WO2020158461A1 - Multilayered ceramic capacitor - Google Patents
Multilayered ceramic capacitor Download PDFInfo
- Publication number
- WO2020158461A1 WO2020158461A1 PCT/JP2020/001565 JP2020001565W WO2020158461A1 WO 2020158461 A1 WO2020158461 A1 WO 2020158461A1 JP 2020001565 W JP2020001565 W JP 2020001565W WO 2020158461 A1 WO2020158461 A1 WO 2020158461A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- phase particles
- different phase
- particles
- ceramic capacitor
- Prior art date
Links
- 239000003985 ceramic capacitor Substances 0.000 title claims abstract description 54
- 239000002245 particle Substances 0.000 claims abstract description 199
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 42
- 230000002093 peripheral effect Effects 0.000 claims description 28
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 59
- 239000000463 material Substances 0.000 description 23
- 239000000843 powder Substances 0.000 description 23
- 238000010304 firing Methods 0.000 description 22
- 239000002994 raw material Substances 0.000 description 21
- 238000001878 scanning electron micrograph Methods 0.000 description 18
- 230000015556 catabolic process Effects 0.000 description 15
- 239000003989 dielectric material Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 238000005498 polishing Methods 0.000 description 9
- 230000000630 rising effect Effects 0.000 description 9
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 6
- 229910002113 barium titanate Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 6
- 229910052692 Dysprosium Inorganic materials 0.000 description 5
- 229910052691 Erbium Inorganic materials 0.000 description 5
- 229910052688 Gadolinium Inorganic materials 0.000 description 5
- 229910052689 Holmium Inorganic materials 0.000 description 5
- 229910052765 Lutetium Inorganic materials 0.000 description 5
- 229910052771 Terbium Inorganic materials 0.000 description 5
- 229910052775 Thulium Inorganic materials 0.000 description 5
- 229910052769 Ytterbium Inorganic materials 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- 229910052727 yttrium Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000003232 water-soluble binding agent Substances 0.000 description 3
- DJOYTAUERRJRAT-UHFFFAOYSA-N 2-(n-methyl-4-nitroanilino)acetonitrile Chemical compound N#CCN(C)C1=CC=C([N+]([O-])=O)C=C1 DJOYTAUERRJRAT-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000002003 electrode paste Substances 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229940116411 terpineol Drugs 0.000 description 2
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
Definitions
- the present disclosure relates to a laminated ceramic capacitor.
- the monolithic ceramic capacitor of the present disclosure includes a laminated body in which dielectric layers and internal electrode layers are alternately laminated.
- the stacked body has a capacitance region in which the adjacent internal electrode layers face each other, and a margin region arranged around the capacitance region. Heterogeneous particles having a high rare earth element concentration are present in the margin region.
- FIG. 1 is a partial cross-sectional perspective view showing a monolithic ceramic capacitor according to an embodiment of the present disclosure.
- FIG. 2 is a sectional view taken along the line AA of FIG. 1.
- FIG. 2 is a sectional view taken along line BB of FIG. 1.
- FIG. 1 is a partial cross-sectional perspective view showing a monolithic ceramic capacitor 100 according to an embodiment of the present disclosure.
- FIG. 2 is a sectional view taken along the line AA of FIG.
- FIG. 3 is a sectional view taken along line BB of FIG.
- the laminated ceramic capacitor 100 includes a laminated body 10 in which dielectric layers 11 and internal electrode layers 12 are alternately laminated. 1 to 3, a laminated body 10 having a rectangular parallelepiped shape is shown.
- the laminated body 10 is not limited to such a shape.
- each surface of the laminated body 10 may be a curved surface, and the laminated body 10 may have a rounded shape as a whole.
- the size is not particularly limited, and may be an appropriate size depending on the application.
- the number of stacked dielectric layers 11 and internal electrode layers 12 is not particularly limited and may be 20 or more.
- the monolithic ceramic capacitor 100 may include a pair of external electrodes 20a and 20b, which are separated from each other, on the surface of the laminated body 10. In this case, the edge of each internal electrode layer 12 in the laminated body 10 is alternately connected to the external electrode 20a and the external electrode 20b.
- the monolithic ceramic capacitor 100 may include two or more pairs of external electrodes.
- the dielectric layer 11 is a dielectric material such as BaTiO 3 (barium titanate)-based material, CaZrO 3 (calcium zirconate)-based material, CaTiO 3 (calcium titanate)-based material, SrTiO 3 (strontium titanate)-based material, or the like as a main component.
- the main component is a compound having the highest content concentration (mol%) in the dielectric layer 11.
- the main component of the dielectric layer 11 is not limited to the above dielectric material.
- a high dielectric constant material may be used as the main component of the dielectric layer 11 from the viewpoint of increasing the capacitance of the multilayer ceramic capacitor 100.
- a perovskite type ferroelectric material containing the above-mentioned dielectric material may be used.
- the dielectric layer 11 contains at least one rare earth element in addition to the main component.
- the rare earth element is selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
- the dielectric layer 11 may contain two or more kinds of rare earth elements.
- the rare earth element may be at least one selected from the group consisting of Y, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. In this case, it is possible to increase the number ratio of different phase particles described later.
- the concentration of the rare earth element in the dielectric layer 11 is not particularly limited.
- the rare earth element (Re) may be contained in an amount of 2.5 mol or more in terms of oxide (compositional formula Re 2 O 3 ) based on 100 mol of the main component. With such a configuration, it is possible to increase the number ratio of heterogeneous particles described later.
- the dielectric layer 11 may contain various components such as Si and Mg in addition to the above components.
- the composition of the dielectric layer 11 can be confirmed by inductively coupled plasma (ICP) emission spectroscopy.
- the thickness of the dielectric layer 11 is not particularly limited, and may be about 0.5 to 20 ⁇ m per layer.
- Various metal materials can be applied to the internal electrode layer 12.
- base metals such as Ni (nickel), Cu (copper) and Sn (tin), noble metals such as Pt (platinum), Pd (palladium), Ag (silver) and Au (gold) and alloys containing these are used. May be.
- the thickness of the internal electrode layer 12 may be appropriately determined depending on the application and may be about 0.1 to 3.0 ⁇ m.
- the area is referred to as “capacity area 13”.
- the margin region 14 forms the surface of the laminated body 10.
- the monolithic ceramic capacitor 100 includes the external electrodes 20a and 20b, a region where the internal electrode layer 12 connected to the external electrode 20a and the internal electrode layer 12 connected to the external electrode 20b face each other is provided. , The capacity region 13.
- the capacity area 13 and the margin area 14 may be integrally formed. That is, the structure may be such that there is no interface such as an adhesive surface between the capacitance region 13 and the margin region 14. With such a structure, it is possible to reduce the occurrence of cracks that cause dielectric breakdown in the multilayer body 10 and obtain the monolithic ceramic capacitor 100 having a high dielectric breakdown voltage (BDV).
- BDV dielectric breakdown voltage
- particles having a high rare earth element concentration are present in the margin region 14.
- the particles are called heterophase particles.
- the heterophasic particles may contain two or more kinds of rare earth elements.
- particles having a high concentration of rare earth elements that is, “heterogeneous particles” have a higher concentration of rare earth elements than main phase particles of the dielectric layer 11 (particles whose main component is the same as the dielectric layer 11). It is a particle.
- the main component of the different phase particles is different from the main component of the main phase particles.
- the concentration (mol%) of the rare earth element in the heterophase particles is, for example, 1.5 times or more the concentration (mol%) of the rare earth element in the main phase particles. In this case, the concentration of the rare earth element means the concentration (mol%) of all the contained rare earth elements, and summed.
- the concentration of the rare earth element in the particles is determined by subjecting the laminate 10 to polishing treatment to expose the cross section of the laminate 10, and then using a SEM-EDX apparatus (scanning electron microscope and energy dispersion method) for the particles present in the cross section. It can be measured by performing point analysis using a type X-ray analyzer. At this time, 10 or more main phase particles are arbitrarily selected, the concentration (mol%) of the rare earth element is measured, and then the average concentration (mol%) is calculated. Particles in which the concentration (mol%) of the rare earth element is, for example, 1.5 times or more the average concentration (mol%) may be used as the heterophase particles.
- the margin area 14 is densified and the hardness of the margin area 14 is increased.
- the force acting from the outside may be, but is not limited to, a thermal force at the time of mounting the board, a mechanical force due to the bending of the board after the board is mounted, and the like.
- the crack When a crack occurs on the surface of the laminated body 10, the crack may extend to the capacity region 13 from the crack. However, the above-described configuration can reduce the cracks generated in the capacitance region 13. As a result, a monolithic ceramic capacitor 100 having a high dielectric breakdown voltage (BDV) can be obtained.
- BDV dielectric breakdown voltage
- the existence of heterogeneous particles in the margin area 14 may be verified as follows. First, the laminate 10 is subjected to a polishing treatment to expose the cross section of the laminate 10. The cross-section exposed at this time may be the cross-section of only the margin region 14 or the cross-section including the margin region 14 and the capacitance region 13. Next, using the SEM-EDX apparatus (scanning electron microscope and energy dispersive X-ray analysis apparatus) on the exposed cross section, the presence or absence of foreign phase particles in the margin region 14 is confirmed. At this time, if heterogeneous particles having a particle diameter of 0.1 ⁇ m or more are confirmed, it may be determined that the heterogeneous particles are present in the margin region 14.
- SEM-EDX apparatus scanning electron microscope and energy dispersive X-ray analysis apparatus
- the particle size of the heterogeneous particles may be measured from the SEM image using image analysis software.
- the particle size is defined as the tangential diameter of the tangential direction that is the distance between two parallel tangents that sandwich the particle. If the particle to be measured has a polygonal shape, the average value of the tangential diameters measured in about 3 directions is the particle size. Good.
- the number ratio of different phase particles in the margin region 14 is not particularly limited, and the number of different phase particles existing in a predetermined area (10 ⁇ m ⁇ 10 ⁇ m) of the margin region 14 in the cross-sectional view of the laminate 10 is 15 or more. Good. With such a configuration, the hardness of the margin region 14 is sufficiently improved, and the monolithic ceramic capacitor 100 having a high dielectric breakdown voltage (BDV) can be obtained.
- the number ratio of the different phase particles may be calculated by counting the number of the different phase particles in the margin region 14 from the above-described SEM image and then converting the number into a predetermined area (10 ⁇ m ⁇ 10 ⁇ m). The particle size of the different phase particles to be counted is 0.1 ⁇ m or more.
- the heterogeneous particles may exist only in the margin region 14, or may exist in both the margin region 14 and the capacitance region 13.
- the electrostatic capacitance of the monolithic ceramic capacitor 100 may decrease. This is because the heterophase particles are low dielectric constant particles.
- the different phase particles existing in the margin region 14 have almost no influence on the capacitance of the monolithic ceramic capacitor 100. This is because the margin region 14 is a region in the stacked body 10 that hardly generates an electric capacity.
- the number ratio of different phase particles in the margin region 14 may be higher than the number ratio of different phase particles in the capacity region 13. In other words, the number ratio of different phase particles in the capacity region 13 may be lower than the number ratio of different phase particles in the margin region 14.
- the dielectric breakdown voltage (BDV) of the multilayer ceramic capacitor 100 is improved while reducing the decrease in capacitance. Can be made. As a result, it is possible to obtain the monolithic ceramic capacitor 100 having a high capacitance and a high dielectric breakdown voltage (BDV).
- the fact that the number ratio of different phase particles in the margin area 14 is higher than the number ratio of different phase particles in the capacity area 13 may be verified as follows. First, the laminated body 10 is subjected to a polishing treatment to expose a cross section including the margin region 14 and the capacitance region 13. Next, using the SEM-EDX apparatus (scanning electron microscope and energy dispersive X-ray analyzer) for the exposed cross section, the number of different phase particles in the margin region 14 and the capacitance region 13 is counted. When capturing the SEM image, one SEM image of each of the capacitance region 13 and the margin region 14 may be captured along one direction from the center portion of the cross section to be observed toward the outer peripheral portion.
- SEM-EDX apparatus scanning electron microscope and energy dispersive X-ray analyzer
- the two SEM images should be taken at a predetermined interval.
- the different-phase particles to be counted have a particle size of 0.1 ⁇ m or more.
- the number ratio may be calculated by converting the number into a predetermined area (10 ⁇ m ⁇ 10 ⁇ m).
- the cross section is observed on three or more sides. As a result, it may be determined that, in a majority of the observed cross sections, the number ratio of different phase particles in the margin region 14 is higher than the number ratio of different phase particles in the capacity region 13.
- the number ratio of different phase particles in the capacity region 13 is not particularly limited, and the number of different phase particles existing in a predetermined area (10 ⁇ m ⁇ 10 ⁇ m) may be less than 20. With such a configuration, the capacitance of the monolithic ceramic capacitor 100 is unlikely to decrease.
- the electric field acting on the capacitance region 13 concentrates on the heterogeneous particles. This is because the heterophasic particles are high-resistance particles, but at the same time, the heterophasic particles are low-dielectric constant particles, so that electrostriction is unlikely to occur. As a result, electrostriction of the capacitance region 13 is reduced.
- the capacitance of the monolithic ceramic capacitor 100 may decrease.
- the margin region 14 existing so as to cover the outer periphery of the capacitance region 13 has a role of suppressing electrostriction of the capacitance region 13 extending in the stacking direction. Therefore, when the heterogeneous particles are present in the margin region 14, the hardness of the margin region 14 increases as described above, and the electrostriction of the capacitance region 13 is further reduced. Furthermore, as described above, the heterogeneous particles existing in the margin region 14 have almost no influence on the capacitance of the monolithic ceramic capacitor 100. Considering the above, the number ratio of the different phase particles may be gradually increased from the central portion of the laminated body 10 toward the outer peripheral portion of the laminated body 10.
- the state in which the number ratio of the different phase particles gradually increases from the central portion of the laminated body 10 toward the outer peripheral portion of the laminated body 10 means that the central portion 13a of the capacitance region 13 and the outer peripheral portion 13b of the capacitance region 13, This means that the number ratio of different phase particles increases in the order of the margin region 14.
- the capacitance region 13 is divided into two so that the distance from the center of gravity of the volume of the capacitance region 13 to the outer periphery of the capacitance region 13 is divided into two equal parts. Of the two divided regions, the center side may be the center part 13a of the capacitance region 13 and the outer circumference side may be the outer circumference part 13b of the capacitance region 13. Therefore, there may be a region where the number ratio of the different phase particles is locally reversed between the center side and the outer peripheral side of the laminate 10.
- the capacitance of the multilayer ceramic capacitor 100 can be reduced. It is possible to effectively reduce the electrostriction of the capacitance region 13 while reducing the decrease. Further, by setting the number ratio of the different phase particles in the margin region 14 to be the highest in the laminated body 10, the electrostriction of the capacitance region 13 can be reduced without lowering the capacitance of the laminated ceramic capacitor 100.
- the fact that the number ratio of the different phase particles gradually increases from the central portion of the laminated body 10 toward the outer peripheral portion of the laminated body 10 may be verified as follows. First, the laminated body 10 is subjected to a polishing treatment to expose the cross section including the margin region 14 and the capacitance region 13. The exposed cross section is a cross section including the central portion 13 a of the capacitance region 13. Next, using the SEM-EDX apparatus (scanning electron microscope and energy dispersive X-ray analyzer) for the exposed cross section, the central portion 13a of the capacitance region 13, the outer peripheral portion 13b of the capacitance region 13 and the margin region are used. The number of different phase particles in 14 is counted (see FIG. 2).
- SEM-EDX apparatus scanning electron microscope and energy dispersive X-ray analyzer
- one SEM image of each of the central portion 13a of the capacitance region 13, the outer peripheral portion 13b of the capacitance region 13, and the margin region 14 is provided along one direction from the central portion of the cross section to be observed toward the outer peripheral portion.
- the different-phase particles to be counted have a particle size of 0.1 ⁇ m or more.
- the number ratio of each of the different phase particles is calculated by converting into the number of different phase particles per a predetermined area (10 ⁇ m ⁇ 10 ⁇ m). Observation of the cross section is performed on three or more surfaces.
- the number of different phase particles per predetermined area (10 ⁇ m ⁇ 10 ⁇ m) in the central portion 13a of the capacity region 13 is 5 or less and the number of different phase particles per predetermined area (10 ⁇ m ⁇ 10 ⁇ m) in the outer peripheral portion 13b of the capacity region 13 is increased. It is preferable that the number is 10 or more and less than 20, and the number of different phase particles per predetermined area (10 ⁇ m ⁇ 10 ⁇ m) of the margin region 14 is 20 or more. With such a configuration, it is possible to improve the dielectric breakdown voltage (BDV) of the monolithic ceramic capacitor 100 while reducing the decrease in capacitance.
- BDV dielectric breakdown voltage
- the number ratio of the different phase particles is not limited to this.
- the heterophasic particles may contain a compound containing a rare earth element (Re) as a main component.
- the compound containing a rare earth element is not particularly limited.
- an oxide of a rare earth element represented by a composition formula of Re 2 O 3, a composite oxide of two or more kinds of rare earth elements, and the like can be given.
- the heterophase particles contain a compound containing a rare earth element as a main component, the hardness of the margin region 14 is further increased and the electrostriction amount of the capacitance region 13 is further reduced. As a result, a monolithic ceramic capacitor 100 having a high dielectric breakdown voltage (BDV) can be obtained.
- BDV dielectric breakdown voltage
- the average particle size of the heterogeneous particles is not particularly limited and may be about 0.1 to 3.0 ⁇ m.
- the average particle size of the heterophase particles may be smaller than the average particle size of the main phase particles. In this case, the densification of the margin region 14 is promoted, and the monolithic ceramic capacitor 100 having a high dielectric breakdown voltage (BDV) can be obtained.
- the average particle size of the main phase particles is about 0.1 to 5.0 ⁇ m.
- the fact that the average particle size of the heterophasic particles is smaller than the average particle size of the main phase particles may be verified as follows. First, the laminate 10 is subjected to a polishing treatment to expose the cross section of the laminate 10. Next, using the SEM-EDX device (scanning electron microscope and energy dispersive X-ray analysis device) on the exposed cross section, the average particle diameter of the different phase particles and the main phase particles in the cross section of the laminate 10 is measured. To do. The particle size is measured from the SEM image using image analysis software. At this time, the magnification was adjusted so that one SEM image had about 50 particles, and a plurality of photographs were obtained so that the total was 300 particles or more, and the average of the particle diameters measured for all the particles on the photograph was obtained. The value may be the average particle size.
- SEM-EDX device scanning electron microscope and energy dispersive X-ray analysis device
- the particle size is defined as the tangential diameter of the tangential direction that is the distance between two parallel tangents that sandwich the particle. If the particle to be measured has a polygonal shape, the average value of the tangential diameters measured in three directions is used as the particle size. Good. As a result, in the cross section of the laminate 10, when the average particle size of the different phase particles is smaller than the average particle size of the main phase particles, it is determined that the average particle size of the different phase particles is smaller than the average particle size of the main phase particles. Good.
- a dielectric material for forming the dielectric layer 11 is prepared and made into a paint to prepare a paste for the dielectric layer 11.
- a main component material and a rare earth element material are prepared.
- the main component raw material examples include dielectric materials such as BaTiO 3 (barium titanate)-based material, CaZrO 3 (calcium zirconate)-based material, CaTiO 3 (calcium titanate)-based material, SrTiO 3 (strontium titanate)-based material, and the like. Mixtures of can be used.
- a high dielectric constant material may be used from the viewpoint of increasing the capacitance of the monolithic ceramic capacitor 100.
- a perovskite type ferroelectric material containing the above-mentioned dielectric material may be used.
- an oxide powder of a rare earth element having an average particle diameter of 20 nm or less is used, and preferably, an oxide powder of a rare earth element having an average particle diameter of 10 nm or less is used.
- the rare earth element is at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, preferably Y, Gd. , Tb, Dy, Ho, Er, Tm, Yb, and Lu.
- the rare earth element is selected from Y, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, the number ratio of different phase particles can be increased.
- the rare earth element raw material two or more kinds of powders containing different kinds of rare earth elements may be used.
- a composite oxide powder of two or more kinds of rare earth elements may be used.
- the rare earth oxide powder having an average particle diameter of 20 nm or 10 nm or less can be obtained by further classifying a commercially available rare earth oxide powder having a particle diameter of nm order.
- classification method include liquid chromatography (SEC/HDC), flow field separation method (FFF), and electric mobility classifier (DMA) method.
- the average particle size of the rare earth oxide powder can be measured from a scanning electron microscope (SEM) image using image analysis software. At this time, the magnification was adjusted so that one SEM image had about 50 particles, and a plurality of photographs were obtained so that the total was 300 particles or more, and the average of the particle diameters measured for all the particles on the photograph was obtained.
- the value may be the average particle size.
- the particle size is defined as the tangential diameter of the tangential direction that is the distance between two parallel tangents that sandwich the particle. If the particle to be measured has a polygonal shape, the average value of the tangential diameters measured in three directions is used as the particle size. Good.
- the rare earth element raw material may be added to 100 mol of the main component raw material.
- the number ratio of different phase particles can be increased.
- Various materials such as SiO 2 and MgO may be added to the dielectric material in addition to the main component material and the rare earth element material.
- the raw materials for each component are thoroughly mixed to obtain a mixed powder, which is heat-treated (calcined) to obtain a calcined raw material.
- the mixing of the raw materials is not particularly limited, and the materials are thoroughly mixed by a wet method for about 20 hours and then dried.
- the calcination temperature is 1000 to 1350° C.
- the holding time is 2 to 4 hours
- the temperature rising/falling rate is 100° C./hour to 200° C./hour.
- the calcined raw material (raw material after the reaction) thus obtained is crushed if necessary. Then, if necessary, the calcination raw material and additional raw material components are mixed to obtain a dielectric raw material. Since some components may volatilize during calcination and firing and the composition may change, addition of components to the calcination raw material may be determined so that the desired composition is obtained after firing.
- the dielectric material is made into a coating material to prepare the dielectric layer 11 paste.
- the paste for the dielectric layer 11 may be an organic paint obtained by kneading a dielectric material and an organic vehicle, or may be an aqueous paint.
- the organic vehicle is a binder dissolved in an organic solvent.
- the binder used for the organic vehicle is not particularly limited and may be appropriately selected from various ordinary binders such as ethyl cellulose and polyvinyl butyral.
- the organic solvent used is not particularly limited, and may be appropriately selected from various organic solvents such as terpineol, butyl carbitol, acetone, and toluene according to the method to be used such as the printing method and the sheet method.
- the water-based vehicle in which a water-soluble binder or dispersant is dissolved may be kneaded with the dielectric material.
- the water-soluble binder used in the water-based vehicle is not particularly limited. Examples of the water-soluble binder include polyvinyl alcohol, cellulose, water-soluble acrylic resin and the like.
- the internal electrode layer 12 paste may be a base metal such as Ni (nickel), Cu (copper) or Sn (tin), or a noble metal such as Pt (platinum), Pd (palladium), Ag (silver) or Au (gold). It is prepared by kneading an alloy containing these and the above organic vehicle.
- the external electrode paste may be prepared in the same manner as the internal electrode layer 12 paste.
- each paste There is no particular limitation on the content of the organic vehicle in each paste, and the usual content may be, for example, 1 to 5% by mass of the binder and 10 to 50% by mass of the solvent.
- Each paste may contain additives selected from various dispersants, plasticizers, dielectrics, insulators and the like, if necessary. The total content of these is preferably 10% by mass or less.
- the dielectric layer 11 paste and the internal electrode layer 12 paste are printed and laminated on a substrate such as PET, cut into a predetermined shape, and then peeled from the substrate to obtain a green chip.
- a green sheet is formed by using the paste for the dielectric layer 11, the paste for the internal electrode layer 12 is printed thereon, and then these are laminated and cut into a predetermined shape to obtain a green chip. ..
- the green chip Before firing, the green chip is subjected to binder removal processing.
- the holding temperature is 180 to 900° C.
- the holding time is 2 to 4 hours
- the temperature rising/falling rate is 100° C./hour to 200° C./hour.
- the binder removal atmosphere is air or a reducing atmosphere.
- the green chip After removing the binder, the green chip is fired.
- the atmosphere during firing of the green chip may be appropriately determined according to the type of conductive material in the internal electrode layer 12 paste. For example, when a base metal such as Ni or Ni alloy is used as the conductive material, the oxygen partial pressure in the firing atmosphere may be 10 ⁇ 8 to 10 ⁇ 5 MPa.
- the firing temperature is 1100 to 1250° C.
- the holding time is 1 to 3 hours
- the temperature rising/falling rate is 100° C./hour to 200° C./hour.
- the firing atmosphere is preferably a reducing atmosphere, and as the atmosphere gas, for example, a mixed gas of N 2 and H 2 can be humidified and used.
- the laminated body 10 may be annealed.
- the laminated body 10 thus obtained is subjected to end face polishing, for example, by barrel polishing, and the external electrode paste is applied and baked to form the external electrode 4. Then, if necessary, a coating layer is formed on the surface of the external electrode by plating or the like.
- the monolithic ceramic capacitor 100 of this embodiment manufactured in this manner is mounted on a printed circuit board or the like by soldering or the like, and is used for various electronic devices or the like.
- the monolithic ceramic capacitor of the present disclosure is not limited to the above-described embodiment, and can be variously modified without departing from the scope of the present invention.
- the multilayer ceramic capacitor of the present disclosure will be described based on more detailed examples.
- the laminated ceramic capacitor of the present disclosure is not limited to these examples.
- the sample No. 2 to 5 multilayer ceramic capacitors were produced.
- BaTiO 3 (barium titanate) powder was prepared.
- Dy 2 O 3 powder, Y 2 O 3 powder, and Gd 2 O 3 powder were prepared as rare earth element raw materials.
- the concentration of Dy 2 O 3 was 6.0 mol with respect to 100 mol of BaTiO 3 (barium titanate).
- the concentrations of Y 2 O 3 and Gd 2 O 3 were each 2.0 mol with respect to 100 mol of BaTiO 3 (barium titanate).
- Dy 2 O 3 powder, Y 2 O 3 powder and Gd 2 O 3 powder are obtained by further classifying commercially available rare earth element oxide powder having a particle size of nm order by an electric mobility classifier (DMA) method. used. As a result, the average particle size of the powder used was 20 nm or less.
- DMA electric mobility classifier
- SiO 2 powder, MgO powder and MnCO 3 powder were prepared.
- concentration of each of these powders was 2.0 mol or less with respect to 100 mol of BaTiO 3 (barium titanate).
- dielectric layer paste 100 parts by mass of the obtained dielectric material, 10 parts by mass of polyvinyl butyral resin, 5 parts by mass of dioctyl phthalate (DOP) as a plasticizer, and 100 parts by mass of alcohol as a solvent were mixed by a ball mill. It was made into a paste to obtain a dielectric layer paste.
- DOP dioctyl phthalate
- a green sheet was formed on the PET film so that the thickness after drying was 15 ⁇ m.
- an internal electrode layer paste was used to print an internal electrode layer in a predetermined pattern thereon. After printing, the sheet was peeled from the PET film to produce a green sheet having an internal electrode layer. Next, a plurality of green sheets having internal electrode layers were laminated and pressure-bonded to obtain a green laminate. A green chip was obtained by cutting this green laminated body into a predetermined size.
- the obtained sintered body was barrel-polished to fully expose the internal electrode layers on the end faces of the laminate.
- a Ni external electrode was formed as an external electrode, and the sample No. 2 to 5 multilayer ceramic capacitors were obtained.
- the size of the obtained capacitor sample was 3.2 mm ⁇ 1.6 mm ⁇ 0.6 mm, the thickness of the dielectric layer was 10 ⁇ m, the thickness of the internal electrode layer was 1.0 ⁇ m, and the thickness of the dielectric layer sandwiched between the internal electrode layers was 10 ⁇ m.
- the number was 147.
- the prepared sample No. The following evaluations were performed on the laminated ceramic capacitors of 2 to 5.
- the capacitance of a capacitor sample was measured at a temperature of 25° C. using a constant temperature bath and an LCR meter.
- the frequency was set to 1.0 kHz
- the measurement voltage was set to 1 Vrms, and the average value was obtained.
- the dielectric breakdown voltage (BDV) was measured.
- the internal electrode layer was connected to a digital ultra-high resistance/micro ammeter, and voltage was applied at a step of 5 V/sec for measurement.
- the voltage value when the initial resistance value decreased by two digits was read, and the value was taken as the breakdown voltage value (V) of the sample.
- the Vickers hardness was measured using a predetermined method.
- the laminated body was subjected to polishing treatment to expose a cross section including a margin region and a capacitance region.
- the exposed cross section was a cross section in the stacking direction of the stack.
- the polishing treatment was performed in the direction of the side surface (the surface where the internal electrode layers were not exposed) of the laminate, and the exposed cross section included the central portion of the laminate.
- heterogeneous particles in the central portion of the capacitance region, the outer peripheral portion of the capacitance region and the margin region are Each number was counted.
- the capacitance region was divided into two so that the distance from the center of gravity of the capacitance region to the outer periphery of the capacitance region was equally divided into two. Then, of the two divided regions, the center side was set as the center part of the capacitance region, and the outer circumference side was set as the outer circumference part of the capacitance region.
- one SEM image of each of the central portion of the capacitance region, the outer peripheral portion of the capacitance region, and the margin region was photographed along one direction from the central portion of the cross section to be observed toward the outer peripheral portion.
- the three SEM images were taken at predetermined intervals.
- the field of view of the SEM image was 5 ⁇ m ⁇ 5 ⁇ m.
- the different-phase particles to be counted had a particle size of 0.1 ⁇ m or more. The method of measuring the particle size will be described later. When one heterophasic particle was present across two regions, it was counted that the heterophasic particle was present in one of the larger existing areas (area).
- the number per predetermined area (10 ⁇ m ⁇ 10 ⁇ m) was converted into the number per predetermined area (10 ⁇ m ⁇ 10 ⁇ m) and the ratio of each number was calculated.
- the number ratio of the different phase particles in the entire capacity region was calculated from the number ratio of the different phase particles in the central part of the capacity region and the outer peripheral part of the capacity region. The decimal point generated in the calculation was rounded down.
- the average particle size of the different phase particles was measured from the SEM image using image analysis software.
- the magnification was adjusted so that one SEM image had about 50 particles, and a plurality of photographs were obtained so that the total was 300 particles or more, and the average of the particle diameters measured for all the particles on the photograph was obtained.
- the value was defined as the average particle size.
- the particle size is defined as the tangential diameter of the tangential direction, which is the distance between two parallel tangents that sandwich the particle. did.
- the average particle size of the different phase particles was smaller than the average particle size of the main phase particles in all the samples.
- sample No. A monolithic ceramic capacitor No. 1 was produced.
- Table 1 shows the measurement results. Sample No. In Nos. 1 to 5, the applied firing conditions are different. Sample No. The firing conditions of 1 and 2 were a firing temperature of 1200° C., a holding time of 2 hours, and a temperature raising/lowering rate of 150° C./hour. Sample No. The firing conditions of No. 3 were such that the firing temperature was 1220° C., the holding time was 2 hours, and the temperature rising/falling rate was 150° C./hour. Sample No. The firing conditions of No. 4 were such that the firing temperature was 1240° C., the holding time was 2 hours, and the temperature rising/falling rate was 150° C./hour. Sample No. As for the firing conditions of No. 5, the firing temperature was 1200° C., the holding time was 1 hour, and the temperature rising/falling rate was 200° C./hour.
- the sample No. in which foreign phase particles exist in the margin area As shown in Table 1, the sample No. in which foreign phase particles exist in the margin area. Sample Nos. 2 to 5 in which no different phase particles exist in the margin area. It can be seen that the Vickers hardness is higher than 1 and the dielectric breakdown voltage (BDV) is improved. At this time, the sample No. In each of Nos. 2 to 4, the number of different phase particles per predetermined area (10 ⁇ m ⁇ 10 ⁇ m) in the margin region was 15 or more.
- the number of different phase particles per predetermined area (10 ⁇ m ⁇ 10 ⁇ m) in the central portion of the capacity region 13 is 5 or less and the different phase per predetermined area (10 ⁇ m ⁇ 10 ⁇ m) in the outer peripheral portion of the capacity region 13
- the number of particles was 10 or more and less than 20, and the number of different-phase particles per predetermined area (10 ⁇ m ⁇ 10 ⁇ m) of the margin region 14 was 20 or more.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
This multilayered ceramic capacitor is provided with a stack in which dielectric layers and internal electrode layers are alternately stacked. The stack includes a capacitive region in which internal electrode layers adjacent to each other are opposed to each other, and a margin region disposed around the capacitive region. In the margin region, heterophase particles having a high rare-earth element concentration are present.
Description
本開示は、積層セラミックコンデンサに関する。
The present disclosure relates to a laminated ceramic capacitor.
従来、複数の誘電体層と複数の内部電極層とを交互に積み重ねた後、一体的に焼成して作製された積層型のセラミックコンデンサが知られている(例えば、特許文献1を参照)。
Conventionally, there is known a multilayer ceramic capacitor that is manufactured by alternately stacking a plurality of dielectric layers and a plurality of internal electrode layers and then firing them integrally (for example, see Patent Document 1).
本開示の積層セラミックコンデンサは、誘電体層と内部電極層とが交互に積層された積層体を備えている。積層体は、隣り合う前記内部電極層同士が対向する容量領域と、該容量領域の周囲に配置されたマージン領域とを有している。マージン領域に、希土類元素の濃度が高い異相粒子が存在している。
The monolithic ceramic capacitor of the present disclosure includes a laminated body in which dielectric layers and internal electrode layers are alternately laminated. The stacked body has a capacitance region in which the adjacent internal electrode layers face each other, and a margin region arranged around the capacitance region. Heterogeneous particles having a high rare earth element concentration are present in the margin region.
図1は、本開示の一実施形態に係る積層セラミックコンデンサ100を示す部分断面斜視図である。図2は、図1のA-A線断面図である。図3は、図1のB-B線断面図である。図1~3に示すように、積層セラミックコンデンサ100は、誘電体層11と内部電極層12とが交互に積層された積層体10を備えている。図1~3では、直方体形状である積層体10が示されている。しかし、積層体10はこのような形状に制限されない。例えば、積層体10の各面は曲面であってもよく、積層体10は全体として丸みを帯びた形状であってもよい。その寸法にも特に制限はなく、用途に応じて適当な寸法とすればよい。誘電体層11および内部電極層12の積層数は特に制限されず、20層以上であってもよい。
FIG. 1 is a partial cross-sectional perspective view showing a monolithic ceramic capacitor 100 according to an embodiment of the present disclosure. FIG. 2 is a sectional view taken along the line AA of FIG. FIG. 3 is a sectional view taken along line BB of FIG. As shown in FIGS. 1 to 3, the laminated ceramic capacitor 100 includes a laminated body 10 in which dielectric layers 11 and internal electrode layers 12 are alternately laminated. 1 to 3, a laminated body 10 having a rectangular parallelepiped shape is shown. However, the laminated body 10 is not limited to such a shape. For example, each surface of the laminated body 10 may be a curved surface, and the laminated body 10 may have a rounded shape as a whole. The size is not particularly limited, and may be an appropriate size depending on the application. The number of stacked dielectric layers 11 and internal electrode layers 12 is not particularly limited and may be 20 or more.
積層セラミックコンデンサ100は、積層体10の表面に、互いに離間した一対の外部電極20a,20bを備えてもよい。この場合、積層体10における各内部電極層12の端縁は、外部電極20aと、外部電極20bとに交互に接続される。積層セラミックコンデンサ100は、二対以上の外部電極を備えてもよい。
The monolithic ceramic capacitor 100 may include a pair of external electrodes 20a and 20b, which are separated from each other, on the surface of the laminated body 10. In this case, the edge of each internal electrode layer 12 in the laminated body 10 is alternately connected to the external electrode 20a and the external electrode 20b. The monolithic ceramic capacitor 100 may include two or more pairs of external electrodes.
誘電体層11は、主成分としてBaTiO3(チタン酸バリウム)系、CaZrO3(ジルコン酸カルシウム)系、CaTiO3(チタン酸カルシウム)系、SrTiO3(チタン酸ストロンチウム)系材料などの誘電体材料を含有する。ここで、主成分とは、誘電体層11において最も含有濃度(mol%)の高い化合物である。誘電体層11の主成分は、上記の誘電体材料のみに制限されるものではない。
The dielectric layer 11 is a dielectric material such as BaTiO 3 (barium titanate)-based material, CaZrO 3 (calcium zirconate)-based material, CaTiO 3 (calcium titanate)-based material, SrTiO 3 (strontium titanate)-based material, or the like as a main component. Contains. Here, the main component is a compound having the highest content concentration (mol%) in the dielectric layer 11. The main component of the dielectric layer 11 is not limited to the above dielectric material.
誘電体層11の主成分としては、積層セラミックコンデンサ100の静電容量を高める観点から、高誘電率材料を使用してもよい。高誘電率材料の一例として、上記した誘電体材料を含むペロブスカイト型強誘電体材料を使用してもよい。
A high dielectric constant material may be used as the main component of the dielectric layer 11 from the viewpoint of increasing the capacitance of the multilayer ceramic capacitor 100. As an example of the high dielectric constant material, a perovskite type ferroelectric material containing the above-mentioned dielectric material may be used.
誘電体層11は主成分に加えて、少なくとも1種の希土類元素を含有する。希土類元素は、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される。誘電体層11は2種以上の希土類元素を含有してもよい。希土類元素は、Y、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群より選択される少なくとも1種であってもよい。この場合、後述する異相粒子の個数割合を増加させることができる。
The dielectric layer 11 contains at least one rare earth element in addition to the main component. The rare earth element is selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. The dielectric layer 11 may contain two or more kinds of rare earth elements. The rare earth element may be at least one selected from the group consisting of Y, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. In this case, it is possible to increase the number ratio of different phase particles described later.
誘電体層11における希土類元素の濃度は特に制限されない。主成分100molに対して、希土類元素(Re)が酸化物換算(組成式Re2O3)で2.5mol以上含有されていてもよい。このような構成によれば、後述する異相粒子の個数割合を増加させることができる。誘電体層11は上述した成分に加えて、SiやMgなど種々の成分を含有してもよい。誘電体層11の組成は、誘導結合プラズマ(ICP)発光分光分析法により確認することができる。誘電体層11の厚みは特に制限されず、一層あたり0.5~20μm程度であってもよい。
The concentration of the rare earth element in the dielectric layer 11 is not particularly limited. The rare earth element (Re) may be contained in an amount of 2.5 mol or more in terms of oxide (compositional formula Re 2 O 3 ) based on 100 mol of the main component. With such a configuration, it is possible to increase the number ratio of heterogeneous particles described later. The dielectric layer 11 may contain various components such as Si and Mg in addition to the above components. The composition of the dielectric layer 11 can be confirmed by inductively coupled plasma (ICP) emission spectroscopy. The thickness of the dielectric layer 11 is not particularly limited, and may be about 0.5 to 20 μm per layer.
内部電極層12には、種々の金属材料が適用可能である。例えば、Ni(ニッケル)、Cu(銅)、Sn(スズ)などの卑金属、Pt(白金)、Pd(パラジウム)、Ag(銀)、Au(金)などの貴金属およびこれらを含む合金を使用してもよい。内部電極層12の厚みは用途などに応じて適宜決定すればよく、0.1~3.0μm程度であってもよい。
Various metal materials can be applied to the internal electrode layer 12. For example, base metals such as Ni (nickel), Cu (copper) and Sn (tin), noble metals such as Pt (platinum), Pd (palladium), Ag (silver) and Au (gold) and alloys containing these are used. May be. The thickness of the internal electrode layer 12 may be appropriately determined depending on the application and may be about 0.1 to 3.0 μm.
図2に示すように、誘電体層11と内部電極層12とが交互に積層された積層体10において、隣り合う内部電極層12同士が対向する領域は、電気容量を生じる領域である。そこで、当該領域を「容量領域13」と称する。一方、積層体10において容量領域13の周囲に配置された領域では、電気容量はほとんど生じない。当該領域を「マージン領域14」と称する。積層体10において、マージン領域14は積層体10の表面を成している。
As shown in FIG. 2, in the laminated body 10 in which the dielectric layers 11 and the internal electrode layers 12 are alternately laminated, a region where the adjacent internal electrode layers 12 face each other is a region where an electric capacitance is generated. Therefore, the area is referred to as “capacity area 13”. On the other hand, in the region of the stacked body 10 arranged around the capacitance region 13, almost no electric capacitance is generated. The area is referred to as "margin area 14". In the laminated body 10, the margin region 14 forms the surface of the laminated body 10.
図3に示すように、積層セラミックコンデンサ100が外部電極20a,20bを備える場合、外部電極20aに接続された内部電極層12と外部電極20bに接続された内部電極層12とが対向する領域が、容量領域13である。
As shown in FIG. 3, when the monolithic ceramic capacitor 100 includes the external electrodes 20a and 20b, a region where the internal electrode layer 12 connected to the external electrode 20a and the internal electrode layer 12 connected to the external electrode 20b face each other is provided. , The capacity region 13.
容量領域13とマージン領域14とは、一体的に形成されていてもよい。すなわち、容量領域13とマージン領域14との間に、接着面等の界面が存在しない構造であってもよい。このような構造によれば、積層体10において絶縁破壊の原因となるクラックの発生を低減し、絶縁破壊電圧(BDV)の高い積層セラミックコンデンサ100を得ることができる。一実施形態に係る積層セラミックコンデンサ100において、マージン領域14には、希土類元素の濃度が高い粒子が存在している。当該粒子を、異相粒子と称する。異相粒子は、2種以上の希土類元素を含有してもよい。
The capacity area 13 and the margin area 14 may be integrally formed. That is, the structure may be such that there is no interface such as an adhesive surface between the capacitance region 13 and the margin region 14. With such a structure, it is possible to reduce the occurrence of cracks that cause dielectric breakdown in the multilayer body 10 and obtain the monolithic ceramic capacitor 100 having a high dielectric breakdown voltage (BDV). In the monolithic ceramic capacitor 100 according to the embodiment, particles having a high rare earth element concentration are present in the margin region 14. The particles are called heterophase particles. The heterophasic particles may contain two or more kinds of rare earth elements.
ここで、「希土類元素の濃度が高い粒子」すなわち「異相粒子」とは、誘電体層11の主相粒子(誘電体層11と主成分が同一である粒子)よりも希土類元素の濃度が高い粒子である。異相粒子の主成分は、主相粒子の主成分とは異なる。異相粒子における希土類元素の濃度(mol%)は、例えば主相粒子における希土類元素の濃度(mol%)の1.5倍以上である。この場合の希土類元素の濃度とは、含有するすべての希土類元素の濃度(mol%)をそれぞれ算出して、合計したものである。
Here, “particles having a high concentration of rare earth elements”, that is, “heterogeneous particles” have a higher concentration of rare earth elements than main phase particles of the dielectric layer 11 (particles whose main component is the same as the dielectric layer 11). It is a particle. The main component of the different phase particles is different from the main component of the main phase particles. The concentration (mol%) of the rare earth element in the heterophase particles is, for example, 1.5 times or more the concentration (mol%) of the rare earth element in the main phase particles. In this case, the concentration of the rare earth element means the concentration (mol%) of all the contained rare earth elements, and summed.
粒子中の希土類元素の濃度は、積層体10に研磨処理を施し、積層体10の断面を露出させた後、当該断面に存在する粒子に対してSEM-EDX装置(走査型電子顕微鏡およびエネルギー分散型X線分析装置)による点分析を行うことで測定できる。このとき、主相粒子を任意に10個以上選択し、希土類元素の濃度(mol%)をそれぞれ測定した後、その平均濃度(mol%)を算出する。その平均濃度(mol%)に対して、希土類元素の濃度(mol%)が例えば1.5倍以上である粒子を異相粒子としてもよい。
The concentration of the rare earth element in the particles is determined by subjecting the laminate 10 to polishing treatment to expose the cross section of the laminate 10, and then using a SEM-EDX apparatus (scanning electron microscope and energy dispersion method) for the particles present in the cross section. It can be measured by performing point analysis using a type X-ray analyzer. At this time, 10 or more main phase particles are arbitrarily selected, the concentration (mol%) of the rare earth element is measured, and then the average concentration (mol%) is calculated. Particles in which the concentration (mol%) of the rare earth element is, for example, 1.5 times or more the average concentration (mol%) may be used as the heterophase particles.
マージン領域14に異相粒子が存在する場合、マージン領域14が緻密化し、マージン領域14の硬度が上昇する。この結果、積層体10の表面強度が向上するため、外部から作用する力に起因する積層体10表面のクラック発生を低減することができる。外部から作用する力としては、基板実装時の熱的な力や、基板実装後の基板のたわみによる機械的な力などが想定されるが、これらに限定されるものではない。
When the heterogeneous particles are present in the margin area 14, the margin area 14 is densified and the hardness of the margin area 14 is increased. As a result, since the surface strength of the laminated body 10 is improved, it is possible to reduce the occurrence of cracks on the surface of the laminated body 10 due to the force acting from the outside. The force acting from the outside may be, but is not limited to, a thermal force at the time of mounting the board, a mechanical force due to the bending of the board after the board is mounted, and the like.
積層体10表面にクラックが発生した場合、当該クラックを起点として容量領域13にまでクラックが及ぶことがある。しかし、上述した構成によれば容量領域13に発生するクラックを低減することができる。この結果、絶縁破壊電圧(BDV)の高い積層セラミックコンデンサ100を得ることができる。
When a crack occurs on the surface of the laminated body 10, the crack may extend to the capacity region 13 from the crack. However, the above-described configuration can reduce the cracks generated in the capacitance region 13. As a result, a monolithic ceramic capacitor 100 having a high dielectric breakdown voltage (BDV) can be obtained.
マージン領域14に異相粒子が存在することは、以下のようにして検証してもよい。まず、積層体10に研磨処理を施し、積層体10の断面を露出させる。このとき露出させる断面は、マージン領域14のみの断面であってもよく、マージン領域14および容量領域13を含む断面であってもよい。次に、露出させた断面に対してSEM-EDX装置(走査型電子顕微鏡およびエネルギー分散型X線分析装置)を使用し、マージン領域14における異相粒子の有無を確認する。このとき、粒径が0.1μm以上である異相粒子が確認される場合、マージン領域14に異相粒子が存在すると判断してよい。異相粒子の粒径は、画像解析ソフトを用いてSEM画像から測定すればよい。粒径の定義は、粒子を挟む2本の平行接線間の距離である定方向接線径とし、測定する粒子が多角形状である場合は、3方向程度測定した接線径の平均値を粒径としてもよい。
The existence of heterogeneous particles in the margin area 14 may be verified as follows. First, the laminate 10 is subjected to a polishing treatment to expose the cross section of the laminate 10. The cross-section exposed at this time may be the cross-section of only the margin region 14 or the cross-section including the margin region 14 and the capacitance region 13. Next, using the SEM-EDX apparatus (scanning electron microscope and energy dispersive X-ray analysis apparatus) on the exposed cross section, the presence or absence of foreign phase particles in the margin region 14 is confirmed. At this time, if heterogeneous particles having a particle diameter of 0.1 μm or more are confirmed, it may be determined that the heterogeneous particles are present in the margin region 14. The particle size of the heterogeneous particles may be measured from the SEM image using image analysis software. The particle size is defined as the tangential diameter of the tangential direction that is the distance between two parallel tangents that sandwich the particle. If the particle to be measured has a polygonal shape, the average value of the tangential diameters measured in about 3 directions is the particle size. Good.
マージン領域14における異相粒子の個数割合は特に制限されず、積層体10の断面視において、マージン領域14の所定面積(10μm×10μm)あたりに存在する異相粒子の個数が、15個以上であってもよい。このような構成によれば、マージン領域14の硬度が十分に向上し、絶縁破壊電圧(BDV)の高い積層セラミックコンデンサ100を得ることができる。異相粒子の個数割合は、上述したSEM画像からマージン領域14における異相粒子の個数をカウントした後、所定面積(10μm×10μm)あたりの個数に換算して算出すればよい。なお、カウントする異相粒子は粒径が0.1μm以上であるものとする。
The number ratio of different phase particles in the margin region 14 is not particularly limited, and the number of different phase particles existing in a predetermined area (10 μm×10 μm) of the margin region 14 in the cross-sectional view of the laminate 10 is 15 or more. Good. With such a configuration, the hardness of the margin region 14 is sufficiently improved, and the monolithic ceramic capacitor 100 having a high dielectric breakdown voltage (BDV) can be obtained. The number ratio of the different phase particles may be calculated by counting the number of the different phase particles in the margin region 14 from the above-described SEM image and then converting the number into a predetermined area (10 μm×10 μm). The particle size of the different phase particles to be counted is 0.1 μm or more.
異相粒子が、マージン領域14に加えて容量領域13に存在する場合にも、上述した効果は実現される。すなわち、異相粒子はマージン領域14にのみ存在してもよいし、マージン領域14および容量領域13の双方に存在してもよい。異相粒子が、電気容量を生じる領域である容量領域13に存在する場合、積層セラミックコンデンサ100の静電容量が低下することがある。これは、異相粒子が低誘電率粒子であることに起因する。一方、マージン領域14に存在する異相粒子は、積層セラミックコンデンサ100の静電容量にほとんど影響を及ぼさない。これは、マージン領域14が、積層体10において電気容量をほとんど生じない領域のためである。
The above-described effects are realized even when the heterogeneous particles exist in the capacity region 13 in addition to the margin region 14. That is, the heterogeneous particles may exist only in the margin region 14, or may exist in both the margin region 14 and the capacitance region 13. When the different-phase particles are present in the capacitance region 13 that is a region where an electric capacitance is generated, the electrostatic capacitance of the monolithic ceramic capacitor 100 may decrease. This is because the heterophase particles are low dielectric constant particles. On the other hand, the different phase particles existing in the margin region 14 have almost no influence on the capacitance of the monolithic ceramic capacitor 100. This is because the margin region 14 is a region in the stacked body 10 that hardly generates an electric capacity.
このため、マージン領域14における異相粒子の個数割合は、容量領域13における異相粒子の個数割合よりも高くてもよい。換言すれば、容量領域13における異相粒子の個数割合は、マージン領域14における異相粒子の個数割合よりも低くてもよい。マージン領域14における異相粒子の個数割合を、容量領域13における異相粒子の個数割合よりも高くすることで、静電容量の低下を低減しながら、積層セラミックコンデンサ100の絶縁破壊電圧(BDV)を向上させることができる。この結果、静電容量および絶縁破壊電圧(BDV)の高い積層セラミックコンデンサ100を得ることができる。
Therefore, the number ratio of different phase particles in the margin region 14 may be higher than the number ratio of different phase particles in the capacity region 13. In other words, the number ratio of different phase particles in the capacity region 13 may be lower than the number ratio of different phase particles in the margin region 14. By increasing the number ratio of different phase particles in the margin region 14 to be higher than the number ratio of different phase particles in the capacitance region 13, the dielectric breakdown voltage (BDV) of the multilayer ceramic capacitor 100 is improved while reducing the decrease in capacitance. Can be made. As a result, it is possible to obtain the monolithic ceramic capacitor 100 having a high capacitance and a high dielectric breakdown voltage (BDV).
マージン領域14における異相粒子の個数割合が、容量領域13における異相粒子の個数割合よりも高いことは、以下のようにして検証してもよい。まず、積層体10に研磨処理を施し、マージン領域14および容量領域13を含む断面を露出させる。次に、露出させた断面に対してSEM-EDX装置(走査型電子顕微鏡およびエネルギー分散型X線分析装置)を使用し、マージン領域14および容量領域13における異相粒子の個数をそれぞれカウントする。SEM画像の撮影にあたっては、観察する断面の中央部から外周部に向かう1方向に沿って、容量領域13およびマージン領域14のSEM画像を各1枚ずつ撮影してもよい。この場合、2枚のSEM画像は所定の間隔を空けて撮影するとよい。カウントする異相粒子は粒径が0.1μm以上であるものとする。その後、所定面積(10μm×10μm)あたりの個数に換算してそれぞれの個数割合を算出すればよい。断面の観察は3面以上行う。その結果、観察した断面のうち過半数の断面において、マージン領域14における異相粒子の個数割合が、容量領域13における異相粒子の個数割合よりも高い状態であることを判断基準としてもよい。
The fact that the number ratio of different phase particles in the margin area 14 is higher than the number ratio of different phase particles in the capacity area 13 may be verified as follows. First, the laminated body 10 is subjected to a polishing treatment to expose a cross section including the margin region 14 and the capacitance region 13. Next, using the SEM-EDX apparatus (scanning electron microscope and energy dispersive X-ray analyzer) for the exposed cross section, the number of different phase particles in the margin region 14 and the capacitance region 13 is counted. When capturing the SEM image, one SEM image of each of the capacitance region 13 and the margin region 14 may be captured along one direction from the center portion of the cross section to be observed toward the outer peripheral portion. In this case, the two SEM images should be taken at a predetermined interval. The different-phase particles to be counted have a particle size of 0.1 μm or more. Then, the number ratio may be calculated by converting the number into a predetermined area (10 μm×10 μm). The cross section is observed on three or more sides. As a result, it may be determined that, in a majority of the observed cross sections, the number ratio of different phase particles in the margin region 14 is higher than the number ratio of different phase particles in the capacity region 13.
容量領域13における異相粒子の個数割合は、特に制限されず、所定面積(10μm×10μm)あたりに存在する異相粒子の個数が20個未満であってもよい。このような構成によれば、積層セラミックコンデンサ100の静電容量が低下しにくい。
The number ratio of different phase particles in the capacity region 13 is not particularly limited, and the number of different phase particles existing in a predetermined area (10 μm×10 μm) may be less than 20. With such a configuration, the capacitance of the monolithic ceramic capacitor 100 is unlikely to decrease.
ところで、積層セラミックコンデンサ100に電圧を印加すると、容量領域13には電界が作用し、容量領域13では電歪と呼ばれる機械的ひずみが発生する。この電歪は積層体10の積層方向の伸びとして現れ、積層セラミックコンデンサ100のクラック発生の原因となる。とりわけ、容量領域13に作用する電界は、容量領域13の外周部で顕著になる傾向がある。したがって、容量領域13の外周部では電歪量が大きくなり、容量領域13の外周部にクラックが発生しやすい。
By the way, when a voltage is applied to the monolithic ceramic capacitor 100, an electric field acts on the capacitance region 13, and mechanical strain called electrostriction occurs in the capacitance region 13. This electrostriction appears as an extension of the laminated body 10 in the laminating direction and causes cracks in the laminated ceramic capacitor 100. In particular, the electric field acting on the capacitance region 13 tends to be remarkable in the outer peripheral portion of the capacitance region 13. Therefore, the amount of electrostriction increases in the outer peripheral portion of the capacitance region 13, and cracks are likely to occur in the outer peripheral portion of the capacitance region 13.
これに対して、異相粒子が容量領域13に存在する場合、容量領域13に作用する電界は、異相粒子に集中的に作用する。これは、異相粒子が高抵抗粒子であるためであるが、同時に異相粒子は低誘電率粒子であるため、電歪を起こしにくい。この結果、容量領域13の電歪が低減される。
On the other hand, when the heterogeneous particles are present in the capacitance region 13, the electric field acting on the capacitance region 13 concentrates on the heterogeneous particles. This is because the heterophasic particles are high-resistance particles, but at the same time, the heterophasic particles are low-dielectric constant particles, so that electrostriction is unlikely to occur. As a result, electrostriction of the capacitance region 13 is reduced.
一方、上述したように、異相粒子が容量領域13に存在する場合、積層セラミックコンデンサ100の静電容量は低下することがある。加えて、容量領域13の外周を覆うように存在するマージン領域14は、積層方向に伸びる容量領域13の電歪を抑える役割を持つ。このため、マージン領域14に異相粒子が存在する場合、上述のようにマージン領域14の硬度が上昇するため、容量領域13の電歪はより低減される。さらに、上述したように、マージン領域14に存在する異相粒子は積層セラミックコンデンサ100の静電容量にほとんど影響を及ぼさない。以上を考慮すると、異相粒子の個数割合が、積層体10の中央部から積層体10の外周部に向かって次第に増加している状態であってもよい。
On the other hand, as described above, when the different phase particles exist in the capacitance region 13, the capacitance of the monolithic ceramic capacitor 100 may decrease. In addition, the margin region 14 existing so as to cover the outer periphery of the capacitance region 13 has a role of suppressing electrostriction of the capacitance region 13 extending in the stacking direction. Therefore, when the heterogeneous particles are present in the margin region 14, the hardness of the margin region 14 increases as described above, and the electrostriction of the capacitance region 13 is further reduced. Furthermore, as described above, the heterogeneous particles existing in the margin region 14 have almost no influence on the capacitance of the monolithic ceramic capacitor 100. Considering the above, the number ratio of the different phase particles may be gradually increased from the central portion of the laminated body 10 toward the outer peripheral portion of the laminated body 10.
「異相粒子の個数割合が、積層体10の中央部から積層体10の外周部に向かって次第に増加している状態」とは、容量領域13の中央部13a、容量領域13の外周部13b、マージン領域14の順番で異相粒子の個数割合が高くなっていることを意味する。容量領域13の体積重心から、容量領域13の外周までの距離が2等分されるように容量領域13を2分割する。そして、2分割された領域のうち、中央側を容量領域13の中央部13aとし、外周側を容量領域13の外周部13bとしてもよい。したがって、積層体10の中央側と外周側で、局所的に異相粒子の個数割合が逆転する領域があってもよい。
"The state in which the number ratio of the different phase particles gradually increases from the central portion of the laminated body 10 toward the outer peripheral portion of the laminated body 10" means that the central portion 13a of the capacitance region 13 and the outer peripheral portion 13b of the capacitance region 13, This means that the number ratio of different phase particles increases in the order of the margin region 14. The capacitance region 13 is divided into two so that the distance from the center of gravity of the volume of the capacitance region 13 to the outer periphery of the capacitance region 13 is divided into two equal parts. Of the two divided regions, the center side may be the center part 13a of the capacitance region 13 and the outer circumference side may be the outer circumference part 13b of the capacitance region 13. Therefore, there may be a region where the number ratio of the different phase particles is locally reversed between the center side and the outer peripheral side of the laminate 10.
より高電界が作用する容量領域13の外周部13bにおける異相粒子の個数割合を、容量領域13の中央部13aにおける異相粒子の個数割合よりも高くすることで、積層セラミックコンデンサ100の静電容量の低下を低減しながら、容量領域13の電歪を効果的に低減することができる。さらに、マージン領域14における異相粒子の個数割合を積層体10において最も高くすることで、積層セラミックコンデンサ100の静電容量を低下させることなく、容量領域13の電歪を低減することができる。
By setting the number ratio of different-phase particles in the outer peripheral portion 13b of the capacitance region 13 on which a higher electric field acts to be higher than the number ratio of different-phase particles in the central portion 13a of the capacitance region 13, the capacitance of the multilayer ceramic capacitor 100 can be reduced. It is possible to effectively reduce the electrostriction of the capacitance region 13 while reducing the decrease. Further, by setting the number ratio of the different phase particles in the margin region 14 to be the highest in the laminated body 10, the electrostriction of the capacitance region 13 can be reduced without lowering the capacitance of the laminated ceramic capacitor 100.
このように、異相粒子の個数割合を、積層体10の中央部から積層体10の外周部に向かって次第に増加している状態とすることにより、積層セラミックコンデンサ100の静電容量の低下を低減しながら、容量領域13の電歪を効果的に低減することができる。この結果、クラック発生が低減されるため、静電容量および絶縁破壊電圧(BDV)の高い積層セラミックコンデンサ100を得ることができる。
In this way, by making the number ratio of the different phase particles gradually increase from the central portion of the laminated body 10 toward the outer peripheral portion of the laminated body 10, reduction in the capacitance of the laminated ceramic capacitor 100 is reduced. However, the electrostriction of the capacitance region 13 can be effectively reduced. As a result, the occurrence of cracks is reduced, and thus it is possible to obtain the monolithic ceramic capacitor 100 having high capacitance and high dielectric breakdown voltage (BDV).
異相粒子の個数割合が、積層体10の中央部から積層体10の外周部に向かって次第に増加していることは、以下のようにして検証してもよい。まず、積層体10に研磨処理を行い、マージン領域14および容量領域13を含む断面を露出させる。露出させる断面は、容量領域13の中央部13aを含む断面とする。次に、露出させた断面に対してSEM-EDX装置(走査型電子顕微鏡およびエネルギー分散型X線分析装置)を使用し、容量領域13の中央部13a、容量領域13の外周部13bおよびマージン領域14における異相粒子の個数をそれぞれカウントする(図2を参照)。SEM画像の撮影にあたっては、観察する断面の中央部から外周部に向かう一方向に沿って、容量領域13の中央部13a、容量領域13の外周部13bおよびマージン領域14のSEM画像を各1枚ずつ撮影してもよい。この場合、3枚のSEM画像は所定の間隔を空けて撮影するとよい。カウントする異相粒子は粒径が0.1μm以上であるものとする。その後、所定面積(10μm×10μm)あたりの異相粒子の個数に換算してそれぞれの個数割合を算出する。断面の観察は、3面以上行う。その結果、観察した断面のうち過半数の断面において、異相粒子の個数割合が、容量領域13の中央部13a、容量領域13の外周部13b、マージン領域14の順番で大きくなっている場合、異相粒子の個数割合が、積層体10の中央部から積層体10の外周部に向かって次第に増加していると判断してよい。
The fact that the number ratio of the different phase particles gradually increases from the central portion of the laminated body 10 toward the outer peripheral portion of the laminated body 10 may be verified as follows. First, the laminated body 10 is subjected to a polishing treatment to expose the cross section including the margin region 14 and the capacitance region 13. The exposed cross section is a cross section including the central portion 13 a of the capacitance region 13. Next, using the SEM-EDX apparatus (scanning electron microscope and energy dispersive X-ray analyzer) for the exposed cross section, the central portion 13a of the capacitance region 13, the outer peripheral portion 13b of the capacitance region 13 and the margin region are used. The number of different phase particles in 14 is counted (see FIG. 2). In capturing the SEM image, one SEM image of each of the central portion 13a of the capacitance region 13, the outer peripheral portion 13b of the capacitance region 13, and the margin region 14 is provided along one direction from the central portion of the cross section to be observed toward the outer peripheral portion. You may take pictures one by one. In this case, the three SEM images should be taken at a predetermined interval. The different-phase particles to be counted have a particle size of 0.1 μm or more. Then, the number ratio of each of the different phase particles is calculated by converting into the number of different phase particles per a predetermined area (10 μm×10 μm). Observation of the cross section is performed on three or more surfaces. As a result, in the majority of the observed cross-sections, when the number ratio of the different-phase particles increases in the order of the central portion 13a of the capacitance region 13, the outer peripheral portion 13b of the capacitance region 13, and the margin region 14, the different-phase particles It may be judged that the number ratio of the number gradually increases from the central portion of the laminated body 10 toward the outer peripheral portion of the laminated body 10.
このとき、容量領域13の中央部13aの所定面積(10μm×10μm)あたりの異相粒子の個数が5個以下かつ、容量領域13の外周部13bの所定面積(10μm×10μm)あたりの異相粒子の個数が10個以上20個未満かつ、マージン領域14の所定面積(10μm×10μm)あたりの異相粒子の個数が20個以上であるとよい。このような構成によれば、静電容量の低下を低減しながら、積層セラミックコンデンサ100の絶縁破壊電圧(BDV)を向上させることができる。しかし、異相粒子の個数割合は、これに制限されるものではない。
At this time, the number of different phase particles per predetermined area (10 μm×10 μm) in the central portion 13a of the capacity region 13 is 5 or less and the number of different phase particles per predetermined area (10 μm×10 μm) in the outer peripheral portion 13b of the capacity region 13 is increased. It is preferable that the number is 10 or more and less than 20, and the number of different phase particles per predetermined area (10 μm×10 μm) of the margin region 14 is 20 or more. With such a configuration, it is possible to improve the dielectric breakdown voltage (BDV) of the monolithic ceramic capacitor 100 while reducing the decrease in capacitance. However, the number ratio of the different phase particles is not limited to this.
異相粒子は、希土類元素(Re)を含む化合物を主成分として含有してもよい。希土類元素を含む化合物としては、特に制限されない。例えば、Re2O3の組成式で表される希土類元素の酸化物や、2種以上の希土類元素の複合酸化物などが挙げられる。異相粒子が、希土類元素を含む化合物を主成分として含有する場合、マージン領域14の硬度はより上昇し、容量領域13の電歪量はより低減される。この結果、絶縁破壊電圧(BDV)の高い積層セラミックコンデンサ100を得ることができる。
The heterophasic particles may contain a compound containing a rare earth element (Re) as a main component. The compound containing a rare earth element is not particularly limited. For example, an oxide of a rare earth element represented by a composition formula of Re 2 O 3, a composite oxide of two or more kinds of rare earth elements, and the like can be given. When the heterophase particles contain a compound containing a rare earth element as a main component, the hardness of the margin region 14 is further increased and the electrostriction amount of the capacitance region 13 is further reduced. As a result, a monolithic ceramic capacitor 100 having a high dielectric breakdown voltage (BDV) can be obtained.
異相粒子の平均粒径は特に制限されず、0.1~3.0μm程度であってもよい。異相粒子の平均粒径は、主相粒子の平均粒径よりも小さくてもよい。この場合、マージン領域14の緻密化が促進され、絶縁破壊電圧(BDV)の高い積層セラミックコンデンサ100を得ることができる。主相粒子の平均粒径は、0.1~5.0μm程度である。
The average particle size of the heterogeneous particles is not particularly limited and may be about 0.1 to 3.0 μm. The average particle size of the heterophase particles may be smaller than the average particle size of the main phase particles. In this case, the densification of the margin region 14 is promoted, and the monolithic ceramic capacitor 100 having a high dielectric breakdown voltage (BDV) can be obtained. The average particle size of the main phase particles is about 0.1 to 5.0 μm.
異相粒子の平均粒径が、主相粒子の平均粒径よりも小さいことは、以下のようにして検証してもよい。まず、積層体10に研磨処理を行い、積層体10の断面を露出させる。次に、露出させた断面に対してSEM-EDX装置(走査型電子顕微鏡およびエネルギー分散型X線分析装置)を使用し、積層体10の断面における異相粒子および主相粒子の平均粒径を測定する。粒径は、画像解析ソフトを用いてSEM画像から測定する。このとき、1つのSEM画像に50粒子程度が存在するように倍率を調整し、合計で300粒子以上となるように複数枚の写真を得て、写真上の粒子全数について計測した粒径の平均値を平均粒径としてもよい。
The fact that the average particle size of the heterophasic particles is smaller than the average particle size of the main phase particles may be verified as follows. First, the laminate 10 is subjected to a polishing treatment to expose the cross section of the laminate 10. Next, using the SEM-EDX device (scanning electron microscope and energy dispersive X-ray analysis device) on the exposed cross section, the average particle diameter of the different phase particles and the main phase particles in the cross section of the laminate 10 is measured. To do. The particle size is measured from the SEM image using image analysis software. At this time, the magnification was adjusted so that one SEM image had about 50 particles, and a plurality of photographs were obtained so that the total was 300 particles or more, and the average of the particle diameters measured for all the particles on the photograph was obtained. The value may be the average particle size.
粒径の定義は、粒子を挟む2本の平行接線間の距離である定方向接線径とし、測定する粒子が多角形状である場合は、3方向程度測定した接線径の平均値を粒径としてもよい。この結果、積層体10の断面において、異相粒子の平均粒径が主相粒子の平均粒径よりも小さい場合、異相粒子の平均粒径は主相粒子の平均粒径よりも小さいと判断してよい。
The particle size is defined as the tangential diameter of the tangential direction that is the distance between two parallel tangents that sandwich the particle. If the particle to be measured has a polygonal shape, the average value of the tangential diameters measured in three directions is used as the particle size. Good. As a result, in the cross section of the laminate 10, when the average particle size of the different phase particles is smaller than the average particle size of the main phase particles, it is determined that the average particle size of the different phase particles is smaller than the average particle size of the main phase particles. Good.
次に、実施形態に係る積層セラミックコンデンサ100の製造方法について、具体例を説明する。まず、誘電体層11を形成するための誘電体原料を準備し、これを塗料化して、誘電体層11用ペーストを調製する。誘電体原料として、主成分原料と、希土類元素原料とを準備する。
Next, a specific example of a method of manufacturing the monolithic ceramic capacitor 100 according to the embodiment will be described. First, a dielectric material for forming the dielectric layer 11 is prepared and made into a paint to prepare a paste for the dielectric layer 11. As the dielectric material, a main component material and a rare earth element material are prepared.
主成分原料としては、BaTiO3(チタン酸バリウム)系、CaZrO3(ジルコン酸カルシウム)系、CaTiO3(チタン酸カルシウム)系、SrTiO3(チタン酸ストロンチウム)系材料などの誘電体材料や、これらの混合物を使用することができる。主成分原料としては、積層セラミックコンデンサ100の静電容量を高める観点から、高誘電率材料を使用してもよい。高誘電率材料の一例として、上記した誘電体材料を含むペロブスカイト型強誘電体材料を使用してもよい。
Examples of the main component raw material include dielectric materials such as BaTiO 3 (barium titanate)-based material, CaZrO 3 (calcium zirconate)-based material, CaTiO 3 (calcium titanate)-based material, SrTiO 3 (strontium titanate)-based material, and the like. Mixtures of can be used. As the main component material, a high dielectric constant material may be used from the viewpoint of increasing the capacitance of the monolithic ceramic capacitor 100. As an example of the high dielectric constant material, a perovskite type ferroelectric material containing the above-mentioned dielectric material may be used.
希土類元素原料としては、平均粒径が20nm以下の希土類元素の酸化物粉末を使用し、好ましくは平均粒径が10nm以下の希土類元素の酸化物粉末を使用する。希土類元素は、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから少なくとも1種が選択され、好ましくはY、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから少なくとも1種が選択される。希土類元素をY、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択した場合、異相粒子の個数割合を増加させることができる。希土類元素原料には、含有する希土類元素の種類が異なる粉末を2種以上使用してもよい。希土類元素原料としては、2種以上の希土類元素の複合酸化物粉末を使用してもよい。
As the rare earth element raw material, an oxide powder of a rare earth element having an average particle diameter of 20 nm or less is used, and preferably, an oxide powder of a rare earth element having an average particle diameter of 10 nm or less is used. The rare earth element is at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, preferably Y, Gd. , Tb, Dy, Ho, Er, Tm, Yb, and Lu. When the rare earth element is selected from Y, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, the number ratio of different phase particles can be increased. As the rare earth element raw material, two or more kinds of powders containing different kinds of rare earth elements may be used. As the rare earth element raw material, a composite oxide powder of two or more kinds of rare earth elements may be used.
平均粒径が20nmまたは10nm以下の希土類元素の酸化物粉末は、粒径がnmオーダーである市販の希土類元素の酸化物粉末をさらに分級することにより得ることができる。分級方法としては、液体クロマトグラフィ(SEC・HDC)、流動場分離法(FFF)、電気移動度分級器(DMA)法などが挙げられる。
The rare earth oxide powder having an average particle diameter of 20 nm or 10 nm or less can be obtained by further classifying a commercially available rare earth oxide powder having a particle diameter of nm order. Examples of the classification method include liquid chromatography (SEC/HDC), flow field separation method (FFF), and electric mobility classifier (DMA) method.
希土類元素の酸化物粉末の平均粒径は、画像解析ソフトを使用して走査形電子顕微鏡(SEM)画像から測定することができる。このとき、1つのSEM画像に50粒子程度が存在するように倍率を調整し、合計で300粒子以上となるように複数枚の写真を得て、写真上の粒子全数について計測した粒径の平均値を平均粒径としてもよい。粒径の定義は、粒子を挟む2本の平行接線間の距離である定方向接線径とし、測定する粒子が多角形状である場合は、3方向程度測定した接線径の平均値を粒径としてもよい。
The average particle size of the rare earth oxide powder can be measured from a scanning electron microscope (SEM) image using image analysis software. At this time, the magnification was adjusted so that one SEM image had about 50 particles, and a plurality of photographs were obtained so that the total was 300 particles or more, and the average of the particle diameters measured for all the particles on the photograph was obtained. The value may be the average particle size. The particle size is defined as the tangential diameter of the tangential direction that is the distance between two parallel tangents that sandwich the particle. If the particle to be measured has a polygonal shape, the average value of the tangential diameters measured in three directions is used as the particle size. Good.
主成分原料100molに対して、希土類元素原料は2.5mol以上添加してもよい。これにより、異相粒子の個数割合を増加させることができる。誘電体原料には、主成分原料および希土類元素原料以外に、SiO2やMgOなど種々の原料を添加してもよい。
2.5 mol or more of the rare earth element raw material may be added to 100 mol of the main component raw material. As a result, the number ratio of different phase particles can be increased. Various materials such as SiO 2 and MgO may be added to the dielectric material in addition to the main component material and the rare earth element material.
次に、誘電体原料を調製するために、各成分原料を十分に混合し、混合粉末を得て、これを熱処理(仮焼き)して、仮焼原料を得る。原料の混合は特に限定はされず、湿式法により20時間程度十分に混合し、その後乾燥する。仮焼温度は1000~1350℃、保持時間は2~4時間、また昇降温速度は100℃/時間~200℃/時間である。
Next, in order to prepare the dielectric raw material, the raw materials for each component are thoroughly mixed to obtain a mixed powder, which is heat-treated (calcined) to obtain a calcined raw material. The mixing of the raw materials is not particularly limited, and the materials are thoroughly mixed by a wet method for about 20 hours and then dried. The calcination temperature is 1000 to 1350° C., the holding time is 2 to 4 hours, and the temperature rising/falling rate is 100° C./hour to 200° C./hour.
このようにして得られた仮焼原料(反応後原料)は必要に応じて、粉砕される。その後、必要に応じて、仮焼原料と追加的な原料成分とを混合し、誘電体原料を得る。仮焼および焼成中に一部の成分が揮発し、組成が変動することがあるため、仮焼原料への成分の添加は、焼成後に所望の組成となるように決定すればよい。
The calcined raw material (raw material after the reaction) thus obtained is crushed if necessary. Then, if necessary, the calcination raw material and additional raw material components are mixed to obtain a dielectric raw material. Since some components may volatilize during calcination and firing and the composition may change, addition of components to the calcination raw material may be determined so that the desired composition is obtained after firing.
次に、誘電体原料を塗料化して、誘電体層11用ペーストを調製する。誘電体層11用ペーストは、誘電体原料と有機ビヒクルとを混練した有機系の塗料であってもよく、水系の塗料であってもよい。有機ビヒクルとは、バインダを有機溶剤中に溶解したものである。有機ビヒクルに用いるバインダは特に限定されず、エチルセルロース、ポリビニルブチラールなどの通常の各種バインダから適宜選択すればよい。用いる有機溶剤も特に限定されず、印刷法やシート法など、利用する方法に応じて、テルピネオール、ブチルカルビトール、アセトン、トルエンなどの各種有機溶剤から適宜選択すればよい。
Next, the dielectric material is made into a coating material to prepare the dielectric layer 11 paste. The paste for the dielectric layer 11 may be an organic paint obtained by kneading a dielectric material and an organic vehicle, or may be an aqueous paint. The organic vehicle is a binder dissolved in an organic solvent. The binder used for the organic vehicle is not particularly limited and may be appropriately selected from various ordinary binders such as ethyl cellulose and polyvinyl butyral. The organic solvent used is not particularly limited, and may be appropriately selected from various organic solvents such as terpineol, butyl carbitol, acetone, and toluene according to the method to be used such as the printing method and the sheet method.
誘電体層11用ペーストを水系の塗料とする場合には、水溶性のバインダや分散剤などを水に溶解させた水系ビヒクルと誘電体原料とを混練すればよい。水系ビヒクルに用いる水溶性バインダは特に限定されない。水溶性バインダとしては、例えば、ポリビニルアルコール、セルロース、水溶性アクリル樹脂などが挙げられる。
When the paste for the dielectric layer 11 is a water-based paint, the water-based vehicle in which a water-soluble binder or dispersant is dissolved may be kneaded with the dielectric material. The water-soluble binder used in the water-based vehicle is not particularly limited. Examples of the water-soluble binder include polyvinyl alcohol, cellulose, water-soluble acrylic resin and the like.
内部電極層12用ペーストは、Ni(ニッケル)、Cu(銅)、Sn(スズ)などの卑金属、あるいはPt(白金)、Pd(パラジウム)、Ag(銀)、Au(金)などの貴金属やこれらを含む合金と上記有機ビヒクルとを混練して調製する。外部電極用ペーストは、内部電極層12用ペーストと同様にして調製すればよい。
The internal electrode layer 12 paste may be a base metal such as Ni (nickel), Cu (copper) or Sn (tin), or a noble metal such as Pt (platinum), Pd (palladium), Ag (silver) or Au (gold). It is prepared by kneading an alloy containing these and the above organic vehicle. The external electrode paste may be prepared in the same manner as the internal electrode layer 12 paste.
各ペースト中の有機ビヒクルの含有量に特に制限はなく、通常の含有量、例えば、バインダは1~5質量%程度、溶剤は10~50質量%程度とすればよい。各ペースト中には、必要に応じて各種分散剤、可塑剤、誘電体、絶縁体などから選択される添加物が含有されていてもよい。これらの総含有量は、10質量%以下とすることが好ましい。
There is no particular limitation on the content of the organic vehicle in each paste, and the usual content may be, for example, 1 to 5% by mass of the binder and 10 to 50% by mass of the solvent. Each paste may contain additives selected from various dispersants, plasticizers, dielectrics, insulators and the like, if necessary. The total content of these is preferably 10% by mass or less.
例えば、印刷法を用いる場合、誘電体層11用ペーストおよび内部電極層12用ペーストを、PETなどの基板上に印刷、積層し、所定形状に切断した後、基板から剥離してグリーンチップとする。シート法を用いる場合、誘電体層11用ペーストを用いてグリーンシートを形成し、この上に内部電極層12用ペーストを印刷した後、これらを積層し、所定形状に切断してグリーンチップとする。
For example, when the printing method is used, the dielectric layer 11 paste and the internal electrode layer 12 paste are printed and laminated on a substrate such as PET, cut into a predetermined shape, and then peeled from the substrate to obtain a green chip. .. When the sheet method is used, a green sheet is formed by using the paste for the dielectric layer 11, the paste for the internal electrode layer 12 is printed thereon, and then these are laminated and cut into a predetermined shape to obtain a green chip. ..
焼成前に、グリーンチップに脱バインダ処理を施す。脱バインダ条件としては、保持温度は180~900℃、保持時間は2~4時間、昇降温速度は100℃/時間~200℃/時間である。脱バインダ雰囲気は、空気もしくは還元性雰囲気とする。脱バインダ後、グリーンチップの焼成を行う。グリーンチップ焼成時の雰囲気は、内部電極層12用ペースト中の導電材の種類に応じて適宜決定されればよい。例えば、導電材としてNiやNi合金などの卑金属を用いる場合、焼成雰囲気中の酸素分圧は、10-8~10-5MPaとしてもよい。
Before firing, the green chip is subjected to binder removal processing. As the binder removal conditions, the holding temperature is 180 to 900° C., the holding time is 2 to 4 hours, and the temperature rising/falling rate is 100° C./hour to 200° C./hour. The binder removal atmosphere is air or a reducing atmosphere. After removing the binder, the green chip is fired. The atmosphere during firing of the green chip may be appropriately determined according to the type of conductive material in the internal electrode layer 12 paste. For example, when a base metal such as Ni or Ni alloy is used as the conductive material, the oxygen partial pressure in the firing atmosphere may be 10 −8 to 10 −5 MPa.
焼成条件としては、焼成温度は1100~1250℃、保持時間は1~3時間、また昇降温速度は100℃/時間~200℃/時間である。また、焼成雰囲気は還元性雰囲気とすることが好ましく、雰囲気ガスとしてはたとえば、N2とH2との混合ガスを加湿して用いることができる。焼成後、積層体10にはアニールを施してもよい。
As the firing conditions, the firing temperature is 1100 to 1250° C., the holding time is 1 to 3 hours, and the temperature rising/falling rate is 100° C./hour to 200° C./hour. Further, the firing atmosphere is preferably a reducing atmosphere, and as the atmosphere gas, for example, a mixed gas of N 2 and H 2 can be humidified and used. After firing, the laminated body 10 may be annealed.
このようにして得られた積層体10に、例えばバレル研磨などにより端面研磨を施し、外部電極用ペーストを塗布して焼成し、外部電極4を形成する。そして、必要に応じ、外部電極表面に、めっきなどにより被覆層を形成する。このようにして製造された本実施形態の積層セラミックコンデンサ100は、ハンダ付などによりプリント基板上などに実装され、各種電子機器などに使用される。
The laminated body 10 thus obtained is subjected to end face polishing, for example, by barrel polishing, and the external electrode paste is applied and baked to form the external electrode 4. Then, if necessary, a coating layer is formed on the surface of the external electrode by plating or the like. The monolithic ceramic capacitor 100 of this embodiment manufactured in this manner is mounted on a printed circuit board or the like by soldering or the like, and is used for various electronic devices or the like.
以上、本開示に係る積層セラミックコンデンサの一実施形態について説明してきた。しかし、本開示の積層セラミックコンデンサは、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。
Above, one embodiment of the multilayer ceramic capacitor according to the present disclosure has been described. However, the monolithic ceramic capacitor of the present disclosure is not limited to the above-described embodiment, and can be variously modified without departing from the scope of the present invention.
以下、本開示の積層セラミックコンデンサを、さらに詳細な実施例に基づき説明する。しかし、本開示の積層セラミックコンデンサは、これら実施例に限定されない。
Hereinafter, the multilayer ceramic capacitor of the present disclosure will be described based on more detailed examples. However, the laminated ceramic capacitor of the present disclosure is not limited to these examples.
まず、試料No.2~5の積層セラミックコンデンサを作製した。主成分原料として、BaTiO3(チタン酸バリウム)粉末を準備した。さらに、希土類元素原料としてDy2O3粉末、Y2O3粉末およびGd2O3粉末を準備した。Dy2O3の濃度は、BaTiO3(チタン酸バリウム)100molに対して、6.0molとした。Y2O3およびGd2O3の濃度については、BaTiO3(チタン酸バリウム)100molに対して、それぞれ2.0molとした。Dy2O3粉末、Y2O3粉末およびGd2O3粉末は、粒径がnmオーダーである市販の希土類元素の酸化物粉末を、電気移動度分級器(DMA)法によりさらに分級して使用した。その結果、使用した粉末の平均粒径は20nm以下であった。
First, the sample No. 2 to 5 multilayer ceramic capacitors were produced. As a main component material, BaTiO 3 (barium titanate) powder was prepared. Furthermore, Dy 2 O 3 powder, Y 2 O 3 powder, and Gd 2 O 3 powder were prepared as rare earth element raw materials. The concentration of Dy 2 O 3 was 6.0 mol with respect to 100 mol of BaTiO 3 (barium titanate). The concentrations of Y 2 O 3 and Gd 2 O 3 were each 2.0 mol with respect to 100 mol of BaTiO 3 (barium titanate). Dy 2 O 3 powder, Y 2 O 3 powder and Gd 2 O 3 powder are obtained by further classifying commercially available rare earth element oxide powder having a particle size of nm order by an electric mobility classifier (DMA) method. used. As a result, the average particle size of the powder used was 20 nm or less.
主成分原料および希土類元素原料に加えて、SiO2粉末、MgO粉末およびMnCO3粉末を準備した。これら粉末の濃度はいずれも、BaTiO3(チタン酸バリウム)100molに対して、2.0mol以下とした。
In addition to the main component raw material and the rare earth element raw material, SiO 2 powder, MgO powder and MnCO 3 powder were prepared. The concentration of each of these powders was 2.0 mol or less with respect to 100 mol of BaTiO 3 (barium titanate).
混合は、ボールミルで湿式混合撹拌を20時間行うことで実施した。湿式混合撹拌後の配合物を脱水乾燥した。脱水乾燥後に室温~1100℃まで100℃/時間で昇温した。1100℃で5時間仮焼成し、必要に応じて粉砕し、仮焼原料(誘電体原料)の粉末を得た。
Mixing was performed by wet mixing and stirring for 20 hours with a ball mill. The mixture after wet mixing and stirring was dehydrated and dried. After dehydration and drying, the temperature was raised from room temperature to 1100°C at 100°C/hour. It was calcined at 1100° C. for 5 hours and pulverized as needed to obtain a powder of calcination raw material (dielectric raw material).
次いで、得られた誘電体原料を100質量部、ポリビニルブチラール樹脂を10質量部、可塑剤としてのジオクチルフタレート(DOP)を5質量部、および溶媒としてのアルコールを100質量部をボールミルで混合してペースト化し、誘電体層用ペーストを得た。
Next, 100 parts by mass of the obtained dielectric material, 10 parts by mass of polyvinyl butyral resin, 5 parts by mass of dioctyl phthalate (DOP) as a plasticizer, and 100 parts by mass of alcohol as a solvent were mixed by a ball mill. It was made into a paste to obtain a dielectric layer paste.
誘電体層用ペーストとは別に、Ni粒子を44.6質量部、テルピネオールを52質量部、エチルセルロースを3質量部、およびベンゾトリアゾールを0.4質量部を、3本ロールにより混練してペースト化して、内部電極層用ペーストを作製した。
Separately from the dielectric layer paste, 44.6 parts by mass of Ni particles, 52 parts by mass of terpineol, 3 parts by mass of ethyl cellulose, and 0.4 parts by mass of benzotriazole were kneaded with a three-roll to form a paste. Thus, an internal electrode layer paste was prepared.
そして、作製した誘電体層用ペーストを用いて、PETフィルム上に、乾燥後の厚みが15μmとなるようにグリーンシートを形成した。次いで、この上に内部電極層用ペーストを用いて、内部電極層を所定パターンで印刷した。印刷後、PETフィルムからシートを剥離し、内部電極層を有するグリーンシートを作製した。次いで、内部電極層を有するグリーンシートを複数枚積層し、加圧接着することによりグリーン積層体を得た。このグリーン積層体を所定サイズに切断することにより、グリーンチップを得た。
Then, using the prepared dielectric layer paste, a green sheet was formed on the PET film so that the thickness after drying was 15 μm. Then, an internal electrode layer paste was used to print an internal electrode layer in a predetermined pattern thereon. After printing, the sheet was peeled from the PET film to produce a green sheet having an internal electrode layer. Next, a plurality of green sheets having internal electrode layers were laminated and pressure-bonded to obtain a green laminate. A green chip was obtained by cutting this green laminated body into a predetermined size.
次いで、得られたグリーンチップについて、脱バインダ処理、焼成およびアニールを下記条件にて行って、積層体となる焼結体を得た。
<脱バインダ処理条件>
昇温速度:25℃/時間
保持温度:260℃
温度保持時間:8時間
雰囲気:空気中
<焼成条件>
昇降温速度:100℃/時間~200℃/時間
焼成温度:1100~1250℃
保持時間:1~3時間
雰囲気:ウェッターで加湿したN2+H2混合ガス(酸素分圧:10-13MPa程度)
<アニール条件>
昇温速度:200℃/時間
保持温度:1050℃
温度保持時間:2時間
降温速度:200℃/時間
雰囲気:ウェッターで加湿したN2ガス(酸素分圧:10-6MPa程度) Next, the obtained green chip was subjected to binder removal processing, firing and annealing under the following conditions to obtain a sintered body to be a laminated body.
<Binder removal processing conditions>
Temperature rising rate: 25°C/hour Holding temperature: 260°C
Temperature holding time: 8 hours Atmosphere: In air <Firing conditions>
Temperature rising/falling rate: 100°C/hour to 200°C/hour Firing temperature: 1100 to 1250°C
Holding time: 1 to 3 hours Atmosphere: N 2 +H 2 mixed gas humidified by a wetter (oxygen partial pressure: about 10 −13 MPa)
<Annealing conditions>
Temperature rising rate: 200°C/hour Holding temperature: 1050°C
Temperature holding time: 2 hours Temperature falling rate: 200° C./hour Atmosphere: N 2 gas humidified by a wetter (oxygen partial pressure: about 10 −6 MPa)
<脱バインダ処理条件>
昇温速度:25℃/時間
保持温度:260℃
温度保持時間:8時間
雰囲気:空気中
<焼成条件>
昇降温速度:100℃/時間~200℃/時間
焼成温度:1100~1250℃
保持時間:1~3時間
雰囲気:ウェッターで加湿したN2+H2混合ガス(酸素分圧:10-13MPa程度)
<アニール条件>
昇温速度:200℃/時間
保持温度:1050℃
温度保持時間:2時間
降温速度:200℃/時間
雰囲気:ウェッターで加湿したN2ガス(酸素分圧:10-6MPa程度) Next, the obtained green chip was subjected to binder removal processing, firing and annealing under the following conditions to obtain a sintered body to be a laminated body.
<Binder removal processing conditions>
Temperature rising rate: 25°C/hour Holding temperature: 260°C
Temperature holding time: 8 hours Atmosphere: In air <Firing conditions>
Temperature rising/falling rate: 100°C/hour to 200°C/hour Firing temperature: 1100 to 1250°C
Holding time: 1 to 3 hours Atmosphere: N 2 +H 2 mixed gas humidified by a wetter (oxygen partial pressure: about 10 −13 MPa)
<Annealing conditions>
Temperature rising rate: 200°C/hour Holding temperature: 1050°C
Temperature holding time: 2 hours Temperature falling rate: 200° C./hour Atmosphere: N 2 gas humidified by a wetter (oxygen partial pressure: about 10 −6 MPa)
次いで、得られた焼結体にバレル研磨処理を施し、積層体の端面に内部電極層を十分に露出させた。外部電極としてNi外部電極を形成し、試料No.2~5の積層セラミックコンデンサを得た。得られたコンデンサ試料のサイズは、3.2mm×1.6mm×0.6mmであり、誘電体層の厚み10μm、内部電極層の厚み1.0μm、内部電極層に挟まれた誘電体層の数は147とした。
Next, the obtained sintered body was barrel-polished to fully expose the internal electrode layers on the end faces of the laminate. A Ni external electrode was formed as an external electrode, and the sample No. 2 to 5 multilayer ceramic capacitors were obtained. The size of the obtained capacitor sample was 3.2 mm×1.6 mm×0.6 mm, the thickness of the dielectric layer was 10 μm, the thickness of the internal electrode layer was 1.0 μm, and the thickness of the dielectric layer sandwiched between the internal electrode layers was 10 μm. The number was 147.
次に、作製した試料No.2~5の積層セラミックコンデンサについて以下の評価を行った。まず、コンデンサ試料に対し、恒温槽とLCRメータを用いて、温度25℃で静電容量を測定した。このとき、周波数を1.0kHzとし、測定電圧を1Vrmsとして測定し、その平均値を求めた。
Next, the prepared sample No. The following evaluations were performed on the laminated ceramic capacitors of 2 to 5. First, the capacitance of a capacitor sample was measured at a temperature of 25° C. using a constant temperature bath and an LCR meter. At this time, the frequency was set to 1.0 kHz, the measurement voltage was set to 1 Vrms, and the average value was obtained.
次に、絶縁破壊電圧(BDV)を測定した。まず、内部電極層をデジタル超高抵抗/微小電流計に接続し、5V/秒のステップで電圧を印加して計測した。次いで、初期抵抗値から2桁低下したときの電圧値を読み取り、その値を試料の破壊電圧値(V)とした。次に、所定の方法を用いてビッカース硬度を測定した。
Next, the dielectric breakdown voltage (BDV) was measured. First, the internal electrode layer was connected to a digital ultra-high resistance/micro ammeter, and voltage was applied at a step of 5 V/sec for measurement. Next, the voltage value when the initial resistance value decreased by two digits was read, and the value was taken as the breakdown voltage value (V) of the sample. Next, the Vickers hardness was measured using a predetermined method.
次に、容量領域の中央部、容量領域の外周部およびマージン領域における異相粒子の個数割合を測定した。まず、積層体に研磨処理を行い、マージン領域および容量領域を含む断面を露出させた。露出させた断面は、積層体の積層方向の断面とした。研磨処理は積層体の側面(内部電極層が露出していない面)方向に施し、露出させた断面は積層体の中央部を含むようにした。
Next, the number ratio of different phase particles in the central part of the capacity region, the outer peripheral part of the capacity region and the margin region was measured. First, the laminated body was subjected to polishing treatment to expose a cross section including a margin region and a capacitance region. The exposed cross section was a cross section in the stacking direction of the stack. The polishing treatment was performed in the direction of the side surface (the surface where the internal electrode layers were not exposed) of the laminate, and the exposed cross section included the central portion of the laminate.
次に、露出させた断面に対してSEM-EDX装置(走査型電子顕微鏡およびエネルギー分散型X線分析装置)を使用し、容量領域の中央部、容量領域の外周部およびマージン領域における異相粒子の個数をそれぞれカウントした。カウントにあたっては、容量領域の面積重心から、容量領域の外周までの距離が、2等分されるように容量領域を2分割した。そして、2分割された領域のうち、中央側を容量領域の中央部とし、外周側を容量領域の外周部とした。SEM画像の撮影にあたっては、観察する断面の中央部から外周部に向かう1方向に沿って、容量領域の中央部、容量領域の外周部およびマージン領域のSEM画像を各1枚ずつ撮影した。このとき、3枚のSEM画像は所定の間隔を空けて撮影した。SEM画像の視野は5μm×5μmとした。カウントする異相粒子は粒径が0.1μm以上であるものとした。粒径の測定方法は後述する。2つの領域間にまたがって1つの異相粒子が存在する場合は、存在範囲(面積)の大きい一方に当該異相粒子が存在するものとしてカウントした。
Next, using an SEM-EDX apparatus (scanning electron microscope and energy dispersive X-ray analyzer) on the exposed cross section, heterogeneous particles in the central portion of the capacitance region, the outer peripheral portion of the capacitance region and the margin region are Each number was counted. In counting, the capacitance region was divided into two so that the distance from the center of gravity of the capacitance region to the outer periphery of the capacitance region was equally divided into two. Then, of the two divided regions, the center side was set as the center part of the capacitance region, and the outer circumference side was set as the outer circumference part of the capacitance region. In capturing the SEM image, one SEM image of each of the central portion of the capacitance region, the outer peripheral portion of the capacitance region, and the margin region was photographed along one direction from the central portion of the cross section to be observed toward the outer peripheral portion. At this time, the three SEM images were taken at predetermined intervals. The field of view of the SEM image was 5 μm×5 μm. The different-phase particles to be counted had a particle size of 0.1 μm or more. The method of measuring the particle size will be described later. When one heterophasic particle was present across two regions, it was counted that the heterophasic particle was present in one of the larger existing areas (area).
その後、所定面積(10μm×10μm)あたりの個数に換算してそれぞれの個数割合を算出した。容量領域の中央部および容量領域の外周部における異相粒子の個数割合から、容量領域全体における異相粒子の個数割合を算出した。算出において生じた小数点は切り捨てるものとした。
After that, it was converted into the number per predetermined area (10 μm × 10 μm) and the ratio of each number was calculated. The number ratio of the different phase particles in the entire capacity region was calculated from the number ratio of the different phase particles in the central part of the capacity region and the outer peripheral part of the capacity region. The decimal point generated in the calculation was rounded down.
その後、先に露出させた断面とは異なる断面を新たに2面露出させ、容量領域の中央部、容量領域の外周部およびマージン領域における、異相粒子の個数割合の大小関係を確認した。その結果、異相粒子の個数割合の大小関係は、観察した3つの断面ですべて同一であった。観察した3つの断面はすべて、積層体の中央部を含むようにした。
After that, two new cross-sections different from the previously-exposed cross-section were exposed, and the size relationship of the number ratio of different phase particles in the central part of the capacity region, the outer peripheral part of the capacity region and the margin region was confirmed. As a result, the size relationship of the number ratio of the different phase particles was the same in all the three observed cross sections. All three cross sections observed were intended to include the center of the stack.
次に、画像解析ソフトを使用して、SEM画像から異相粒子の平均粒径を測定した。このとき、1つのSEM画像に50粒子程度が存在するように倍率を調整し、合計で300粒子以上となるように複数枚の写真を得て、写真上の粒子全数について計測した粒径の平均値を平均粒径とした。粒径の定義は、粒子を挟む2本の平行接線間の距離である定方向接線径とし、測定する粒子が多角形状である場合は、3方向程度測定した接線径の平均値を粒径とした。主相粒子の平均粒径についても測定を行った結果、異相粒子の平均粒径はいずれの試料も、主相粒子の平均粒径よりも小さいものであった。
Next, the average particle size of the different phase particles was measured from the SEM image using image analysis software. At this time, the magnification was adjusted so that one SEM image had about 50 particles, and a plurality of photographs were obtained so that the total was 300 particles or more, and the average of the particle diameters measured for all the particles on the photograph was obtained. The value was defined as the average particle size. The particle size is defined as the tangential diameter of the tangential direction, which is the distance between two parallel tangents that sandwich the particle. did. As a result of measuring the average particle size of the main phase particles, the average particle size of the different phase particles was smaller than the average particle size of the main phase particles in all the samples.
次いで、試料No.1の積層セラミックコンデンサを作製した。試料No.1の積層セラミックコンデンサでは、試料No.2~5と同様の製造方法および評価方法を適用した。但し、試料No.1の積層セラミックコンデンサでは、希土類元素(Dy2O3、Y2O3およびGd2O3)の酸化物粉末に対して分級を行わなかった。その結果、使用した希土類元素の酸化物粉末の平均粒径は約40nmであった。
Then, the sample No. A monolithic ceramic capacitor No. 1 was produced. Sample No. In the laminated ceramic capacitor of No. 1, sample No. The same manufacturing method and evaluation method as in 2 to 5 were applied. However, the sample No. In the laminated ceramic capacitor of No. 1, the oxide powder of the rare earth elements (Dy 2 O 3 , Y 2 O 3 and Gd 2 O 3 ) was not classified. As a result, the average particle size of the rare earth oxide powder used was about 40 nm.
作製した試料No.1の積層セラミックコンデンサでは、容量領域に異相粒子が存在した一方で、マージン領域には異相粒子が存在しなかった。すなわち、5μm×5μmの視野でマージン領域を撮影したSEM画像中に、粒径が0.1μm以上の異相粒子は存在しなかった。
Prepared sample No. In the monolithic ceramic capacitor of No. 1, the different phase particles existed in the capacitance region, while the different phase particles did not exist in the margin region. That is, in the SEM image obtained by photographing the margin area in the visual field of 5 μm×5 μm, there were no heterophase particles having a particle size of 0.1 μm or more.
測定結果を表1に示す。試料No.1~5では、適用した焼成条件がそれぞれ異なる。試料No.1および2の焼成条件は、焼成温度を1200℃、保持時間を2時間、昇降温速度を150℃/時間とした。試料No.3の焼成条件は、焼成温度を1220℃、保持時間を2時間、昇降温速度を150℃/時間とした。試料No.4の焼成条件は、焼成温度を1240℃、保持時間を2時間、昇降温速度を150℃/時間とした。試料No.5の焼成条件は、焼成温度を1200℃、保持時間を1時間、昇降温速度を200℃/時間とした。
Table 1 shows the measurement results. Sample No. In Nos. 1 to 5, the applied firing conditions are different. Sample No. The firing conditions of 1 and 2 were a firing temperature of 1200° C., a holding time of 2 hours, and a temperature raising/lowering rate of 150° C./hour. Sample No. The firing conditions of No. 3 were such that the firing temperature was 1220° C., the holding time was 2 hours, and the temperature rising/falling rate was 150° C./hour. Sample No. The firing conditions of No. 4 were such that the firing temperature was 1240° C., the holding time was 2 hours, and the temperature rising/falling rate was 150° C./hour. Sample No. As for the firing conditions of No. 5, the firing temperature was 1200° C., the holding time was 1 hour, and the temperature rising/falling rate was 200° C./hour.
表1に示すように、マージン領域に異相粒子が存在している試料No.2~5は、マージン領域に異相粒子が存在していない試料No.1よりもビッカース硬度が高く、絶縁破壊電圧(BDV)が向上していることが分かる。このとき、試料No.2~4はいずれも、マージン領域の所定面積(10μm×10μm)あたりの異相粒子の個数が15個以上であった。
As shown in Table 1, the sample No. in which foreign phase particles exist in the margin area. Sample Nos. 2 to 5 in which no different phase particles exist in the margin area. It can be seen that the Vickers hardness is higher than 1 and the dielectric breakdown voltage (BDV) is improved. At this time, the sample No. In each of Nos. 2 to 4, the number of different phase particles per predetermined area (10 μm×10 μm) in the margin region was 15 or more.
容量領域における異相粒子の個数割合がマージン領域よりも高い試料No.5では、その他の試料と比べて静電容量が低下していることが分かる。一方、マージン領域における異相粒子の個数割合が容量領域よりも高いNo.2~4では、試料No.1と比べて、静電容量が実質的に低下せずに、絶縁破壊電圧(BDV)が向上していることが分かる。
Sample No. in which the number ratio of different phase particles in the volume area is higher than in the margin area It can be seen that in No. 5, the capacitance is lower than that of the other samples. On the other hand, the number ratio of the different phase particles in the margin area is higher than that in the capacity area. In Nos. 2 to 4, sample No. It can be seen that the breakdown voltage (BDV) is improved without substantially decreasing the capacitance as compared with 1.
異相粒子9の個数割合が、積層体10の中央部から積層体10の外周部に向かって次第に増加している状態である試料No.2~4では、試料No.1と比べて、静電容量が実質的に低下することなく、絶縁破壊電圧(BDV)が向上していることが分かる。このとき、試料No.2~4はいずれも、容量領域13の中央部の所定面積(10μm×10μm)あたりの異相粒子の個数が5個以下かつ、容量領域13の外周部の所定面積(10μm×10μm)あたりの異相粒子の個数が10個以上20個未満かつ、マージン領域14の所定面積(10μm×10μm)あたりの異相粒子の個数が20個以上であった。
Sample No. in a state where the number ratio of the different phase particles 9 gradually increases from the central portion of the laminated body 10 toward the outer peripheral portion of the laminated body 10. In Nos. 2 to 4, sample No. It can be seen that the breakdown voltage (BDV) is improved as compared with 1 without substantially decreasing the capacitance. At this time, the sample No. In all 2 to 4, the number of different phase particles per predetermined area (10 μm×10 μm) in the central portion of the capacity region 13 is 5 or less and the different phase per predetermined area (10 μm×10 μm) in the outer peripheral portion of the capacity region 13 The number of particles was 10 or more and less than 20, and the number of different-phase particles per predetermined area (10 μm×10 μm) of the margin region 14 was 20 or more.
100 積層セラミックコンデンサ
10 積層体
11 誘電体層
12 内部電極層
20a、20b 外部電極
13 容量領域
13a 容量領域の中央部
13b 容量領域の外周部
14 マージン領域 100Multilayer Ceramic Capacitor 10 Laminated Body 11 Dielectric Layer 12 Internal Electrode Layers 20a, 20b External Electrodes 13 Capacitance Region 13a Central Part of Capacitance Region 13b Peripheral Part of Capacitance Region 14 Margin Area
10 積層体
11 誘電体層
12 内部電極層
20a、20b 外部電極
13 容量領域
13a 容量領域の中央部
13b 容量領域の外周部
14 マージン領域 100
Claims (7)
- 誘電体層と内部電極層とが交互に積層された積層体を備え、
該積層体は、隣り合う前記内部電極層同士が対向する容量領域と、該容量領域の周囲に配置されたマージン領域とを有しており、
該マージン領域に、希土類元素の濃度が高い異相粒子が存在している、積層セラミックコンデンサ。 A laminated body in which dielectric layers and internal electrode layers are alternately laminated,
The stacked body has a capacitance region in which the adjacent internal electrode layers face each other, and a margin region arranged around the capacitance region,
A monolithic ceramic capacitor in which heterophase particles having a high rare earth element concentration are present in the margin region. - 前記マージン領域における前記異相粒子の個数割合が、前記容量領域における前記異相粒子の個数割合よりも高い、請求項1に記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 1, wherein the number ratio of the different phase particles in the margin region is higher than the number ratio of the different phase particles in the capacitance region.
- 前記異相粒子の個数割合が、前記積層体の中央部から、前記積層体の外周部に向かって次第に増加している、請求項1または2に記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 1 or 2, wherein the number ratio of the different phase particles gradually increases from the central portion of the laminated body toward the outer peripheral portion of the laminated body.
- 前記積層体の断面において、前記マージン領域に存在する前記異相粒子の個数割合が、15個/100μm2以上である、請求項1~3のいずれかに記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to any one of claims 1 to 3, wherein, in the cross section of the multilayer body, the number ratio of the different phase particles existing in the margin region is 15 particles/100 µm 2 or more.
- 前記積層体の断面において、前記容量領域の中央部に存在する前記異相粒子の個数割合が5個/100μm2以下であり、かつ前記容量領域の外周部に存在する前記異相粒子の個数割合が10個/100μm2以上20個/100μm2未満であり、かつ前記マージン領域に存在する前記異相粒子の個数割合が20個/100μm2以上である、請求項3または4に記載の積層セラミックコンデンサ。 In the cross section of the laminate, the number ratio of the different phase particles existing in the central part of the capacity region is 5 particles/100 μm 2 or less, and the number ratio of the different phase particles existing in the outer peripheral part of the capacity region is 10. pieces / 100 [mu] m 2 or more 20/100 [mu] m is less than 2, and the ratio of the number of different phase particles is 20/100 [mu] m 2 or more, the multilayer ceramic capacitor according to claim 3 or 4 which is present in said margin area.
- 前記異相粒子の平均粒径は、前記誘電体層の主相粒子の平均粒径よりも小さい、請求項1~5のいずれかに記載の積層セラミックコンデンサ。 The monolithic ceramic capacitor according to any one of claims 1 to 5, wherein the average particle size of the different phase particles is smaller than the average particle size of the main phase particles of the dielectric layer.
- 前記異相粒子は、希土類元素を含む化合物を主成分として含有する、請求項1~6のいずれかに記載の積層セラミックコンデンサ。 The monolithic ceramic capacitor according to any one of claims 1 to 6, wherein the different phase particles contain a compound containing a rare earth element as a main component.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019013252A JP2020123619A (en) | 2019-01-29 | 2019-01-29 | Multilayer ceramic capacitor |
JP2019-013252 | 2019-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020158461A1 true WO2020158461A1 (en) | 2020-08-06 |
Family
ID=71841759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/001565 WO2020158461A1 (en) | 2019-01-29 | 2020-01-17 | Multilayered ceramic capacitor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020123619A (en) |
WO (1) | WO2020158461A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003048774A (en) * | 2001-08-01 | 2003-02-21 | Kyocera Corp | Dielectric porcelain, method of producing the same, and multilayer-type electronic parts |
JP2017038036A (en) * | 2015-08-07 | 2017-02-16 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Multilayer ceramic electronic component and method of manufacturing the same |
JP2018170526A (en) * | 2018-07-10 | 2018-11-01 | 太陽誘電株式会社 | Multilayer ceramic capacitor |
-
2019
- 2019-01-29 JP JP2019013252A patent/JP2020123619A/en active Pending
-
2020
- 2020-01-17 WO PCT/JP2020/001565 patent/WO2020158461A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003048774A (en) * | 2001-08-01 | 2003-02-21 | Kyocera Corp | Dielectric porcelain, method of producing the same, and multilayer-type electronic parts |
JP2017038036A (en) * | 2015-08-07 | 2017-02-16 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Multilayer ceramic electronic component and method of manufacturing the same |
JP2018170526A (en) * | 2018-07-10 | 2018-11-01 | 太陽誘電株式会社 | Multilayer ceramic capacitor |
Also Published As
Publication number | Publication date |
---|---|
JP2020123619A (en) | 2020-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108735508B (en) | Multilayer ceramic capacitor and method for manufacturing the same | |
KR102498100B1 (en) | Multilayer ceramic capacitor | |
KR102716139B1 (en) | Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor | |
KR100673879B1 (en) | Electronic device, dielectric ceramic composition and the production method | |
JP6841716B2 (en) | Multilayer ceramic capacitors and their manufacturing methods | |
JP5093311B2 (en) | Multilayer ceramic electronic components | |
KR20190017655A (en) | Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor | |
JP6986360B2 (en) | Multilayer ceramic capacitors and their manufacturing methods | |
TWI790267B (en) | Multilayer ceramic capacitor and manufacturing method thereof | |
CN110197767A (en) | The manufacturing method of laminated ceramic capacitor and laminated ceramic capacitor | |
KR20180113163A (en) | Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor | |
KR102496922B1 (en) | Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor | |
CN112992538B (en) | Dielectric composition and electronic component | |
JP2018056239A (en) | Multilayer ceramic capacitor and manufacturing method thereof | |
JP2010010157A (en) | Stacked ceramic capacitor, and method of manufacturing the same | |
JP2003277139A (en) | Dielectric ceramic composition and electronic parts | |
KR20120074224A (en) | Multi-layer ceramic capacitor | |
CN112979308A (en) | Dielectric composition and electronic component | |
JP6922701B2 (en) | Dielectric compositions, electronic components and laminated electronic components | |
KR100651019B1 (en) | dielectric ceramic compositions and electronic devices | |
JP6586507B2 (en) | COG dielectric composition for nickel electrodes | |
JP4661203B2 (en) | Ceramic electronic component and manufacturing method thereof | |
JP2007258279A (en) | Laminate ceramic electronic component, and manufacturing method thereof | |
WO2020158461A1 (en) | Multilayered ceramic capacitor | |
JP5803688B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20748910 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20748910 Country of ref document: EP Kind code of ref document: A1 |