WO2020158767A1 - Expansion method and semiconductor device production method - Google Patents

Expansion method and semiconductor device production method Download PDF

Info

Publication number
WO2020158767A1
WO2020158767A1 PCT/JP2020/003072 JP2020003072W WO2020158767A1 WO 2020158767 A1 WO2020158767 A1 WO 2020158767A1 JP 2020003072 W JP2020003072 W JP 2020003072W WO 2020158767 A1 WO2020158767 A1 WO 2020158767A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive sheet
pressure
sensitive adhesive
sheet
meth
Prior art date
Application number
PCT/JP2020/003072
Other languages
French (fr)
Japanese (ja)
Inventor
啓示 布施
洋一 稲男
忠知 山田
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2020569661A priority Critical patent/JPWO2020158767A1/en
Publication of WO2020158767A1 publication Critical patent/WO2020158767A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present invention relates to an expanding method and a semiconductor device manufacturing method.
  • a semiconductor chip may be mounted in a package close to its size. Such a package is sometimes referred to as a chip scale package (CSP).
  • CSP chip scale package
  • WLP wafer level package
  • external electrodes and the like are formed on a wafer before being diced into individual pieces, and finally the wafer is diced into individual pieces.
  • the WLP includes a fan-in type and a fan-out type.
  • the semiconductor chip is covered with a sealing member so as to be a region larger than the chip size to form a semiconductor chip sealing body. Then, the redistribution layer and the external electrodes are formed not only on the circuit surface of the semiconductor chip but also on the surface region of the sealing member.
  • Patent Document 1 with respect to a plurality of semiconductor chips diced from a semiconductor wafer, an extended wafer is formed by surrounding the periphery with a mold member while leaving a circuit forming surface, and forming an extended wafer in a region outside the semiconductor chip.
  • a method for manufacturing a semiconductor package is described in which a rewiring pattern is extended and formed.
  • the wafer mounting tape for expansion is attached to the plurality of semiconductor chips to expand the wafer mounting tape for expansion. The distance between them is increasing.
  • the 2nd base material layer, the 1st base material layer, and the 1st adhesive layer are provided in this order, and the fracture
  • Sheets are listed.
  • the method of manufacturing a semiconductor device described in Patent Document 2 includes a step of attaching a semiconductor wafer to the first adhesive layer of this adhesive sheet, and a step of dicing the semiconductor wafer into individual pieces to form a plurality of semiconductor chips. And stretching the adhesive sheet to widen the gap between the semiconductor chips.
  • the tape used in the expanding step usually has an adhesive layer for fixing the semiconductor chip on the tape and a base material for supporting the adhesive layer.
  • the wafer mounting tape for expansion is stretched as described in Patent Document 1, not only the base material of the tape but also the adhesive layer is stretched.
  • the semiconductor chip is peeled off from the pressure-sensitive adhesive layer after the expanding step, there may be a problem that the pressure-sensitive adhesive layer remains on the surface of the semiconductor chip that was in contact with the pressure-sensitive adhesive layer. Such a defect may be referred to as an adhesive residue in the present specification.
  • the expanding step is performed using the pressure-sensitive adhesive sheet described in Patent Document 2, the pressure-sensitive adhesive layer in contact with the semiconductor chip is not stretched, and thus it is considered that adhesive residue is unlikely to occur.
  • the pressure-sensitive adhesive sheet described in Patent Document 2 has a tape structure in which the second base material layer, the first base material layer, and the first pressure-sensitive adhesive layer are laminated, a simpler tape structure is used.
  • an expanding method that can prevent adhesive residue from occurring.
  • the semiconductor wafer on the pressure-sensitive adhesive sheet is diced, and the pressure-sensitive adhesive sheet is stretched as it is without being transferred to another pressure-sensitive adhesive sheet to perform the expanding step. Therefore, in order to prevent the dicing blade during dicing from reaching the second base material layer, it is necessary to carefully control the cutting depth of the dicing blade, and there is also a demand for an expanding method capable of preventing adhesive residue by a simpler method. is there.
  • the adherend supported on the pressure-sensitive adhesive sheet is not limited to a semiconductor chip, but may be, for example, a wafer, a semiconductor device package, or a semiconductor device such as a micro LED.
  • the distance between the semiconductor devices may be expanded.
  • An object of the present invention is to provide an expanding method capable of suppressing adhesive residue while simplifying a tape structure and a process as compared with a conventional one, and to provide a method for manufacturing a semiconductor device including the expanding method. ..
  • a first adhesive layer and a first base material are provided on the first wafer surface of a wafer having a first wafer surface and a second wafer surface opposite to the first wafer surface.
  • a first adhesive sheet having is attached, a second adhesive sheet having a second adhesive layer and a second base material is attached to the second wafer surface, and a cut is made from the first adhesive sheet side, The first adhesive sheet is cut, the wafer is further diced into a plurality of chips, and a third adhesive sheet having a third adhesive layer and a third base material is attached to the first base material.
  • An expanding method is provided in which the second adhesive sheet is peeled from the second wafer surface of the wafer, and the third adhesive sheet is stretched to expand the interval between the plurality of chips.
  • the cut is formed with a depth from the side of the first adhesive sheet to the second adhesive sheet.
  • the second wafer surface is a surface formed by grinding the back surface of the wafer.
  • the first adhesive sheet is attached to the surface of the first wafer before the back surface of the wafer is ground.
  • a fourth adhesive sheet is attached to the surface of the first wafer before back grinding the wafer, and the fourth adhesive sheet is attached to the first wafer after back grinding. It is preferable that the first pressure-sensitive adhesive sheet is attached to the surface of the first wafer after peeling from the surface.
  • the fourth pressure-sensitive adhesive sheet is a back grinding sheet
  • the first pressure-sensitive adhesive sheet is a surface protection sheet
  • the thickness of the surface protection sheet is 5 ⁇ m or more and 500 ⁇ m. The following is preferable.
  • the first adhesive sheet is preferably a back grind sheet.
  • the third adhesive sheet is preferably an expanding sheet.
  • the wafer is preferably a semiconductor wafer.
  • the first wafer surface has a circuit.
  • a method for manufacturing a semiconductor device including the expanding method according to the above-described aspect of the present invention.
  • an expanding method that can simplify the tape structure and the process as compared with the related art and can suppress the adhesive residue.
  • Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. Sectional drawing explaining the manufacturing method which concerns on 2nd Embodiment.
  • FIG. 4 is a schematic diagram for explaining a method of measuring chip alignment.
  • FIG. 1 (FIGS. 1A and 1B), FIG. 2 (FIGS. 2A and 2B), and FIG. 3 are schematic cross-sectional views illustrating a method for manufacturing a semiconductor device including the expanding method according to the present embodiment.
  • the expanding method according to the present embodiment includes the following steps (P1) to (P5).
  • P1 A step of preparing a wafer in which the first adhesive sheet is attached to the first wafer surface and the second adhesive sheet is attached to the second wafer surface.
  • the first adhesive sheet has a first adhesive layer and a first base material.
  • the second pressure-sensitive adhesive sheet has a second pressure-sensitive adhesive layer and a second base material.
  • P2 A step of making a notch from the side of the first adhesive sheet, cutting the first adhesive sheet, and further cutting the wafer into individual chips.
  • P3 A step of attaching the third adhesive sheet to the first base material.
  • the third pressure-sensitive adhesive sheet has a third pressure-sensitive adhesive layer and a third base material.
  • P4) A step of peeling the second adhesive sheet from the second wafer surface of the wafer.
  • P5 A step of expanding the third pressure-sensitive adhesive sheet to widen the intervals between the plurality of chips.
  • FIG. 1A is a diagram for explaining the step (P1).
  • FIG. 1A shows a wafer W to which the first adhesive sheet 10 and the second adhesive sheet 20 are attached.
  • the semiconductor wafer W has a circuit surface W1 as a first wafer surface and a back surface W3 as a second wafer surface.
  • a circuit W2 is formed on the circuit surface W1.
  • the first adhesive sheet 10 is attached to the circuit surface W1.
  • the second adhesive sheet 20 is attached to the back surface W3.
  • the first pressure-sensitive adhesive sheet 10 has a first pressure-sensitive adhesive layer 12 and a first base material 11.
  • the second pressure-sensitive adhesive sheet 20 has a second pressure-sensitive adhesive layer 22 and a second base material 21. Details of the first adhesive sheet 10 and the second adhesive sheet 20 will be described later.
  • the semiconductor wafer W may be, for example, a silicon wafer or a compound semiconductor wafer such as gallium/arsenic.
  • a method for forming the circuit W2 on the circuit surface W1 of the semiconductor wafer W a commonly used method can be used, and examples thereof include an etching method and a lift-off method.
  • the semiconductor wafer W prepared in the step (P1) is preferably a wafer obtained by undergoing a back grinding step.
  • the surface of the semiconductor wafer W opposite to the circuit surface W1 is ground to a predetermined thickness.
  • the back surface W3 is preferably a surface formed by grinding the back surface of the semiconductor wafer W. A surface exposed after grinding the semiconductor wafer W is referred to as a back surface W3.
  • the method of grinding the semiconductor wafer W is not particularly limited, and examples thereof include known methods using a grinder or the like.
  • an adhesive sheet called a back grind sheet to the circuit surface W1 in order to protect the circuit W2.
  • the circuit surface W1 side of the semiconductor wafer W that is, the back grinding sheet side is fixed by a chuck table or the like, and the back surface side where no circuit is formed is ground by a grinder.
  • the first adhesive sheet 10 is preferably a back grind sheet.
  • the semiconductor wafer W is attached so that the circuit surface W1 faces the first pressure-sensitive adhesive layer 12 of the first pressure-sensitive adhesive sheet 10. It is preferable that the first adhesive sheet 10 as a back grinding sheet is attached to the circuit surface W1 as a first wafer surface before the back surface grinding of the semiconductor wafer W.
  • the step of attaching the first adhesive sheet 10 to the circuit surface W1 may be referred to as the first adhesive sheet attaching step.
  • the thickness of the semiconductor wafer W before grinding is not particularly limited and is usually 500 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness of the semiconductor wafer W after grinding is not particularly limited and is usually 20 ⁇ m or more and 500 ⁇ m or less.
  • the semiconductor wafer W prepared in the step (P1) is preferably a wafer obtained through the back grinding step and the sticking step of sticking the second adhesive sheet 20 to the back surface W3.
  • This attaching step may be referred to as a second adhesive sheet attaching step.
  • the semiconductor wafer W is diced into a plurality of semiconductor chips CP.
  • an adhesive sheet called a dicing sheet is preferably attached to the back surface W3 in order to hold the semiconductor wafer W.
  • the second adhesive sheet 20 is preferably a dicing sheet.
  • the semiconductor wafer W is attached with the back surface W3 facing the second adhesive layer 22 of the second adhesive sheet 20.
  • FIG. 1B is a diagram for explaining the step (P2).
  • the process (P2) may be called a dicing process.
  • FIG. 1B shows a plurality of semiconductor chips CP held by the second adhesive sheet 20.
  • the semiconductor wafer W in which the first adhesive sheet 10 is attached to the circuit surface W1 and the second adhesive sheet 20 is attached to the back surface W3 is diced into individual pieces to form a plurality of semiconductor chips CP. ..
  • a cut is made from the first adhesive sheet 10 side, the first adhesive sheet 10 is cut, and the semiconductor wafer W is further cut.
  • the circuit surfaces W1 of the plurality of semiconductor chips CP after the dicing process are in a state of being covered with the cut first adhesive sheets 10.
  • a cutting means such as a dicing saw is used for dicing.
  • the cutting depth at the time of dicing is not particularly limited as long as the first adhesive sheet 10 and the semiconductor wafer W can be separated into individual pieces.
  • the cut in the dicing step is preferably formed at a depth from the first adhesive sheet 10 side to reach the second adhesive sheet 20. More preferably, it is formed to a depth that reaches the second adhesive layer 22.
  • the second adhesive layer 22 is also cut into the same size as the semiconductor chip CP by dicing. Furthermore, a cut may be formed in the second base material 21 by dicing.
  • FIG. 2A is a diagram for explaining the step (P3).
  • the step (P3) may be referred to as a third adhesive sheet sticking step.
  • FIG. 2A shows a state in which the third adhesive sheet 30 is attached to the plurality of semiconductor chips CP obtained by the dicing process.
  • the third pressure-sensitive adhesive sheet 30 has a third pressure-sensitive adhesive layer 32 and a third base material 31. Details of the third adhesive sheet 30 will be described later.
  • the third adhesive sheet 30 when the third adhesive sheet 30 is attached to the circuit surface W1 side of the plurality of semiconductor chips CP, it is between the plurality of semiconductor chips CP and the third adhesive layer 32 of the third adhesive sheet 30. A laminated structure in which the individual first adhesive sheet 10 is interposed is obtained.
  • FIG. 2B is a diagram for explaining the step (P4).
  • the step (P4) may be referred to as the peeling step of the second adhesive sheet.
  • FIG. 2B shows a state in which the second adhesive sheet 20 is peeled from the back surface W3 of the wafer W after the third adhesive sheet 30 is attached.
  • the second adhesive sheet 20 is peeled off after the third adhesive sheet 30 is attached, the back surfaces W3 of the plurality of semiconductor chips CP are exposed.
  • the energy ray-polymerizable compound is mixed in the second pressure-sensitive adhesive layer 22, the second pressure-sensitive adhesive layer 22 is irradiated with energy rays from the second base material 21 side to cure the energy ray-polymerizable compound. It is preferable that the second adhesive sheet 20 is peeled off after the operation.
  • FIG. 3 is a diagram for explaining the step (P5).
  • the process (P5) may be called an expanding process.
  • FIG. 3 shows a state in which the third adhesive sheet 30 is expanded after the second adhesive sheet 20 has been peeled off to expand the intervals between the plurality of semiconductor chips CP.
  • an adhesive sheet called an expand sheet.
  • the third adhesive sheet 30 is an expanded sheet.
  • the method of stretching the third adhesive sheet 30 in the expanding step is not particularly limited.
  • the spacing D1 between the plurality of semiconductor chips CP depends on the size of the semiconductor chips CP and is not particularly limited. In particular, in the plurality of semiconductor chips CP attached to one surface of the adhesive sheet, the distance D1 between the adjacent semiconductor chips CP is preferably 200 ⁇ m or more. It should be noted that the upper limit of the interval between the semiconductor chips CP is not particularly limited. The upper limit of the distance between the semiconductor chips CP may be 6000 ⁇ m, for example.
  • FIG. 4A is a diagram illustrating a step of transferring the plurality of semiconductor chips CP attached to the third pressure-sensitive adhesive sheet 30 to the fifth pressure-sensitive adhesive sheet 50 (hereinafter sometimes referred to as “transfer step”).
  • the fifth adhesive sheet 50 is not particularly limited as long as it can hold a plurality of semiconductor chips CP.
  • the fifth pressure-sensitive adhesive sheet 50 has a fifth base material 51 and a fifth pressure-sensitive adhesive layer 52.
  • the fifth adhesive sheet 50 may be attached to the second ring frame together with the plurality of semiconductor chips CP.
  • the second ring frame is placed on the fifth pressure-sensitive adhesive layer 52 of the fifth pressure-sensitive adhesive sheet 50, which is lightly pressed and fixed.
  • the fifth adhesive layer 52 exposed on the inner side of the ring shape of the second ring frame is pressed against the back surface W3 of the semiconductor chip CP to fix the plurality of semiconductor chips CP to the fifth adhesive sheet 50.
  • FIG. 4B is a diagram illustrating a step of peeling off the third adhesive sheet 30 after the fifth adhesive sheet 50 is attached.
  • the individual first pressure-sensitive adhesive sheet 10 covering the circuit surface W1 of the semiconductor chip CP is peeled together with the third pressure-sensitive adhesive sheet 30 as an example. I will give you an explanation. It is preferable that the force of peeling the third adhesive sheet 30 from the first adhesive sheet 10 is larger than the force of peeling the first adhesive sheet 10 from the circuit surface W1 of the semiconductor chip CP. It is also possible to adopt a mode in which only the third adhesive sheet 30 is peeled off while leaving the individualized first adhesive sheet 10 covering the circuit surface W1 on the semiconductor chip CP.
  • the circuit surfaces W1 of the plurality of semiconductor chips CP are exposed. It is preferable that the distance D1 between the plurality of semiconductor chips CP expanded in the expanding step is maintained even after the first adhesive sheet 10 and the third adhesive sheet 30 are peeled off.
  • FIG. 5A is a diagram illustrating a step of transferring the plurality of semiconductor chips CP attached to the fifth adhesive sheet 50 to the sixth adhesive sheet 60 (hereinafter, sometimes referred to as “second transfer step”). It is shown. It is preferable that the plurality of semiconductor chips CP transferred from the fifth adhesive sheet 50 to the sixth adhesive sheet 60 maintain the distance D1 between the semiconductor chips CP.
  • the sixth adhesive sheet 60 is not particularly limited as long as it can hold a plurality of semiconductor chips CP.
  • the sixth adhesive sheet 60 has a sixth base material 61 and a sixth adhesive layer 62.
  • an adhesive sheet for the sealing step is preferably used as the sixth adhesive sheet 60, and an adhesive sheet having heat resistance is used. More preferable.
  • the sixth base material 61 and the sixth pressure-sensitive adhesive layer 62 each have heat resistance capable of withstanding the temperature imposed in the sealing step. It is preferably made of a material.
  • the plurality of semiconductor chips CP transferred from the fifth adhesive sheet 50 to the sixth adhesive sheet 60 are attached so that the circuit surface W1 faces the sixth adhesive layer 62.
  • FIG. 5B is a diagram illustrating a step of sealing a plurality of semiconductor chips CP using the sealing member 300 (hereinafter sometimes referred to as “sealing step”).
  • the sealing step is performed after the plurality of semiconductor chips CP have been transferred to the sixth adhesive sheet 60.
  • the sealing body 3 is formed by covering the plurality of semiconductor chips CP with the sealing member 300 while the circuit surface W1 is protected by the sixth adhesive sheet 60.
  • the sealing member 300 is also filled between the plurality of semiconductor chips CP. Since the circuit surface W1 and the circuit W2 are covered with the sixth adhesive sheet 60, it is possible to prevent the circuit surface W1 from being covered with the sealing member 300.
  • the sealing body 3 in which the plurality of semiconductor chips CP separated by a predetermined distance are embedded in the sealing member 300 is obtained.
  • the plurality of semiconductor chips CP be covered with the sealing member 300 in a state in which the interval D1 after performing the expanding process is maintained.
  • the sixth adhesive sheet 60 is peeled off.
  • the circuit surface W1 of the semiconductor chip CP and the surface 3A of the sealing body 3 that was in contact with the sixth adhesive sheet 60 are exposed.
  • the transfer process and the expanding process are repeated any number of times to set the distance between the semiconductor chips CP to a desired distance, and to set the orientation of the circuit surface when sealing the semiconductor chips CP to the desired orientation. can do.
  • the circuit of the semiconductor chip CP and the external terminal electrode are electrically connected by the rewiring layer forming step and the external terminal electrode connecting step.
  • the sealing body 3 to which the external terminal electrodes are connected is separated into individual semiconductor chips CP.
  • the method for dividing the sealing body 3 into individual pieces is not particularly limited. By separating the sealing body 3 into individual pieces, a semiconductor package for each semiconductor chip CP is manufactured.
  • the semiconductor package having the fan-out external electrodes connected to the outside of the semiconductor chip CP is manufactured as a fan-out type wafer level package (FO-WLP).
  • the first pressure-sensitive adhesive sheet 10 has a first base material 11 and a first pressure-sensitive adhesive layer 12.
  • the first pressure-sensitive adhesive layer 12 is laminated on the first base material 11.
  • the constituent material of the first base material 11 according to the present embodiment is not particularly limited as long as it can properly function in a desired process such as a back grinding process.
  • the first base material 11 is preferably composed of a film whose main material is a resin-based material.
  • the film containing a resin-based material as a main material include, for example, ethylene-based copolymer films, polyolefin-based films, polyvinyl chloride-based films, polyester-based films, polyurethane films, polyimide films, polystyrene films, polycarbonate films, and fluororesins. Examples include films.
  • ethylene-based copolymer film examples include an ethylene-vinyl acetate copolymer film, an ethylene-(meth)acrylic acid copolymer film and an ethylene-(meth)acrylic acid ester copolymer film.
  • (meth)acrylic acid means both acrylic acid and methacrylic acid, and the same applies to other similar terms.
  • polyethylene film examples include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, ethylene-norbornene copolymer film and norbornene resin film.
  • polyethylene film examples include a low density polyethylene (LDPE) film, a linear low density polyethylene (LLDPE) film and a high density polyethylene (HDPE) film.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • HDPE high density polyethylene
  • polyvinyl chloride films examples include polyvinyl chloride films and vinyl chloride copolymer films.
  • polyester film examples include polyethylene terephthalate film and polybutylene terephthalate film.
  • a cross-linked film of a film containing a resin-based material as a main material can also be used.
  • a modified film such as an ionomer film can also be used.
  • the first base material 11 may be a film made of only one selected from the group consisting of a film containing a resin-based material as a main material, a crosslinked film and a modified film, or a laminated film in which two or more kinds are combined. Good.
  • the first base material 11 for example, at least one additive selected from the group consisting of pigments, flame retardants, plasticizers, antistatic agents, lubricants and fillers is added to the film containing the above resin material as a main material. Agents may be included.
  • pigments include titanium dioxide and carbon black.
  • the filler include organic materials such as melamine resin, inorganic materials such as fumed silica, and metal materials such as nickel particles.
  • the content of the additive contained in the film containing a resin-based material as a main material is not particularly limited, but it should be within a range in which the first base material 11 exerts a desired function and does not lose smoothness and flexibility. Is preferred.
  • the first base material 11 When irradiating with ultraviolet rays as an energy ray for curing the first pressure-sensitive adhesive layer 12, the first base material 11 is preferably transparent to ultraviolet rays. In addition, when irradiating with an electron beam as an energy ray for hardening the 1st adhesive layer 12, it is preferable that the 1st base material 11 has a transparency with respect to an electron beam.
  • the first base material 11 may be subjected to surface treatment or primer treatment on one side or both sides, if desired, for the purpose of improving the adhesion with the first pressure-sensitive adhesive layer 12 laminated on the surface thereof.
  • the surface treatment include an oxidation method and a roughening method.
  • the primer treatment include a method of forming a primer layer on the surface of the base material.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone treatment, and ultraviolet irradiation treatment.
  • the roughening method include a sandblast method and a thermal spraying method.
  • the thickness of the first base material 11 is not limited as long as the first pressure-sensitive adhesive sheet can properly function in a desired process.
  • the thickness of the first base material 11 is preferably 20 ⁇ m or more, more preferably 25 ⁇ m or more, and further preferably 50 ⁇ m or more.
  • the thickness of the first base material 11 is preferably 450 ⁇ m or less, more preferably 400 ⁇ m or less, and further preferably 350 ⁇ m or less.
  • the constituent material of the first adhesive layer 12 is not particularly limited as long as it can properly function in a desired process such as a back grinding process.
  • the first pressure-sensitive adhesive layer 12 is, for example, at least one pressure-sensitive adhesive selected from the group consisting of acrylic pressure-sensitive adhesive, urethane pressure-sensitive adhesive, polyester pressure-sensitive adhesive, rubber pressure-sensitive adhesive and silicone pressure-sensitive adhesive. It is preferable to be composed of an agent, and more preferable to be composed of an acrylic adhesive.
  • the first pressure-sensitive adhesive layer 12 also preferably contains an energy ray-curable pressure-sensitive adhesive.
  • the energy ray-curable pressure-sensitive adhesive contains an energy ray-polymerizable compound.
  • the first pressure-sensitive adhesive layer 12 is irradiated with an energy ray from the first base material 11 side to cure the energy ray-polymerizable compound.
  • the energy ray-polymerizable compound is cured, the cohesive force of the first adhesive layer 12 increases and the adhesive force between the first adhesive layer 12 and the adherend (semiconductor wafer W or semiconductor chip CP) decreases. It can disappear.
  • energy rays include ultraviolet rays (UV) and electron rays (EB), and ultraviolet rays are preferable.
  • Examples of the energy ray-curable pressure-sensitive adhesive include “X-type pressure-sensitive adhesive composition”, “Y-type pressure-sensitive adhesive composition”, and “XY-type pressure-sensitive adhesive composition”.
  • the “X-type pressure-sensitive adhesive composition” is an energy ray-curable resin containing a non-energy ray-curable pressure-sensitive adhesive resin (also referred to as “adhesive resin I”) and an energy ray-curable compound other than the pressure-sensitive adhesive resin. It is an adhesive composition.
  • the "Y-type pressure-sensitive adhesive composition” is an energy-ray-curable pressure-sensitive adhesive resin in which an unsaturated group is introduced into a side chain of a non-energy-ray-curable pressure-sensitive adhesive resin (hereinafter, " (Also referred to as “adhesive resin II”) as a main component, and does not contain an energy ray-curable compound other than the adhesive resin.
  • XY-type pressure-sensitive adhesive composition is a combination type of X-type and Y-type, that is, an energy ray-curable adhesive resin II and an energy ray-curable compound other than the adhesive resin. Adhesive composition.
  • the XY type adhesive composition it is preferable to use the XY type adhesive composition.
  • the XY type pressure-sensitive adhesive composition it is possible to have sufficient pressure-sensitive adhesive properties before curing and to sufficiently reduce the peeling force to the semiconductor wafer or the semiconductor chip after curing.
  • the pressure-sensitive adhesive in the first pressure-sensitive adhesive layer 12 may be formed from a non-energy ray curable pressure-sensitive adhesive composition that does not cure even when irradiated with energy rays.
  • the non-energy ray-curable pressure-sensitive adhesive composition contains at least the non-energy ray-curable pressure-sensitive adhesive resin I, but does not contain the energy ray-curable pressure-sensitive adhesive resin II and the energy ray-curable compound described above. It is a composition.
  • adhesive resin is used as a term indicating one or both of the adhesive resin I and the adhesive resin II described above.
  • Specific examples of the adhesive resin include acrylic resin, urethane resin, rubber resin, and silicone resin, and acrylic resin is preferable.
  • ⁇ Acrylic polymer An acrylic polymer (a) is used as the acrylic resin.
  • the acrylic polymer (a) is a polymer obtained by polymerizing a monomer containing at least an alkyl (meth)acrylate.
  • the acrylic polymer (a) contains a structural unit derived from an alkyl (meth)acrylate.
  • the alkyl group in the alkyl (meth)acrylate preferably has 1 to 20 carbon atoms.
  • the alkyl group in the alkyl (meth)acrylate may be linear or branched.
  • alkyl (meth)acrylate examples include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth). ) Acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate and dodecyl (meth)acrylate.
  • the alkyl (meth)acrylates may be used alone or in combination of two or more.
  • the acrylic polymer (a) preferably contains a structural unit derived from an alkyl (meth)acrylate in which the alkyl group has 4 or more carbon atoms.
  • the carbon number of the alkyl group in the alkyl (meth)acrylate is preferably 4 or more and 12 or less, and more preferably 4 or more and 6 or less.
  • the alkyl (meth)acrylate in which the alkyl group has 4 or more carbon atoms is preferably an alkyl acrylate.
  • the alkyl (meth)acrylate whose alkyl group has 4 or more carbon atoms is added to the total amount of monomers (hereinafter, also simply referred to as “total amount of monomers”) constituting the acrylic polymer (a).
  • total amount of monomers constituting the acrylic polymer (a).
  • it is preferably 40% by mass or more and 98% by mass or less, more preferably 45% by mass or more and 95% by mass or less, and further preferably 50% by mass or more and 90% by mass or less.
  • the acrylic polymer (a) contains a structural unit derived from an alkyl (meth)acrylate in which the alkyl group has 4 or more carbon atoms, and in addition to the alkyl group of the alkyl group in order to adjust the elastic modulus and the adhesive property of the adhesive layer. It is preferably a copolymer containing a structural unit derived from an alkyl(meth)acrylate having 1 to 3 carbon atoms.
  • the alkyl(meth)acrylate is preferably an alkyl(meth)acrylate having 1 or 2 carbon atoms, more preferably methyl(meth)acrylate, most preferably methyl methacrylate.
  • the alkyl (meth)acrylate whose alkyl group has 1 to 3 carbon atoms is preferably 1% by mass or more and 30% by mass or less based on the total amount of the monomers.
  • the content is more preferably not less than mass% and not more than 26 mass %, further preferably not less than 6 mass% and not more than 22 mass %.
  • the acrylic polymer (a) preferably has a functional unit-containing monomer-derived structural unit in addition to the above-mentioned alkyl (meth)acrylate-derived structural unit.
  • the functional group of the functional group-containing monomer include a hydroxyl group, a carboxy group, an amino group and an epoxy group.
  • the functional group-containing monomer reacts with a cross-linking agent to be described later to form a cross-linking starting point, or reacts with an unsaturated group-containing compound to introduce an unsaturated group into the side chain of the acrylic polymer (a). Is possible.
  • Examples of the functional group-containing monomer include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer and an epoxy group-containing monomer. These functional group-containing monomers may be used alone or in combination of two or more. Among these functional group-containing monomers, hydroxyl group-containing monomers and carboxy group-containing monomers are preferable, and hydroxyl group-containing monomers are more preferable.
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, and 3-hydroxybutyl (meth).
  • Hydroxyalkyl (meth)acrylates such as acrylates and 4-hydroxybutyl (meth)acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol.
  • carboxy group-containing monomer examples include ethylenically unsaturated monocarboxylic acids such as (meth)acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and anhydrides thereof. , 2-carboxyethyl methacrylate and the like.
  • the functional group-containing monomer is preferably 1% by mass or more and 35% by mass or less, and preferably 3% by mass or more and 32% by mass or less, with respect to the total amount of the monomers constituting the acrylic polymer (a). It is more preferably 6% by mass or more and 30% by mass or less.
  • the acrylic polymer (a) may contain a structural unit derived from a monomer copolymerizable with the acrylic monomer.
  • the constitutional unit derived from a monomer copolymerizable with the acrylic monomer include styrene, ⁇ -methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile and acrylamide.
  • the above acrylic polymer (a) can be used as a non-energy ray curable adhesive resin I (acrylic resin).
  • the energy ray-curable acrylic resin one obtained by reacting a compound having a photopolymerizable unsaturated group (also referred to as an unsaturated group-containing compound) with the functional group of the acrylic polymer (a) is used. Can be mentioned.
  • the unsaturated group-containing compound is a compound having both a substituent capable of binding to the functional group of the acrylic polymer (a) and a photopolymerizable unsaturated group.
  • the photopolymerizable unsaturated group include a (meth)acryloyl group, a vinyl group, an allyl group and a vinylbenzyl group, and a (meth)acryloyl group is preferable.
  • examples of the substituent that the unsaturated group-containing compound has, which can be bonded to the functional group include an isocyanate group and a glycidyl group. Therefore, examples of the unsaturated group-containing compound include (meth)acryloyloxyethyl isocyanate, (meth)acryloyl isocyanate, and glycidyl (meth)acrylate.
  • the unsaturated group-containing compound preferably reacts with a part of the functional groups of the acrylic polymer (a), specifically, 50 mol% or more of the functional groups of the acrylic polymer (a). , 98 mol% or less is preferably reacted with the unsaturated group-containing compound, and 55 mol% or more and 93 mol% or less is more preferably reacted with the unsaturated group-containing compound.
  • a part of the functional group remains without reacting with the unsaturated group-containing compound, so that the crosslinking agent is easily cross-linked.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 300,000 or more and 1.6 million or less, more preferably 400,000 or more and 1.4 million or less, and 500,000 or more and 1.2 million or less. Is more preferable.
  • the weight average molecular weight (Mw) of the acrylic resin is a polystyrene-equivalent value measured by a gel permeation chromatography method (GPC method).
  • Energy ray-curable compound As the energy ray-curable compound contained in the X-type or XY-type pressure-sensitive adhesive composition, a monomer or oligomer having an unsaturated group in the molecule and capable of being polymerized and cured by energy ray irradiation is used. preferable.
  • energy ray-curable compounds include trimethylolpropane tri(meth)acrylate, pentaerythritol(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4- Poly(meth)acrylate monomers such as butylene glycol di(meth)acrylate and 1,6-hexanediol (meth)acrylate, as well as urethane (meth)acrylate, polyester (meth)acrylate, polyether (meth)acrylate and epoxy An oligomer such as (meth)acrylate may be used.
  • urethane (meth)acrylate oligomers are preferable from the viewpoint of having a relatively high molecular weight and making it difficult to reduce the shear storage elastic modulus of the adhesive layer.
  • the molecular weight (weight average molecular weight in the case of an oligomer) of the energy ray-curable compound is preferably 100 or more and 12000 or less, more preferably 200 or more and 10000 or less, and 400 or more and 8000 or less. More preferably, 600 or more and 6000 or less are particularly preferable.
  • the content of the energy ray-curable compound in the X-type pressure-sensitive adhesive composition is preferably 40 parts by mass or more and 200 parts by mass or less, and 50 parts by mass or more, 150 parts by mass with respect to 100 parts by mass of the adhesive resin. It is more preferably not more than 60 parts by mass, further preferably not less than 60 parts by mass and not more than 90 parts by mass.
  • the content of the energy ray-curable compound in the XY type pressure-sensitive adhesive composition is preferably 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the adhesive resin, and 2 parts by mass or more. , 20 parts by mass or less, more preferably 3 parts by mass or more and 15 parts by mass or less.
  • the pressure-sensitive adhesive resin is energy ray-curable, it is possible to sufficiently reduce the peeling force after the energy ray irradiation even if the content of the energy ray-curable compound is small. Is.
  • the pressure-sensitive adhesive composition further contains a crosslinking agent.
  • the cross-linking agent reacts with a functional group derived from a functional group monomer of the adhesive resin to cross-link the adhesive resins.
  • the cross-linking agent include isocyanate-based cross-linking agents such as tolylene diisocyanate, hexamethylene diisocyanate, and adducts thereof; epoxy-based cross-linking agents such as ethylene glycol glycidyl ether; hexa[1-(2-methyl)-aziridinyl ] Aziridine-based crosslinking agents such as triphosphatriazine; chelate-based crosslinking agents such as aluminum chelates; and the like. You may use these crosslinking agents individually by 1 type or in combination of 2 or more types.
  • the isocyanate cross-linking agent is preferable from the viewpoint of enhancing cohesive strength to improve adhesive strength, and availability.
  • the amount of the cross-linking agent is preferably 0.01 parts by mass or more and 10 parts by mass or less, and 0.03 parts by mass or more, 7 parts by mass with respect to 100 parts by mass of the adhesive resin. It is more preferably not more than 5 parts by mass, further preferably not less than 0.05 parts by mass and not more than 4 parts by mass.
  • the pressure-sensitive adhesive composition is energy ray curable, it is preferable that the pressure-sensitive adhesive composition further contains a photopolymerization initiator. By containing the photopolymerization initiator, the curing reaction of the pressure-sensitive adhesive composition can be sufficiently advanced even with relatively low energy energy rays such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin compounds, acetophenone compounds, acylphosphinoxide compounds, titanocene compounds, thioxanthone compounds and peroxide compounds. Furthermore, examples of the photopolymerization initiator include photosensitizers such as amine and quinone.
  • photopolymerization initiators include, for example, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, benzoin, benzoin methyl ether, benzoin ethyl ether, Mention may be made of benzoin isopropyl ether, benzyl phenyl sulfide, tetramethyl thiuram monosulfide, azobisisobutyronitrile, dibenzyl, diacetyl, 8-chloroanthraquinone and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide. These photopolymerization initiators may be used alone or in combination of two or more.
  • the blending amount of the photopolymerization initiator is preferably 0.01 parts by mass or more and 10 parts by mass or less, and 0.03 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the adhesive resin. Is more preferable, and it is further preferable that the amount is 0.05 parts by mass or more and 5 parts by mass or less.
  • the pressure-sensitive adhesive composition may contain other additives as long as the effects of the present invention are not impaired.
  • additives include antistatic agents, antioxidants, softening agents (plasticizers), fillers, rust preventives, pigments and dyes.
  • the compounding amount of the additive is preferably 0.01 parts by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the adhesive resin.
  • the pressure-sensitive adhesive composition may be further diluted with an organic solvent from the viewpoint of improving the coatability on the substrate, the buffer layer or the release sheet, and may be referred to as a solution of the pressure-sensitive adhesive composition (referred to as a coating liquid). ) May be used.
  • organic solvent examples include methyl ethyl ketone, acetone, ethyl acetate, tetrahydrofuran, dioxane, cyclohexane, n-hexane, toluene, xylene, n-propanol and isopropanol.
  • the organic solvent used at the time of synthesizing the adhesive resin may be used as it is or used at the time of synthesis so that the solution (coating solution) of the adhesive composition can be uniformly applied.
  • One or more organic solvents other than the above-mentioned organic solvent may be added.
  • the thickness of the first pressure-sensitive adhesive layer 12 is preferably less than 200 ⁇ m, more preferably 5 ⁇ m or more and 80 ⁇ m or less, and further preferably 10 ⁇ m or more and 70 ⁇ m or less. When the thickness of the first pressure-sensitive adhesive layer 12 is within such a range, the proportion of the portion having low rigidity in the first pressure-sensitive adhesive sheet 10 can be reduced, and thus the chipping of the semiconductor chip that occurs during backside grinding can be further prevented. The above is the description regarding the first pressure-sensitive adhesive layer 12.
  • a release sheet may be attached to the surface of the first adhesive sheet 10.
  • the release sheet is specifically attached to the surface of the first adhesive layer 12 of the first adhesive sheet 10.
  • the release sheet protects the first pressure-sensitive adhesive layer 12 during transportation and storage by being attached to the surface of the first pressure-sensitive adhesive layer 12.
  • the release sheet is releasably attached to the first adhesive sheet 10, and is peeled off and removed from the first adhesive sheet 10 before the first adhesive sheet 10 is used (that is, before wafer back surface grinding). ..
  • a release sheet having at least one surface subjected to a release treatment is used.
  • a release sheet including a release sheet base material and a release agent layer formed by applying a release agent on the surface of the base material can be mentioned.
  • a resin film is preferable as the base material for the release sheet.
  • the resin forming the resin film as the release sheet substrate include polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin and polyethylene naphthalate resin, and polyolefin resins such as polypropylene resin and polyethylene resin.
  • the release agent include rubber-based elastomers such as silicone-based resins, olefin-based resins, isoprene-based resins, and butadiene-based resins, long-chain alkyl-based resins, alkyd-based resins, and fluorine-based resins.
  • the thickness of the release sheet is not particularly limited, but is preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 20 ⁇ m or more and 150 ⁇ m or less.
  • the method for producing the first pressure-sensitive adhesive sheet 10 and other pressure-sensitive adhesive sheets described in the present specification is not particularly limited and can be produced by a known method.
  • the pressure-sensitive adhesive layer provided on the release sheet can be attached to one surface of the base material to produce a pressure-sensitive adhesive sheet having the release sheet attached to the surface of the pressure-sensitive adhesive layer.
  • the buffer layer provided on the release sheet and the base material are attached to each other, and the release sheet is removed to obtain a laminate of the buffer layer and the base material.
  • the pressure-sensitive adhesive layer provided on the release sheet is attached to the base material side of the laminate to manufacture a pressure-sensitive adhesive sheet in which the release sheet is attached to the surface of the pressure-sensitive adhesive layer.
  • the adhesive layer is formed on the buffer layer.
  • the release sheet attached to the surface of the pressure-sensitive adhesive layer may be appropriately peeled and removed before the use of the pressure-sensitive adhesive sheet.
  • a pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer and, if desired, a coating liquid further containing a solvent or a dispersion medium are prepared.
  • the coating liquid is applied to one surface of the base material by a coating means to form a coating film.
  • the coating means include a die coater, a curtain coater, a spray coater, a slit coater, and a knife coater.
  • the pressure-sensitive adhesive layer can be formed by drying the coating film.
  • the properties of the coating liquid are not particularly limited as long as the coating liquid can be applied.
  • the coating liquid may contain a component for forming the pressure-sensitive adhesive layer as a solute, or may contain a component for forming the pressure-sensitive adhesive layer as a dispersoid.
  • the pressure-sensitive adhesive composition may be directly applied on one surface of the substrate or on the buffer layer to form the pressure-sensitive adhesive layer.
  • the following method can be given as another more specific example of the method for manufacturing an adhesive sheet.
  • a coating liquid is applied on the release surface of the release sheet to form a coating film.
  • the coating film is dried to form a laminate including the pressure-sensitive adhesive layer and the release sheet.
  • a substrate may be attached to the surface of the pressure-sensitive adhesive layer of this laminate, which is opposite to the surface on the release sheet side, to obtain a laminate of the pressure-sensitive adhesive sheet and the release sheet.
  • the release sheet in this laminate may be released as a process material, and may protect the adhesive layer until an adherend (for example, a semiconductor chip, a semiconductor wafer, etc.) is attached to the adhesive layer. Good.
  • the coating liquid contains a cross-linking agent
  • the conditions for drying the coating film for example, temperature, time, etc.
  • the cross-linking reaction between the (meth)acrylic copolymer and the cross-linking agent may proceed to form a cross-linking structure in the pressure-sensitive adhesive layer with a desired existing density.
  • the obtained pressure-sensitive adhesive sheet is allowed to stand in an environment of, for example, 23° C. and a relative humidity of 50% for several days. You may perform curing such as placing.
  • the thickness of the first adhesive sheet 10 is preferably 10 ⁇ m or more, and more preferably 30 ⁇ m or more.
  • the thickness of the first adhesive sheet 10 is preferably 500 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the second pressure-sensitive adhesive sheet 20 has a second base material 21 and a second pressure-sensitive adhesive layer 22.
  • the second pressure-sensitive adhesive layer 22 is laminated on the second base material 21.
  • the second base material 21 is not particularly limited in its constituent material as long as it can properly function in a desired process such as a dicing process.
  • the second base material 21 is preferably composed of a film containing a resin-based material as a main material.
  • the film containing a resin-based material as a main material include, for example, ethylene-based copolymer films, polyolefin-based films, polyvinyl chloride-based films, polyester-based films, polyurethane films, polyimide films, polystyrene films, polycarbonate films, and fluororesins. Examples include films.
  • the film containing a resin-based material as a main material that can be used as the second base material 21 are the same as the films exemplified in the description of the first base material 11.
  • an ethylene-propylene copolymer film can be used as the polyolefin-based film for the second base material 21 in addition to the film exemplified in the description of the first base material 11.
  • the second base material 21 is, for example, from the group consisting of a pigment, a flame retardant, a plasticizer, an antistatic agent, a lubricant and a filler in a film containing the resin material as a main material. At least one additive selected may be contained.
  • the second base material 21 may have adhesiveness to one side or both sides of the second base material 21 and the second pressure-sensitive adhesive layer 22 laminated on the surface of the second base material 21, if desired. A treatment for improving may be applied.
  • the thickness of the second base material 21 is not limited as long as the second adhesive sheet 20 can properly function in a desired process.
  • the preferable thickness range of the second base material 21 is the same as the thickness range described for the first base material 11.
  • the thicknesses of the first base material 11 and the second base material 21 may be the same or different from each other.
  • the constituent material of the second adhesive layer 22 is not particularly limited as long as it can properly function in a desired process such as a dicing process.
  • the second adhesive layer 22 may be composed of a non-energy ray curable adhesive or an energy ray curable adhesive.
  • non-energy ray curable pressure-sensitive adhesive one having a desired pressure-sensitive adhesive force and removability is preferable.
  • the non-energy ray curable pressure sensitive adhesive include acrylic pressure sensitive adhesive, rubber pressure sensitive adhesive, silicone pressure sensitive adhesive, urethane pressure sensitive adhesive, polyester pressure sensitive adhesive and polyvinyl ether pressure sensitive adhesive.
  • acrylic adhesives that can effectively prevent the work (semiconductor wafer W) or processed product (semiconductor chip CP) from falling off in the dicing process or the like are preferable.
  • the energy ray-curable pressure-sensitive adhesive has a reduced adhesive force upon irradiation with energy rays. Therefore, when it is desired to separate the work or processed product from the second pressure-sensitive adhesive sheet 20, irradiation with energy rays facilitates separation. be able to.
  • the energy ray-curable pressure-sensitive adhesive forming the second pressure-sensitive adhesive layer 22 may be a pressure-sensitive adhesive containing a polymer having energy ray-curability as a main component. Further, the energy ray-curable pressure-sensitive adhesive forming the second pressure-sensitive adhesive layer 22 includes a polymer having no energy ray-curable property and at least one of an energy ray-curable polyfunctional monomer and an energy ray-curable polyfunctional oligomer. A pressure-sensitive adhesive containing the mixture of as a main component may be used.
  • the energy ray-curable pressure-sensitive adhesive contains a polymer having energy ray-curability as the main component will be described below.
  • the energy ray-curable polymer is a (meth)acrylic acid ester (co)polymer (A) (hereinafter referred to as "energy ray-curable group” in which a functional group (energy ray-curable group) having energy ray-curable property is introduced into a side chain. It may be referred to as a "curable polymer (A)").
  • the energy ray-curable polymer (A) includes a (meth)acrylic copolymer (a1) having a functional group-containing monomer unit and an unsaturated group-containing compound (a2) having a substituent bonded to the functional group. It is preferably obtained by reacting with.
  • the acrylic copolymer (a1) is composed of a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth)acrylic acid ester monomer or a derivative thereof.
  • the functional group-containing monomer as a constituent unit of the acrylic copolymer (a1) is preferably a monomer having a polymerizable double bond and a functional group in the molecule.
  • Examples of the functional group contained in the functional group-containing monomer include a hydroxy group, an amino group, a substituted amino group and an epoxy group.
  • the functional group-containing monomer include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate.
  • Etc. and these functional group-containing monomers may be used alone or in combination of two or more.
  • Examples of the (meth)acrylic acid ester monomer constituting the acrylic copolymer (a1) include an alkyl (meth)acrylate having an alkyl group having 1 to 20 carbon atoms, a cycloalkyl (meth)acrylate, and a benzyl (meth)acrylate. Is used.
  • alkyl (meth)acrylates having an alkyl group having 1 to 18 carbon atoms are preferable, and examples thereof include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and n-butyl (meth)acrylate.
  • 2-ethylhexyl (meth)acrylate or the like is used.
  • the acrylic copolymer (a1) contains a structural unit derived from the functional group-containing monomer in a proportion of usually 3% by mass or more and 100% by mass or less, preferably 5% by mass or more and 40% by mass or less.
  • (Meth)acrylic acid ester monomer or a derivative thereof is contained in a proportion of generally 0% by mass or more and 97% by mass or less, preferably 60% by mass or more and 95% by mass or less.
  • the acrylic copolymer (a1) is obtained by copolymerizing the functional group-containing monomer as described above and a (meth)acrylic acid ester monomer or a derivative thereof by a conventional method.
  • the acrylic copolymer (a1) may be copolymerized with, for example, at least one monomer selected from the group consisting of dimethylacrylamide, vinyl formate, vinyl acetate and styrene.
  • the substituent that the unsaturated group-containing compound (a2) has can be appropriately selected according to the type of the functional group of the functional group-containing monomer unit that the acrylic copolymer (a1) has.
  • the substituent is preferably an isocyanate group or an epoxy group
  • the substituent is an amino group, a carboxy group or an aziridinyl group. preferable.
  • the unsaturated group-containing compound (a2) contains one or more, five or less, preferably one or more and two or less energy-beam polymerizable carbon-carbon double bonds per molecule.
  • the unsaturated group-containing compound (a2) include, for example, 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1-( Bisacryloyloxymethyl)ethyl isocyanate; acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth)acrylate; diisocyanate compound or polyisocyanate compound, polyol compound, hydroxyethyl (meth) Acryloyl monoisocyanate compound obtained by reaction with acrylate; glycidyl (meth)acrylate;
  • the unsaturated group-containing compound (a2) is usually 10 mol% or more and 100 mol% or less, preferably 20 mol% or more and 95 mol% or less with respect to the functional group-containing monomer of the acrylic copolymer (a1). Used.
  • the reaction temperature, pressure, solvent, time, presence or absence of catalyst and catalyst can be appropriately selected.
  • the functional group present in the acrylic copolymer (a1) reacts with the substituent in the unsaturated group-containing compound (a2), and the unsaturated group becomes an acrylic group.
  • the energy ray-curable polymer (A) is obtained by being introduced into the side chain in the system copolymer (a1).
  • the weight average molecular weight of the energy ray-curable polymer (A) thus obtained is preferably 10,000 or more, preferably 150,000 or more and 1.5 million or less, and 200,000 or more and 1 million or less. Is more preferable.
  • the weight average molecular weight (Mw) in this specification is a polystyrene conversion value measured by the gel permeation chromatography method (GPC method).
  • the energy ray-curable pressure-sensitive adhesive has a polymer having energy ray-curability as a main component
  • the energy ray-curable pressure-sensitive adhesive further contains an energy ray-curable monomer and/or oligomer (B). You may.
  • the energy ray-curable monomer and/or oligomer (B) for example, an ester of polyhydric alcohol and (meth)acrylic acid can be used.
  • Examples of the energy ray-curable monomer and/or oligomer (B) include monofunctional acrylic acid esters such as cyclohexyl (meth)acrylate and isobornyl (meth)acrylate, trimethylolpropane tri(meth)acrylate, and pentaerythritol.
  • Tri(meth)acrylate pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, polyethylene glycol di Examples thereof include polyfunctional acrylic acid esters such as (meth)acrylate and dimethyloltricyclodecanedi(meth)acrylate, polyester oligo(meth)acrylate, and polyurethane oligo(meth)acrylate.
  • the content of the energy ray-curable monomer and/or oligomer (B) in the energy ray-curable adhesive is 5% by mass or more and 80 It is preferably not more than 20% by mass, more preferably not less than 20% by mass and not more than 60% by mass.
  • Photopolymerization initiator (C) when ultraviolet rays are used as the energy rays for curing the energy ray-curable resin composition, it is preferable to add a photopolymerization initiator (C). By using the photopolymerization initiator (C), It is possible to reduce the polymerization and curing time and the light irradiation amount.
  • photopolymerization initiator (C) examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyl diphenyl sulfide, tetramethyl thiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, ⁇ -chloranthraquinone, (2,4, 6-trimethylbenzyldiphenyl)phosphine oxide, 2-benzothiazole-N,N-diethyldithiocarbamate, oligo ⁇ 2-hydroxy-2-methyl-1-[4-(1
  • the photopolymerization initiator (C) is an energy ray-curable copolymer (A) (when an energy ray-curable monomer and/or oligomer (B) is blended, the energy ray-curable copolymer (A) is used. And 100 parts by mass of the energy ray-curable monomer and/or oligomer (B) (100 parts by mass), preferably in an amount of 0.1 parts by mass or more and 10 parts by mass or less, It is more preferable to use it in an amount in the range of 0.5 parts by mass or more and 6 parts by mass or less.
  • the energy ray-curable pressure-sensitive adhesive may appropriately contain other components.
  • the other component include a polymer component or oligomer component (D) having no energy ray curability, a cross-linking agent (E), and the like.
  • polymer component or oligomer component (D) having no energy ray curability examples include polyacrylic acid ester, polyester, polyurethane, polycarbonate, polyolefin and the like, and the weight average molecular weight (Mw) thereof is 3000 or more and 2.5 million or less. Polymers or oligomers of are preferred.
  • ⁇ Crosslinking agent (E) As the cross-linking agent (E), a polyfunctional compound having reactivity with a functional group of the energy ray-curable copolymer (A) or the like can be used. Examples of such polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts. And reactive phenolic resins.
  • the energy ray-curable pressure-sensitive adhesive By blending these other components (D) and (E) with the energy ray-curable pressure-sensitive adhesive, tackiness and peelability before curing, strength after curing, adhesiveness with other layers, storage stability, etc. Can be improved.
  • the blending amount of these other components is not particularly limited and is appropriately determined within the range of 0 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the energy ray-curable copolymer (A).
  • the energy ray-curable pressure-sensitive adhesive mainly contains a mixture of a polymer component having no energy ray-curable property and an energy ray-curable polyfunctional monomer and/or oligomer will be described below.
  • the polymer component having no energy ray curability for example, the same component as the above-mentioned acrylic copolymer (a1) can be used.
  • the content of the polymer component having no energy ray curability in the energy ray curable resin composition is preferably 20% by mass or more and 99.9% by mass or less, and 30% by mass or more and 80% by mass or less. More preferably.
  • the energy ray-curable polyfunctional monomer and/or oligomer As the energy ray-curable polyfunctional monomer and/or oligomer, the same ones as the above-mentioned component (B) are selected.
  • the compounding ratio of the energy ray-curable polymer component and the energy ray-curable polyfunctional monomer and/or oligomer is 10 parts by mass or more of the polyfunctional monomer and/or oligomer with respect to 100 parts by mass of the polymer component, 150 It is preferably not more than 25 parts by mass, more preferably not less than 25 parts by mass and not more than 100 parts by mass.
  • the photopolymerization initiator (C) and the crosslinking agent (E) can be appropriately blended.
  • the thickness of the second pressure-sensitive adhesive layer 22 is not particularly limited as long as it can properly function in each step in which the second pressure-sensitive adhesive sheet 20 is used.
  • the thickness of the second pressure-sensitive adhesive layer 22 is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 2 ⁇ m or more and 30 ⁇ m or less, and further preferably 3 ⁇ m or more and 20 ⁇ m or less. The above is the description regarding the second pressure-sensitive adhesive layer 22.
  • a release sheet for protecting the second adhesive layer 22 is attached to the second adhesive layer 22 until the second adhesive sheet 20 is used.
  • This release sheet may be directly laminated on the second pressure-sensitive adhesive layer 22, or another layer (die bonding film or the like) may be laminated on the second pressure-sensitive adhesive layer 22 and peeled off on the other layer. The sheets may be laminated.
  • the structure of the release sheet is arbitrary, and a plastic film release-treated with a release agent or the like is exemplified.
  • the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene.
  • a silicone-based agent, a fluorine-based agent, a long-chain alkyl-based agent, or the like can be used. Among these release agents, a silicone-based agent that is inexpensive and can obtain stable performance is preferable.
  • the thickness of the release sheet is not particularly limited, but is usually about 20 ⁇ m or more and 250 ⁇ m or less.
  • the thickness of the second adhesive sheet 20 is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more.
  • the thickness of the second adhesive sheet 20 is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less.
  • the third pressure-sensitive adhesive sheet 30 has a third base material 31 and a third pressure-sensitive adhesive layer 32.
  • the third pressure-sensitive adhesive layer 32 is laminated on the third base material 31.
  • Third Base Material The third base material 31 is not particularly limited in its constituent material as long as it can properly function in a desired process such as an expanding process.
  • the third base material 31 preferably has a first base material surface and a second base material surface opposite to the first base material surface.
  • the third pressure-sensitive adhesive layer 32 is preferably provided on one surface of the first base material surface and the second base material surface, and the other surface is provided with the pressure-sensitive adhesive layer. Preferably not.
  • the material of the third base material 31 is preferably a thermoplastic elastomer or a rubber-based material, and more preferably a thermoplastic elastomer, from the viewpoint of being easily stretched greatly.
  • the material of the third base material 31 it is preferable to use a resin having a relatively low glass transition temperature (Tg) from the viewpoint of being easily stretched largely.
  • the glass transition temperature (Tg) of such a resin is preferably 90° C. or lower, more preferably 80° C. or lower, and further preferably 70° C. or lower.
  • thermoplastic elastomers examples include urethane elastomers, olefin elastomers, vinyl chloride elastomers, polyester elastomers, styrene elastomers, acrylic elastomers, and amide elastomers.
  • the thermoplastic elastomers may be used alone or in combination of two or more.
  • As the thermoplastic elastomer it is preferable to use a urethane elastomer from the viewpoint of being easily stretched largely.
  • Urethane elastomers are generally obtained by reacting a long-chain polyol, a chain extender, and a diisocyanate.
  • the urethane elastomer is composed of a soft segment having a constitutional unit derived from a long-chain polyol and a hard segment having a polyurethane structure obtained by the reaction of a chain extender and diisocyanate.
  • Urethane-based elastomers can be classified into polyester-based polyurethane elastomers, polyether-based polyurethane elastomers, and polycarbonate-based polyurethane elastomers by classifying them according to the type of long-chain polyol.
  • the urethane elastomer may be used alone or in combination of two or more.
  • the urethane-based elastomer is preferably a polyether-based polyurethane elastomer from the viewpoint of being easily stretched greatly.
  • long-chain polyols examples include lactone-based polyester polyols, polyester polyols such as adipate-based polyester polyols; polypropylene (ethylene) polyols and polyether polyols such as polytetramethylene ether glycol; polycarbonate polyols and the like.
  • the long-chain polyol is preferably an adipate-based polyester polyol from the viewpoint of being easily stretched greatly.
  • diisocyanates examples include 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, and hexamethylene diisocyanate.
  • the diisocyanate is preferably hexamethylene diisocyanate from the viewpoint of being easily stretched largely.
  • the chain extender includes low molecular weight polyhydric alcohols (eg, 1,4-butanediol, 1,6-hexanediol, etc.), aromatic diamines, and the like. Of these, it is preferable to use 1,6-hexanediol from the viewpoint of being easily stretched greatly.
  • low molecular weight polyhydric alcohols eg, 1,4-butanediol, 1,6-hexanediol, etc.
  • aromatic diamines eg. 1,6-hexanediol from the viewpoint of being easily stretched greatly.
  • olefin elastomer examples include ethylene/ ⁇ -olefin copolymer, propylene/ ⁇ -olefin copolymer, butene/ ⁇ -olefin copolymer, ethylene/propylene/ ⁇ -olefin copolymer, ethylene/butene/ ⁇ - Selected from the group consisting of olefin copolymers, propylene/butene- ⁇ olefin copolymers, ethylene/propylene/butene- ⁇ /olefin copolymers, styrene/isoprene copolymers, and styrene/ethylene/butylene copolymers.
  • An elastomer containing at least one resin may be mentioned.
  • the olefin elastomers may be used alone or in combination of two or more.
  • the density of the olefin elastomer is not particularly limited.
  • the density of the olefin elastomers 0.860 g / cm 3 or more is preferably less than 0.905g / cm 3, 0.862g / cm 3 or more, more is less than 0.900 g / cm 3 It is preferably 0.864 g/cm 3 or more and less than 0.895 g/cm 3 .
  • the density of the olefin-based elastomer satisfies the above range, the base material is excellent in unevenness followability and the like when a semiconductor device such as a semiconductor wafer as an adherend is attached to an adhesive sheet.
  • the olefin elastomer has a mass ratio (also referred to as “olefin content” in the present specification) of the monomer composed of the olefin compound in all the monomers used to form the elastomer of 50 mass %. As described above, it is preferably 100% by mass or less. If the olefin content is excessively low, the property as an elastomer containing a structural unit derived from olefin becomes difficult to appear, and the base material becomes difficult to exhibit flexibility and rubber elasticity. From the viewpoint of stably obtaining flexibility and rubber elasticity, the olefin content is preferably 50% by mass or more, and more preferably 60% by mass or more.
  • Styrene-based elastomers include styrene-conjugated diene copolymers and styrene-olefin copolymers.
  • Specific examples of the styrene-conjugated diene copolymer include styrene-butadiene copolymer, styrene-butadiene-styrene copolymer (SBS), styrene-butadiene-butylene-styrene copolymer, styrene-isoprene copolymer, Unhydrogenated styrene-conjugated diene copolymer such as styrene-isoprene-styrene copolymer (SIS), styrene-ethylene-isoprene-styrene copolymer, styrene-ethylene/propylene-styrene copolymer (S
  • styrene-based elastomer toughprene (manufactured by Asahi Kasei Corporation), Kraton (manufactured by Kraton Polymer Japan Co., Ltd.), Sumitomo TPE-SB (manufactured by Sumitomo Chemical Co., Ltd.), Epofriend (manufactured by Daicel Corporation ), Lavalon (manufactured by Mitsubishi Chemical Co., Ltd.), Septon (manufactured by Kuraray Co., Ltd.), and Tuftec (manufactured by Asahi Kasei Co., Ltd.).
  • the styrene elastomer may be a hydrogenated product or an unhydrogenated product.
  • rubber materials include natural rubber, synthetic isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), acrylonitrile-butadiene copolymer rubber (NBR), butyl rubber ( IIR), halogenated butyl rubber, acrylic rubber, urethane rubber, and polysulfide rubber. These rubber materials can be used alone or in combination of two or more.
  • IR synthetic isoprene rubber
  • BR butadiene rubber
  • SBR styrene-butadiene rubber
  • CR chloroprene rubber
  • NBR acrylonitrile-butadiene copolymer rubber
  • IIR butyl rubber
  • halogenated butyl rubber acrylic rubber, urethane rubber, and polysulfide rubber.
  • the third base material 31 is preferably a single-layer film, not a laminated film in which a plurality of films made of the above-mentioned materials (for example, thermoplastic elastomer or rubber-based material) are laminated. Also, the third base material 31 is not a laminated film in which a film made of the above-mentioned material (for example, a thermoplastic elastomer or a rubber-based material) and another film are laminated, but a single-layer film. Is preferred.
  • the third base material 31 may include an additive in the film containing the resin material as a main material.
  • Specific examples of the additives are the same as the additives described in the description of the first base material 11 and the second base material 21.
  • the content of the additive that may be contained in the film is not particularly limited, but it is preferable to keep it within the range in which the third base material 31 can exhibit a desired function.
  • the third base material 31 has a third pressure-sensitive adhesive layer 32 laminated on one surface or both surfaces of the third base material 31 on the surface of the third base material 31. May be subjected to a treatment for improving the adhesion.
  • the third base material 31 preferably has permeability to energy rays.
  • the third base material 31 is transparent to ultraviolet rays.
  • the third base material 31 preferably has electron beam transparency.
  • the thickness of the third base material 31 is not limited as long as the third adhesive sheet 30 can properly function in a desired process.
  • the thickness of the third base material 31 is preferably 20 ⁇ m or more, and more preferably 40 ⁇ m or more. Further, the thickness of the third base material 31 is preferably 250 ⁇ m or less, and more preferably 200 ⁇ m or less.
  • the thickness standard of the third base material 31 when the thickness of a plurality of locations is measured at 2 cm intervals in the in-plane direction of the first base material surface or the second base material surface of the third base material 31.
  • the deviation is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • the third pressure-sensitive adhesive sheet 30 has a highly accurate thickness, and the third pressure-sensitive adhesive sheet 30 can be stretched uniformly.
  • the tensile elastic moduli of the MD direction and the CD direction of the third base material 31 are 10 MPa or more and 350 MPa or less, respectively, and at 23°C, the 100% stress of the MD direction and the CD direction of the third base material 31 is respectively. It is preferably 3 MPa or more and 20 MPa or less.
  • the third pressure-sensitive adhesive sheet 30 can be greatly stretched.
  • the 100% stress of the third base material 31 is a value obtained as follows. A test piece having a size of 150 mm (length direction) ⁇ 15 mm (width direction) is cut out from the third base material 31.
  • the 100% stress of the third base material 31 is a value obtained by dividing the read tensile force measurement value by the cross-sectional area of the base material.
  • the cross-sectional area of the third base material 31 is calculated by the width direction length of 15 mm ⁇ thickness of the third base material 31 (test piece).
  • the cutting is performed so that the flow direction (MD direction) or the direction orthogonal to the MD direction (CD direction) at the time of manufacturing the base material and the length direction of the test piece match.
  • the thickness of the test piece is not particularly limited and may be the same as the thickness of the base material to be tested.
  • the breaking elongations in the MD direction and the CD direction of the third base material 31 at 23° C. are 100% or more.
  • the third adhesive sheet 30 can be greatly stretched without causing breakage.
  • the tensile elastic modulus (MPa) of the substrate and the breaking elongation (%) of the substrate can be measured as follows.
  • the substrate is cut into 15 mm ⁇ 140 mm to obtain a test piece.
  • the elongation at break and the tensile elastic modulus at 23° C. are measured according to JIS K7161:2014 and JIS K7127:1999.
  • the above test piece was set to a chuck distance of 100 mm with a tensile tester (manufactured by Shimadzu Corporation, product name "Autograph AG-IS 500N") and then pulled at a speed of 200 mm/min.
  • a test is conducted to measure the elongation at break (%) and the tensile elastic modulus (MPa).
  • the measurement is performed in both the flow direction (MD) at the time of manufacturing the base material and the direction (CD) perpendicular thereto.
  • the constituent material of the third adhesive layer 32 is not particularly limited as long as it can properly function in a desired process such as an expanding process.
  • Examples of the adhesive contained in the third adhesive layer 32 include rubber-based adhesives, acrylic-based adhesives, silicone-based adhesives, polyester-based adhesives, and urethane-based adhesives.
  • the third pressure-sensitive adhesive layer 32 preferably contains an energy ray curable resin (ax1).
  • the energy ray-curable resin (ax1) has an energy ray-curable double bond in the molecule.
  • the pressure-sensitive adhesive layer containing the energy ray-curable resin is cured by irradiation with energy rays and its adhesive strength is reduced. When it is desired to separate the adherend and the pressure-sensitive adhesive sheet, they can be easily separated by irradiating the pressure-sensitive adhesive layer with energy rays.
  • the energy ray curable resin (ax1) is preferably a (meth)acrylic resin.
  • the energy ray curable resin (ax1) is preferably an ultraviolet curable resin, and more preferably an ultraviolet curable (meth)acrylic resin.
  • the energy ray curable resin (ax1) is a resin that is polymerized and cured when it is irradiated with energy rays.
  • energy rays include ultraviolet rays and electron rays.
  • Examples of the energy ray curable resin (ax1) include low molecular weight compounds having an energy ray polymerizable group (monofunctional monomers, polyfunctional monomers, monofunctional oligomers, and polyfunctional oligomers).
  • the energy ray-curable resin (ax1) is specifically trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, 1,4- Butylene glycol diacrylate, acrylates such as 1,6-hexanediol diacrylate, cycloaliphatic skeleton-containing acrylates such as dicyclopentadiene dimethoxydiacrylate, and isobornyl acrylate, and polyethylene glycol diacrylate, oligoester acrylate, urethane Acrylate compounds such as acrylate oligomer, epoxy modified acrylate, polyether acrylate, and itaconic acid oligomer are used.
  • the energy ray curable resin (a1) may be used alone or in combination of two or more.
  • the molecular weight of the energy ray curable resin (ax1) is usually 100 or more and 30,000 or less, preferably 300 or more and 10,000 or less.
  • the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) according to this embodiment preferably further contains a (meth)acrylic copolymer (b1).
  • the (meth)acrylic copolymer is different from the energy ray curable resin (ax1) described above.
  • the (meth)acrylic copolymer (b1) preferably has an energy ray-curable carbon-carbon double bond. That is, in the present embodiment, the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) contains the energy ray-curable resin (ax1) and the energy ray-curable (meth)acrylic copolymer (b1). It is preferable.
  • the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) has a ratio of 10 parts by mass or more of the energy ray-curable resin (ax1) to 100 parts by mass of the (meth)acrylic copolymer (b1). It is preferable that the content is 20 parts by mass or more, more preferably 20 parts by mass or more, and further preferably 25 parts by mass or more.
  • the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) according to the present embodiment has a ratio of 80 parts by mass or less of the energy ray-curable resin (ax1) to 100 parts by mass of the (meth)acrylic copolymer (b1). It is preferable that the content is 70 parts by mass or less, more preferably 70 parts by mass or less, and further preferably 60 parts by mass or less.
  • the weight average molecular weight (Mw) of the (meth)acrylic copolymer (b1) is preferably 10,000 or more, more preferably 150,000 or more, and further preferably 200,000 or more.
  • the weight average molecular weight (Mw) of the (meth)acrylic copolymer (b1) is preferably 1,500,000 or less, more preferably 1,000,000 or less.
  • the weight average molecular weight (Mw) in this specification is the value of standard polystyrene conversion measured by the gel permeation chromatography method (GPC method).
  • the (meth)acrylic copolymer (b1) is a (meth)acrylic acid ester polymer (b2) (hereinafter referred to as “energy” in which a functional group having energy ray curability (energy ray curable group) is introduced into a side chain. It may be referred to as a "curable polymer (b2)").
  • the energy ray-curable polymer (b2) is obtained by reacting an acrylic copolymer (b21) having a functional group-containing monomer unit with an unsaturated group-containing compound (b22) having a functional group bonded to the functional group. It is preferably a copolymer obtained as described above.
  • (meth)acrylic acid ester means both acrylic acid ester and methacrylic acid ester. The same applies to other similar terms.
  • the acrylic copolymer (b21) preferably contains a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth)acrylic acid ester monomer or a derivative of a (meth)acrylic acid ester monomer. ..
  • the functional group-containing monomer as a constituent unit of the acrylic copolymer (b21) is preferably a monomer having a polymerizable double bond and a functional group in the molecule.
  • the functional group is preferably at least one functional group selected from the group consisting of a hydroxy group, a carboxy group, an amino group, a substituted amino group, an epoxy group and the like.
  • hydroxy group-containing monomer examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl ( Examples thereof include (meth)acrylate and 4-hydroxybutyl (meth)acrylate.
  • the hydroxy group-containing monomer may be used alone or in combination of two or more.
  • carboxy group-containing monomer examples include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid.
  • carboxy group-containing monomer is used alone or in combination of two or more.
  • amino group-containing monomer or the substituted amino group-containing monomer examples include aminoethyl (meth)acrylate and n-butylaminoethyl (meth)acrylate.
  • the amino group-containing monomer or the substituted amino group-containing monomer may be used alone or in combination of two or more.
  • Examples of the (meth)acrylic acid ester monomer that constitutes the acrylic copolymer (b21) include alkyl (meth)acrylates having an alkyl group having 1 to 20 carbon atoms, as well as, for example, an alicyclic structure in the molecule.
  • a monomer having a (alicyclic structure-containing monomer) is preferably used.
  • alkyl (meth)acrylate an alkyl (meth)acrylate whose alkyl group has 1 to 18 carbon atoms is preferable.
  • the alkyl(meth)acrylate is more preferably, for example, methyl(meth)acrylate, ethyl(meth)acrylate, propyl(meth)acrylate, n-butyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, or the like.
  • Alkyl (meth)acrylate is used individually by 1 type or in combination of 2 or more type.
  • Examples of the alicyclic structure-containing monomer include cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, adamantyl (meth)acrylate, isobornyl (meth)acrylate, and dicyclopentenyl (meth)acrylate. , And dicyclopentenyloxyethyl (meth)acrylate are preferably used.
  • the alicyclic structure-containing monomer may be used alone or in combination of two or more.
  • the acrylic copolymer (b21) preferably contains the structural unit derived from the functional group-containing monomer in a proportion of 1% by mass or more, more preferably 5% by mass or more. It is more preferable that the content is at least mass %.
  • the acrylic copolymer (b21) preferably contains the structural unit derived from the functional group-containing monomer in a proportion of 35% by mass or less, more preferably 30% by mass or less. It is more preferable that the content is 25 mass% or less.
  • the acrylic copolymer (b21) preferably contains a structural unit derived from a (meth)acrylic acid ester monomer or a derivative thereof in a proportion of 50% by mass or more, and a proportion of 60% by mass or more. Is more preferable, and it is further preferable that the content is 70% by mass or more.
  • the acrylic copolymer (b21) preferably contains a structural unit derived from a (meth)acrylic acid ester monomer or a derivative thereof in a proportion of 99% by mass or less, and a proportion of 95% by mass or less. Is more preferable, and it is further preferable that the content is 90% by mass or less.
  • the acrylic copolymer (b21) is obtained by copolymerizing the functional group-containing monomer as described above and the (meth)acrylic acid ester monomer or a derivative thereof by a conventional method.
  • the acrylic copolymer (b21) may contain at least one structural unit selected from the group consisting of dimethylacrylamide, vinyl formate, vinyl acetate, and styrene, in addition to the above-mentioned monomers. ..
  • the energy ray-curable polymer (b2) is obtained by reacting the acrylic copolymer (b21) having the functional group-containing monomer unit with the unsaturated group-containing compound (b22) having a functional group bonded to the functional group. ) Is obtained.
  • the functional group of the unsaturated group-containing compound (b22) can be appropriately selected according to the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (b21).
  • the functional group of the acrylic copolymer (b21) is a hydroxy group, an amino group or a substituted amino group
  • the functional group of the unsaturated group-containing compound (b22) is preferably an isocyanate group or an epoxy group
  • an acrylic group When the functional group contained in the copolymer (b21) is an epoxy group, the functional group contained in the unsaturated group-containing compound (b22) is preferably an amino group, a carboxy group or an aziridinyl group.
  • the unsaturated group-containing compound (b22) contains at least one energy ray-polymerizable carbon-carbon double bond in one molecule, preferably one or more and 6 or less, and preferably one or more and 4 or less. It is more preferable to include the following.
  • Examples of the unsaturated group-containing compound (b22) include 2-methacryloyloxyethyl isocyanate (2-isocyanatoethyl methacrylate), meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1 -(Bisacryloyloxymethyl)ethyl isocyanate; an acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth)acrylate; a diisocyanate compound or polyisocyanate compound, a polyol compound, and hydroxyethyl ( Acryloyl monoisocyanate compound obtained by reaction with (meth)acrylate; glycidyl (meth)acrylate; (meth)acrylic acid, 2-(1-aziridinyl)ethyl (meth)acrylate,
  • the unsaturated group-containing compound (b22) is preferably used in a proportion (addition rate) of 50 mol% or more, and 60 mol% relative to the number of moles of the functional group-containing monomer of the acrylic copolymer (b21). It is more preferably used in the above ratio, and further preferably used in a ratio of 70 mol% or more. Further, the unsaturated group-containing compound (b22) is preferably used in a proportion of 95 mol% or less, and in a proportion of 93 mol% or less, with respect to the number of moles of the functional group-containing monomer of the acrylic copolymer (b21). It is more preferably used, and further preferably used in a proportion of 90 mol% or less.
  • the functional group of the acrylic copolymer (b21) and the functional group of the unsaturated group-containing compound (b22) can be appropriately selected.
  • the functional group of the acrylic copolymer (b21) reacts with the functional group of the unsaturated group-containing compound (b22), and the unsaturated group becomes a side chain of the acrylic copolymer (b21). This is introduced to obtain the energy ray-curable polymer (b2).
  • the weight average molecular weight (Mw) of the energy ray-curable polymer (b2) is preferably 10,000 or more, more preferably 150,000 or more, and further preferably 200,000 or more.
  • the weight average molecular weight (Mw) of the energy ray-curable polymer (b2) is preferably 1,500,000 or less, more preferably 1,000,000 or less.
  • the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) contains a UV-curable compound (for example, a UV-curable resin)
  • the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) is a photopolymerization initiator (CX). It is preferable to contain
  • the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) contains the photopolymerization initiator (CX)
  • the polymerization and curing time and the light irradiation amount can be reduced.
  • photopolymerization initiator (CX) are the same as the specific examples of the photopolymerization initiator (C) in the description of the second adhesive sheet 20. Also in the third adhesive sheet 30, the photopolymerization initiator (CX) may be used alone or in combination of two or more.
  • the photopolymerization initiator (CX) is an energy source. It is preferably used in an amount of 0.1 parts by mass or more, and 0.5 parts by mass or more, based on 100 parts by mass of the total amount of the linear curable resin (ax1) and the (meth)acrylic copolymer (b1).
  • the photopolymerization initiator (CX) is used when the energy ray-curable resin (ax1) and the (meth)acrylic copolymer (b1) are mixed in the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32). It is preferably used in an amount of 10 parts by mass or less, and an amount of 6 parts by mass or less, based on 100 parts by mass of the total amount of the energy ray curable resin (ax1) and the (meth)acrylic copolymer (b1). Is more preferably used.
  • the pressure-sensitive adhesive layer may appropriately contain other components in addition to the above components.
  • the other component include a cross-linking agent (EX) and the like.
  • ⁇ Crosslinking agent (EX) As the cross-linking agent (EX), a polyfunctional compound having reactivity with a functional group contained in the (meth)acrylic copolymer (b1) or the like can be used. Examples of the polyfunctional compound in the third adhesive sheet 30 are the same as the specific examples of the polyfunctional compound as the crosslinking agent (E) in the description of the second adhesive sheet 20.
  • the amount of the cross-linking agent (EX) to be blended is preferably 0.01 parts by mass or more, and preferably 0.03 parts by mass or more, with respect to 100 parts by mass of the (meth)acrylic copolymer (b1). More preferably, it is more preferably 0.04 parts by mass or more.
  • the amount of the crosslinking agent (EX) blended is preferably 8 parts by mass or less, and more preferably 5 parts by mass or less, relative to 100 parts by mass of the (meth)acrylic copolymer (b1). More preferably, it is 3.5 parts by mass or less.
  • the thickness of the adhesive layer (third adhesive layer 32) is not particularly limited.
  • the thickness of the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) is, for example, preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the thickness of the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the restoration rate of the third pressure-sensitive adhesive sheet 30 is preferably 70% or more, more preferably 80% or more, and further preferably 85% or more.
  • the restoration rate of the third adhesive sheet 30 is preferably 100% or less.
  • the recovery rate is obtained by grabbing both ends in the length direction with a gripper so that the length between the grippers is 100 mm in a test piece obtained by cutting out an adhesive sheet into 150 mm (length direction) ⁇ 15 mm (width direction), Then, pull at a speed of 200 mm/min until the length between the grips reaches 200 mm, hold for 1 minute with the length between the grips expanded to 200 mm, and then the length between the grips is 100 mm.
  • the restoration rate is within the above range, it means that the pressure-sensitive adhesive sheet is easily restored even after being greatly stretched.
  • the sheet undergoes plastic deformation, and the plastically deformed portion, that is, the extremely stretched portion is unevenly distributed.
  • the expand becomes non-uniform even if the above-mentioned extremely stretched portion breaks or does not break.
  • the slope dx/dy does not take a stress value that changes from a positive value to 0 or a negative value, and a clear yield point.
  • the sheet is plastically deformed as the tensile amount increases, and similarly, the sheet is fractured or the expansion becomes uneven.
  • the restoration rate which is an index showing how much the sheet is restored after 100% elongation, which is a sufficiently large tensile amount, is within the above range, the plastic deformation of the film is minimized when the adhesive sheet is largely stretched. It is suppressed, breakage hardly occurs, and uniform expansion becomes possible.
  • the third pressure-sensitive adhesive sheet 30 may have a release sheet laminated on the pressure-sensitive adhesive surface for the purpose of protecting the pressure-sensitive adhesive surface until the pressure-sensitive adhesive surface is attached to an adherend (for example, a semiconductor chip). Good.
  • the configuration of the release sheet is arbitrary, and examples include those obtained by subjecting a plastic film to a release treatment with a release agent or the like.
  • the release sheet may be a release sheet that can be used for the first adhesive sheet 10 and the second adhesive sheet 20.
  • the thickness of the third adhesive sheet 30 is preferably 30 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • the thickness of the third adhesive sheet 30 is preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less.
  • the pressure-sensitive adhesive sheets used in the expanding method according to the present embodiment each have a simple structure including a base material and a pressure-sensitive adhesive layer. Further, before performing the expanding step, the adhesive sheet used when performing the dicing step is replaced with an adhesive sheet for the expanding step, so that the dicing blade does not reach the base material of the dicing sheet in the dicing step. Moreover, it is not necessary to carefully control the depth of cut. Therefore, according to the expanding method of the present embodiment, the structure and process of the pressure-sensitive adhesive sheet can be simplified and the adhesive residue can be suppressed as compared with the conventional method. Furthermore, a method of manufacturing a semiconductor device including the expanding method according to the present embodiment can be provided.
  • the adhesive sheet adhered to the circuit surface of the semiconductor wafer in the back grinding process and the dicing process is the same adhesive sheet
  • the adhesive sheet is applied to the semiconductor wafer in the back grinding process.
  • the adhesive sheet attached is different from the adhesive sheet attached to the circuit surface of the semiconductor wafer in the dicing process.
  • the part related to the difference from the first embodiment will be mainly described, and the overlapping description will be omitted or simplified.
  • the same components as those in the first embodiment are designated by the same reference numerals, and description thereof will be omitted or simplified.
  • the expanding method according to this embodiment includes steps (PX1), (PX2), and (PX3) in addition to the steps (P1) to (P5) described in the first embodiment. Steps (PX1), (PX2) and (PX3) are performed before step (P1).
  • PX1 A step of adhering a fourth adhesive sheet to the surface of the first wafer before backgrinding the semiconductor wafer.
  • PX2 A step of grinding the back surface of the semiconductor wafer to which the fourth adhesive sheet is attached.
  • PX3 A step of peeling the fourth adhesive sheet from the first wafer surface after back-grinding the semiconductor wafer and adhering the first adhesive sheet to the first wafer surface.
  • FIG. 6A is a diagram for explaining the step (PX1) and the step (PX2).
  • the back surface W6 opposite to the circuit surface W1 is ground by the grinder 500, and the semiconductor wafer W is ground to a predetermined thickness.
  • the back surface W6 of the semiconductor wafer W is ground to form a back surface W3.
  • the fourth adhesive sheet 40 is attached to the circuit surface W1 of the semiconductor wafer W.
  • the fourth pressure-sensitive adhesive sheet 40 has a fourth pressure-sensitive adhesive layer 42 and a fourth base material 41.
  • the fourth adhesive sheet 40 is preferably a back grind sheet.
  • the semiconductor wafer W is attached so that the circuit surface W1 faces the fourth pressure-sensitive adhesive layer 42 of the fourth pressure-sensitive adhesive sheet 40.
  • the fourth pressure-sensitive adhesive sheet 40 as a back-grinding sheet is preferably attached to the circuit surface W1 as the first wafer surface before back-grinding the semiconductor wafer W.
  • the fourth adhesive sheet 40 it is preferable to use the same adhesive sheet as the first adhesive sheet 10 in the first embodiment.
  • FIG. 6B is a diagram for explaining the step (PX3).
  • FIG. 6B shows a state in which the first adhesive sheet 70 is attached to the circuit surface W1 after the fourth adhesive sheet 40 is peeled from the circuit surface W1 after the back surface of the semiconductor wafer W is ground.
  • the backgrinding sheet (fourth adhesive sheet 40) is not attached to the circuit surface W1 and the process is not advanced to the next step.
  • Adhesive sheet 70) is attached to the circuit surface W1.
  • the first pressure-sensitive adhesive sheet 70 as this another pressure-sensitive adhesive sheet is preferably a surface protection sheet for protecting the circuit surface W1.
  • the first adhesive sheet is used as the back grind sheet, but in the present embodiment, the first adhesive sheet is used as the surface protection sheet, so the positioning of the first adhesive sheet is different. Therefore, in the first embodiment, the reference numeral of the first adhesive sheet is 10, and in the present embodiment, the reference numeral of the first adhesive sheet is 70 to distinguish them.
  • the thickness of the first pressure sensitive adhesive sheet 70 as the surface protection sheet is preferably thinner than the thickness of the fourth pressure sensitive adhesive sheet 40 as the back grinding sheet. By making the thickness of the first adhesive sheet 70 smaller than the thickness of the fourth adhesive sheet 40, it becomes easy to dice the first adhesive sheet 70 and the semiconductor wafer W in the dicing process.
  • the thickness of the first pressure-sensitive adhesive sheet 70 as the surface protection sheet is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 30 ⁇ m or more.
  • the thickness of the first pressure-sensitive adhesive sheet 70 as the surface protection sheet is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and further preferably 100 ⁇ m or less.
  • FIG. 7A is a diagram illustrating a bonding step of bonding the second adhesive sheet 20 to the back surface W3.
  • the second adhesive sheet 20 is a dicing sheet, as in the first embodiment.
  • FIG. 7B is a diagram for explaining the step (P2) in the present embodiment.
  • the process (P2) may be called a dicing process.
  • FIG. 7B shows a plurality of semiconductor chips CP obtained by dicing the semiconductor wafer W.
  • the step (P2) in the present embodiment is different from the first embodiment in that the first adhesive sheet 70 is attached to the circuit surface W1, and the other points can be performed in the same manner as in the first embodiment. Also in the present embodiment, the first adhesive sheet 70 is cut, the first adhesive sheet 70 is cut, and the semiconductor wafer W is further cut.
  • FIG. 8A is a diagram for explaining the step (P3).
  • the step (P3) may be referred to as a third adhesive sheet sticking step.
  • FIG. 8A shows a state in which the third adhesive sheet 30 is attached to the plurality of semiconductor chips CP obtained by the dicing process.
  • the third adhesive sheet 30 is the same as that in the first embodiment.
  • the step (P3) in the present embodiment is different from the first embodiment in that the third pressure-sensitive adhesive sheet 30 is attached to the first pressure-sensitive adhesive sheet 70 as a surface protection sheet, and other points are the first embodiment. It can be implemented in the same manner as.
  • FIG. 8B is a diagram for explaining the step (P4) in the present embodiment.
  • the step (P4) may be referred to as the peeling step of the second adhesive sheet.
  • FIG. 8B shows a state in which the second adhesive sheet 20 is peeled from the back surface W3 of the wafer W after the third adhesive sheet 30 is attached.
  • the step (P4) in this embodiment can be carried out in the same manner as in the first embodiment.
  • FIG. 9 is a diagram for explaining the step (P5) in the present embodiment.
  • the process (P5) may be called an expanding process.
  • FIG. 9 shows a state in which after the second adhesive sheet 20 is peeled off, the third adhesive sheet 30 is expanded to expand the intervals between the plurality of semiconductor chips CP. Also in this embodiment, it is preferable that the third adhesive sheet 30 is an expanded sheet.
  • the step (P5) in this embodiment can be performed in the same manner as in the first embodiment. Also in the present embodiment, the spacing D1 between the plurality of semiconductor chips CP is preferably the same as that in the first embodiment.
  • sealing step and other steps may be performed.
  • fourth adhesive sheet 40 As the fourth adhesive sheet 40, it is preferable to use the same adhesive sheet as the first adhesive sheet 10 described in the first embodiment.
  • the first pressure-sensitive adhesive sheet 70 in the present embodiment has a seventh base material 71 and a seventh pressure-sensitive adhesive layer 72.
  • the seventh pressure-sensitive adhesive layer 72 is laminated on the seventh base material 71.
  • the seventh base material 71 is a member that supports the seventh adhesive layer 72.
  • the constituent material of the seventh base material 71 is not particularly limited as long as it can properly function in a desired process such as a dicing process.
  • the thickness of the seventh base material 71 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 15 ⁇ m or more.
  • the thickness of the seventh base material 71 is preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less, and further preferably 50 ⁇ m or less.
  • the seventh base material 71 for example, a sheet material such as a synthetic resin film can be used.
  • the synthetic resin film include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film.
  • examples of the seventh base material 71 include these crosslinked films and laminated films.
  • the seventh base material 71 preferably contains a polyester resin, and more preferably comprises a material containing a polyester resin as a main component.
  • the material containing a polyester resin as a main component means that the mass ratio of the polyester resin to the mass of the entire material constituting the substrate is 50 mass% or more.
  • the polyester resin is, for example, any resin selected from the group consisting of polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin, and copolymer resin of these resins. Are preferred, and polyethylene terephthalate resin is more preferred.
  • a polyethylene terephthalate film and a polyethylene naphthalate film are preferable, and a polyethylene terephthalate film is more preferable.
  • the oligomer contained in the polyester film is derived from polyester-forming monomers, dimers, trimers and the like.
  • the constituent material of the seventh adhesive layer 72 is not particularly limited as long as it can properly function in a desired process such as a dicing process.
  • the seventh pressure-sensitive adhesive layer 72 is, for example, at least one pressure-sensitive adhesive selected from the group consisting of acrylic pressure-sensitive adhesive, urethane pressure-sensitive adhesive, polyester pressure-sensitive adhesive, rubber pressure-sensitive adhesive and silicone pressure-sensitive adhesive. It is preferable to be composed of an agent, and more preferable to be composed of an acrylic adhesive.
  • the seventh pressure-sensitive adhesive layer 72 in this embodiment preferably contains a pressure-sensitive adhesive composition.
  • This pressure-sensitive adhesive composition preferably contains an acrylic copolymer containing 2-ethylhexyl acrylate as a main monomer.
  • 2-ethylhexyl acrylate as a main monomer means that the mass ratio of the copolymer component derived from 2-ethylhexyl acrylate to the total mass of the acrylic copolymer is 50% by mass or more.
  • the proportion of the copolymer component derived from 2-ethylhexyl acrylate in the acrylic copolymer is preferably 50% by mass or more and 95% by mass or less, and 60% by mass or more and 95% by mass. % Or less, more preferably 80% by mass or more and 95% by mass or less, still more preferably 85% by mass or more and 93% by mass or less.
  • the kind and number of copolymer components other than 2-ethylhexyl acrylate in the acrylic copolymer are not particularly limited.
  • a functional group-containing monomer having a reactive functional group is preferable as the second copolymer component.
  • the reactive functional group of the second copolymer component is preferably a functional group capable of reacting with the crosslinking agent.
  • This reactive functional group is preferably, for example, at least one substituent selected from the group consisting of a carboxy group, a hydroxyl group, an amino group, a substituted amino group, and an epoxy group, and at least one of a carboxy group and a hydroxyl group. It is more preferable that it is a substituent, and it is still more preferable that it is a carboxy group.
  • Examples of the monomer having a carboxy group include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid.
  • carboxyl group-containing monomers acrylic acid is preferable from the viewpoint of reactivity and copolymerizability.
  • the carboxy group-containing monomer one type may be used alone, or two or more types may be used in combination.
  • Examples of the monomer having a hydroxyl group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and (meth)acrylic acid 2 -Hydroxybutyl, 3-hydroxybutyl (meth)acrylate, and hydroxyalkyl (meth)acrylates such as 4-hydroxybutyl (meth)acrylate.
  • 2-hydroxyethyl (meth)acrylate is preferable from the viewpoint of reactivity of hydroxyl group and copolymerizability.
  • the hydroxyl group-containing monomer one type may be used alone, or two or more types may be used in combination.
  • acrylic acid ester having an epoxy group examples include glycidyl acrylate and glycidyl methacrylate.
  • copolymer component in the acrylic copolymer examples include (meth)acrylic acid alkyl ester whose alkyl group has 2 to 20 carbon atoms.
  • alkyl (meth)acrylates include ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, n-pentyl (meth)acrylate, and n-(meth)acrylate.
  • (meth)acrylic acid alkyl esters from the viewpoint of further improving the adhesiveness, a (meth)acrylic acid ester having an alkyl group having 2 to 4 carbon atoms is preferable, and n-butyl (meth)acrylate is more preferable. preferable.
  • the (meth)acrylic acid alkyl ester may be used alone or in combination of two or more.
  • copolymer components in the acrylic copolymer include, for example, alkoxyalkyl group-containing (meth)acrylic acid ester, (meth)acrylic acid ester having an aliphatic ring, and (meth)acrylic acid having an aromatic ring.
  • alkoxyalkyl group-containing (meth)acrylic acid ester examples include methoxymethyl (meth)acrylate, methoxyethyl (meth)acrylate, ethoxymethyl (meth)acrylate, and ethoxyethyl (meth)acrylate. ..
  • Examples of the (meth)acrylic acid ester having an aliphatic ring include cyclohexyl (meth)acrylate.
  • Examples of the (meth)acrylic acid ester having an aromatic ring examples include phenyl (meth)acrylate.
  • Non-crosslinkable acrylamides include, for example, acrylamide and methacrylamide.
  • non-crosslinkable (meth)acrylic acid ester having a tertiary amino group examples include (meth)acrylic acid (N,N-dimethylamino)ethyl and (meth)acrylic acid (N,N-dimethylamino) Examples include propyl. These monomers may be used alone or in combination of two or more.
  • the second copolymer component a carboxy group-containing monomer or a hydroxyl group-containing monomer is preferable, and acrylic acid is more preferable.
  • the acrylic copolymer contains a copolymer component derived from 2-ethylhexyl acrylate and a copolymer component derived from acrylic acid
  • the copolymer component derived from acrylic acid accounts for the total mass of the acrylic copolymer.
  • the mass ratio is preferably 1% by mass or less, more preferably 0.1% by mass or more and 0.5% by mass or less.
  • the proportion of acrylic acid is 1% by mass or less, when the pressure-sensitive adhesive composition contains a crosslinking agent, it is possible to prevent the acrylic copolymer from crosslinking too quickly.
  • the acrylic copolymer may contain a copolymer component derived from two or more kinds of functional group-containing monomers.
  • the acrylic copolymer may be a ternary copolymer, preferably an acrylic copolymer obtained by copolymerizing 2-ethylhexyl acrylate, a carboxy group-containing monomer and a hydroxyl group-containing monomer,
  • the carboxy group-containing monomer is preferably acrylic acid
  • the hydroxyl group-containing monomer is preferably 2-hydroxyethyl acrylate.
  • the proportion of the copolymer component derived from 2-ethylhexyl acrylate in the acrylic copolymer is 80% by mass or more and 95% by mass or less, and the proportion by mass of the copolymer component derived from acrylic acid is 1% by mass or less.
  • the balance is preferably a copolymer component derived from 2-hydroxyethyl acrylate.
  • the weight average molecular weight (Mw) of the acrylic copolymer is preferably 300,000 or more and 2 million or less, more preferably 600,000 or more and 1.5 million or less, and 800,000 or more and 1.2 million or less. Is more preferable.
  • Mw of the acrylic copolymer is 300,000 or more, it can be peeled off without a residue of the adhesive on the adherend.
  • Mw of the acrylic copolymer is 2,000,000 or less, it can be reliably attached to the adherend.
  • the weight average molecular weight Mw of the acrylic copolymer is a standard polystyrene conversion value measured by a gel permeation chromatography (GPC) method.
  • the acrylic copolymer can be produced according to a conventionally known method using the above-mentioned various raw material monomers.
  • the form of copolymerization of the acrylic copolymer is not particularly limited, and may be a block copolymer, a random copolymer, or a graft copolymer.
  • the content of the acrylic copolymer in the pressure-sensitive adhesive composition is preferably 40% by mass or more and 90% by mass or less, and more preferably 50% by mass or more and 90% by mass or less. preferable.
  • the pressure-sensitive adhesive composition constituting the seventh pressure-sensitive adhesive layer 72 preferably contains at least a pressure-sensitive adhesive obtained by crosslinking a composition further containing a crosslinking agent, in addition to the above-mentioned acrylic copolymer. It is also preferable that the pressure-sensitive adhesive composition substantially consists of a pressure-sensitive adhesive obtained by crosslinking the above-mentioned acrylic copolymer and a crosslinking agent as described above.
  • “substantially” means that the pressure sensitive adhesive is composed of only the pressure sensitive adhesive, except for a trace amount of impurities that are inevitably mixed in the pressure sensitive adhesive.
  • crosslinking agent examples include an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, a metal chelate crosslinking agent, an amine crosslinking agent, and an amino resin crosslinking agent. These crosslinking agents may be used alone or in combination of two or more. From the viewpoint of improving the heat resistance and adhesive strength of the seventh pressure-sensitive adhesive layer 72, among these cross-linking agents, a cross-linking agent (isocyanate-based cross-linking agent) containing a compound having an isocyanate group as a main component is preferable.
  • isocyanate crosslinking agent examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, diphenylmethane-4,4'-diisocyanate, Polyphenyl isocyanates such as diphenylmethane-2,4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, dicyclohexylmethane-2,4'-diisocyanate, and lysine isocyanate Compounds.
  • the polyvalent isocyanate compound may be a trimethylolpropane adduct type modified product of the above compound, a buret type modified product reacted with water, or an isocyanurate type modified product having an isocyanurate ring.
  • crosslinking agent containing a compound having an isocyanate group as a main component means that the mass ratio of the compound having an isocyanate group to the total mass of the components constituting the crosslinking agent is 50% by mass or more. means.
  • the content of the crosslinking agent in the pressure-sensitive adhesive composition is preferably 0.1 parts by mass or more and 20 parts by mass or less, more preferably 1 part by mass with respect to 100 parts by mass of the acrylic copolymer. As described above, the amount is 15 parts by mass or less, more preferably 5 parts by mass or more and 10 parts by mass or less.
  • the content of the cross-linking agent in the pressure-sensitive adhesive composition is within such a range, the adhesiveness between the seventh pressure-sensitive adhesive layer 72 and the seventh base material 71 can be improved, and the pressure-sensitive adhesive sheet can be adhered after production. The curing period for stabilizing the characteristics can be shortened.
  • the pressure-sensitive adhesive composition forming the seventh pressure-sensitive adhesive layer 72 in the present embodiment contains a crosslinking agent
  • the pressure-sensitive adhesive composition further contains a crosslinking accelerator. It is preferable to appropriately select and use the crosslinking accelerator depending on the type of the crosslinking agent.
  • the pressure-sensitive adhesive composition contains a polyisocyanate compound as a crosslinking agent
  • the pressure-sensitive adhesive composition further contains an organometallic compound-based crosslinking accelerator such as an organotin compound.
  • the pressure-sensitive adhesive composition forming the seventh pressure-sensitive adhesive layer 72 also preferably contains a reactive pressure-sensitive adhesive aid.
  • the reactive adhesion aid include a polybutadiene resin having a reactive functional group, a hydrogenated product of a polybutadiene resin having a reactive functional group, and the like.
  • the reactive functional group which the reactive adhesive aid has one or more functional groups selected from the group consisting of a hydroxyl group, an isocyanate group, an amino group, an oxirane group, an acid anhydride group, an alkoxy group, an acryloyl group and a methacryloyl group. It is preferably a group.
  • the pressure-sensitive adhesive composition contains a reactive pressure-sensitive adhesive aid, it is possible to reduce adhesive residue when the first pressure-sensitive adhesive sheet 70 is peeled off from the adherend.
  • the pressure-sensitive adhesive composition that constitutes the seventh pressure-sensitive adhesive layer 72 may contain other components as long as the effects of the present invention are not impaired.
  • Other components that may be contained in the pressure-sensitive adhesive composition include, for example, organic solvents, flame retardants, tackifiers, ultraviolet absorbers, antioxidants, antiseptics, antifungal agents, plasticizers, defoamers, and wetting. Examples include sex regulators.
  • the thickness of the seventh pressure-sensitive adhesive layer 72 is appropriately determined according to the application of the first pressure-sensitive adhesive sheet 70.
  • the thickness of the seventh pressure-sensitive adhesive layer 72 is preferably 5 ⁇ m or more.
  • the thickness of the seventh pressure-sensitive adhesive layer 72 is preferably 60 ⁇ m or less, and more preferably 50 ⁇ m or less. The above is the description regarding the seventh pressure-sensitive adhesive layer 72.
  • the first adhesive sheet 70 has a release sheet laminated on the adhesive surface for the purpose of protecting the adhesive surface until the adhesive surface is attached to an adherend (for example, the semiconductor wafer W or the semiconductor chip CP). It may have been done.
  • the configuration of the release sheet is arbitrary, and examples include those obtained by subjecting a plastic film to a release treatment with a release agent or the like.
  • the release sheet may be a release sheet that can be used for the first adhesive sheet 10 and the second adhesive sheet 20.
  • the sticking is performed on the first adhesive sheet 70 that is thinner than the fourth adhesive sheet 40 used in the back grinding step.
  • the thickness of the pressure-sensitive adhesive sheet cut in the dicing step can be reduced, the load applied to the dicing blade can be reduced.
  • the first embodiment and the third embodiment mainly differ in the following points.
  • the back-grinding process is performed and then the dicing process is performed
  • a so-called pre-dicing method is performed.
  • the front dicing method is a method for obtaining chips by forming grooves of a predetermined depth from the front surface side of a semiconductor wafer, then grinding from the back surface side of the wafer, removing the bottom of the grooves by grinding, and dividing the wafer into individual pieces. ..
  • the part related to the difference from the first embodiment will be mainly described, and the overlapping description will be omitted or simplified.
  • the same components as those in the first embodiment are designated by the same reference numerals, and description thereof will be omitted or simplified.
  • the expanding method according to this embodiment includes the following steps (PY1) to (PY4) and the same step (P5) as in the first embodiment.
  • PY1 A step of adhering an eighth adhesive sheet to the first wafer surface of the wafer before backside grinding.
  • PY2 A step of forming a groove having a predetermined depth from the first wafer surface side of the wafer.
  • PY3 A step of back-grinding the second wafer surface of the grooved wafer and removing the bottom of the groove to obtain chips.
  • PY4 A step of attaching the third adhesive sheet to the eighth adhesive sheet after grinding the back surface of the wafer.
  • P5 A step of expanding the third pressure-sensitive adhesive sheet to widen the intervals between the plurality of chips.
  • FIG. 10A is a diagram for explaining the step (PY1).
  • FIG. 10A shows a state in which the eighth adhesive sheet 80 is attached to the circuit surface W1 as the first wafer surface of the semiconductor wafer W before the back surface grinding.
  • the eighth adhesive sheet 80 has an eighth adhesive layer 82 and an eighth base material 81.
  • the eighth adhesive sheet 80 is preferably a back grind sheet.
  • As the eighth pressure-sensitive adhesive sheet 80 it is preferable to use the same pressure-sensitive adhesive sheet as the first pressure-sensitive adhesive sheet 10 in the first embodiment or the fourth pressure-sensitive adhesive sheet 40 in the second embodiment as a back-grinding sheet.
  • the semiconductor wafer W is attached so that the circuit surface W1 faces the eighth adhesive layer 82 of the eighth adhesive sheet 80.
  • the eighth pressure-sensitive adhesive sheet 80 as a back-grinding sheet is preferably attached to the circuit surface W1 as the first wafer surface before the step of forming the groove of the predetermined depth in the semiconductor wafer W.
  • FIG. 10B is a diagram for explaining the step (PY2).
  • FIG. 10B is a diagram illustrating a step of forming a groove having a predetermined depth from the circuit surface W1 side of the semiconductor wafer W (may be referred to as a groove forming step).
  • a cut is made in the semiconductor wafer from the eighth adhesive sheet 80 side using a dicing blade of a dicing device or the like.
  • the eighth adhesive sheet 80 is completely cut, and a notch having a depth smaller than the thickness of the semiconductor wafer W is made from the circuit surface W1 of the semiconductor wafer W to form the groove W5.
  • the groove W5 is formed so as to partition the plurality of circuits W2 formed on the circuit surface W1 of the semiconductor wafer W.
  • the depth of the groove W5 is not particularly limited as long as it is slightly deeper than the intended thickness of the semiconductor chip.
  • cutting chips from the semiconductor wafer W are generated.
  • the groove W5 since the groove W5 is formed in the state where the circuit surface W1 is protected by the eighth adhesive sheet 80, it is possible to prevent the circuit surface W1 and the circuit W2 from being contaminated or damaged by cutting chips.
  • FIG. 10C is a diagram for explaining the step (PY3). 10C, after forming the groove W5, a step of attaching the third adhesive sheet 30 to the individualized eighth adhesive sheet 80 (adhesion step of the third adhesive sheet), and The figure explaining the process (it may call a grinding process.) of grinding the back surface W6 as a 2nd surface is shown.
  • the semiconductor wafer W is ground from the back surface W6 side using the grinder 500. The grinding reduces the thickness of the semiconductor wafer W and finally divides it into a plurality of semiconductor chips CP. Grinding is performed from the back surface W6 side until the bottom of the groove W5 is removed, and the semiconductor wafer W is separated into individual circuits W2.
  • the back surface is further ground as required, and the semiconductor chip CP having a predetermined thickness can be obtained.
  • grinding is performed until the back surface W3 as the second wafer surface is obtained.
  • the method including the groove forming step and the grinding step of the present embodiment corresponds to the pre-dicing method.
  • FIG. 10D is a diagram for explaining the step (PY4).
  • a step of sticking the third adhesive sheet 30 to the eighth adhesive sheet 80 side of the semiconductor wafer W after the back surface grinding after the grinding step (sometimes referred to as a third adhesive sheet sticking step). .) is illustrated.
  • FIG. 10D a state in which the plurality of divided semiconductor chips CP are held by the eighth adhesive sheet 80 and the third adhesive sheet 30 is shown.
  • the third adhesive sheet 30 is expanded and the intervals between the plurality of semiconductor chips CP are expanded in the same manner as in the first embodiment.
  • a process expanding process: process (P5)
  • the third adhesive sheet 30 is an expanded sheet.
  • the step (P5) in this embodiment can be performed in the same manner as in the first embodiment.
  • the spacing D1 between the plurality of semiconductor chips CP is preferably the same as that in the first embodiment.
  • sealing step and other steps may be performed.
  • the expanding step can be directly carried out after the grinding step, so that the process can be further simplified.
  • a circuit or the like on a semiconductor wafer or a semiconductor chip is not limited to the illustrated arrangement or shape.
  • the connection structure with the external terminal electrodes in the semiconductor package is not limited to the aspect described in the above embodiment.
  • the mode of manufacturing the FO-WLP type semiconductor package has been described as an example, but the present invention is also applicable to the mode of manufacturing other semiconductor packages such as the fan-in type WLP.
  • the dicing in the dicing process may be performed by irradiating the semiconductor wafer with laser light instead of using the above cutting means.
  • the semiconductor wafer may be completely divided into a plurality of semiconductor chips by irradiation with laser light.
  • the adhesive sheet is stretched in the expanding step described later to break the semiconductor wafer at the position of the modified layer and separate the semiconductor chip CP into individual chips. It may be separated (stealth dicing. Stealth dicing is a registered trademark).
  • the back grind sheet (for example, the first adhesive sheet 10) is formed together with the formation of the modified layer by the laser beam for forming the modified layer.
  • a surface protection sheet at the time of dicing (for example, the first pressure-sensitive adhesive sheet 70 of the second embodiment) is singulated.
  • a laser beam for separating the back grinding sheet or the surface protection sheet at the time of dicing is separately irradiated. Separate into individual pieces.
  • the laser light is irradiated so that the laser light in the infrared region is focused on a focus set inside the semiconductor wafer.
  • the laser light irradiation may be performed from either side of the semiconductor wafer.
  • the addition rate was 90 mol% of 2-isocyanatoethyl methacrylate with respect to 100 mol% of 2HEA of the acrylic copolymer.
  • the weight average molecular weight (Mw) of the obtained resin (acrylic A) was 600,000, and Mw/Mn was 4.5.
  • the weight average molecular weight Mw and the number average molecular weight Mn in terms of standard polystyrene were measured by gel permeation chromatography (GPC) method, and the molecular weight distribution (Mw/Mn) was determined from the respective measured values.
  • a system crosslinking agent (manufactured by Nippon Polyurethane Industry Co., Ltd., product name "Coronate L") was added. 50 parts by mass of the UV resin A and 0.2 part by mass of the crosslinking agent were added to 100 parts by mass of the solid content in the adhesive main agent. After the addition, the mixture was stirred for 30 minutes to prepare pressure-sensitive adhesive composition A1.
  • the prepared solution of the pressure-sensitive adhesive composition A1 was applied to a polyethylene terephthalate (PET)-based release film (manufactured by Lintec Co., Ltd., product name “SP-PET381031”, thickness 38 ⁇ m) and dried to give an adhesive having a thickness of 40 ⁇ m.
  • the agent layer was formed on the release film.
  • a polyester-based polyurethane elastomer sheet manufactured by Seadam Co., Ltd., product name “High-Grease DUS202”, thickness 100 ⁇ m
  • Example 1 The pressure-sensitive adhesive sheet obtained in Example 1 was cut into 210 mm ⁇ 210 mm to obtain a test sheet. At this time, each side of the sheet after cutting was cut so as to be parallel or perpendicular to the MD direction of the base material in the adhesive sheet. A semiconductor chip to be attached to the adhesive sheet was prepared by the procedure shown below. A back grind sheet (manufactured by Lintec Corporation, product name "E-3125KL”) was attached to a 6-inch silicon wafer.
  • a 6-inch silicon wafer is diced from the back grind sheet side, and a total of 25 chips are arranged so that chips of 3 mm ⁇ 3 mm size are arranged in 5 rows in the X-axis direction and 5 rows in the Y-axis direction. I cut it out.
  • a dicing back-grinding sheet was attached to each of the chips.
  • the release film of the test sheet was peeled off, and the back grind sheet side of a total of 25 chips cut out as described above was attached to the center of the exposed adhesive layer. At this time, the chips were arranged in five rows in the X-axis direction and five rows in the Y-axis direction.
  • FIG. 11 is a plan view illustrating the expanding device 100.
  • the X axis and the Y axis are orthogonal to each other, and the positive direction of the X axis is the +X axis direction, the negative direction of the X axis is the ⁇ X axis direction, and the positive direction of the Y axis. Is the +Y axis direction, and the negative direction of the Y axis is the ⁇ Y axis direction.
  • the test sheet 200 was installed in the expanding device 100 so that each side was parallel to the X axis or the Y axis. As a result, the MD direction of the base material in the test sheet 200 is parallel to the X axis or the Y axis. Note that the chip is omitted in FIG.
  • the expanding device 100 includes five holding means 101 (20 holding means 101 in total) in each of the +X axis direction, the ⁇ X axis direction, the +Y axis direction, and the ⁇ Y axis direction.
  • the holding means 101A is located at both ends
  • the holding means 101C is located in the center
  • the holding means 101B is located between the holding means 101A and the holding means 101C.
  • Each side of the test sheet 200 was held by these holding means 101.
  • one side of the test sheet 200 is 210 mm.
  • the distance between the holding means 101 on each side is 40 mm.
  • the distance between the end portion (vertex of the sheet) on one side of the test sheet 200 and the holding means 101A existing on the side and closest to the end portion is 25 mm.
  • a plurality of tension applying means (not shown) corresponding to each of the holding means 101 were driven to move the holding means 101 independently.
  • the four sides of the test sheet were gripped and fixed with a jig, and the test sheet was expanded in the X-axis direction and the Y-axis direction at a speed of 5 mm/s and an expansion amount of 200 mm.
  • the expanded state of the test sheet 200 was held by the ring frame. While maintaining the expanded state, the distance between the chips was measured with a digital microscope, and the average value of the distances between the chips was taken as the chip interval. If the chip interval was 1800 ⁇ m or more, it was judged as pass “A”, and if the chip interval was less than 1800 ⁇ m, it was judged as fail “B”.
  • FIG. 12 shows a schematic diagram of a specific measuring method.
  • One row in which five chips were arranged in the X-axis direction was selected, and the distance Dy between the top end of the chip and the bottom end of the chip in the row was measured with a digital microscope.
  • the deviation rate in the Y-axis direction was calculated based on the following mathematical formula (Equation 3).
  • Sy is a chip size in the Y-axis direction and is 3 mm in this embodiment.
  • Deviation rate in the Y-axis direction [%] [(Dy ⁇ Sy)/2]/Sy ⁇ 100...
  • the evaluation result of the chip interval was a pass “A” judgment
  • the evaluation result of the chip alignment was a pass “A” judgment.
  • the adhesive residue evaluation result on the chip surface was a pass “A” judgment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dicing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Adhesive Tapes (AREA)

Abstract

An expansion method comprising: adhering a first adhesive sheet (10) having a first adhesive layer (12) and a first substrate (11) to a first wafer surface (W1) of a wafer (W) having a first wafer surface (W1) and a second wafer surface (W3), and adhering a second adhesive sheet having a second adhesive layer and a second substrate to the second wafer surface (W3); making a cut from the first adhesive sheet (10) side to cut the first adhesive sheet (10) and dice the wafer (W) into a plurality of chips (CP); adhering a third adhesive sheet (30) having a third adhesive layer (32) and a third substrate (31) to the first substrate (11); separating the second adhesive sheet from the second wafer surface (W3) of the wafer (W); and stretching the third adhesive sheet (30) to widen the interval between the plurality of chips (CP).

Description

エキスパンド方法及び半導体装置の製造方法Expanding method and semiconductor device manufacturing method
 本発明は、エキスパンド方法及び半導体装置の製造方法に関する。 The present invention relates to an expanding method and a semiconductor device manufacturing method.
 近年、電子機器の小型化、軽量化、及び高機能化が進んでいる。電子機器に搭載される半導体装置にも、小型化、薄型化、及び高密度化が求められている。半導体チップは、そのサイズに近いパッケージに実装されることがある。このようなパッケージは、チップスケールパッケージ(Chip Scale Package;CSP)と称されることもある。CSPの一つとして、ウエハレベルパッケージ(Wafer Level Package;WLP)が挙げられる。WLPにおいては、ダイシングにより個片化する前に、ウエハに外部電極等を形成し、最終的にはウエハをダイシングして、個片化する。WLPとしては、ファンイン(Fan-In)型とファンアウト(Fan-Out)型が挙げられる。ファンアウト型のWLP(以下、「FO-WLP」と略記する場合がある。)においては、半導体チップを、チップサイズよりも大きな領域となるように封止部材で覆って半導体チップ封止体を形成し、再配線層や外部電極を、半導体チップの回路面だけでなく封止部材の表面領域においても形成する。 In recent years, electronic devices have become smaller, lighter and more sophisticated. Semiconductor devices mounted on electronic devices are also required to be smaller, thinner, and higher in density. A semiconductor chip may be mounted in a package close to its size. Such a package is sometimes referred to as a chip scale package (CSP). One of the CSPs is a wafer level package (WLP). In WLP, external electrodes and the like are formed on a wafer before being diced into individual pieces, and finally the wafer is diced into individual pieces. The WLP includes a fan-in type and a fan-out type. In a fan-out type WLP (hereinafter sometimes abbreviated as “FO-WLP”), the semiconductor chip is covered with a sealing member so as to be a region larger than the chip size to form a semiconductor chip sealing body. Then, the redistribution layer and the external electrodes are formed not only on the circuit surface of the semiconductor chip but also on the surface region of the sealing member.
 例えば、特許文献1には、半導体ウエハから個片化された複数の半導体チップについて、その回路形成面を残し、モールド部材を用いて周りを囲んで拡張ウエハを形成し、半導体チップ外の領域に再配線パターンを延在させて形成する半導体パッケージの製造方法が記載されている。特許文献1に記載の製造方法において、個片化された複数の半導体チップをモールド部材で囲う前に、エキスパンド用のウエハマウントテープに貼り替え、ウエハマウントテープを展延して複数の半導体チップの間の距離を拡大させている。 For example, in Patent Document 1, with respect to a plurality of semiconductor chips diced from a semiconductor wafer, an extended wafer is formed by surrounding the periphery with a mold member while leaving a circuit forming surface, and forming an extended wafer in a region outside the semiconductor chip. A method for manufacturing a semiconductor package is described in which a rewiring pattern is extended and formed. In the manufacturing method described in Patent Document 1, before enclosing a plurality of individual semiconductor chips in a mold member, the wafer mounting tape for expansion is attached to the plurality of semiconductor chips to expand the wafer mounting tape for expansion. The distance between them is increasing.
 また、特許文献2には、第二基材層と、第一基材層と、第一粘着剤層と、をこの順に備え、第二基材層の破断伸度が400%以上である粘着シートが記載されている。特許文献2に記載の半導体装置の製造方法は、この粘着シートの第一粘着剤層に半導体ウエハを貼着する工程と、半導体ウエハをダイシングにより個片化し、複数の半導体チップを形成する工程と、粘着シートを引き延ばして、半導体チップ同士の間隔を拡げる工程と、を備える。 Moreover, in patent document 2, the 2nd base material layer, the 1st base material layer, and the 1st adhesive layer are provided in this order, and the fracture|rupture elongation of a 2nd base material layer is 400% or more. Sheets are listed. The method of manufacturing a semiconductor device described in Patent Document 2 includes a step of attaching a semiconductor wafer to the first adhesive layer of this adhesive sheet, and a step of dicing the semiconductor wafer into individual pieces to form a plurality of semiconductor chips. And stretching the adhesive sheet to widen the gap between the semiconductor chips.
国際公開第2010/058646号International Publication No. 2010/058646 特開2017-076748号公報JP, 2017-076748, A
 エキスパンド工程に用いられるテープは、通常、テープ上の半導体チップを固定するために粘着剤層と、粘着剤層を支持するための基材と、を有する。特許文献1に記載のようにエキスパンド用のウエハマウントテープを引き延ばすと、テープの基材だけでなく、粘着剤層も引き延ばされる。エキスパンド工程後、半導体チップを粘着剤層から剥離すると、粘着剤層と接していた半導体チップの表面に粘着剤層が残る不具合が生じる場合がある。このような不具合を、本明細書においては、糊残りと称する場合がある。
 なお、特許文献2に記載の粘着シートを用いてエキスパンド工程を実施すると、半導体チップと接している粘着剤層は引き延ばされないため、糊残りが生じ難いと考えられる。しかしながら、特許文献2に記載の粘着シートは、第二基材層と、第一基材層と、第一粘着剤層と、を積層させたテープ構成であるため、より簡略なテープ構成を用いて糊残りを防止できるエキスパンド方法に対する要望がある。また、特許文献2に記載のプロセスでは、粘着シート上の半導体ウエハをダイシングし、他の粘着シートに転写することなく、そのまま粘着シートを引き延ばしてエキスパンド工程を実施する。そのため、ダイシングの際のダイシングブレードが第二基材層に到達しないように、ダイシングブレードの切込み深さを慎重に制御する必要があり、より簡略な方法によって糊残りを防止できるエキスパンド方法に対する要望もある。
 なお、エキスパンド方法において粘着シートの上に支持する被着体としては、半導体チップだけでなく、例えば、ウエハ、半導体装置パッケージ、及びマイクロLED等の半導体装置が挙げられる。これら半導体装置についても、半導体チップと同様、半導体装置同士の間隔を拡張させることがある。
The tape used in the expanding step usually has an adhesive layer for fixing the semiconductor chip on the tape and a base material for supporting the adhesive layer. When the wafer mounting tape for expansion is stretched as described in Patent Document 1, not only the base material of the tape but also the adhesive layer is stretched. When the semiconductor chip is peeled off from the pressure-sensitive adhesive layer after the expanding step, there may be a problem that the pressure-sensitive adhesive layer remains on the surface of the semiconductor chip that was in contact with the pressure-sensitive adhesive layer. Such a defect may be referred to as an adhesive residue in the present specification.
When the expanding step is performed using the pressure-sensitive adhesive sheet described in Patent Document 2, the pressure-sensitive adhesive layer in contact with the semiconductor chip is not stretched, and thus it is considered that adhesive residue is unlikely to occur. However, since the pressure-sensitive adhesive sheet described in Patent Document 2 has a tape structure in which the second base material layer, the first base material layer, and the first pressure-sensitive adhesive layer are laminated, a simpler tape structure is used. There is a demand for an expanding method that can prevent adhesive residue from occurring. Further, in the process described in Patent Document 2, the semiconductor wafer on the pressure-sensitive adhesive sheet is diced, and the pressure-sensitive adhesive sheet is stretched as it is without being transferred to another pressure-sensitive adhesive sheet to perform the expanding step. Therefore, in order to prevent the dicing blade during dicing from reaching the second base material layer, it is necessary to carefully control the cutting depth of the dicing blade, and there is also a demand for an expanding method capable of preventing adhesive residue by a simpler method. is there.
In the expanding method, the adherend supported on the pressure-sensitive adhesive sheet is not limited to a semiconductor chip, but may be, for example, a wafer, a semiconductor device package, or a semiconductor device such as a micro LED. For these semiconductor devices as well, like the semiconductor chip, the distance between the semiconductor devices may be expanded.
 本発明の目的は、従来に比べてテープ構成及びプロセスを簡略化しつつ、かつ、糊残りを抑制できるエキスパンド方法を提供すること、並びに当該エキスパンド方法を含む半導体装置の製造方法を提供することである。 An object of the present invention is to provide an expanding method capable of suppressing adhesive residue while simplifying a tape structure and a process as compared with a conventional one, and to provide a method for manufacturing a semiconductor device including the expanding method. ..
 本発明の一態様によれば、第1ウエハ面と前記第1ウエハ面の反対側の第2ウエハ面とを有するウエハの前記第1ウエハ面に、第1粘着剤層と第1基材とを有する第1粘着シートが貼付され、前記第2ウエハ面に、第2粘着剤層と第2基材とを有する第2粘着シートが貼付され、前記第1粘着シート側から切込みを入れて、前記第1粘着シートを切断し、さらに前記ウエハを複数のチップに個片化し、第3粘着剤層と第3基材とを有する第3粘着シートを前記第1基材に貼付し、前記第2粘着シートを前記ウエハの前記第2ウエハ面から剥離し、前記第3粘着シートを伸張させて、前記複数のチップの間隔を拡げる、エキスパンド方法が提供される。 According to one aspect of the present invention, a first adhesive layer and a first base material are provided on the first wafer surface of a wafer having a first wafer surface and a second wafer surface opposite to the first wafer surface. A first adhesive sheet having is attached, a second adhesive sheet having a second adhesive layer and a second base material is attached to the second wafer surface, and a cut is made from the first adhesive sheet side, The first adhesive sheet is cut, the wafer is further diced into a plurality of chips, and a third adhesive sheet having a third adhesive layer and a third base material is attached to the first base material. An expanding method is provided in which the second adhesive sheet is peeled from the second wafer surface of the wafer, and the third adhesive sheet is stretched to expand the interval between the plurality of chips.
 本発明の一態様に係るエキスパンド方法において、前記切込みは、前記第1粘着シート側から前記第2粘着シートに到達するまでの深さで形成することが好ましい。 In the expanding method according to one aspect of the present invention, it is preferable that the cut is formed with a depth from the side of the first adhesive sheet to the second adhesive sheet.
 本発明の一態様に係るエキスパンド方法において、前記第2ウエハ面は、前記ウエハを裏面研削して形成した面であることが好ましい。 In the expanding method according to one aspect of the present invention, it is preferable that the second wafer surface is a surface formed by grinding the back surface of the wafer.
 本発明の一態様に係るエキスパンド方法において、前記第1粘着シートは、前記ウエハを裏面研削する前に、前記第1ウエハ面に貼着されていることが好ましい。 In the expanding method according to one aspect of the present invention, it is preferable that the first adhesive sheet is attached to the surface of the first wafer before the back surface of the wafer is ground.
 本発明の一態様に係るエキスパンド方法において、前記ウエハを裏面研削する前に、前記第1ウエハ面に第4粘着シートが貼着されており、裏面研削後に前記第4粘着シートを前記第1ウエハ面から剥離し、前記第1ウエハ面に前記第1粘着シートを貼着することが好ましい。 In the expanding method according to one aspect of the present invention, a fourth adhesive sheet is attached to the surface of the first wafer before back grinding the wafer, and the fourth adhesive sheet is attached to the first wafer after back grinding. It is preferable that the first pressure-sensitive adhesive sheet is attached to the surface of the first wafer after peeling from the surface.
 本発明の一態様に係るエキスパンド方法において、前記第4粘着シートは、バックグラインドシートであり、前記第1粘着シートは、表面保護シートであり、前記表面保護シートの厚さは、5μm以上、500μm以下であることが好ましい。 In the expanding method according to one aspect of the present invention, the fourth pressure-sensitive adhesive sheet is a back grinding sheet, the first pressure-sensitive adhesive sheet is a surface protection sheet, and the thickness of the surface protection sheet is 5 μm or more and 500 μm. The following is preferable.
 本発明の一態様に係るエキスパンド方法において、前記第1粘着シートは、バックグラインドシートであることが好ましい。 In the expanding method according to one aspect of the present invention, the first adhesive sheet is preferably a back grind sheet.
 本発明の一態様に係るエキスパンド方法において、前記第3粘着シートは、エキスパンドシートであることが好ましい。 In the expanding method according to one aspect of the present invention, the third adhesive sheet is preferably an expanding sheet.
 本発明の一態様に係るエキスパンド方法において、前記ウエハは、半導体ウエハであることが好ましい。 In the expanding method according to one aspect of the present invention, the wafer is preferably a semiconductor wafer.
 本発明の一態様に係るエキスパンド方法において、前記第1ウエハ面は、回路を有することが好ましい。 In the expanding method according to one aspect of the present invention, it is preferable that the first wafer surface has a circuit.
 本発明の一態様によれば、前述の本発明の一態様に係るエキスパンド方法を含む半導体装置の製造方法が提供される。 According to an aspect of the present invention, there is provided a method for manufacturing a semiconductor device including the expanding method according to the above-described aspect of the present invention.
 本発明の一態様によれば、従来に比べてテープ構成及びプロセスを簡略化しつつ、かつ、糊残りを抑制できるエキスパンド方法を提供できる。本発明の別の一態様によれば、糊残りを抑制できるエキスパンド方法を含む半導体装置の製造方法を提供できる。 According to one aspect of the present invention, it is possible to provide an expanding method that can simplify the tape structure and the process as compared with the related art and can suppress the adhesive residue. According to another aspect of the present invention, it is possible to provide a method for manufacturing a semiconductor device including an expanding method capable of suppressing adhesive residue.
第1実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. 第1実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. 第1実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. 第1実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. 第1実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. 第1実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. 第1実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. 第1実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. 第1実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 1st Embodiment. 第2実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 2nd Embodiment. 第2実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 2nd Embodiment. 第2実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 2nd Embodiment. 第2実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 2nd Embodiment. 第2実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 2nd Embodiment. 第2実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 2nd Embodiment. 第2実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 2nd Embodiment. 第3実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 3rd Embodiment. 第3実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 3rd Embodiment. 第3実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 3rd Embodiment. 第3実施形態に係る製造方法を説明する断面図。Sectional drawing explaining the manufacturing method which concerns on 3rd Embodiment. 実施例で使用した2軸延伸エキスパンド装置を説明する平面図。The top view explaining the biaxial stretching expander used in the example. チップ整列性の測定方法を説明するための概略図。FIG. 4 is a schematic diagram for explaining a method of measuring chip alignment.
〔第1実施形態〕
 以下、本実施形態に係るエキスパンド方法及び当該エキスパンド方法を含む半導体装置の製造方法について説明する。
[First Embodiment]
Hereinafter, an expanding method according to the present embodiment and a semiconductor device manufacturing method including the expanding method will be described.
 図1(図1A及び図1B)、図2(図2A及び図2B)及び図3は、本実施形態に係るエキスパンド方法を含む半導体装置の製造方法を説明する断面概略図である。 1 (FIGS. 1A and 1B), FIG. 2 (FIGS. 2A and 2B), and FIG. 3 are schematic cross-sectional views illustrating a method for manufacturing a semiconductor device including the expanding method according to the present embodiment.
 本実施形態に係るエキスパンド方法は、次の工程(P1)~(P5)の工程を備える。
(P1)第1ウエハ面に第1粘着シートが貼付され、第2ウエハ面に第2粘着シートが貼付されたウエハを準備する工程。第1粘着シートは、第1粘着剤層と第1基材とを有する。第2粘着シートは、第2粘着剤層と第2基材とを有する。
(P2)第1粘着シート側から切込みを入れて、第1粘着シートを切断し、さらにウエハを切断して複数のチップに個片化する工程。
(P3)第3粘着シートを第1基材に貼付する工程。第3粘着シートは、第3粘着剤層と第3基材とを有する。
(P4)第2粘着シートをウエハの第2ウエハ面から剥離する工程。
(P5)第3粘着シートを伸張させて、複数のチップの間隔を拡げる工程。
The expanding method according to the present embodiment includes the following steps (P1) to (P5).
(P1) A step of preparing a wafer in which the first adhesive sheet is attached to the first wafer surface and the second adhesive sheet is attached to the second wafer surface. The first adhesive sheet has a first adhesive layer and a first base material. The second pressure-sensitive adhesive sheet has a second pressure-sensitive adhesive layer and a second base material.
(P2) A step of making a notch from the side of the first adhesive sheet, cutting the first adhesive sheet, and further cutting the wafer into individual chips.
(P3) A step of attaching the third adhesive sheet to the first base material. The third pressure-sensitive adhesive sheet has a third pressure-sensitive adhesive layer and a third base material.
(P4) A step of peeling the second adhesive sheet from the second wafer surface of the wafer.
(P5) A step of expanding the third pressure-sensitive adhesive sheet to widen the intervals between the plurality of chips.
 図1Aは、工程(P1)を説明するための図である。図1Aには、第1粘着シート10及び第2粘着シート20が貼着されたウエハWが記載されている。
 半導体ウエハWは、第1ウエハ面としての回路面W1と、第2ウエハ面としての裏面W3と、を有する。回路面W1には、回路W2が形成されている。
FIG. 1A is a diagram for explaining the step (P1). FIG. 1A shows a wafer W to which the first adhesive sheet 10 and the second adhesive sheet 20 are attached.
The semiconductor wafer W has a circuit surface W1 as a first wafer surface and a back surface W3 as a second wafer surface. A circuit W2 is formed on the circuit surface W1.
 回路面W1には、第1粘着シート10が貼着されている。裏面W3には、第2粘着シート20が貼着されている。第1粘着シート10は、第1粘着剤層12と第1基材11とを有する。第2粘着シート20は、第2粘着剤層22と第2基材21とを有する。第1粘着シート10及び第2粘着シート20の詳細は、後述する。 The first adhesive sheet 10 is attached to the circuit surface W1. The second adhesive sheet 20 is attached to the back surface W3. The first pressure-sensitive adhesive sheet 10 has a first pressure-sensitive adhesive layer 12 and a first base material 11. The second pressure-sensitive adhesive sheet 20 has a second pressure-sensitive adhesive layer 22 and a second base material 21. Details of the first adhesive sheet 10 and the second adhesive sheet 20 will be described later.
 半導体ウエハWは、例えば、シリコンウエハであってもよいし、ガリウム・砒素等の化合物半導体ウエハであってもよい。半導体ウエハWの回路面W1に回路W2を形成する方法としては、汎用されている方法が挙げられ、例えば、エッチング法及びリフトオフ法等が挙げられる。 The semiconductor wafer W may be, for example, a silicon wafer or a compound semiconductor wafer such as gallium/arsenic. As a method for forming the circuit W2 on the circuit surface W1 of the semiconductor wafer W, a commonly used method can be used, and examples thereof include an etching method and a lift-off method.
[バックグラインド工程]
 工程(P1)で準備する半導体ウエハWは、バックグラインド工程を経ることにより得られたウエハであることが好ましい。
 バックグラインド工程においては、半導体ウエハWの回路面W1とは反対側の面を所定の厚さに研削する。裏面W3は、半導体ウエハWを裏面研削して形成した面であることが好ましい。半導体ウエハWを研削した後に露出する面を裏面W3とする。
[Back grinding process]
The semiconductor wafer W prepared in the step (P1) is preferably a wafer obtained by undergoing a back grinding step.
In the back grinding process, the surface of the semiconductor wafer W opposite to the circuit surface W1 is ground to a predetermined thickness. The back surface W3 is preferably a surface formed by grinding the back surface of the semiconductor wafer W. A surface exposed after grinding the semiconductor wafer W is referred to as a back surface W3.
 半導体ウエハWを研削する方法としては、特に限定されず、例えば、グラインダー等を用いた公知の方法が挙げられる。半導体ウエハWを研削する際には、回路W2を保護するために、バックグラインドシートと呼ばれる粘着シートを回路面W1に貼着することが好ましい。ウエハの裏面研削は、半導体ウエハWの回路面W1側、すなわちバックグラインドシート側をチャックテーブル等により固定し、回路が形成されていない裏面側をグラインダーにより研削する。本実施形態においては、第1粘着シート10がバックグラインドシートであることが好ましい。バックグラインドシートとして第1粘着シート10が用いられる場合、半導体ウエハWは、回路面W1を第1粘着シート10の第1粘着剤層12に向けて貼着される。バックグラインドシートとしての第1粘着シート10は、半導体ウエハWを裏面研削する前に、第1ウエハ面としての回路面W1に貼着されていることが好ましい。第1粘着シート10を回路面W1に貼着する工程を第1粘着シートの貼着工程と称する場合がある。 The method of grinding the semiconductor wafer W is not particularly limited, and examples thereof include known methods using a grinder or the like. When the semiconductor wafer W is ground, it is preferable to adhere an adhesive sheet called a back grind sheet to the circuit surface W1 in order to protect the circuit W2. In the back surface grinding of the wafer, the circuit surface W1 side of the semiconductor wafer W, that is, the back grinding sheet side is fixed by a chuck table or the like, and the back surface side where no circuit is formed is ground by a grinder. In the present embodiment, the first adhesive sheet 10 is preferably a back grind sheet. When the first pressure-sensitive adhesive sheet 10 is used as the back-grinding sheet, the semiconductor wafer W is attached so that the circuit surface W1 faces the first pressure-sensitive adhesive layer 12 of the first pressure-sensitive adhesive sheet 10. It is preferable that the first adhesive sheet 10 as a back grinding sheet is attached to the circuit surface W1 as a first wafer surface before the back surface grinding of the semiconductor wafer W. The step of attaching the first adhesive sheet 10 to the circuit surface W1 may be referred to as the first adhesive sheet attaching step.
 研削前の半導体ウエハWの厚さは、特に限定されず、通常、500μm以上、1000μm以下である。
 研削後の半導体ウエハWの厚さは、特に限定されず、通常、20μm以上、500μm以下である。
The thickness of the semiconductor wafer W before grinding is not particularly limited and is usually 500 μm or more and 1000 μm or less.
The thickness of the semiconductor wafer W after grinding is not particularly limited and is usually 20 μm or more and 500 μm or less.
[第2粘着シートの貼着工程]
 工程(P1)で準備する半導体ウエハWは、バックグラインド工程を経て、さらに、裏面W3に第2粘着シート20を貼着する貼着工程を経て得られたウエハであることが好ましい。この貼着工程を第2粘着シートの貼着工程と称する場合がある。
 後述するように、工程(P2)において、半導体ウエハWは、ダイシングにより複数の半導体チップCPに個片化される。半導体ウエハWをダイシングする際には、半導体ウエハWを保持するために、ダイシングシートと呼ばれる粘着シートを裏面W3に貼着することが好ましい。本実施形態においては、第2粘着シート20がダイシングシートであることが好ましい。ダイシングシートとして第2粘着シート20が用いられる場合、半導体ウエハWは、裏面W3を第2粘着シート20の第2粘着剤層22に向けて貼着される。
[Step of attaching second adhesive sheet]
The semiconductor wafer W prepared in the step (P1) is preferably a wafer obtained through the back grinding step and the sticking step of sticking the second adhesive sheet 20 to the back surface W3. This attaching step may be referred to as a second adhesive sheet attaching step.
As will be described later, in the step (P2), the semiconductor wafer W is diced into a plurality of semiconductor chips CP. When dicing the semiconductor wafer W, an adhesive sheet called a dicing sheet is preferably attached to the back surface W3 in order to hold the semiconductor wafer W. In the present embodiment, the second adhesive sheet 20 is preferably a dicing sheet. When the second adhesive sheet 20 is used as the dicing sheet, the semiconductor wafer W is attached with the back surface W3 facing the second adhesive layer 22 of the second adhesive sheet 20.
[ダイシング工程]
 図1Bは、工程(P2)を説明するための図である。工程(P2)をダイシング工程と称する場合がある。図1Bには、第2粘着シート20に保持された複数の半導体チップCPが示されている。
 回路面W1に第1粘着シート10が貼着され、裏面W3に第2粘着シート20が貼着された状態の半導体ウエハWは、ダイシングにより個片化され、複数の半導体チップCPが形成される。本実施形態では、第1粘着シート10側から切込みを入れて、第1粘着シート10を切断し、さらに半導体ウエハWを切断する。ダイシング工程後の複数の半導体チップCPの回路面W1は、それぞれ、切断された第1粘着シート10によって覆われた状態である。
 ダイシングには、ダイシングソー等の切断手段が用いられる。
 ダイシングの際の切断深さは、第1粘着シート10及び半導体ウエハWを個片化できる深さであれば特に限定されない。半導体ウエハWを確実に切断するという観点から、ダイシング工程における切込みは、第1粘着シート10側から第2粘着シート20に到達するまでの深さで形成することが好ましく、第2粘着シート20の第2粘着剤層22に到達する深さで形成することがより好ましい。ダイシングによって、第2粘着剤層22も半導体チップCPと同じサイズに切断される。さらに、ダイシングによって第2基材21にも切込みが形成される場合がある。
[Dicing process]
FIG. 1B is a diagram for explaining the step (P2). The process (P2) may be called a dicing process. FIG. 1B shows a plurality of semiconductor chips CP held by the second adhesive sheet 20.
The semiconductor wafer W in which the first adhesive sheet 10 is attached to the circuit surface W1 and the second adhesive sheet 20 is attached to the back surface W3 is diced into individual pieces to form a plurality of semiconductor chips CP. .. In this embodiment, a cut is made from the first adhesive sheet 10 side, the first adhesive sheet 10 is cut, and the semiconductor wafer W is further cut. The circuit surfaces W1 of the plurality of semiconductor chips CP after the dicing process are in a state of being covered with the cut first adhesive sheets 10.
A cutting means such as a dicing saw is used for dicing.
The cutting depth at the time of dicing is not particularly limited as long as the first adhesive sheet 10 and the semiconductor wafer W can be separated into individual pieces. From the viewpoint of surely cutting the semiconductor wafer W, the cut in the dicing step is preferably formed at a depth from the first adhesive sheet 10 side to reach the second adhesive sheet 20. More preferably, it is formed to a depth that reaches the second adhesive layer 22. The second adhesive layer 22 is also cut into the same size as the semiconductor chip CP by dicing. Furthermore, a cut may be formed in the second base material 21 by dicing.
[第3粘着シートの貼着工程]
 図2Aは、工程(P3)を説明するための図である。工程(P3)を第3粘着シートの貼着工程と称する場合がある。図2Aには、ダイシング工程によって得た複数の半導体チップCPに第3粘着シート30が貼付された状態が示されている。第3粘着シート30は、第3粘着剤層32と第3基材31とを有する。第3粘着シート30の詳細は、後述する。
 本実施形態では、第3粘着シート30が複数の半導体チップCPの回路面W1側に貼着されると、複数の半導体チップCPと第3粘着シート30の第3粘着剤層32との間に個片化された第1粘着シート10が介在した積層構造が得られる。
[Step of attaching third adhesive sheet]
FIG. 2A is a diagram for explaining the step (P3). The step (P3) may be referred to as a third adhesive sheet sticking step. FIG. 2A shows a state in which the third adhesive sheet 30 is attached to the plurality of semiconductor chips CP obtained by the dicing process. The third pressure-sensitive adhesive sheet 30 has a third pressure-sensitive adhesive layer 32 and a third base material 31. Details of the third adhesive sheet 30 will be described later.
In the present embodiment, when the third adhesive sheet 30 is attached to the circuit surface W1 side of the plurality of semiconductor chips CP, it is between the plurality of semiconductor chips CP and the third adhesive layer 32 of the third adhesive sheet 30. A laminated structure in which the individual first adhesive sheet 10 is interposed is obtained.
[第2粘着シートの剥離工程]
 図2Bは、工程(P4)を説明するための図である。工程(P4)を第2粘着シートの剥離工程と称する場合がある。図2Bには、第3粘着シート30を貼着後に第2粘着シート20をウエハWの裏面W3から剥離した状態が示されている。
 第3粘着シート30を貼着した後、第2粘着シート20を剥離すると、複数の半導体チップCPの裏面W3が露出する。
 なお、第2粘着剤層22にエネルギー線重合性化合物が配合されている場合には、第2粘着剤層22に第2基材21側からエネルギー線を照射し、エネルギー線重合性化合物を硬化させてから第2粘着シート20を剥離することが好ましい。
[Peeling Step of Second Adhesive Sheet]
FIG. 2B is a diagram for explaining the step (P4). The step (P4) may be referred to as the peeling step of the second adhesive sheet. FIG. 2B shows a state in which the second adhesive sheet 20 is peeled from the back surface W3 of the wafer W after the third adhesive sheet 30 is attached.
When the second adhesive sheet 20 is peeled off after the third adhesive sheet 30 is attached, the back surfaces W3 of the plurality of semiconductor chips CP are exposed.
When the energy ray-polymerizable compound is mixed in the second pressure-sensitive adhesive layer 22, the second pressure-sensitive adhesive layer 22 is irradiated with energy rays from the second base material 21 side to cure the energy ray-polymerizable compound. It is preferable that the second adhesive sheet 20 is peeled off after the operation.
[エキスパンド工程]
 図3は、工程(P5)を説明するための図である。工程(P5)をエキスパンド工程と称する場合がある。図3には、第2粘着シート20を剥離後に、第3粘着シート30を伸張させて、複数の半導体チップCPの間隔を拡げた状態が示されている。
 複数の半導体チップCPの間隔を拡げる際には、エキスパンドシートと呼ばれる粘着シートにより複数の半導体チップCPを保持した状態で、エキスパンドシートを伸張することが好ましい。本実施形態においては、第3粘着シート30がエキスパンドシートであることが好ましい。
 エキスパンド工程において第3粘着シート30を引き延ばす方法は、特に限定されない。第3粘着シート30を引き延ばす方法としては、例えば、環状もしくは円状のエキスパンダを押し当てて第1粘着シート10を引き延ばす方法、及び把持部材等を用いて第3粘着シート30の外周部を掴んで引き延ばす方法等が挙げられる。本実施形態では、複数の半導体チップCPの間隔D1は、半導体チップCPのサイズに依存するため、特に制限されない。特に、粘着シートの片面に貼着された複数の半導体チップCPにおける、隣り合う半導体チップCPの相互の間隔D1は、200μm以上であることが好ましい。なお、当該半導体チップCPの相互の間隔の上限は、特に制限されない。当該半導体チップCPの相互の間隔の上限は、例えば、6000μmであってもよい。
[Expanding process]
FIG. 3 is a diagram for explaining the step (P5). The process (P5) may be called an expanding process. FIG. 3 shows a state in which the third adhesive sheet 30 is expanded after the second adhesive sheet 20 has been peeled off to expand the intervals between the plurality of semiconductor chips CP.
When expanding the intervals between the plurality of semiconductor chips CP, it is preferable to stretch the expand sheet while holding the plurality of semiconductor chips CP with an adhesive sheet called an expand sheet. In the present embodiment, it is preferable that the third adhesive sheet 30 is an expanded sheet.
The method of stretching the third adhesive sheet 30 in the expanding step is not particularly limited. As a method of stretching the third adhesive sheet 30, for example, a method of pressing the annular or circular expander to stretch the first adhesive sheet 10 and a method of gripping the outer peripheral portion of the third adhesive sheet 30 using a gripping member or the like are used. There is a method for extending the length. In the present embodiment, the spacing D1 between the plurality of semiconductor chips CP depends on the size of the semiconductor chips CP and is not particularly limited. In particular, in the plurality of semiconductor chips CP attached to one surface of the adhesive sheet, the distance D1 between the adjacent semiconductor chips CP is preferably 200 μm or more. It should be noted that the upper limit of the interval between the semiconductor chips CP is not particularly limited. The upper limit of the distance between the semiconductor chips CP may be 6000 μm, for example.
[第1転写工程]
 本実施形態においては、エキスパンド工程の後、第3粘着シート30に貼着されていた複数の半導体チップCPを、別の粘着シート(例えば、第5粘着シート)に転写する工程(以下「第1転写工程」という場合がある。)を実施してもよい。
 図4Aには、第3粘着シート30に貼着されていた複数の半導体チップCPを、第5粘着シート50に転写する工程(以下「転写工程」という場合がある。)を説明する図が示されている。
 第5粘着シート50は、複数の半導体チップCPを保持できれば特に限定されない。第5粘着シート50は、第5基材51と、第5粘着剤層52とを有する。
 本実施形態において転写工程を実施する場合は、例えば、エキスパンド工程の後、複数の半導体チップCPの裏面W3に第5粘着シート50を貼着し、その後、第3粘着シート30を剥離することが好ましい。
[First transfer step]
In the present embodiment, after the expanding step, a step of transferring the plurality of semiconductor chips CP attached to the third adhesive sheet 30 to another adhesive sheet (for example, a fifth adhesive sheet) (hereinafter referred to as “first Sometimes referred to as a "transfer step").
FIG. 4A is a diagram illustrating a step of transferring the plurality of semiconductor chips CP attached to the third pressure-sensitive adhesive sheet 30 to the fifth pressure-sensitive adhesive sheet 50 (hereinafter sometimes referred to as “transfer step”). Has been done.
The fifth adhesive sheet 50 is not particularly limited as long as it can hold a plurality of semiconductor chips CP. The fifth pressure-sensitive adhesive sheet 50 has a fifth base material 51 and a fifth pressure-sensitive adhesive layer 52.
When the transfer step is performed in the present embodiment, for example, after the expanding step, the fifth adhesive sheet 50 may be attached to the back surfaces W3 of the plurality of semiconductor chips CP, and then the third adhesive sheet 30 may be peeled off. preferable.
 第5粘着シート50は、複数の半導体チップCPとともに、第二のリングフレームに貼着されていてもよい。この場合、第5粘着シート50の第5粘着剤層52の上に、第二のリングフレームを載置し、これを軽く押圧し、固定する。その後、第二のリングフレームの環形状の内側にて露出する第5粘着剤層52を半導体チップCPの裏面W3に押し当てて、第5粘着シート50に複数の半導体チップCPを固定する。 The fifth adhesive sheet 50 may be attached to the second ring frame together with the plurality of semiconductor chips CP. In this case, the second ring frame is placed on the fifth pressure-sensitive adhesive layer 52 of the fifth pressure-sensitive adhesive sheet 50, which is lightly pressed and fixed. After that, the fifth adhesive layer 52 exposed on the inner side of the ring shape of the second ring frame is pressed against the back surface W3 of the semiconductor chip CP to fix the plurality of semiconductor chips CP to the fifth adhesive sheet 50.
 図4Bには、第5粘着シート50の貼着後、第3粘着シート30を剥離する工程を説明する図が示されている。
 本実施形態では、第3粘着シート30を剥離する際に、半導体チップCPの回路面W1を覆う個片化された第1粘着シート10を第3粘着シート30とともにまとめて剥離する態様を例に挙げて説明する。第1粘着シート10が半導体チップCPの回路面W1から剥がれる力よりも、第3粘着シート30が第1粘着シート10から剥がれる力の方が大きいことが好ましい。なお、回路面W1を覆う個片化された第1粘着シート10を半導体チップCPに残したまま、第3粘着シート30だけを剥離する態様でもよい。
 第5粘着シート50を貼着した後、第1粘着シート10及び第3粘着シート30を剥離すると、複数の半導体チップCPの回路面W1が露出する。第1粘着シート10及び第3粘着シート30を剥離した後も、エキスパンド工程において拡張させた複数の半導体チップCP間の間隔D1が維持されていることが好ましい。
FIG. 4B is a diagram illustrating a step of peeling off the third adhesive sheet 30 after the fifth adhesive sheet 50 is attached.
In the present embodiment, when the third pressure-sensitive adhesive sheet 30 is peeled off, the individual first pressure-sensitive adhesive sheet 10 covering the circuit surface W1 of the semiconductor chip CP is peeled together with the third pressure-sensitive adhesive sheet 30 as an example. I will give you an explanation. It is preferable that the force of peeling the third adhesive sheet 30 from the first adhesive sheet 10 is larger than the force of peeling the first adhesive sheet 10 from the circuit surface W1 of the semiconductor chip CP. It is also possible to adopt a mode in which only the third adhesive sheet 30 is peeled off while leaving the individualized first adhesive sheet 10 covering the circuit surface W1 on the semiconductor chip CP.
When the first adhesive sheet 10 and the third adhesive sheet 30 are peeled off after attaching the fifth adhesive sheet 50, the circuit surfaces W1 of the plurality of semiconductor chips CP are exposed. It is preferable that the distance D1 between the plurality of semiconductor chips CP expanded in the expanding step is maintained even after the first adhesive sheet 10 and the third adhesive sheet 30 are peeled off.
[第2転写工程]
 図5Aには、第5粘着シート50に貼着されていた複数の半導体チップCPを、第6粘着シート60に転写する工程(以下「第2転写工程」という場合がある。)を説明する図が示されている。
 第5粘着シート50から第6粘着シート60に転写された複数の半導体チップCPは、半導体チップCP間の間隔D1が維持されていることが好ましい。
[Second transfer process]
FIG. 5A is a diagram illustrating a step of transferring the plurality of semiconductor chips CP attached to the fifth adhesive sheet 50 to the sixth adhesive sheet 60 (hereinafter, sometimes referred to as “second transfer step”). It is shown.
It is preferable that the plurality of semiconductor chips CP transferred from the fifth adhesive sheet 50 to the sixth adhesive sheet 60 maintain the distance D1 between the semiconductor chips CP.
 第6粘着シート60は、複数の半導体チップCPを保持できれば特に限定されない。第6粘着シート60は、第6基材61と、第6粘着剤層62とを有する。
 第6粘着シート60上の複数の半導体チップCPを封止したい場合には、第6粘着シート60として、封止工程用の粘着シートを用いることが好ましく、耐熱性を有する粘着シートを用いることがより好ましい。また、第6粘着シート60として耐熱性を有する粘着シートを用いる場合は、第6基材61及び第6粘着剤層62は、それぞれ、封止工程で課される温度に耐え得る耐熱性を有する材料で形成されていることが好ましい。
The sixth adhesive sheet 60 is not particularly limited as long as it can hold a plurality of semiconductor chips CP. The sixth adhesive sheet 60 has a sixth base material 61 and a sixth adhesive layer 62.
When it is desired to seal a plurality of semiconductor chips CP on the sixth adhesive sheet 60, an adhesive sheet for the sealing step is preferably used as the sixth adhesive sheet 60, and an adhesive sheet having heat resistance is used. More preferable. When a heat-resistant pressure-sensitive adhesive sheet is used as the sixth pressure-sensitive adhesive sheet 60, the sixth base material 61 and the sixth pressure-sensitive adhesive layer 62 each have heat resistance capable of withstanding the temperature imposed in the sealing step. It is preferably made of a material.
 第5粘着シート50から第6粘着シート60に転写された複数の半導体チップCPは、回路面W1を第6粘着剤層62に向けて貼着されている。 The plurality of semiconductor chips CP transferred from the fifth adhesive sheet 50 to the sixth adhesive sheet 60 are attached so that the circuit surface W1 faces the sixth adhesive layer 62.
[封止工程]
 図5Bには、封止部材300を用いて複数の半導体チップCPを封止する工程(以下「封止工程」という場合がある。)を説明する図が示されている。
[Sealing process]
FIG. 5B is a diagram illustrating a step of sealing a plurality of semiconductor chips CP using the sealing member 300 (hereinafter sometimes referred to as “sealing step”).
 本実施形態において、封止工程は、複数の半導体チップCPが第6粘着シート60に転写された後に実施される。
 封止工程において、回路面W1が第6粘着シート60に保護された状態で、複数の半導体チップCPを封止部材300によって覆うことにより封止体3が形成される。複数の半導体チップCPの間にも封止部材300が充填されている。第6粘着シート60により回路面W1及び回路W2が覆われているので、封止部材300で回路面W1が覆われることを防止できる。
In the present embodiment, the sealing step is performed after the plurality of semiconductor chips CP have been transferred to the sixth adhesive sheet 60.
In the sealing step, the sealing body 3 is formed by covering the plurality of semiconductor chips CP with the sealing member 300 while the circuit surface W1 is protected by the sixth adhesive sheet 60. The sealing member 300 is also filled between the plurality of semiconductor chips CP. Since the circuit surface W1 and the circuit W2 are covered with the sixth adhesive sheet 60, it is possible to prevent the circuit surface W1 from being covered with the sealing member 300.
 封止工程により、所定距離ずつ離間した複数の半導体チップCPが封止部材300に埋め込まれた封止体3が得られる。封止工程においては、複数の半導体チップCPは、エキスパンド工程を実施後の間隔D1が維持された状態で、封止部材300により覆われることが好ましい。 By the sealing step, the sealing body 3 in which the plurality of semiconductor chips CP separated by a predetermined distance are embedded in the sealing member 300 is obtained. In the sealing process, it is preferable that the plurality of semiconductor chips CP be covered with the sealing member 300 in a state in which the interval D1 after performing the expanding process is maintained.
 封止工程の後、第6粘着シート60を剥離する。第6粘着シート60を剥離すると、半導体チップCPの回路面W1及び封止体3の第6粘着シート60と接触していた面3Aが露出する。 After the sealing step, the sixth adhesive sheet 60 is peeled off. When the sixth adhesive sheet 60 is peeled off, the circuit surface W1 of the semiconductor chip CP and the surface 3A of the sealing body 3 that was in contact with the sixth adhesive sheet 60 are exposed.
 前述のエキスパンド工程の後、転写工程及びエキスパンド工程を任意の回数繰り返すことで、半導体チップCP間の距離を所望の距離とし、半導体チップCPを封止する際の回路面の向きを所望の向きとすることができる。 After the expanding process described above, the transfer process and the expanding process are repeated any number of times to set the distance between the semiconductor chips CP to a desired distance, and to set the orientation of the circuit surface when sealing the semiconductor chips CP to the desired orientation. can do.
[その他の工程]
 封止体3から粘着シートを剥離した後、この封止体3に対して、半導体チップCPと電気的に接続する再配線層を形成する再配線層形成工程と、再配線層と外部端子電極とを電気的に接続する接続工程とが順に行われる。再配線層形成工程及び外部端子電極との接続工程によって、半導体チップCPの回路と外部端子電極とが電気的に接続される。
 外部端子電極が接続された封止体3を半導体チップCP単位で個片化する。封止体3を個片化させる方法は、特に限定されない。封止体3を個片化することで、半導体チップCP単位の半導体パッケージが製造される。半導体チップCPの領域外にファンアウトさせた外部電極を接続させた半導体パッケージは、ファンアウト型のウエハレベルパッケージ(FO-WLP)として製造される。
[Other processes]
After peeling the adhesive sheet from the sealing body 3, a rewiring layer forming step of forming a rewiring layer electrically connected to the semiconductor chip CP on the sealing body 3, a rewiring layer and an external terminal electrode. And a connecting step of electrically connecting and are sequentially performed. The circuit of the semiconductor chip CP and the external terminal electrode are electrically connected by the rewiring layer forming step and the external terminal electrode connecting step.
The sealing body 3 to which the external terminal electrodes are connected is separated into individual semiconductor chips CP. The method for dividing the sealing body 3 into individual pieces is not particularly limited. By separating the sealing body 3 into individual pieces, a semiconductor package for each semiconductor chip CP is manufactured. The semiconductor package having the fan-out external electrodes connected to the outside of the semiconductor chip CP is manufactured as a fan-out type wafer level package (FO-WLP).
(第1粘着シート)
 第1粘着シート10は、第1基材11と、第1粘着剤層12とを有する。第1粘着剤層12は、第1基材11に積層されている。
(First adhesive sheet)
The first pressure-sensitive adhesive sheet 10 has a first base material 11 and a first pressure-sensitive adhesive layer 12. The first pressure-sensitive adhesive layer 12 is laminated on the first base material 11.
・第1基材
 本実施形態に係る第1基材11は、バックグラインド工程等の所望の工程において適切に機能できる限り、その構成材料は特に限定されない。
 第1基材11は、樹脂系の材料を主材とするフィルムから構成されることが好ましい。樹脂系の材料を主材とするフィルムとしては、例えば、エチレン系共重合フィルム、ポリオレフィン系フィルム、ポリ塩化ビニル系フィルム、ポリエステル系フィルム、ポリウレタンフィルム、ポリイミドフィルム、ポリスチレンフィルム、ポリカーボネートフィルム、及びフッ素樹脂フィルムが挙げられる。
First Base Material The constituent material of the first base material 11 according to the present embodiment is not particularly limited as long as it can properly function in a desired process such as a back grinding process.
The first base material 11 is preferably composed of a film whose main material is a resin-based material. Examples of the film containing a resin-based material as a main material include, for example, ethylene-based copolymer films, polyolefin-based films, polyvinyl chloride-based films, polyester-based films, polyurethane films, polyimide films, polystyrene films, polycarbonate films, and fluororesins. Examples include films.
 エチレン系共重合フィルムとしては、例えば、エチレン-酢酸ビニル共重合体フィルム、エチレン-(メタ)アクリル酸共重合体フィルム及びエチレン-(メタ)アクリル酸エステル共重合体フィルムが挙げられる。
 本明細書における「(メタ)アクリル酸」は、アクリル酸及びメタクリル酸の両方を意味し、他の類似用語についても同様である。
Examples of the ethylene-based copolymer film include an ethylene-vinyl acetate copolymer film, an ethylene-(meth)acrylic acid copolymer film and an ethylene-(meth)acrylic acid ester copolymer film.
In the present specification, “(meth)acrylic acid” means both acrylic acid and methacrylic acid, and the same applies to other similar terms.
 ポリオレフィン系フィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、エチレン-ノルボルネン共重合体フィルム及びノルボルネン樹脂フィルムが挙げられる。
 ポリエチレンフィルムとしては、例えば、低密度ポリエチレン(LDPE)フィルム、直鎖低密度ポリエチレン(LLDPE)フィルム及び高密度ポリエチレン(HDPE)フィルムが挙げられる。
Examples of the polyolefin film include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, ethylene-norbornene copolymer film and norbornene resin film.
Examples of the polyethylene film include a low density polyethylene (LDPE) film, a linear low density polyethylene (LLDPE) film and a high density polyethylene (HDPE) film.
 ポリ塩化ビニル系フィルムとしては、例えば、ポリ塩化ビニルフィルム及び塩化ビニル共重合体フィルムが挙げられる。 Examples of polyvinyl chloride films include polyvinyl chloride films and vinyl chloride copolymer films.
 ポリエステル系フィルムとしては、例えば、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルムが挙げられる。 Examples of polyester film include polyethylene terephthalate film and polybutylene terephthalate film.
 第1基材11としては、樹脂系の材料を主材とするフィルムの架橋フィルムも挙げられる。また、第1基材11としては、アイオノマーフィルムのような変性フィルムも挙げられる。
 第1基材11は、樹脂系の材料を主材とするフィルム、架橋フィルム及び変性フィルムからなる群から選択される1種のみからなるフィルムでもよいし、2種類以上組み合わせた積層フィルムであってもよい。
As the first base material 11, a cross-linked film of a film containing a resin-based material as a main material can also be used. Further, as the first base material 11, a modified film such as an ionomer film can also be used.
The first base material 11 may be a film made of only one selected from the group consisting of a film containing a resin-based material as a main material, a crosslinked film and a modified film, or a laminated film in which two or more kinds are combined. Good.
 第1基材11には、上記の樹脂系材料を主材とするフィルム内に、例えば、顔料、難燃剤、可塑剤、帯電防止剤、滑剤及びフィラーからなる群から選択される少なくとも一種の添加剤が含まれていてもよい。
 顔料としては、例えば、二酸化チタン及びカーボンブラック等が挙げられる。
 フィラーとしては、例えば、メラミン樹脂のような有機系材料、ヒュームドシリカのような無機系材料及びニッケル粒子のような金属系材料が挙げられる。
 樹脂系材料を主材とするフィルム内に含まれる添加剤の含有量は、特に限定されないが、第1基材11が所望の機能を発揮し、平滑性及び柔軟性を失わない範囲に留めることが好ましい。
For the first base material 11, for example, at least one additive selected from the group consisting of pigments, flame retardants, plasticizers, antistatic agents, lubricants and fillers is added to the film containing the above resin material as a main material. Agents may be included.
Examples of pigments include titanium dioxide and carbon black.
Examples of the filler include organic materials such as melamine resin, inorganic materials such as fumed silica, and metal materials such as nickel particles.
The content of the additive contained in the film containing a resin-based material as a main material is not particularly limited, but it should be within a range in which the first base material 11 exerts a desired function and does not lose smoothness and flexibility. Is preferred.
 第1粘着剤層12を硬化させるためのエネルギー線として紫外線を照射する場合には、第1基材11は、紫外線に対して透過性を有することが好ましい。
 なお、第1粘着剤層12を硬化させるためのエネルギー線として電子線を照射する場合には、第1基材11は、電子線に対して透過性を有することが好ましい。
When irradiating with ultraviolet rays as an energy ray for curing the first pressure-sensitive adhesive layer 12, the first base material 11 is preferably transparent to ultraviolet rays.
In addition, when irradiating with an electron beam as an energy ray for hardening the 1st adhesive layer 12, it is preferable that the 1st base material 11 has a transparency with respect to an electron beam.
 第1基材11は、その表面に積層される第1粘着剤層12との密着性を向上させる目的で、所望により片面または両面に、表面処理又はプライマー処理が施されていてもよい。表面処理としては、酸化法及び凹凸化法等が挙げられる。プライマー処理としては、基材表面にプライマー層を形成する方法が挙げられる。酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン処理及び紫外線照射処理等が挙げられる。凹凸化法としては、例えば、サンドブラスト法及び溶射処理法等が挙げられる。 The first base material 11 may be subjected to surface treatment or primer treatment on one side or both sides, if desired, for the purpose of improving the adhesion with the first pressure-sensitive adhesive layer 12 laminated on the surface thereof. Examples of the surface treatment include an oxidation method and a roughening method. Examples of the primer treatment include a method of forming a primer layer on the surface of the base material. Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone treatment, and ultraviolet irradiation treatment. Examples of the roughening method include a sandblast method and a thermal spraying method.
 第1基材11の厚さは、第1粘着シートが所望の工程において適切に機能できる限り、限定されない。
 第1基材11の厚さは、20μm以上であることが好ましく、25μm以上であることがより好ましく、50μm以上であることがさらに好ましい。
 第1基材11の厚さは、450μm以下であることが好ましく、400μm以下であることがより好ましく、350μm以下であることがさらに好ましい。
The thickness of the first base material 11 is not limited as long as the first pressure-sensitive adhesive sheet can properly function in a desired process.
The thickness of the first base material 11 is preferably 20 μm or more, more preferably 25 μm or more, and further preferably 50 μm or more.
The thickness of the first base material 11 is preferably 450 μm or less, more preferably 400 μm or less, and further preferably 350 μm or less.
・第1粘着剤層
 第1粘着剤層12は、バックグラインド工程等の所望の工程において適切に機能できる限り、その構成材料は特に限定されない。
 本実施形態では、第1粘着剤層12は、例えば、アクリル系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ゴム系粘着剤及びシリコーン系粘着剤からなる群から選択される少なくとも一種の粘着剤で構成されることが好ましく、アクリル系粘着剤で構成されることがより好ましい。
First Adhesive Layer The constituent material of the first adhesive layer 12 is not particularly limited as long as it can properly function in a desired process such as a back grinding process.
In the present embodiment, the first pressure-sensitive adhesive layer 12 is, for example, at least one pressure-sensitive adhesive selected from the group consisting of acrylic pressure-sensitive adhesive, urethane pressure-sensitive adhesive, polyester pressure-sensitive adhesive, rubber pressure-sensitive adhesive and silicone pressure-sensitive adhesive. It is preferable to be composed of an agent, and more preferable to be composed of an acrylic adhesive.
 第1粘着剤層12は、エネルギー線硬化性粘着剤を含有することも好ましい。エネルギー線硬化性粘着剤は、エネルギー線重合性化合物を含有する。
 第1粘着剤層12がエネルギー線硬化性粘着剤を含有する場合には、第1粘着剤層12に第1基材11側からエネルギー線を照射し、エネルギー線重合性化合物を硬化させる。エネルギー線重合性化合物を硬化させると、第1粘着剤層12の凝集力が高まり、第1粘着剤層12と被着体(半導体ウエハW又は半導体チップCP)との間の粘着力を低下または消失させることができる。エネルギー線としては、例えば、紫外線(UV)及び電子線(EB)が挙げられ、紫外線が好ましい。
The first pressure-sensitive adhesive layer 12 also preferably contains an energy ray-curable pressure-sensitive adhesive. The energy ray-curable pressure-sensitive adhesive contains an energy ray-polymerizable compound.
When the first pressure-sensitive adhesive layer 12 contains an energy ray-curable pressure-sensitive adhesive, the first pressure-sensitive adhesive layer 12 is irradiated with an energy ray from the first base material 11 side to cure the energy ray-polymerizable compound. When the energy ray-polymerizable compound is cured, the cohesive force of the first adhesive layer 12 increases and the adhesive force between the first adhesive layer 12 and the adherend (semiconductor wafer W or semiconductor chip CP) decreases. It can disappear. Examples of energy rays include ultraviolet rays (UV) and electron rays (EB), and ultraviolet rays are preferable.
 エネルギー線硬化性粘着剤としては、例えば、「X型の粘着剤組成物」、「Y型の粘着剤組成物」及び「XY型の粘着剤組成物」が挙げられる。 Examples of the energy ray-curable pressure-sensitive adhesive include “X-type pressure-sensitive adhesive composition”, “Y-type pressure-sensitive adhesive composition”, and “XY-type pressure-sensitive adhesive composition”.
 「X型の粘着剤組成物」は、非エネルギー線硬化性の粘着性樹脂(「粘着性樹脂I」ともいう)と、粘着性樹脂以外のエネルギー線硬化性化合物と、を含むエネルギー線硬化性粘着剤組成物である。 The “X-type pressure-sensitive adhesive composition” is an energy ray-curable resin containing a non-energy ray-curable pressure-sensitive adhesive resin (also referred to as “adhesive resin I”) and an energy ray-curable compound other than the pressure-sensitive adhesive resin. It is an adhesive composition.
 「Y型の粘着剤組成物」は、エネルギー線硬化性粘着剤として、非エネルギー線硬化性の粘着性樹脂の側鎖に不飽和基を導入したエネルギー線硬化性の粘着性樹脂(以下、「粘着性樹脂II」ともいう)を主成分として含み、粘着性樹脂以外のエネルギー線硬化性化合物を含まない粘着剤組成物である。 The "Y-type pressure-sensitive adhesive composition" is an energy-ray-curable pressure-sensitive adhesive resin in which an unsaturated group is introduced into a side chain of a non-energy-ray-curable pressure-sensitive adhesive resin (hereinafter, " (Also referred to as "adhesive resin II") as a main component, and does not contain an energy ray-curable compound other than the adhesive resin.
 「XY型の粘着剤組成物」は、X型とY型の併用型、すなわち、エネルギー線硬化性の粘着性樹脂IIと、粘着性樹脂以外のエネルギー線硬化性化合物と、を含むエネルギー線硬化性粘着剤組成物である。 "XY-type pressure-sensitive adhesive composition" is a combination type of X-type and Y-type, that is, an energy ray-curable adhesive resin II and an energy ray-curable compound other than the adhesive resin. Adhesive composition.
 これらの中では、XY型の粘着剤組成物を使用することが好ましい。XY型の粘着剤組成物を使用することで、硬化前においては十分な粘着特性を有する一方で、硬化後においては、半導体ウエハ又は半導体チップに対する剥離力を十分に低くすることが可能である。 Among these, it is preferable to use the XY type adhesive composition. By using the XY type pressure-sensitive adhesive composition, it is possible to have sufficient pressure-sensitive adhesive properties before curing and to sufficiently reduce the peeling force to the semiconductor wafer or the semiconductor chip after curing.
 ただし、第1粘着剤層12における粘着剤としては、エネルギー線を照射しても硬化しない非エネルギー線硬化性の粘着剤組成物から形成してもよい。非エネルギー線硬化性の粘着剤組成物は、少なくとも非エネルギー線硬化性の粘着性樹脂Iを含有する一方、上記したエネルギー線硬化性の粘着性樹脂II及びエネルギー線硬化性化合物を含有しない粘着剤組成物である。 However, the pressure-sensitive adhesive in the first pressure-sensitive adhesive layer 12 may be formed from a non-energy ray curable pressure-sensitive adhesive composition that does not cure even when irradiated with energy rays. The non-energy ray-curable pressure-sensitive adhesive composition contains at least the non-energy ray-curable pressure-sensitive adhesive resin I, but does not contain the energy ray-curable pressure-sensitive adhesive resin II and the energy ray-curable compound described above. It is a composition.
 なお、以下の説明において「粘着性樹脂」は、上記した粘着性樹脂I及び粘着性樹脂IIの一方又は両方を指す用語として使用する。具体的な粘着性樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ゴム系樹脂及びシリコーン系樹脂が挙げられ、アクリル系樹脂が好ましい。 In the following description, “adhesive resin” is used as a term indicating one or both of the adhesive resin I and the adhesive resin II described above. Specific examples of the adhesive resin include acrylic resin, urethane resin, rubber resin, and silicone resin, and acrylic resin is preferable.
 以下、粘着性樹脂として、アクリル系樹脂が使用されるアクリル系粘着剤についてより詳細に説明する。 Hereinafter, the acrylic pressure-sensitive adhesive in which the acrylic resin is used as the adhesive resin will be described in more detail.
・アクリル系重合体(a)
 アクリル系樹脂として、アクリル系重合体(a)が使用される。アクリル系重合体(a)は、少なくともアルキル(メタ)アクリレートを含むモノマーを重合して得た重合体である。アクリル系重合体(a)は、アルキル(メタ)アクリレート由来の構成単位を含む。
 アルキル(メタ)アクリレートにおけるアルキル基の炭素数は、1以上20以下であることが好ましい。
 アルキル(メタ)アクリレートにおけるアルキル基は、直鎖であってもよいし、分岐鎖であってもよい。
 アルキル(メタ)アクリレートの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート及びドデシル(メタ)アクリレート等が挙げられる。アルキル(メタ)アクリレートは、1種を単独で又は2種以上組み合わせて用いてもよい。
・Acrylic polymer (a)
An acrylic polymer (a) is used as the acrylic resin. The acrylic polymer (a) is a polymer obtained by polymerizing a monomer containing at least an alkyl (meth)acrylate. The acrylic polymer (a) contains a structural unit derived from an alkyl (meth)acrylate.
The alkyl group in the alkyl (meth)acrylate preferably has 1 to 20 carbon atoms.
The alkyl group in the alkyl (meth)acrylate may be linear or branched.
Specific examples of the alkyl (meth)acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth). ) Acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate and dodecyl (meth)acrylate. The alkyl (meth)acrylates may be used alone or in combination of two or more.
 アクリル系重合体(a)は、粘着剤層の粘着力を向上させる観点から、アルキル基の炭素数が4以上であるアルキル(メタ)アクリレート由来の構成単位を含むことが好ましい。該アルキル(メタ)アクリレートにおけるアルキル基の炭素数としては、4以上、12以下であることが好ましく、4以上、6以下であることがより好ましい。アルキル基の炭素数が4以上であるアルキル(メタ)アクリレートは、アルキルアクリレートであることが好ましい。 From the viewpoint of improving the adhesive strength of the pressure-sensitive adhesive layer, the acrylic polymer (a) preferably contains a structural unit derived from an alkyl (meth)acrylate in which the alkyl group has 4 or more carbon atoms. The carbon number of the alkyl group in the alkyl (meth)acrylate is preferably 4 or more and 12 or less, and more preferably 4 or more and 6 or less. The alkyl (meth)acrylate in which the alkyl group has 4 or more carbon atoms is preferably an alkyl acrylate.
 アクリル系重合体(a)において、アルキル基の炭素数が4以上であるアルキル(メタ)アクリレートは、アクリル系重合体(a)を構成するモノマー全量(以下、単に「モノマー全量」ともいう)に対して、40質量%以上、98質量%以下であることが好ましく、45質量%以上、95質量%以下であることがより好ましく、50質量%以上、90質量%以下であることがさらに好ましい。 In the acrylic polymer (a), the alkyl (meth)acrylate whose alkyl group has 4 or more carbon atoms is added to the total amount of monomers (hereinafter, also simply referred to as “total amount of monomers”) constituting the acrylic polymer (a). On the other hand, it is preferably 40% by mass or more and 98% by mass or less, more preferably 45% by mass or more and 95% by mass or less, and further preferably 50% by mass or more and 90% by mass or less.
 アクリル系重合体(a)は、アルキル基の炭素数が4以上であるアルキル(メタ)アクレート由来の構成単位に加えて、粘着剤層の弾性率や粘着特性を調整するために、アルキル基の炭素数が1以上3以下であるアルキル(メタ)アクリレート由来の構成単位を含む共重合体であることが好ましい。なお、該アルキル(メタ)アクリレートは、炭素数1又は2のアルキル(メタ)アクリレートであることが好ましく、メチル(メタ)アクリレートがより好ましく、メチルメタクリレートが最も好ましい。アクリル系重合体(a)において、アルキル基の炭素数が1以上3以下であるアルキル(メタ)アクリレートは、モノマー全量に対して、1質量%以上、30質量%以下であることが好ましく、3質量%以上、26質量%以下であることがより好ましく、6質量%以上、22質量%以下であることがさらに好ましい。 The acrylic polymer (a) contains a structural unit derived from an alkyl (meth)acrylate in which the alkyl group has 4 or more carbon atoms, and in addition to the alkyl group of the alkyl group in order to adjust the elastic modulus and the adhesive property of the adhesive layer. It is preferably a copolymer containing a structural unit derived from an alkyl(meth)acrylate having 1 to 3 carbon atoms. The alkyl(meth)acrylate is preferably an alkyl(meth)acrylate having 1 or 2 carbon atoms, more preferably methyl(meth)acrylate, most preferably methyl methacrylate. In the acrylic polymer (a), the alkyl (meth)acrylate whose alkyl group has 1 to 3 carbon atoms is preferably 1% by mass or more and 30% by mass or less based on the total amount of the monomers. The content is more preferably not less than mass% and not more than 26 mass %, further preferably not less than 6 mass% and not more than 22 mass %.
・官能基含有モノマー
 アクリル系重合体(a)は、上記したアルキル(メタ)アクリレート由来の構成単位に加えて、官能基含有モノマー由来の構成単位を有することが好ましい。官能基含有モノマーの官能基としては、例えば、水酸基、カルボキシ基、アミノ基及びエポキシ基が挙げられる。官能基含有モノマーは、後述の架橋剤と反応し、架橋起点となったり、不飽和基含有化合物と反応して、アクリル系重合体(a)の側鎖に不飽和基を導入させたりすることが可能である。
-Functional group-containing monomer The acrylic polymer (a) preferably has a functional unit-containing monomer-derived structural unit in addition to the above-mentioned alkyl (meth)acrylate-derived structural unit. Examples of the functional group of the functional group-containing monomer include a hydroxyl group, a carboxy group, an amino group and an epoxy group. The functional group-containing monomer reacts with a cross-linking agent to be described later to form a cross-linking starting point, or reacts with an unsaturated group-containing compound to introduce an unsaturated group into the side chain of the acrylic polymer (a). Is possible.
 官能基含有モノマーとしては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー及びエポキシ基含有モノマーが挙げられる。これら官能基含有モノマーは、1種を単独で又は2種以上組み合わせて用いてもよい。これら官能基含有モノマーの中でも、水酸基含有モノマー及びカルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。 Examples of the functional group-containing monomer include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer and an epoxy group-containing monomer. These functional group-containing monomers may be used alone or in combination of two or more. Among these functional group-containing monomers, hydroxyl group-containing monomers and carboxy group-containing monomers are preferable, and hydroxyl group-containing monomers are more preferable.
 水酸基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;ビニルアルコール、アリルアルコール等の不飽和アルコール等が挙げられる。 Examples of the hydroxyl group-containing monomer include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, and 3-hydroxybutyl (meth). ) Hydroxyalkyl (meth)acrylates such as acrylates and 4-hydroxybutyl (meth)acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol.
 カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸及びその無水物、2-カルボキシエチルメタクリレート等が挙げられる。 Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids such as (meth)acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and anhydrides thereof. , 2-carboxyethyl methacrylate and the like.
 官能基含有モノマーは、アクリル系重合体(a)を構成するモノマー全量に対して、1質量%以上、35質量%以下であることが好ましく、3質量%以上、32質量%以下であることがより好ましく、6質量%以上、30質量%以下であることがさらに好ましい。 The functional group-containing monomer is preferably 1% by mass or more and 35% by mass or less, and preferably 3% by mass or more and 32% by mass or less, with respect to the total amount of the monomers constituting the acrylic polymer (a). It is more preferably 6% by mass or more and 30% by mass or less.
 また、アクリル系重合体(a)は、上記以外にも、上記アクリル系モノマーと共重合可能なモノマー由来の構成単位を含んでもよい。上記アクリル系モノマーと共重合可能なモノマー由来の構成単位としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、蟻酸ビニル、酢酸ビニル、アクリロニトリル及びアクリルアミドが挙げられる。 In addition to the above, the acrylic polymer (a) may contain a structural unit derived from a monomer copolymerizable with the acrylic monomer. Examples of the constitutional unit derived from a monomer copolymerizable with the acrylic monomer include styrene, α-methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile and acrylamide.
 上記アクリル系重合体(a)は、非エネルギー線硬化性の粘着性樹脂I(アクリル系樹脂)として使用することができる。また、エネルギー線硬化性のアクリル系樹脂としては、上記アクリル系重合体(a)の官能基に、光重合性不飽和基を有する化合物(不飽和基含有化合物ともいう)を反応させたものが挙げられる。 The above acrylic polymer (a) can be used as a non-energy ray curable adhesive resin I (acrylic resin). As the energy ray-curable acrylic resin, one obtained by reacting a compound having a photopolymerizable unsaturated group (also referred to as an unsaturated group-containing compound) with the functional group of the acrylic polymer (a) is used. Can be mentioned.
 不飽和基含有化合物は、アクリル系重合体(a)の官能基と結合可能な置換基及び光重合性不飽和基の双方を有する化合物である。光重合性不飽和基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基及びビニルベンジル基が挙げられ、(メタ)アクリロイル基が好ましい。 The unsaturated group-containing compound is a compound having both a substituent capable of binding to the functional group of the acrylic polymer (a) and a photopolymerizable unsaturated group. Examples of the photopolymerizable unsaturated group include a (meth)acryloyl group, a vinyl group, an allyl group and a vinylbenzyl group, and a (meth)acryloyl group is preferable.
 また、不飽和基含有化合物が有する、官能基と結合可能な置換基としては、例えば、イソシアネート基及びグリシジル基が挙げられる。したがって、不飽和基含有化合物としては、例えば、(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルイソシアネート及びグリシジル(メタ)アクリレート等が挙げられる。 Further, examples of the substituent that the unsaturated group-containing compound has, which can be bonded to the functional group, include an isocyanate group and a glycidyl group. Therefore, examples of the unsaturated group-containing compound include (meth)acryloyloxyethyl isocyanate, (meth)acryloyl isocyanate, and glycidyl (meth)acrylate.
 また、不飽和基含有化合物は、アクリル系重合体(a)の官能基の一部に反応することが好ましく、具体的には、アクリル系重合体(a)が有する官能基の50モル%以上、98モル%以下に、不飽和基含有化合物を反応させることが好ましく、55モル%以上、93モル%以下に、不飽和基含有化合物を反応させることがより好ましい。このように、エネルギー線硬化性アクリル系樹脂において、官能基の一部が不飽和基含有化合物と反応せずに残存することで、架橋剤によって架橋されやすくなる。 The unsaturated group-containing compound preferably reacts with a part of the functional groups of the acrylic polymer (a), specifically, 50 mol% or more of the functional groups of the acrylic polymer (a). , 98 mol% or less is preferably reacted with the unsaturated group-containing compound, and 55 mol% or more and 93 mol% or less is more preferably reacted with the unsaturated group-containing compound. As described above, in the energy ray-curable acrylic resin, a part of the functional group remains without reacting with the unsaturated group-containing compound, so that the crosslinking agent is easily cross-linked.
 なお、アクリル系樹脂の重量平均分子量(Mw)は、30万以上、160万以下であることが好ましく、40万以上、140万以下であることがより好ましく、50万以上、120万以下であることがさらに好ましい。アクリル系樹脂の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定したポリスチレン換算の値である。 The weight average molecular weight (Mw) of the acrylic resin is preferably 300,000 or more and 1.6 million or less, more preferably 400,000 or more and 1.4 million or less, and 500,000 or more and 1.2 million or less. Is more preferable. The weight average molecular weight (Mw) of the acrylic resin is a polystyrene-equivalent value measured by a gel permeation chromatography method (GPC method).
・エネルギー線硬化性化合物
 X型又はXY型の粘着剤組成物に含有されるエネルギー線硬化性化合物としては、分子内に不飽和基を有し、エネルギー線照射により重合硬化可能なモノマー又はオリゴマーが好ましい。
Energy ray-curable compound As the energy ray-curable compound contained in the X-type or XY-type pressure-sensitive adhesive composition, a monomer or oligomer having an unsaturated group in the molecule and capable of being polymerized and cured by energy ray irradiation is used. preferable.
 このようなエネルギー線硬化性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート及び1,6-へキサンジオール(メタ)アクリレート等の多価(メタ)アクリレートモノマー、並びにウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート及びエポキシ(メタ)アクリレート等のオリゴマーが挙げられる。 Examples of such energy ray-curable compounds include trimethylolpropane tri(meth)acrylate, pentaerythritol(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4- Poly(meth)acrylate monomers such as butylene glycol di(meth)acrylate and 1,6-hexanediol (meth)acrylate, as well as urethane (meth)acrylate, polyester (meth)acrylate, polyether (meth)acrylate and epoxy An oligomer such as (meth)acrylate may be used.
 これらの中でも、比較的分子量が高く、粘着剤層のせん断貯蔵弾性率を低下させにくい観点から、ウレタン(メタ)アクリレートオリゴマーが好ましい。エネルギー線硬化性化合物の分子量(オリゴマーの場合は重量平均分子量)は、100以上、12000以下であることが好ましく、200以上、10000以下であることがより好ましく、400以上、8000以下であることがさらに好ましく、600以上、6000以下であることが特に好ましい。 Among these, urethane (meth)acrylate oligomers are preferable from the viewpoint of having a relatively high molecular weight and making it difficult to reduce the shear storage elastic modulus of the adhesive layer. The molecular weight (weight average molecular weight in the case of an oligomer) of the energy ray-curable compound is preferably 100 or more and 12000 or less, more preferably 200 or more and 10000 or less, and 400 or more and 8000 or less. More preferably, 600 or more and 6000 or less are particularly preferable.
 X型の粘着剤組成物におけるエネルギー線硬化性化合物の含有量は、粘着性樹脂100質量部に対して、40質量部以上、200質量部以下であることが好ましく、50質量部以上、150質量部以下であることがより好ましく、60質量部以上、90質量部以下であることがさらに好ましい。 The content of the energy ray-curable compound in the X-type pressure-sensitive adhesive composition is preferably 40 parts by mass or more and 200 parts by mass or less, and 50 parts by mass or more, 150 parts by mass with respect to 100 parts by mass of the adhesive resin. It is more preferably not more than 60 parts by mass, further preferably not less than 60 parts by mass and not more than 90 parts by mass.
 一方で、XY型の粘着剤組成物におけるエネルギー線硬化性化合物の含有量は、粘着性樹脂100質量部に対して、1質量部以上、30質量部以下であることが好ましく、2質量部以上、20質量部以下であることがより好ましく、3質量部以上、15質量部以下であることがさらに好ましい。XY型の粘着剤組成物では、粘着性樹脂が、エネルギー線硬化性であるため、エネルギー線硬化性化合物の含有量が少なくても、エネルギー線照射後、十分に剥離力を低下させることが可能である。 On the other hand, the content of the energy ray-curable compound in the XY type pressure-sensitive adhesive composition is preferably 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the adhesive resin, and 2 parts by mass or more. , 20 parts by mass or less, more preferably 3 parts by mass or more and 15 parts by mass or less. In the XY type pressure-sensitive adhesive composition, since the pressure-sensitive adhesive resin is energy ray-curable, it is possible to sufficiently reduce the peeling force after the energy ray irradiation even if the content of the energy ray-curable compound is small. Is.
・架橋剤
 粘着剤組成物は、さらに架橋剤を含有することが好ましい。架橋剤は、例えば、粘着性樹脂が有する官能基モノマー由来の官能基に反応して、粘着性樹脂同士を架橋する。架橋剤としては、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート等、及びそれらのアダクト体等のイソシアネート系架橋剤;エチレングリコールグリシジルエーテル等のエポキシ系架橋剤;ヘキサ〔1-(2-メチル)-アジリジニル〕トリフオスファトリアジン等のアジリジン系架橋剤;アルミニウムキレート等のキレート系架橋剤;等が挙げられる。これらの架橋剤は、1種を単独で又は2種以上を組み合わせて用いてもよい。
-Crosslinking agent It is preferable that the pressure-sensitive adhesive composition further contains a crosslinking agent. The cross-linking agent reacts with a functional group derived from a functional group monomer of the adhesive resin to cross-link the adhesive resins. Examples of the cross-linking agent include isocyanate-based cross-linking agents such as tolylene diisocyanate, hexamethylene diisocyanate, and adducts thereof; epoxy-based cross-linking agents such as ethylene glycol glycidyl ether; hexa[1-(2-methyl)-aziridinyl ] Aziridine-based crosslinking agents such as triphosphatriazine; chelate-based crosslinking agents such as aluminum chelates; and the like. You may use these crosslinking agents individually by 1 type or in combination of 2 or more types.
 これらの中でも、凝集力を高めて粘着力を向上させる観点、及び入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。 Among these, the isocyanate cross-linking agent is preferable from the viewpoint of enhancing cohesive strength to improve adhesive strength, and availability.
 架橋剤の配合量は、架橋反応を促進させる観点から、粘着性樹脂100質量部に対して、0.01質量部以上、10質量部以下であることが好ましく、0.03質量部以上、7質量部以下であることがより好ましく、0.05質量部以上、4質量部以下であることがさらに好ましい。 From the viewpoint of accelerating the crosslinking reaction, the amount of the cross-linking agent is preferably 0.01 parts by mass or more and 10 parts by mass or less, and 0.03 parts by mass or more, 7 parts by mass with respect to 100 parts by mass of the adhesive resin. It is more preferably not more than 5 parts by mass, further preferably not less than 0.05 parts by mass and not more than 4 parts by mass.
・光重合開始剤
 粘着剤組成物がエネルギー線硬化性である場合には、粘着剤組成物は、さらに光重合開始剤を含有することが好ましい。光重合開始剤を含有することで、紫外線等の比較的低エネルギーのエネルギー線でも、粘着剤組成物の硬化反応を十分に進行させることができる。
-Photopolymerization initiator When the pressure-sensitive adhesive composition is energy ray curable, it is preferable that the pressure-sensitive adhesive composition further contains a photopolymerization initiator. By containing the photopolymerization initiator, the curing reaction of the pressure-sensitive adhesive composition can be sufficiently advanced even with relatively low energy energy rays such as ultraviolet rays.
 光重合開始剤としては、例えば、ベンゾイン化合物、アセトフェノン化合物、アシルフォスフィノキサイド化合物、チタノセン化合物、チオキサントン化合物及びパーオキサイド化合物が挙げられる。さらには、光重合開始剤としては、例えば、アミン又はキノン等の光増感剤等が挙げられる。
 より具体的な光重合開始剤としては、例えば、1-ヒドロキシシクロへキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロルニトリル、ジベンジル、ジアセチル、8-クロールアンスラキノン及びビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシドが挙げられる。これらの光重合開始剤は、1種を単独で又は2種以上を組み合わせて用いてもよい。
Examples of the photopolymerization initiator include benzoin compounds, acetophenone compounds, acylphosphinoxide compounds, titanocene compounds, thioxanthone compounds and peroxide compounds. Furthermore, examples of the photopolymerization initiator include photosensitizers such as amine and quinone.
More specific photopolymerization initiators include, for example, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, benzoin, benzoin methyl ether, benzoin ethyl ether, Mention may be made of benzoin isopropyl ether, benzyl phenyl sulfide, tetramethyl thiuram monosulfide, azobisisobutyronitrile, dibenzyl, diacetyl, 8-chloroanthraquinone and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide. These photopolymerization initiators may be used alone or in combination of two or more.
 光重合開始剤の配合量は、粘着性樹脂100質量部に対して、0.01質量部以上、10質量部以下であることが好ましく、0.03質量部以上、5質量部以下であることがより好ましく、0.05質量部以上、5質量部以下であることがさらに好ましい。 The blending amount of the photopolymerization initiator is preferably 0.01 parts by mass or more and 10 parts by mass or less, and 0.03 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the adhesive resin. Is more preferable, and it is further preferable that the amount is 0.05 parts by mass or more and 5 parts by mass or less.
・その他の添加剤
 粘着剤組成物は、本発明の効果を損なわない範囲において、その他の添加剤を含有してもよい。その他の添加剤としては、例えば、帯電防止剤、酸化防止剤、軟化剤(可塑剤)、充填剤、防錆剤、顔料及び染料が挙げられる。これらの添加剤を配合する場合、添加剤の配合量は、粘着性樹脂100質量部に対して、0.01質量部以上、6質量部以下であることが好ましい。
-Other additives The pressure-sensitive adhesive composition may contain other additives as long as the effects of the present invention are not impaired. Examples of other additives include antistatic agents, antioxidants, softening agents (plasticizers), fillers, rust preventives, pigments and dyes. When these additives are compounded, the compounding amount of the additive is preferably 0.01 parts by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the adhesive resin.
 また、粘着剤組成物は、基材、緩衝層又は剥離シートへの塗布性を向上させる観点から、更に有機溶媒で希釈して、粘着剤組成物の溶液(塗工液と称する場合がある。)の形態でもよい。 Further, the pressure-sensitive adhesive composition may be further diluted with an organic solvent from the viewpoint of improving the coatability on the substrate, the buffer layer or the release sheet, and may be referred to as a solution of the pressure-sensitive adhesive composition (referred to as a coating liquid). ) May be used.
 有機溶媒としては、例えば、メチルエチルケトン、アセトン、酢酸エチル、テトラヒドロフラン、ジオキサン、シクロヘキサン、n-ヘキサン、トルエン、キシレン、n-プロパノール及びイソプロパノールが挙げられる。 Examples of the organic solvent include methyl ethyl ketone, acetone, ethyl acetate, tetrahydrofuran, dioxane, cyclohexane, n-hexane, toluene, xylene, n-propanol and isopropanol.
 なお、これらの有機溶媒は、粘着性樹脂の合成時に使用された有機溶媒をそのまま用いてもよいし、該粘着剤組成物の溶液(塗工液)を均一に塗布できるように、合成時に使用された有機溶媒以外の1種以上の有機溶媒を加えてもよい。 As these organic solvents, the organic solvent used at the time of synthesizing the adhesive resin may be used as it is or used at the time of synthesis so that the solution (coating solution) of the adhesive composition can be uniformly applied. One or more organic solvents other than the above-mentioned organic solvent may be added.
 第1粘着剤層12の厚さは、200μm未満であることが好ましく、5μm以上、80μm以下であることがより好ましく、10μm以上、70μm以下であることがさらに好ましい。第1粘着剤層12の厚さがこのような範囲であると、第1粘着シート10において剛性の低い部分の割合を少なくできるため、裏面研削時に生じる半導体チップの欠けをさらに防止し易くなる。
 以上が第1粘着剤層12に関する説明である。
The thickness of the first pressure-sensitive adhesive layer 12 is preferably less than 200 μm, more preferably 5 μm or more and 80 μm or less, and further preferably 10 μm or more and 70 μm or less. When the thickness of the first pressure-sensitive adhesive layer 12 is within such a range, the proportion of the portion having low rigidity in the first pressure-sensitive adhesive sheet 10 can be reduced, and thus the chipping of the semiconductor chip that occurs during backside grinding can be further prevented.
The above is the description regarding the first pressure-sensitive adhesive layer 12.
・剥離シート
 第1粘着シート10の表面には、剥離シートが貼付されていてもよい。剥離シートは、具体的には、第1粘着シート10の第1粘着剤層12の表面に貼付される。剥離シートは、第1粘着剤層12の表面に貼付されることで輸送時及び保管時に第1粘着剤層12を保護する。剥離シートは、剥離可能に第1粘着シート10に貼付されており、第1粘着シート10が使用される前(すなわち、ウエハ裏面研削前)には、第1粘着シート10から剥離されて取り除かれる。
Release Sheet A release sheet may be attached to the surface of the first adhesive sheet 10. The release sheet is specifically attached to the surface of the first adhesive layer 12 of the first adhesive sheet 10. The release sheet protects the first pressure-sensitive adhesive layer 12 during transportation and storage by being attached to the surface of the first pressure-sensitive adhesive layer 12. The release sheet is releasably attached to the first adhesive sheet 10, and is peeled off and removed from the first adhesive sheet 10 before the first adhesive sheet 10 is used (that is, before wafer back surface grinding). ..
 剥離シートは、少なくとも一方の面が剥離処理をされた剥離シートが用いられる。具体的には、例えば、剥離シート用基材と、この基材の表面上に剥離剤を塗布して形成した剥離剤層とを備える剥離シートが挙げられる。 As the release sheet, a release sheet having at least one surface subjected to a release treatment is used. Specifically, for example, a release sheet including a release sheet base material and a release agent layer formed by applying a release agent on the surface of the base material can be mentioned.
 剥離シート用基材としては、樹脂フィルムが好ましい。剥離シート用基材としての樹脂フィルムを構成する樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂及びポリエチレンナフタレート樹脂等のポリエステル樹脂フィルム、並びにポリプロピレン樹脂及びポリエチレン樹脂等のポリオレフィン樹脂等が挙げられる。
 剥離剤としては、例えば、シリコーン系樹脂、オレフィン系樹脂、イソプレン系樹脂、ブタジエン系樹脂等のゴム系エラストマー、長鎖アルキル系樹脂、アルキド系樹脂及びフッ素系樹脂が挙げられる。
A resin film is preferable as the base material for the release sheet. Examples of the resin forming the resin film as the release sheet substrate include polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin and polyethylene naphthalate resin, and polyolefin resins such as polypropylene resin and polyethylene resin. To be
Examples of the release agent include rubber-based elastomers such as silicone-based resins, olefin-based resins, isoprene-based resins, and butadiene-based resins, long-chain alkyl-based resins, alkyd-based resins, and fluorine-based resins.
 剥離シートの厚さは、特に制限はないが、10μm以上、200μm以下であることが好ましく、20μm以上、150μm以下であることがより好ましい。 The thickness of the release sheet is not particularly limited, but is preferably 10 μm or more and 200 μm or less, more preferably 20 μm or more and 150 μm or less.
・粘着シートの製造方法
 第1粘着シート10及びその他の本明細書に記載の粘着シートの製造方法としては、特に制限はなく、公知の方法により製造できる。
-Method for producing pressure-sensitive adhesive sheet The method for producing the first pressure-sensitive adhesive sheet 10 and other pressure-sensitive adhesive sheets described in the present specification is not particularly limited and can be produced by a known method.
 例えば、剥離シート上に設けた粘着剤層を、基材の片面に貼り合わせ、粘着剤層の表面に剥離シートが貼付された粘着シートを製造できる。また、剥離シート上に設けた緩衝層と、基材とを貼り合わせ、剥離シートを除去することで、緩衝層と基材との積層体が得られる。そして、剥離シート上に設けた粘着剤層を、積層体の基材側に貼り合わせ、粘着剤層の表面に剥離シートが貼付された粘着シートを製造できる。なお、緩衝層を基材の両面に設けた場合には、粘着剤層は緩衝層の上に形成される。粘着剤層の表面に貼付される剥離シートは、粘着シートの使用前に適宜剥離して除去すればよい。 For example, the pressure-sensitive adhesive layer provided on the release sheet can be attached to one surface of the base material to produce a pressure-sensitive adhesive sheet having the release sheet attached to the surface of the pressure-sensitive adhesive layer. Further, the buffer layer provided on the release sheet and the base material are attached to each other, and the release sheet is removed to obtain a laminate of the buffer layer and the base material. Then, the pressure-sensitive adhesive layer provided on the release sheet is attached to the base material side of the laminate to manufacture a pressure-sensitive adhesive sheet in which the release sheet is attached to the surface of the pressure-sensitive adhesive layer. When the buffer layer is provided on both sides of the base material, the adhesive layer is formed on the buffer layer. The release sheet attached to the surface of the pressure-sensitive adhesive layer may be appropriately peeled and removed before the use of the pressure-sensitive adhesive sheet.
 粘着シートの製造方法のより具体的な一例としては、次のような方法が挙げられる。まず、粘着剤層を構成する粘着性組成物、及び所望によりさらに溶媒または分散媒を含有する塗工液を調製する。次に、塗工液を、基材の一の面上に、塗布手段により塗布して塗膜を形成する。塗布手段としては、例えば、ダイコーター、カーテンコーター、スプレーコーター、スリットコーター、及びナイフコーター等が挙げられる。次に、当該塗膜を乾燥させることにより、粘着剤層を形成できる。塗工液は、塗布を行うことが可能であれば、その性状は特に限定されない。塗工液は、粘着剤層を形成するための成分を溶質として含有する場合もあれば、粘着剤層を形成するための成分を分散質として含有する場合もある。同様に、基材の片面または緩衝層の上に、粘着剤組成物を直接塗布して、粘着剤層を形成してもよい。 The following method can be cited as a more specific example of the method for manufacturing an adhesive sheet. First, a pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer and, if desired, a coating liquid further containing a solvent or a dispersion medium are prepared. Next, the coating liquid is applied to one surface of the base material by a coating means to form a coating film. Examples of the coating means include a die coater, a curtain coater, a spray coater, a slit coater, and a knife coater. Next, the pressure-sensitive adhesive layer can be formed by drying the coating film. The properties of the coating liquid are not particularly limited as long as the coating liquid can be applied. The coating liquid may contain a component for forming the pressure-sensitive adhesive layer as a solute, or may contain a component for forming the pressure-sensitive adhesive layer as a dispersoid. Similarly, the pressure-sensitive adhesive composition may be directly applied on one surface of the substrate or on the buffer layer to form the pressure-sensitive adhesive layer.
 また、粘着シートの製造方法のより具体的な別の一例としては、次のような方法が挙げられる。まず、前述の剥離シートの剥離面上に塗工液を塗布して塗膜を形成する。次に、塗膜を乾燥させて粘着剤層と剥離シートとからなる積層体を形成する。次に、この積層体の粘着剤層における剥離シート側の面と反対側の面に、基材を貼付して、粘着シートと剥離シートとの積層体を得てもよい。この積層体における剥離シートは、工程材料として剥離してもよいし、粘着剤層に被着体(例えば、半導体チップ、及び半導体ウエハ等)が貼付されるまで、粘着剤層を保護していてもよい。 The following method can be given as another more specific example of the method for manufacturing an adhesive sheet. First, a coating liquid is applied on the release surface of the release sheet to form a coating film. Next, the coating film is dried to form a laminate including the pressure-sensitive adhesive layer and the release sheet. Next, a substrate may be attached to the surface of the pressure-sensitive adhesive layer of this laminate, which is opposite to the surface on the release sheet side, to obtain a laminate of the pressure-sensitive adhesive sheet and the release sheet. The release sheet in this laminate may be released as a process material, and may protect the adhesive layer until an adherend (for example, a semiconductor chip, a semiconductor wafer, etc.) is attached to the adhesive layer. Good.
 塗工液が架橋剤を含有する場合には、塗膜の乾燥の条件(例えば、温度、及び時間等)を変えることにより、または加熱処理を、別途、行うことにより、例えば、塗膜内の(メタ)アクリル系共重合体と架橋剤との架橋反応を進行させ、粘着剤層内に所望の存在密度で架橋構造を形成させればよい。この架橋反応を十分に進行させるために、上述の方法等によって基材に粘着剤層を積層させた後、得られた粘着シートを、例えば、23℃、相対湿度50%の環境に数日間静置するといった養生を行ってもよい。 When the coating liquid contains a cross-linking agent, by changing the conditions for drying the coating film (for example, temperature, time, etc.) or by performing heat treatment separately, for example, The cross-linking reaction between the (meth)acrylic copolymer and the cross-linking agent may proceed to form a cross-linking structure in the pressure-sensitive adhesive layer with a desired existing density. In order to allow the crosslinking reaction to proceed sufficiently, after the pressure-sensitive adhesive layer is laminated on the substrate by the method described above or the like, the obtained pressure-sensitive adhesive sheet is allowed to stand in an environment of, for example, 23° C. and a relative humidity of 50% for several days. You may perform curing such as placing.
 第1粘着シート10の厚さは、10μm以上であることが好ましく、30μm以上であることがより好ましい。第1粘着シート10の厚さは、500μm以下であることが好ましく、300μm以下であることがより好ましい。 The thickness of the first adhesive sheet 10 is preferably 10 μm or more, and more preferably 30 μm or more. The thickness of the first adhesive sheet 10 is preferably 500 μm or less, and more preferably 300 μm or less.
(第2粘着シート)
 第2粘着シート20は、第2基材21と、第2粘着剤層22とを有する。第2粘着剤層22は、第2基材21に積層されている。
(Second adhesive sheet)
The second pressure-sensitive adhesive sheet 20 has a second base material 21 and a second pressure-sensitive adhesive layer 22. The second pressure-sensitive adhesive layer 22 is laminated on the second base material 21.
・第2基材
 本実施形態に係る第2基材21は、ダイシング工程等の所望の工程において適切に機能できる限り、その構成材料は特に限定されない。
 第2基材21は、樹脂系の材料を主材とするフィルムから構成されることが好ましい。樹脂系の材料を主材とするフィルムとしては、例えば、エチレン系共重合フィルム、ポリオレフィン系フィルム、ポリ塩化ビニル系フィルム、ポリエステル系フィルム、ポリウレタンフィルム、ポリイミドフィルム、ポリスチレンフィルム、ポリカーボネートフィルム、及びフッ素樹脂フィルムが挙げられる。
 第2基材21として用い得る樹脂系の材料を主材とするフィルムの具体例は、第1基材11の説明で例示したフィルムと同様である。
 なお、第2基材21におけるポリオレフィン系フィルムとしては、第1基材11の説明で例示したフィルムに加えて、エチレン-プロピレン共重合体フィルムも用いることができる。
-Second Base Material The second base material 21 according to the present embodiment is not particularly limited in its constituent material as long as it can properly function in a desired process such as a dicing process.
The second base material 21 is preferably composed of a film containing a resin-based material as a main material. Examples of the film containing a resin-based material as a main material include, for example, ethylene-based copolymer films, polyolefin-based films, polyvinyl chloride-based films, polyester-based films, polyurethane films, polyimide films, polystyrene films, polycarbonate films, and fluororesins. Examples include films.
Specific examples of the film containing a resin-based material as a main material that can be used as the second base material 21 are the same as the films exemplified in the description of the first base material 11.
As the polyolefin-based film for the second base material 21, in addition to the film exemplified in the description of the first base material 11, an ethylene-propylene copolymer film can be used.
 第2基材21は、第1基材11と同様、上記の樹脂系材料を主材とするフィルム内に、例えば、顔料、難燃剤、可塑剤、帯電防止剤、滑剤及びフィラーからなる群から選択される少なくとも一種の添加剤が含まれていてもよい。 Like the first base material 11, the second base material 21 is, for example, from the group consisting of a pigment, a flame retardant, a plasticizer, an antistatic agent, a lubricant and a filler in a film containing the resin material as a main material. At least one additive selected may be contained.
 第2基材21は、第1基材11と同様、所望により第2基材21の片面または両面に、第2基材21の表面に積層される第2粘着剤層22との密着性を向上させるための処理が施されていてもよい。 Similarly to the first base material 11, the second base material 21 may have adhesiveness to one side or both sides of the second base material 21 and the second pressure-sensitive adhesive layer 22 laminated on the surface of the second base material 21, if desired. A treatment for improving may be applied.
 第2基材21の厚さは、第2粘着シート20が所望の工程において適切に機能できる限り、限定されない。第2基材21の好ましい厚さの範囲は、第1基材11で説明した厚さ範囲と同様である。なお、第1基材11と第2基材21との厚さは、互いに同じでも異なっていてもよい。 The thickness of the second base material 21 is not limited as long as the second adhesive sheet 20 can properly function in a desired process. The preferable thickness range of the second base material 21 is the same as the thickness range described for the first base material 11. The thicknesses of the first base material 11 and the second base material 21 may be the same or different from each other.
・第2粘着剤層
 第2粘着剤層22は、ダイシング工程等の所望の工程において適切に機能できる限り、その構成材料は特に限定されない。
-Second Adhesive Layer The constituent material of the second adhesive layer 22 is not particularly limited as long as it can properly function in a desired process such as a dicing process.
 第2粘着剤層22は、非エネルギー線硬化性粘着剤から構成されてもよいし、エネルギー線硬化性粘着剤から構成されてもよい。 The second adhesive layer 22 may be composed of a non-energy ray curable adhesive or an energy ray curable adhesive.
 非エネルギー線硬化性粘着剤としては、所望の粘着力および再剥離性を有するものが好ましい。
 非エネルギー線硬化性粘着剤としては、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤及びポリビニルエーテル系粘着剤が挙げられる。これら非エネルギー線硬化性粘着剤の中でも、ダイシング工程等にてワーク(半導体ウエハW)または加工物(半導体チップCP)の脱落を効果的に抑制できるアクリル系粘着剤が好ましい。
As the non-energy ray curable pressure-sensitive adhesive, one having a desired pressure-sensitive adhesive force and removability is preferable.
Examples of the non-energy ray curable pressure sensitive adhesive include acrylic pressure sensitive adhesive, rubber pressure sensitive adhesive, silicone pressure sensitive adhesive, urethane pressure sensitive adhesive, polyester pressure sensitive adhesive and polyvinyl ether pressure sensitive adhesive. Among these non-energy ray curable adhesives, acrylic adhesives that can effectively prevent the work (semiconductor wafer W) or processed product (semiconductor chip CP) from falling off in the dicing process or the like are preferable.
 一方、エネルギー線硬化性粘着剤は、エネルギー線照射により粘着力が低下するため、ワークまたは加工物と第2粘着シート20とを分離させたいときに、エネルギー線照射することにより、容易に分離させることができる。 On the other hand, the energy ray-curable pressure-sensitive adhesive has a reduced adhesive force upon irradiation with energy rays. Therefore, when it is desired to separate the work or processed product from the second pressure-sensitive adhesive sheet 20, irradiation with energy rays facilitates separation. be able to.
 第2粘着剤層22を構成するエネルギー線硬化性粘着剤は、エネルギー線硬化性を有するポリマーを主成分として含有する粘着剤でもよい。
 また、第2粘着剤層22を構成するエネルギー線硬化性粘着剤は、エネルギー線硬化性を有しないポリマーと、エネルギー線硬化性の多官能モノマー及びエネルギー線硬化性の多官能オリゴマーの少なくともいずれかとの混合物を主成分として含有する粘着剤でもよい。
The energy ray-curable pressure-sensitive adhesive forming the second pressure-sensitive adhesive layer 22 may be a pressure-sensitive adhesive containing a polymer having energy ray-curability as a main component.
Further, the energy ray-curable pressure-sensitive adhesive forming the second pressure-sensitive adhesive layer 22 includes a polymer having no energy ray-curable property and at least one of an energy ray-curable polyfunctional monomer and an energy ray-curable polyfunctional oligomer. A pressure-sensitive adhesive containing the mixture of as a main component may be used.
 エネルギー線硬化性粘着剤が、エネルギー線硬化性を有するポリマーを主成分とする場合について、以下説明する。 The case where the energy ray-curable pressure-sensitive adhesive contains a polymer having energy ray-curability as the main component will be described below.
・エネルギー線硬化型重合体(A)
 エネルギー線硬化性を有するポリマーは、側鎖にエネルギー線硬化性を有する官能基(エネルギー線硬化性基)が導入された(メタ)アクリル酸エステル(共)重合体(A)(以下「エネルギー線硬化型重合体(A)」という場合がある。)であることが好ましい。このエネルギー線硬化型重合体(A)は、官能基含有モノマー単位を有する(メタ)アクリル系共重合体(a1)と、その官能基に結合する置換基を有する不飽和基含有化合物(a2)とを反応させて得られるものであることが好ましい。
・Energy ray curable polymer (A)
The energy ray-curable polymer is a (meth)acrylic acid ester (co)polymer (A) (hereinafter referred to as "energy ray-curable group" in which a functional group (energy ray-curable group) having energy ray-curable property is introduced into a side chain. It may be referred to as a "curable polymer (A)"). The energy ray-curable polymer (A) includes a (meth)acrylic copolymer (a1) having a functional group-containing monomer unit and an unsaturated group-containing compound (a2) having a substituent bonded to the functional group. It is preferably obtained by reacting with.
・アクリル系共重合体(a1)
 アクリル系共重合体(a1)は、官能基含有モノマーから導かれる構成単位と、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位とからなる。
・Acrylic copolymer (a1)
The acrylic copolymer (a1) is composed of a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth)acrylic acid ester monomer or a derivative thereof.
 アクリル系共重合体(a1)の構成単位としての官能基含有モノマーは、重合性の二重結合と、官能基とを分子内に有するモノマーであることが好ましい。この官能基含有モノマーが有する官能基としては、例えば、ヒドロキシ基、アミノ基、置換アミノ基及びエポキシ基が挙げられる。 The functional group-containing monomer as a constituent unit of the acrylic copolymer (a1) is preferably a monomer having a polymerizable double bond and a functional group in the molecule. Examples of the functional group contained in the functional group-containing monomer include a hydroxy group, an amino group, a substituted amino group and an epoxy group.
 上記官能基含有モノマーのさらに具体的な例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、及び4-ヒドロキシブチル(メタ)アクリレート等が挙げられ、これら官能基含有モノマーは、1種を単独でまたは2種以上を組み合わせて用いられる。 More specific examples of the functional group-containing monomer include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate. Etc., and these functional group-containing monomers may be used alone or in combination of two or more.
 アクリル系共重合体(a1)を構成する(メタ)アクリル酸エステルモノマーとしては、アルキル基の炭素数が1~20であるアルキル(メタ)アクリレート、シクロアルキル(メタ)アクリレート、ベンジル(メタ)アクリレートが用いられる。これらの中でも、アルキル基の炭素数が1~18であるアルキル(メタ)アクリレートが好ましく、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート又は2-エチルヘキシル(メタ)アクリレート等が用いられる。 Examples of the (meth)acrylic acid ester monomer constituting the acrylic copolymer (a1) include an alkyl (meth)acrylate having an alkyl group having 1 to 20 carbon atoms, a cycloalkyl (meth)acrylate, and a benzyl (meth)acrylate. Is used. Among these, alkyl (meth)acrylates having an alkyl group having 1 to 18 carbon atoms are preferable, and examples thereof include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and n-butyl (meth)acrylate. Alternatively, 2-ethylhexyl (meth)acrylate or the like is used.
 アクリル系共重合体(a1)は、上記官能基含有モノマーから導かれる構成単位を、通常、3質量%以上、100質量%以下、好ましくは5質量%以上、40質量%以下の割合で含有し、(メタ)アクリル酸エステルモノマー又はその誘導体から導かれる構成単位を、通常、0質量%以上、97質量%以下、好ましくは60質量%以上、95質量%以下の割合で含有する。 The acrylic copolymer (a1) contains a structural unit derived from the functional group-containing monomer in a proportion of usually 3% by mass or more and 100% by mass or less, preferably 5% by mass or more and 40% by mass or less. , (Meth)acrylic acid ester monomer or a derivative thereof is contained in a proportion of generally 0% by mass or more and 97% by mass or less, preferably 60% by mass or more and 95% by mass or less.
 アクリル系共重合体(a1)は、上記のような官能基含有モノマーと、(メタ)アクリル酸エステルモノマー又はその誘導体とを常法で共重合することにより得られる。アクリル系共重合体(a1)は、これらモノマーの他にも、例えば、ジメチルアクリルアミド、蟻酸ビニル、酢酸ビニル及びスチレンからなる群から選択される少なくとも一種のモノマーが共重合されてもよい。 The acrylic copolymer (a1) is obtained by copolymerizing the functional group-containing monomer as described above and a (meth)acrylic acid ester monomer or a derivative thereof by a conventional method. In addition to these monomers, the acrylic copolymer (a1) may be copolymerized with, for example, at least one monomer selected from the group consisting of dimethylacrylamide, vinyl formate, vinyl acetate and styrene.
 上記官能基含有モノマー単位を有するアクリル系共重合体(a1)を、その官能基に結合する置換基を有する不飽和基含有化合物(a2)と反応させることにより、エネルギー線硬化型重合体(A)が得られる。 By reacting the acrylic copolymer (a1) having the functional group-containing monomer unit with the unsaturated group-containing compound (a2) having a substituent bonded to the functional group, an energy ray-curable polymer (A) is obtained. ) Is obtained.
・不飽和基含有化合物(a2)
 不飽和基含有化合物(a2)が有する置換基は、アクリル系共重合体(a1)が有する官能基含有モノマー単位の官能基の種類に応じて、適宜選択できる。例えば、官能基がヒドロキシ基、アミノ基又は置換アミノ基の場合、置換基としてはイソシアネート基又はエポキシ基が好ましく、官能基がエポキシ基の場合、置換基としてはアミノ基、カルボキシ基又はアジリジニル基が好ましい。
.Unsaturated group-containing compound (a2)
The substituent that the unsaturated group-containing compound (a2) has can be appropriately selected according to the type of the functional group of the functional group-containing monomer unit that the acrylic copolymer (a1) has. For example, when the functional group is a hydroxy group, an amino group or a substituted amino group, the substituent is preferably an isocyanate group or an epoxy group, and when the functional group is an epoxy group, the substituent is an amino group, a carboxy group or an aziridinyl group. preferable.
 また、不飽和基含有化合物(a2)には、エネルギー線重合性の炭素-炭素二重結合が、1分子毎に1個以上、5個以下、好ましくは1個以上、2個以下含まれている。このような不飽和基含有化合物(a2)の具体例としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;ジイソシアネート化合物またはポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;ジイソシアネート化合物またはポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;グリシジル(メタ)アクリレート;(メタ)アクリル酸、2-(1-アジリジニル)エチル(メタ)アクリレート、2-ビニル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン等が挙げられる。 In addition, the unsaturated group-containing compound (a2) contains one or more, five or less, preferably one or more and two or less energy-beam polymerizable carbon-carbon double bonds per molecule. There is. Specific examples of the unsaturated group-containing compound (a2) include, for example, 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α,α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1-( Bisacryloyloxymethyl)ethyl isocyanate; acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth)acrylate; diisocyanate compound or polyisocyanate compound, polyol compound, hydroxyethyl (meth) Acryloyl monoisocyanate compound obtained by reaction with acrylate; glycidyl (meth)acrylate; (meth)acrylic acid, 2-(1-aziridinyl)ethyl (meth)acrylate, 2-vinyl-2-oxazoline, 2-isopropenyl- 2-oxazoline and the like can be mentioned.
 不飽和基含有化合物(a2)は、上記アクリル系共重合体(a1)の官能基含有モノマーに対して、通常、10mol%以上、100mol%以下、好ましくは20mol%以上、95mol%以下の割合で用いられる。 The unsaturated group-containing compound (a2) is usually 10 mol% or more and 100 mol% or less, preferably 20 mol% or more and 95 mol% or less with respect to the functional group-containing monomer of the acrylic copolymer (a1). Used.
 アクリル系共重合体(a1)と不飽和基含有化合物(a2)との反応においては、官能基と置換基との組合せに応じて、反応の温度、圧力、溶媒、時間、触媒の有無及び触媒の種類等の反応条件を適宜選択できる。このような反応条件を適宜選択することにより、アクリル系共重合体(a1)中に存在する官能基と、不飽和基含有化合物(a2)中の置換基とが反応し、不飽和基がアクリル系共重合体(a1)中の側鎖に導入され、エネルギー線硬化型重合体(A)が得られる。 In the reaction between the acrylic copolymer (a1) and the unsaturated group-containing compound (a2), depending on the combination of the functional group and the substituent, the reaction temperature, pressure, solvent, time, presence or absence of catalyst and catalyst The reaction conditions such as the type can be appropriately selected. By appropriately selecting such reaction conditions, the functional group present in the acrylic copolymer (a1) reacts with the substituent in the unsaturated group-containing compound (a2), and the unsaturated group becomes an acrylic group. The energy ray-curable polymer (A) is obtained by being introduced into the side chain in the system copolymer (a1).
 このようにして得られるエネルギー線硬化型重合体(A)の重量平均分子量は、1万以上であるのが好ましく、15万以上、150万以下であることが好ましく、20万以上、100万以下であることがさらに好ましい。なお、本明細書における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定したポリスチレン換算の値である。 The weight average molecular weight of the energy ray-curable polymer (A) thus obtained is preferably 10,000 or more, preferably 150,000 or more and 1.5 million or less, and 200,000 or more and 1 million or less. Is more preferable. In addition, the weight average molecular weight (Mw) in this specification is a polystyrene conversion value measured by the gel permeation chromatography method (GPC method).
・エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)
 エネルギー線硬化性粘着剤が、エネルギー線硬化性を有するポリマーを主成分とする場合であっても、エネルギー線硬化性粘着剤は、エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)をさらに含有してもよい。
.Energy ray curable monomers and/or oligomers (B)
Even when the energy ray-curable pressure-sensitive adhesive has a polymer having energy ray-curability as a main component, the energy ray-curable pressure-sensitive adhesive further contains an energy ray-curable monomer and/or oligomer (B). You may.
 エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)としては、例えば、多価アルコールと(メタ)アクリル酸とのエステル等を使用することができる。 As the energy ray-curable monomer and/or oligomer (B), for example, an ester of polyhydric alcohol and (meth)acrylic acid can be used.
 エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)としては、例えば、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の単官能性アクリル酸エステル類、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート等の多官能性アクリル酸エステル類、ポリエステルオリゴ(メタ)アクリレート、ポリウレタンオリゴ(メタ)アクリレート等が挙げられる。 Examples of the energy ray-curable monomer and/or oligomer (B) include monofunctional acrylic acid esters such as cyclohexyl (meth)acrylate and isobornyl (meth)acrylate, trimethylolpropane tri(meth)acrylate, and pentaerythritol. Tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, polyethylene glycol di Examples thereof include polyfunctional acrylic acid esters such as (meth)acrylate and dimethyloltricyclodecanedi(meth)acrylate, polyester oligo(meth)acrylate, and polyurethane oligo(meth)acrylate.
 エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)を配合する場合、エネルギー線硬化性粘着剤中におけるエネルギー線硬化性のモノマーおよび/またはオリゴマー(B)の含有量は、5質量%以上、80質量%以下であることが好ましく、20質量%以上、60質量%以下であることがより好ましい。 When the energy ray-curable monomer and/or oligomer (B) is blended, the content of the energy ray-curable monomer and/or oligomer (B) in the energy ray-curable adhesive is 5% by mass or more and 80 It is preferably not more than 20% by mass, more preferably not less than 20% by mass and not more than 60% by mass.
・光重合開始剤(C)
 ここで、エネルギー線硬化性樹脂組成物を硬化させるためのエネルギー線として紫外線を用いる場合には、光重合開始剤(C)を添加することが好ましく、この光重合開始剤(C)の使用により、重合硬化時間および光線照射量を少なくすることができる。
・Photopolymerization initiator (C)
Here, when ultraviolet rays are used as the energy rays for curing the energy ray-curable resin composition, it is preferable to add a photopolymerization initiator (C). By using the photopolymerization initiator (C), It is possible to reduce the polymerization and curing time and the light irradiation amount.
 光重合開始剤(C)としては、具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、β-クロールアンスラキノン、(2,4,6-トリメチルベンジルジフェニル)フォスフィンオキサイド、2-ベンゾチアゾール-N,N-ジエチルジチオカルバメート、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-プロペニル)フェニル]プロパノン}、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等が挙げられる。これら光重合開始剤(C)は、1種を単独で用いてもよいし、2種以上を併用してもよい。 Specific examples of the photopolymerization initiator (C) are benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyl diphenyl sulfide, tetramethyl thiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, β-chloranthraquinone, (2,4, 6-trimethylbenzyldiphenyl)phosphine oxide, 2-benzothiazole-N,N-diethyldithiocarbamate, oligo{2-hydroxy-2-methyl-1-[4-(1-propenyl)phenyl]propanone}, 2, 2-dimethoxy-1,2-diphenylethan-1-one and the like can be mentioned. These photopolymerization initiators (C) may be used alone or in combination of two or more.
 光重合開始剤(C)は、エネルギー線硬化型共重合体(A)(エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)を配合する場合には、エネルギー線硬化型共重合体(A)およびエネルギー線硬化性のモノマーおよび/またはオリゴマー(B)の合計量100質量部)100質量部に対して、0.1質量部以上、10質量部以下の範囲の量で用いられることが好ましく、0.5質量部以上、6質量部以下の範囲の量で用いられることがより好ましい。 The photopolymerization initiator (C) is an energy ray-curable copolymer (A) (when an energy ray-curable monomer and/or oligomer (B) is blended, the energy ray-curable copolymer (A) is used. And 100 parts by mass of the energy ray-curable monomer and/or oligomer (B) (100 parts by mass), preferably in an amount of 0.1 parts by mass or more and 10 parts by mass or less, It is more preferable to use it in an amount in the range of 0.5 parts by mass or more and 6 parts by mass or less.
 エネルギー線硬化性粘着剤においては、上記成分以外にも、適宜他の成分を配合してもよい。他の成分としては、例えば、エネルギー線硬化性を有しないポリマー成分またはオリゴマー成分(D)、架橋剤(E)等が挙げられる。 In addition to the above components, the energy ray-curable pressure-sensitive adhesive may appropriately contain other components. Examples of the other component include a polymer component or oligomer component (D) having no energy ray curability, a cross-linking agent (E), and the like.
 エネルギー線硬化性を有しないポリマー成分またはオリゴマー成分(D)としては、例えば、ポリアクリル酸エステル、ポリエステル、ポリウレタン、ポリカーボネート、ポリオレフィン等が挙げられ、重量平均分子量(Mw)が3000以上、250万以下のポリマーまたはオリゴマーが好ましい。 Examples of the polymer component or oligomer component (D) having no energy ray curability include polyacrylic acid ester, polyester, polyurethane, polycarbonate, polyolefin and the like, and the weight average molecular weight (Mw) thereof is 3000 or more and 2.5 million or less. Polymers or oligomers of are preferred.
・架橋剤(E)
 架橋剤(E)としては、エネルギー線硬化型共重合体(A)等が有する官能基との反応性を有する多官能性化合物を用いることができる。このような多官能性化合物の例としては、イソシアナート化合物、エポキシ化合物、アミン化合物、メラミン化合物、アジリジン化合物、ヒドラジン化合物、アルデヒド化合物、オキサゾリン化合物、金属アルコキシド化合物、金属キレート化合物、金属塩、アンモニウム塩及び反応性フェノール樹脂等を挙げることができる。
・Crosslinking agent (E)
As the cross-linking agent (E), a polyfunctional compound having reactivity with a functional group of the energy ray-curable copolymer (A) or the like can be used. Examples of such polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts. And reactive phenolic resins.
 これら他の成分(D),(E)をエネルギー線硬化性粘着剤に配合することにより、硬化前における粘着性および剥離性、硬化後の強度、他の層との接着性又は保存安定性等を改善し得る。これら他の成分の配合量は、特に限定されず、エネルギー線硬化型共重合体(A)100質量部に対して0質量部以上、40質量部以下の範囲で適宜決定される。 By blending these other components (D) and (E) with the energy ray-curable pressure-sensitive adhesive, tackiness and peelability before curing, strength after curing, adhesiveness with other layers, storage stability, etc. Can be improved. The blending amount of these other components is not particularly limited and is appropriately determined within the range of 0 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the energy ray-curable copolymer (A).
 次に、エネルギー線硬化性粘着剤が、エネルギー線硬化性を有しないポリマー成分とエネルギー線硬化性の多官能モノマーおよび/またはオリゴマーとの混合物を主成分とする場合について、以下説明する。 Next, the case where the energy ray-curable pressure-sensitive adhesive mainly contains a mixture of a polymer component having no energy ray-curable property and an energy ray-curable polyfunctional monomer and/or oligomer will be described below.
 エネルギー線硬化性を有しないポリマー成分としては、例えば、前述したアクリル系共重合体(a1)と同様の成分が使用できる。エネルギー線硬化性樹脂組成物中におけるエネルギー線硬化性を有しないポリマー成分の含有量は、20質量%以上、99.9質量%以下であることが好ましく、30質量%以上、80質量%以下であることがより好ましい。 As the polymer component having no energy ray curability, for example, the same component as the above-mentioned acrylic copolymer (a1) can be used. The content of the polymer component having no energy ray curability in the energy ray curable resin composition is preferably 20% by mass or more and 99.9% by mass or less, and 30% by mass or more and 80% by mass or less. More preferably.
 エネルギー線硬化性の多官能モノマーおよび/またはオリゴマーとしては、前述の成分(B)と同じものが選択される。エネルギー線硬化性を有しないポリマー成分とエネルギー線硬化性の多官能モノマーおよび/またはオリゴマーとの配合比は、ポリマー成分100質量部に対して、多官能モノマーおよび/またはオリゴマー10質量部以上、150質量部以下であるのが好ましく、25質量部以上、100質量部以下であるのがより好ましい。 As the energy ray-curable polyfunctional monomer and/or oligomer, the same ones as the above-mentioned component (B) are selected. The compounding ratio of the energy ray-curable polymer component and the energy ray-curable polyfunctional monomer and/or oligomer is 10 parts by mass or more of the polyfunctional monomer and/or oligomer with respect to 100 parts by mass of the polymer component, 150 It is preferably not more than 25 parts by mass, more preferably not less than 25 parts by mass and not more than 100 parts by mass.
 この場合においても、上記と同様に、光重合開始剤(C)や架橋剤(E)を適宜配合することができる。 Also in this case, similarly to the above, the photopolymerization initiator (C) and the crosslinking agent (E) can be appropriately blended.
 第2粘着剤層22の厚さは、第2粘着シート20が使用される各工程において適切に機能できる限り、特に限定されない。第2粘着剤層22の厚さは、1μm以上、50μm以下であることが好ましく、2μm以上、30μm以下であることが好ましく、3μm以上、20μm以下であることがさらに好ましい。
 以上が第2粘着剤層22に関する説明である。
The thickness of the second pressure-sensitive adhesive layer 22 is not particularly limited as long as it can properly function in each step in which the second pressure-sensitive adhesive sheet 20 is used. The thickness of the second pressure-sensitive adhesive layer 22 is preferably 1 μm or more and 50 μm or less, more preferably 2 μm or more and 30 μm or less, and further preferably 3 μm or more and 20 μm or less.
The above is the description regarding the second pressure-sensitive adhesive layer 22.
・剥離シート
 第2粘着シート20が使用されるまでの間、第2粘着剤層22を保護するための剥離シートが、第2粘着剤層22に貼着されていることが好ましい。この剥離シートは、第2粘着剤層22上に直接積層されていてもよいし、第2粘着剤層22上に他の層(ダイボンディングフィルム等)が積層され、当該他の層上に剥離シートが積層されていてもよい。
-Release sheet It is preferable that a release sheet for protecting the second adhesive layer 22 is attached to the second adhesive layer 22 until the second adhesive sheet 20 is used. This release sheet may be directly laminated on the second pressure-sensitive adhesive layer 22, or another layer (die bonding film or the like) may be laminated on the second pressure-sensitive adhesive layer 22 and peeled off on the other layer. The sheets may be laminated.
 剥離シートの構成は任意であり、剥離剤等により剥離処理したプラスチックフィルムが例示される。プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、およびポリプロピレンやポリエチレン等のポリオレフィンフィルムが挙げられる。剥離剤としては、シリコーン系、フッ素系、長鎖アルキル系等を用いることができるが、これらの剥離剤の中では、安価で安定した性能が得られるシリコーン系が好ましい。剥離シートの厚さについては特に制限はないが、通常、20μm以上、250μm以下程度である。 The structure of the release sheet is arbitrary, and a plastic film release-treated with a release agent or the like is exemplified. Examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene. As the release agent, a silicone-based agent, a fluorine-based agent, a long-chain alkyl-based agent, or the like can be used. Among these release agents, a silicone-based agent that is inexpensive and can obtain stable performance is preferable. The thickness of the release sheet is not particularly limited, but is usually about 20 μm or more and 250 μm or less.
 第2粘着シート20の厚さは、10μm以上であることが好ましく、30μm以上であることがより好ましい。第2粘着シート20の厚さは、500μm以下であることが好ましく、300μm以下であることがより好ましい。 The thickness of the second adhesive sheet 20 is preferably 10 μm or more, more preferably 30 μm or more. The thickness of the second adhesive sheet 20 is preferably 500 μm or less, more preferably 300 μm or less.
(第3粘着シート)
 第3粘着シート30は、第3基材31と、第3粘着剤層32とを有する。第3粘着剤層32は、第3基材31に積層されている。
・第3基材
 第3基材31は、エキスパンド工程等の所望の工程において適切に機能できる限り、その構成材料は特に限定されない。
 前記第3基材31は、第一の基材面と、第一の基材面とは反対側の第二の基材面とを有することが好ましい。
 第3粘着シート30において、第一の基材面及び第二の基材面の一方の面に第3粘着剤層32が設けられていることが好ましく、他方の面には粘着剤層が設けられていないことが好ましい。
(Third adhesive sheet)
The third pressure-sensitive adhesive sheet 30 has a third base material 31 and a third pressure-sensitive adhesive layer 32. The third pressure-sensitive adhesive layer 32 is laminated on the third base material 31.
Third Base Material The third base material 31 is not particularly limited in its constituent material as long as it can properly function in a desired process such as an expanding process.
The third base material 31 preferably has a first base material surface and a second base material surface opposite to the first base material surface.
In the third pressure-sensitive adhesive sheet 30, the third pressure-sensitive adhesive layer 32 is preferably provided on one surface of the first base material surface and the second base material surface, and the other surface is provided with the pressure-sensitive adhesive layer. Preferably not.
 第3基材31の材料は、大きく延伸させ易いという観点から、熱可塑性エラストマー、またはゴム系材料であることが好ましく、熱可塑性エラストマーであることがより好ましい。 The material of the third base material 31 is preferably a thermoplastic elastomer or a rubber-based material, and more preferably a thermoplastic elastomer, from the viewpoint of being easily stretched greatly.
 また、第3基材31の材料としては、大きく延伸させ易いという観点から、ガラス転移温度(Tg)が比較的低い樹脂を使用することが好ましい。このような樹脂のガラス転移温度(Tg)は、90℃以下であることが好ましく、80℃以下であることがより好ましく、70℃以下であることがさらに好ましい。 Further, as the material of the third base material 31, it is preferable to use a resin having a relatively low glass transition temperature (Tg) from the viewpoint of being easily stretched largely. The glass transition temperature (Tg) of such a resin is preferably 90° C. or lower, more preferably 80° C. or lower, and further preferably 70° C. or lower.
 熱可塑性エラストマーとしては、ウレタン系エラストマー、オレフィン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、スチレン系エラストマー、アクリル系エラストマー、及びアミド系エラストマー等が挙げられる。熱可塑性エラストマーは、1種を単独でまたは2種以上を組み合わせて使用することができる。熱可塑性エラストマーとしては、大きく延伸させ易いという観点から、ウレタン系エラストマーを使用することが好ましい。 Examples of thermoplastic elastomers include urethane elastomers, olefin elastomers, vinyl chloride elastomers, polyester elastomers, styrene elastomers, acrylic elastomers, and amide elastomers. The thermoplastic elastomers may be used alone or in combination of two or more. As the thermoplastic elastomer, it is preferable to use a urethane elastomer from the viewpoint of being easily stretched largely.
 ウレタン系エラストマーは、一般に、長鎖ポリオール、鎖延長剤、及びジイソシアネートを反応させて得られる。ウレタン系エラストマーは、長鎖ポリオールから誘導される構成単位を有するソフトセグメントと、鎖延長剤とジイソシアネートとの反応から得られるポリウレタン構造を有するハードセグメントとからなる。 Urethane elastomers are generally obtained by reacting a long-chain polyol, a chain extender, and a diisocyanate. The urethane elastomer is composed of a soft segment having a constitutional unit derived from a long-chain polyol and a hard segment having a polyurethane structure obtained by the reaction of a chain extender and diisocyanate.
 ウレタン系エラストマーを、長鎖ポリオールの種類によって分類すると、ポリエステル系ポリウレタンエラストマー、ポリエーテル系ポリウレタンエラストマー、及びポリカーボネート系ポリウレタンエラストマー等に分けられる。ウレタン系エラストマーは、1種を単独でまたは2種以上を組み合わせて使用することができる。本実施形態では、ウレタン系エラストマーは、大きく延伸させ易いという観点から、ポリエーテル系ポリウレタンエラストマーであることが好ましい。 Urethane-based elastomers can be classified into polyester-based polyurethane elastomers, polyether-based polyurethane elastomers, and polycarbonate-based polyurethane elastomers by classifying them according to the type of long-chain polyol. The urethane elastomer may be used alone or in combination of two or more. In the present embodiment, the urethane-based elastomer is preferably a polyether-based polyurethane elastomer from the viewpoint of being easily stretched greatly.
 長鎖ポリオールの例としては、ラクトン系ポリエステルポリオール、及びアジペート系ポリエステルポリオール等のポリエステルポリオール;ポリプロピレン(エチレン)ポリオール、及びポリテトラメチレンエーテルグリコール等のポリエーテルポリオール;ポリカーボネートポリオール等が挙げられる。本実施形態では、長鎖ポリオールは、大きく延伸させ易いという観点から、アジペート系ポリエステルポリオールであることが好ましい。 Examples of long-chain polyols include lactone-based polyester polyols, polyester polyols such as adipate-based polyester polyols; polypropylene (ethylene) polyols and polyether polyols such as polytetramethylene ether glycol; polycarbonate polyols and the like. In the present embodiment, the long-chain polyol is preferably an adipate-based polyester polyol from the viewpoint of being easily stretched greatly.
 ジイソシアネートの例としては、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、及びヘキサメチレンジイソシアネート等が挙げられる。本実施形態では、ジイソシアネートは、大きく延伸させ易いという観点から、ヘキサメチレンジイソシアネートであることが好ましい。 Examples of diisocyanates include 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, and hexamethylene diisocyanate. In the present embodiment, the diisocyanate is preferably hexamethylene diisocyanate from the viewpoint of being easily stretched largely.
 鎖延長剤としては、低分子多価アルコール(例えば、1,4-ブタンジオール、及び1,6-ヘキサンジオール等)、及び芳香族ジアミン等が挙げられる。これらのうち、大きく延伸させ易いという観点から、1,6-ヘキサンジオールを使用することが好ましい。 The chain extender includes low molecular weight polyhydric alcohols (eg, 1,4-butanediol, 1,6-hexanediol, etc.), aromatic diamines, and the like. Of these, it is preferable to use 1,6-hexanediol from the viewpoint of being easily stretched greatly.
 オレフィン系エラストマーとしては、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、ブテン・α-オレフィン共重合体、エチレン・プロピレン・α-オレフィン共重合体、エチレン・ブテン・α-オレフィン共重合体、プロピレン・ブテン-αオレフィン共重合体、エチレン・プロピレン・ブテン-α・オレフィン共重合体、スチレン・イソプレン共重合体、及びスチレン・エチレン・ブチレン共重合体からなる群より選ばれる少なくとも1種の樹脂を含むエラストマーが挙げられる。オレフィン系エラストマーは、1種を単独でまたは2種以上を組み合わせて使用することができる。 Examples of the olefin elastomer include ethylene/α-olefin copolymer, propylene/α-olefin copolymer, butene/α-olefin copolymer, ethylene/propylene/α-olefin copolymer, ethylene/butene/α- Selected from the group consisting of olefin copolymers, propylene/butene-α olefin copolymers, ethylene/propylene/butene-α/olefin copolymers, styrene/isoprene copolymers, and styrene/ethylene/butylene copolymers. An elastomer containing at least one resin may be mentioned. The olefin elastomers may be used alone or in combination of two or more.
 オレフィン系エラストマーの密度は、特に限定されない。例えば、オレフィン系エラストマーの密度は、0.860g/cm以上、0.905g/cm未満であることが好ましく、0.862g/cm以上、0.900g/cm未満であることがより好ましく、0.864g/cm以上、0.895g/cm未満であることが特に好ましい。オレフィン系エラストマーの密度が上記範囲を満たすことで、基材は、被着体としての半導体ウエハ等の半導体装置を粘着シートに貼付する時の凹凸追従性等に優れる。 The density of the olefin elastomer is not particularly limited. For example, the density of the olefin elastomers, 0.860 g / cm 3 or more is preferably less than 0.905g / cm 3, 0.862g / cm 3 or more, more is less than 0.900 g / cm 3 It is preferably 0.864 g/cm 3 or more and less than 0.895 g/cm 3 . When the density of the olefin-based elastomer satisfies the above range, the base material is excellent in unevenness followability and the like when a semiconductor device such as a semiconductor wafer as an adherend is attached to an adhesive sheet.
 オレフィン系エラストマーは、このエラストマーを形成するために用いた全単量体のうち、オレフィン系化合物からなる単量体の質量比率(本明細書において「オレフィン含有率」ともいう。)が50質量%以上、100質量%以下であることが好ましい。
 オレフィン含有率が過度に低い場合には、オレフィンに由来する構造単位を含むエラストマーとしての性質が現れにくくなり、基材は、柔軟性及びゴム弾性を示し難くなる。
 柔軟性及びゴム弾性を安定的に得る観点から、オレフィン含有率は50質量%以上であることが好ましく、60質量%以上であることがより好ましい。
The olefin elastomer has a mass ratio (also referred to as “olefin content” in the present specification) of the monomer composed of the olefin compound in all the monomers used to form the elastomer of 50 mass %. As described above, it is preferably 100% by mass or less.
If the olefin content is excessively low, the property as an elastomer containing a structural unit derived from olefin becomes difficult to appear, and the base material becomes difficult to exhibit flexibility and rubber elasticity.
From the viewpoint of stably obtaining flexibility and rubber elasticity, the olefin content is preferably 50% by mass or more, and more preferably 60% by mass or more.
 スチレン系エラストマーとしては、スチレン-共役ジエン共重合体、及びスチレン-オレフィン共重合体等が挙げられる。スチレン-共役ジエン共重合体の具体例としては、スチレン-ブタジエン共重合体、スチレン-ブタジエン-スチレン共重合体(SBS)、スチレン-ブタジエン-ブチレン-スチレン共重合体、スチレン-イソプレン共重合体、スチレン-イソプレン-スチレン共重合体(SIS)、スチレン-エチレン-イソプレン-スチレン共重合体等の未水添スチレン-共役ジエン共重合体、スチレン-エチレン/プロピレン-スチレン共重合体(SEPS、スチレン-イソプレン-スチレン共重合体の水添加物)、及びスチレン-エチレン-ブチレン-スチレン共重合体(SEBS、スチレン-ブタジエン共重合体の水素添加物)等の水添スチレン-共役ジエン共重合体等を挙げることができる。また、工業的には、スチレン系エラストマーとしては、タフプレン(旭化成株式会社製)、クレイトン(クレイトンポリマージャパン株式会社製)、住友TPE-SB(住友化学株式会社製)、エポフレンド(株式会社ダイセル製)、ラバロン(三菱ケミカル株式会社製)、セプトン(株式会社クラレ製)、及びタフテック(旭化成株式会社製)等の商品名が挙げられる。スチレン系エラストマーは、水素添加物でも未水添物であってもよい。 Styrene-based elastomers include styrene-conjugated diene copolymers and styrene-olefin copolymers. Specific examples of the styrene-conjugated diene copolymer include styrene-butadiene copolymer, styrene-butadiene-styrene copolymer (SBS), styrene-butadiene-butylene-styrene copolymer, styrene-isoprene copolymer, Unhydrogenated styrene-conjugated diene copolymer such as styrene-isoprene-styrene copolymer (SIS), styrene-ethylene-isoprene-styrene copolymer, styrene-ethylene/propylene-styrene copolymer (SEPS, styrene- Hydrogenated styrene-conjugated diene copolymers such as isoprene-styrene copolymer water additives) and styrene-ethylene-butylene-styrene copolymers (SEBS, styrene-butadiene copolymer hydrogenated products) Can be mentioned. Further, industrially, as a styrene-based elastomer, toughprene (manufactured by Asahi Kasei Corporation), Kraton (manufactured by Kraton Polymer Japan Co., Ltd.), Sumitomo TPE-SB (manufactured by Sumitomo Chemical Co., Ltd.), Epofriend (manufactured by Daicel Corporation ), Lavalon (manufactured by Mitsubishi Chemical Co., Ltd.), Septon (manufactured by Kuraray Co., Ltd.), and Tuftec (manufactured by Asahi Kasei Co., Ltd.). The styrene elastomer may be a hydrogenated product or an unhydrogenated product.
 ゴム系材料としては、例えば、天然ゴム、合成イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)、アクリロニトリル-ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム、アクリルゴム、ウレタンゴム、及び多硫化ゴム等が挙げられる。これらゴム系材料は、1種を単独でまたは2種以上を組み合わせて使用することができる。 Examples of rubber materials include natural rubber, synthetic isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), acrylonitrile-butadiene copolymer rubber (NBR), butyl rubber ( IIR), halogenated butyl rubber, acrylic rubber, urethane rubber, and polysulfide rubber. These rubber materials can be used alone or in combination of two or more.
 第3基材31は、上記のような材料(例えば、熱可塑性エラストマー、またはゴム系材料)からなるフィルムが、複数、積層された積層フィルムではなく、単層フィルムであることが好ましい。また、第3基材31は、上記のような材料(例えば、熱可塑性エラストマー、またはゴム系材料)からなるフィルムと、その他のフィルムとが積層された積層フィルムではなく、単層フィルムであることが好ましい。 The third base material 31 is preferably a single-layer film, not a laminated film in which a plurality of films made of the above-mentioned materials (for example, thermoplastic elastomer or rubber-based material) are laminated. Also, the third base material 31 is not a laminated film in which a film made of the above-mentioned material (for example, a thermoplastic elastomer or a rubber-based material) and another film are laminated, but a single-layer film. Is preferred.
 第3基材31は、上記の樹脂系材料を主材料とするフィルム内に、添加剤を含んでいてもよい。添加剤の具体例としては、第1基材11及び第2基材21の説明で挙げた添加剤と同様である。フィルム内に含有させてもよい添加剤の含有量は、特に限定されないが、第3基材31が所望の機能を発揮し得る範囲に留めることが好ましい。 The third base material 31 may include an additive in the film containing the resin material as a main material. Specific examples of the additives are the same as the additives described in the description of the first base material 11 and the second base material 21. The content of the additive that may be contained in the film is not particularly limited, but it is preferable to keep it within the range in which the third base material 31 can exhibit a desired function.
 第3基材31は、第1基材11及び第2基材21と同様、第3基材31の片面または両面に、第3基材31の表面に積層される第3粘着剤層32との密着性を向上させるための処理が施されていてもよい。 Like the first base material 11 and the second base material 21, the third base material 31 has a third pressure-sensitive adhesive layer 32 laminated on one surface or both surfaces of the third base material 31 on the surface of the third base material 31. May be subjected to a treatment for improving the adhesion.
 第3粘着剤層32がエネルギー線硬化性粘着剤を含有する場合、第3基材31は、エネルギー線に対する透過性を有することが好ましい。エネルギー線として紫外線を用いる場合には、第3基材31は、紫外線に対して透過性を有することが好ましい。エネルギー線として電子線を用いる場合には、第3基材31は、電子線の透過性を有することが好ましい。 When the third pressure-sensitive adhesive layer 32 contains an energy ray-curable pressure-sensitive adhesive, the third base material 31 preferably has permeability to energy rays. When ultraviolet rays are used as the energy rays, it is preferable that the third base material 31 is transparent to ultraviolet rays. When an electron beam is used as the energy beam, the third base material 31 preferably has electron beam transparency.
 第3基材31の厚さは、第3粘着シート30が所望の工程において適切に機能できる限り、限定されない。第3基材31の厚さは、20μm以上であることが好ましく、40μm以上であることがより好ましい。また、第3基材31の厚さは、250μm以下であることが好ましく、200μm以下であることがより好ましい。 The thickness of the third base material 31 is not limited as long as the third adhesive sheet 30 can properly function in a desired process. The thickness of the third base material 31 is preferably 20 μm or more, and more preferably 40 μm or more. Further, the thickness of the third base material 31 is preferably 250 μm or less, and more preferably 200 μm or less.
 また、第3基材31の第一の基材面または第二の基材面の面内方向において2cm間隔で複数箇所の厚さを測定した際の、第3基材31の厚さの標準偏差は、2μm以下であることが好ましく、1.5μm以下であることがより好ましく、1μm以下であることがさらに好ましい。当該標準偏差が2μm以下であることで、第3粘着シート30は、精度の高い厚さを有しており、第3粘着シート30を均一に延伸することが可能となる。 In addition, the thickness standard of the third base material 31 when the thickness of a plurality of locations is measured at 2 cm intervals in the in-plane direction of the first base material surface or the second base material surface of the third base material 31. The deviation is preferably 2 μm or less, more preferably 1.5 μm or less, and further preferably 1 μm or less. When the standard deviation is 2 μm or less, the third pressure-sensitive adhesive sheet 30 has a highly accurate thickness, and the third pressure-sensitive adhesive sheet 30 can be stretched uniformly.
 23℃において第3基材31のMD方向及びCD方向の引張弾性率が、それぞれ10MPa以上、350MPa以下であり、23℃において第3基材31のMD方向及びCD方向の100%応力が、それぞれ3MPa以上、20MPa以下であることが好ましい。
 引張弾性率及び100%応力が上記範囲であることで、第3粘着シート30を大きく延伸することが可能となる。
 第3基材31の100%応力は、次のようにして得られる値である。150mm(長さ方向)×15mm(幅方向)の大きさの試験片を第3基材31から切り出す。切り出した試験片の長さ方向の両端を、つかみ具間の長さが100mmとなるようにつかみ具でつかむ。つかみ具で試験片をつかんだ後、速度200mm/minで長さ方向に引張り、つかみ具間の長さが200mmとなったときの引張力の測定値を読み取る。第3基材31の100%応力は、読み取った引張力の測定値を、基材の断面積で除算することで得られる値である。第3基材31の断面積は、幅方向長さ15mm×第3基材31(試験片)の厚みで算出される。当該切り出しは、基材の製造時における流れ方向(MD方向)またはMD方向に直交する方向(CD方向)と、試験片の長さ方向とが一致するように行う。なお、この引張試験において、試験片の厚さは特別に制限されず、試験の対象とする基材の厚さと同じであってよい。
At 23°C, the tensile elastic moduli of the MD direction and the CD direction of the third base material 31 are 10 MPa or more and 350 MPa or less, respectively, and at 23°C, the 100% stress of the MD direction and the CD direction of the third base material 31 is respectively. It is preferably 3 MPa or more and 20 MPa or less.
When the tensile elastic modulus and the 100% stress are in the above ranges, the third pressure-sensitive adhesive sheet 30 can be greatly stretched.
The 100% stress of the third base material 31 is a value obtained as follows. A test piece having a size of 150 mm (length direction)×15 mm (width direction) is cut out from the third base material 31. Grasp both ends of the cut-out test piece in the length direction with the grip so that the length between the grips is 100 mm. After gripping the test piece with the grip, it is pulled in the length direction at a speed of 200 mm/min, and the measured value of the tensile force when the length between the grips becomes 200 mm is read. The 100% stress of the third base material 31 is a value obtained by dividing the read tensile force measurement value by the cross-sectional area of the base material. The cross-sectional area of the third base material 31 is calculated by the width direction length of 15 mm×thickness of the third base material 31 (test piece). The cutting is performed so that the flow direction (MD direction) or the direction orthogonal to the MD direction (CD direction) at the time of manufacturing the base material and the length direction of the test piece match. In this tensile test, the thickness of the test piece is not particularly limited and may be the same as the thickness of the base material to be tested.
 23℃において第3基材31のMD方向及びCD方向の破断伸度が、それぞれ100%以上であることが好ましい。
 第3基材31のMD方向及びCD方向の破断伸度が、それぞれ100%以上であることで、破断が生じることなく、第3粘着シート30を大きく延伸することが可能となる。
It is preferable that the breaking elongations in the MD direction and the CD direction of the third base material 31 at 23° C. are 100% or more.
When the breaking elongations in the MD direction and the CD direction of the third base material 31 are 100% or more, the third adhesive sheet 30 can be greatly stretched without causing breakage.
 基材の引張弾性率(MPa)及び基材の破断伸度(%)は、次のようにして測定できる。基材を15mm×140mmに裁断して試験片を得る。当該試験片について、JIS K7161:2014およびJIS K7127:1999に準拠して、23℃における破断伸度および引張弾性率を測定する。具体的には、上記試験片を、引張試験機(株式会社島津製作所製,製品名「オートグラフAG-IS 500N」)にて、チャック間距離100mmに設定した後、200mm/minの速度で引張試験を行い、破断伸度(%)および引張弾性率(MPa)を測定する。なお、測定は、基材の製造時の流れ方向(MD)およびこれに直角の方向(CD)の双方で行う。 The tensile elastic modulus (MPa) of the substrate and the breaking elongation (%) of the substrate can be measured as follows. The substrate is cut into 15 mm×140 mm to obtain a test piece. For the test piece, the elongation at break and the tensile elastic modulus at 23° C. are measured according to JIS K7161:2014 and JIS K7127:1999. Specifically, the above test piece was set to a chuck distance of 100 mm with a tensile tester (manufactured by Shimadzu Corporation, product name "Autograph AG-IS 500N") and then pulled at a speed of 200 mm/min. A test is conducted to measure the elongation at break (%) and the tensile elastic modulus (MPa). In addition, the measurement is performed in both the flow direction (MD) at the time of manufacturing the base material and the direction (CD) perpendicular thereto.
・第3粘着剤層
 第3粘着剤層32は、エキスパンド工程等の所望の工程において適切に機能できる限り、その構成材料は特に限定されない。第3粘着剤層32に含まれる粘着剤としては、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤及びウレタン系粘着剤が挙げられる。
-Third adhesive layer The constituent material of the third adhesive layer 32 is not particularly limited as long as it can properly function in a desired process such as an expanding process. Examples of the adhesive contained in the third adhesive layer 32 include rubber-based adhesives, acrylic-based adhesives, silicone-based adhesives, polyester-based adhesives, and urethane-based adhesives.
・エネルギー線硬化性樹脂(ax1)
 第3粘着剤層32は、エネルギー線硬化性樹脂(ax1)を含有することが好ましい。エネルギー線硬化性樹脂(ax1)は、分子内に、エネルギー線硬化性の二重結合を有する。
 エネルギー線硬化性樹脂を含有する粘着剤層は、エネルギー線照射により硬化して粘着力が低下する。被着体と粘着シートとを分離したい場合、エネルギー線を粘着剤層に照射することにより、容易に分離できる。
・Energy ray curable resin (ax1)
The third pressure-sensitive adhesive layer 32 preferably contains an energy ray curable resin (ax1). The energy ray-curable resin (ax1) has an energy ray-curable double bond in the molecule.
The pressure-sensitive adhesive layer containing the energy ray-curable resin is cured by irradiation with energy rays and its adhesive strength is reduced. When it is desired to separate the adherend and the pressure-sensitive adhesive sheet, they can be easily separated by irradiating the pressure-sensitive adhesive layer with energy rays.
 エネルギー線硬化性樹脂(ax1)は、(メタ)アクリル系樹脂であることが好ましい。 The energy ray curable resin (ax1) is preferably a (meth)acrylic resin.
 エネルギー線硬化性樹脂(ax1)は、紫外線硬化性樹脂であることが好ましく、紫外線硬化性の(メタ)アクリル系樹脂であることがより好ましい。 The energy ray curable resin (ax1) is preferably an ultraviolet curable resin, and more preferably an ultraviolet curable (meth)acrylic resin.
 エネルギー線硬化性樹脂(ax1)は、エネルギー線の照射を受けると重合硬化する樹脂である。エネルギー線としては、例えば、紫外線、及び電子線等が挙げられる。
 エネルギー線硬化性樹脂(ax1)の例としては、エネルギー線重合性基を有する低分子量化合物(単官能のモノマー、多官能のモノマー、単官能のオリゴマー、及び多官能のオリゴマー)が挙げられる。エネルギー線硬化性樹脂(ax1)は、具体的には、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、1,4-ブチレングリコールジアクリレート、及び1,6-ヘキサンジオールジアクリレート等のアクリレート、ジシクロペンタジエンジメトキシジアクリレート、及びイソボルニルアクリレート等の環状脂肪族骨格含有アクリレート、並びにポリエチレングリコールジアクリレート、オリゴエステルアクリレート、ウレタンアクリレートオリゴマー、エポキシ変性アクリレート、ポリエーテルアクリレート、及びイタコン酸オリゴマー等のアクリレート系化合物が用いられる。エネルギー線硬化性樹脂(a1)は、1種を単独でまたは2種以上を組み合わせて用いられる。
The energy ray curable resin (ax1) is a resin that is polymerized and cured when it is irradiated with energy rays. Examples of energy rays include ultraviolet rays and electron rays.
Examples of the energy ray curable resin (ax1) include low molecular weight compounds having an energy ray polymerizable group (monofunctional monomers, polyfunctional monomers, monofunctional oligomers, and polyfunctional oligomers). The energy ray-curable resin (ax1) is specifically trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, 1,4- Butylene glycol diacrylate, acrylates such as 1,6-hexanediol diacrylate, cycloaliphatic skeleton-containing acrylates such as dicyclopentadiene dimethoxydiacrylate, and isobornyl acrylate, and polyethylene glycol diacrylate, oligoester acrylate, urethane Acrylate compounds such as acrylate oligomer, epoxy modified acrylate, polyether acrylate, and itaconic acid oligomer are used. The energy ray curable resin (a1) may be used alone or in combination of two or more.
 エネルギー線硬化性樹脂(ax1)の分子量は、通常、100以上、30000以下であり、300以上、10000以下程度であることが好ましい。 The molecular weight of the energy ray curable resin (ax1) is usually 100 or more and 30,000 or less, preferably 300 or more and 10,000 or less.
・(メタ)アクリル系共重合体(b1)
 本実施形態に係る粘着剤層(第3粘着剤層32)は、(メタ)アクリル系共重合体(b1)をさらに含んでいることが好ましい。(メタ)アクリル系共重合体は、前述したエネルギー線硬化性樹脂(ax1)とは異なる。
・(Meth)acrylic copolymer (b1)
The pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) according to this embodiment preferably further contains a (meth)acrylic copolymer (b1). The (meth)acrylic copolymer is different from the energy ray curable resin (ax1) described above.
 (メタ)アクリル系共重合体(b1)は、エネルギー線硬化性の炭素-炭素二重結合を有することが好ましい。すなわち、本実施形態において、粘着剤層(第3粘着剤層32)は、エネルギー線硬化性樹脂(ax1)と、エネルギー線硬化性の(メタ)アクリル系共重合体(b1)とを含有することが好ましい。 The (meth)acrylic copolymer (b1) preferably has an energy ray-curable carbon-carbon double bond. That is, in the present embodiment, the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) contains the energy ray-curable resin (ax1) and the energy ray-curable (meth)acrylic copolymer (b1). It is preferable.
 本実施形態に係る粘着剤層(第3粘着剤層32)は、(メタ)アクリル系共重合体(b1)100質量部に対し、エネルギー線硬化性樹脂(ax1)を10質量部以上の割合で含有することが好ましく、20質量部以上の割合で含有することがより好ましく、25質量部以上の割合で含有することがさらに好ましい。
 本実施形態に係る粘着剤層(第3粘着剤層32)は、(メタ)アクリル系共重合体(b1)100質量部に対し、エネルギー線硬化性樹脂(ax1)を80質量部以下の割合で含有することが好ましく、70質量部以下の割合で含有することがより好ましく、60質量部以下の割合で含有することがさらに好ましい。
The pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) according to the present embodiment has a ratio of 10 parts by mass or more of the energy ray-curable resin (ax1) to 100 parts by mass of the (meth)acrylic copolymer (b1). It is preferable that the content is 20 parts by mass or more, more preferably 20 parts by mass or more, and further preferably 25 parts by mass or more.
The pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) according to the present embodiment has a ratio of 80 parts by mass or less of the energy ray-curable resin (ax1) to 100 parts by mass of the (meth)acrylic copolymer (b1). It is preferable that the content is 70 parts by mass or less, more preferably 70 parts by mass or less, and further preferably 60 parts by mass or less.
 (メタ)アクリル系共重合体(b1)の重量平均分子量(Mw)は、1万以上であることが好ましく、15万以上であることがより好ましく、20万以上であることがさらに好ましい。
 また、(メタ)アクリル系共重合体(b1)の重量平均分子量(Mw)は、150万以下であることが好ましく、100万以下であることがより好ましい。
 なお、本明細書における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定した標準ポリスチレン換算の値である。
The weight average molecular weight (Mw) of the (meth)acrylic copolymer (b1) is preferably 10,000 or more, more preferably 150,000 or more, and further preferably 200,000 or more.
The weight average molecular weight (Mw) of the (meth)acrylic copolymer (b1) is preferably 1,500,000 or less, more preferably 1,000,000 or less.
In addition, the weight average molecular weight (Mw) in this specification is the value of standard polystyrene conversion measured by the gel permeation chromatography method (GPC method).
 (メタ)アクリル系共重合体(b1)は、側鎖にエネルギー線硬化性を有する官能基(エネルギー線硬化性基)が導入された(メタ)アクリル酸エステル重合体(b2)(以下「エネルギー線硬化性重合体(b2)」という場合がある。)であることが好ましい。 The (meth)acrylic copolymer (b1) is a (meth)acrylic acid ester polymer (b2) (hereinafter referred to as “energy” in which a functional group having energy ray curability (energy ray curable group) is introduced into a side chain. It may be referred to as a "curable polymer (b2)").
・エネルギー線硬化性重合体(b2)
 エネルギー線硬化性重合体(b2)は、官能基含有モノマー単位を有するアクリル系共重合体(b21)と、その官能基に結合する官能基を有する不飽和基含有化合物(b22)とを反応させて得られる共重合体であることが好ましい。
・Energy ray curable polymer (b2)
The energy ray-curable polymer (b2) is obtained by reacting an acrylic copolymer (b21) having a functional group-containing monomer unit with an unsaturated group-containing compound (b22) having a functional group bonded to the functional group. It is preferably a copolymer obtained as described above.
 本明細書において、(メタ)アクリル酸エステルとは、アクリル酸エステル及びメタクリル酸エステルの両方を意味する。他の類似用語も同様である。 In the present specification, (meth)acrylic acid ester means both acrylic acid ester and methacrylic acid ester. The same applies to other similar terms.
 アクリル系共重合体(b21)は、官能基含有モノマーから導かれる構成単位と、(メタ)アクリル酸エステルモノマー、または(メタ)アクリル酸エステルモノマーの誘導体から導かれる構成単位とを含むことが好ましい。 The acrylic copolymer (b21) preferably contains a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth)acrylic acid ester monomer or a derivative of a (meth)acrylic acid ester monomer. ..
 アクリル系共重合体(b21)の構成単位としての官能基含有モノマーは、重合性の二重結合と、官能基と、を分子内に有するモノマーであることが好ましい。官能基は、ヒドロキシ基、カルボキシ基、アミノ基、置換アミノ基、及びエポキシ基等からなる群から選択される少なくともいずれかの官能基であることが好ましい。 The functional group-containing monomer as a constituent unit of the acrylic copolymer (b21) is preferably a monomer having a polymerizable double bond and a functional group in the molecule. The functional group is preferably at least one functional group selected from the group consisting of a hydroxy group, a carboxy group, an amino group, a substituted amino group, an epoxy group and the like.
 ヒドロキシ基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、及び4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。ヒドロキシ基含有モノマーは、1種を単独でまたは2種以上を組み合わせて用いられる。 Examples of the hydroxy group-containing monomer include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl ( Examples thereof include (meth)acrylate and 4-hydroxybutyl (meth)acrylate. The hydroxy group-containing monomer may be used alone or in combination of two or more.
 カルボキシ基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、及びシトラコン酸等のエチレン性不飽和カルボン酸が挙げられる。カルボキシ基含有モノマーは、1種を単独でまたは2種以上を組み合わせて用いられる。 Examples of the carboxy group-containing monomer include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid. The carboxy group-containing monomer is used alone or in combination of two or more.
 アミノ基含有モノマーまたは置換アミノ基含有モノマーとしては、例えば、アミノエチル(メタ)アクリレート、及びn-ブチルアミノエチル(メタ)アクリレート等が挙げられる。アミノ基含有モノマーまたは置換アミノ基含有モノマーは、1種を単独でまたは2種以上を組み合わせて用いられる。 Examples of the amino group-containing monomer or the substituted amino group-containing monomer include aminoethyl (meth)acrylate and n-butylaminoethyl (meth)acrylate. The amino group-containing monomer or the substituted amino group-containing monomer may be used alone or in combination of two or more.
 アクリル系共重合体(b21)を構成する(メタ)アクリル酸エステルモノマーとしては、アルキル基の炭素数が1以上20以下であるアルキル(メタ)アクリレートの他、例えば、分子内に脂環式構造を有するモノマー(脂環式構造含有モノマー)が好ましく用いられる。 Examples of the (meth)acrylic acid ester monomer that constitutes the acrylic copolymer (b21) include alkyl (meth)acrylates having an alkyl group having 1 to 20 carbon atoms, as well as, for example, an alicyclic structure in the molecule. A monomer having a (alicyclic structure-containing monomer) is preferably used.
 アルキル(メタ)アクリレートとしては、アルキル基の炭素数が1以上18以下であるアルキル(メタ)アクリレートが好ましい。アルキル(メタ)アクリレートは、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、及び2-エチルヘキシル(メタ)アクリレート等がより好ましい。アルキル(メタ)アクリレートは、1種を単独でまたは2種以上を組み合わせて用いられる。 As the alkyl (meth)acrylate, an alkyl (meth)acrylate whose alkyl group has 1 to 18 carbon atoms is preferable. The alkyl(meth)acrylate is more preferably, for example, methyl(meth)acrylate, ethyl(meth)acrylate, propyl(meth)acrylate, n-butyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, or the like. Alkyl (meth)acrylate is used individually by 1 type or in combination of 2 or more type.
 脂環式構造含有モノマーとしては、例えば、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンテニル、及び(メタ)アクリル酸ジシクロペンテニルオキシエチル等が好ましく用いられる。脂環式構造含有モノマーは、1種を単独でまたは2種以上を組み合わせて用いられる。 Examples of the alicyclic structure-containing monomer include cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, adamantyl (meth)acrylate, isobornyl (meth)acrylate, and dicyclopentenyl (meth)acrylate. , And dicyclopentenyloxyethyl (meth)acrylate are preferably used. The alicyclic structure-containing monomer may be used alone or in combination of two or more.
 アクリル系共重合体(b21)は、上記官能基含有モノマーから導かれる構成単位を、1質量%以上の割合で含有することが好ましく、5質量%以上の割合で含有することがより好ましく、10質量%以上の割合で含有することがさらに好ましい。
 また、アクリル系共重合体(b21)は、上記官能基含有モノマーから導かれる構成単位を、35質量%以下の割合で含有することが好ましく、30質量%以下の割合で含有することがより好ましく、25質量%以下の割合で含有することがさらに好ましい。
The acrylic copolymer (b21) preferably contains the structural unit derived from the functional group-containing monomer in a proportion of 1% by mass or more, more preferably 5% by mass or more. It is more preferable that the content is at least mass %.
The acrylic copolymer (b21) preferably contains the structural unit derived from the functional group-containing monomer in a proportion of 35% by mass or less, more preferably 30% by mass or less. It is more preferable that the content is 25 mass% or less.
 さらに、アクリル系共重合体(b21)は、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を、50質量%以上の割合で含有することが好ましく、60質量%以上の割合で含有することがより好ましく、70質量%以上の割合で含有することがさらに好ましい。
 また、アクリル系共重合体(b21)は、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を、99質量%以下の割合で含有することが好ましく、95質量%以下の割合で含有することがより好ましく、90質量%以下の割合で含有することがさらに好ましい。
Furthermore, the acrylic copolymer (b21) preferably contains a structural unit derived from a (meth)acrylic acid ester monomer or a derivative thereof in a proportion of 50% by mass or more, and a proportion of 60% by mass or more. Is more preferable, and it is further preferable that the content is 70% by mass or more.
The acrylic copolymer (b21) preferably contains a structural unit derived from a (meth)acrylic acid ester monomer or a derivative thereof in a proportion of 99% by mass or less, and a proportion of 95% by mass or less. Is more preferable, and it is further preferable that the content is 90% by mass or less.
 アクリル系共重合体(b21)は、上記のような官能基含有モノマーと、(メタ)アクリル酸エステルモノマーまたはその誘導体とを常法で共重合することにより得られる。
 アクリル系共重合体(b21)は、上述のモノマーの他にも、ジメチルアクリルアミド、蟻酸ビニル、酢酸ビニル、及びスチレン等からなる群から選択される少なくともいずれかの構成単位を含有していてもよい。
The acrylic copolymer (b21) is obtained by copolymerizing the functional group-containing monomer as described above and the (meth)acrylic acid ester monomer or a derivative thereof by a conventional method.
The acrylic copolymer (b21) may contain at least one structural unit selected from the group consisting of dimethylacrylamide, vinyl formate, vinyl acetate, and styrene, in addition to the above-mentioned monomers. ..
 上記官能基含有モノマー単位を有するアクリル系共重合体(b21)を、その官能基に結合する官能基を有する不飽和基含有化合物(b22)と反応させることにより、エネルギー線硬化性重合体(b2)が得られる。 The energy ray-curable polymer (b2) is obtained by reacting the acrylic copolymer (b21) having the functional group-containing monomer unit with the unsaturated group-containing compound (b22) having a functional group bonded to the functional group. ) Is obtained.
 不飽和基含有化合物(b22)が有する官能基は、アクリル系共重合体(b21)が有する官能基含有モノマー単位の官能基の種類に応じて、適宜選択することができる。例えば、アクリル系共重合体(b21)が有する官能基がヒドロキシ基、アミノ基又は置換アミノ基の場合、不飽和基含有化合物(b22)が有する官能基としてはイソシアネート基又はエポキシ基が好ましく、アクリル系共重合体(b21)が有する官能基がエポキシ基の場合、不飽和基含有化合物(b22)が有する官能基としてはアミノ基、カルボキシ基またはアジリジニル基が好ましい。 The functional group of the unsaturated group-containing compound (b22) can be appropriately selected according to the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (b21). For example, when the functional group of the acrylic copolymer (b21) is a hydroxy group, an amino group or a substituted amino group, the functional group of the unsaturated group-containing compound (b22) is preferably an isocyanate group or an epoxy group, and an acrylic group When the functional group contained in the copolymer (b21) is an epoxy group, the functional group contained in the unsaturated group-containing compound (b22) is preferably an amino group, a carboxy group or an aziridinyl group.
 不飽和基含有化合物(b22)は、エネルギー線重合性の炭素-炭素二重結合を、1分子中に少なくとも1個含み、1個以上、6個以下含むことが好ましく、1個以上、4個以下含むことがより好ましい。 The unsaturated group-containing compound (b22) contains at least one energy ray-polymerizable carbon-carbon double bond in one molecule, preferably one or more and 6 or less, and preferably one or more and 4 or less. It is more preferable to include the following.
 不飽和基含有化合物(b22)としては、例えば、2-メタクリロイルオキシエチルイソシアネート(2-イソシアナトエチルメタクリレート)、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;ジイソシアネート化合物またはポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;ジイソシアネート化合物またはポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;グリシジル(メタ)アクリレート;(メタ)アクリル酸、2-(1-アジリジニル)エチル(メタ)アクリレート、2-ビニル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン等が挙げられる。 Examples of the unsaturated group-containing compound (b22) include 2-methacryloyloxyethyl isocyanate (2-isocyanatoethyl methacrylate), meta-isopropenyl-α,α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1 -(Bisacryloyloxymethyl)ethyl isocyanate; an acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth)acrylate; a diisocyanate compound or polyisocyanate compound, a polyol compound, and hydroxyethyl ( Acryloyl monoisocyanate compound obtained by reaction with (meth)acrylate; glycidyl (meth)acrylate; (meth)acrylic acid, 2-(1-aziridinyl)ethyl (meth)acrylate, 2-vinyl-2-oxazoline, 2-iso Propenyl-2-oxazoline and the like can be mentioned.
 不飽和基含有化合物(b22)は、アクリル系共重合体(b21)の官能基含有モノマーのモル数に対して、50モル%以上の割合(付加率)で用いられることが好ましく、60モル%以上の割合で用いられることがより好ましく、70モル%以上の割合で用いられることが更に好ましい。
 また、不飽和基含有化合物(b22)は、アクリル系共重合体(b21)の官能基含有モノマーモル数に対して、95モル%以下の割合で用いられることが好ましく、93モル%以下の割合で用いられることがより好ましく、90モル%以下の割合で用いられることがさらに好ましい。
The unsaturated group-containing compound (b22) is preferably used in a proportion (addition rate) of 50 mol% or more, and 60 mol% relative to the number of moles of the functional group-containing monomer of the acrylic copolymer (b21). It is more preferably used in the above ratio, and further preferably used in a ratio of 70 mol% or more.
Further, the unsaturated group-containing compound (b22) is preferably used in a proportion of 95 mol% or less, and in a proportion of 93 mol% or less, with respect to the number of moles of the functional group-containing monomer of the acrylic copolymer (b21). It is more preferably used, and further preferably used in a proportion of 90 mol% or less.
 アクリル系共重合体(b21)と不飽和基含有化合物(b22)との反応においては、アクリル系共重合体(b21)が有する官能基と不飽和基含有化合物(b22)が有する官能基との組合せに応じて、反応の温度、圧力、溶媒、時間、触媒の有無、及び触媒の種類を適宜選択することができる。これにより、アクリル系共重合体(b21)が有する官能基と、不飽和基含有化合物(b22)が有する官能基とが反応し、不飽和基がアクリル系共重合体(b21)の側鎖に導入され、エネルギー線硬化性重合体(b2)が得られる。 In the reaction between the acrylic copolymer (b21) and the unsaturated group-containing compound (b22), the functional group of the acrylic copolymer (b21) and the functional group of the unsaturated group-containing compound (b22) Depending on the combination, the reaction temperature, pressure, solvent, time, presence or absence of catalyst, and type of catalyst can be appropriately selected. As a result, the functional group of the acrylic copolymer (b21) reacts with the functional group of the unsaturated group-containing compound (b22), and the unsaturated group becomes a side chain of the acrylic copolymer (b21). This is introduced to obtain the energy ray-curable polymer (b2).
 エネルギー線硬化性重合体(b2)の重量平均分子量(Mw)は、1万以上であることが好ましく、15万以上であることがより好ましく、20万以上であることがさらに好ましい。
 また、エネルギー線硬化性重合体(b2)の重量平均分子量(Mw)は、150万以下であることが好ましく、100万以下であることがより好ましい。
The weight average molecular weight (Mw) of the energy ray-curable polymer (b2) is preferably 10,000 or more, more preferably 150,000 or more, and further preferably 200,000 or more.
The weight average molecular weight (Mw) of the energy ray-curable polymer (b2) is preferably 1,500,000 or less, more preferably 1,000,000 or less.
・光重合開始剤(CX)
 粘着剤層(第3粘着剤層32)が紫外線硬化性の化合物(例えば、紫外線硬化性樹脂)を含有する場合、粘着剤層(第3粘着剤層32)は、光重合開始剤(CX)を含有することが好ましい。
 粘着剤層(第3粘着剤層32)が光重合開始剤(CX)を含有することにより、重合硬化時間及び光線照射量を少なくすることができる。
・Photopolymerization initiator (CX)
When the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) contains a UV-curable compound (for example, a UV-curable resin), the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) is a photopolymerization initiator (CX). It is preferable to contain
When the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) contains the photopolymerization initiator (CX), the polymerization and curing time and the light irradiation amount can be reduced.
 光重合開始剤(CX)の具体例は、第2粘着シート20の説明における光重合開始剤(C)の具体例と同様である。第3粘着シート30においても、光重合開始剤(CX)は、1種を単独で用いてもよいし、2種以上を併用してもよい。 Specific examples of the photopolymerization initiator (CX) are the same as the specific examples of the photopolymerization initiator (C) in the description of the second adhesive sheet 20. Also in the third adhesive sheet 30, the photopolymerization initiator (CX) may be used alone or in combination of two or more.
 光重合開始剤(CX)は、粘着剤層(第3粘着剤層32)にエネルギー線硬化性樹脂(ax1)、及び(メタ)アクリル系共重合体(b1)を配合する場合には、エネルギー線硬化性樹脂(ax1)、及び(メタ)アクリル系共重合体(b1)の合計量100質量部に対して0.1質量部以上の量で用いられることが好ましく、0.5質量部以上の量で用いられることがより好ましい。
 また、光重合開始剤(CX)は、粘着剤層(第3粘着剤層32)にエネルギー線硬化性樹脂(ax1)、及び(メタ)アクリル系共重合体(b1)を配合する場合には、エネルギー線硬化性樹脂(ax1)、及び(メタ)アクリル系共重合体(b1)の合計量100質量部に対して10質量部以下の量で用いられることが好ましく、6質量部以下の量で用いられることがより好ましい。
When the energy ray-curable resin (ax1) and the (meth)acrylic copolymer (b1) are mixed in the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32), the photopolymerization initiator (CX) is an energy source. It is preferably used in an amount of 0.1 parts by mass or more, and 0.5 parts by mass or more, based on 100 parts by mass of the total amount of the linear curable resin (ax1) and the (meth)acrylic copolymer (b1). More preferably used in an amount of
Further, the photopolymerization initiator (CX) is used when the energy ray-curable resin (ax1) and the (meth)acrylic copolymer (b1) are mixed in the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32). It is preferably used in an amount of 10 parts by mass or less, and an amount of 6 parts by mass or less, based on 100 parts by mass of the total amount of the energy ray curable resin (ax1) and the (meth)acrylic copolymer (b1). Is more preferably used.
 粘着剤層(第3粘着剤層32)は、上記成分以外にも、適宜他の成分を配合してもよい。他の成分としては、例えば、架橋剤(EX)等が挙げられる。 The pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) may appropriately contain other components in addition to the above components. Examples of the other component include a cross-linking agent (EX) and the like.
・架橋剤(EX)
 架橋剤(EX)としては、(メタ)アクリル系共重合体(b1)等が有する官能基との反応性を有する多官能性化合物を用いることができる。第3粘着シート30における多官能性化合物の例としては、第2粘着シート20の説明における架橋剤(E)としての多官能性化合物の具体例と同様である。
・Crosslinking agent (EX)
As the cross-linking agent (EX), a polyfunctional compound having reactivity with a functional group contained in the (meth)acrylic copolymer (b1) or the like can be used. Examples of the polyfunctional compound in the third adhesive sheet 30 are the same as the specific examples of the polyfunctional compound as the crosslinking agent (E) in the description of the second adhesive sheet 20.
 架橋剤(EX)の配合量は、(メタ)アクリル系共重合体(b1)100質量部に対して、0.01質量部以上であることが好ましく、0.03質量部以上であることがより好ましく、0.04質量部以上であることがさらに好ましい。
 また、架橋剤(EX)の配合量は、(メタ)アクリル系共重合体(b1)100質量部に対して、8質量部以下であることが好ましく、5質量部以下であることがより好ましく、3.5質量部以下であることがさらに好ましい。
The amount of the cross-linking agent (EX) to be blended is preferably 0.01 parts by mass or more, and preferably 0.03 parts by mass or more, with respect to 100 parts by mass of the (meth)acrylic copolymer (b1). More preferably, it is more preferably 0.04 parts by mass or more.
The amount of the crosslinking agent (EX) blended is preferably 8 parts by mass or less, and more preferably 5 parts by mass or less, relative to 100 parts by mass of the (meth)acrylic copolymer (b1). More preferably, it is 3.5 parts by mass or less.
 粘着剤層(第3粘着剤層32)の厚さは、特に限定されない。粘着剤層(第3粘着剤層32)の厚さは、例えば、10μm以上であることが好ましく、20μm以上であることがより好ましい。また、粘着剤層(第3粘着剤層32)の厚さは、150μm以下であることが好ましく、100μm以下であることがより好ましい。 The thickness of the adhesive layer (third adhesive layer 32) is not particularly limited. The thickness of the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) is, for example, preferably 10 μm or more, and more preferably 20 μm or more. The thickness of the pressure-sensitive adhesive layer (third pressure-sensitive adhesive layer 32) is preferably 150 μm or less, more preferably 100 μm or less.
 第3粘着シート30の復元率が、70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。第3粘着シート30の復元率は、100%以下であることが好ましい。復元率が上記範囲であることで、粘着シートを大きく延伸することができる。
 復元率は、粘着シートを150mm(長さ方向)×15mm(幅方向)に切り出した試験片において、長さ方向の両端を、つかみ具間の長さが100mmとなるようにつかみ具でつかみ、その後、つかみ具間の長さが200mmとなるまで200mm/minの速度で引張り、つかみ具間の長さが200mmに拡張された状態で1分間保持し、その後、つかみ具間の長さが100mmとなるまで200mm/minの速度で長さ方向に戻し、つかみ具間の長さが100mmに戻された状態で1分間保持し、その後、60mm/minの速度で長さ方向に引張り、引張力の測定値が0.1N/15mmを示した時のつかみ具間の長さを測定し、当該長さから初期のつかみ具間の長さ100mmを引いた長さをL2(mm)とし、前記拡張された状態におけるつかみ具間の長さ200mmから初期のつかみ具間の長さ100mmを引いた長さをL1(mm)としたとき、下記数式(数2)で算出される。
  復元率(%)={1-(L2÷L1)}×100 ・・・ (数2)
The restoration rate of the third pressure-sensitive adhesive sheet 30 is preferably 70% or more, more preferably 80% or more, and further preferably 85% or more. The restoration rate of the third adhesive sheet 30 is preferably 100% or less. When the restoration rate is within the above range, the pressure-sensitive adhesive sheet can be stretched greatly.
The recovery rate is obtained by grabbing both ends in the length direction with a gripper so that the length between the grippers is 100 mm in a test piece obtained by cutting out an adhesive sheet into 150 mm (length direction)×15 mm (width direction), Then, pull at a speed of 200 mm/min until the length between the grips reaches 200 mm, hold for 1 minute with the length between the grips expanded to 200 mm, and then the length between the grips is 100 mm. Until it reaches 200 mm/min in the length direction, hold for 1 minute with the length between grips returned to 100 mm, and then pull in the length direction at a speed of 60 mm/min to pull the tensile force. The length between the grips when the measured value of 0.1 N/15 mm was measured, and the length obtained by subtracting 100 mm between the initial grips from the length was defined as L2 (mm), and When the length obtained by subtracting the initial length between grips of 100 mm from the length between grips of 200 mm in the expanded state is L1 (mm), it is calculated by the following mathematical expression (Equation 2).
Recovery rate (%)={1-(L2÷L1)}×100 (Equation 2)
 復元率が上記範囲である場合、粘着シートは大きく延伸された後においても復元し易いことを意味する。一般に、降伏点を有するシートを降伏点以上に延伸すると、シートは塑性変形を起こし、塑性変形を起こした部分、即ち極端に延伸された部分が偏在した状態となる。そのような状態のシートをさらに延伸すると、上記の極端に延伸された部分から破断が生じたり、破断が生じなくても、エキスパンドが不均一になる。また、ひずみをx軸、伸びをy軸にそれぞれプロットした応力-ひずみ線図において、傾きdx/dyが、正の値から0または負の値に変化する応力値をとらず、明確な降伏点を示さないシートであっても、引張量が大きくなるにつれてシートは塑性変形を起こし、同様に破断が生じたり、エキスパンドが不均一になる。一方、塑性変形ではなく弾性変形が生じる場合には、応力を取り除くことでシートが元の形状に復元し易い。そこで、十分大きい引張量である100%伸長後にどの程度復元するかを表す指標である復元率が、上記範囲であることにより、粘着シートを大きく延伸する際に、フィルムの塑性変形が最小限に抑えられ、破断が生じ難く、且つ均一なエキスパンドが可能となる。 When the restoration rate is within the above range, it means that the pressure-sensitive adhesive sheet is easily restored even after being greatly stretched. In general, when a sheet having a yield point is stretched above the yield point, the sheet undergoes plastic deformation, and the plastically deformed portion, that is, the extremely stretched portion is unevenly distributed. When the sheet in such a state is further stretched, the expand becomes non-uniform even if the above-mentioned extremely stretched portion breaks or does not break. In the stress-strain diagram in which strain is plotted on the x-axis and elongation on the y-axis, the slope dx/dy does not take a stress value that changes from a positive value to 0 or a negative value, and a clear yield point. Even if the sheet does not show the above, the sheet is plastically deformed as the tensile amount increases, and similarly, the sheet is fractured or the expansion becomes uneven. On the other hand, when elastic deformation occurs instead of plastic deformation, the sheet is easily restored to the original shape by removing the stress. Therefore, when the restoration rate, which is an index showing how much the sheet is restored after 100% elongation, which is a sufficiently large tensile amount, is within the above range, the plastic deformation of the film is minimized when the adhesive sheet is largely stretched. It is suppressed, breakage hardly occurs, and uniform expansion becomes possible.
・剥離シート
 第3粘着シート30は、その粘着面を被着体(例えば、半導体チップ等)に貼付するまでの間、粘着面を保護する目的で、粘着面に剥離シートが積層されていてもよい。剥離シートの構成は任意であり、プラスチックフィルムを剥離剤等により剥離処理したものが例示される。剥離シートとしては、第1粘着シート10及び第2粘着シート20に用い得る剥離シートでもよい。
-Release sheet The third pressure-sensitive adhesive sheet 30 may have a release sheet laminated on the pressure-sensitive adhesive surface for the purpose of protecting the pressure-sensitive adhesive surface until the pressure-sensitive adhesive surface is attached to an adherend (for example, a semiconductor chip). Good. The configuration of the release sheet is arbitrary, and examples include those obtained by subjecting a plastic film to a release treatment with a release agent or the like. The release sheet may be a release sheet that can be used for the first adhesive sheet 10 and the second adhesive sheet 20.
 第3粘着シート30の厚さは、30μm以上であることが好ましく、50μm以上であることがより好ましい。第3粘着シート30の厚さは、400μm以下であることが好ましく、300μm以下であることがより好ましい。 The thickness of the third adhesive sheet 30 is preferably 30 μm or more, and more preferably 50 μm or more. The thickness of the third adhesive sheet 30 is preferably 400 μm or less, more preferably 300 μm or less.
[本実施形態に係る効果]
 本実施形態に係るエキスパンド方法によれば、第3粘着シート30を伸張させる際に、半導体チップCPの回路面W1は、第3粘着シート30の第3粘着剤層32と接していない。半導体チップCPのそれぞれにおいては、回路面W1と第3粘着剤層32との間にダイシング工程で個片化された第1粘着シート10が介在しているため、第3粘着シート30を伸張させても回路面W1に接している第1粘着シート10の第1粘着剤層12は、引き延ばされない。その結果、本実施形態に係るエキスパンド方法によれば、糊残りを抑制できる。
 また、本実施形態に係るエキスパンド方法において用いる粘着シートは、いずれも基材と粘着剤層とからなる簡易な構成である。また、エキスパンド工程を実施する前に、ダイシング工程を実施した際に用いた粘着シートから、エキスパンド工程用の粘着シートへと貼り替えるため、ダイシング工程においてダイシングブレードがダイシングシートの基材に到達しないように、切込み深さを慎重に制御する必要がない。
 したがって、本実施形態に係るエキスパンド方法によれば、従来に比べて粘着シート構成及びプロセスを簡略化し、かつ、糊残りを抑制できる。
 さらには、本実施形態に係るエキスパンド方法を含む半導体装置の製造方法を提供できる。
[Effects of this embodiment]
According to the expanding method according to the present embodiment, when the third adhesive sheet 30 is expanded, the circuit surface W1 of the semiconductor chip CP is not in contact with the third adhesive layer 32 of the third adhesive sheet 30. In each of the semiconductor chips CP, since the first adhesive sheet 10 separated into individual pieces in the dicing process is interposed between the circuit surface W1 and the third adhesive layer 32, the third adhesive sheet 30 is expanded. However, the first pressure-sensitive adhesive layer 12 of the first pressure-sensitive adhesive sheet 10 that is in contact with the circuit surface W1 is not stretched. As a result, according to the expanding method of the present embodiment, it is possible to suppress adhesive residue.
The pressure-sensitive adhesive sheets used in the expanding method according to the present embodiment each have a simple structure including a base material and a pressure-sensitive adhesive layer. Further, before performing the expanding step, the adhesive sheet used when performing the dicing step is replaced with an adhesive sheet for the expanding step, so that the dicing blade does not reach the base material of the dicing sheet in the dicing step. Moreover, it is not necessary to carefully control the depth of cut.
Therefore, according to the expanding method of the present embodiment, the structure and process of the pressure-sensitive adhesive sheet can be simplified and the adhesive residue can be suppressed as compared with the conventional method.
Furthermore, a method of manufacturing a semiconductor device including the expanding method according to the present embodiment can be provided.
〔第2実施形態〕
 次に、本発明の第2実施形態について説明する。
 第1実施形態と第2実施形態とは主に次の点で相違する。第1実施形態においてはバックグラインド工程及びダイシング工程において半導体ウエハの回路面に貼着されている粘着シートは同じ粘着シートであるのに対し、第2実施形態においては、バックグラインド工程において半導体ウエハに貼着されている粘着シートと、ダイシング工程において半導体ウエハの回路面に貼着されている粘着シートとが異なる。
 以下の説明では、第1実施形態との相違に係る部分を主に説明し、重複する説明については省略又は簡略化する。第1実施形態と同様の構成には同一の符号を付して説明を省略又は簡略化する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
The first embodiment and the second embodiment mainly differ in the following points. In the first embodiment, the adhesive sheet adhered to the circuit surface of the semiconductor wafer in the back grinding process and the dicing process is the same adhesive sheet, whereas in the second embodiment, the adhesive sheet is applied to the semiconductor wafer in the back grinding process. The adhesive sheet attached is different from the adhesive sheet attached to the circuit surface of the semiconductor wafer in the dicing process.
In the following description, the part related to the difference from the first embodiment will be mainly described, and the overlapping description will be omitted or simplified. The same components as those in the first embodiment are designated by the same reference numerals, and description thereof will be omitted or simplified.
 本実施形態に係るエキスパンド方法は、第1実施形態で説明した工程(P1)~(P5)の工程に加えて、さらに工程(PX1)、工程(PX2)及び工程(PX3)を備える。工程(PX1)、(PX2)及び(PX3)は、工程(P1)の前に実施する。 The expanding method according to this embodiment includes steps (PX1), (PX2), and (PX3) in addition to the steps (P1) to (P5) described in the first embodiment. Steps (PX1), (PX2) and (PX3) are performed before step (P1).
(PX1)半導体ウエハを裏面研削する前に、第1ウエハ面に第4粘着シートを貼着する工程。
(PX2)第4粘着シートを貼着した半導体ウエハを裏面研削する工程。
(PX3)半導体ウエハを裏面研削した後に第1ウエハ面から第4粘着シートを剥離し、第1ウエハ面に第1粘着シートを貼着する工程。
(PX1) A step of adhering a fourth adhesive sheet to the surface of the first wafer before backgrinding the semiconductor wafer.
(PX2) A step of grinding the back surface of the semiconductor wafer to which the fourth adhesive sheet is attached.
(PX3) A step of peeling the fourth adhesive sheet from the first wafer surface after back-grinding the semiconductor wafer and adhering the first adhesive sheet to the first wafer surface.
[バックグラインド工程]
 図6Aは、工程(PX1)及び工程(PX2)を説明するための図である。
 本実施形態のバックグラインド工程においては、回路面W1とは反対側の裏面W6をグラインダー500によって研削し、半導体ウエハWを所定の厚さになるまで研削する。半導体ウエハWの裏面W6を裏面研削して、裏面W3を形成する。
[Back grinding process]
FIG. 6A is a diagram for explaining the step (PX1) and the step (PX2).
In the back grinding process of this embodiment, the back surface W6 opposite to the circuit surface W1 is ground by the grinder 500, and the semiconductor wafer W is ground to a predetermined thickness. The back surface W6 of the semiconductor wafer W is ground to form a back surface W3.
 本実施形態のバックグラインド工程においては、半導体ウエハWの回路面W1に、第4粘着シート40が貼着されている。第4粘着シート40は、第4粘着剤層42と第4基材41とを有する。本実施形態においては、第4粘着シート40がバックグラインドシートであることが好ましい。バックグラインドシートとして第4粘着シート40が用いられる場合、半導体ウエハWは、回路面W1を第4粘着シート40の第4粘着剤層42に向けて貼着される。バックグラインドシートとしての第4粘着シート40は、半導体ウエハWを裏面研削する前に、第1ウエハ面としての回路面W1に貼着されていることが好ましい。
 第4粘着シート40は、第1実施形態における第1粘着シート10と同様の粘着シートを用いることが好ましい。
In the back grinding process of this embodiment, the fourth adhesive sheet 40 is attached to the circuit surface W1 of the semiconductor wafer W. The fourth pressure-sensitive adhesive sheet 40 has a fourth pressure-sensitive adhesive layer 42 and a fourth base material 41. In the present embodiment, the fourth adhesive sheet 40 is preferably a back grind sheet. When the fourth pressure-sensitive adhesive sheet 40 is used as the back-grinding sheet, the semiconductor wafer W is attached so that the circuit surface W1 faces the fourth pressure-sensitive adhesive layer 42 of the fourth pressure-sensitive adhesive sheet 40. The fourth pressure-sensitive adhesive sheet 40 as a back-grinding sheet is preferably attached to the circuit surface W1 as the first wafer surface before back-grinding the semiconductor wafer W.
As the fourth adhesive sheet 40, it is preferable to use the same adhesive sheet as the first adhesive sheet 10 in the first embodiment.
[第4粘着シートの剥離工程及び第1粘着シートの貼着工程]
 図6Bは、工程(PX3)を説明するための図である。図6Bには、半導体ウエハWを裏面研削した後に回路面W1から第4粘着シート40を剥離した後、回路面W1に第1粘着シート70が貼着された状態が示されている。
 本実施形態では、前述のとおり、バックグラインド工程の後、バックグラインドシート(第4粘着シート40)を回路面W1に貼着させたまま次の工程に進むのではなく、別の粘着シート(第1粘着シート70)を回路面W1に貼着する。この別の粘着シートとしての第1粘着シート70は、回路面W1を保護するための表面保護シートであることが好ましい。なお、第1実施形態では第1粘着シートをバックグラインドシートとして用いるが、本実施形態では第1粘着シートを表面保護シートとして用いることから、第1粘着シートの位置付けが異なる。そのため、第1実施形態では第1粘着シートの符号を10とし、本実施形態では第1粘着シートの符号を70として、区別している。
 表面保護シートとしての第1粘着シート70の厚さは、バックグラインドシートとしての第4粘着シート40の厚さよりも薄いことが好ましい。第1粘着シート70の厚さを第4粘着シート40の厚さよりも薄くすることで、ダイシング工程において第1粘着シート70及び半導体ウエハWをダイシングし易くなる。
 表面保護シートとしての第1粘着シート70の厚さは、5μm以上であることが好ましく、10μm以上であることがより好ましく、30μm以上であることがさらに好ましい。
 表面保護シートとしての第1粘着シート70の厚さは、500μm以下であることが好ましく、300μm以下であることがより好ましく、100μm以下であることがさらに好ましい。
[Peeling Step of Fourth Adhesive Sheet and Sticking Step of First Adhesive Sheet]
FIG. 6B is a diagram for explaining the step (PX3). FIG. 6B shows a state in which the first adhesive sheet 70 is attached to the circuit surface W1 after the fourth adhesive sheet 40 is peeled from the circuit surface W1 after the back surface of the semiconductor wafer W is ground.
In the present embodiment, as described above, after the backgrinding step, the backgrinding sheet (fourth adhesive sheet 40) is not attached to the circuit surface W1 and the process is not advanced to the next step. 1 Adhesive sheet 70) is attached to the circuit surface W1. The first pressure-sensitive adhesive sheet 70 as this another pressure-sensitive adhesive sheet is preferably a surface protection sheet for protecting the circuit surface W1. In the first embodiment, the first adhesive sheet is used as the back grind sheet, but in the present embodiment, the first adhesive sheet is used as the surface protection sheet, so the positioning of the first adhesive sheet is different. Therefore, in the first embodiment, the reference numeral of the first adhesive sheet is 10, and in the present embodiment, the reference numeral of the first adhesive sheet is 70 to distinguish them.
The thickness of the first pressure sensitive adhesive sheet 70 as the surface protection sheet is preferably thinner than the thickness of the fourth pressure sensitive adhesive sheet 40 as the back grinding sheet. By making the thickness of the first adhesive sheet 70 smaller than the thickness of the fourth adhesive sheet 40, it becomes easy to dice the first adhesive sheet 70 and the semiconductor wafer W in the dicing process.
The thickness of the first pressure-sensitive adhesive sheet 70 as the surface protection sheet is preferably 5 μm or more, more preferably 10 μm or more, and further preferably 30 μm or more.
The thickness of the first pressure-sensitive adhesive sheet 70 as the surface protection sheet is preferably 500 μm or less, more preferably 300 μm or less, and further preferably 100 μm or less.
[第2粘着シートの貼着工程]
 本実施形態においても、第1実施形態と同様、工程(P1)で準備する半導体ウエハWは、バックグラインド工程を経て、さらに、裏面W3に第2粘着シート20を貼着する貼着工程を経て得られたウエハであることが好ましい。
 図7Aには、裏面W3に第2粘着シート20を貼着する貼着工程を説明する図が示されている。本実施形態においては、第1実施形態と同様、第2粘着シート20がダイシングシートであることが好ましい。ダイシングシートとして第2粘着シート20が用いられる場合、半導体ウエハWは、裏面W3を第2粘着シート20の第2粘着剤層22に向けて貼着される。
[Step of attaching second adhesive sheet]
Also in the present embodiment, as in the first embodiment, the semiconductor wafer W prepared in the step (P1) undergoes the back-grinding step and further the sticking step of sticking the second adhesive sheet 20 to the back surface W3. The obtained wafer is preferable.
FIG. 7A is a diagram illustrating a bonding step of bonding the second adhesive sheet 20 to the back surface W3. In the present embodiment, it is preferable that the second adhesive sheet 20 is a dicing sheet, as in the first embodiment. When the second adhesive sheet 20 is used as the dicing sheet, the semiconductor wafer W is attached with the back surface W3 facing the second adhesive layer 22 of the second adhesive sheet 20.
[ダイシング工程]
 図7Bは、本実施形態における工程(P2)を説明するための図である。工程(P2)をダイシング工程と称する場合がある。図7Bには、半導体ウエハWをダイシングして得た複数の半導体チップCPが示されている。
 本実施形態における工程(P2)は、回路面W1に第1粘着シート70が貼着されている点で第1実施形態と異なり、その他の点は、第1実施形態と同様にして実施できる。本実施形態においても、第1粘着シート70側から切込みを入れて、第1粘着シート70を切断し、さらに半導体ウエハWを切断する。
[Dicing process]
FIG. 7B is a diagram for explaining the step (P2) in the present embodiment. The process (P2) may be called a dicing process. FIG. 7B shows a plurality of semiconductor chips CP obtained by dicing the semiconductor wafer W.
The step (P2) in the present embodiment is different from the first embodiment in that the first adhesive sheet 70 is attached to the circuit surface W1, and the other points can be performed in the same manner as in the first embodiment. Also in the present embodiment, the first adhesive sheet 70 is cut, the first adhesive sheet 70 is cut, and the semiconductor wafer W is further cut.
[第3粘着シートの貼着工程]
 図8Aは、工程(P3)を説明するための図である。工程(P3)を第3粘着シートの貼着工程と称する場合がある。図8Aには、ダイシング工程によって得た複数の半導体チップCPに第3粘着シート30が貼付された状態が示されている。第3粘着シート30は、第1実施形態と同様である。
 本実施形態における工程(P3)は、第3粘着シート30を表面保護シートとしての第1粘着シート70に貼着する点で、第1実施形態とは異なり、その他の点は、第1実施形態と同様にして実施できる。
[Step of attaching third adhesive sheet]
FIG. 8A is a diagram for explaining the step (P3). The step (P3) may be referred to as a third adhesive sheet sticking step. FIG. 8A shows a state in which the third adhesive sheet 30 is attached to the plurality of semiconductor chips CP obtained by the dicing process. The third adhesive sheet 30 is the same as that in the first embodiment.
The step (P3) in the present embodiment is different from the first embodiment in that the third pressure-sensitive adhesive sheet 30 is attached to the first pressure-sensitive adhesive sheet 70 as a surface protection sheet, and other points are the first embodiment. It can be implemented in the same manner as.
[第2粘着シートの剥離工程]
 図8Bは、本実施形態における工程(P4)を説明するための図である。工程(P4)を第2粘着シートの剥離工程と称する場合がある。図8Bには、第3粘着シート30を貼着後に第2粘着シート20をウエハWの裏面W3から剥離した状態が示されている。本実施形態における工程(P4)は、第1実施形態と同様に実施できる。
[Peeling Step of Second Adhesive Sheet]
FIG. 8B is a diagram for explaining the step (P4) in the present embodiment. The step (P4) may be referred to as the peeling step of the second adhesive sheet. FIG. 8B shows a state in which the second adhesive sheet 20 is peeled from the back surface W3 of the wafer W after the third adhesive sheet 30 is attached. The step (P4) in this embodiment can be carried out in the same manner as in the first embodiment.
[エキスパンド工程]
 図9は、本実施形態における工程(P5)を説明するための図である。工程(P5)をエキスパンド工程と称する場合がある。図9には、第2粘着シート20を剥離後に、第3粘着シート30を伸張させて、複数の半導体チップCPの間隔を拡げた状態が示されている。本実施形態においても、第3粘着シート30がエキスパンドシートであることが好ましい。本実施形態における工程(P5)は、第1実施形態と同様に実施できる。本実施形態においても、複数の半導体チップCPの間隔D1は、第1実施形態と同様であることが好ましい。
[Expanding process]
FIG. 9 is a diagram for explaining the step (P5) in the present embodiment. The process (P5) may be called an expanding process. FIG. 9 shows a state in which after the second adhesive sheet 20 is peeled off, the third adhesive sheet 30 is expanded to expand the intervals between the plurality of semiconductor chips CP. Also in this embodiment, it is preferable that the third adhesive sheet 30 is an expanded sheet. The step (P5) in this embodiment can be performed in the same manner as in the first embodiment. Also in the present embodiment, the spacing D1 between the plurality of semiconductor chips CP is preferably the same as that in the first embodiment.
[封止工程並びにその他の工程]
 本実施形態においても、第1実施形態と同様、封止工程、並びにその他の工程(再配線層形成工程及び外部端子電極との接続工程)を実施してもよい。
[Sealing process and other processes]
In the present embodiment as well, similar to the first embodiment, the sealing step and other steps (rewiring layer forming step and external terminal electrode connecting step) may be performed.
(第4粘着シート)
 第4粘着シート40は、第1実施形態で説明した第1粘着シート10と同様の粘着シートを用いることが好ましい。
(4th adhesive sheet)
As the fourth adhesive sheet 40, it is preferable to use the same adhesive sheet as the first adhesive sheet 10 described in the first embodiment.
(第1粘着シート)
 本実施形態における第1粘着シート70は、第7基材71と、第7粘着剤層72とを有する。第7粘着剤層72は、第7基材71に積層されている。
(First adhesive sheet)
The first pressure-sensitive adhesive sheet 70 in the present embodiment has a seventh base material 71 and a seventh pressure-sensitive adhesive layer 72. The seventh pressure-sensitive adhesive layer 72 is laminated on the seventh base material 71.
・第7基材
 第7基材71は、第7粘着剤層72を支持する部材である。第7基材71は、ダイシング工程等の所望の工程において適切に機能できる限り、その構成材料は特に限定されない。
-Seventh Base Material The seventh base material 71 is a member that supports the seventh adhesive layer 72. The constituent material of the seventh base material 71 is not particularly limited as long as it can properly function in a desired process such as a dicing process.
 第7基材71の厚さは、5μm以上であることが好ましく、10μm以上であることがより好ましく、15μm以上であることがさらに好ましい。
 第7基材71の厚さは、100μm以下であることが好ましく、75μm以下であることがより好ましく、50μm以下であることがさらに好ましい。
The thickness of the seventh base material 71 is preferably 5 μm or more, more preferably 10 μm or more, and further preferably 15 μm or more.
The thickness of the seventh base material 71 is preferably 100 μm or less, more preferably 75 μm or less, and further preferably 50 μm or less.
 第7基材71としては、例えば、合成樹脂フィルム等のシート材料等を用いることができる。合成樹脂フィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、及びポリイミドフィルム等が挙げられる。その他、第7基材71としては、これらの架橋フィルム及び積層フィルム等が挙げられる。 As the seventh base material 71, for example, a sheet material such as a synthetic resin film can be used. Examples of the synthetic resin film include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film. , Polyurethane film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene/(meth)acrylic acid copolymer film, ethylene/(meth)acrylic acid ester copolymer film, polystyrene film, polycarbonate film, and polyimide film Etc. In addition, examples of the seventh base material 71 include these crosslinked films and laminated films.
 第7基材71は、ポリエステル系樹脂を含むことが好ましく、ポリエステル系樹脂を主成分とする材料からなることがより好ましい。本明細書において、ポリエステル系樹脂を主成分とする材料とは、基材を構成する材料全体の質量に占めるポリエステル系樹脂の質量の割合が50質量%以上であることを意味する。
 ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンナフタレート樹脂、及びこれらの樹脂の共重合樹脂からなる群から選択されるいずれかの樹脂であることが好ましく、ポリエチレンテレフタレート樹脂がより好ましい。
 第7基材71としては、ポリエチレンテレフタレートフィルム、及びポリエチレンナフタレートフィルムが好ましく、ポリエチレンテレフタレートフィルムがより好ましい。ポリエステルフィルムに含有するオリゴマーとしては、ポリエステル形成性モノマー、ダイマー、及びトリマー等に由来する。
The seventh base material 71 preferably contains a polyester resin, and more preferably comprises a material containing a polyester resin as a main component. In the present specification, the material containing a polyester resin as a main component means that the mass ratio of the polyester resin to the mass of the entire material constituting the substrate is 50 mass% or more.
The polyester resin is, for example, any resin selected from the group consisting of polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin, and copolymer resin of these resins. Are preferred, and polyethylene terephthalate resin is more preferred.
As the seventh substrate 71, a polyethylene terephthalate film and a polyethylene naphthalate film are preferable, and a polyethylene terephthalate film is more preferable. The oligomer contained in the polyester film is derived from polyester-forming monomers, dimers, trimers and the like.
・第7粘着剤層
 第7粘着剤層72は、ダイシング工程等の所望の工程において適切に機能できる限り、その構成材料は特に限定されない。
 本実施形態では、第7粘着剤層72は、例えば、アクリル系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ゴム系粘着剤及びシリコーン系粘着剤からなる群から選択される少なくとも一種の粘着剤で構成されることが好ましく、アクリル系粘着剤で構成されることがより好ましい。
-Seventh Adhesive Layer The constituent material of the seventh adhesive layer 72 is not particularly limited as long as it can properly function in a desired process such as a dicing process.
In the present embodiment, the seventh pressure-sensitive adhesive layer 72 is, for example, at least one pressure-sensitive adhesive selected from the group consisting of acrylic pressure-sensitive adhesive, urethane pressure-sensitive adhesive, polyester pressure-sensitive adhesive, rubber pressure-sensitive adhesive and silicone pressure-sensitive adhesive. It is preferable to be composed of an agent, and more preferable to be composed of an acrylic adhesive.
 本実施形態における第7粘着剤層72は、粘着剤組成物を含んでいることが好ましい。この粘着剤組成物は、アクリル酸2-エチルヘキシルを主たるモノマーとするアクリル系共重合体を含んでいることが好ましい。本明細書において、アクリル酸2-エチルヘキシルを主たるモノマーとするとは、アクリル系共重合体全体の質量に占めるアクリル酸2-エチルヘキシル由来の共重合体成分の質量の割合が50質量%以上であることを意味する。本実施形態においては、アクリル系共重合体におけるアクリル酸2-エチルヘキシルに由来する共重合体成分の割合は、50質量%以上、95質量%以下であることが好ましく、60質量%以上、95質量%以下であることがより好ましく、80質量%以上、95質量%以下であることがさらに好ましく、85質量%以上、93質量%以下であることがよりさらに好ましい。 The seventh pressure-sensitive adhesive layer 72 in this embodiment preferably contains a pressure-sensitive adhesive composition. This pressure-sensitive adhesive composition preferably contains an acrylic copolymer containing 2-ethylhexyl acrylate as a main monomer. In the present specification, the term "2-ethylhexyl acrylate as a main monomer" means that the mass ratio of the copolymer component derived from 2-ethylhexyl acrylate to the total mass of the acrylic copolymer is 50% by mass or more. Means In the present embodiment, the proportion of the copolymer component derived from 2-ethylhexyl acrylate in the acrylic copolymer is preferably 50% by mass or more and 95% by mass or less, and 60% by mass or more and 95% by mass. % Or less, more preferably 80% by mass or more and 95% by mass or less, still more preferably 85% by mass or more and 93% by mass or less.
 アクリル系共重合体におけるアクリル酸2-エチルヘキシル以外の共重合体成分の種類及び数は、特に限定されない。例えば、第二の共重合体成分としては、反応性の官能基を有する官能基含有モノマーが好ましい。第二の共重合体成分の反応性官能基としては、後述する架橋剤を使用する場合には、当該架橋剤と反応し得る官能基であることが好ましい。この反応性官能基は、例えば、カルボキシ基、水酸基、アミノ基、置換アミノ基、及びエポキシ基からなる群から選択される少なくともいずれかの置換基であることが好ましく、カルボキシ基及び水酸基の少なくともいずれかの置換基であることがより好ましく、カルボキシ基であることが更に好ましい。 The kind and number of copolymer components other than 2-ethylhexyl acrylate in the acrylic copolymer are not particularly limited. For example, a functional group-containing monomer having a reactive functional group is preferable as the second copolymer component. When the crosslinking agent described below is used, the reactive functional group of the second copolymer component is preferably a functional group capable of reacting with the crosslinking agent. This reactive functional group is preferably, for example, at least one substituent selected from the group consisting of a carboxy group, a hydroxyl group, an amino group, a substituted amino group, and an epoxy group, and at least one of a carboxy group and a hydroxyl group. It is more preferable that it is a substituent, and it is still more preferable that it is a carboxy group.
 カルボキシ基を有するモノマー(カルボキシ基含有モノマー)としては、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、及びシトラコン酸等のエチレン性不飽和カルボン酸が挙げられる。カルボキシ基含有モノマーの中でも、反応性及び共重合性の点から、アクリル酸が好ましい。カルボキシ基含有モノマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the monomer having a carboxy group (carboxy group-containing monomer) include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid. Among the carboxyl group-containing monomers, acrylic acid is preferable from the viewpoint of reactivity and copolymerizability. As the carboxy group-containing monomer, one type may be used alone, or two or more types may be used in combination.
 水酸基を有するモノマー(水酸基含有モノマー)としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、及び(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキルエステル等が挙げられる。水酸基含有モノマーの中でも、水酸基の反応性及び共重合性の点から、(メタ)アクリル酸2-ヒドロキシエチルが好ましい。水酸基含有モノマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the monomer having a hydroxyl group (hydroxyl group-containing monomer) include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and (meth)acrylic acid 2 -Hydroxybutyl, 3-hydroxybutyl (meth)acrylate, and hydroxyalkyl (meth)acrylates such as 4-hydroxybutyl (meth)acrylate. Among the hydroxyl group-containing monomers, 2-hydroxyethyl (meth)acrylate is preferable from the viewpoint of reactivity of hydroxyl group and copolymerizability. As the hydroxyl group-containing monomer, one type may be used alone, or two or more types may be used in combination.
 エポキシ基を有するアクリル酸エステルとしては、例えば、グリシジルアクリレート、及びグリシジルメタクリレート等が挙げられる。 Examples of acrylic acid ester having an epoxy group include glycidyl acrylate and glycidyl methacrylate.
 アクリル系共重合体におけるその他の共重合体成分としては、アルキル基の炭素数が2~20の(メタ)アクリル酸アルキルエステルが挙げられる。(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-デシル、(メタ)アクリル酸n-ドデシル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸パルミチル、及び(メタ)アクリル酸ステアリル等が挙げられる。これらの(メタ)アクリル酸アルキルエステルの中でも、粘着性をより向上させる観点から、アルキル基の炭素数が2~4の(メタ)アクリル酸エステルが好ましく、(メタ)アクリル酸n-ブチルがより好ましい。(メタ)アクリル酸アルキルエステルは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Other examples of the copolymer component in the acrylic copolymer include (meth)acrylic acid alkyl ester whose alkyl group has 2 to 20 carbon atoms. Examples of alkyl (meth)acrylates include ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, n-pentyl (meth)acrylate, and n-(meth)acrylate. -Hexyl, 2-ethylhexyl methacrylate, isooctyl (meth)acrylate, n-decyl (meth)acrylate, n-dodecyl (meth)acrylate, myristyl (meth)acrylate, palmityl (meth)acrylate, and ( Stearyl (meth)acrylate and the like can be mentioned. Among these (meth)acrylic acid alkyl esters, from the viewpoint of further improving the adhesiveness, a (meth)acrylic acid ester having an alkyl group having 2 to 4 carbon atoms is preferable, and n-butyl (meth)acrylate is more preferable. preferable. The (meth)acrylic acid alkyl ester may be used alone or in combination of two or more.
 アクリル系共重合体におけるその他の共重合体成分としては、例えば、アルコキシアルキル基含有(メタ)アクリル酸エステル、脂肪族環を有する(メタ)アクリル酸エステル、芳香族環を有する(メタ)アクリル酸エステル、非架橋性のアクリルアミド、非架橋性の3級アミノ基を有する(メタ)アクリル酸エステル、酢酸ビニル、及びスチレンからなる群から選択される少なくともいずれかのモノマーに由来する共重合体成分が挙げられる。
 アルコキシアルキル基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、及び(メタ)アクリル酸エトキシエチルが挙げられる。
 脂肪族環を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸シクロヘキシルが挙げられる。
 芳香族環を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸フェニルが挙げられる。
 非架橋性のアクリルアミドとしては、例えば、アクリルアミド、及びメタクリルアミドが挙げられる。
 非架橋性の3級アミノ基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸(N,N-ジメチルアミノ)エチル、及び(メタ)アクリル酸(N,N-ジメチルアミノ)プロピルが挙げられる。
 これらのモノマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Other copolymer components in the acrylic copolymer include, for example, alkoxyalkyl group-containing (meth)acrylic acid ester, (meth)acrylic acid ester having an aliphatic ring, and (meth)acrylic acid having an aromatic ring. A copolymer component derived from at least one monomer selected from the group consisting of ester, non-crosslinkable acrylamide, non-crosslinkable (meth)acrylic acid ester having a tertiary amino group, vinyl acetate, and styrene, Can be mentioned.
Examples of the alkoxyalkyl group-containing (meth)acrylic acid ester include methoxymethyl (meth)acrylate, methoxyethyl (meth)acrylate, ethoxymethyl (meth)acrylate, and ethoxyethyl (meth)acrylate. ..
Examples of the (meth)acrylic acid ester having an aliphatic ring include cyclohexyl (meth)acrylate.
Examples of the (meth)acrylic acid ester having an aromatic ring include phenyl (meth)acrylate.
Non-crosslinkable acrylamides include, for example, acrylamide and methacrylamide.
Examples of the non-crosslinkable (meth)acrylic acid ester having a tertiary amino group include (meth)acrylic acid (N,N-dimethylamino)ethyl and (meth)acrylic acid (N,N-dimethylamino) Examples include propyl.
These monomers may be used alone or in combination of two or more.
 本実施形態においては、第二の共重合体成分として、カルボキシ基含有モノマーまたは水酸基含有モノマーが好ましく、アクリル酸がより好ましい。アクリル系共重合体が、アクリル酸2-エチルヘキシル由来の共重合体成分、及びアクリル酸由来の共重合体成分を含む場合、アクリル系共重合体全体の質量に占めるアクリル酸由来の共重合体成分の質量の割合が1質量%以下であることが好ましく、0.1質量%以上、0.5質量%以下であることがより好ましい。アクリル酸の割合が1質量%以下であれば、粘着剤組成物に架橋剤が含まれる場合にアクリル系共重合体の架橋が早く進行し過ぎることを防止できる。 In the present embodiment, as the second copolymer component, a carboxy group-containing monomer or a hydroxyl group-containing monomer is preferable, and acrylic acid is more preferable. When the acrylic copolymer contains a copolymer component derived from 2-ethylhexyl acrylate and a copolymer component derived from acrylic acid, the copolymer component derived from acrylic acid accounts for the total mass of the acrylic copolymer. The mass ratio is preferably 1% by mass or less, more preferably 0.1% by mass or more and 0.5% by mass or less. When the proportion of acrylic acid is 1% by mass or less, when the pressure-sensitive adhesive composition contains a crosslinking agent, it is possible to prevent the acrylic copolymer from crosslinking too quickly.
 アクリル系共重合体は、2種類以上の官能基含有モノマー由来の共重合体成分を含んでいてもよい。例えば、アクリル系共重合体は、3元系共重合体であってもよく、アクリル酸2-エチルヘキシル、カルボキシ基含有モノマー及び水酸基含有モノマーを共重合して得られるアクリル系共重合体が好ましく、このカルボキシ基含有モノマーは、アクリル酸であることが好ましく、水酸基含有モノマーは、アクリル酸2-ヒドロキシエチルであることが好ましい。アクリル系共重合体におけるアクリル酸2-エチルヘキシルに由来する共重合体成分の割合が80質量%以上、95質量%以下であり、アクリル酸由来の共重合体成分の質量の割合が1質量%以下であり、残部がアクリル酸2-ヒドロキシエチル由来の共重合体成分であることが好ましい。 The acrylic copolymer may contain a copolymer component derived from two or more kinds of functional group-containing monomers. For example, the acrylic copolymer may be a ternary copolymer, preferably an acrylic copolymer obtained by copolymerizing 2-ethylhexyl acrylate, a carboxy group-containing monomer and a hydroxyl group-containing monomer, The carboxy group-containing monomer is preferably acrylic acid, and the hydroxyl group-containing monomer is preferably 2-hydroxyethyl acrylate. The proportion of the copolymer component derived from 2-ethylhexyl acrylate in the acrylic copolymer is 80% by mass or more and 95% by mass or less, and the proportion by mass of the copolymer component derived from acrylic acid is 1% by mass or less. And the balance is preferably a copolymer component derived from 2-hydroxyethyl acrylate.
 アクリル系共重合体の重量平均分子量(Mw)は、30万以上、200万以下であることが好ましく、60万以上、150万以下であることがより好ましく、80万以上、120万以下であることがさらに好ましい。アクリル系共重合体の重量平均分子量Mwが30万以上であれば、被着体への粘着剤の残渣なく剥離することができる。アクリル系共重合体の重量平均分子量Mwが200万以下であれば、被着体へ確実に貼り付けることができる。
 アクリル系共重合体の重量平均分子量Mwは、ゲル・パーミエーション・クロマトグラフィー(Gel Permeation Chromatography;GPC)法により測定される標準ポリスチレン換算値である。
The weight average molecular weight (Mw) of the acrylic copolymer is preferably 300,000 or more and 2 million or less, more preferably 600,000 or more and 1.5 million or less, and 800,000 or more and 1.2 million or less. Is more preferable. When the weight average molecular weight Mw of the acrylic copolymer is 300,000 or more, it can be peeled off without a residue of the adhesive on the adherend. When the weight average molecular weight Mw of the acrylic copolymer is 2,000,000 or less, it can be reliably attached to the adherend.
The weight average molecular weight Mw of the acrylic copolymer is a standard polystyrene conversion value measured by a gel permeation chromatography (GPC) method.
 アクリル系共重合体は、前述の各種原料モノマーを用いて、従来公知の方法に従って製造することができる。 The acrylic copolymer can be produced according to a conventionally known method using the above-mentioned various raw material monomers.
 アクリル系共重合体の共重合の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、またはグラフト共重合体のいずれでもよい。
 本実施形態において、粘着剤組成物中のアクリル系共重合体の含有率は、40質量%以上、90質量%以下であることが好ましく、50質量%以上、90質量%以下であることがより好ましい。
The form of copolymerization of the acrylic copolymer is not particularly limited, and may be a block copolymer, a random copolymer, or a graft copolymer.
In the present embodiment, the content of the acrylic copolymer in the pressure-sensitive adhesive composition is preferably 40% by mass or more and 90% by mass or less, and more preferably 50% by mass or more and 90% by mass or less. preferable.
 第7粘着剤層72を構成する粘着剤組成物は、前述のアクリル系共重合体の他に、さらに架橋剤を配合した組成物を架橋させて得られる粘着剤を少なくとも含むことが好ましい。また、粘着剤組成物は、実質的に、前述のように前述のアクリル系共重合体と、架橋剤とを架橋させて得られる粘着剤からなることも好ましい。ここで、実質的にとは、不可避的に粘着剤に混入してしまうような微量な不純物を除いて、当該粘着剤だけからなることを意味する。 The pressure-sensitive adhesive composition constituting the seventh pressure-sensitive adhesive layer 72 preferably contains at least a pressure-sensitive adhesive obtained by crosslinking a composition further containing a crosslinking agent, in addition to the above-mentioned acrylic copolymer. It is also preferable that the pressure-sensitive adhesive composition substantially consists of a pressure-sensitive adhesive obtained by crosslinking the above-mentioned acrylic copolymer and a crosslinking agent as described above. Here, “substantially” means that the pressure sensitive adhesive is composed of only the pressure sensitive adhesive, except for a trace amount of impurities that are inevitably mixed in the pressure sensitive adhesive.
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤、アミン系架橋剤、及びアミノ樹脂系架橋剤が挙げられる。これらの架橋剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 第7粘着剤層72の耐熱性及び粘着力を向上させる観点から、これら架橋剤の中でも、イソシアネート基を有する化合物を主成分として含有する架橋剤(イソシアネート系架橋剤)が好ましい。イソシアネート系架橋剤としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、及びリジンイソシアネート等の多価イソシアネート化合物が挙げられる。
 また、多価イソシアネート化合物は、上記化合物のトリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、またはイソシアヌレート環を有するイソシアヌレート型変性体であってもよい。
 本明細書において、イソシアネート基を有する化合物を主成分として含有する架橋剤とは、架橋剤を構成する成分全体の質量に占めるイソシアネート基を有する化合物の質量の割合が50質量%以上であることを意味する。
Examples of the crosslinking agent include an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, a metal chelate crosslinking agent, an amine crosslinking agent, and an amino resin crosslinking agent. These crosslinking agents may be used alone or in combination of two or more.
From the viewpoint of improving the heat resistance and adhesive strength of the seventh pressure-sensitive adhesive layer 72, among these cross-linking agents, a cross-linking agent (isocyanate-based cross-linking agent) containing a compound having an isocyanate group as a main component is preferable. Examples of the isocyanate crosslinking agent include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, diphenylmethane-4,4'-diisocyanate, Polyphenyl isocyanates such as diphenylmethane-2,4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, dicyclohexylmethane-2,4'-diisocyanate, and lysine isocyanate Compounds.
Further, the polyvalent isocyanate compound may be a trimethylolpropane adduct type modified product of the above compound, a buret type modified product reacted with water, or an isocyanurate type modified product having an isocyanurate ring.
In the present specification, the term “crosslinking agent containing a compound having an isocyanate group as a main component” means that the mass ratio of the compound having an isocyanate group to the total mass of the components constituting the crosslinking agent is 50% by mass or more. means.
 本実施形態において、粘着剤組成物中の架橋剤の含有量は、アクリル系共重合体100質量部に対して、好ましくは0.1質量部以上、20質量部以下、より好ましくは1質量部以上、15質量部以下、さらに好ましくは5質量部以上、10質量部以下である。粘着剤組成物中の架橋剤の含有量がこのような範囲内であれば、第7粘着剤層72と第7基材71との接着性を向上させることができ、粘着シートの製造後に粘着特性を安定化させるための養生期間を短縮できる。 In the present embodiment, the content of the crosslinking agent in the pressure-sensitive adhesive composition is preferably 0.1 parts by mass or more and 20 parts by mass or less, more preferably 1 part by mass with respect to 100 parts by mass of the acrylic copolymer. As described above, the amount is 15 parts by mass or less, more preferably 5 parts by mass or more and 10 parts by mass or less. When the content of the cross-linking agent in the pressure-sensitive adhesive composition is within such a range, the adhesiveness between the seventh pressure-sensitive adhesive layer 72 and the seventh base material 71 can be improved, and the pressure-sensitive adhesive sheet can be adhered after production. The curing period for stabilizing the characteristics can be shortened.
 本実施形態における第7粘着剤層72を構成する粘着剤組成物が架橋剤を含む場合、粘着剤組成物は、架橋促進剤をさらに含むことが好ましい。架橋促進剤は、架橋剤の種類等に応じて、適宜選択して用いることが好ましい。例えば、粘着剤組成物が、架橋剤としてポリイソシアネート化合物を含む場合には、有機スズ化合物等の有機金属化合物系の架橋促進剤をさらに含むことが好ましい。 When the pressure-sensitive adhesive composition forming the seventh pressure-sensitive adhesive layer 72 in the present embodiment contains a crosslinking agent, it is preferable that the pressure-sensitive adhesive composition further contains a crosslinking accelerator. It is preferable to appropriately select and use the crosslinking accelerator depending on the type of the crosslinking agent. For example, when the pressure-sensitive adhesive composition contains a polyisocyanate compound as a crosslinking agent, it is preferable that the pressure-sensitive adhesive composition further contains an organometallic compound-based crosslinking accelerator such as an organotin compound.
 また、第7粘着剤層72を構成する粘着剤組成物は、反応性粘着助剤を含むことも好ましい。反応性粘着助剤としては、反応性の官能基を有するポリブタジエン系樹脂、及び反応性の官能基を有するポリブタジエン系樹脂の水素添加物等が挙げられる。反応性粘着助剤が有する反応性の官能基としては、水酸基、イソシアネート基、アミノ基、オキシラン基、酸無水物基、アルコキシ基、アクリロイル基及びメタクリロイル基からなる群より選択される一種以上の官能基であることが好ましい。粘着剤組成物が反応性粘着助剤を含んでいると、第1粘着シート70を被着体から剥がした際の糊残りを減少させることができる。 The pressure-sensitive adhesive composition forming the seventh pressure-sensitive adhesive layer 72 also preferably contains a reactive pressure-sensitive adhesive aid. Examples of the reactive adhesion aid include a polybutadiene resin having a reactive functional group, a hydrogenated product of a polybutadiene resin having a reactive functional group, and the like. As the reactive functional group which the reactive adhesive aid has, one or more functional groups selected from the group consisting of a hydroxyl group, an isocyanate group, an amino group, an oxirane group, an acid anhydride group, an alkoxy group, an acryloyl group and a methacryloyl group. It is preferably a group. When the pressure-sensitive adhesive composition contains a reactive pressure-sensitive adhesive aid, it is possible to reduce adhesive residue when the first pressure-sensitive adhesive sheet 70 is peeled off from the adherend.
 本実施形態において、第7粘着剤層72を構成する粘着剤組成物には、本発明の効果を損なわない範囲で、その他の成分が含まれていてもよい。粘着剤組成物に含まれ得るその他の成分としては、例えば、有機溶媒、難燃剤、粘着付与剤、紫外線吸収剤、酸化防止剤、防腐剤、防黴剤、可塑剤、消泡剤、及び濡れ性調整剤等が挙げられる。 In the present embodiment, the pressure-sensitive adhesive composition that constitutes the seventh pressure-sensitive adhesive layer 72 may contain other components as long as the effects of the present invention are not impaired. Other components that may be contained in the pressure-sensitive adhesive composition include, for example, organic solvents, flame retardants, tackifiers, ultraviolet absorbers, antioxidants, antiseptics, antifungal agents, plasticizers, defoamers, and wetting. Examples include sex regulators.
 第7粘着剤層72の厚さは、第1粘着シート70の用途に応じて適宜決定される。本実施形態において、第7粘着剤層72の厚さは、5μm以上であることが好ましい。第7粘着剤層72の厚さは、60μm以下であることが好ましく、50μm以下であることがより好ましい。
 以上が、第7粘着剤層72に関する説明である。
The thickness of the seventh pressure-sensitive adhesive layer 72 is appropriately determined according to the application of the first pressure-sensitive adhesive sheet 70. In the present embodiment, the thickness of the seventh pressure-sensitive adhesive layer 72 is preferably 5 μm or more. The thickness of the seventh pressure-sensitive adhesive layer 72 is preferably 60 μm or less, and more preferably 50 μm or less.
The above is the description regarding the seventh pressure-sensitive adhesive layer 72.
・剥離シート
 第1粘着シート70は、その粘着面を被着体(例えば、半導体ウエハW又は半導体チップCP)に貼付するまでの間、粘着面を保護する目的で、粘着面に剥離シートが積層されていてもよい。剥離シートの構成は任意であり、プラスチックフィルムを剥離剤等により剥離処理したものが例示される。剥離シートとしては、第1粘着シート10及び第2粘着シート20に用い得る剥離シートでもよい。
-Release Sheet The first adhesive sheet 70 has a release sheet laminated on the adhesive surface for the purpose of protecting the adhesive surface until the adhesive surface is attached to an adherend (for example, the semiconductor wafer W or the semiconductor chip CP). It may have been done. The configuration of the release sheet is arbitrary, and examples include those obtained by subjecting a plastic film to a release treatment with a release agent or the like. The release sheet may be a release sheet that can be used for the first adhesive sheet 10 and the second adhesive sheet 20.
[本実施形態に係る効果]
 本実施形態に係るエキスパンド方法によっても、第1実施形態と同様、従来に比べて粘着シート構成及びプロセスを簡略化しつつ、かつ、糊残りを抑制できる。さらに、本実施形態に係るエキスパンド方法を含む半導体装置の製造方法を提供できる。
[Effects of this embodiment]
Even with the expanding method according to the present embodiment, as in the first embodiment, the adhesive sheet structure and process can be simplified as compared with the related art, and adhesive residue can be suppressed. Furthermore, it is possible to provide a method for manufacturing a semiconductor device including the expanding method according to the present embodiment.
 また、本実施形態に係るエキスパンド方法においては、バックグラインド工程の後、ダイシング工程を実施する前に、バックグラインド工程で用いた第4粘着シート40よりも厚さが薄い第1粘着シート70に貼り替えている。ダイシング工程において切断する粘着シートの厚さを薄くすることができるので、ダイシングブレードに加わる負荷を低減できる。 In addition, in the expanding method according to the present embodiment, after the back grinding step and before the dicing step, the sticking is performed on the first adhesive sheet 70 that is thinner than the fourth adhesive sheet 40 used in the back grinding step. Are changing. Since the thickness of the pressure-sensitive adhesive sheet cut in the dicing step can be reduced, the load applied to the dicing blade can be reduced.
〔第3実施形態〕
 次に、本発明の第3実施形態について説明する。
 第1実施形態と第3実施形態とは主に次の点で相違する。第1実施形態においては、バックグラインド工程を実施した後に、ダイシング工程を実施するのに対し、第3実施形態においては、いわゆる先ダイシング法と呼ばれる工程を実施する。先ダイシング法は、半導体ウエハの表面側から所定深さの溝を形成した後、ウエハ裏面側から研削を行い、研削により溝の底部を除去してウエハを個片化し、チップを得る工法である。
 以下の説明では、第1実施形態との相違に係る部分を主に説明し、重複する説明については省略又は簡略化する。第1実施形態と同様の構成には同一の符号を付して説明を省略又は簡略化する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described.
The first embodiment and the third embodiment mainly differ in the following points. In the first embodiment, the back-grinding process is performed and then the dicing process is performed, while in the third embodiment, a so-called pre-dicing method is performed. The front dicing method is a method for obtaining chips by forming grooves of a predetermined depth from the front surface side of a semiconductor wafer, then grinding from the back surface side of the wafer, removing the bottom of the grooves by grinding, and dividing the wafer into individual pieces. ..
In the following description, the part related to the difference from the first embodiment will be mainly described, and the overlapping description will be omitted or simplified. The same components as those in the first embodiment are designated by the same reference numerals, and description thereof will be omitted or simplified.
 本実施形態に係るエキスパンド方法は、次の工程(PY1)~(PY4)並びに第1実施形態と同様の工程(P5)を備える。
(PY1)裏面研削する前のウエハの第1ウエハ面に第8粘着シートを貼着する工程。
(PY2)ウエハの第1ウエハ面側から所定深さの溝を形成する工程。
(PY3)溝を形成したウエハの第2ウエハ面を裏面研削し、溝の底部を除去してチップを得る工程。
(PY4)ウエハを裏面研削した後、第8粘着シートに第3粘着シートを貼着する工程。
(P5)第3粘着シートを伸張させて、複数のチップの間隔を拡げる工程。
The expanding method according to this embodiment includes the following steps (PY1) to (PY4) and the same step (P5) as in the first embodiment.
(PY1) A step of adhering an eighth adhesive sheet to the first wafer surface of the wafer before backside grinding.
(PY2) A step of forming a groove having a predetermined depth from the first wafer surface side of the wafer.
(PY3) A step of back-grinding the second wafer surface of the grooved wafer and removing the bottom of the groove to obtain chips.
(PY4) A step of attaching the third adhesive sheet to the eighth adhesive sheet after grinding the back surface of the wafer.
(P5) A step of expanding the third pressure-sensitive adhesive sheet to widen the intervals between the plurality of chips.
[第8粘着シートの貼着工程]
 図10Aは、工程(PY1)を説明するための図である。図10Aには、裏面研削する前の半導体ウエハWの第1ウエハ面としての回路面W1に第8粘着シート80が貼着された状態が示されている。第8粘着シート80は、第8粘着剤層82と第8基材81とを有する。本実施形態においては、第8粘着シート80がバックグラインドシートであることが好ましい。第8粘着シート80は、バックグラインドシートとしての第1実施形態における第1粘着シート10又は第2実施形態における第4粘着シート40と同様の粘着シートを用いることが好ましい。バックグラインドシートとして第8粘着シート80が用いられる場合、半導体ウエハWは、回路面W1を第8粘着シート80の第8粘着剤層82に向けて貼着される。バックグラインドシートとしての第8粘着シート80は、半導体ウエハWに所定深さの溝を形成する工程の前に、第1ウエハ面としての回路面W1に貼着されていることが好ましい。
[Adhesion process of eighth adhesive sheet]
FIG. 10A is a diagram for explaining the step (PY1). FIG. 10A shows a state in which the eighth adhesive sheet 80 is attached to the circuit surface W1 as the first wafer surface of the semiconductor wafer W before the back surface grinding. The eighth adhesive sheet 80 has an eighth adhesive layer 82 and an eighth base material 81. In the present embodiment, the eighth adhesive sheet 80 is preferably a back grind sheet. As the eighth pressure-sensitive adhesive sheet 80, it is preferable to use the same pressure-sensitive adhesive sheet as the first pressure-sensitive adhesive sheet 10 in the first embodiment or the fourth pressure-sensitive adhesive sheet 40 in the second embodiment as a back-grinding sheet. When the eighth adhesive sheet 80 is used as the back-grinding sheet, the semiconductor wafer W is attached so that the circuit surface W1 faces the eighth adhesive layer 82 of the eighth adhesive sheet 80. The eighth pressure-sensitive adhesive sheet 80 as a back-grinding sheet is preferably attached to the circuit surface W1 as the first wafer surface before the step of forming the groove of the predetermined depth in the semiconductor wafer W.
[溝形成工程]
 図10Bは、工程(PY2)を説明するための図である。図10Bには、半導体ウエハWの回路面W1側から所定深さの溝を形成する工程(溝形成工程と称する場合がある。)を説明する図が示されている。
 溝形成工程においては、ダイシング装置のダイシングブレード等を用いて第8粘着シート80側から半導体ウエハに切込みを入れる。その際、第8粘着シート80を完全に切断し、かつ、半導体ウエハWの回路面W1から、半導体ウエハWの厚さよりも浅い深さの切込みを入れて、溝W5を形成する。溝W5は、半導体ウエハWの回路面W1に形成された複数の回路W2を区画するように形成される。溝W5の深さは、目的とする半導体チップの厚さよりもやや深い程度であれば、特に限定はされない。溝W5の形成時には、半導体ウエハWからの切削屑が発生する。本実施形態では、回路面W1が第8粘着シート80により保護された状態で、溝W5の形成を行っているため、切削屑による回路面W1や回路W2の汚染や破損を防止できる。
[Groove forming process]
FIG. 10B is a diagram for explaining the step (PY2). FIG. 10B is a diagram illustrating a step of forming a groove having a predetermined depth from the circuit surface W1 side of the semiconductor wafer W (may be referred to as a groove forming step).
In the groove forming step, a cut is made in the semiconductor wafer from the eighth adhesive sheet 80 side using a dicing blade of a dicing device or the like. At this time, the eighth adhesive sheet 80 is completely cut, and a notch having a depth smaller than the thickness of the semiconductor wafer W is made from the circuit surface W1 of the semiconductor wafer W to form the groove W5. The groove W5 is formed so as to partition the plurality of circuits W2 formed on the circuit surface W1 of the semiconductor wafer W. The depth of the groove W5 is not particularly limited as long as it is slightly deeper than the intended thickness of the semiconductor chip. When forming the groove W5, cutting chips from the semiconductor wafer W are generated. In the present embodiment, since the groove W5 is formed in the state where the circuit surface W1 is protected by the eighth adhesive sheet 80, it is possible to prevent the circuit surface W1 and the circuit W2 from being contaminated or damaged by cutting chips.
[研削工程]
 図10Cは、工程(PY3)を説明するための図である。図10Cには、溝W5を形成した後、個片化された第8粘着シート80に第3粘着シート30を貼着する工程(第3粘着シートの貼着工程)と、半導体ウエハWの第二の面としての裏面W6を研削する工程(研削工程と称する場合がある。)を説明する図が示されている。
 本実施形態では、グラインダー500を用いて、裏面W6側から半導体ウエハWを研削する。研削により、半導体ウエハWの厚さが薄くなり、最終的に複数の半導体チップCPへ分割される。溝W5の底部が除去されるまで裏面W6側から研削を行い、半導体ウエハWを回路W2ごとに個片化する。その後、必要に応じてさらに裏面研削を行い、所定厚さの半導体チップCPを得ることができる。本実施形態では、第2ウエハ面としての裏面W3が得られるまで研削する。本実施形態の溝形成工程及び研削工程を含む方法が先ダイシング法に相当する。本実施形態の研削工程では、第8粘着シート80の第8基材81側を転写テープにて固定または真空吸着盤に固定させる方法で支持した状態で裏面W6を研削することが好ましい。
[Grinding process]
FIG. 10C is a diagram for explaining the step (PY3). 10C, after forming the groove W5, a step of attaching the third adhesive sheet 30 to the individualized eighth adhesive sheet 80 (adhesion step of the third adhesive sheet), and The figure explaining the process (it may call a grinding process.) of grinding the back surface W6 as a 2nd surface is shown.
In this embodiment, the semiconductor wafer W is ground from the back surface W6 side using the grinder 500. The grinding reduces the thickness of the semiconductor wafer W and finally divides it into a plurality of semiconductor chips CP. Grinding is performed from the back surface W6 side until the bottom of the groove W5 is removed, and the semiconductor wafer W is separated into individual circuits W2. After that, the back surface is further ground as required, and the semiconductor chip CP having a predetermined thickness can be obtained. In this embodiment, grinding is performed until the back surface W3 as the second wafer surface is obtained. The method including the groove forming step and the grinding step of the present embodiment corresponds to the pre-dicing method. In the grinding step of the present embodiment, it is preferable to grind the back surface W6 in a state in which the eighth base material 81 side of the eighth adhesive sheet 80 is supported by a method of fixing with a transfer tape or a vacuum suction plate.
[第3粘着シートの貼着工程]
 図10Dは、工程(PY4)を説明するための図である。図10Dには、研削工程の後に、裏面研削後の半導体ウエハWの第8粘着シート80側に、第3粘着シート30を貼着する工程(第3粘着シートの貼着工程と称する場合がある。)を説明する図が示されている。
 図10Dに示すように、分割された複数の半導体チップCPが第8粘着シート80及び第3粘着シート30に保持された状態が示されている。
[Step of attaching third adhesive sheet]
FIG. 10D is a diagram for explaining the step (PY4). In FIG. 10D, a step of sticking the third adhesive sheet 30 to the eighth adhesive sheet 80 side of the semiconductor wafer W after the back surface grinding after the grinding step (sometimes referred to as a third adhesive sheet sticking step). .) is illustrated.
As shown in FIG. 10D, a state in which the plurality of divided semiconductor chips CP are held by the eighth adhesive sheet 80 and the third adhesive sheet 30 is shown.
[エキスパンド工程]
 本実施形態においては、工程(PY4)の第3粘着シートの貼着工程の後に、第1実施形態と同様にして、第3粘着シート30を伸張させて、複数の半導体チップCPの間隔を拡げる工程(エキスパンド工程:工程(P5))を実施する。本実施形態においても、第3粘着シート30がエキスパンドシートであることが好ましい。本実施形態における工程(P5)は、第1実施形態と同様に実施できる。本実施形態においても、複数の半導体チップCPの間隔D1は、第1実施形態と同様であることが好ましい。
[Expanding process]
In the present embodiment, after the step of adhering the third adhesive sheet in the step (PY4), the third adhesive sheet 30 is expanded and the intervals between the plurality of semiconductor chips CP are expanded in the same manner as in the first embodiment. A process (expanding process: process (P5)) is implemented. Also in this embodiment, it is preferable that the third adhesive sheet 30 is an expanded sheet. The step (P5) in this embodiment can be performed in the same manner as in the first embodiment. Also in the present embodiment, the spacing D1 between the plurality of semiconductor chips CP is preferably the same as that in the first embodiment.
[封止工程並びにその他の工程]
 本実施形態においても、第1実施形態と同様、封止工程、並びにその他の工程(再配線層形成工程及び外部端子電極との接続工程)を実施してもよい。
[Sealing process and other processes]
In the present embodiment as well, similar to the first embodiment, the sealing step and other steps (rewiring layer forming step and external terminal electrode connecting step) may be performed.
[本実施形態に係る効果]
 先ダイシング法を採用した本実施形態に係るエキスパンド方法によっても、第1実施形態と同様、従来に比べて粘着シート構成及びプロセスを簡略化しつつ、かつ、糊残りを抑制できる。さらに、本実施形態に係るエキスパンド方法を含む半導体装置の製造方法を提供できる。
[Effects of this embodiment]
Even with the expanding method according to the present embodiment that employs the first dicing method, the adhesive sheet structure and process can be simplified and the adhesive residue can be suppressed as compared with the related art, as in the first embodiment. Furthermore, it is possible to provide a method for manufacturing a semiconductor device including the expanding method according to the present embodiment.
 また、本実施形態における研削工程で用いる第3粘着シート30として、エキスパンドシートを用いることにより、研削工程の後にそのままエキスパンド工程を実施できるため、プロセスをさらに簡略化できる。 Further, by using an expanding sheet as the third adhesive sheet 30 used in the grinding step in the present embodiment, the expanding step can be directly carried out after the grinding step, so that the process can be further simplified.
[実施形態の変形]
 本発明は、上述の実施形態に何ら限定されない。本発明は、本発明の目的を達成できる範囲で、上述の実施形態を変形した態様等を含む。
[Modification of Embodiment]
The present invention is in no way limited to the embodiments described above. The present invention includes modes in which the above-described embodiments are modified, etc., within the range in which the object of the present invention can be achieved.
 例えば、半導体ウエハや半導体チップにおける回路等は、図示した配列や形状等に限定されない。半導体パッケージにおける外部端子電極との接続構造等も、前述の実施形態で説明した態様に限定されない。前述の実施形態では、FO-WLPタイプの半導体パッケージを製造する態様を例に挙げて説明したが、本発明は、ファンイン型のWLP等のその他の半導体パッケージを製造する態様にも適用できる。 For example, a circuit or the like on a semiconductor wafer or a semiconductor chip is not limited to the illustrated arrangement or shape. The connection structure with the external terminal electrodes in the semiconductor package is not limited to the aspect described in the above embodiment. In the above-described embodiment, the mode of manufacturing the FO-WLP type semiconductor package has been described as an example, but the present invention is also applicable to the mode of manufacturing other semiconductor packages such as the fan-in type WLP.
 上述したFO-WLPの製造方法は、一部の工程を変更したり、一部の工程を省略したりしてもよい。 In the FO-WLP manufacturing method described above, some steps may be changed or some steps may be omitted.
 ダイシング工程におけるダイシングは、上述の切断手段を用いる代わりに、半導体ウエハに対してレーザ光を照射して行ってもよい。例えば、レーザ光の照射により、半導体ウエハを完全に分断し、複数の半導体チップに個片化してもよい。あるいは、レーザ光の照射により半導体ウエハ内部に改質層を形成した後、後述するエキスパンド工程において、粘着シートを引き延ばすことで、半導体ウエハを改質層の位置で破断して、半導体チップCPに個片化してもよい(ステルスダイシング。ステルスダイシングは登録商標。)。半導体ウエハWに改質層を形成するプロセスを採用する場合、一態様としては、改質層を形成するためのレーザ光により、改質層の形成とともにバックグラインドシート(例えば、第1粘着シート10)又はダイシング時の表面保護シート(例えば、第2実施形態の第1粘着シート70)を個片化する。また、半導体ウエハWに改質層を形成するプロセスを採用する場合、別の一態様としては、バックグラインドシート又はダイシング時の表面保護シートを個片化するためのレーザ光を、別途、照射して個片化する。ステルスダイシングの場合、レーザ光の照射は、例えば、赤外域のレーザ光を、半導体ウエハの内部に設定された焦点に集束されるように照射する。また、これらの方法においては、レーザ光の照射は、半導体ウエハのいずれの側から行ってもよい。 The dicing in the dicing process may be performed by irradiating the semiconductor wafer with laser light instead of using the above cutting means. For example, the semiconductor wafer may be completely divided into a plurality of semiconductor chips by irradiation with laser light. Alternatively, after forming the modified layer inside the semiconductor wafer by irradiating the laser beam, the adhesive sheet is stretched in the expanding step described later to break the semiconductor wafer at the position of the modified layer and separate the semiconductor chip CP into individual chips. It may be separated (stealth dicing. Stealth dicing is a registered trademark). When the process of forming the modified layer on the semiconductor wafer W is adopted, as one aspect, the back grind sheet (for example, the first adhesive sheet 10) is formed together with the formation of the modified layer by the laser beam for forming the modified layer. ) Or a surface protection sheet at the time of dicing (for example, the first pressure-sensitive adhesive sheet 70 of the second embodiment) is singulated. In the case where the process of forming the modified layer on the semiconductor wafer W is adopted, as another aspect, a laser beam for separating the back grinding sheet or the surface protection sheet at the time of dicing is separately irradiated. Separate into individual pieces. In the case of stealth dicing, for example, the laser light is irradiated so that the laser light in the infrared region is focused on a focus set inside the semiconductor wafer. In addition, in these methods, the laser light irradiation may be performed from either side of the semiconductor wafer.
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples.
(粘着シートの作製)
[実施例1]
 ブチルアクリレート(BA)62質量部、メタクリル酸メチル(MMA)10質量部、及び2-ヒドロキシエチルアクリレート(2HEA)28質量部を共重合してアクリル系共重合体を得た。このアクリル系共重合体に対して、2-イソシアナートエチルメタクリレート(昭和電工株式会社製、製品名「カレンズMOI」(登録商標))を付加した樹脂(アクリルA)の溶液(粘着剤主剤、固形分35.0質量%)を調製した。付加率は、アクリル系共重合体の2HEA100モル%に対して、2-イソシアナートエチルメタクリレートを90モル%とした。
 得られた樹脂(アクリルA)の重量平均分子量(Mw)は、60万、Mw/Mnは4.5であった。ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレン換算の重量平均分子量Mw、及び数平均分子量Mnを測定し、それぞれの測定値から分子量分布(Mw/Mn)を求めた。
 この粘着剤主剤に、UV樹脂A(10官能ウレタンアクリレート、三菱ケミカル株式会社製、製品名「UV-5806」、Mw=1740、光重合開始剤を含む。)、及び架橋剤としてのトリレンジイソシアネート系架橋剤(日本ポリウレタン工業株式会社製、製品名「コロネートL」)を添加した。粘着剤主剤中の固形分100質量部に対して、UV樹脂Aを50質量部添加し、架橋剤を0.2質量部添加した。添加後、30分間攪拌して、粘着剤組成物A1を調製した。
 次いで、調製した粘着剤組成物A1の溶液をポリエチレンテレフタレート(PET)系剥離フィルム(リンテック株式会社製、製品名「SP-PET381031」、厚さ38μm)に塗布して乾燥させ、厚さ40μmの粘着剤層を剥離フィルム上に形成した。
 当該粘着剤層に、基材としてのポリエステル系ポリウレタンエラストマーシート(シーダム株式会社製,製品名「ハイグレスDUS202」,厚さ100μm)を貼り合わせた後、幅方向における端部の不要部分を裁断除去して粘着シートSA1を作製した。
(Preparation of adhesive sheet)
[Example 1]
62 parts by mass of butyl acrylate (BA), 10 parts by mass of methyl methacrylate (MMA), and 28 parts by mass of 2-hydroxyethyl acrylate (2HEA) were copolymerized to obtain an acrylic copolymer. 2-isocyanatoethylmethacrylate (manufactured by Showa Denko KK, product name "Karenzu MOI" (registered trademark)) is added to this acrylic copolymer solution of resin (acrylic A) (adhesive base, solid Min 35.0% by weight) was prepared. The addition rate was 90 mol% of 2-isocyanatoethyl methacrylate with respect to 100 mol% of 2HEA of the acrylic copolymer.
The weight average molecular weight (Mw) of the obtained resin (acrylic A) was 600,000, and Mw/Mn was 4.5. The weight average molecular weight Mw and the number average molecular weight Mn in terms of standard polystyrene were measured by gel permeation chromatography (GPC) method, and the molecular weight distribution (Mw/Mn) was determined from the respective measured values.
UV resin A (10-functional urethane acrylate, manufactured by Mitsubishi Chemical Corporation, product name "UV-5806", Mw=1740, including a photopolymerization initiator) is contained in the adhesive main agent, and tolylene diisocyanate as a cross-linking agent. A system crosslinking agent (manufactured by Nippon Polyurethane Industry Co., Ltd., product name "Coronate L") was added. 50 parts by mass of the UV resin A and 0.2 part by mass of the crosslinking agent were added to 100 parts by mass of the solid content in the adhesive main agent. After the addition, the mixture was stirred for 30 minutes to prepare pressure-sensitive adhesive composition A1.
Next, the prepared solution of the pressure-sensitive adhesive composition A1 was applied to a polyethylene terephthalate (PET)-based release film (manufactured by Lintec Co., Ltd., product name “SP-PET381031”, thickness 38 μm) and dried to give an adhesive having a thickness of 40 μm. The agent layer was formed on the release film.
After sticking a polyester-based polyurethane elastomer sheet (manufactured by Seadam Co., Ltd., product name “High-Grease DUS202”, thickness 100 μm) as a base material to the pressure-sensitive adhesive layer, unnecessary portions at the ends in the width direction are cut and removed. To produce an adhesive sheet SA1.
(チップ間隔の測定方法)
 実施例1で得られた粘着シートを210mm×210mmに切断し試験用シートを得た。このとき、裁断後のシートの各辺が、粘着シートにおける基材のMD方向と平行または垂直となるように裁断した。
 粘着シートに貼着する半導体チップを次に示す手順により準備した。バックグラインドシート(リンテック株式会社製、製品名「E-3125KL」)を6インチシリコンウエハに貼着した。次に、バックグラインドシート側から6インチシリコンウエハをダイシングして、3mm×3mmのサイズのチップがX軸方向に5列、及びY軸方向に5列となるように、計25個のチップを切り出した。チップのそれぞれには、ダイシングされたバックグラインドシートが貼着していた。
 試験用シートの剥離フィルムを剥離し、露出した粘着剤層の中心部に、上述の通り切り出した計25個のチップのバックグラインドシート側を貼付した。このとき、チップがX軸方向に5列、及びY軸方向に5列で並んでいた。
(Measurement method of chip interval)
The pressure-sensitive adhesive sheet obtained in Example 1 was cut into 210 mm×210 mm to obtain a test sheet. At this time, each side of the sheet after cutting was cut so as to be parallel or perpendicular to the MD direction of the base material in the adhesive sheet.
A semiconductor chip to be attached to the adhesive sheet was prepared by the procedure shown below. A back grind sheet (manufactured by Lintec Corporation, product name "E-3125KL") was attached to a 6-inch silicon wafer. Next, a 6-inch silicon wafer is diced from the back grind sheet side, and a total of 25 chips are arranged so that chips of 3 mm×3 mm size are arranged in 5 rows in the X-axis direction and 5 rows in the Y-axis direction. I cut it out. A dicing back-grinding sheet was attached to each of the chips.
The release film of the test sheet was peeled off, and the back grind sheet side of a total of 25 chips cut out as described above was attached to the center of the exposed adhesive layer. At this time, the chips were arranged in five rows in the X-axis direction and five rows in the Y-axis direction.
 次に、チップが貼付された試験用シートを、2軸延伸可能なエキスパンド装置(離間装置)に設置した。図11には、当該エキスパンド装置100を説明する平面図が示される。図11中、X軸及びY軸は、互いに直交する関係にあり、当該X軸の正の方向を+X軸方向、当該X軸の負の方向を-X軸方向、当該Y軸の正の方向を+Y軸方向、当該Y軸の負の方向を-Y軸方向とする。試験用シート200は、各辺がX軸またはY軸と平行となるように、エキスパンド装置100に設置した。その結果、試験用シート200における基材のMD方向は、X軸またはY軸と平行となる。なお、図11中、チップは省略されている。 Next, the test sheet with the chips attached was installed in a biaxially stretchable expander (separator). FIG. 11 is a plan view illustrating the expanding device 100. In FIG. 11, the X axis and the Y axis are orthogonal to each other, and the positive direction of the X axis is the +X axis direction, the negative direction of the X axis is the −X axis direction, and the positive direction of the Y axis. Is the +Y axis direction, and the negative direction of the Y axis is the −Y axis direction. The test sheet 200 was installed in the expanding device 100 so that each side was parallel to the X axis or the Y axis. As a result, the MD direction of the base material in the test sheet 200 is parallel to the X axis or the Y axis. Note that the chip is omitted in FIG.
 図11に示されるように、エキスパンド装置100は、+X軸方向、-X軸方向、+Y軸方向及び-Y軸方向のそれぞれに5つの保持手段101(計20個の保持手段101)を備える。各方向における5つの保持手段101のうち、保持手段101Aは、両端に位置し、保持手段101Cは、中央に位置し、保持手段101Bは、保持手段101Aと保持手段101Cとの間に位置する。試験用シート200の各辺を、これらの保持手段101によって把持させた。 As shown in FIG. 11, the expanding device 100 includes five holding means 101 (20 holding means 101 in total) in each of the +X axis direction, the −X axis direction, the +Y axis direction, and the −Y axis direction. Of the five holding means 101 in each direction, the holding means 101A is located at both ends, the holding means 101C is located in the center, and the holding means 101B is located between the holding means 101A and the holding means 101C. Each side of the test sheet 200 was held by these holding means 101.
 ここで、図11に示されるように、試験用シート200の一辺は210mmである。また、各辺における保持手段101同士の間隔は40mmである。また、試験用シート200の一辺における端部(シートの頂点)と、当該辺に存在し、当該端部に最も近い保持手段101Aとの間隔は25mmである。 Here, as shown in FIG. 11, one side of the test sheet 200 is 210 mm. The distance between the holding means 101 on each side is 40 mm. Further, the distance between the end portion (vertex of the sheet) on one side of the test sheet 200 and the holding means 101A existing on the side and closest to the end portion is 25 mm.
 続いて、保持手段101のそれぞれに対応する、図示されていない複数の張力付与手段を駆動させて、保持手段101をそれぞれ独立に移動させた。試験用シートの四辺をつかみ治具で固定し、X軸方向、及びY軸方向にそれぞれ5mm/sの速度で、200mmの拡張量で試験用シートをエキスパンドした。その後、リングフレームにより試験用シート200の拡張状態を保持した。
 拡張状態を保持した状態で、各チップ間の距離をデジタル顕微鏡で測定し、各チップ間の距離の平均値をチップ間隔とした。
 チップ間隔が1800μm以上であれば合格「A」と判定し、チップ間隔が1800μm未満であれば不合格「B」と判定した。
Subsequently, a plurality of tension applying means (not shown) corresponding to each of the holding means 101 were driven to move the holding means 101 independently. The four sides of the test sheet were gripped and fixed with a jig, and the test sheet was expanded in the X-axis direction and the Y-axis direction at a speed of 5 mm/s and an expansion amount of 200 mm. Then, the expanded state of the test sheet 200 was held by the ring frame.
While maintaining the expanded state, the distance between the chips was measured with a digital microscope, and the average value of the distances between the chips was taken as the chip interval.
If the chip interval was 1800 μm or more, it was judged as pass “A”, and if the chip interval was less than 1800 μm, it was judged as fail “B”.
(チップ整列性の測定方法)
 上記チップ間隔を測定したワークのX軸及びY軸方向の隣り合うチップの中心線からのズレ率を測定した。
 図12に具体的な測定方法の概略図を示す。
 X軸方向に5個のチップが並んだ一つの列を選び、当該列の中で、チップの最上端と、チップの最下端との距離Dyをデジタル顕微鏡で測定した。Y軸方向のズレ率は、下記数式(数3)に基づいて算出した。Syは、Y軸方向のチップサイズであり、本実施例では、3mmとした。
 Y軸方向のズレ率[%]=[(Dy-Sy)/2]/Sy×100…(数3)
 X軸方向に5個のチップが並んだその他の4列についても、同様にしてY軸方向のズレ率を算出した。
 Y軸方向に5個のチップが並んだ一つの列を選び、当該列の中で、チップの最左端と、チップの最右端との距離Dxをデジタル顕微鏡で測定した。X軸方向のズレ率は、下記数式(数4)に基づいて算出した。Sxは、X軸方向のチップサイズであり、本実施例では、3mmとした。
 X軸方向のズレ率[%]=[(Dx-Sx)/2]/Sx×100…(数4)
 Y軸方向に5個のチップが並んだその他の4列についても、同様にしてX軸方向のズレ率を算出した。
 数式(数3)及び(数4)において、2で除するのは、拡張後におけるチップの所定位置からずれた最大距離を絶対値にて表現するためである。
 X軸方向及びY軸方向のすべての列(計10列)において、ズレ率が±10%未満の場合を合格「A」と判定し、1つ以上の列において±10%以上であれば不合格「B」と判定した。
(Method of measuring chip alignment)
The deviation rate from the center line of the adjacent chips in the X-axis and Y-axis directions of the work for measuring the chip interval was measured.
FIG. 12 shows a schematic diagram of a specific measuring method.
One row in which five chips were arranged in the X-axis direction was selected, and the distance Dy between the top end of the chip and the bottom end of the chip in the row was measured with a digital microscope. The deviation rate in the Y-axis direction was calculated based on the following mathematical formula (Equation 3). Sy is a chip size in the Y-axis direction and is 3 mm in this embodiment.
Deviation rate in the Y-axis direction [%]=[(Dy−Sy)/2]/Sy×100... (Equation 3)
The deviation rate in the Y-axis direction was calculated in the same manner for the other four rows in which five chips were arranged in the X-axis direction.
One row in which five chips were arranged in the Y-axis direction was selected, and the distance Dx between the leftmost edge of the chip and the rightmost edge of the chip in the row was measured with a digital microscope. The deviation rate in the X-axis direction was calculated based on the following mathematical formula (Equation 4). Sx is a chip size in the X-axis direction, and is 3 mm in this embodiment.
Deviation rate in the X-axis direction [%]=[(Dx−Sx)/2]/Sx×100... (Equation 4)
The misalignment rate in the X-axis direction was calculated in the same manner for the other four rows in which five chips were arranged in the Y-axis direction.
In the mathematical expressions (Equation 3) and (Equation 4), the reason for dividing by 2 is to express the maximum distance deviated from the predetermined position of the expanded chip as an absolute value.
In all the rows in the X-axis direction and the Y-axis direction (total of 10 rows), if the deviation rate is less than ±10%, it is judged as a passing “A”, and if it is ±10% or more in one or more rows, it is not. It was judged to have passed "B".
(糊残りの評価方法)
 前述のチップ間隔の測定方法に記載の条件でエキスパンド後、紫外線照射装置(リンテック株式会社製「RAD-2000 m/12」)を用いて、実施例1に係る粘着シートのチップが搭載されている面とは反対側の面から照度220mW/cm、光量460mJ/cmの条件で紫外線照射した。紫外線照射の後、チップを吸着テーブルに保持し、粘着シートを剥離した。粘着シートを剥離した後、粘着シートが貼着されていたチップ表面を光学顕微鏡で観察した。チップ表面に糊残りが観察されなかった場合を合格「A」と判定し、糊残りが観察された場合を不合格「B」と判定した。
(Evaluation method of adhesive residue)
After expanding under the conditions described in the method for measuring the chip interval, the chips of the pressure-sensitive adhesive sheet according to Example 1 are mounted using an ultraviolet irradiation device (“RAD-2000 m/12” manufactured by Lintec Co., Ltd.). UV irradiation was performed from the surface opposite to the surface under the conditions of an illuminance of 220 mW/cm 2 and a light amount of 460 mJ/cm 2 . After the ultraviolet irradiation, the chip was held on the adsorption table and the adhesive sheet was peeled off. After peeling off the pressure-sensitive adhesive sheet, the chip surface to which the pressure-sensitive adhesive sheet was attached was observed with an optical microscope. The case where no adhesive residue was observed on the chip surface was judged as a pass "A", and the case where adhesive residue was observed was judged as a failure "B".
 実施例1に係る粘着シートを用いてエキスパンドしたところ、チップ間隔の評価結果が合格「A」判定であり、チップ整列性の評価結果が合格「A」判定であった。
 チップと実施例に係る粘着シートとの間にバックグラインドシートを介在させて粘着シートをエキスパンドしたところ、チップ表面の糊残り評価結果が合格「A」判定であった。
When the pressure-sensitive adhesive sheet according to Example 1 was expanded, the evaluation result of the chip interval was a pass “A” judgment, and the evaluation result of the chip alignment was a pass “A” judgment.
When the pressure-sensitive adhesive sheet was expanded with the back grinding sheet interposed between the chip and the pressure-sensitive adhesive sheet according to the example, the adhesive residue evaluation result on the chip surface was a pass “A” judgment.
 10…第1粘着シート、11…第1基材、12…第1粘着剤層、20…第2粘着シート、21…第2基材、22…第2粘着剤層、30…第3粘着シート、31…第3基材、32…第3粘着剤層、40…第4粘着シート、41…第4基材、42…第4粘着剤層、70…第1粘着シート、71…第7基材、72…第7粘着剤層、CP…半導体チップ、W…半導体ウエハ(ウエハ)、W1…回路面(第1ウエハ面)、W2…回路、W3…裏面(第2ウエハ面)。 10... 1st adhesive sheet, 11... 1st base material, 12... 1st adhesive layer, 20... 2nd adhesive sheet, 21... 2nd base material, 22... 2nd adhesive layer, 30... 3rd adhesive sheet , 31... Third base material, 32... Third adhesive layer, 40... Fourth adhesive sheet, 41... Fourth base material, 42... Fourth adhesive layer, 70... First adhesive sheet, 71... Seventh group Material, 72... Seventh adhesive layer, CP... Semiconductor chip, W... Semiconductor wafer (wafer), W1... Circuit surface (first wafer surface), W2... Circuit, W3... Back surface (second wafer surface).

Claims (11)

  1.  第1ウエハ面と前記第1ウエハ面の反対側の第2ウエハ面とを有するウエハの前記第1ウエハ面に、第1粘着剤層と第1基材とを有する第1粘着シートが貼付され、前記第2ウエハ面に、第2粘着剤層と第2基材とを有する第2粘着シートが貼付され、
     前記第1粘着シート側から切込みを入れて、前記第1粘着シートを切断し、さらに前記ウエハを複数のチップに個片化し、
     第3粘着剤層と第3基材とを有する第3粘着シートを前記第1基材に貼付し、
     前記第2粘着シートを前記ウエハの前記第2ウエハ面から剥離し、
     前記第3粘着シートを伸張させて、前記複数のチップの間隔を拡げる、
     エキスパンド方法。
    A first adhesive sheet having a first adhesive layer and a first base material is attached to the first wafer surface of a wafer having a first wafer surface and a second wafer surface opposite to the first wafer surface. A second adhesive sheet having a second adhesive layer and a second base material is attached to the second wafer surface,
    A cut is made from the side of the first adhesive sheet, the first adhesive sheet is cut, and the wafer is divided into a plurality of chips,
    Attaching a third pressure-sensitive adhesive sheet having a third pressure-sensitive adhesive layer and a third base material to the first base material,
    Peeling the second adhesive sheet from the second wafer surface of the wafer,
    Stretching the third pressure-sensitive adhesive sheet to widen the intervals between the plurality of chips;
    Expanding method.
  2.  請求項1に記載のエキスパンド方法において、
     前記切込みは、前記第1粘着シート側から前記第2粘着シートに到達するまでの深さで形成する、
     エキスパンド方法。
    In the expanding method according to claim 1,
    The cut is formed with a depth from the side of the first adhesive sheet to reach the second adhesive sheet,
    Expanding method.
  3.  請求項1または請求項2に記載のエキスパンド方法において、
     前記第2ウエハ面は、前記ウエハを裏面研削して形成した面である、
     エキスパンド方法。
    In the expanding method according to claim 1 or 2,
    The second wafer surface is a surface formed by grinding the back surface of the wafer,
    Expanding method.
  4.  請求項3に記載のエキスパンド方法において、
     前記第1粘着シートは、前記ウエハを裏面研削する前に、前記第1ウエハ面に貼着されている、
     エキスパンド方法。
    In the expanding method according to claim 3,
    The first adhesive sheet is adhered to the first wafer surface before back grinding the wafer.
    Expanding method.
  5.  請求項3に記載のエキスパンド方法において、
     前記ウエハを裏面研削する前に、前記第1ウエハ面に第4粘着シートが貼着されており、
     裏面研削後に前記第4粘着シートを前記第1ウエハ面から剥離し、
     前記第1ウエハ面に前記第1粘着シートを貼着する、
     エキスパンド方法。
    In the expanding method according to claim 3,
    A fourth adhesive sheet is attached to the surface of the first wafer before back grinding the wafer.
    Peeling the fourth adhesive sheet from the first wafer surface after backside grinding,
    Attaching the first adhesive sheet to the first wafer surface,
    Expanding method.
  6.  請求項5に記載のエキスパンド方法において、
     前記第4粘着シートは、バックグラインドシートであり、
     前記第1粘着シートは、表面保護シートであり、
     前記表面保護シートの厚さは、5μm以上、500μm以下である、
     エキスパンド方法。
    The expanding method according to claim 5,
    The fourth adhesive sheet is a back grind sheet,
    The first adhesive sheet is a surface protection sheet,
    The thickness of the surface protective sheet is 5 μm or more and 500 μm or less,
    Expanding method.
  7.  請求項1から請求項6のいずれか一項に記載のエキスパンド方法において、
     前記第1粘着シートは、バックグラインドシートである、
     エキスパンド方法。
    In the expanding method according to any one of claims 1 to 6,
    The first adhesive sheet is a back grind sheet,
    Expanding method.
  8.  請求項1から請求項7のいずれか一項に記載のエキスパンド方法において、
     前記第3粘着シートは、エキスパンドシートである、
     エキスパンド方法。
    The expanding method according to any one of claims 1 to 7,
    The third adhesive sheet is an expanded sheet,
    Expanding method.
  9.  請求項1から請求項8のいずれか一項に記載のエキスパンド方法において、
     前記ウエハは、半導体ウエハである、
     エキスパンド方法。
    In the expanding method according to any one of claims 1 to 8,
    The wafer is a semiconductor wafer,
    Expanding method.
  10.  請求項1から請求項9のいずれか一項に記載のエキスパンド方法において、
     前記第1ウエハ面は、回路を有する、
     エキスパンド方法。
    The expanding method according to any one of claims 1 to 9,
    The first wafer surface has a circuit,
    Expanding method.
  11.  請求項1から請求項10のいずれか一項に記載のエキスパンド方法を含む半導体装置の製造方法。 A method for manufacturing a semiconductor device, including the expanding method according to claim 1.
PCT/JP2020/003072 2019-01-31 2020-01-29 Expansion method and semiconductor device production method WO2020158767A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020569661A JPWO2020158767A1 (en) 2019-01-31 2020-01-29 Expanding method and manufacturing method of semiconductor devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-015819 2019-01-31
JP2019015819 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020158767A1 true WO2020158767A1 (en) 2020-08-06

Family

ID=71841360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003072 WO2020158767A1 (en) 2019-01-31 2020-01-29 Expansion method and semiconductor device production method

Country Status (2)

Country Link
JP (1) JPWO2020158767A1 (en)
WO (1) WO2020158767A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029921A (en) * 2012-07-31 2014-02-13 Sony Corp Semiconductor device processing method and semiconductor substrate processed article
WO2018003602A1 (en) * 2016-06-28 2018-01-04 リンテック株式会社 Alignment jig, alignment method, and transfer method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029921A (en) * 2012-07-31 2014-02-13 Sony Corp Semiconductor device processing method and semiconductor substrate processed article
WO2018003602A1 (en) * 2016-06-28 2018-01-04 リンテック株式会社 Alignment jig, alignment method, and transfer method

Also Published As

Publication number Publication date
TW202044439A (en) 2020-12-01
JPWO2020158767A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP7207778B2 (en) Adhesive tape for semiconductor processing and method for manufacturing semiconductor device
TWI782802B (en) Sheet for semiconductor processing and method for manufacturing semiconductor device
JP6475901B2 (en) Adhesive tape for semiconductor processing and method for manufacturing semiconductor device
US11942353B2 (en) Adhesive tape for semiconductor processing and method for producing semiconductor device
US11842916B2 (en) Semiconductor processing adhesive tape and method of manufacturing semiconductor device
JP7256788B2 (en) Adhesive sheet
TWI814786B (en) adhesive sheet
WO2020158767A1 (en) Expansion method and semiconductor device production method
JP7256786B2 (en) Adhesive sheet
WO2020158770A1 (en) Expansion method and semiconductor device production method
TWI838454B (en) Expanding method and manufacturing method of semiconductor device
WO2020158769A1 (en) Expansion method, semiconductor device production method, and multilayer adhesive sheet
WO2020158768A1 (en) Expansion method and semiconductor device production method
WO2022201790A1 (en) Pressure-sensitive adhesive tape for semiconductor processing and semiconductor device fabrication method
WO2022201789A1 (en) Semiconductor processing adhesive tape, and method for manufacturing semiconductor device
WO2022201788A1 (en) Semiconductor processing adhesive tape, and method for manufacturing semiconductor device
WO2020158766A1 (en) Expansion method and semiconductor device production method
WO2023188272A1 (en) Adhesive tape for semiconductor processing
WO2022185598A1 (en) Semiconductor processing adhesive sheet, and method for manufacturing semiconductor device
KR20230044938A (en) Adhesive sheet for semiconductor processing and method of manufacturing the same, and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748040

Country of ref document: EP

Kind code of ref document: A1