WO2020158682A1 - アルミニウム合金材およびこれを用いた、導電部材、電池用部材、締結部品、バネ用部品、構造用部品、キャブタイヤケーブル - Google Patents
アルミニウム合金材およびこれを用いた、導電部材、電池用部材、締結部品、バネ用部品、構造用部品、キャブタイヤケーブル Download PDFInfo
- Publication number
- WO2020158682A1 WO2020158682A1 PCT/JP2020/002832 JP2020002832W WO2020158682A1 WO 2020158682 A1 WO2020158682 A1 WO 2020158682A1 JP 2020002832 W JP2020002832 W JP 2020002832W WO 2020158682 A1 WO2020158682 A1 WO 2020158682A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- mass
- alloy material
- crystal grains
- longitudinal direction
- Prior art date
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 152
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 151
- 239000013078 crystal Substances 0.000 claims abstract description 104
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 23
- 239000012535 impurity Substances 0.000 claims abstract description 22
- 239000011800 void material Substances 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims description 46
- 239000002184 metal Substances 0.000 claims description 46
- 229910052802 copper Inorganic materials 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052709 silver Inorganic materials 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 abstract description 6
- 239000000463 material Substances 0.000 description 54
- 230000000694 effects Effects 0.000 description 32
- 238000004519 manufacturing process Methods 0.000 description 30
- 230000001965 increasing effect Effects 0.000 description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 25
- 238000000034 method Methods 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 18
- 239000010949 copper Substances 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 229910052782 aluminium Inorganic materials 0.000 description 17
- 229910052761 rare earth metal Inorganic materials 0.000 description 17
- 239000011572 manganese Substances 0.000 description 16
- 238000005482 strain hardening Methods 0.000 description 16
- 239000010936 titanium Substances 0.000 description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 15
- 239000011651 chromium Substances 0.000 description 15
- 230000007797 corrosion Effects 0.000 description 15
- 238000005260 corrosion Methods 0.000 description 15
- 230000007423 decrease Effects 0.000 description 15
- 238000012545 processing Methods 0.000 description 14
- 239000011777 magnesium Substances 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 238000005266 casting Methods 0.000 description 11
- 230000009471 action Effects 0.000 description 10
- 239000000654 additive Substances 0.000 description 10
- 230000000996 additive effect Effects 0.000 description 10
- 238000000137 annealing Methods 0.000 description 9
- 239000007769 metal material Substances 0.000 description 9
- 238000005096 rolling process Methods 0.000 description 9
- 238000010622 cold drawing Methods 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 238000007670 refining Methods 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 7
- 239000002344 surface layer Substances 0.000 description 7
- 230000000007 visual effect Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 239000010944 silver (metal) Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910018134 Al-Mg Inorganic materials 0.000 description 2
- 229910018467 Al—Mg Inorganic materials 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- 229910018464 Al—Mg—Si Inorganic materials 0.000 description 1
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000077 insect repellent Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- -1 strip Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/0007—Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C47/00—Making alloys containing metallic or non-metallic fibres or filaments
- C22C47/02—Pretreatment of the fibres or filaments
- C22C47/06—Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
- C22C47/062—Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element from wires or filaments only
- C22C47/068—Aligning wires
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/021—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/024—Covers or coatings therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/12—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C47/00—Making alloys containing metallic or non-metallic fibres or filaments
- C22C47/20—Making alloys containing metallic or non-metallic fibres or filaments by subjecting to pressure and heat an assembly comprising at least one metal layer or sheet and one layer of fibres or filaments
- C22C2047/205—Making alloys containing metallic or non-metallic fibres or filaments by subjecting to pressure and heat an assembly comprising at least one metal layer or sheet and one layer of fibres or filaments placing wires inside grooves of a metal layer
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2204/00—End product comprising different layers, coatings or parts of cermet
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2224/00—Materials; Material properties
- F16F2224/02—Materials; Material properties solids
- F16F2224/0208—Alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an aluminum alloy material, particularly an aluminum alloy material having high strength and excellent workability.
- aluminum alloy materials are used in a wide range of applications (for example, conductive members, battery members, fastening parts, spring parts, structural parts, cabtire cables, etc.).
- iron-based or copper-based wire has been widely used, but recently, as compared with iron-based or copper-based metal material, the specific gravity is small and the thermal expansion is further increased.
- electrical and thermal conductivity is also relatively good, corrosion resistance is excellent, and especially an elastic material that has a small elastic coefficient and is elastically deformed is being considered as a substitute for an aluminum material.
- the pure aluminum material has a problem that its yield strength (the stress that initiates plastic deformation when stress is applied to the material, also called yield stress) is lower than that of iron-based or copper-based metal materials. ..
- the 2000 series (Al-Cu series) and 7000 series (Al-Zn-Mg series) have relatively high yield strength, but their electrical conductivity, corrosion resistance, stress corrosion cracking resistance, workability, etc. are not sufficient. Absent.
- a 6000 series (Al-Mg-Si series) aluminum alloy material containing Mg and Si and having excellent electrical and thermal conductivity and corrosion resistance has been widely used.
- a 6000-series aluminum alloy material has problems such as insufficient yield strength and poor electrical conductivity, and thus further strength and higher conductivity are desired.
- Patent Document 1 a method of crystallizing an aluminum alloy material having an amorphous phase
- Patent Document 2 a method of forming fine crystal grains by the ECAP method
- Patent Document 3 A method of forming fine crystal grains by performing cold working at a temperature equal to or lower than room temperature
- Patent Document 4 a method of dispersing carbon nanofibers
- Patent Document 5 discloses a method for obtaining an Al-Mg alloy having a fine structure by controlling the rolling temperature. This method is excellent in industrial mass productivity, but there was a problem to further increase the strength of the obtained Al-Mg-based alloy. Further, when the strength is increased by such a method, there is a problem that the conductivity which is contrary to the strength is lowered.
- Annealed copper wire is one of the materials having the highest breaking elongation among all metallic materials. Table 1 below shows the relationship between the wire diameter and the lower limit of breaking elongation of annealed copper wire, quoted from ASTM International B3-13 "Standard Specification for Soft or Annealed Copper Wire".
- the specified value of the elongation at break is as high as 35% when the wire diameter is 8.252 mm or more, whereas it is 30% when the wire diameter is 2.906 mm or more and 7.348 mm or less, and 0.574 mm or more 2
- the elongation at break remarkably decreases as the diameter decreases. Therefore, it is required to increase the breaking elongation particularly in a thin wire diameter of 1 mm or less.
- JP-A-5-331585 JP, 9-137244 A Japanese Patent Laid-Open No. 2001-131721 JP, 2010-159445, A JP, 2003-027172, A
- the present invention provides an aluminum alloy material having high yield strength, excellent electrical and thermal conductivity, and a constant breaking elongation even with a small diameter, and a conductive member, battery member, fastening component, spring component, and structure using the same. It is intended to provide a component and a cabtire cable.
- the aluminum alloy material has a predetermined alloy composition and also has a fibrous metal structure in which crystal grains extend in one direction and are parallel to the one direction.
- the average value of the maximum dimension in the direction perpendicular to the longitudinal direction of the crystal grains is 800 nm or less, and when the cross section is viewed in the thickness direction and observed in the central portion, it is perpendicular to the longitudinal direction.
- the specific dimension of which the maximum dimension in the horizontal direction is 1.0 ⁇ m or more does not exist, or the number of the specific voids present is 10 or less per 10,000 ⁇ m 2 , so that high yield strength and excellent electrical and thermal conductivity can be obtained. It has been found that an aluminum alloy material having excellent elongation at break can be obtained, and the present invention has been completed based on such findings.
- the gist configuration of the present invention is as follows. (1) Fe: 0.05 to 1.50 mass%, Si: 0.01 to 0.15 mass%, Cu: 0.01 to 0.30 mass% and Mg: 0.01 to 1.50 mass% % Of at least one, and the balance being an aluminum alloy material having an alloy composition of Al and inevitable impurities, and having a fibrous metallographic structure in which a plurality of crystal grains extend in one direction. , In the cross section parallel to the one direction, the average value of the maximum dimension of the plurality of crystal grains in a direction perpendicular to the longitudinal direction is 800 nm or less, and the cross section is viewed in the thickness direction and observed in the central portion.
- the balance is an aluminum alloy material having an alloy composition consisting of Al and unavoidable impurities, a plurality of crystal grains having a fibrous metal structure extending in one direction, in a cross section parallel to the one direction,
- the average value of the maximum dimension in the direction perpendicular to the longitudinal direction of the plurality of crystal grains is 800 nm or less, and when the cross section is viewed in the thickness direction and observed in the central portion, the direction perpen
- the aluminum alloy material is characterized in that there are no specific voids having a maximum dimension of 1.0 ⁇ m or more, or the number of the specific voids is 10 or less per 10,000 ⁇ m 2 . (3) The average value of the maximum dimensions in the direction perpendicular to the longitudinal direction of the plurality of specific voids is 2 to 10 with respect to the average value of the maximum dimensions in the direction perpendicular to the longitudinal direction of the plurality of crystal grains.
- the aluminum alloy material according to 1) or (2). (4) In the above (1), (2) or (3), the surface of which is coated with at least one metal selected from the group consisting of Cu, Ni, Ag, Sn, Au, Pd and Pt. The described aluminum alloy material.
- the aluminum alloy material has a predetermined alloy composition
- a plurality of crystal grains have a fibrous metal structure extending in one direction, in a cross section parallel to the one direction
- the average value of the maximum dimension in the direction perpendicular to the longitudinal direction of the plurality of crystal grains is 800 nm or less, and when the cross section is viewed in the thickness direction and observed in the central portion, the direction perpendicular to the longitudinal direction.
- the specific dimension of which the maximum dimension is 1.0 ⁇ m or more does not exist, or the number of the specific voids present is 10 or less per 10,000 ⁇ m 2 , so that high yield strength, excellent electrical and thermal conductivity, and It is possible to obtain an aluminum alloy material having a constant breaking elongation even with a small diameter, and a conductive member, a battery member, a fastening component, a spring component, a structural component and a cabtire cable using the same.
- the aluminum alloy material according to the present invention comprises Fe: 0.05 to 1.50 mass%, Si: 0.01 to 0.15 mass%, Cu: 0.01 to 0.30 mass% and Mg: 0.01. And at least one selected from the group consisting of RE, Ag, Ni, Mn, Cr, Zr, Ti, and B: in total: An aluminum alloy material having an alloy composition of 0.30% by mass or less, the balance being Al and unavoidable impurities, and having a fibrous metal structure in which a plurality of crystal grains are aligned in one direction.
- the average value of the maximum dimension in the direction perpendicular to the longitudinal direction of the plurality of crystal grains is 800 nm or less, and when the cross section is viewed in the thickness direction and observed in the central portion, It is characterized in that there are no specific voids having a maximum dimension of 1.0 ⁇ m or more in the direction perpendicular to the longitudinal direction, or the number of the specific voids present is 10 or less per 10,000 ⁇ m 2 .
- the “crystal grain” refers to a portion surrounded by misorientation boundaries.
- the "orientation boundary” means the contrast (channeling contrast) when observing a metal structure using a transmission electron microscope (TEM), a scanning transmission electron microscope (STEM), a scanning ion microscope (SIM), or the like. A boundary that changes discontinuously. Further, the maximum size of the crystal grains in the direction perpendicular to the longitudinal direction corresponds to the maximum interval of the misorientation boundaries.
- cross section means a cut surface exposed when the aluminum alloy material is cut in a specific direction.
- the “processing direction” means the direction of progress of drawing processing (drawing, rolling).
- the longitudinal direction direction perpendicular to the wire diameter
- the longitudinal direction in the as-rolled state corresponds to the rolling direction.
- the longitudinal direction after cutting does not always coincide with the processing direction. The rolling direction can be confirmed from the processed surface.
- the “thickness direction” means the wire diameter direction when the aluminum alloy material is a wire rod material, and the thickness direction when the aluminum alloy material is a plate material.
- FIG. 1 shows a diagram for explaining the “central portion”.
- FIG. 1 shows a cross section of an aluminum alloy material having a processing direction in the left-right direction of the paper surface.
- the shape of the aluminum alloy material for example, a wire rod material or a plate material can be cited, but in any shape, the cross section parallel to the processing direction is as shown in FIG. As shown in FIG. 1, this aluminum alloy material has a rectangular cross section with a thickness h.
- the "central portion” means a portion centered on a position moved from the surface of the plate material in the thickness direction by a dimension h/2 which is 1 ⁇ 2 of the thickness h of the plate material. Then, in the above-described cross section shown in FIG. 1, it is included in the range of 10000 ⁇ m 2 including the “central portion” (observation visual field (observation region): longitudinal direction (98 to 148 ⁇ m) ⁇ thickness direction (73 to 110 ⁇ m)).
- the number of specific voids whose maximum dimension in the direction perpendicular to the longitudinal direction is 1.0 ⁇ m or more is determined. Similar observations are made in a total of 5 fields selected at random, and the average value of the number of specific voids is obtained. The average value of the number of specific voids thus obtained is referred to as "the number of specific voids present".
- the aluminum alloy material according to the present invention has a fibrous metal structure in which a plurality of crystal grains are aligned in one direction.
- a perspective view schematically showing the appearance of the metal structure of the aluminum alloy material according to the present invention is shown in FIG.
- the aluminum alloy material of the present invention has a fibrous structure in which a plurality of elongated crystal grains 10 extend in one direction, that is, in the longitudinal direction X in FIG. ing.
- Such elongated crystal grains are significantly different from conventional fine crystal grains and flat crystal grains having a large aspect ratio.
- the crystal grain of the present invention has an elongated shape like a fiber, and the average value of the maximum dimension t of the plurality of crystal grains in the direction perpendicular to the longitudinal direction X is 800 nm or less.
- Such a fibrous metal structure in which fine crystal grains extend in one direction can be said to be a novel metal structure that has not been present in conventional aluminum alloy materials.
- the aluminum alloy material of the present invention having the above metal structure has a high strength (for example, a tensile strength of 210 MPa or more and a Vickers hardness (HV)) higher than the tensile strength of 160 to 200 MPa which is the conductive strength of A1350 which is conductive aluminum specified by ASTM. 60 or more), excellent conductivity, and excellent elongation at break (for example, 2.0% or more when the aluminum alloy material is a wire).
- a high strength for example, a tensile strength of 210 MPa or more and a Vickers hardness (HV)
- HV Vickers hardness
- making the crystal grain size finer has the effect of improving intergranular corrosion, improving fatigue properties against repeated deformation, reducing surface roughness after plastic working, and shearing. This has the effect of directly improving the function of the material by directly connecting to the action of reducing sagging and burrs at the time of performing.
- the aluminum alloy material according to the present invention has a maximum dimension of 1.0 ⁇ m or more in the direction perpendicular to the longitudinal direction of the crystal grains when observing the range of the central part of the aluminum alloy material of 10000 ⁇ m 2 in the cross section.
- the number of specific voids is 10 or less. If a large number of specific voids having a maximum dimension of 1.0 ⁇ m or more in the direction perpendicular to the longitudinal direction are present in the aluminum alloy material, the breaking elongation is significantly reduced.
- FIG. 3 is a schematic diagram of stress applied to voids (including specific voids) in an aluminum alloy material.
- Reducing the number of voids has the effects of improving the electrical and thermal conductivity, improving the malleability so that cracks are less likely to occur even when hit, etc., and improving the twisting processability. It is directly connected and has the effect of enhancing the function of the material as a whole. It has effects and actions that are not limited to improving elongation at break.
- the average value of the maximum dimensions of the plurality of specific voids in the direction perpendicular to the longitudinal direction is 2 to 10 with respect to the average value of the maximum dimensions of the plurality of fibrous crystal grains in the direction perpendicular to the longitudinal direction. It is preferable that it is 5 to 8 and more preferable. It should be noted that it is impossible to infer from the non-fibrous structure how to reduce the size of the voids and how much to reduce the voids in order to optimize the action and the compatibility with the strength characteristics.
- the "average value of the maximum dimensions in the direction perpendicular to the longitudinal direction of the plurality of specific voids" is calculated as follows. In the cross section shown in FIG. 1, all specific voids included in one visual field in the range of 10000 ⁇ m 2 including the “central portion” (observation visual field: longitudinal direction (98 to 148 ⁇ m) ⁇ thickness direction (73 to 110 ⁇ m)) The maximum dimension in the direction perpendicular to the longitudinal direction of is measured. The same observation is carried out in a total of five randomly selected visual fields, and the average value of the maximum dimensions of all the specific voids observed in the five visual fields in the direction perpendicular to the longitudinal direction is calculated.
- the aluminum alloy material of the present invention has a basic composition of Fe: 0.05 to 1.50 mass%, Si: 0.01 to 0.15 mass%, Cu: 0.01 to 0.30 mass% and Mg. At least one selected from the group consisting of RE, Ag, Ni, Mn, Cr, Zr, Ti and B as an optional additive component. A total of 0.30 mass% or less of the above species is appropriately contained.
- Fe is an essential element in the aluminum alloy material of the present invention, and is an element that contributes to the refinement of crystal grains. If the Fe content is less than 0.05% by mass, these actions and effects are insufficient, and if the Fe content exceeds 1.50% by mass, crystallized substances are increased and the workability is deteriorated. ..
- the crystallized substance refers to an intermetallic compound that is produced during casting and solidification of the alloy. Therefore, the Fe content is 0.05 to 1.50% by mass, preferably 0.08 to 0.80% by mass, and more preferably 0.10 to 0.22% by mass.
- Si silicon
- Cu 0.01 to 0.3% by mass
- Mg 0.01 to 1.5% by mass> Si (silicon), Cu (copper), and Mg (magnesium) are elements having a function of stabilizing the fine crystal grains of the aluminum base material. By adding two or more of them in combination rather than adding them alone, they act effectively in refining the crystal grains. Further, it has the effect of increasing the strength of the material when the crystal grains are fine.
- Si content exceeds 0.15% by mass
- the Cu content exceeds 0.3% by mass
- Mg content exceeds 1.5% by mass
- the conductivity decreases more than the merit of increasing the strength. This is not preferable because the disadvantages of doing so become apparent.
- the more preferable range is 0.10% by mass or less, and further preferably 0.06% by mass or less.
- the more preferable range is 0.22% by mass or less, and further preferably 0.16% by mass or less.
- Mg is contained, the more preferable range is 1.00% by mass or less, and further preferably 0.30% by mass or less. Further, these elements act synergistically with the process of the present invention described later to effectively act to control the voids.
- RE rare earth element
- Ag silver
- Ni nickel
- Mn manganese
- Cr chromium
- Zr zirconium
- Ti titanium
- B boron
- RE a rare earth element
- RE includes 17 kinds of elements such as lanthanum, cerium, and yttrium. These 17 kinds of elements have equivalent effects, and it is difficult to chemically extract a single element. In the present invention, the total amount is defined.
- the total content of these components is 0.0001% by mass or more, preferably 0.03% by mass or more, from the viewpoint of obtaining the above-mentioned effects.
- the conductivity may decrease. Therefore, when one or more selected from the group consisting of RE, Ag, Ni, Mn, Cr, Zr, Ti and B is contained, the total content thereof is 0.0001 to 0.3% by mass. And preferably 0.03 to 0.30% by mass, more preferably 0.03 to 0.23% by mass, and 0.03 to 0.15% by mass when the conductivity is more important.
- These components may be contained alone or in a combination of two or more.
- RE is an element that has the effect of refining the crystal grains during casting, reducing the number of specific voids, and improving heat resistance.
- the RE content is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more.
- the RE content is preferably 0.30% by mass or less, more preferably 0.27% by mass or less, and further preferably 0.25% by mass or less. Since RE is an optional additive element component, when RE is not added, the lower limit of the RE content is 0.00 mass% in consideration of the impurity level content.
- Ag is an element which has a function of refining crystal grains during casting, reducing the number of specific voids, and further improving heat resistance.
- the content of Ag is preferably 0.005 mass% or more, and more preferably 0.01 mass% or more.
- the content of Ag is preferably 0.30% by mass or less, more preferably 0.27% by mass or less, and further preferably 0.25% by mass or less. Since Ag is an optional additive element component, when Ag is not added, the lower limit of the Ag content is 0.00 mass% in consideration of the impurity level content.
- Ni is an element that has the effect of refining crystal grains during casting, reducing the number of specific voids, and further improving heat resistance and corrosion resistance when used in a corrosive environment. From the viewpoint of sufficiently exhibiting such an effect, the Ni content is preferably 0.005 mass% or more, and more preferably 0.01 mass% or more. On the other hand, if the Ni content is more than 0.30% by mass, the workability decreases. Therefore, the Ni content is preferably 0.30% by mass or less, more preferably 0.27% by mass or less, and further preferably 0.25% by mass or less. Since Ni is an optional additive element component, if Ni is not added, the lower limit of the Ni content is 0.00 mass% in consideration of the impurity level content.
- Mn is an element that has the effect of refining the crystal grains during casting, reducing the number of specific voids, and improving heat resistance and corrosion resistance when used in a corrosive environment.
- the content of Mn is preferably 0.005 mass% or more, and more preferably 0.01 mass% or more, in order to sufficiently exert such an action.
- the Mn content is preferably 0.30% by mass or less, more preferably 0.27% by mass or less, and further preferably 0.25% by mass or less. Since Mn is an optional additive element component, if Mn is not added, the lower limit of the Mn content is 0.00 mass% in consideration of the impurity level content.
- Cr is an element having a function of refining crystal grains during casting, reducing the number of specific voids, and further improving heat resistance and corrosion resistance when used in a corrosive environment.
- the content of Cr is preferably 0.005 mass% or more, and more preferably 0.01 mass% or more.
- the Cr content is preferably 0.30% by mass or less, more preferably 0.27% by mass or less, and further preferably 0.25% by mass or less. Since Cr is an optional additive element component, when Cr is not added, the lower limit of the Cr content is 0.00 mass% in consideration of the impurity level content.
- Zr is an element that has the effect of refining crystal grains during casting, reducing the number of specific voids, and further improving heat resistance and corrosion resistance when used in a corrosive environment.
- the Zr content is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more.
- the Zr content is preferably 0.30% by mass or less, more preferably 0.27% by mass or less, and further preferably 0.25% by mass or less. Since Zr is an optional additive element component, when Zr is not added, the lower limit of the Zr content is 0.00% by mass in consideration of the impurity level content.
- Ti is an element having a function of making crystal grains fine during casting, reducing the number of specific voids, and further improving heat resistance and corrosion resistance when used in a corrosive environment.
- the content of Ti is preferably 0.005 mass% or more in order to make the crystal grains during casting finer and to sufficiently exert the effect of improving heat resistance.
- the Ti content is more preferably 0.01% by mass or more, and 0.05% by mass or more. More preferably, On the other hand, if the Ti content exceeds 0.30% by mass, the workability decreases.
- the Ti content is preferably 0.30% by mass or less, more preferably 0.27% by mass or less, and further preferably 0.25% by mass or less. Since Ti is an optional additive element component, when Ti is not added, the lower limit of the Ti content is 0.00 mass% in consideration of the impurity level content.
- B is an element that has the effect of refining the crystal grains during casting, reducing the number of specific voids, and improving heat resistance and corrosion resistance when used in a corrosive environment.
- the content of B is preferably 0.005 mass% or more in order to make the crystal grains during casting finer and to sufficiently exert the effect of improving heat resistance.
- the content of B is more preferably 0.007 mass% or more, and 0.01 mass% or more. More preferably, On the other hand, if the content of B exceeds 0.30% by mass, the workability decreases.
- the content of B is preferably 0.30% by mass or less, more preferably 0.27% by mass or less, and further preferably 0.25% by mass or less. Since B is an optional additive element component, when B is not added, the lower limit of the B content is set to 0.00 mass% in consideration of the impurity level content.
- the balance other than the above-mentioned components is Al (aluminum) and inevitable impurities.
- the unavoidable impurities referred to here mean impurities at a content level that can be unavoidably included in the manufacturing process. Since the unavoidable impurities may cause a decrease in conductivity depending on the content, it is preferable to suppress the content of the unavoidable impurities to some extent in consideration of the decrease in conductivity.
- the components that can be cited as the inevitable impurities include Bi (bismuth), Pb (lead), Ga (gallium), Sr (strontium), and the like.
- the upper limit of the content of these components may be 0.03 mass% for each of the above components, and 0.10 mass% for the total amount of the above components.
- Such an aluminum alloy material can be realized by controlling the alloy composition and manufacturing process in combination.
- a suitable method for producing the aluminum alloy material of the present invention will be described.
- the aluminum alloy material according to one embodiment of the present invention has crystal grains inside an Al-Fe-(Si, Cu, Mg) alloy. It is characterized by high strength and high bendability by introducing the boundary with high density. That is, it is characterized in that the stabilization heat treatment is incorporated under a predetermined condition during the drawing process to promote the rearrangement of lattice defects inside the alloy and stabilize the alloy.
- This manufacturing method includes at least the interfacial strength increasing heat treatment [1] and the cold working [2].
- FIG. 4 is a schematic view of voids in an aluminum alloy material.
- a heat treatment is performed on the aluminum alloy before the cold working [2] or at least before the final cold working when performing the cold working a plurality of times.
- the heat treatment is preferably maintained at 180° C. to 280° C. for 10 minutes to 24 hours. If the temperature is lower than this, or if it is for a short time, atomic diffusion becomes insufficient and the effect becomes insufficient.
- a brittle intermetallic compound may be formed, or a defect in the interface may occur due to a difference in linear expansion coefficient between the matrix phase and the intermetallic compound containing Fe during heat treatment. To generate.
- the aluminum alloy raw material is not particularly limited as long as it has the above alloy composition, and includes, for example, extruded material, ingot material, hot-worked material (for example, hot-rolled material), cold-worked material (for example, cold-worked material). Rolled material, etc.) can be appropriately selected and used according to the purpose of use.
- the stress state is complicated by a multi-axial state due to the difference in orientation between adjacent crystal grains and the spatial distribution of strain between the surface layer near the processing tool and the inside of the bulk. It is in a state. Due to these effects, the crystal grains that had a single orientation before the deformation split into multiple orientations as the deformation occurs, and grain boundaries are formed between the split crystals.
- the added Mg and Si have the effect of stabilizing the crystal grain boundaries formed during processing.
- Cold working [2] may be performed only once or multiple times.
- the total working ratio of cold working [2] (total working ratio) is set to 2 or more.
- total working ratio is set to 2 or more.
- Such a total workability is preferably 2.5 or more, more preferably 3 or more, and further preferably 5 or more.
- the upper limit of the total workability is not specified, but it is usually 15.
- s1 is a cross-sectional area of the aluminum alloy that has not been cold worked [2] after the interface strength increasing heat treatment [1]
- s2 is the cross-sectional area of all cold-worked [2] aluminum alloys after the heat treatment [1] for increasing the interfacial strength. Further, only the cold working [2] after the interface strength increasing heat treatment [1] is considered without considering the cold working performed before the interface strength increasing heat treatment [1].
- the processing method may be appropriately selected according to the shape of the desired aluminum alloy material (wire rod material, plate material, strip, foil, etc.), for example, cassette roller die, groove roll rolling, round wire rolling, die, etc. Examples of the drawing process include swaging and the like.
- the metal structure of the present invention is obtained by increasing the friction between the tool and the material and positively introducing the additional shear strain.
- the aluminum alloy material is processed with a high degree of processing by a method such as drawing with a die or rolling. Therefore, a long aluminum alloy material is obtained as a result.
- conventional aluminum alloy material manufacturing methods such as powder sintering, compression twisting, high pressure torsion (HPT), forging, and equal channel angular pressing (ECAP) Hard to get.
- Such an aluminum alloy material of the present invention is preferably manufactured with a length of 10 m or more. Although the upper limit of the length of the aluminum alloy material at the time of manufacturing is not particularly set, it is preferably 6000 m in consideration of workability and the like.
- the aluminum alloy material of the present invention is effective in increasing the workability for the refinement of the crystal grains as described above. Further, in the case of manufacturing as a plate material or foil, the thinner the thickness, the easier it is to realize the constitution of the present invention.
- the aluminum alloy material of the present invention is a wire rod material
- its wire diameter is preferably 1 mm or less, more preferably 0.5 mm or less, still more preferably 0.45 mm or less, and particularly preferably 0.4 mm.
- the following is most preferably 0.35 mm or less.
- the lower limit is not particularly set, but it is preferably 0.01 mm in consideration of workability and the like. Since the aluminum alloy wire rod according to the present invention has high strength even if it is a thin wire, one of its advantages is that it can be used as a thin single wire.
- the aluminum alloy material of the present invention is a plate material
- its plate thickness is preferably 2 mm or less, more preferably 1 mm or less, still more preferably 0.4 mm or less, and particularly preferably 0.2 mm or less.
- the lower limit is not particularly set, but is preferably 0.01 mm. Since the aluminum alloy sheet material of the present invention has high strength even in the shape of a thin plate or foil, one of its advantages is that it can be used as a thin single layer.
- the aluminum alloy material of the present invention is processed to be thin or thin, but it is also possible to prepare a plurality of such aluminum alloy materials and bond them, and thicken or thicken them to use for the intended purpose. it can.
- a known method can be used as the joining method, and examples include pressure welding, welding, joining with an adhesive, and friction stir welding.
- the aluminum alloy material is a wire rod material
- a plurality of aluminum alloy materials may be bundled and twisted to be used as an aluminum alloy twisted wire for the intended purpose.
- the step of temper annealing [3] described below may be performed after the aluminum alloy material subjected to the cold working [2] is joined or twisted.
- temper annealing [3] may be performed as a final treatment on the aluminum alloy for the purpose of releasing residual stress and improving elongation.
- the treatment temperature is 50 to 130°C. If the treatment temperature of the temper annealing [3] is less than 50°C, it is difficult to obtain the above effects, and if it exceeds 130°C, recovery or recrystallization causes the growth of crystal grains and the strength decreases.
- the holding time of the temper annealing [3] is preferably 24 to 48 hours. The various conditions of such heat treatment can be appropriately adjusted depending on the type and amount of unavoidable impurities and the solid solution/precipitation state of the aluminum alloy material.
- the aluminum alloy material of the present invention manufactured by the manufacturing method as described above has a high density of crystal grain boundaries introduced into the metal structure.
- Such an aluminum alloy material of the present invention has a fibrous metal structure in which a plurality of crystal grains extend in one direction, and in a cross section parallel to the one direction, a longitudinal direction of the plurality of crystal grains. The average of the maximum dimension in the direction perpendicular to is 800 nm or less.
- Such an aluminum alloy material has a unique metal structure that does not exist in the conventional aluminum alloy material, so that the conventional aluminum alloy material (however, the 2000 series or 7000 series high-strength aluminum having poor corrosion resistance and workability) is used. It has much higher strength than alloy materials.).
- the metal structure of the aluminum alloy material of the present invention has a fibrous structure, and elongated crystal grains are aligned in one direction and extend into a fibrous structure.
- "one direction” corresponds to the processing direction (stretching direction) of the aluminum alloy material, and when the aluminum alloy material is a wire rod material, for example, in the drawing direction, when it is a plate material or foil.
- the aluminum alloy material of the present invention exhibits particularly excellent strength characteristics against such tensile stress parallel to the processing direction.
- the one direction preferably corresponds to the longitudinal direction of the aluminum alloy material. That is, the aluminum alloy material usually has its stretching direction corresponding to its longitudinal direction, unless it is diced into smaller dimensions than the dimension perpendicular to the processing direction.
- the average value of the maximum dimension of the plurality of crystal grains in the direction perpendicular to the longitudinal direction is 800 nm or less, more preferably 740 nm or less, further preferably 640 nm or less, and particularly preferably It is 600 nm or less, more preferably 570 nm or less, and most preferably 550 nm or less.
- the crystal grain boundaries are formed at high density.
- the fine crystal grains have an effect of suppressing uneven deformation in bending deformation.
- the average value of the maximum dimensions of the plurality of crystal grains in the direction perpendicular to the longitudinal direction is preferably as small as possible in order to achieve high strength, but the lower limit as a manufacturing or physical limit is, for example, 20 nm.
- the average value of the maximum dimension of the crystal grains in the longitudinal direction is not necessarily specified, but it is preferably 1200 nm or more, more preferably 1700 nm or more, and further preferably 2200 nm or more.
- the aspect ratio of the crystal grains is preferably 10 or more, more preferably 20 or more.
- the number of specific voids whose maximum dimension in the direction perpendicular to the longitudinal direction is 1.0 ⁇ m or more is 10 or less.
- the number is preferably 9 or less, and more preferably 8 or less.
- the number of the predetermined specific voids is 10 or less, it is possible to suppress breakage when stress is applied to the aluminum alloy material. Further, it is preferable that such specific voids do not ideally exist from the viewpoint of suppressing the destruction of the aluminum alloy material. However, if the aluminum alloy material is manufactured without specific voids, the mass production cost is significantly increased. Therefore, the number of specific voids may be in the range of 1 to 10 inclusive.
- the tensile strength is a value measured according to JIS Z2241:2011. Detailed measurement conditions will be described in the section of Examples described later.
- the aluminum alloy material of the present invention preferably has a tensile strength of 210 MPa or more, particularly when it is a wire rod material. Such tensile strength exceeds the tensile strength of 160 to 200 MPa of aluminum A1350 for electroconduction shown in ASTM INTERNATIONAL by 10% or more. (Standard name: B230/B230M-07).
- the more preferable tensile strength of the present invention is 260 MPa or more, and the still more preferable tensile strength is 300 MPa or more.
- An even more preferable tensile strength is 340 MPa or more.
- Such tensile strength is higher than the tensile strength of 305 to 330 MPa of A6201 of the 6000 series aluminum alloy shown in ASTM INTERNATIONAL. (Standard name: B398/B398M-14).
- the most preferable tensile strength is 380 MPa or more.
- the Vickers hardness (HV) is a value measured according to JIS Z2244:2009. Detailed measurement conditions will be described in the section of Examples described later.
- the aluminum alloy material of the present invention preferably has a Vickers hardness HV of 60 or more, particularly when it is a wire rod material. Such HV exceeds 10% of 54 which is HV of conductive aluminum A1350 shown in ASTM INTERNATIONAL.
- the aluminum alloy wire rod material of the present invention when the aluminum alloy wire rod material of the present invention is applied to a cable, there is an effect of reducing the cross-sectional area and weight of the conductor of the cable by 10% while maintaining the high tension of the cable.
- the more preferable HV of the present invention is 70 or more, and the more preferable Hv is 80 or more.
- An even more preferable HV is 90 or more.
- Such tensile strength exceeds 85, which is the tensile strength of A6201 of the 6000 series aluminum alloy shown in ASTM INTERNATIONAL.
- the most preferable HV is 100 or more.
- the upper limit of the Vickers hardness (HV) of the aluminum alloy material of the present invention is not particularly limited, but is 250, for example.
- the elongation at break is a value measured by performing a tensile test using a precision universal tester (manufactured by Shimadzu Corporation) according to JIS Z2241:2001. Detailed measurement conditions will be described in the section of Examples described later.
- the aluminum alloy material of the present invention particularly when it is a wire rod material, has a breaking elongation of preferably 2.0 or more, more preferably 3.0 or more, and further preferably 3.5 or more, Particularly preferably, it is 4.0 or more.
- the elongation at break is preferably 12.0 or less, more preferably 10.0 or less, and further preferably 8.0 or less.
- the preferred conductivity differs depending on the application and strength band.
- conductivity is a basic function, so the conductivity is preferably 55.0% IACS or more. More preferably, it is 57.0% IACS or more.
- the mechanical properties serve as a basic function, so that the electrical conductivity is preferably 45.0% IACS or more. More preferably, it is 48.0% IACS or more.
- the aluminum alloy material of the present invention may be used not only as a bare material, but also by coating the surface of the aluminum alloy material with another metal by a method such as plating or clad. Also in this case, the above effect can be exhibited.
- the type of metal to be coated include one or more metals or alloys selected from the group consisting of Cu, Ni, Ag, Sn, Au, Pd and Pt. It is effective in reducing contact resistance and improving corrosion resistance.
- the coverage is preferably up to about 25% of the total area in the cross section perpendicular to the longitudinal direction. This is because if the coverage is too high, the weight reduction effect will be reduced. It is preferably 15% or less, more preferably 10% or less.
- the aluminum alloy material of the present invention can be applied to any applications where iron-based materials, copper-based materials and aluminum-based materials are used.
- conductive members such as electric wires and cables, battery members such as meshes and nets for current collectors, fastening parts such as screws, bolts and rivets, spring parts such as coil springs, connectors and terminals, etc. It can be suitably used as a spring member for electric contacts, structural parts such as shafts and frames, guide wires, bonding wires for semiconductors, windings used in generators and motors, and the like.
- More specific applications of the conductive member include overhead power lines, OPGW, underground cables, power cables such as submarine cables, communication cables such as telephone cables and coaxial cables, cables for wired drones, cabtire cables. , EV/HEV charging cable, offshore wind power generation twisting cable, elevator cable, umbilical cable, robot cable, train overhead wire, electric wire for equipment such as trolley wire, automotive wire harness, ship wire, airplane wire, etc. Examples thereof include electric wires for transportation, bus bars, lead frames, flexible flat cables, lightning rods, antennas, connectors, terminals, and braided cables.
- the aluminum alloy of the present invention may be mixed with a general-purpose conductor such as copper or aluminum to form a stranded wire.
- Examples of battery members include solar cell electrodes and lithium-ion battery electrodes.
- structural parts examples include scaffolds at construction sites, conveyor mesh belts, metal fibers for clothing, chains, fences, insect repellent nets, zippers, fasteners, clips, aluminum wool, and brake wires.
- Bicycle parts such as spokes, reinforced glass reinforcement wire, pipe seals, metal packing, cable protection reinforcement, fan belt core metal, actuator drive wire, chain, hanger, soundproof mesh, shelf board, etc. ..
- fastening parts members
- fastening parts members
- fastening parts members
- staples staples
- thumbtacks etc.
- spring parts include spring electrodes, terminals, connectors, springs for semiconductor probes, leaf springs and springs for mainsprings.
- metal fiber it is suitable as a metal fiber to be added to give conductivity to resin-based materials, plastic materials, cloth, etc., or to control strength and elastic modulus.
- the manufacturing conditions A to F shown in Table 2 are specifically as follows.
- Comparative Example 1 An aluminum wire rod (0.24 mm ⁇ ) was manufactured under the manufacturing conditions shown in Table 2 using a 10 mm ⁇ rod made of 99.99 mass%-Al.
- Comparative Examples 2 to 6 Aluminum alloy wire rods (0.07 to 2.0 mm ⁇ ) were manufactured under the manufacturing conditions shown in Table 2 using 10 mm ⁇ rods having the alloy compositions shown in Table 2.
- a cross section parallel to the longitudinal direction (drawing direction X) of the wire was cut by FIB (Focused Ion Beam) to a thickness of 100 nm ⁇ 20 nm and finished by ion milling.
- the gray contrast was used, the difference in contrast was recognized as the crystal orientation, and the boundary where the contrast was discontinuously different was recognized as the grain boundary.
- ⁇ 2 is set by the two orthogonal sample rotation axes in the sample stage of the electron microscope. The angle between the electron beam and the sample was changed by tilting by 3°, the observation surface was photographed under a plurality of diffraction conditions, and the grain boundary was recognized.
- the observation field of view is set to the longitudinal direction (15 to 40) ⁇ m ⁇ thickness direction (15 to 40) ⁇ m, and in the cross section, on the line corresponding to the radial direction (direction perpendicular to the longitudinal direction)
- the observation was performed at an intermediate portion, that is, a position near the center between the center and the surface layer (a position from the surface layer side to the center side of about 1/4 of the line diameter).
- the observation visual field was appropriately adjusted according to the size of the crystal grain.
- the observation magnification was 1000 times.
- FIG. 5 is a part of a TEM image of a cross section parallel to the longitudinal direction (drawing direction X) of the wire rod, which was taken when the TEM observation was performed.
- the fibrous metal structure was evaluated as “present”.
- any 100 crystal grains are selected, and the maximum dimension t in the direction perpendicular to the longitudinal direction of each crystal grain and the dimension parallel to the longitudinal direction of the crystal grain are measured,
- the aspect ratio of the crystal grains was calculated. Further, regarding the maximum dimension t and the aspect ratio in the direction perpendicular to the longitudinal direction of the crystal grains, an average value was calculated from the total number of observed crystal grains.
- the maximum dimension t of the observed crystal grain in the direction perpendicular to the longitudinal direction is obviously larger than 800 nm, the number of selected crystal grains for measuring each dimension is reduced and the average value of each is calculated. ..
- the aspect ratio was uniformly determined to be 10 or more.
- the observation field of view is the longitudinal direction (98 to 148 ⁇ m) ⁇ thickness direction (73 to 110 ⁇ m), and in the cross section, on the line corresponding to the radial direction (direction perpendicular to the longitudinal direction), the middle portion in the thickness direction, That is, the observation was carried out at the central portions of the two surface layers (the positions of the centers moved from the surface layer side to about 1 ⁇ 2 of the line diameter).
- the same observation was conducted in a total of five fields selected randomly, and the average value of the number of specific voids (the number of specific voids present) and the average value of the maximum dimension in the direction perpendicular to the longitudinal direction of the specific voids were determined. ..
- FIG. 6 is a part of an SEM image of a cross section parallel to the longitudinal direction (drawing direction X) of the wire rod, which was taken when the FE-SEM observation of Comparative Example 8 was performed. From FIG. 6, specific voids having a maximum dimension of 1.0 ⁇ m or more in the direction perpendicular to the longitudinal direction of the wire (drawing direction X) were confirmed. In FIG.
- an asterisk (*) is attached to the lateral position of the specific void having a maximum dimension of 1.0 ⁇ m or more in the direction perpendicular to the longitudinal direction (drawing direction X) of the wire.
- 13 specific voids having a maximum dimension of 1.0 ⁇ m or more in the direction perpendicular to the longitudinal direction of the wire (drawing direction X) were confirmed.
- FIG. 7 is a part of an SEM image of a cross section parallel to the longitudinal direction (drawing direction X) of the wire rod, which was taken when the FE-SEM observation of Inventive Example 3 was performed.
- two specific voids having a maximum dimension of 1.0 ⁇ m or more in the direction perpendicular to the longitudinal direction of the wire (drawing direction X) were confirmed.
- HV Vickers hardness
- HM-125 produced by Akashi Co., Ltd. (now Mitutoyo Co., Ltd.)
- the test force was 0.1 kgf and the holding time was 15 seconds.
- [7] Conductivity The conductivity was measured by a four-terminal method at 20 ⁇ 1°C.
- the conductivity in the strength band where the tensile strength is 210 to 340 MPa, the conductivity is the basic function, so that the conductivity is 55.0% IACS or higher as the pass level.
- the mechanical properties serve as a basic function, so that the electrical conductivity was 45.0% IACS or higher as the pass level. Since the thermal conductivity is proportional to the electrical conductivity, the judgment of pass/fail was substituted by the evaluation of the electrical conductivity.
- the aluminum alloy wire rods of Examples 1 to 34 of the present invention have an alloy composition within the proper range of the present invention, and have a fibrous metallographic structure in which crystal grains extend in one direction.
- the average value of the maximum dimension of the crystal grains in the direction perpendicular to the longitudinal direction is 800 nm or less, and in the cross section parallel to the longitudinal direction, when observing the range of the central portion 10000 ⁇ m 2 in the thickness direction of the aluminum alloy material, It was confirmed that the number of specific voids having a maximum dimension in the direction perpendicular to the longitudinal direction of 1.0 ⁇ m or more was 10 or less.
- the aluminum alloy wire rods according to Examples 1 to 34 of the present invention all have a tensile strength of 210 MPa or more, a Vickers hardness of 60 or more, and a breaking elongation of 2% or more.
- the electrical conductivity was 55.0% IACS or more
- the electrical conductivity was 45.0% IACS or more.
- the pure aluminum wire of Comparative Example 1 has a composition outside the proper range of the present invention, and since the average value of the maximum dimension t in the direction perpendicular to the longitudinal direction of the crystal grains is larger than 800 nm, The strength was low and both Vickers hardness and elongation at break were inferior.
- the aluminum alloy wire of Comparative Example 2 had a Si content higher than the appropriate range of the present invention, and thus had poor electrical conductivity.
- the Fe content was higher than the appropriate range of the present invention, and thus Fe-based compounds were precipitated, causing frequent disconnection during cold drawing [2].
- the aluminum alloy of Comparative Example 4 had a Cu content higher than the appropriate range of the present invention, and thus had a poor electrical conductivity.
- the aluminum alloy wire of Comparative Example 5 contained Mg in a larger amount than the appropriate range of the present invention, and thus had poor electrical conductivity.
- the electrical conductivity of the aluminum alloy of Comparative Example 6 was inferior because the content of the optional component Mn and the total content of the optional components were larger than the proper range of the present invention.
- the aluminum alloy wire rods of Comparative Examples 7 and 9 had alloy compositions within the proper range of the present invention, they were not subjected to the interfacial strength increasing heat treatment [1], so that the maximum size t in the direction perpendicular to the longitudinal direction of the crystal grains was The average values were 1 ⁇ m or more and 900 nm, respectively, and the tensile strength and Vickers hardness were poor.
- the aluminum alloy wire rods of Comparative Examples 8 and 10 had alloy compositions within the proper range of the present invention, but the interface strength increasing heat treatment [1] was not performed, so the number of specific voids exceeded 10 and the elongation at break was poor. Was there.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Conductive Materials (AREA)
Abstract
Description
(1)Fe:0.05~1.50質量%と、Si:0.01~0.15質量%、Cu:0.01~0.30質量%およびMg:0.01~1.50質量%の少なくとも1種とを含有し、残部がAlおよび不可避不純物からなる合金組成を有するアルミニウム合金材であって、複数の結晶粒が一方向に揃って延在した繊維状の金属組織を有し、前記一方向に平行な断面において、複数の前記結晶粒の長手方向に垂直な方向の最大寸法の平均値が800nm以下であり、かつ、前記断面を厚さ方向に見て、中央部で観察したとき、前記長手方向に垂直な方向の最大寸法が1.0μm以上である特定空隙が存在しないか、または、前記特定空隙の存在個数が10000μm2あたり10個以下であることを特徴とする、アルミニウム合金材。
(2)Fe:0.05~1.50質量%と、Si:0.01~0.15質量%、Cu:0.01~0.30質量%およびMg:0.01~1.50質量%の少なくとも1種とを含有するとともに、RE、Ag、Ni、Mn、Cr、Zr、TiおよびBからなる群から選択される少なくとも1種以上:合計で0.30質量%以下を含有し、残部がAlおよび不可避不純物からなる合金組成を有するアルミニウム合金材であって、複数の結晶粒が一方向に揃って延在した繊維状の金属組織を有し、前記一方向に平行な断面において、複数の前記結晶粒の長手方向に垂直な方向の最大寸法の平均値が800nm以下であり、かつ、前記断面を厚さ方向に見て、中央部で観察したとき、前記長手方向に垂直な方向の最大寸法が1.0μm以上である特定空隙が存在しないか、または、前記特定空隙の存在個数が10000μm2あたり10個以下であることを特徴とする、アルミニウム合金材。
(3)複数の前記結晶粒の長手方向に垂直な方向の最大寸法の平均値に対する、複数の前記特定空隙の長手方向に垂直な方向の最大寸法の平均値が2~10である、上記(1)または(2)に記載のアルミニウム合金材。
(4)表面がCu、Ni、Ag、Sn、Au、PdおよびPtからなる群から選択される少なくとも1種以上の金属で被覆されている、上記(1)、(2)または(3)に記載のアルミニウム合金材。
(5)上記(1)~(4)のいずれか1項に記載のアルミニウム合金材を用いた、導電部材。
(6)上記(1)~(4)のいずれか1項に記載のアルミニウム合金材を用いた、電池用部材。
(7)上記(1)~(4)のいずれか1項に記載のアルミニウム合金材を用いた、締結部品。
(8)上記(1)~(4)のいずれか1項に記載のアルミニウム合金材を用いた、バネ用部品。
(9)上記(1)~(4)のいずれか1項に記載のアルミニウム合金材を用いた、構造用部品。
(10)上記(1)~(4)のいずれか1項に記載のアルミニウム合金材を用いた、キャブタイヤケーブル。
本発明のアルミニウム合金材の合金組成とその作用について示す。
Fe(鉄)は、本発明のアルミニウム合金材において必須の元素であり、結晶粒の微細化に寄与する元素である。Fe含有量が0.05質量%未満だと、これらの作用効果が不十分であり、また、Fe含有量が1.50質量%を超えると、晶出物が多くなり、加工性が低下する。ここで、晶出物とは、合金の鋳造凝固時に生じる金属間化合物をいう。したがって、Fe含有量は0.05~1.50質量%とし、好ましくは0.08~0.80質量%であり、より好ましくは0.10~0.22質量%である。
Si(ケイ素)、Cu(銅)、Mg(マグネシウム)は、アルミニウム母材の微細な結晶粒を安定化する作用を有する元素である。これらは、単独で添加するよりも2種以上を複合添加することによって、結晶粒の微細化に有効に作用する。さらに、結晶粒が微細な状況で材料の強度を高める作用がある。しかしながら、Si含有量が0.15質量%超え、Cu含有量が0.3質量%超え、Mg含有量が1.5質量%超えの場合には、強度が高めるメリット以上に、導電率が低下してしまうデメリットが顕在化するため、好ましくない。Siを含有させる場合のより好ましい範囲は0.10質量%以下、更に好ましくは、0.06質量%以下である。Cuを含有させる場合のより好ましい範囲は0.22質量%以下、更に好ましくは、0.16質量%以下である。Mgを含有させる場合のより好ましい範囲は1.00質量%以下、更に好ましくは、0.30質量%以下である。また、これらの元素は、後述する本発明のプロセスと相乗的に作用して、空隙を制御するために有効に作用する。
RE(希土類元素)、Ag(銀)、Ni(ニッケル)、Mn(マンガン)、Cr(クロム)、Zr(ジルコニウム)、Ti(チタン)およびB(ホウ素)はいずれも、結晶粒を微細化するとともに、特定空隙の発生数を少なくする効果があるため、必要に応じて適宜添加することができる任意添加元素である。これらの元素は、後述する本発明のプロセスと相乗的に作用して、空隙を制御するために有効に作用する。なお、REは、希土類元素を意味し、ランタン、セリウム、イットリウムなどの17種類の元素が含まれ、これらの17種類の元素は同等の効果を有し、化学的に単元素の抽出が難しいため、本発明では総量として規定する。
REは、鋳造時の結晶粒を微細化させ、また、特定空隙の数を低減させ、さらに、耐熱性を向上させる作用を有する元素である。このような作用を十分に発揮させるには、REの含有量を0.005質量%以上とすることが好ましく、0.01質量%以上とすることがより好ましい。他方で、REの含有量を0.30質量%超とすると、加工性が低下する。したがって、REの含有量は、好ましくは0.30質量%以下、より好ましくは0.27質量%以下、さらに好ましくは0.25質量%以下とする。なお、REは、任意添加元素成分であるので、REを添加しない場合には、不純物レベルの含有も考慮して、RE含有量の下限値は0.00質量%とする。
Agは、鋳造時の結晶粒を微細化させ、また、特定空隙の数を低減させ、さらに、耐熱性を向上させる作用を有する元素である。このような作用を十分に発揮させるには、Agの含有量を0.005質量%以上とすることが好ましく、0.01質量%以上とすることがより好ましい。他方で、Agの含有量を0.30質量%超とすると、加工性が低下する。したがって、Agの含有量は、好ましくは0.30質量%以下、より好ましくは0.27質量%以下、さらに好ましくは0.25質量%以下とする。なお、Agは、任意添加元素成分であるので、Agを添加しない場合には、不純物レベルの含有も考慮して、Ag含有量の下限値は0.00質量%とする。
Niは、鋳造時の結晶粒を微細化させ、また、特定空隙の数を低減させ、さらに、耐熱性と、腐食環境で使用される場合の耐食性を向上させる作用を有する元素である。このような作用を十分に発揮させる観点から、Niの含有量を0.005質量%以上とすることが好ましく、0.01質量%以上とすることがより好ましい。他方で、Niの含有量を0.30質量%超とすると、加工性が低下する。したがって、Niの含有量は、好ましくは0.30質量%以下、より好ましくは0.27質量%以下、さらに好ましくは0.25質量%以下とする。なお、Niは、任意添加元素成分であるので、Niを添加しない場合には、不純物レベルの含有も考慮して、Ni含有量の下限値は0.00質量%とする。
Mnは、鋳造時の結晶粒を微細化させ、また、特定空隙の数を低減させ、さらに、耐熱性と、腐食環境で使用される場合の耐食性を向上させる作用を有する元素である。このような作用を十分に発揮させるには、Mnの含有量を0.005質量%以上とすることが好ましく、0.01質量%以上とすることがより好ましい。他方で、Mnの含有量を0.30質量%超とすると、加工性が低下する。したがって、Mnの含有量は、好ましくは0.30質量%以下、より好ましくは0.27質量%以下、さらに好ましくは0.25質量%以下とする。なお、Mnは、任意添加元素成分であるので、Mnを添加しない場合には、不純物レベルの含有も考慮して、Mn含有量の下限値は0.00質量%とする。
Crは、鋳造時の結晶粒を微細化させ、また、特定空隙の数を低減させ、さらに、耐熱性と、腐食環境で使用される場合の耐食性を向上させる作用を有する元素である。このような作用を十分に発揮させるには、Crの含有量を0.005質量%以上とすることが好ましく、0.01質量%以上とすることがより好ましい。他方で、Crの含有量を0.30質量%超とすると、加工性が低下する。したがって、Crの含有量は、好ましくは0.30質量%以下、より好ましくは0.27質量%以下、さらに好ましくは0.25質量%以下とする。なお、Crは、任意添加元素成分であるので、Crを添加しない場合には、不純物レベルの含有も考慮して、Cr含有量の下限値は0.00質量%とする。
Zrは、鋳造時の結晶粒を微細化させ、また、特定空隙の数を低減させ、さらに、耐熱性と、腐食環境で使用される場合の耐食性を向上させる作用を有する元素である。このような作用を十分に発揮させるには、Zrの含有量を0.005質量%以上とすることが好ましく、0.01質量%以上とすることがより好ましい。他方で、Zrの含有量を0.30質量%超とすると、加工性が低下する。したがって、Zrの含有量は、好ましくは0.30質量%以下、より好ましくは0.27質量%以下、さらに好ましくは0.25質量%以下とする。なお、Zrは、任意添加元素成分であるので、Zrを添加しない場合には、不純物レベルの含有も考慮して、Zr含有量の下限値は0.00質量%とする。
Tiは、鋳造時の結晶粒を微細化させ、また、特定空隙の数を低減させ、さらに、耐熱性と、腐食環境で使用される場合の耐食性を向上させる作用を有する元素である。鋳造時の結晶粒を微細化させ、また、耐熱性を向上させる作用を十分に発揮させるには、Tiの含有量を0.005質量%以上とすることが好ましい。これに加えて、腐食環境で使用される場合の耐食性を向上させる作用も十分に発揮させるには、Tiの含有量を0.01質量%以上とすることがより好ましく、0.05質量%以上とすることがさらに好ましい。他方で、Tiの含有量を0.30質量%超とすると、加工性が低下する。したがって、Tiの含有量は、好ましくは0.30質量%以下、より好ましくは0.27質量%以下、さらに好ましくは0.25質量%以下とする。なお、Tiは、任意添加元素成分であるので、Tiを添加しない場合には、不純物レベルの含有も考慮して、Ti含有量の下限値は0.00質量%とする。
Bは、鋳造時の結晶粒を微細化させ、また、特定空隙の数を低減させ、さらに、耐熱性と、腐食環境で使用される場合の耐食性を向上させる作用を有する元素である。鋳造時の結晶粒を微細化させ、また、耐熱性を向上させる作用を十分に発揮させるには、Bの含有量を0.005質量%以上とすることが好ましい。これに加えて、腐食環境で使用される場合の耐食性を向上させる作用も十分に発揮させるには、Bの含有量を0.007質量%以上とすることがより好ましく、0.01質量%以上とすることがさらに好ましい。他方で、Bの含有量を0.30質量%超とすると、加工性が低下する。したがって、Bの含有量は、好ましくは0.30質量%以下、より好ましくは0.27質量%以下、さらに好ましくは0.25質量%以下とする。なお、Bは、任意添加元素成分であるので、Bを添加しない場合には、不純物レベルの含有も考慮して、B含有量の下限値は0.00質量%とする。
上述した成分以外の残部は、Al(アルミニウム)および不可避不純物である。ここでいう不可避不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物は、含有量によっては導電率を低下させる要因にもなりうるため、導電率の低下を考慮して不可避不純物の含有量をある程度抑制することが好ましい。不可避不純物として挙げられる成分としては、例えば、Bi(ビスマス)、Pb(鉛)、Ga(ガリウム)、Sr(ストロンチウム)等が挙げられる。なお、これらの成分含有量の上限は、上記成分毎に0.03質量%、上記成分の総量で0.10質量%とすればよい。
このような本発明の一実施例によるアルミニウム合金材は、特にAl-Fe-(Si、Cu、Mg)系合金の内部に結晶粒界を高密度で導入することにより、高強度化と高曲げ性化を図ることを特徴とする。すなわち、延伸加工の間に所定の条件で安定化熱処理を組み込むことにより、合金の内部の格子欠陥の再配列を促し、安定化させることを特徴としている。
アルミニウム合金材の空隙を低減させるための製法として、後述する冷間加工[2]の前、または複数回の冷間加工を行う場合には少なくとも最終の冷間加工の前に、界面強度増加熱処理[1]を行う。
通常、金属材に変形の応力が加わると、金属結晶の変形の素過程として、結晶すべりが生じる。このような結晶すべりが生じ易い金属材ほど、変形に要する応力は小さく、低強度と言える。そのため、金属材の高強度化にあたっては、金属組織内で生じる結晶すべりを抑制することが重要となる。このような結晶すべりの阻害要因としては、金属組織内の結晶粒界の存在が挙げられる。このような結晶粒界は、金属材に変形の応力が加わった際に、結晶すべりが金属組織内で伝播することを防止でき、その結果、金属材の強度は高められる。
加工度(無次元):η=ln(s1/s2) ・・・(1)
必須の態様ではないが、残留応力の解放や伸びの向上を目的として、アルミニウム合金への最終処理として調質焼鈍[3]を行ってもよい。調質焼鈍[3]を行う場合には、処理温度を50~130℃とする。調質焼鈍[3]の処理温度が50℃未満の場合には、上記のような効果が得られにくく、130℃を超えると回復や再結晶によって結晶粒の成長が起き、強度が低下する。また、調質焼鈍[3]の保持時間は好ましくは24~48時間である。なお、このような熱処理の諸条件は、不可避不純物の種類や量およびアルミニウム合金素材の固溶・析出状態によって、適宜調節することができる。
<金属組織>
上述のような製造方法によって製造される本発明のアルミニウム合金材は、金属組織内に結晶粒界が高密度で導入されたものである。このような本発明のアルミニウム合金材は、複数の結晶粒が一方向に揃って延在した繊維状の金属組織を有し、上記一方向に平行な断面において、複数の上記結晶粒の長手方向に垂直な方向の最大寸法の平均値が800nm以下である。このようなアルミニウム合金材は、従来のアルミニウム合金材には存在しない特有の金属組織を有することにより、従来のアルミニウム合金材(ただし、耐食性、加工性等が劣る2000系や7000系の高強度アルミニウム合金材は除く。)に比べて格段に高い強度を有している。
[引張強度]
引張強度は、JIS Z2241:2011に準拠して測定された値とする。詳しい測定条件は、後述する実施例の欄にて説明する。
本発明のアルミニウム合金材は、特に線棒材である場合に、好ましくは引張強度が210MPa以上である。このような引張強度は、ASTM INTERNATIONALに示されている導電用アルミニウムA1350の引張強度である160~200MPaを1割以上も上回る。(規格名:B230/B230M-07)。従って、例えば、本発明のアルミニウム合金線棒材をケーブルに適用した場合には、ケーブルの高張力を維持したまま、ケーブルの導体の断面積および重量を1割低減する効果がある。また、本発明のより好ましい引張強度は260MPa以上、さらに好ましい引張強度は300MPa以上である。さらにより好ましい引張強度は、340MPa以上である。このような引張強度は、ASTM INTERNATIONALに示されている6000系アルミニウム合金のA6201の引張強度である305~330MPaを上回る。(規格名:B398/B398M-14)。最も好ましい引張強度は380MPa以上である。
ビッカース硬さ(HV)は、JIS Z2244:2009に準拠して測定された値とする。詳しい測定条件は、後述する実施例の欄にて説明する。なお、すでに部品となった加工品のビッカース硬さ(HV)を測定する場合には、加工品を分解して、断面を鏡面研磨し、その断面について測定を行うこともできる。
本発明のアルミニウム合金材は、特に線棒材である場合に、好ましくはビッカース硬さHVが60以上である。このようなHVは、ASTM INTERNATIONALに示されている導電用アルミニウムA1350のHVである54を1割上回る。従って、例えば、本発明のアルミニウム合金線棒材をケーブルに適用した場合には、ケーブルの高張力を維持したまま、ケーブルの導体の断面積および重量を1割低減する効果がある。また、本発明のより好ましいHVは70以上、さらに好ましいHvは80以上である。さらにより好ましいHVは、90以上である。このような引張強度は、ASTM INTERNATIONALに示されている6000系アルミニウム合金のA6201の引張強度である85を上回る。最も好ましいHVは100以上である。なお、本発明のアルミニウム合金材のビッカース硬さ(HV)の上限は、特に限定されないが、例えば250である。
破断伸びは、JIS Z2241:2001に準じて、精密万能試験機(株式会社島津製作所製)を用いて引張試験を行い測定された値とする。詳しい測定条件は、後述する実施例の欄にて説明する。
本発明のアルミニウム合金材は、特に線棒材である場合に、破断伸びが、好ましくは2.0以上であり、より好ましくは3.0以上であり、さらに好ましくは3.5以上であり、特に好ましくは4.0以上である。また、破断伸びは、好ましくは12.0以下であり、より好ましくは10.0以下であり、さらに好ましくは8.0以下である。
用途や強度帯によって、好ましい導電率は異なる。引張強度が210~340MPaの強度帯では、導電が基本機能となるため、導電率は55.0%IACS以上が好ましい。より好ましくは57.0%IACS以上である。一方、引張強度が340MPa超の強度帯では、機械的特性が基本機能となるため、導電率は45.0%IACS以上が好ましい。より好ましくは、48.0%IACS以上である。
本発明のアルミニウム合金材は、鉄系材料、銅系材料およびアルミニウム系材料が用いられているあらゆる用途が対象となり得る。具体的には、電線やケーブル等の導電部材、集電体用のメッシュや網等の電池用部材、ねじや、ボルト、リベット等の締結部品、コイルバネ等のバネ用部品、コネクタや端子等の電気接点用バネ部材、シャフトやフレーム等の構造用部品、ガイドワイヤー、半導体用のボンディングワイヤー、発電機やモータに用いられる巻線等として好適に用いることができる。
まず、表2に示す合金組成を有する10mmφの各棒材を準備した。次に、各棒材を用いて、表2に示す製造条件にて、それぞれのアルミニウム合金線材(0.21~1.93mmφ)を作製した。
冷間伸線を行って、線径を1.56mmとし、220℃で2時間保持する界面強度増加熱処理[1]を行った後、加工度が3.3の冷間伸線[2]を行って、線径を0.3mmとした。
冷間伸線を行って、線径を4.69mmとし、220℃で2時間保持する界面強度増加熱処理[1]を行った後、加工度が5.5の冷間伸線[2]を行って、線径を0.3mmとした。
220℃で2時間保持する界面強度増加熱処理[1]を行った後、加工度が7.7の冷間伸線[2]を行って、線径を0.24mmとした。
製造条件Aの後、100℃で36時間保持する調質焼鈍[3]を行った。
製造条件Bの後、100℃で36時間保持する調質焼鈍[3]を行った。
製造条件Cの後、100℃で36時間保持する調質焼鈍[3]を行った。
比較例1では、99.99質量%-Alからなる10mmφの棒材を用い、表2に示す製造条件にて、アルミニウム線材(0.24mmφ)を作製した。
比較例2~6では、表2に示す合金組成を有する10mmφの棒材を用い、表2に示す製造条件にて、アルミニウム合金線材(0.07~2.0mmφ)を作製した。
表2に示す合金組成を有する10mmφの各棒材に対して、以下の製造条件Hを施した。
界面強度増加熱処理[1]を行わずに、 加工度が2.2の冷間伸線[2]を行って、線径を3.16mmとした。
表2に示す合金組成を有する10mmφの各棒材に対して、以下の製造条件Iを施した。
界面強度増加熱処理[1]を行わずに、合計加工度が7.7の冷間伸線[2]を行って、線径を0.24mmとした。
上記本発明例および比較例に係るアルミニウム系線材を用いて、下記に示す特性評価を行った。各特性の評価条件は下記の通りである。結果を表2に示す。
JIS H1305:2005に準じて、発光分光分析法によって行った。なお、測定は、発光分光分析装置(株式会社日立ハイテクサイエンス製)を用いて行った。
金属組織の観察は、透過電子顕微鏡(JEM-2100PLUS、日本電子株式会社製)を用い、TEM(Transmission Electron Microscopy)観察により行った。加速電圧は200kVで観察した。
特定空隙の個数および複数の特定空隙の長手方向に垂直な方向の最大寸法の平均値測定は、走査電子顕微鏡(日本電子株式会社製 JSM-7001FA、日本電子株式会社製)を用い、FE-SEM(Field Emission Scanning Electron Microscopy)観察により行った。加速電圧は25.0kVで観察した。
JIS Z2241:2001に準じて、精密万能試験機(株式会社島津製作所製)を用いて、引張試験を行い、引張強度(MPa)を測定した。なお、上記試験は、評点間距離を100mm、変形速度を10mm/分の条件で実施した。本発明例では、加熱前の線材については、210MPa以上を合格レベルとした。
JIS Z 2244:2009に準じて、微小硬さ試験機 HM-125(株式会社アカシ(現株式会社ミツトヨ)製)を用いて、ビッカース硬さ(HV)を測定した。このとき、試験力は0.1kgf、保持時間は15秒とした。また、測定位置は、線材の長手方向に平行な断面において、線径方向(長手方向に垂直な方向)に対応する線上の、中心と表層の中間付近の位置(表層側から線径の約1/4中心側の位置)とし、測定値(N=5)の平均値を、各線材のビッカース硬さ(HV)とした。なお、測定値の最大値および最小値の差が10以上であった場合には、さらに測定数を増やし、測定値(N=10)の平均値をその線材のビッカース硬さ(HV)とした。ビッカース硬さ(HV)は大きいほど好ましく、本発明例では、60以上を合格レベルとした。
JIS Z2241:2001に準じて、精密万能試験機(株式会社島津製作所製)を用いて、引張試験を行い、破断伸びを測定した。破断がチャック間で起きた試験のみを採用し、その中でn=4の平均値を求めた。評点間距離を100mm、変形速度を10mm/分の条件で実施した。破断伸びは、2.0%以上を合格レベルとした。
導電率は、20±1℃にて、4端子法により測定した。本発明例では、引張強度が210~340MPaの強度帯では、導電が基本機能となるため、導電率は55.0%IACS以上を合格レベルとした。また、引張強度が340MPa超の強度帯では、機械的特性が基本機能となるため、導電率は45.0%IACS以上を合格レベルとした。なお、熱伝導率は導電率と比例関係にあるため、良否の判定を導電率の評価によって代用した。
10 結晶粒
t 結晶粒の長手方向に垂直な方向の最大寸法
X 結晶粒の長手方向
Claims (10)
- Fe:0.05~1.50質量%と、Si:0.01~0.15質量%、Cu:0.01~0.30質量%およびMg:0.01~1.50質量%の少なくとも1種とを含有し、残部がAlおよび不可避不純物からなる合金組成を有するアルミニウム合金材であって、
複数の結晶粒が一方向に揃って延在した繊維状の金属組織を有し、
前記一方向に平行な断面において、
複数の前記結晶粒の長手方向に垂直な方向の最大寸法の平均値が800nm以下であり、かつ、
前記断面を厚さ方向に見て、中央部で観察したとき、前記長手方向に垂直な方向の最大寸法が1.0μm以上である特定空隙が存在しないか、または、前記特定空隙の存在個数が10000μm2あたり10個以下であることを特徴とする、アルミニウム合金材。 - Fe:0.05~1.50質量%と、Si:0.01~0.15質量%、Cu:0.01~0.30質量%およびMg:0.01~1.50質量%の少なくとも1種とを含有するとともに、RE、Ag、Ni、Mn、Cr、Zr、TiおよびBからなる群から選択される少なくとも1種以上:合計で0.30質量%以下を含有し、残部がAlおよび不可避不純物からなる合金組成を有するアルミニウム合金材であって、
複数の結晶粒が一方向に揃って延在した繊維状の金属組織を有し、
前記一方向に平行な断面において、
複数の前記結晶粒の長手方向に垂直な方向の最大寸法の平均値が800nm以下であり、かつ、
前記断面を厚さ方向に見て、中央部で観察したとき、前記長手方向に垂直な方向の最大寸法が1.0μm以上である特定空隙が存在しないか、または、前記特定空隙の存在個数が10000μm2あたり10個以下であることを特徴とする、アルミニウム合金材。 - 複数の前記結晶粒の長手方向に垂直な方向の最大寸法の平均値に対する、複数の前記特定空隙の長手方向に垂直な方向の最大寸法の平均値が2~10である、請求項1または2に記載のアルミニウム合金材。
- 表面がCu、Ni、Ag、Sn、Au、PdおよびPtからなる群から選択される少なくとも1種以上の金属で被覆されている、請求項1、2または3に記載のアルミニウム合金材。
- 請求項1~4のいずれか1項に記載のアルミニウム合金材を用いた、導電部材。
- 請求項1~4のいずれか1項に記載のアルミニウム合金材を用いた、電池用部材。
- 請求項1~4のいずれか1項に記載のアルミニウム合金材を用いた、締結部品。
- 請求項1~4のいずれか1項に記載のアルミニウム合金材を用いた、バネ用部品。
- 請求項1~4のいずれか1項に記載のアルミニウム合金材を用いた、構造用部品。
- 請求項1~4のいずれか1項に記載のアルミニウム合金材を用いた、キャブタイヤケーブル。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020528067A JP6858310B2 (ja) | 2019-01-31 | 2020-01-27 | アルミニウム合金材およびこれを用いた、導電部材、電池用部材、締結部品、バネ用部品、構造用部品、キャブタイヤケーブル |
CN202080006202.0A CN113039301B (zh) | 2019-01-31 | 2020-01-27 | 铝合金材料及使用其的导电构件、电池用构件、紧固部件、弹簧用部件、结构用部件、橡胶绝缘电缆 |
KR1020217012385A KR102613707B1 (ko) | 2019-01-31 | 2020-01-27 | 알루미늄 합금재 및 이를 사용한 도전 부재, 전지용 부재, 체결 부품, 스프링용 부품, 구조용 부품, 캡타이어 케이블 |
US17/427,438 US12116654B2 (en) | 2019-01-31 | 2020-01-27 | Aluminum alloy material, and conductive member, battery member, fastening component, spring component, structural component and cabtire cable each using same |
EP20747768.8A EP3919642A4 (en) | 2019-01-31 | 2020-01-27 | ALUMINUM ALLOY MATERIAL AND ELECTRICAL CONDUCTIVE ELEMENT, BATTERY ELEMENT, FASTENING PART, SPRING PART, STRUCTURAL PART, AND STRONG AND FLEXIBLE CABLE WITH IT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019016303 | 2019-01-31 | ||
JP2019-016303 | 2019-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020158682A1 true WO2020158682A1 (ja) | 2020-08-06 |
Family
ID=71840395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/002832 WO2020158682A1 (ja) | 2019-01-31 | 2020-01-27 | アルミニウム合金材およびこれを用いた、導電部材、電池用部材、締結部品、バネ用部品、構造用部品、キャブタイヤケーブル |
Country Status (6)
Country | Link |
---|---|
US (1) | US12116654B2 (ja) |
EP (1) | EP3919642A4 (ja) |
JP (1) | JP6858310B2 (ja) |
KR (1) | KR102613707B1 (ja) |
CN (1) | CN113039301B (ja) |
WO (1) | WO2020158682A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114807702B (zh) * | 2022-03-23 | 2023-04-07 | 山东博源精密机械有限公司 | 一种Al-Mg-Fe系电机转子合金及其制备方法和应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05331585A (ja) | 1992-05-27 | 1993-12-14 | Honda Motor Co Ltd | 高強度Al合金 |
JPH09137244A (ja) | 1995-09-14 | 1997-05-27 | Kenji Azuma | アルミニウム合金の押出加工法及びそれにより得られる高強度、高靭性のアルミニウム合金材料 |
JP2001131721A (ja) | 1999-11-01 | 2001-05-15 | Natl Research Inst For Metals Ministry Of Education Culture Sports Science & Technology | アルミニウム合金展伸材の製造方法 |
JP2003027172A (ja) | 2001-07-09 | 2003-01-29 | Kobe Steel Ltd | 微細組織を有する構造用アルミニウム合金板およびその製造方法 |
JP2010159445A (ja) | 2009-01-07 | 2010-07-22 | Shinshu Univ | 金属粒子と炭素粉末の混合方法、金属・炭素複合材料の製造方法および金属・炭素複合材料 |
WO2016088889A1 (ja) * | 2014-12-05 | 2016-06-09 | 古河電気工業株式会社 | アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材の製造方法 |
WO2018155531A1 (ja) * | 2017-02-23 | 2018-08-30 | 古河電気工業株式会社 | アルミニウム合金材並びにこれを用いた締結部品、構造用部品、バネ用部品、導電部材および電池用部材 |
WO2018181505A1 (ja) * | 2017-03-29 | 2018-10-04 | 古河電気工業株式会社 | アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 |
WO2019188451A1 (ja) * | 2018-03-27 | 2019-10-03 | 古河電気工業株式会社 | アルミニウム合金材ならびにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100508697B1 (ko) * | 1996-07-04 | 2005-11-22 | 코말코 알루미늄 리미티드 | 6xxx시리즈의알루미늄합금과이를이용하여제조된성형품 |
JP4477295B2 (ja) | 2002-10-10 | 2010-06-09 | 古河電気工業株式会社 | 自動車ワイヤハーネス用アルミ電線 |
JP2005331585A (ja) | 2004-05-18 | 2005-12-02 | Nec Viewtechnology Ltd | 距離傾斜角度測定装置を有するプロジェクタ |
WO2017168890A1 (ja) * | 2016-03-30 | 2017-10-05 | 昭和電工株式会社 | Al-Mg―Si系合金材、Al-Mg―Si系合金板及びAl-Mg―Si系合金板の製造方法 |
CN114672700A (zh) * | 2016-07-13 | 2022-06-28 | 古河电气工业株式会社 | 铝合金材料及使用其的导电构件、电池用构件、紧固零件、弹簧用零件和结构用零件 |
WO2018012481A1 (ja) * | 2016-07-13 | 2018-01-18 | 古河電気工業株式会社 | アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 |
JP6615412B2 (ja) | 2017-12-27 | 2019-12-04 | 古河電気工業株式会社 | アルミニウム合金材並びにこれを用いたケーブル、電線及びばね部材 |
KR102520011B1 (ko) | 2018-03-27 | 2023-04-10 | 후루카와 덴키 고교 가부시키가이샤 | 알루미늄 합금재 및 이를 사용한 도전 부재, 전지용 부재, 체결 부품, 스프링용 부품 및 구조용 부품 |
-
2020
- 2020-01-27 CN CN202080006202.0A patent/CN113039301B/zh active Active
- 2020-01-27 JP JP2020528067A patent/JP6858310B2/ja active Active
- 2020-01-27 KR KR1020217012385A patent/KR102613707B1/ko active IP Right Grant
- 2020-01-27 US US17/427,438 patent/US12116654B2/en active Active
- 2020-01-27 EP EP20747768.8A patent/EP3919642A4/en active Pending
- 2020-01-27 WO PCT/JP2020/002832 patent/WO2020158682A1/ja unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05331585A (ja) | 1992-05-27 | 1993-12-14 | Honda Motor Co Ltd | 高強度Al合金 |
JPH09137244A (ja) | 1995-09-14 | 1997-05-27 | Kenji Azuma | アルミニウム合金の押出加工法及びそれにより得られる高強度、高靭性のアルミニウム合金材料 |
JP2001131721A (ja) | 1999-11-01 | 2001-05-15 | Natl Research Inst For Metals Ministry Of Education Culture Sports Science & Technology | アルミニウム合金展伸材の製造方法 |
JP2003027172A (ja) | 2001-07-09 | 2003-01-29 | Kobe Steel Ltd | 微細組織を有する構造用アルミニウム合金板およびその製造方法 |
JP2010159445A (ja) | 2009-01-07 | 2010-07-22 | Shinshu Univ | 金属粒子と炭素粉末の混合方法、金属・炭素複合材料の製造方法および金属・炭素複合材料 |
WO2016088889A1 (ja) * | 2014-12-05 | 2016-06-09 | 古河電気工業株式会社 | アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材の製造方法 |
WO2018155531A1 (ja) * | 2017-02-23 | 2018-08-30 | 古河電気工業株式会社 | アルミニウム合金材並びにこれを用いた締結部品、構造用部品、バネ用部品、導電部材および電池用部材 |
WO2018181505A1 (ja) * | 2017-03-29 | 2018-10-04 | 古河電気工業株式会社 | アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 |
WO2019188451A1 (ja) * | 2018-03-27 | 2019-10-03 | 古河電気工業株式会社 | アルミニウム合金材ならびにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3919642A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3919642A4 (en) | 2022-10-12 |
CN113039301A (zh) | 2021-06-25 |
EP3919642A1 (en) | 2021-12-08 |
KR20210077694A (ko) | 2021-06-25 |
JPWO2020158682A1 (ja) | 2021-02-18 |
KR102613707B1 (ko) | 2023-12-13 |
US20220127700A1 (en) | 2022-04-28 |
US12116654B2 (en) | 2024-10-15 |
JP6858310B2 (ja) | 2021-04-14 |
CN113039301B (zh) | 2022-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6356365B2 (ja) | アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 | |
JP6430085B1 (ja) | アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 | |
JP6479274B2 (ja) | アルミニウム合金材並びにこれを用いた締結部品、構造用部品、バネ用部品、導電部材および電池用部材 | |
JP6410967B2 (ja) | アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 | |
JP6599062B1 (ja) | アルミニウム合金材ならびにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 | |
WO2020158683A1 (ja) | アルミニウム合金材およびこれを用いた、導電部材、電池用部材、締結部品、バネ用部品、構造用部品、キャブタイヤケーブル | |
JP6599061B1 (ja) | アルミニウム合金材ならびにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品 | |
JP6615412B2 (ja) | アルミニウム合金材並びにこれを用いたケーブル、電線及びばね部材 | |
JP6746824B2 (ja) | アルミニウム合金材ならびにこれを用いた編組シールド線、導電部材、電池用部材、締結部品、バネ用部品、構造用部品およびキャブタイヤケーブル | |
WO2020158682A1 (ja) | アルミニウム合金材およびこれを用いた、導電部材、電池用部材、締結部品、バネ用部品、構造用部品、キャブタイヤケーブル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020528067 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20747768 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217012385 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020747768 Country of ref document: EP Effective date: 20210831 |