예와 관련하여 설명된 방법 또는 알고리즘의 단계들은 하드웨어로 직접 구현되거나, 하드웨어에 의해 실행되는 소프트웨어 모듈로 구현되거나, 또는 이들의 결합에 의해 구현될 수 있다. 소프트웨어 모듈은 RAM(Random Access Memory), ROM(Read Only Memory), EPROM(Erasable Programmable ROM), EEPROM(Electrically Erasable Programmable ROM), 플래시 메모리(Flash Memory), 하드 디스크, 착탈형 디스크, CD-ROM, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터 판독가능 기록매체에 상주할 수도 있다.
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.

Claims (21)

  1. 전기차 충전 로봇에 의해 수행되는 방법으로,
    상기 로봇이 사용자의 차량이 주차된 주차 구역으로 이동하는 단계;
    상기 로봇이 위치센서를 통해 주변을 센싱하는 단계;
    상기 위치센서의 센싱 데이터에서 목표로 하는 특징점을 검색하고, 해당 특징점이 인식되면 상기 로봇이 제1위치까지 이동하는 단계;
    상기 제1위치에서 상기 특징점을 향하도록 상기 로봇이 자세를 변경하고, 제2위치까지 이동하는 단계; 및
    상기 제2위치에서 상기 차량의 충전구 또는 상기 차량에 장착된 제1도킹단자에 로봇암의 제2도킹단자를 도킹하기 위해 상기 로봇암을 구동하는 단계;를 포함하는, 전기차 충전 로봇의 제어 방법.
  2. 제1항에 있어서,
    상기 위치센서는,
    상기 로봇에 마련되어 주변을 센싱하는 제1위치센서; 및
    상기 로봇암에 마련된 제2위치센서;를 포함하는 것을 특징으로 하는, 전기차 충전 로봇의 제어 방법.
  3. 제2항에 있어서,
    상기 제1위치 이동 단계는,
    상기 제1위치센서를 통해 센싱된 데이터로부터 상기 특징점, 상기 차량의 충전구 및 제1도킹단자 중 적어도 하나의 위치 정보를 도출하는 단계;
    상기 위치 정보를 통해 로봇이 이동해야 할 제1위치를 산출하고, 제1위치까지 이동하는 단계;를 포함하는, 전기차 충전 로봇의 제어 방법.
  4. 제2항에 있어서,
    상기 제2위치 이동 단계는,
    상기 제2위치센서의 센싱 데이터를 이용하여 상기 제2위치센서와 상기 특징점의 얼라인 오차를 산출하고, 상기 오차를 만회하도록 상기 로봇을 제어하는 단계;를 포함하는, 전기차 충전 로봇의 제어 방법.
  5. 제2항에 있어서,
    상기 자세 변경 단계는,
    상기 제1위치에서 로봇암이 상기 특징점을 향하도록 상기 로봇이 제1자세로 변경하는 단계;
    상기 로봇이 제1자세에서 상기 제2위치센서의 센싱 데이터 내 특징점 이미지를 획득하는 단계;
    상기 로봇이 제1각도 회전하여 제2자세로 변경하고, 상기 제2자세에서 상기 제2위치센서의 센싱 데이터를 획득하는 단계; 및
    상기 제1자세와 제2자세 중 적어도 하나에서 획득한 센싱 데이터를 통해 상기 제2위치센서와 상기 특징점의 평행 얼라인 자세를 산출하고, 상기 로봇이 자세를 보정하는 단계;를 포함하는, 전기차 충전 로봇의 제어 방법.
  6. 제1항에 있어서,
    상기 로봇은,
    상기 로봇의 외면에 마련된 하나 이상의 거리센서를 통해 일정 거리 내 특정 대상이 감지될 경우, 상기 로봇의 이동을 중지시키고 상기 특정 대상이 상기 거리센서의 감시 범위에서 사라진 후 소정시간이 경과하면 상기 로봇의 작동을 재개하며,
    상기 로봇의 외면에 마련된 하나 이상의 범퍼센서를 통해 충격이 감지되는 경우, 상기 로봇의 이동을 중지시키고 더 이상 충격이 감지되지 않거나 충격을 가한 특정 대상이 감시범위에서 사라진 것으로 판단되면 소정 시간 후에 로봇의 작동을 재개하는 것을 특징으로 하는, 전기차 충전 로봇의 제어 방법.
  7. 제2항에 있어서,
    상기 로봇암 구동 단계는,
    상기 로봇암을 구동하여 상기 제2위치센서를 특정 방향으로 제1거리만큼 이동시키는 단계;
    상기 제2위치센서의 상기 제1거리 이동에 따른 상기 제2위치센서의 센싱 데이터 내에서 특징점 이미지가 이동된 픽셀수를 통해, 센싱 데이터 내에서의 특징점 이미지가 이동된 거리와 제1거리를 얼라인시키는 단계; 및
    상기 로봇암의 제2도킹단자를 상기 제1도킹단자에 도킹하는 단계;를 포함하는, 전기차 충전 로봇의 제어 방법.
  8. 제1항에 있어서,
    상기 주차 구역 이동 단계는,
    상기 로봇이 사용자의 오더 신호에 의해 주차 구역으로 이동하는 단계;를 포함하는, 전기차 충전 로봇의 제어 방법.
  9. 위치센서로부터 센싱되는 데이터에서 목표로 하는 특징점을 검색하며 로봇을 사용자 차량이 주차된 주차 구역으로 이동시키며, 해당 특징점이 인식되면 상기 로봇을 제1위치까지 이동시키고, 상기 제1위치에서 상기 로봇의 로봇암이 상기 특징점을 향하도록 로봇의 자세를 변경하는 제어부;
    상기 제1위치에서 상기 로봇암에 구비된 위치센서의 센싱 데이터를 이용하여 위치센서와 상기 특징점의 거리 및 각도를 산출하는 산출부;를 포함하며,
    상기 제어부는,
    상기 로봇을 제2위치까지 이동시키고, 제2위치에서 상기 차량에 장착된 제1도킹단자에 상기 로봇암의 제2도킹단자를 도킹하기 위해 상기 로봇암을 구동시키는, 전기차 충전 로봇.
  10. 하드웨어인 컴퓨터와 결합되어, 제1항 내지 제8항 중 어느 한 항의 방법을 실행시키기 위하여 매체에 저장된, 전기차 충전 로봇 제어 프로그램.
  11. 차량과 기 설정된 거리(제2위치)까지 이동된 전기차 충전 로봇에 의해 수행되는 정밀 제어 방법으로,
    제2위치에서 상기 로봇암을 구동하여 위치센서를 특정 방향으로 제1거리만큼 이동시키되, 상기 위치센서는 상기 로봇암에 구비되어 제1도킹단자의 특징점을 센싱하는 단계;
    상기 제2위치센서의 상기 제1거리 이동에 따른 상기 제2위치센서의 센싱 데이터 내에서 특징점 이미지가 이동된 픽셀수를 통해, 센싱 데이터 내에서의 특징점 이미지가 이동된 거리와 제1거리를 얼라인시키는 단계; 및
    상기 로봇암을 상기 특징점 방향으로 소정 거리 이동시키는 단계;를 포함하는, 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법.
  12. 제11항에 있어서,
    상기 위치센서와 상기 특징점의 얼라인 오차가 기준범위 이하인 것으로 판단되면, 상기 로봇암의 제2도킹단자를 상기 제1도킹단자에 도킹하는 단계;를 포함하는, 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법.
  13. 제11항에 있어서,
    상기 제1거리 이동 단계 이전에,
    상기 로봇이 사용자의 차량이 주차된 주차 구역으로 이동하는 단계;
    상기 로봇이 위치센서를 통해 주변을 센싱하는 단계;
    상기 위치센서의 센싱 데이터에서 목표로 하는 특징점을 검색하고, 해당 특징점이 인식되면 상기 로봇이 제1위치까지 이동하는 단계;
    상기 제1위치에서 상기 로봇암이 상기 특징점을 향하도록 상기 로봇이 자세를 변경하는 단계; 및
    상기 로봇암에 구비된 위치센서의 센싱 데이터 내 특징점 이미지를 이용하여 상기 위치센서와 상기 특징점의 거리와 각도를 측정하고, 상기 로봇이 제2위치까지 이동하는 단계;를 더 포함하는, 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법.
  14. 제13항에 있어서,
    상기 위치센서는,
    상기 로봇에 마련되어 주변을 센싱하는 제1위치센서; 및
    상기 로봇암에 마련된 제2위치센서;를 포함하는 것을 특징으로 하는, 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법.
  15. 제14항에 있어서,
    상기 제1위치 이동 단계는,
    상기 제1위치센서를 통해 센싱된 데이터 내 특징점 이미지로부터 상기 특징점, 상기 차량의 충전구 및 제1도킹단자 중 적어도 하나의 위치 정보를 도출하는 단계;
    상기 위치 정보를 통해 로봇이 이동해야 할 제1위치를 산출하고, 로봇이 제1위치까지 이동하는 단계;를 포함하는, 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법.
  16. 제14항에 있어서,
    상기 제2위치 이동 단계는,
    상기 제2위치센서의 센싱 데이터 내 특징점 이미지를 이용하여 상기 제2위치센서와 상기 특징점의 얼라인 오차를 산출하고, 상기 오차를 만회하도록 상기 로봇을 제어하는 단계;를 포함하는, 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법.
  17. 제14항에 있어서,
    상기 자세 변경 단계는,
    상기 제1위치에서 상기 로봇암이 상기 특징점을 향하도록 상기 로봇이 제1자세로 변경하는 단계;
    상기 로봇이 제1자세에서 상기 제2위치센서의 센싱 데이터 내 특징점 이미지를 획득하는 단계;
    상기 로봇이 제1각도 회전하여 제2자세로 변경하고, 상기 제2자세에서 상기 제2위치센서의 센싱 데이터 내 특징점 이미지를 획득하는 단계; 및
    상기 제1자세와 제2자세에서 획득한 특징점 이미지를 통해 상기 제2위치센서와 상기 특징점의 평행 얼라인 자세를 산출하고, 상기 로봇이 자세를 보정하는 단계;를 포함하는, 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법.
  18. 제14항에 있어서,
    상기 로봇은,
    상기 로봇의 외면에 마련된 하나 이상의 거리 센서를 통해 일정 거리 내 특정 대상이 감지될 경우, 상기 로봇의 이동을 중지시키고 상기 특정 대상이 상기 거리 센서의 감시 범위에서 사라진 후 소정시간이 경과하면 상기 로봇의 작동을 재개하며,
    상기 로봇의 외면에 마련된 하나 이상의 범퍼센서를 통해 충격이 감지되는 경우, 상기 로봇의 이동을 중지시키고 더 이상 충격이 감지되지 않거나 충격을 가한 특정 대상이 감시범위에서 사라진 것으로 판단되면 소정 시간 후에 로봇의 작동을 재개하는 것을 특징으로 하는, 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법.
  19. 제13항에 있어서,
    상기 주차 구역 이동 단계는,
    상기 로봇이 사용자의 오더 신호에 의해 주차 구역으로 이동하는 단계;를 포함하는, 전기차 충전 로봇의 도킹을 위한 정밀 제어 방법.
  20. 차량과 기 설정된 거리(제2위치)까지 이동되어 도킹을 위한 정밀 제어를 수행하는 전기차 충전 로봇에 있어서,
    상기 로봇의 로봇암에 구비되어 제1도킹단자에 형성된 특징점을 센싱하는 위치센서;
    제2위치에서 상기 로봇암을 구동하여 상기 위치센서를 특정 방향으로 제1거리만큼 이동시키는 제어부;
    상기 위치센서의 상기 제1거리 이동에 따른 상기 위치센서의 센싱 데이터 내에서 특징점 이미지가 이동된 픽셀수를 통해, 상기 위치센서와 상기 특징점의 얼라인 오차를 산출하는 산출부;를 포함하며,
    상기 제어부는,
    상기 산출된 얼라인 오차를 만회하도록 상기 로봇암을 제어하는, 전기차 충전 로봇.
  21. 하드웨어인 컴퓨터와 결합되어, 제11항 내지 제19항 중 어느 한 항의 방법을 실행시키기 위하여 매체에 저장된, 전기차 충전 로봇의 도킹을 위한 정밀 제어 프로그램.
PCT/KR2019/011440 2019-02-01 2019-09-05 전기차 충전 로봇, 로봇의 제어 방법 및 프로그램, 로봇의 도킹을 위한 정밀 제어 방법 및 프로그램 WO2020159029A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0013387 2019-02-01
KR10-2019-0013388 2019-02-01
KR1020190013388A KR102014340B1 (ko) 2019-02-01 2019-02-01 전기차 충전 로봇, 로봇의 도킹을 위한 정밀 제어 방법 및 프로그램
KR1020190013387A KR102014338B1 (ko) 2019-02-01 2019-02-01 전기차 충전 로봇, 로봇의 제어 방법 및 프로그램

Publications (1)

Publication Number Publication Date
WO2020159029A1 true WO2020159029A1 (ko) 2020-08-06

Family

ID=71842304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011440 WO2020159029A1 (ko) 2019-02-01 2019-09-05 전기차 충전 로봇, 로봇의 제어 방법 및 프로그램, 로봇의 도킹을 위한 정밀 제어 방법 및 프로그램

Country Status (1)

Country Link
WO (1) WO2020159029A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2150550A1 (en) * 2021-04-30 2022-10-31 Husqvarna Ab Method and system for charging a robotic work tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192414A (ja) * 1987-02-05 1988-08-09 オ−トマツクス株式会社 床面清掃ロボツト
US20130076902A1 (en) * 2011-09-26 2013-03-28 Universite Laval Robotically operated vehicle charging station
KR20140078025A (ko) * 2012-12-14 2014-06-25 신명철 이동통신단말기와 qr코드를 활용한 주차위치안내서비스 시스템
US9592742B1 (en) * 2014-04-09 2017-03-14 FreeWire Technologies, Inc. Systems, apparatus, and methods of charging electric vehicles
KR20180046600A (ko) * 2016-10-28 2018-05-09 삼성전자주식회사 전기자동차용 충전장치 및 전기자동차 충전 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192414A (ja) * 1987-02-05 1988-08-09 オ−トマツクス株式会社 床面清掃ロボツト
US20130076902A1 (en) * 2011-09-26 2013-03-28 Universite Laval Robotically operated vehicle charging station
KR20140078025A (ko) * 2012-12-14 2014-06-25 신명철 이동통신단말기와 qr코드를 활용한 주차위치안내서비스 시스템
US9592742B1 (en) * 2014-04-09 2017-03-14 FreeWire Technologies, Inc. Systems, apparatus, and methods of charging electric vehicles
KR20180046600A (ko) * 2016-10-28 2018-05-09 삼성전자주식회사 전기자동차용 충전장치 및 전기자동차 충전 제어방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2150550A1 (en) * 2021-04-30 2022-10-31 Husqvarna Ab Method and system for charging a robotic work tool
SE545080C2 (en) * 2021-04-30 2023-03-21 Husqvarna Ab Method and system for charging a robotic work tool

Similar Documents

Publication Publication Date Title
WO2020022654A1 (ko) 전기차량 충전시스템
WO2016074169A1 (zh) 一种对目标物体的检测方法、检测装置以及机器人
WO2018110964A1 (en) Electronic device and method for recognizing object by using plurality of sensors
WO2019139463A2 (ko) 전기차 충전시스템 및 이를 이용한 충전방법
WO2020004817A1 (ko) 차선 정보 검출 장치, 방법 및 이러한 방법을 수행하도록 프로그램된 컴퓨 프로그램을 저장하는 컴퓨터 판독가능한 기록매체
WO2017091008A1 (ko) 이동 로봇 및 그 제어 방법
WO2019124894A1 (ko) 무인 비행체 및 그의 동작 방법, 그리고 상기 무인 비행체의 이동을 제어하기 위한 무인 운반체
WO2019135437A1 (ko) 안내 로봇 및 그의 동작 방법
WO2018070687A1 (ko) 공항 로봇 및 그를 포함하는 공항 로봇 시스템
WO2017213339A1 (ko) 수평 자세 유지 장치 및 자세 유지 장치 구동 방법
EP3829832A1 (en) Moving robot, moving robot system, and method for moving to charging station of moving robot
EP3525992A1 (en) Mobile robot system and mobile robot
WO2020213955A1 (ko) 모바일 로봇의 초기화 진단 방법 및 시스템
WO2011013862A1 (ko) 이동 로봇의 위치 인식 및 주행 제어 방법과 이를 이용한 이동 로봇
WO2019139310A1 (en) Autonomous driving apparatus and method for autonomous driving of a vehicle
WO2020159028A1 (ko) 전기자동차 충전용 충전 커넥터, 도킹 소켓 및 도킹 어셈블리
WO2019199112A1 (ko) 자율 작업 시스템, 방법 및 컴퓨터 판독 가능한 기록매체
WO2019143129A1 (ko) 로봇 청소기 및 그 제어 방법
WO2016129924A1 (ko) 비제한적 구동형 마킹 시스템 및 그 마킹 방법
WO2018143620A2 (en) Robot cleaner and method of controlling the same
WO2020159027A1 (ko) 전기자동차용 충전 로봇, 전기자동차 충전용 충전 커넥터, 도킹 소켓 및 도킹 어셈블리
WO2018043780A1 (ko) 이동 로봇 및 그 제어방법
WO2020059926A1 (ko) 이동단말기 및 그 제어방법
WO2020230931A1 (ko) 다중 센서 및 인공지능에 기반하여 맵을 생성하고 노드들의 상관 관계를 설정하며 맵을 이용하여 주행하는 로봇 및 맵을 생성하는 방법
WO2015147371A1 (ko) 차량의 위치 보정 장치 및 방법과 이를 이용한 차량 위치 보정 시스템 및 무인 운행이 가능한 차량

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912330

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19912330

Country of ref document: EP

Kind code of ref document: A1