WO2020158342A1 - Vehicle control device and vehicle control system - Google Patents

Vehicle control device and vehicle control system Download PDF

Info

Publication number
WO2020158342A1
WO2020158342A1 PCT/JP2020/000573 JP2020000573W WO2020158342A1 WO 2020158342 A1 WO2020158342 A1 WO 2020158342A1 JP 2020000573 W JP2020000573 W JP 2020000573W WO 2020158342 A1 WO2020158342 A1 WO 2020158342A1
Authority
WO
WIPO (PCT)
Prior art keywords
safety
module
information
vehicle control
vehicle
Prior art date
Application number
PCT/JP2020/000573
Other languages
French (fr)
Japanese (ja)
Inventor
敏史 大塚
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112020000166.0T priority Critical patent/DE112020000166T5/en
Publication of WO2020158342A1 publication Critical patent/WO2020158342A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • B60W2420/408
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles

Definitions

  • the present invention relates to a vehicle control device and a vehicle control system.
  • Patent Document 1 As background art of this technical field, there is JP-A-2018-62244 (Patent Document 1).
  • the problem is "calculate an ideal travel route that is more excellent in running efficiency and comfort in automatic driving or driving assistance.”
  • the vehicle control device 10 is a vehicle
  • the vehicle control device 10 includes a left/right boundary line generation unit 100 that calculates left/right boundary lines LB and RB in a traveling path on which the vehicle 11 travels. Further, the vehicle control device 10 sets a constraint point X through which the vehicle 11 travels in the range of the left and right boundary lines LB and RB, and further, with the constraint point X as a constraint condition, the difference between the curvature, the traveling distance, and the center line is set. It has an ideal travel route generation unit 110 that calculates the minimum ideal travel route IDR.” A vehicle control device is disclosed.
  • the above-mentioned conventional technology does not describe a method of enhancing the reusability of the system by making each of the logical architecture structures of the hierarchical automated driving system independently operable.
  • Safety perspective is especially important for automated driving systems and driving support systems, and it is important to reuse safety-related modules among multiple products, reduce development costs, and improve reliability based on operational results.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to ensure the safety of an automatic driving system and to enable the construction of an automatic driving system that facilitates reuse. And to provide a vehicle control system.
  • one embodiment of the present invention may use the technical idea described in the claims, for example. That is, one embodiment of the present invention is a vehicle control device for controlling a vehicle, which includes a recognition device configured by a sensor provided in a vehicle and a communication device that communicates with the outside.
  • An automatic driving control module that generates trajectory information using input information of at least one of a recognition device and the communication device, trajectory information generated by the automatic driving control module, and input of at least one of the recognition device and the communication device
  • the safety judgment is performed based on the predicted safety map of the result of behavior prediction of the surrounding objects using the information, and when the result of the safety judgment is safe, the trajectory information is output, and the result of the safety judgment Is not safe, the predictive safety independent of the automatic driving control module, which outputs predictive safe trajectory information which is trajectory information generated based on the input information of at least one of the recognition device or the communication device and the predictive safety map.
  • a module that generates trajectory information using input information of at least one of a recognition device and the communication device, trajectory information generated by the automatic driving control module, and input of at least one of the recognition device and the communication device.
  • an automatic driving control module that outputs trajectory information for performing automatic driving, an independent behavior of the automatic driving control module, predict behavior of an object, and output the automatic driving control module.
  • Predictive safety module that determines the safety of orbit information or user operation information, and a configuration that combines a safety condition determination module that performs safety condition determination on the trajectory information output from the predictive safety module and outputs trajectory information Therefore, it becomes possible to construct an automatic driving system that is easy to reuse and can provide the safety of the automatic driving system as needed.
  • a vehicle system is an example of a physical architecture of a vehicle control system. It is an example of composition of ECU. It is an example of composition of a software component. 1 is an example of a logical architecture of a vehicle control system.
  • A) is an example of external world recognition
  • (b) is an example of an external world recognition map. It is an example of orbital information.
  • (A) is an example of track information
  • (b) is an example of travel guidance area information and track information.
  • a logical architecture of a vehicle control system based on a modification of the module configuration.
  • 6 is another example of the logical architecture of the vehicle control system based on the modification of the module configuration.
  • (A), (b) is an example of arrangement of the logical architecture of the vehicle control system to the physical architecture.
  • 6 is an example of a logical architecture of a vehicle control system according to a second embodiment.
  • the present embodiment mainly describes an evaluation device for a vehicle control system, and is suitable for implementation in evaluation of a vehicle system equipped with the vehicle control system, but it does not prevent application to other applications.
  • FIG. 1 is an outline of a vehicle system having a vehicle control system (vehicle control device) according to this embodiment.
  • Reference numeral 1 is a vehicle system having a vehicle control system inside such as an automobile, and 2 is, for example, an in-vehicle network (CAN: Controller Area Network, CANFD: CAN with Flexible Data-rate, Ethernet (registered trademark), etc.) and a controller (ECU: A vehicle control system 3 configured by an Electronic Control Unit, etc., wirelessly communicates with the outside of the vehicle system 1 (that is, the own vehicle) (for example, mobile phone communication, wireless LAN, WAN, C2X (CartoX: vehicle pair).
  • CAN Controller Area Network
  • CANFD Controller Area Network
  • Ethernet registered trademark
  • ECU A vehicle control system 3 configured by an Electronic Control Unit, etc., wirelessly communicates with the outside of the vehicle system 1 (that is, the own vehicle) (for example, mobile phone communication, wireless LAN, WAN, C2X (CartoX: vehicle pair).
  • OBD diagnostic terminal
  • Ethernet terminal external recording medium
  • external recording medium for example, USB memory, SD card, etc.
  • a driving device such as an actuator for driving an electric device (for example, an engine, a transmission, a wheel, a brake, a steering device, etc.), 6 outputs information for acquiring information input from the outside and generating the information.
  • a camera a radar, an LIDAR (Light Detection and Ranging), an external sensor such as an ultrasonic sensor, and a mechanical sensor for recognizing the state of the vehicle system 1 (motion state, position information, acceleration, wheel speed, etc.).
  • the recognition device 7, which is connected to the network system by wire or wirelessly, receives data transmitted from the network system, and displays or outputs necessary information such as message information (eg, video, sound), liquid crystal display, warning
  • the output device 8 such as a lamp and a speaker, 8 is, for example, a steering wheel, a pedal, a button, a lever, a touch panel, or the like for generating an input signal for the user to input an operation intention or an instruction to the vehicle control system 2.
  • the input device 9 is a vehicle system 1 for the outside world. It shows a notification device such as a lamp, an LED, a speaker or the like for notifying both states and the like.
  • the vehicle control system 2 includes other vehicle control systems 4 provided in the vehicle system 1 (that is, the own vehicle), a communication device 3, a drive device 5, a recognition device 6, an output device 7, an input device 8, a notification device 9, and the like. It is connected to and sends and receives information.
  • FIG. 2 shows an example of the physical architecture of the vehicle control system 2.
  • the physical architecture 300 is also called an H/W (Hardware) configuration.
  • Reference numeral 301 is a network link connecting network devices on the vehicle-mounted network, for example, a network link such as a CAN bus, 302 is a network link 301 and network links other than the driving device 5, the recognition device 6, and the network link 301 (dedicated line ECU) which is connected to (including) and controls the drive device 5 and the recognition device 6, acquires information, and transmits/receives data to/from the network.
  • the ECU also plays a role of a gateway (hereinafter referred to as GW) that connects a plurality of network links 301 and transmits/receives data to/from each network link.
  • GW gateway
  • Examples of the network topology include, in addition to the bus type example in which a plurality of ECUs are connected to the two buses shown in FIG. 2, a star type in which a plurality of ECUs are directly connected to the GW, or an ECU in a series of links. There are a link type connected in a ring shape, a mixed type in which each type is mixed and a plurality of networks are combined, and the like.
  • the ECU 302 controls output of control signals to the drive device 5, acquisition of information from the recognition device 6, output of control signals and information to the network, change of internal state, etc. based on data received from the network. Perform processing.
  • FIG. 3 shows an example of the internal configuration of the ECU 302.
  • Reference numeral 401 denotes a processor such as a CPU that has a storage element such as a cache or a register and executes control
  • 402 denotes data for the drive device 5 and/or the recognition device 6 connected to the network link 301 or the network or a dedicated line.
  • I/O Input/Output
  • 403 is a timer that manages time and time using a clock (not shown)
  • 404 is a ROM (Read Only Memory) that stores programs and nonvolatile data.
  • 405 is a RAM (Random Access Memory) for storing programs and volatile data
  • 406 is an internal bus used for communication inside the ECU 302. The logical functions described below are executed by the processor 401.
  • FIG. 4 shows the configuration of software components operating in the processor 401.
  • a communication management unit 502 manages the operation and status of the I/O 402, and issues an instruction to the I/O 402 via the internal bus 406.
  • a time management 503 manages the timer 403 and acquires and controls time information.
  • Reference numeral 501 denotes a control unit that analyzes data acquired from the I/O 402 and controls the entire software component.
  • 504 denotes a data table that holds information such as an external world recognition map described later.
  • 505 denotes temporary data. Represents a buffer that holds.
  • FIG. 4 shows the operation concept on the processor 401, and the information necessary for the operation is appropriately acquired from the ROM 404 and the RAM 405 or is appropriately written to the ROM 404 and the RAM 405 to operate.
  • Each function of the vehicle control system 2 described later is executed by the control unit 501.
  • FIG. 5 shows a case where the vehicle control system 2 has three layers, which are modules that can operate independently of each other, which are an automatic driving control module, a predictive safety module, and a safety condition determination module, which will be described later.
  • Reference numeral 600 denotes the entire logical architecture related to this embodiment of the vehicle control system 2.
  • An automatic driving control module 601 acquires information (input information) from one or a plurality of recognition devices 6 and/or communication devices 3 and generates orbit information (orbit information for automatic driving) described later. Obtains information (input information) from one or a plurality of recognition devices 6 and/or communication devices 3, and further, the automatic driving control module 601 or a user operation (a user operation will be described in detail later with reference to FIG. 13). ), the predictive safety module for inputting the orbital information according to ), determining the predictive safety described later, and outputting the orbital information (predictive safe orbital information), 603 is provided from one or more recognition devices 6 and/or the communication device 3.
  • the information is acquired, and the trajectory information by the predictive safety module 602 or the user operation (the user operation will be described later in detail with reference to FIG. 14) is input, and the conditional safety determination described below is performed to obtain the trajectory information.
  • the safety condition determination module 604 outputs a motion control value from the trajectory information from the safety condition determination module 603 and the vehicle motion information from the recognition device 6, and controls the drive device 5 to drive the vehicle. 2 shows a vehicle motion control unit that outputs information.
  • the automatic driving control module 601 acquires information from the recognition device 6 and/or the communication device 3, performs a peripheral recognition process described below, and outputs a peripheral recognition information described below, a peripheral recognition unit 611 and a peripheral recognition unit.
  • the external world recognition information from 611 is acquired, the recognition processing described below is performed, and the external world recognition map from the recognition processing unit 612 and the recognition processing unit 612 that outputs the external world recognition map described below is acquired, and trajectory information is generated and predicted. It is configured by a trajectory generation unit 613 which outputs the safety judgment unit 623.
  • the predictive safety module 602 acquires information from the recognition device 6 and/or the communication device 3, performs peripheral recognition processing, and outputs external world recognition information from the predictive safety recognition unit 621 and the predictive safety recognition unit 621.
  • a predictive safety planning unit 622 that acquires the external environment recognition information that is output and outputs a predictive safety map and predictive safe trajectory information described below, a predictive safety map and predictive safety trajectory information from the predictive safety planning unit 622, and the trajectory generation.
  • the orbit information output by the unit 613 or the orbit information by the user operation (the user operation will be described later in detail with reference to FIG. 13) is received, the prediction safety determination described below is performed, and appropriate trajectory information is determined as the safety condition determination unit. It is constituted by the predictive safety judgment unit 623, which outputs to 633 and the like.
  • the safety condition determination module 603 acquires information from the recognition device 6 and/or the communication device 3, performs peripheral recognition processing, and outputs external environment recognition information.
  • the safety condition recognition unit 631 and the safety condition recognition unit 631 Is output from the safety condition planning unit 632 and the safety condition planning unit 632 that obtains the external environment recognition information output by and outputs the safety condition control trajectory information described below for performing the control according to the determination of the safety condition described below.
  • the safety condition control trajectory information and the trajectory information output by the predictive safety control unit 623 or the trajectory information by the user operation (the user operation will be described in detail later with reference to FIG. 14) are received, and the safety condition determination described below is performed.
  • the safety condition determining unit 633 is configured to output appropriate trajectory information to the vehicle motion control unit 604 and the like.
  • ⁇ Peripheral recognition (peripheral recognition unit 611, predictive safety recognition unit 621, safety condition recognition unit 631)>
  • the type of the recognition device 6 provided in the vehicle system 1 is as described in the configuration of the vehicle control system 2, and the external world recognition information to be described later is acquired by the operation principle according to the type of each recognition device.
  • the outside world is measured using a sensor included in the recognition device 6, and a specific algorithm (for example, an image recognition algorithm for the acquired image) is applied to the measured value to acquire the outside world recognition information.
  • the measurable range is determined in advance (for example, if it is a camera, the shooting direction and vertical/horizontal angle, the recognition limit of the far distance by the number of pixels, if it is a radar, the radio wave emission angle and reception).
  • the angle (distance) or the change according to the environment is adjusted (calibration) to measure and determine the measurable range.
  • the surrounding situation of the vehicle system 1 can be confirmed by combining the external world recognition information acquired by each recognition device.
  • Fig. 6(a) shows an example of external recognition.
  • the recognition device 6 of the vehicle system 1 acquires the external world information.
  • the external world recognition information output from the recognition device 6 makes it possible to confirm what kind of object exists in the vicinity.
  • the outside world recognition information acquired by the communication device 3 includes surrounding map information (topography, roads, lane information), road traffic conditions (traffic density, under construction, etc.), other objects calculate themselves, or other It also includes trajectory information of other objects calculated by the object.
  • the external world recognition information is information representing an object observed by the recognition device 6 or an object received by the communication device 3.
  • Examples of external world recognition information include object type (stationary object (wall, white line, signal, lane, tree, etc.), dynamic object (pedestrian, car, two-wheeled vehicle, bicycle, etc.), traveling (area intrusion) Or other attribute information), relative position information (direction/distance) of the object, absolute position information (coordinates, etc.) of the object and itself, speed, direction (moving direction, face direction), acceleration, existence probability (certain) Likeness), map information, road traffic conditions, time when external environment recognition information was measured, ID of the recognition device that performed the measurement, trajectory assumed by the object, and the like.
  • the cognitive processing unit 612 performs behavior prediction, which will be described later, based on the external world recognition information, and generates an external world recognition map.
  • the external world recognition map described later can be created not only by using the currently recognized external world recognition information, but also by predicting (action prediction) from past external world recognition information. For example, after a certain period of time, if it is a stationary object, it is highly likely that it is present at the same position (not the position relative to the vehicle, but the same position on the road surface). It is possible to predict the position after a certain period of time from the acceleration, etc.
  • the recognition processing unit 612 thus predicts the behavior of the object by using the outside world recognition information.
  • FIG. 6B shows an example in which the object information is arranged for each area with respect to the orthogonal coordinate system (grid) (see FIG. 6A).
  • the object information is, for example, the content obtained by removing the position information from the example of the outside world recognition information, and is arranged in each grid.
  • the track information is information representing a track, and the track is represented by, for example, a set of coordinates of the vehicle position at fixed time intervals.
  • the trajectory is a set of motion control values (target acceleration/yaw rate) at fixed time intervals, a vector value (direction/speed) of the host vehicle at fixed time intervals, and a time for traveling a fixed distance. It can be represented by an interval or the like.
  • reference numeral 801 denotes a track, and shows a set of (future) coordinates of the own vehicle position at constant time intervals when the vehicle system 1 which is the own vehicle changes the lane to the right lane.
  • the trajectory generation unit 613 generates trajectory information using the external world recognition map output from the recognition processing unit 612. A method of generating orbit information based on the external world recognition map will be described.
  • the trajectory has safety restrictions such that the vehicle system 1 which is the own vehicle can travel safely (for example, the possibility of collision with other obstacles is low), acceleration/deceleration that can be realized by the vehicle system 1, yaw rate, etc. To satisfy the motion constraint of.
  • trajectory generation in which the own vehicle moves to the right lane will be described with reference to FIG.
  • the host vehicle satisfies the motion constraint and generates a trajectory (801 in FIG. 7) that moves to the right lane.
  • the generated trajectory calculate whether or not a collision will occur based on the predicted trajectory of other dynamic objects (for example, the current velocity and the position after a certain time at the assumed acceleration) and the trajectory of the own vehicle.
  • a trajectory that has the lowest potential in the generated potential map and that does not enter the potential area above a certain value and that satisfies the motion constraint of the own vehicle is called the generated trajectory. To do.
  • the trajectory is created based on the moving direction of the vehicle, the motion constraint, and the safety constraint, and the safety condition determination unit 633 transmits the generated trajectory to the vehicle motion control unit 604 (described later).
  • the travel guidance area information is information on the area in which the vehicle should travel. For example, if there is lane information or an obstacle from the travel route information such as what route the vehicle travels from the current location to the destination location. It is a traveling area (for example, a traveling lane) that is determined based on information such as lane regulations, traffic jams, and traveling vehicles.
  • the trajectory generation unit 613 receives the travel guidance region information as a result created by the recognition processing unit 612 from the external world recognition map, or from another control system (not shown), and the received travel guidance region information and the recognition processing unit.
  • the external world recognition map output from 612 is used to generate a trajectory.
  • the processing when the travel guidance area is a travelable area will be described.
  • the travel guidance region information is given as a travel guidance region as shown at 903 in FIG. 8B.
  • the trajectory generation unit 613 performs processing so that the generated trajectory enters the travel guidance area 903. For example, a plurality of trajectory candidates are generated forward, and among them, a trajectory that does not collide with the object in the external world recognition map and exists in the travel guidance area 903 is selected (902 in FIG. 8B). The contents other than the determination of the travel guidance area are the same as the case of the trajectory determination that does not use the travel guidance area information.
  • the track generation unit 613 thus generates track information using the travel guidance area information.
  • the predictive safety recognizing unit 621 outputs the external world recognition information similarly to the surrounding recognition unit 611.
  • the predictive safety recognizing unit 621 acquires and outputs information such as the type, position, orientation, speed, acceleration, etc. of the object, as the information particularly necessary for predicting the behavior of the object.
  • the trajectory of the object (scheduled future position) may be acquired (received) via the communication device 3.
  • Fig. 9 shows an example of the external world recognition information output here.
  • the position and direction of the vehicle system 1 which is the own vehicle, the other vehicle 1002, and the pedestrian 1003, and the speed are indicated by arrows, and the predicted safety recognition unit 621 transfers these external world recognition information to the predicted safety planning unit 622. Send.
  • the predicted safety planning unit 622 creates a predicted safety map and predicted safety trajectory information using the external world recognition information output from the predicted safety recognition unit 621.
  • the predictive safety map is a map in which the result of the behavior prediction of the object using the external world recognition information is integrated in the same format as the external world recognition map.
  • An example of the predictive safety map is shown in FIG.
  • a map that predicts where each object is located after a certain period of time based on information such as the type, position, orientation, speed, acceleration, etc. of the object, it is shown as a map that predicts where each object is located after a certain period of time.
  • a dark-colored portion is an area in which each object is highly likely to exist after a lapse of a certain time, and a light-colored area is less likely to be present in a certain time.
  • a method of predicting an action to be performed by understanding a situation such as continuous walking, changing the lane because the vehicle lights the blinker, and the like.
  • the contents to be calculated here as compared with the contents to be calculated by the recognition processing unit 612, only the information for determining the risk value as the information related to safety needs to be calculated, in other words, the surroundings here.
  • the behavior prediction of the object only the behavior prediction necessary for the determination regarding safety needs to be performed as compared with the behavior prediction of the surrounding objects in the recognition processing unit 612.
  • the detailed classification of the object vehicle type, etc.
  • the information of the traveling lane It is not necessary to process the type of stationary object. By doing so, the operation can be simplified, a relatively simple system with few errors can be constructed, and the reliability can be improved.
  • position information after a certain time such as a trajectory may be acquired from the object or another system via the communication device 3. By doing so, it is possible to improve the prediction accuracy of the future position of the object.
  • the predicted safety trajectory information is information indicating a trajectory with a low risk that the vehicle system 1 approaches an object with respect to the predicted safety map.
  • An example of the predicted safe trajectory is shown at 1202 in FIG.
  • the predictive safety planning unit 622 generates a trajectory (predictive safety trajectory) so as not to approach the object determined by the predictive safety map, for example, in the direction following the lane.
  • the trajectory generated here is, for example, a trajectory that decelerates the host vehicle so as not to be too close to another object. By doing so, it becomes possible to generate a trajectory that is not close to the predicted behavior of the object.
  • the predicted safety determination unit 623 receives the trajectory information from the trajectory generation unit 613 of the automatic driving control module 601, and receives the predicted safety map and the predicted safety trajectory information from the predicted safety planning unit 622 (S101). Then, it is determined whether the control based on the received orbit information is predictively safe (S102).
  • the predicted safety trajectory information calculated by the predicted safety planning unit 622 is output (S103).
  • the trajectory information received from the automatic driving control module 601 is output (S104).
  • the predictive safety determination unit 623 can output the trajectory information that is determined to be safe in the predictive safety map of the result of predicting the behavior of the object.
  • the predicted safety recognition unit 621 acquires information about the road traffic law as external information, notifies the predicted safety planning unit 622 and the predicted safety determination unit 623, and the track violates the information about the road traffic law. Determine if there is not. By doing so, it becomes possible to make a safer determination according to the surrounding conditions such as the Road Traffic Law.
  • the orbit information received from the automatic driving control module 601 is not safe, an abnormality may occur in the automatic driving control module 601. Therefore, the orbit information is safe.
  • the warning which is not present is notified to the user via the output device 7, another vehicle via the notification device 9, or another system via the communication device 3.
  • the other vehicle control system 4 is notified, and another safety control (for example, shift to degeneration control) or recording of an operation log is performed.
  • the process of the predictive safety module 602 is only the process of determining the safety of the input trajectory information, the input and output trajectories have the same structure (trajectory density, time from start end to end end, etc.). Is. That is, the trajectory information output by the predictive safety module 602 has the same structure as the trajectory information generated by the automatic driving control module 601 which is the input information.
  • the predictive safety module 602 is different only in the portion that determines the safety of the input trajectory information and outputs the trajectory information.
  • the predictive safety determination unit 623 may output the trajectory information received from the automatic driving control module 601 in a corrected form when determining that the trajectory information received from the automatic driving control module 601 is not safe. .. For example, when the current track is too close to the preceding vehicle, the position of the track point is corrected to a decelerating track, and the track received from the automatic driving control module 601 in a direction in which no risk occurs in the predicted safety map. May be corrected. By doing so, it is possible to reduce the amount of calculation for separately calculating the predicted safe trajectory information while improving safety.
  • Safety condition recognition unit 631 performs the same process as the surrounding recognition unit 611 and outputs the external world recognition information.
  • the outside world recognition information output by this safety condition recognition is information used for a safety condition plan and a safety condition determination described later
  • the information amount and the calculation are larger than the information processed by the peripheral recognition unit 611 and the predicted safety recognition unit 621.
  • the amount is small (for example, a process that uses only the input information of the recognition device 6 and does not use the input information of the communication device 3), the process is simplified, and the mounting error is small, and highly reliable mounting is possible.
  • Safety condition planning unit 632 uses the external environment recognition information output by the safety condition recognizing unit 631 to plan a control that satisfies the safety condition.
  • the distance to the front and surrounding objects included in the outside world recognition information the speed and acceleration of the opponent vehicle and the own vehicle, the assumed maximum and minimum speeds, acceleration, and acceleration/deceleration when necessary.
  • the reaction time it is determined whether or not the host vehicle collides with an object in the vicinity or approaches a near distance when the control is continued in the current situation.
  • the trajectory that accelerates in the opposite direction to the approaching direction is output as safety condition control trajectory information.
  • Safety condition determination unit 633 When the safety condition planning unit 632 outputs the safety condition control trajectory information, the safety condition determination unit 633 determines that the current traveling state is in a risky state by the determination based on the safety condition, and the safety condition control trajectory information is obtained. Output to the vehicle motion control unit 604. Further, when the safety condition planning unit 632 does not output the safety condition control trajectory information, it is determined that the current traveling state is a risk-free state by the determination based on the safety condition, and the trajectory output by the predictive safety determination unit 623. The information is output to the vehicle motion control unit 604. In this way, the safety condition determination unit 633 outputs trajectory information that satisfies the safety condition (that is, trajectory information corresponding to a signal for performing vehicle control according to the safety condition determination).
  • the vehicle motion control unit 604 controls the drive device 5 so as to realize the trajectory information output by the safety condition determination unit 633.
  • the target state and the yaw rate of the vehicle system 1 are calculated by reflecting the system state (current speed, acceleration, yaw rate, etc.) of the vehicle system 1 acquired from the recognition device 6 so that the trajectory can be followed. To do.
  • necessary control of the drive device 5 is performed. For example, increasing the output of engine torque or motor torque, controlling the brakes to decelerate, steering the steer to achieve the target yaw rate, or braking individual wheels so that the wheel speeds are uneven. ⁇ Control acceleration.
  • the vehicle control system 2 of the vehicle system 1 realizes vehicle control capable of following the target trajectory.
  • FIG. 13 shows an example in which the predictive safety module 602 and the safety condition determination module 603 are combined and used as, for example, a driving support system
  • FIG. 14 shows an example in which only the safety condition determination module 603 is used as a driving support system. ing.
  • the vehicle system is the own vehicle.
  • the operation of the user driving No. 1 is input to the predicted safety determination unit 623 from the input device 8.
  • the trajectory is the position of the own vehicle in the future, but since it is an operation input in the case of a user operation, the position of the own vehicle in the future is predicted from the operation input (for example, the current steering angle and the change amount of the steering angle in the lateral direction).
  • the amount of change in the vertical direction is predicted from the amount of depression of the accelerator pedal or brake pedal and the amount of change in the amount of depression, and the position of the host vehicle after a certain time has elapsed is predicted. Makes a decision (approximating as a trajectory).
  • the other processes are the same as those in the above example.
  • the input of the safety condition determination unit 633 of the safety condition determination module 603 becomes the operation input of the user from the input device 8.
  • the position of the future own vehicle is predicted from the user's operation instead of the trajectory, and is used as an approximate trajectory.
  • the automatic driving control module 601 (orbit information output by the) is used, it can be used as a module that makes automatic driving safe, and also as a driving support system when the user drives.
  • the same safety control can be performed, and the predictive safety module 602 can be further combined to perform processing depending on whether or not predictive safety is required, and a system that can be easily expanded and reused can be constructed. It will be possible.
  • the conversion from the user operation input to the trajectory may not be performed by the predictive safety determination unit 623 and the safety condition determination unit 633, but may be performed outside each of them. By doing so, it is not necessary to change the predictive safety determination unit 623 and the safety condition determination unit 633, and the reuse becomes easier.
  • switching between these modules is not only performed in another product, but also in one product in automatic operation mode (system performs operation control) and driving support mode (user performs operation control). You may use it.
  • the processes of the predictive safety module 602 and the safety condition determination module 603 are made common in each mode, and it is possible to improve the reliability of the system by the ease of switching and the commonization.
  • FIG. 15A shows an arrangement example (see also FIG. 5) when the vehicle control system 2 has all three layers of the automatic driving control module 601, the predictive safety module 602, and the safety condition determination module 603, and
  • FIG. b shows an arrangement example (see also FIG. 13) when the vehicle control system 2 has the predictive safety module 602 and the safety condition determination module 603.
  • the arrangement of the functions is not limited to this, and the respective functions may be arranged in ECUs different from those described.
  • each module not all functions of each module are arranged in one ECU.
  • the peripheral recognition unit 611, the recognition processing unit 612, and the trajectory generation unit 613 of the automatic driving control module 601 are arranged in different ECUs. May be.
  • a plurality of modules may be arranged in the same ECU, for example, the predictive safety module 602 and the safety condition determination module 603 may be arranged in the same ECU.
  • the safety condition recognition unit 631, the safety condition planning unit 632, and the safety condition determination unit 633 are arranged in the same ECU as the safety condition determination module 603 in the example of FIGS. 15A and 15B.
  • the configurations of the ECU and the module are the same in the cases of FIG. 15(a) and FIG. 15(b), and reuse is easier.
  • the automatic driving control module 601 and the automatic driving control module 601 are provided so as not to cause a failure due to a common cause.
  • the predictive safety module 602 and the safety condition determination module 603 are preferably arranged in different ECUs or processors, or designed so as not to depend on each other inside the processor.
  • the predictive safety module 602 can be used as a module for independently determining the safety because it inputs the trajectory information and outputs the trajectory information for which the safety is determined. For example, by connecting an ECU having the predictive safety module 602 and inputting and outputting the trajectory information generated by another automatic driving control module 601 to the ECU, it is possible to additionally determine the safety.
  • the safety condition determination module 603 imparts higher reliability than the other predictive safety module 602 and the automatic driving control module 601, or the same reliability as the predictive safety module 602 and higher reliability than the automatic driving control module 601, and thus the safety of the entire system. It is useful to use as a mechanism. Thereby, for example, the safety condition determination module 603 prevents an unsafe event from occurring due to the determination of the safety condition determination module 603 even when the predictive safety module 602 or the automatic driving control module 601 performs an erroneous process. It will be possible.
  • the predictive safety module 602 can deal with an error of the automatic driving control module 601 including the behavior prediction of the object which is difficult to prevent only by the safety condition determination module 603. Therefore, it is useful that the predictive safety module 602 secures safety with higher reliability than the automatic driving control module 601 while performing complicated processing with reliability not higher than the safety condition determination module 603.
  • the automatic operation control module 601 has a relatively low reliability, it is possible to design without impairing the reliability of the entire system, and it is possible to achieve high reliability and low cost of the entire system.
  • FIG. 16 is used for an example (Embodiment 2) in which the predictive safety planning unit 622 of the predictive safety module 602 and the trajectory generation unit 613 of the automatic driving control module 601 grasp the judgment conditions of the respective modules and make a plan.
  • FIG. 16 shows an example of the logical architecture of the vehicle control system 2 according to the second embodiment.
  • the same components as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
  • the first example is an example in which the predictive safety planning unit 622 of the predictive safety module 602 grasps the determination conditions of the safety condition determining unit 633 and makes a plan.
  • the predicted safety planning unit 622 recognizes under what conditions the safety condition determining unit 633 determines the safety. Specifically, it is under what conditions the distance, speed, and acceleration with respect to the preceding vehicle are controlled for deceleration. By grasping this determination condition, the predicted safety planning unit 622 generates predicted safety trajectory information that is not determined to be unsafe according to the determination condition.
  • the trajectory generation unit 613 of the automatic driving control module 601 grasps the determination content of the predicted safety determination unit 623 and the determination content of the safety condition determination unit 633, and obtains the trajectory information that each determination unit does not determine to be unsafe. To generate.
  • the determination of the determination condition by the safety condition determination unit 633 is as described above.
  • the predictive safety map output by the predictive safety planning unit 622 is received, and the judgment content (the threshold value of the predictive safety map etc.) of the predictive safety judgment unit 623 is acquired. It is determined in advance whether or not the generated trajectory information is determined to be unsafe according to the determination content of the predictive safety determination unit 623.
  • the predictive safety module 602 generates trajectory information that does not satisfy the determination condition of the safety condition determining module 603, and the automatic driving control module 601 causes the predictive safety module 602 and the safety condition determining module 603 to operate.
  • the trajectory information that does not satisfy the determination condition is generated, and the vehicle system 1 becomes in a state in which the control cannot be performed as expected due to, for example, unexpected control (unnecessary avoidance cannot be performed, control becomes unstable due to unexpected braking, etc.). ) Can be prevented.
  • the information may be directly acquired from each of the judgment units, but also the communication may be acquired from the outside that separately grasps the information.
  • the safety of the orbit information is determined based on the information of the automatic operation control module 601 that generates the orbit information and the behavior of surrounding objects, and if necessary.
  • Predictive safety module 602 that outputs predicted safety trajectory information
  • safety condition determination module 603 that determines safety conditions and outputs safety condition control trajectory information when it is determined to be unsafe by the safety condition determination module 603. Therefore, the vehicle control system 2 can be constructed in such a manner that each property can be secured and each can be reused.
  • the predictive safety module 602 makes a determination using the predictive safety map obtained as a result of the safety prediction of the surrounding objects with respect to the input trajectory information, and the safe trajectory information (input trajectory information, or By outputting the generated predicted safe trajectory information), even if the automatic driving control module 601 generates erroneous trajectory information, it is possible to continue the control safely and detect an abnormality. With this configuration, reuse becomes easy.
  • the predictive safety module 602 which is relatively simple in processing, is used for the automatic driving control module 601 to determine the safety, so that a simple structure is provided for simple processing, and high reliability is facilitated. .. This allows the automatic operation control module 601 to execute complicated processing. The same applies to the predicted safety module 602 and the safety condition determination module 603.
  • the predictive safety module 602 and the safety condition determination module are approximated by approximating the operation of the user driving the own vehicle to the trajectory. It becomes easy to construct the vehicle control system 2 by reusing the 603.
  • the automatic driving control module 601, the predictive safety module 602, and the safety condition determination module 603, which are each independently operable, generate trajectory information after grasping mutual determination conditions. It is also possible to avoid destabilization of control due to inconsistency of each state.
  • the vehicle control system (vehicle control device) 2 includes the automatic driving control module 601 that generates the trajectory information by using the input information of at least one of the recognition device 6 and the communication device 3, and the automatic driving.
  • the safety determination is performed based on the trajectory information generated by the control module 601 and the predicted safety map of the result of behavior prediction of the surrounding objects using the input information of at least one of the recognition device 6 and the communication device 3, and When the result of the safety judgment is safe, the trajectory information is output, and when the result of the safety judgment is not safe, the input information of at least one of the recognition device 6 and the communication device 3 and the predicted safety map.
  • a predictive safety module 602 independent of the automatic driving control module 601 for outputting predictive safe trajectory information which is trajectory information generated based on the above. Further, it further comprises a safety condition determination module 603 that outputs a signal for performing vehicle control according to a predetermined safety condition determination from the trajectory information output by the predictive safety module 602 and the input information of the recognition device 6. is there.
  • an automatic operation control module 601 that outputs trajectory information for performing automatic operation, and independent of the automatic operation control module 601, perform behavior prediction of an object
  • a predictive safety module 602 that determines the safety of the trajectory information or user operation information output by the automatic driving control module 601, and a safety condition determination is performed on the trajectory information output from the predictive safety module 602, and trajectory information is output.
  • the present invention is not limited to the above-described embodiments, but includes various modifications.
  • the above-described embodiments have been described in detail for the purpose of explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • other configurations can be added/deleted/replaced.
  • each of the above-mentioned configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them with, for example, an integrated circuit. Further, each of the above-described configurations, functions, and the like may be realized by software by a processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files for realizing each function can be stored in a memory, a storage device such as a hard disk, SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • a storage device such as a hard disk, SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines are shown to be necessary for explanation, and not all control lines and information lines are shown on the product. In practice, it may be considered that almost all configurations are connected to each other.
  • Vehicle system 2 Vehicle control system (vehicle control device) 3 Communication Device 4 Vehicle Control System 5 Drive Device 6 Recognition Device 7 Output Device 8 Input Device 9 Notification Device 300 Physical Architecture 301 Network Link 302 ECU 401 processor 402 I/O 403 Timer 404 ROM 405 RAM 406 Internal bus 501 Control unit 502 Communication supervision unit 503 Time management unit 504 Data table 505 Buffer 600 Logical architecture 601 Automatic driving control module 602 Predictive safety module 603 Safety condition determination module 604 Vehicle motion control unit 611 Peripheral recognition unit 612 Cognitive processing unit 613 Trajectory generation unit 621 Predicted safety recognition unit 622 Predicted safety planning unit 623 Predicted safety judgment unit 631 Safety condition recognition unit 632 Safety condition planning unit 633 Safety condition judgment unit 801 Track 901 Track 902 Track 903 Driving guidance area 1002 Other vehicle 1003 Pedestrian 1202 Predicted safe orbit 1301 orbit

Abstract

The objective of the present invention is to construct a vehicle control device and a vehicle control system for which the reuse of a driving assistance system or an automatic driving system and the switching of automatic driving control is simplified. From the viewpoint of safety, which is particularly critical in an automatic driving system or a driving assistance system, it is critical to ensure safety even when an error occurs in an automatic driving system process. A vehicle control device has: an automatic driving control module 601 that uses input information from a recognition device 6 and/or a communication device 3 to generate trajectory information; and a predicted safety module 602 that is independent from the automatic driving control module 601, and carries out a safety determination on the basis of the trajectory information generated by the automatic driving control module 601 and a predicted safety map resulting from when the input information from the recognition device 6 and/or the communication device 3 is used to predict a behavior of a peripheral object. The predicted safety module outputs the trajectory information when the result of the safety determination is a safe result, and outputs predicted safe trajectory information, which is trajectory information generated on the basis of the predicted safety map and the input information from the recognition device 6 and/or the communication device 3, when the result of the safety determination is an unsafe result. In addition, a safety condition module 603 is provided for outputting a signal for carrying out a vehicle control in accordance with a prescribed safety condition determination which is based on the trajectory information output by the predicted safety module 602 and the input information from the recognition device 6.

Description

車両制御装置および車両制御システムVehicle control device and vehicle control system
 本発明は、車両制御装置および車両制御システムに関する。 The present invention relates to a vehicle control device and a vehicle control system.
 本技術分野の背景技術として、特開2018-62244号公報(特許文献1)がある。この特許文献1には、「自動運転又は運転支援において、より走行効率及び快適性に優れた理想走行経路を算出する。」ことを課題とし、解決手段として、「車両制御装置10は、自車11に搭載され、自動運転又は運転支援を実施可能に構成される。この車両制御装置10は、自車11が走行する走行路における左右境界線LB、RBを算出する左右境界線生成部100を備える。また車両制御装置10は、左右境界線LB、RBの範囲で自車11が通行する拘束点Xを設定し、さらに拘束点Xを制約条件として曲率、走行距離、中心線との差分が最小となる理想走行経路IDRを算出する理想走行経路生成部110を有する。」車両制御装置が開示されている。 As background art of this technical field, there is JP-A-2018-62244 (Patent Document 1). In Patent Document 1, the problem is "calculate an ideal travel route that is more excellent in running efficiency and comfort in automatic driving or driving assistance." As a solution, "the vehicle control device 10 is a vehicle The vehicle control device 10 includes a left/right boundary line generation unit 100 that calculates left/right boundary lines LB and RB in a traveling path on which the vehicle 11 travels. Further, the vehicle control device 10 sets a constraint point X through which the vehicle 11 travels in the range of the left and right boundary lines LB and RB, and further, with the constraint point X as a constraint condition, the difference between the curvature, the traveling distance, and the center line is set. It has an ideal travel route generation unit 110 that calculates the minimum ideal travel route IDR.” A vehicle control device is disclosed.
特開2018-62244号公報Japanese Patent Laid-Open No. 2018-62244
 上記従来技術では、階層化された自動運転システムの論理アーキテクチャの構造について、それぞれを独立に動作可能とすることにより、システムの再利用性を高める方法については記載されていない。 The above-mentioned conventional technology does not describe a method of enhancing the reusability of the system by making each of the logical architecture structures of the hierarchical automated driving system independently operable.
 特に自動運転システムおよび運転支援システムでは安全性の観点が重要であり、安全に関するモジュールを複数製品間で再利用を行い、開発コストを下げ、動作実績により信頼性を向上することが重要となる。 Safety perspective is especially important for automated driving systems and driving support systems, and it is important to reuse safety-related modules among multiple products, reduce development costs, and improve reliability based on operational results.
 また、自動運転システムの制御処理は複雑であるため、誤りを含む可能性もあり、そのような誤りが発生した場合でも安全性を確保することが重要となる。 Also, since the control process of the automatic driving system is complicated, there is a possibility that it may include an error, and it is important to ensure safety even if such an error occurs.
 本発明は、上記状況に鑑みてなされたものであり、その目的とするところは、自動運転システムの安全性を確保し、再利用が容易となる自動運転システムの構築を可能とする車両制御装置および車両制御システムを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to ensure the safety of an automatic driving system and to enable the construction of an automatic driving system that facilitates reuse. And to provide a vehicle control system.
 上記課題を解決するために、本発明の一実施の態様は、例えば特許請求の範囲に記載されている技術的思想を用いればよい。すなわち、本発明の一実施の態様は、自車に設けられたセンサにより構成される認識装置および外部との通信を実施する通信装置を備えた車両の制御を行う車両制御装置であって、前記認識装置または前記通信装置の少なくとも一方の入力情報を用いて軌道情報を生成する自動運転制御モジュールと、前記自動運転制御モジュールが生成する軌道情報と、前記認識装置または前記通信装置の少なくとも一方の入力情報を用いて周囲のオブジェクトを行動予測した結果の予測安全マップとに基づき安全性判定を行い、前記安全性判定の結果が安全の場合には前記軌道情報を出力し、前記安全性判定の結果が安全でない場合には前記認識装置または前記通信装置の少なくとも一方の入力情報並びに前記予測安全マップに基づき生成した軌道情報である予測安全軌道情報を出力する、前記自動運転制御モジュールと独立した予測安全モジュールと、を有することを特徴とする。 In order to solve the above problems, one embodiment of the present invention may use the technical idea described in the claims, for example. That is, one embodiment of the present invention is a vehicle control device for controlling a vehicle, which includes a recognition device configured by a sensor provided in a vehicle and a communication device that communicates with the outside. An automatic driving control module that generates trajectory information using input information of at least one of a recognition device and the communication device, trajectory information generated by the automatic driving control module, and input of at least one of the recognition device and the communication device The safety judgment is performed based on the predicted safety map of the result of behavior prediction of the surrounding objects using the information, and when the result of the safety judgment is safe, the trajectory information is output, and the result of the safety judgment Is not safe, the predictive safety independent of the automatic driving control module, which outputs predictive safe trajectory information which is trajectory information generated based on the input information of at least one of the recognition device or the communication device and the predictive safety map. And a module.
 本発明によれば、論理アーキテクチャについて、自動運転を行うための軌道情報を出力する自動運転制御モジュールと、前記自動運転制御モジュールと独立し、オブジェクトの行動予測を行い、前記自動運転制御モジュールの出力する軌道情報またはユーザ操作情報の安全性判定を行う予測安全モジュール、また、前記予測安全モジュールから出力される軌道情報について安全条件判断を行い、軌道情報を出力する安全条件判定モジュールを組み合わせた構成により、再利用が容易かつ必要に応じた自動運転システムの安全性の提供が可能となる自動運転システムの構築が可能となる。 According to the present invention, with respect to the logical architecture, an automatic driving control module that outputs trajectory information for performing automatic driving, an independent behavior of the automatic driving control module, predict behavior of an object, and output the automatic driving control module. Predictive safety module that determines the safety of orbit information or user operation information, and a configuration that combines a safety condition determination module that performs safety condition determination on the trajectory information output from the predictive safety module and outputs trajectory information Therefore, it becomes possible to construct an automatic driving system that is easy to reuse and can provide the safety of the automatic driving system as needed.
 上記した以外の課題、構成および効果については、以下の実施形態の説明により明らかにされる。 The problems, configurations and effects other than those described above will be clarified by the following description of the embodiments.
車両システムの例である。It is an example of a vehicle system. 車両制御システムの物理アーキテクチャの例である。1 is an example of a physical architecture of a vehicle control system. ECUの構成例である。It is an example of composition of ECU. ソフトウェアコンポーネントの構成例である。It is an example of composition of a software component. 車両制御システムの論理アーキテクチャの例である。1 is an example of a logical architecture of a vehicle control system. (a)は外界認識の例、(b)は外界認識マップの例である。(A) is an example of external world recognition, (b) is an example of an external world recognition map. 軌道情報の例である。It is an example of orbital information. (a)は軌道情報の例、(b)は走行誘導領域情報および軌道情報の例である。(A) is an example of track information, (b) is an example of travel guidance area information and track information. 外界認識の例である。It is an example of external recognition. 予測安全マップの例である。It is an example of a prediction safety map. 予測安全軌道情報の例である。It is an example of predicted safe trajectory information. 予測安全判断部のフローチャートの例である。It is an example of the flowchart of a prediction safety judgment part. モジュール構成の変更に基づく車両制御システムの論理アーキテクチャの一例である。It is an example of a logical architecture of a vehicle control system based on a modification of the module configuration. モジュール構成の変更に基づく車両制御システムの論理アーキテクチャの他例である。6 is another example of the logical architecture of the vehicle control system based on the modification of the module configuration. (a)、(b)は車両制御システムの論理アーキテクチャの物理アーキテクチャへの配置例である。(A), (b) is an example of arrangement of the logical architecture of the vehicle control system to the physical architecture. 実施例2にかかる車両制御システムの論理アーキテクチャの例である。6 is an example of a logical architecture of a vehicle control system according to a second embodiment.
 以下、本発明に好適な実施形態の例(実施例)を図面を用いて説明する。本実施例は、主には車両制御システムの評価装置について説明しており、当該車両制御システムを搭載した車両システムの評価における実施に好適であるが、それ以外への適用を妨げるものではない。 Hereinafter, an example (example) of a preferred embodiment of the present invention will be described with reference to the drawings. The present embodiment mainly describes an evaluation device for a vehicle control system, and is suitable for implementation in evaluation of a vehicle system equipped with the vehicle control system, but it does not prevent application to other applications.
[実施例1]
<車両制御システムの構成>
 評価を行う車両制御システム(車両制御装置)の構成を示す。図1は、本実施例による車両制御システム(車両制御装置)を有する車両システムの概要である。
[Example 1]
<Vehicle control system configuration>
1 shows the configuration of a vehicle control system (vehicle control device) for evaluation. FIG. 1 is an outline of a vehicle system having a vehicle control system (vehicle control device) according to this embodiment.
 1は、自動車など内部に車両制御システムを有する車両システム、2は、例えば車載ネットワーク(CAN:Controller Area Network、CANFD:CAN with Flexible Data-rate、Ethernet(登録商標)、等)とコントローラ(ECU:Electronic Control Unit等)により構成される車両制御システム、3は、車両システム1(つまり、自車)の外部と無線通信(例えば携帯電話の通信、無線LAN、WAN、C2X(Car to X:車両対車両または車両対インフラ通信)等のプロトコルを使用した通信、またはGPS(Global Positioning System)、GNSS(Global Navigation Satellite System)を用いた通信を行い、外界(インフラ、他車、地図)の情報または自車に関する情報を取得・送信などする無線通信)を実施、または診断端子(OBD)やEthernet端子、外部記録媒体(例えばUSBメモリ、SDカード、等)端子などを有し、車両制御システム2と通信を実施する通信装置、4は、例えば車両制御システム2と異なる、または同一のプロトコルを用いたネットワークにより構成される車両制御システム、5は、車両制御システム2の制御に従い、車両運動を制御する機械および電気装置(例えばエンジン、トランスミッション、ホイール、ブレーキ、操舵装置等)の駆動を行うアクチュエータ等の駆動装置、6は、外界から入力される情報を取得して情報を生成するための情報を出力する、カメラ、レーダ、LIDAR(Light Detection and Ranging)、超音波センサなどの外界センサ、および、車両システム1の状態(運動状態、位置情報、加速度、車輪速度等)を認識する力学系センサにより構成される認識装置、7は、ネットワークシステムに有線または無線で接続され、ネットワークシステムから送出されるデータを受信し、メッセージ情報(例えば映像、音)など必要な情報を表示または出力する、液晶ディスプレイ、警告灯、スピーカなどの出力装置、8は、ユーザが車両制御システム2に対して、操作の意図や指示を入力する入力信号を生成するための、例えばステアリング、ペダル、ボタン、レバー、タッチパネル、等の入力装置、9は、車両システム1が外界に対して、車両の状態等を通知するための、ランプ、LED、スピーカ等の通知装置、を示している。 Reference numeral 1 is a vehicle system having a vehicle control system inside such as an automobile, and 2 is, for example, an in-vehicle network (CAN: Controller Area Network, CANFD: CAN with Flexible Data-rate, Ethernet (registered trademark), etc.) and a controller (ECU: A vehicle control system 3 configured by an Electronic Control Unit, etc., wirelessly communicates with the outside of the vehicle system 1 (that is, the own vehicle) (for example, mobile phone communication, wireless LAN, WAN, C2X (CartoX: vehicle pair). Communication using a protocol such as vehicle or vehicle-to-infrastructure communication), or communication using GPS (Global Positioning System) and GNSS (Global Navigation Satellite System), and information on the outside world (infrastructure, other vehicles, maps) or self Wireless communication for acquiring/transmitting information about the vehicle), or having a diagnostic terminal (OBD), Ethernet terminal, external recording medium (for example, USB memory, SD card, etc.) terminal, and communicating with the vehicle control system 2. The communication device 4 for implementing the above is, for example, a vehicle control system which is different from the vehicle control system 2 or is configured by a network using the same protocol, and 5 is a machine for controlling the vehicle motion under the control of the vehicle control system 2. And a driving device such as an actuator for driving an electric device (for example, an engine, a transmission, a wheel, a brake, a steering device, etc.), 6 outputs information for acquiring information input from the outside and generating the information. , A camera, a radar, an LIDAR (Light Detection and Ranging), an external sensor such as an ultrasonic sensor, and a mechanical sensor for recognizing the state of the vehicle system 1 (motion state, position information, acceleration, wheel speed, etc.). The recognition device 7, which is connected to the network system by wire or wirelessly, receives data transmitted from the network system, and displays or outputs necessary information such as message information (eg, video, sound), liquid crystal display, warning The output device 8 such as a lamp and a speaker, 8 is, for example, a steering wheel, a pedal, a button, a lever, a touch panel, or the like for generating an input signal for the user to input an operation intention or an instruction to the vehicle control system 2. The input device 9 is a vehicle system 1 for the outside world. It shows a notification device such as a lamp, an LED, a speaker or the like for notifying both states and the like.
 車両制御システム2は、車両システム1(つまり、自車)に設けられたその他の車両制御システム4、通信装置3、駆動装置5、認識装置6、出力装置7、入力装置8、通知装置9などと接続され、それぞれ情報の送受信を行う。 The vehicle control system 2 includes other vehicle control systems 4 provided in the vehicle system 1 (that is, the own vehicle), a communication device 3, a drive device 5, a recognition device 6, an output device 7, an input device 8, a notification device 9, and the like. It is connected to and sends and receives information.
<物理アーキテクチャ>
 図2は、車両制御システム2の物理アーキテクチャの例を示している。物理アーキテクチャ300は、H/W(Hardware)構成とも呼ぶ。
<Physical architecture>
FIG. 2 shows an example of the physical architecture of the vehicle control system 2. The physical architecture 300 is also called an H/W (Hardware) configuration.
 301は、車載ネットワーク上のネットワーク装置を接続するネットワークリンクであり、例えばCANバスなどのネットワークリンク、302は、ネットワークリンク301および駆動装置5や認識装置6やネットワークリンク301以外のネットワークリンク(専用線含む)に接続され、駆動装置5や認識装置6の制御および情報取得、ネットワークとのデータ送受信を行うECUを示している。ECUは、複数のネットワークリンク301を接続し、それぞれのネットワークリンクとデータの送受信を行うゲートウェイ(以下GW)の役割も担う。 Reference numeral 301 is a network link connecting network devices on the vehicle-mounted network, for example, a network link such as a CAN bus, 302 is a network link 301 and network links other than the driving device 5, the recognition device 6, and the network link 301 (dedicated line ECU) which is connected to (including) and controls the drive device 5 and the recognition device 6, acquires information, and transmits/receives data to/from the network. The ECU also plays a role of a gateway (hereinafter referred to as GW) that connects a plurality of network links 301 and transmits/receives data to/from each network link.
 ネットワークトポロジの例は、図2に示す2つのバスに複数のECUが接続されているバス型の例以外にも、複数のECUが直接GWに接続されるスター型や、ECUが一連のリンクにリング状に接続されているリンク型、それぞれの型が混在して複数のネットワークにより構成される混在型、等がある。ECU302は、ネットワークから受信したデータをもとに、駆動装置5への制御信号の出力、認識装置6からの情報の取得、ネットワークへの制御信号および情報の出力、内部状態の変更、などの制御処理を行う。 Examples of the network topology include, in addition to the bus type example in which a plurality of ECUs are connected to the two buses shown in FIG. 2, a star type in which a plurality of ECUs are directly connected to the GW, or an ECU in a series of links. There are a link type connected in a ring shape, a mixed type in which each type is mixed and a plurality of networks are combined, and the like. The ECU 302 controls output of control signals to the drive device 5, acquisition of information from the recognition device 6, output of control signals and information to the network, change of internal state, etc. based on data received from the network. Perform processing.
 図3は、ECU302の内部構成の一例である。401は、キャッシュやレジスタなどの記憶素子を持ち、制御を実行するCPUなどのプロセッサ、402は、ネットワークリンク301またはネットワークや専用線で接続された駆動装置5または/および認識装置6に対してデータの送受信を行うI/O(Input/Output)、403は、図示しないクロックなどを使用し、時間および時刻の管理を行うタイマ、404は、プログラムおよび不揮発性のデータを保存するROM(Read Only Memory)、405は、プログラムおよび揮発性のデータを保存するRAM(Random Access Memory)、406は、ECU302内部での通信に用いられる内部バス、を示している。後述する論理機能についてはプロセッサ401にて実行される。 FIG. 3 shows an example of the internal configuration of the ECU 302. Reference numeral 401 denotes a processor such as a CPU that has a storage element such as a cache or a register and executes control, and 402 denotes data for the drive device 5 and/or the recognition device 6 connected to the network link 301 or the network or a dedicated line. I/O (Input/Output) that transmits and receives data, 403 is a timer that manages time and time using a clock (not shown), and 404 is a ROM (Read Only Memory) that stores programs and nonvolatile data. ), 405 is a RAM (Random Access Memory) for storing programs and volatile data, and 406 is an internal bus used for communication inside the ECU 302. The logical functions described below are executed by the processor 401.
 次に、プロセッサ401で動作するソフトウェアコンポーネントの構成について図4に示す。502は、I/O402の動作および状態を管理し、内部バス406を介してI/O402に指示を行う通信管理部、503は、タイマ403を管理し、時間に関する情報取得や制御を行う時間管理部、501は、I/O402から取得したデータの解析や、ソフトウェアコンポーネント全体の制御を行う制御部、504は、後述する外界認識マップなどの情報を保持するデータテーブル、505は、一時的にデータを保持するバッファ、を表している。 Next, FIG. 4 shows the configuration of software components operating in the processor 401. A communication management unit 502 manages the operation and status of the I/O 402, and issues an instruction to the I/O 402 via the internal bus 406. A time management 503 manages the timer 403 and acquires and controls time information. Reference numeral 501 denotes a control unit that analyzes data acquired from the I/O 402 and controls the entire software component. 504 denotes a data table that holds information such as an external world recognition map described later. 505 denotes temporary data. Represents a buffer that holds.
 これら図4の構成についてはプロセッサ401上の動作概念を示したものであり、動作時に必要な情報はROM404およびRAM405から適宜取得、またはROM404およびRAM405に適宜書き込み、を行い動作する。 The configuration of these FIG. 4 shows the operation concept on the processor 401, and the information necessary for the operation is appropriately acquired from the ROM 404 and the RAM 405 or is appropriately written to the ROM 404 and the RAM 405 to operate.
 後述する車両制御システム2の各機能は、制御部501にて実行される。 Each function of the vehicle control system 2 described later is executed by the control unit 501.
<論理アーキテクチャ>
 車両制御システム2の論理アーキテクチャの例について図5に示す。図5は、車両制御システム2が、それぞれが独立して動作可能なモジュールである、後述する自動運転制御モジュールと予測安全モジュールと安全条件判定モジュールの3層を有する場合を示している。
<Logical architecture>
An example of the logical architecture of the vehicle control system 2 is shown in FIG. FIG. 5 shows a case where the vehicle control system 2 has three layers, which are modules that can operate independently of each other, which are an automatic driving control module, a predictive safety module, and a safety condition determination module, which will be described later.
 600は、車両制御システム2の本実施例に関連する論理アーキテクチャ全体を示している。601は、一つまたは複数の認識装置6および/または通信装置3から情報(入力情報)を取得し、後述する軌道情報(自動運転を行うための軌道情報)を生成する自動運転制御モジュール、602は、一つまたは複数の認識装置6および/または通信装置3から情報(入力情報)を取得し、また前記自動運転制御モジュール601またはユーザ操作(ユーザ操作については、図13に基づき後で詳述)による軌道情報が入力され、後述する予測安全の判定を行い、軌道情報(予測安全軌道情報)を出力する予測安全モジュール、603は、一つまたは複数の認識装置6および/または通信装置3から情報(入力情報)を取得し、また前記予測安全モジュール602またはユーザ操作(ユーザ操作については、図14に基づき後で詳述)による軌道情報が入力され、後述する条件安全判定を行い、軌道情報を出力する安全条件判定モジュール、604は、安全条件判定モジュール603からの軌道情報、認識装置6からの車両運動情報から運動制御値を算出し、駆動装置5に対し、車両を駆動するための制御情報を出力する車両運動制御部、を示している。 Reference numeral 600 denotes the entire logical architecture related to this embodiment of the vehicle control system 2. An automatic driving control module 601 acquires information (input information) from one or a plurality of recognition devices 6 and/or communication devices 3 and generates orbit information (orbit information for automatic driving) described later. Obtains information (input information) from one or a plurality of recognition devices 6 and/or communication devices 3, and further, the automatic driving control module 601 or a user operation (a user operation will be described in detail later with reference to FIG. 13). ), the predictive safety module for inputting the orbital information according to ), determining the predictive safety described later, and outputting the orbital information (predictive safe orbital information), 603 is provided from one or more recognition devices 6 and/or the communication device 3. The information (input information) is acquired, and the trajectory information by the predictive safety module 602 or the user operation (the user operation will be described later in detail with reference to FIG. 14) is input, and the conditional safety determination described below is performed to obtain the trajectory information. The safety condition determination module 604 outputs a motion control value from the trajectory information from the safety condition determination module 603 and the vehicle motion information from the recognition device 6, and controls the drive device 5 to drive the vehicle. 2 shows a vehicle motion control unit that outputs information.
 また、自動運転制御モジュール601は、認識装置6および/または通信装置3からの情報を取得し、後述する周辺認識の処理を行い、後述する外界認識情報を出力する周辺認識部611、周辺認識部611からの外界認識情報を取得し、後述する認知処理を行い、後述する外界認識マップを出力する認知処理部612、認知処理部612からの外界認識マップを取得し、軌道情報を生成して予測安全判断部623に出力する軌道生成部613、により構成される。 Further, the automatic driving control module 601 acquires information from the recognition device 6 and/or the communication device 3, performs a peripheral recognition process described below, and outputs a peripheral recognition information described below, a peripheral recognition unit 611 and a peripheral recognition unit. The external world recognition information from 611 is acquired, the recognition processing described below is performed, and the external world recognition map from the recognition processing unit 612 and the recognition processing unit 612 that outputs the external world recognition map described below is acquired, and trajectory information is generated and predicted. It is configured by a trajectory generation unit 613 which outputs the safety judgment unit 623.
 また、予測安全モジュール602は、認識装置6および/または通信装置3からの情報を取得し、周辺認識の処理を行い、外界認識情報を出力する予測安全認識部621、前記予測安全認識部621から出力される外界認識情報を取得し、後述する予測安全マップおよび予測安全軌道情報を出力する予測安全計画部622、前記予測安全計画部622からの予測安全マップおよび予測安全軌道情報と、前記軌道生成部613の出力する軌道情報またはユーザ操作による軌道情報(ユーザ操作については、図13に基づき後で詳述)を受信し、後述する予測安全の判断を行い、適正な軌道情報を安全条件判断部633等に出力する予測安全判断部623、により構成される。 In addition, the predictive safety module 602 acquires information from the recognition device 6 and/or the communication device 3, performs peripheral recognition processing, and outputs external world recognition information from the predictive safety recognition unit 621 and the predictive safety recognition unit 621. A predictive safety planning unit 622 that acquires the external environment recognition information that is output and outputs a predictive safety map and predictive safe trajectory information described below, a predictive safety map and predictive safety trajectory information from the predictive safety planning unit 622, and the trajectory generation. The orbit information output by the unit 613 or the orbit information by the user operation (the user operation will be described later in detail with reference to FIG. 13) is received, the prediction safety determination described below is performed, and appropriate trajectory information is determined as the safety condition determination unit. It is constituted by the predictive safety judgment unit 623, which outputs to 633 and the like.
 また、安全条件判定モジュール603は、認識装置6および/または通信装置3からの情報を取得し、周辺認識の処理を行い、外界認識情報を出力する安全条件認識部631、前記安全条件認識部631の出力する外界認識情報を取得し、後述する安全条件の判定に応じた制御を行うための後述する安全条件制御軌道情報を出力する安全条件計画部632、前記安全条件計画部632より出力される安全条件制御軌道情報と、前記予測安全制御部623が出力する軌道情報またはユーザ操作による軌道情報(ユーザ操作については、図14に基づき後で詳述)を受信し、後述する安全条件の判断を行い、適正な軌道情報を車両運動制御部604等に出力する安全条件判断部633、により構成される。 The safety condition determination module 603 acquires information from the recognition device 6 and/or the communication device 3, performs peripheral recognition processing, and outputs external environment recognition information. The safety condition recognition unit 631 and the safety condition recognition unit 631. Is output from the safety condition planning unit 632 and the safety condition planning unit 632 that obtains the external environment recognition information output by and outputs the safety condition control trajectory information described below for performing the control according to the determination of the safety condition described below. The safety condition control trajectory information and the trajectory information output by the predictive safety control unit 623 or the trajectory information by the user operation (the user operation will be described in detail later with reference to FIG. 14) are received, and the safety condition determination described below is performed. The safety condition determining unit 633 is configured to output appropriate trajectory information to the vehicle motion control unit 604 and the like.
<周辺認識(周辺認識部611、予測安全認識部621、安全条件認識部631)>
 車両システム1に設けられた認識装置6の種類は、前記車両制御システム2の構成で述べた通りであり、それぞれの認識装置の種類に応じた動作原理により、後述する外界認識情報を取得する。例えば、認識装置6が有するセンサを用いて外界(周囲)の測定を行い、測定値に対して特定のアルゴリズム(例えば、取得した画像に対する画像認識アルゴリズム)を適用し、外界認識情報を取得する。
<Peripheral recognition (peripheral recognition unit 611, predictive safety recognition unit 621, safety condition recognition unit 631)>
The type of the recognition device 6 provided in the vehicle system 1 is as described in the configuration of the vehicle control system 2, and the external world recognition information to be described later is acquired by the operation principle according to the type of each recognition device. For example, the outside world (surroundings) is measured using a sensor included in the recognition device 6, and a specific algorithm (for example, an image recognition algorithm for the acquired image) is applied to the measured value to acquire the outside world recognition information.
 認識装置ごとに、それぞれ測定可能な範囲は事前に決定(例えばカメラであれば、撮影方向と縦・横の角度、画素数による遠方距離の認識限界、レーダであれば、電波の放射角度と受信角度、距離)、または環境に応じた変化に対して調整(キャリブレーション)を行って測定可能な範囲を測定して決定する。それぞれの認識装置の取得した外界認識情報を組み合わせることにより、車両システム1の周辺状況が確認可能となる。 For each recognition device, the measurable range is determined in advance (for example, if it is a camera, the shooting direction and vertical/horizontal angle, the recognition limit of the far distance by the number of pixels, if it is a radar, the radio wave emission angle and reception The angle (distance) or the change according to the environment is adjusted (calibration) to measure and determine the measurable range. The surrounding situation of the vehicle system 1 can be confirmed by combining the external world recognition information acquired by each recognition device.
 外界認識の例を図6(a)に示す。ここでは車両システム1の認識装置6が外界情報を取得している例を示している。認識装置6から出力される外界認識情報により、周辺にどのようなオブジェクトが存在しているかを確認することが可能となる。 Fig. 6(a) shows an example of external recognition. Here, an example is shown in which the recognition device 6 of the vehicle system 1 acquires the external world information. The external world recognition information output from the recognition device 6 makes it possible to confirm what kind of object exists in the vicinity.
 車両システム1に設けられた通信装置3からも同様に外界認識情報を取得することが可能となる。通信装置3からは、認識装置6で観測不可能な、例えば物陰など遮蔽物の向こう側に存在するオブジェクトの外界認識情報を位置情報と共に取得し、オブジェクトの位置を確認することが可能である。 It is possible to obtain the external environment recognition information from the communication device 3 provided in the vehicle system 1 as well. From the communication device 3, it is possible to obtain the external world recognition information of the object which is not observable by the recognition device 6 and which exists on the other side of the shield such as the shadow together with the position information, and the position of the object can be confirmed.
 また、通信装置3が取得する外界認識情報は、周辺の地図情報(地形、道路、車線情報)、および道路交通状況(交通密度、工事中、等)、他のオブジェクトが自ら演算、または他のオブジェクトが演算した他のオブジェクトの軌道情報も含む。 In addition, the outside world recognition information acquired by the communication device 3 includes surrounding map information (topography, roads, lane information), road traffic conditions (traffic density, under construction, etc.), other objects calculate themselves, or other It also includes trajectory information of other objects calculated by the object.
<外界認識情報(周辺認識部611、予測安全認識部621、安全条件認識部631)>
 外界認識情報とは、認識装置6により観測されたオブジェクトまたは通信装置3により受信したオブジェクトを表現する情報となる。外界認識情報の例として、オブジェクト種別(静止オブジェクト(壁、白線、信号、分離帯、木、等)、動的オブジェクト(歩行者、車、二輪車、自転車等)、走行(領域侵入)可能か否か、その他属性情報)、オブジェクトの相対位置情報(方向・距離)、オブジェクトおよび自己の絶対位置情報(座標等)、オブジェクトの速度、向き(移動方向、顔の向き)、加速度、存在確率(確からしさ)、地図情報、道路交通状況、外界認識情報を測定した時間、測定を実施した認識装置のID、オブジェクトの想定している軌道、等が挙げられる。
<Outside world recognition information (periphery recognition unit 611, predicted safety recognition unit 621, safety condition recognition unit 631)>
The external world recognition information is information representing an object observed by the recognition device 6 or an object received by the communication device 3. Examples of external world recognition information include object type (stationary object (wall, white line, signal, lane, tree, etc.), dynamic object (pedestrian, car, two-wheeled vehicle, bicycle, etc.), traveling (area intrusion) Or other attribute information), relative position information (direction/distance) of the object, absolute position information (coordinates, etc.) of the object and itself, speed, direction (moving direction, face direction), acceleration, existence probability (certain) Likeness), map information, road traffic conditions, time when external environment recognition information was measured, ID of the recognition device that performed the measurement, trajectory assumed by the object, and the like.
<認知処理(認知処理部612)>
 認知処理部612は、前記外界認識情報をもとに、後述する行動予測を行い、外界認識マップを生成する。
<Cognitive processing (cognitive processing unit 612)>
The cognitive processing unit 612 performs behavior prediction, which will be described later, based on the external world recognition information, and generates an external world recognition map.
<行動予測(認知処理部612)>
 後述する外界認識マップは、現在認識された外界認識情報を用いるのみではなく、過去の外界認識情報から予測(行動予測)して作成することも可能である。例えば一定時間経過後に、静止オブジェクトであれば同じ位置(車両との相対位置では無く、路面上の同位置)に存在している可能性が高く、また動的オブジェクトであれば直前の位置、速度、加速度等から、一定時間経過後の位置を予測することが可能となる。認知処理部612は、このように前記外界認識情報を用い、オブジェクトの行動予測を行う。
<Action prediction (cognitive processing unit 612)>
The external world recognition map described later can be created not only by using the currently recognized external world recognition information, but also by predicting (action prediction) from past external world recognition information. For example, after a certain period of time, if it is a stationary object, it is highly likely that it is present at the same position (not the position relative to the vehicle, but the same position on the road surface). It is possible to predict the position after a certain period of time from the acceleration, etc. The recognition processing unit 612 thus predicts the behavior of the object by using the outside world recognition information.
<外界認識マップ(認知処理部612)>
 複数の認識装置が出力する外界認識情報を統合した情報を外界認識マップと呼ぶ。外界認識マップの例を、図6(b)を用いて説明する。ここでは直交する座標系(グリッド)(図6(a)参照)に対し、それぞれの領域についてオブジェクト情報を配置した例について図6(b)に示す。オブジェクト情報は、例えば上記外界認識情報の例から位置情報を除いた内容であり、それぞれのグリッドに配置される。それぞれのグリッドに存在するオブジェクトの情報を記録することにより、外界認識マップから外界の現在の状況、または行動予測に基づく将来の状況を再現することが可能となる。
<Outside world recognition map (cognition processing unit 612)>
Information obtained by integrating the external world recognition information output by a plurality of recognition devices is called an external world recognition map. An example of the external world recognition map will be described with reference to FIG. Here, FIG. 6B shows an example in which the object information is arranged for each area with respect to the orthogonal coordinate system (grid) (see FIG. 6A). The object information is, for example, the content obtained by removing the position information from the example of the outside world recognition information, and is arranged in each grid. By recording the information of the objects existing in each grid, it becomes possible to reproduce the present situation of the outside world or the future situation based on the behavior prediction from the outside world recognition map.
<軌道情報(軌道生成部613)>
 軌道情報とは軌道を表現する情報であり、軌道は、例えば一定時間間隔ごとの自車位置の座標の集合により表わされる。また、別の例では、軌道は、一定時間間隔ごとの運動制御値(目標加速度・ヨーレート)の集合、一定時間間隔ごとの自車両のベクトル値(方向・速度)、一定距離を進むための時間間隔、等で表すことが可能である。軌道の例について図7に示す。ここでは801が軌道を示しており、自車両である車両システム1が右車線に車線変更を行う場合の一定時間間隔ごとの自車位置の(将来の)座標の集合を示している。
<Orbit information (orbit generation unit 613)>
The track information is information representing a track, and the track is represented by, for example, a set of coordinates of the vehicle position at fixed time intervals. In another example, the trajectory is a set of motion control values (target acceleration/yaw rate) at fixed time intervals, a vector value (direction/speed) of the host vehicle at fixed time intervals, and a time for traveling a fixed distance. It can be represented by an interval or the like. An example of the trajectory is shown in FIG. Here, reference numeral 801 denotes a track, and shows a set of (future) coordinates of the own vehicle position at constant time intervals when the vehicle system 1 which is the own vehicle changes the lane to the right lane.
<走行誘導領域情報を使用しない軌道情報生成(軌道生成部613)>
 以下、軌道(情報)を生成するための処理について説明する。
<Trajectory information generation without using travel guidance area information (trajectory generation unit 613)>
Hereinafter, a process for generating a trajectory (information) will be described.
 軌道生成部613は、認知処理部612より出力された外界認識マップを用いて、軌道情報を生成する。外界認識マップに基づく軌道情報の生成方法について説明する。軌道は、自車両である車両システム1が安全に走行可能(例えば他の障害物に衝突する可能性が低い)である安全性制約、車両システム1が実現可能な加速度・減速度、ヨーレート、などの運動制約、を満たすように生成する。 The trajectory generation unit 613 generates trajectory information using the external world recognition map output from the recognition processing unit 612. A method of generating orbit information based on the external world recognition map will be described. The trajectory has safety restrictions such that the vehicle system 1 which is the own vehicle can travel safely (for example, the possibility of collision with other obstacles is low), acceleration/deceleration that can be realized by the vehicle system 1, yaw rate, etc. To satisfy the motion constraint of.
 自車両が右車線に移動する軌道生成例について図7を用いて説明する。ここでは右車線へ車線変更を行う例を示している。まず、自車両は、運動制約を満たし、右車線に移動する軌道(図7の801)を生成する。その後、生成した軌道について、他の動的物体の予測軌道(例えば現在速度、および想定される加速度での一定時間後の位置)と、自車両の軌道により、衝突が発生しないかを計算して軌道を生成し、同様に安全性制約を計算する。 An example of trajectory generation in which the own vehicle moves to the right lane will be described with reference to FIG. Here, an example is shown in which the lane is changed to the right lane. First, the host vehicle satisfies the motion constraint and generates a trajectory (801 in FIG. 7) that moves to the right lane. Then, for the generated trajectory, calculate whether or not a collision will occur based on the predicted trajectory of other dynamic objects (for example, the current velocity and the position after a certain time at the assumed acceleration) and the trajectory of the own vehicle. Generate trajectories and compute safety constraints as well.
 安全性制約の計算方法は、上記の通り動的オブジェクトの現在速度および想定加減速度から想定されるエリアを進入禁止領域とする方法(進入禁止領域法)の他に、各オブジェクトの種別・速度・進行方向に高いポテンシャル(この場合はリスク値)を付与し、その周囲を段階的にリスク値を下げたマップ(ポテンシャルマップ)を生成し、リスク値を演算する手法(ポテンシャル法)がある。ポテンシャル法を用いる場合には、生成されたポテンシャルマップの中で、最もポテンシャルが低く、一定値以上のポテンシャルエリアに進入しない軌道を生成し、かつ自車両の運動制約を満たす軌道を、生成軌道とする。 As for the method of calculating the safety constraint, in addition to the method of setting the area assumed from the current speed and the assumed acceleration/deceleration of the dynamic object as the entry prohibited area (entry prohibited area method) as described above, the type/speed/ There is a method (potential method) in which a high potential (in this case, a risk value) is given to the traveling direction, a map (potential map) in which the risk value is gradually reduced is generated, and the risk value is calculated. When the potential method is used, a trajectory that has the lowest potential in the generated potential map and that does not enter the potential area above a certain value and that satisfies the motion constraint of the own vehicle is called the generated trajectory. To do.
 進入禁止領域については、動的オブジェクトの行動予測が必要になる。行動予測については、現在の速度・加速度および方向で移動した点を中心とした一定領域を進入禁止領域にする方法がある。このように一定領域を進入禁止領域とすることにより、複雑な予測による演算が不要となる。 -For the prohibited area, it is necessary to predict the behavior of the dynamic object. Regarding behavior prediction, there is a method of setting a certain area centered on the point moved at the current speed/acceleration and direction as the entry prohibited area. By thus setting the certain area as the entry prohibition area, calculation by complicated prediction becomes unnecessary.
 このように、車両が移動する方向、運動制約、安全性制約を基に軌道を作成し、生成された軌道について、安全条件判断部633は車両運動制御部604に送信する(後で説明)。 In this way, the trajectory is created based on the moving direction of the vehicle, the motion constraint, and the safety constraint, and the safety condition determination unit 633 transmits the generated trajectory to the vehicle motion control unit 604 (described later).
<走行誘導領域情報を使用する軌道判断(軌道生成部613)>
 次に、走行誘導領域情報を使用する軌道判断の処理について説明する。
<Trajection determination using travel guidance area information (trajectory generation unit 613)>
Next, the processing of the trajectory determination using the travel guidance area information will be described.
 走行誘導領域情報とは車両が走行すべき領域の情報であり、例えば、自車両が現在地点から目的地点までどのような経路を進むかといった走行ルートの情報から、車線情報や障害物がある場合の車線規制・渋滞・走行車両などの情報をもとに決定する走行領域(例えば走行車線)である。 The travel guidance area information is information on the area in which the vehicle should travel. For example, if there is lane information or an obstacle from the travel route information such as what route the vehicle travels from the current location to the destination location. It is a traveling area (for example, a traveling lane) that is determined based on information such as lane regulations, traffic jams, and traveling vehicles.
 軌道生成部613は、走行誘導領域情報を前記外界認識マップより認知処理部612が作成した結果、または図示しない別の制御システム等から受信し、前記受信した走行誘導領域情報と、前記認知処理部612より出力された外界認識マップを使用し、軌道を生成する。 The trajectory generation unit 613 receives the travel guidance region information as a result created by the recognition processing unit 612 from the external world recognition map, or from another control system (not shown), and the received travel guidance region information and the recognition processing unit. The external world recognition map output from 612 is used to generate a trajectory.
 ここでは前記走行誘導領域が、走行可能領域とした場合の処理について説明する。まずは、図8(a)に示すような軌道901を含む状況において、前記走行誘導領域情報が、図8(b)の903に示すような走行誘導領域として与えられたとする。 Here, the processing when the travel guidance area is a travelable area will be described. First, it is assumed that, in a situation including a track 901 as shown in FIG. 8A, the travel guidance region information is given as a travel guidance region as shown at 903 in FIG. 8B.
 このような状況において、軌道生成部613は、生成する軌道が前記走行誘導領域903に入るように処理を行う。例えば前方に複数の軌道候補を生成し、その中で、前記外界認識マップにおけるオブジェクトと衝突せず、かつ前記走行誘導領域903内に存在する軌道を選択する(図8(b)の902)。前記走行誘導領域の判定を行う以外の内容は、前記走行誘導領域情報を使用しない軌道判断の場合と同様である。軌道生成部613は、このようにして走行誘導領域情報を用いて軌道情報の生成を行う。 In such a situation, the trajectory generation unit 613 performs processing so that the generated trajectory enters the travel guidance area 903. For example, a plurality of trajectory candidates are generated forward, and among them, a trajectory that does not collide with the object in the external world recognition map and exists in the travel guidance area 903 is selected (902 in FIG. 8B). The contents other than the determination of the travel guidance area are the same as the case of the trajectory determination that does not use the travel guidance area information. The track generation unit 613 thus generates track information using the travel guidance area information.
 走行誘導領域情報を使用しない軌道判断においては、走行誘導領域の情報が無いため、基本的には周囲の障害物を回避しつつ、車線を直進するような基本的な動作となる。一方で走行誘導領域情報を使用することにより、車線の変更や目的地に移動しやすい車線を走行するなどの高度な制御が可能となる。 ∙ Since there is no information on the driving guidance area in the trajectory determination that does not use the driving guidance area information, basically it is a basic operation to go straight in the lane while avoiding obstacles around it. On the other hand, by using the traveling guidance area information, it is possible to perform advanced control such as changing lanes or traveling in a lane that is easy to move to the destination.
<予測安全認識(予測安全認識部621)>
 予測安全認識部621は、前記周辺認識部611と同様に、外界認識情報を出力する。予測安全認識部621においては、特にオブジェクトの行動予測を行うために必要な情報として、オブジェクトの種類・位置・向き・速度・加速度等の情報を取得して出力する。また、オブジェクトの軌道(将来の予定位置)について、通信装置3を介して取得(受信)する場合もある。
<Predictive Safety Recognition (Predictive Safety Recognition Unit 621)>
The predictive safety recognizing unit 621 outputs the external world recognition information similarly to the surrounding recognition unit 611. The predictive safety recognizing unit 621 acquires and outputs information such as the type, position, orientation, speed, acceleration, etc. of the object, as the information particularly necessary for predicting the behavior of the object. In addition, the trajectory of the object (scheduled future position) may be acquired (received) via the communication device 3.
 ここで出力する外界認識情報の例について図9に示す。ここでは自車両である車両システム1と他車両1002、歩行者1003の位置と向き、および速度を矢印で示しており、予測安全認識部621は、これらの外界認識情報を予測安全計画部622に送信する。 Fig. 9 shows an example of the external world recognition information output here. Here, the position and direction of the vehicle system 1 which is the own vehicle, the other vehicle 1002, and the pedestrian 1003, and the speed are indicated by arrows, and the predicted safety recognition unit 621 transfers these external world recognition information to the predicted safety planning unit 622. Send.
<予測安全計画(予測安全計画部622)>
 予測安全計画部622は、前記予測安全認識部621から出力された外界認識情報を用いて、予測安全マップと予測安全軌道情報の作成を行う。
<Predictive Safety Plan (Predictive Safety Planning Department 622)>
The predicted safety planning unit 622 creates a predicted safety map and predicted safety trajectory information using the external world recognition information output from the predicted safety recognition unit 621.
<予測安全マップ(予測安全計画部622)>
 予測安全マップとは、前記外界認識情報を用いて、オブジェクトの行動予測を行った結果を外界認識マップと同様の形式で統合したマップである。予測安全マップの例を図10に示す。ここではオブジェクトの種類・位置・向き・速度・加速度等の情報を基に、一定時間経過後にそれぞれのオブジェクトがどの付近に存在するかを予測したマップとして示している。ここでは色の濃い部分が一定時間経過後にそれぞれのオブジェクトが存在する可能性が高い領域、色の薄い領域が一定時間経過後に存在する可能性が低い領域である。このように予測を行い、予測安全マップを作成することにより、一定時間経過後に車両システム1がそれぞれのオブジェクトと近接するリスクを判定することが可能となる。
<Predictive Safety Map (Predictive Safety Planning Department 622)>
The predictive safety map is a map in which the result of the behavior prediction of the object using the external world recognition information is integrated in the same format as the external world recognition map. An example of the predictive safety map is shown in FIG. Here, based on information such as the type, position, orientation, speed, acceleration, etc. of the object, it is shown as a map that predicts where each object is located after a certain period of time. Here, a dark-colored portion is an area in which each object is highly likely to exist after a lapse of a certain time, and a light-colored area is less likely to be present in a certain time. By making a prediction and creating a prediction safety map in this way, it is possible to determine the risk that the vehicle system 1 will approach each object after a certain period of time.
 オブジェクトの予測については、前記行動予測に記載の方法の他に、例えばそれぞれのオブジェクトがポテンシャル法を用いてポテンシャルが低い位置に移動することを予測することにより位置を予測する方法や、現在の位置・向き・速度・加速度からの線形予測に対し、変化量をそれぞれ誤差として含み一定の範囲を持たせて予測する方法、または各状況(シチュエーション)に合わせ、歩行者であれば歩道や横断歩道を継続して歩く、車両がウィンカーを点灯させているため、車線変更を行う、などのシチュエーションを理解して動作する行動を予測する方法などの方法がある。 Regarding the prediction of the object, in addition to the method described in the behavior prediction, for example, a method of predicting the position of each object by using the potential method to predict that the object moves to a position with a low potential, or a current position・For linear prediction from direction, speed, and acceleration, a method of predicting with a certain range including the amount of change as an error, or according to each situation (situation), if it is a pedestrian, use a sidewalk or pedestrian crossing. There are methods, such as a method of predicting an action to be performed, by understanding a situation such as continuous walking, changing the lane because the vehicle lights the blinker, and the like.
 ここで演算する内容については、認知処理部612で演算する内容と比べ、安全性に関連する情報としてリスク値を判定するための情報のみを演算すればよく、換言すれば、ここでの周囲のオブジェクトの行動予測は、認知処理部612における周囲のオブジェクトの行動予測に比べ、安全に関する判定に必要な行動予測のみを実施すればよく、例えばオブジェクトの詳細な種別(車種等)や走行レーンの情報、静止物体の種類などは処理を行う必要が無い。そのようにすることにより、演算が簡略化され、比較的単純で誤りの少ないシステムを構築することができ、信頼性を向上させることが可能となる。 Regarding the contents to be calculated here, as compared with the contents to be calculated by the recognition processing unit 612, only the information for determining the risk value as the information related to safety needs to be calculated, in other words, the surroundings here. In the behavior prediction of the object, only the behavior prediction necessary for the determination regarding safety needs to be performed as compared with the behavior prediction of the surrounding objects in the recognition processing unit 612. For example, the detailed classification of the object (vehicle type, etc.) and the information of the traveling lane. It is not necessary to process the type of stationary object. By doing so, the operation can be simplified, a relatively simple system with few errors can be constructed, and the reliability can be improved.
 ここではある一定時間経過後の予測安全マップを示しているが、例えば現在より一定時間経過後のマップを各時間ごと(例えば現在時刻をt=0として、t=t1、t2、t3、・・・と一定間隔の時間ごと)に予測安全マップとして持っていても良い。そのようにすることにより、各時間ごとに軌道から導出される自車両の位置と合わせて判定を行うことが容易になる。 Here, the predicted safety map after a lapse of a certain fixed time is shown, but for example, a map after a lapse of a fixed time from the present is every time (for example, when the current time is t=0, t=t1, t2, t3,...・It may be held as a predictive safety map at regular intervals. By doing so, it becomes easy to make a determination at each time together with the position of the own vehicle derived from the track.
 また、一定時間経過後のオブジェクトの存在位置については、前記オブジェクトまたは別のシステムから、通信装置3を介し、軌道のような一定時間経過後の位置情報を取得しても良い。そのようにすることにより、オブジェクトの将来位置の予測精度を高くすることが可能である。 Regarding the existing position of an object after a certain time has passed, position information after a certain time such as a trajectory may be acquired from the object or another system via the communication device 3. By doing so, it is possible to improve the prediction accuracy of the future position of the object.
<予測安全軌道情報(予測安全計画部622)>
 予測安全軌道情報とは、前記予測安全マップに対し、車両システム1がオブジェクトと近接するリスクが低い軌道を示す情報である。予測安全軌道の例を図11の1202に示す。予測安全計画部622は、ここでは例えばレーンに追従する方向に、前記予測安全マップで判定したオブジェクトと近接することが無いように軌道(予測安全軌道)を生成する。ここで生成される軌道は、例えば他のオブジェクトと近接しすぎないように自車両の減速を行うような軌道である。このようにすることにより、予測したオブジェクトの行動に対して近接しない軌道を生成することが可能となる。
<Predictive safety trajectory information (Predictive Safety Planning Department 622)>
The predicted safety trajectory information is information indicating a trajectory with a low risk that the vehicle system 1 approaches an object with respect to the predicted safety map. An example of the predicted safe trajectory is shown at 1202 in FIG. The predictive safety planning unit 622 generates a trajectory (predictive safety trajectory) so as not to approach the object determined by the predictive safety map, for example, in the direction following the lane. The trajectory generated here is, for example, a trajectory that decelerates the host vehicle so as not to be too close to another object. By doing so, it becomes possible to generate a trajectory that is not close to the predicted behavior of the object.
<予測安全判断(予測安全判断部623)>
 次に、予測安全判断部623における処理(安全性判定)について、図12のフローチャートを用いて説明する。予測安全判断部623は、自動運転制御モジュール601の軌道生成部613より軌道情報を受信し、予測安全計画部622から予測安全マップと予測安全軌道情報を受信する(S101)。その後、前記受信した軌道情報に基づく制御が予測上安全か否かを判定する(S102)。
<Predictive Safety Judgment (Predictive Safety Judgment Unit 623)>
Next, the processing (safety determination) in the predictive safety determination unit 623 will be described using the flowchart in FIG. The predicted safety determination unit 623 receives the trajectory information from the trajectory generation unit 613 of the automatic driving control module 601, and receives the predicted safety map and the predicted safety trajectory information from the predicted safety planning unit 622 (S101). Then, it is determined whether the control based on the received orbit information is predictively safe (S102).
 判定の具体的な方法としては、前記軌道情報により車両を制御した場合に、前記予測安全マップにおいて、オブジェクトと近接するリスクが一定値以上(距離が一定値以下)となる場合、安全ではないと判定する。 As a specific method of determination, when the vehicle is controlled by the trajectory information and the risk of being close to the object in the predicted safety map is a certain value or more (distance is less than a certain value), it is not safe. judge.
 判定の結果、安全でないと判定した場合には(S102のNo)、予測安全計画部622により計算された予測安全軌道情報を出力する(S103)。また、判定の結果、安全であると判定した場合には(S102のYes)、自動運転制御モジュール601から受信した軌道情報を出力する(S104)。 If the result of determination is that it is not safe (No in S102), the predicted safety trajectory information calculated by the predicted safety planning unit 622 is output (S103). When it is determined that the vehicle is safe (Yes in S102), the trajectory information received from the automatic driving control module 601 is output (S104).
 このようにして、予測安全判断部623は、オブジェクトの行動を予測した結果の予測安全マップにおいて安全であると判定した軌道情報を出力することが可能となる。 In this way, the predictive safety determination unit 623 can output the trajectory information that is determined to be safe in the predictive safety map of the result of predicting the behavior of the object.
 また、予測安全マップによる安全でないという判定については、前記オブジェクトが近接するリスクが一定値以上となる判定以外に、例えば道路交通法に違反するなどの事象(例えば走行帯違反、進入禁止領域への進入、速度上限・下限の超過)についても判定しても良い。そのためには、予測安全認識部621が外界情報として前記道路交通法に関する情報を取得し、予測安全計画部622および予測安全判断部623に通知し、前記軌道が道路交通法に関する情報に違反していないか否かを判定する。そのようにすることにより、道路交通法など周囲の状況に合わせたより安全な判定を行うことが可能となる。 In addition, regarding the judgment that it is not safe by the predictive safety map, in addition to the judgment that the risk that the object approaches is a certain value or more, for example, an event such as a violation of the Road Traffic Law (for example, a violation of a driving zone, a prohibited area) It is also possible to judge whether the vehicle is approaching or the speed exceeds the upper and lower limits. For that purpose, the predicted safety recognition unit 621 acquires information about the road traffic law as external information, notifies the predicted safety planning unit 622 and the predicted safety determination unit 623, and the track violates the information about the road traffic law. Determine if there is not. By doing so, it becomes possible to make a safer determination according to the surrounding conditions such as the Road Traffic Law.
 また、予測安全判断の結果、自動運転制御モジュール601から受信した軌道情報が安全でないと判断した場合には、自動運転制御モジュール601で異常が発生している場合もあるため、前記軌道情報が安全でなかった警告を、出力装置7を介してユーザに、または通知装置9を介して他の車両に、または通信装置3を介して他のシステムに通知する。または、他の車両制御システム4に通知し、別の安全制御(例えば縮退制御への移行)や動作ログの記録などを行う。 Further, as a result of the predictive safety judgment, when it is determined that the orbit information received from the automatic driving control module 601 is not safe, an abnormality may occur in the automatic driving control module 601. Therefore, the orbit information is safe. The warning which is not present is notified to the user via the output device 7, another vehicle via the notification device 9, or another system via the communication device 3. Alternatively, the other vehicle control system 4 is notified, and another safety control (for example, shift to degeneration control) or recording of an operation log is performed.
 このようにして車両制御システム2での異常発生に対し、予測安全軌道情報による制御以外の対処を行うことも可能となる。 In this way, it is possible to take measures other than the control based on the predicted safe trajectory information when an abnormality occurs in the vehicle control system 2.
 予測安全モジュール602の処理は、入力された軌道情報に対する安全性の判定を行う処理のみであるため、入力および出力の軌道は同様の構造(軌道の密度、始端から最終端までの時間、等)である。つまり、予測安全モジュール602が出力する軌道情報は、入力情報である自動運転制御モジュール601が生成する軌道情報と構造が同様である。予測安全モジュール602は、前記入力された軌道情報に対して、安全性の判定を行って軌道情報を出力する部分のみが異なる。 Since the process of the predictive safety module 602 is only the process of determining the safety of the input trajectory information, the input and output trajectories have the same structure (trajectory density, time from start end to end end, etc.). Is. That is, the trajectory information output by the predictive safety module 602 has the same structure as the trajectory information generated by the automatic driving control module 601 which is the input information. The predictive safety module 602 is different only in the portion that determines the safety of the input trajectory information and outputs the trajectory information.
 また、予測安全判断部623は、前記自動運転制御モジュール601から受信した軌道情報が安全でないと判断した場合に、前記自動運転制御モジュール601から受信した軌道情報を補正する形で出力しても良い。例えば現在の軌道で前方車両に近接しすぎる際には、軌道の点の位置を減速する軌道に補正するなど、前記予測安全マップでリスクが発生しない方向に前記自動運転制御モジュール601から受信した軌道を修正しても良い。そのようにすることにより、安全性を向上させつつ、別途予測安全軌道情報を計算する演算量が削減可能となる。 In addition, the predictive safety determination unit 623 may output the trajectory information received from the automatic driving control module 601 in a corrected form when determining that the trajectory information received from the automatic driving control module 601 is not safe. .. For example, when the current track is too close to the preceding vehicle, the position of the track point is corrected to a decelerating track, and the track received from the automatic driving control module 601 in a direction in which no risk occurs in the predicted safety map. May be corrected. By doing so, it is possible to reduce the amount of calculation for separately calculating the predicted safe trajectory information while improving safety.
<安全条件認識(安全条件認識部631)>
 安全条件認識部631は、前記周辺認識部611と同様に処理を行い、外界認識情報を出力する。
<Safety condition recognition (safety condition recognition unit 631)>
The safety condition recognition unit 631 performs the same process as the surrounding recognition unit 611 and outputs the external world recognition information.
 この安全条件認識で出力する外界認識情報は、後述する安全条件計画および安全条件判断に用いる情報であるため、前記周辺認識部611および予測安全認識部621で処理する情報に比べて情報量および演算量が少なく(例えば認識装置6の入力情報のみを使用し、通信装置3の入力情報を使用しない処理)、処理が単純化されて、実装の誤りが少なく高信頼な実装が可能となる。 Since the outside world recognition information output by this safety condition recognition is information used for a safety condition plan and a safety condition determination described later, the information amount and the calculation are larger than the information processed by the peripheral recognition unit 611 and the predicted safety recognition unit 621. The amount is small (for example, a process that uses only the input information of the recognition device 6 and does not use the input information of the communication device 3), the process is simplified, and the mounting error is small, and highly reliable mounting is possible.
<安全条件計画(安全条件計画部632)>
 安全条件計画部632は、安全条件認識部631が出力する外界認識情報を用いて安全条件を満たす制御の計画を行う。
<Safety condition plan (Safety condition planning unit 632)>
The safety condition planning unit 632 uses the external environment recognition information output by the safety condition recognizing unit 631 to plan a control that satisfies the safety condition.
 具体的には、前記外界認識情報に含まれる前方および周辺のオブジェクトとの距離、相手車両および自車両の速度、加速度、想定される最高および最低速度、加速度、加減速が必要になった場合の反応時間(空走時間)を用いて、現在の状況のままで制御を続けた場合に自車両が周辺のオブジェクトと衝突またはそれに近い距離まで近接するか否かの判定を行う。 Specifically, the distance to the front and surrounding objects included in the outside world recognition information, the speed and acceleration of the opponent vehicle and the own vehicle, the assumed maximum and minimum speeds, acceleration, and acceleration/deceleration when necessary. Using the reaction time (idling time), it is determined whether or not the host vehicle collides with an object in the vicinity or approaches a near distance when the control is continued in the current situation.
 また、その後、上記近接が起こると判定をした場合には、近接する方向と逆方向の加速を行う軌道を安全条件制御軌道情報として出力する。 After that, when it is determined that the above approach will occur, the trajectory that accelerates in the opposite direction to the approaching direction is output as safety condition control trajectory information.
<安全条件判断(安全条件判断部633)>
 安全条件判断部633は、安全条件計画部632が安全条件制御軌道情報を出力した場合には、現在の走行状態が安全条件による判定でリスクがある状況と判断し、前記安全条件制御軌道情報を車両運動制御部604に対して出力する。また、前記安全条件計画部632が安全条件制御軌道情報を出力していない場合には、現在の走行状態が安全条件による判定でリスクがない状況と判断し、予測安全判断部623が出力する軌道情報を車両運動制御部604に対して出力する。このようにして、安全条件判断部633は、安全条件を満たすような軌道情報(つまり、安全条件判断に応じた車両制御を行う信号に対応した軌道情報)の出力を行う。
<Safety condition determination (safety condition determination unit 633)>
When the safety condition planning unit 632 outputs the safety condition control trajectory information, the safety condition determination unit 633 determines that the current traveling state is in a risky state by the determination based on the safety condition, and the safety condition control trajectory information is obtained. Output to the vehicle motion control unit 604. Further, when the safety condition planning unit 632 does not output the safety condition control trajectory information, it is determined that the current traveling state is a risk-free state by the determination based on the safety condition, and the trajectory output by the predictive safety determination unit 623. The information is output to the vehicle motion control unit 604. In this way, the safety condition determination unit 633 outputs trajectory information that satisfies the safety condition (that is, trajectory information corresponding to a signal for performing vehicle control according to the safety condition determination).
<軌道情報に基づく制御>
 車両運動制御部604は、安全条件判断部633が出力した軌道情報を実現するように駆動装置5の制御を行う。軌道情報による制御では、軌道に追従可能なように、認識装置6から取得した車両システム1のシステム状態(現在速度、加速度、ヨーレート等)を反映し、車両システム1の目標速度およびヨーレート等を算出する。これら目標速度およびヨーレートを実現するため、それぞれ必要な駆動装置5の制御を行う。例えば、エンジントルクまたはモータトルクの出力を増加させる、減速を行うためにブレーキを制御する、目標ヨーレートを実現するためにステアを転舵させる、または車輪速が不均等になるように車輪個別に制動・加速の制御を行う。これにより、車両システム1の車両制御システム2は、目標である軌道に追従可能な車両制御を実現する。
<Control based on orbit information>
The vehicle motion control unit 604 controls the drive device 5 so as to realize the trajectory information output by the safety condition determination unit 633. In the control by the trajectory information, the target state and the yaw rate of the vehicle system 1 are calculated by reflecting the system state (current speed, acceleration, yaw rate, etc.) of the vehicle system 1 acquired from the recognition device 6 so that the trajectory can be followed. To do. In order to realize these target speed and yaw rate, necessary control of the drive device 5 is performed. For example, increasing the output of engine torque or motor torque, controlling the brakes to decelerate, steering the steer to achieve the target yaw rate, or braking individual wheels so that the wheel speeds are uneven.・Control acceleration. As a result, the vehicle control system 2 of the vehicle system 1 realizes vehicle control capable of following the target trajectory.
<モジュール構成の変更>
 次に、予測安全モジュール602と安全条件判定モジュール603をそれぞれ自動運転制御モジュール601を用いずに使用する場合の車両制御システム2の論理アーキテクチャの例について示す。
<Change of module configuration>
Next, an example of the logical architecture of the vehicle control system 2 when the predictive safety module 602 and the safety condition determination module 603 are used without using the automatic driving control module 601 will be described.
 図13は、予測安全モジュール602と安全条件判定モジュール603を組み合わせて、例えば運転支援システムとして使用する例、図14は、安全条件判定モジュール603のみを使用して運転支援システムとして使用する例を示している。 FIG. 13 shows an example in which the predictive safety module 602 and the safety condition determination module 603 are combined and used as, for example, a driving support system, and FIG. 14 shows an example in which only the safety condition determination module 603 is used as a driving support system. ing.
 図13の予測安全モジュール602と安全条件判定モジュール603を組み合わせて使用する場合は、前記した予測安全モジュール602の予測安全判断部623に軌道情報が入力される場合と異なり、自車両である車両システム1を運転するユーザの操作が入力装置8から予測安全判断部623に入力される。軌道は将来の自車両の位置であるが、ユーザ操作の場合には操作入力となるため、操作入力から将来の自車両の位置を予測(例えば現在の操舵角と操舵角の変化量から横方向の変化量を、アクセルペダルまたはブレーキペダルの踏込量と踏込量の変化量から縦方向の変化量を予測し、一定時間経過後の自車両の位置を予測)し、軌道と同様に(詳細には、軌道として近似して)判定を行う。それ以外の処理は、前記例と同様である。 When the predictive safety module 602 and the safety condition determining module 603 of FIG. 13 are used in combination, unlike the case where the trajectory information is input to the predictive safety determining unit 623 of the predictive safety module 602 described above, the vehicle system is the own vehicle. The operation of the user driving No. 1 is input to the predicted safety determination unit 623 from the input device 8. The trajectory is the position of the own vehicle in the future, but since it is an operation input in the case of a user operation, the position of the own vehicle in the future is predicted from the operation input (for example, the current steering angle and the change amount of the steering angle in the lateral direction). The amount of change in the vertical direction is predicted from the amount of depression of the accelerator pedal or brake pedal and the amount of change in the amount of depression, and the position of the host vehicle after a certain time has elapsed is predicted. Makes a decision (approximating as a trajectory). The other processes are the same as those in the above example.
 また、図14の安全条件判定モジュール603のみを用いる場合も同様に、安全条件判定モジュール603の安全条件判断部633の入力が入力装置8からのユーザの操作入力となる。この場合も同様に、軌道の代わりにユーザの操作から将来の自車両の位置を予測し、軌道として近似して用いる。 Similarly, when only the safety condition determination module 603 of FIG. 14 is used, the input of the safety condition determination unit 633 of the safety condition determination module 603 becomes the operation input of the user from the input device 8. In this case as well, the position of the future own vehicle is predicted from the user's operation instead of the trajectory, and is used as an approximate trajectory.
 このようにすることにより、自動運転制御モジュール601(が出力する軌道情報)を用いている場合には自動運転を安全にするモジュールとして使用可能であり、ユーザが運転する場合にも運転支援システムとして同様の安全制御を行うことが可能になり、かつ予測安全が必要か否かでさらに予測安全モジュール602を組み合わせて処理を行うことが可能となり、拡張や再利用が容易なシステムを構築することが可能となる。 By doing so, when the automatic driving control module 601 (orbit information output by the) is used, it can be used as a module that makes automatic driving safe, and also as a driving support system when the user drives. The same safety control can be performed, and the predictive safety module 602 can be further combined to perform processing depending on whether or not predictive safety is required, and a system that can be easily expanded and reused can be constructed. It will be possible.
 前記ユーザの操作入力から軌道への変換は、予測安全判断部623および安全条件判断部633で実施せず、それぞれの外部で行っても良い。そのようにすることにより、予測安全判断部623および安全条件判断部633の変更が不要となり、さらに再利用が容易となる。 The conversion from the user operation input to the trajectory may not be performed by the predictive safety determination unit 623 and the safety condition determination unit 633, but may be performed outside each of them. By doing so, it is not necessary to change the predictive safety determination unit 623 and the safety condition determination unit 633, and the reuse becomes easier.
 また、これらモジュールの切り替えは、別の製品で実施するだけでなく、一つの製品で自動運転モード(システムが運転制御を実施)と運転支援モード(ユーザが運転制御を実施)の場合で切り替えて使用しても良い。そのようにすることにより、それぞれのモードで予測安全モジュール602と安全条件判定モジュール603の処理が共通化されて、切り替えの容易さや共通化によるシステムの信頼性向上が可能となる。 In addition, switching between these modules is not only performed in another product, but also in one product in automatic operation mode (system performs operation control) and driving support mode (user performs operation control). You may use it. By doing so, the processes of the predictive safety module 602 and the safety condition determination module 603 are made common in each mode, and it is possible to improve the reliability of the system by the ease of switching and the commonization.
<論理アーキテクチャの物理アーキテクチャへの配置>
 前記した論理アーキテクチャ600は複数の機能から構成されており、図2に示すH/Wへの機能配置は複数のパターンが存在する。配置の一例について図15(a)、(b)に示す。図15(a)は、車両制御システム2が自動運転制御モジュール601と予測安全モジュール602と安全条件判定モジュール603の3層すべてを有する場合の配置例(図5を併せて参照)、図15(b)は、車両制御システム2が予測安全モジュール602と安全条件判定モジュール603を有する場合の配置例(図13を併せて参照)を示している。機能の配置はこれに限らず、それぞれの機能は、記載と別のECUに配置されていても良い。
<Layout of logical architecture to physical architecture>
The logical architecture 600 described above is composed of a plurality of functions, and there are a plurality of patterns in the function layout to the H/W shown in FIG. An example of the arrangement is shown in FIGS. 15(a) and 15(b). FIG. 15A shows an arrangement example (see also FIG. 5) when the vehicle control system 2 has all three layers of the automatic driving control module 601, the predictive safety module 602, and the safety condition determination module 603, and FIG. b) shows an arrangement example (see also FIG. 13) when the vehicle control system 2 has the predictive safety module 602 and the safety condition determination module 603. The arrangement of the functions is not limited to this, and the respective functions may be arranged in ECUs different from those described.
 また、それぞれのモジュールについては一つのECUにすべての機能が配置されるとは限らず、例えば自動運転制御モジュール601の周辺認識部611、認知処理部612、軌道生成部613は異なるECUに配置されても良い。また、逆に複数のモジュールが同じECUに配置されて良く、例えば予測安全モジュール602と安全条件判定モジュール603は同じECUに配置されても良い。 In addition, not all functions of each module are arranged in one ECU. For example, the peripheral recognition unit 611, the recognition processing unit 612, and the trajectory generation unit 613 of the automatic driving control module 601 are arranged in different ECUs. May be. Conversely, a plurality of modules may be arranged in the same ECU, for example, the predictive safety module 602 and the safety condition determination module 603 may be arranged in the same ECU.
 ただし、図15(a)と図15(b)の例における安全条件判定モジュール603のように、安全条件認識部631、安全条件計画部632、安全条件判断部633が同じECUに配置されることにより、図15(a)と図15(b)の場合でECUとモジュールの構成が同一となり、より再利用が容易となる。 However, the safety condition recognition unit 631, the safety condition planning unit 632, and the safety condition determination unit 633 are arranged in the same ECU as the safety condition determination module 603 in the example of FIGS. 15A and 15B. As a result, the configurations of the ECU and the module are the same in the cases of FIG. 15(a) and FIG. 15(b), and reuse is easier.
 また、自動運転制御モジュール601の生成した軌道情報の安全性を予測安全モジュール602および安全条件判定モジュール603が判定することから、共通の原因で故障が発生しないように、自動運転制御モジュール601と、予測安全モジュール602および安全条件判定モジュール603は、異なるECU、またはプロセッサに配置するか、プロセッサの内部で依存しないように設計することが望ましい。 Further, since the safety of the trajectory information generated by the automatic driving control module 601 is determined by the predictive safety module 602 and the safety condition determination module 603, the automatic driving control module 601 and the automatic driving control module 601 are provided so as not to cause a failure due to a common cause. The predictive safety module 602 and the safety condition determination module 603 are preferably arranged in different ECUs or processors, or designed so as not to depend on each other inside the processor.
 特に予測安全モジュール602は、軌道情報を入力して安全性を判定した軌道情報を出力することから、独立して安全性を判定するモジュールとして用いることができる。例えば予測安全モジュール602を有するECUを接続し、そのECUに別の自動運転制御モジュール601が生成した軌道情報を入力して出力させることにより、追加で安全性の判定を行うことが可能となる。 Particularly, the predictive safety module 602 can be used as a module for independently determining the safety because it inputs the trajectory information and outputs the trajectory information for which the safety is determined. For example, by connecting an ECU having the predictive safety module 602 and inputting and outputting the trajectory information generated by another automatic driving control module 601 to the ECU, it is possible to additionally determine the safety.
<モジュールの信頼度>
 安全条件判定モジュール603は、他の予測安全モジュール602および自動運転制御モジュール601より高い信頼度、または、予測安全モジュール602と同じかつ自動運転制御モジュール601より高い信頼性を付与し、システム全体の安全機構として用いることが有用である。これにより、例えば、安全条件判定モジュール603は、予測安全モジュール602または自動運転制御モジュール601が誤った処理をした場合でも、安全条件判定モジュール603の判断により、不安全な事象が発生することを防ぐことが可能になる。
<Module reliability>
The safety condition determination module 603 imparts higher reliability than the other predictive safety module 602 and the automatic driving control module 601, or the same reliability as the predictive safety module 602 and higher reliability than the automatic driving control module 601, and thus the safety of the entire system. It is useful to use as a mechanism. Thereby, for example, the safety condition determination module 603 prevents an unsafe event from occurring due to the determination of the safety condition determination module 603 even when the predictive safety module 602 or the automatic driving control module 601 performs an erroneous process. It will be possible.
 さらに、予測安全モジュール602は、安全条件判定モジュール603だけでは防ぎがたいオブジェクトの行動予測を含む自動運転制御モジュール601の誤りについて対応することが可能になる。そのため、予測安全モジュール602は、安全条件判定モジュール603よりは高くない信頼度で複雑な処理をしながらも、自動運転制御モジュール601より高い信頼度で安全性を確保することが有用である。 Furthermore, the predictive safety module 602 can deal with an error of the automatic driving control module 601 including the behavior prediction of the object which is difficult to prevent only by the safety condition determination module 603. Therefore, it is useful that the predictive safety module 602 secures safety with higher reliability than the automatic driving control module 601 while performing complicated processing with reliability not higher than the safety condition determination module 603.
 これにより、自動運転制御モジュール601を比較的低信頼としても、全体の信頼度を損なうことが無い設計が可能になり、システム全体としての高信頼化と低コスト化が可能となる。 With this, even if the automatic operation control module 601 has a relatively low reliability, it is possible to design without impairing the reliability of the entire system, and it is possible to achieve high reliability and low cost of the entire system.
[実施例2]
 次に、予測安全モジュール602の予測安全計画部622、自動運転制御モジュール601の軌道生成部613が、それぞれのモジュールの判定条件を把握して計画を行う例(実施例2)について図16を用いて説明する。図16は、実施例2にかかる車両制御システム2の論理アーキテクチャの例を示している。なお、本実施例2において実施例1と同じ構成には同じ符号を付して詳細な説明を省略する。
[Example 2]
Next, FIG. 16 is used for an example (Embodiment 2) in which the predictive safety planning unit 622 of the predictive safety module 602 and the trajectory generation unit 613 of the automatic driving control module 601 grasp the judgment conditions of the respective modules and make a plan. Explain. FIG. 16 shows an example of the logical architecture of the vehicle control system 2 according to the second embodiment. In the second embodiment, the same components as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
 まず最初の例は、予測安全モジュール602の予測安全計画部622が、安全条件判断部633の判定条件を把握して計画を行う例である。この場合、予測安全計画部622は、安全条件判断部633がどのような条件で安全性を判定するかを把握する。具体的には、前方車両との距離・速度・加速度がどのような条件の時に減速の制御を行うか、などである。この判定条件を把握し、予測安全計画部622は、前記判定条件により安全でないと判定されない予測安全軌道情報を生成する。 The first example is an example in which the predictive safety planning unit 622 of the predictive safety module 602 grasps the determination conditions of the safety condition determining unit 633 and makes a plan. In this case, the predicted safety planning unit 622 recognizes under what conditions the safety condition determining unit 633 determines the safety. Specifically, it is under what conditions the distance, speed, and acceleration with respect to the preceding vehicle are controlled for deceleration. By grasping this determination condition, the predicted safety planning unit 622 generates predicted safety trajectory information that is not determined to be unsafe according to the determination condition.
 同様に、自動運転制御モジュール601の軌道生成部613は、予測安全判断部623の判断内容、安全条件判断部633の判断内容を把握して、それぞれの判断部が安全でないと判断しない軌道情報を生成する。安全条件判断部633の判定条件の把握については上記の通りである。予測安全判断部623の判断内容の把握については、まず予測安全計画部622の出力する予測安全マップを受信し、かつ予測安全判断部623での判断内容(予測安全マップの閾値等)を取得し、生成する軌道情報が予測安全判断部623での判断内容において安全でないと判断されないかを事前に判断する。 Similarly, the trajectory generation unit 613 of the automatic driving control module 601 grasps the determination content of the predicted safety determination unit 623 and the determination content of the safety condition determination unit 633, and obtains the trajectory information that each determination unit does not determine to be unsafe. To generate. The determination of the determination condition by the safety condition determination unit 633 is as described above. In order to understand the judgment content of the predictive safety judgment unit 623, first, the predictive safety map output by the predictive safety planning unit 622 is received, and the judgment content (the threshold value of the predictive safety map etc.) of the predictive safety judgment unit 623 is acquired. It is determined in advance whether or not the generated trajectory information is determined to be unsafe according to the determination content of the predictive safety determination unit 623.
 このようにすることにより、予測安全モジュール602が、安全条件判定モジュール603の判定条件を満たさない軌道情報を生成することや、自動運転制御モジュール601が、予測安全モジュール602や安全条件判定モジュール603の判定条件を満たさない軌道情報を生成し、車両システム1が例えば想定外の制御により想定通りの制御が出来ない状態になる(必要な回避を実施できない、不意な制動で制御が不安定になるなど)ことを防ぐことが可能になる。 By doing so, the predictive safety module 602 generates trajectory information that does not satisfy the determination condition of the safety condition determining module 603, and the automatic driving control module 601 causes the predictive safety module 602 and the safety condition determining module 603 to operate. The trajectory information that does not satisfy the determination condition is generated, and the vehicle system 1 becomes in a state in which the control cannot be performed as expected due to, for example, unexpected control (unnecessary avoidance cannot be performed, control becomes unstable due to unexpected braking, etc.). ) Can be prevented.
 上記情報の取得については、前記それぞれの判断部から直接取得するだけでなく、別途それらの情報を把握している外部からの通信で取得しても良い。 Regarding the acquisition of the above information, not only the information may be directly acquired from each of the judgment units, but also the communication may be acquired from the outside that separately grasps the information.
[実施例1、2の作用効果]
 以上で説明した各実施例によれば、軌道情報を生成する自動運転制御モジュール601と、前記軌道情報の安全性を周囲のオブジェクトの行動予測を行った情報を基に判定し、必要に応じて予測安全軌道情報を出力する予測安全モジュール602と、所定の安全条件の判定を行い、安全でないと判断した場合には安全条件制御軌道情報を出力する安全条件判定モジュール603により、自動運転システムの安全性を確保し、それぞれを再利用可能な形で車両制御システム2を構築することが可能になる。
[Operational effects of Examples 1 and 2]
According to the embodiments described above, the safety of the orbit information is determined based on the information of the automatic operation control module 601 that generates the orbit information and the behavior of surrounding objects, and if necessary. Predictive safety module 602 that outputs predicted safety trajectory information, and safety condition determination module 603 that determines safety conditions and outputs safety condition control trajectory information when it is determined to be unsafe by the safety condition determination module 603. Therefore, the vehicle control system 2 can be constructed in such a manner that each property can be secured and each can be reused.
 特に、予測安全モジュール602は、入力された軌道情報に対して周囲のオブジェクトの安全予測を行った結果の予測安全マップを用いて判定を行い、安全な軌道情報(入力された軌道情報、または、生成した予測安全軌道情報)を出力することにより、自動運転制御モジュール601が誤った軌道情報を生成した場合でも安全に制御を継続することと、異常を検出することが可能となり、さらにモジュールを追加する構成で再利用が容易となる。 In particular, the predictive safety module 602 makes a determination using the predictive safety map obtained as a result of the safety prediction of the surrounding objects with respect to the input trajectory information, and the safe trajectory information (input trajectory information, or By outputting the generated predicted safe trajectory information), even if the automatic driving control module 601 generates erroneous trajectory information, it is possible to continue the control safely and detect an abnormality. With this configuration, reuse becomes easy.
 また、自動運転制御モジュール601に対して処理が比較的簡易な予測安全モジュール602を用いて安全性の判定を行うことで、簡易な処理のために単純な構成となり、高信頼化が容易となる。これにより、自動運転制御モジュール601で複雑な処理を実行することが可能となる。これは、予測安全モジュール602と安全条件判定モジュール603についても同様である。 In addition, the predictive safety module 602, which is relatively simple in processing, is used for the automatic driving control module 601 to determine the safety, so that a simple structure is provided for simple processing, and high reliability is facilitated. .. This allows the automatic operation control module 601 to execute complicated processing. The same applies to the predicted safety module 602 and the safety condition determination module 603.
 また、予測安全モジュール602と安全条件判定モジュール603を用いて運転支援システムを構築する場合には、自車両を運転するユーザの操作を軌道に近似することで、予測安全モジュール602と安全条件判定モジュール603を再利用して車両制御システム2を構築することが容易となる。 When constructing a driving support system using the predictive safety module 602 and the safety condition determination module 603, the predictive safety module 602 and the safety condition determination module are approximated by approximating the operation of the user driving the own vehicle to the trajectory. It becomes easy to construct the vehicle control system 2 by reusing the 603.
 また、別の実施例では、それぞれが独立に動作可能である自動運転制御モジュール601と予測安全モジュール602と安全条件判定モジュール603が、相互の判定条件を把握した上で軌道情報を生成することで、それぞれの状態の不整合による制御の不安定化を避けることも可能となる。 In another embodiment, the automatic driving control module 601, the predictive safety module 602, and the safety condition determination module 603, which are each independently operable, generate trajectory information after grasping mutual determination conditions. It is also possible to avoid destabilization of control due to inconsistency of each state.
 このように、本実施例の車両制御システム(車両制御装置)2は、認識装置6または通信装置3の少なくとも一方の入力情報を用いて軌道情報を生成する自動運転制御モジュール601と、前記自動運転制御モジュール601が生成する軌道情報と、前記認識装置6または前記通信装置3の少なくとも一方の入力情報を用いて周囲のオブジェクトを行動予測した結果の予測安全マップとに基づき安全性判定を行い、前記安全性判定の結果が安全の場合には前記軌道情報を出力し、前記安全性判定の結果が安全でない場合には前記認識装置6または前記通信装置3の少なくとも一方の入力情報並びに前記予測安全マップに基づき生成した軌道情報である予測安全軌道情報を出力する、前記自動運転制御モジュール601と独立した予測安全モジュール602と、を有するものである。また、前記予測安全モジュール602の出力する軌道情報と、前記認識装置6の入力情報とから、所定の安全条件判断に応じた車両制御を行う信号を出力する安全条件判定モジュール603をさらに有するものである。 As described above, the vehicle control system (vehicle control device) 2 according to the present embodiment includes the automatic driving control module 601 that generates the trajectory information by using the input information of at least one of the recognition device 6 and the communication device 3, and the automatic driving. The safety determination is performed based on the trajectory information generated by the control module 601 and the predicted safety map of the result of behavior prediction of the surrounding objects using the input information of at least one of the recognition device 6 and the communication device 3, and When the result of the safety judgment is safe, the trajectory information is output, and when the result of the safety judgment is not safe, the input information of at least one of the recognition device 6 and the communication device 3 and the predicted safety map. And a predictive safety module 602 independent of the automatic driving control module 601 for outputting predictive safe trajectory information which is trajectory information generated based on the above. Further, it further comprises a safety condition determination module 603 that outputs a signal for performing vehicle control according to a predetermined safety condition determination from the trajectory information output by the predictive safety module 602 and the input information of the recognition device 6. is there.
 上記構成の本実施例によれば、論理アーキテクチャ600について、自動運転を行うための軌道情報を出力する自動運転制御モジュール601と、前記自動運転制御モジュール601と独立し、オブジェクトの行動予測を行い、前記自動運転制御モジュール601の出力する軌道情報またはユーザ操作情報の安全性判定を行う予測安全モジュール602、また、前記予測安全モジュール602から出力される軌道情報について安全条件判断を行い、軌道情報を出力する安全条件判定モジュール603を組み合わせた構成により、再利用が容易かつ必要に応じた自動運転システムの安全性の提供が可能となる自動運転システムの構築が可能となる。 According to the present embodiment configured as described above, for the logical architecture 600, an automatic operation control module 601 that outputs trajectory information for performing automatic operation, and independent of the automatic operation control module 601, perform behavior prediction of an object, A predictive safety module 602 that determines the safety of the trajectory information or user operation information output by the automatic driving control module 601, and a safety condition determination is performed on the trajectory information output from the predictive safety module 602, and trajectory information is output. With the configuration in which the safety condition determination module 603 is combined, it is possible to construct an automatic driving system that is easy to reuse and can provide the safety of the automatic driving system as needed.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail for the purpose of explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, with respect to a part of the configuration of each embodiment, other configurations can be added/deleted/replaced.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 Also, each of the above-mentioned configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them with, for example, an integrated circuit. Further, each of the above-described configurations, functions, and the like may be realized by software by a processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files for realizing each function can be stored in a memory, a storage device such as a hard disk, SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Also, the control lines and information lines are shown to be necessary for explanation, and not all control lines and information lines are shown on the product. In practice, it may be considered that almost all configurations are connected to each other.
1 車両システム
2 車両制御システム(車両制御装置)
3 通信装置
4 車両制御システム
5 駆動装置
6 認識装置
7 出力装置
8 入力装置
9 通知装置
300 物理アーキテクチャ
301 ネットワークリンク
302 ECU
401 プロセッサ
402 I/O
403 タイマ
404 ROM
405 RAM
406 内部バス
501 制御部
502 通信監理部
503 時間管理部
504 データテーブル
505 バッファ
600 論理アーキテクチャ
601 自動運転制御モジュール
602 予測安全モジュール
603 安全条件判定モジュール
604 車両運動制御部
611 周辺認識部
612 認知処理部
613 軌道生成部
621 予測安全認識部
622 予測安全計画部
623 予測安全判断部
631 安全条件認識部
632 安全条件計画部
633 安全条件判断部
801 軌道
901 軌道
902 軌道
903 走行誘導領域
1002 他車両
1003 歩行者
1202 予測安全軌道
1301 軌道
1 Vehicle system 2 Vehicle control system (vehicle control device)
3 Communication Device 4 Vehicle Control System 5 Drive Device 6 Recognition Device 7 Output Device 8 Input Device 9 Notification Device 300 Physical Architecture 301 Network Link 302 ECU
401 processor 402 I/O
403 Timer 404 ROM
405 RAM
406 Internal bus 501 Control unit 502 Communication supervision unit 503 Time management unit 504 Data table 505 Buffer 600 Logical architecture 601 Automatic driving control module 602 Predictive safety module 603 Safety condition determination module 604 Vehicle motion control unit 611 Peripheral recognition unit 612 Cognitive processing unit 613 Trajectory generation unit 621 Predicted safety recognition unit 622 Predicted safety planning unit 623 Predicted safety judgment unit 631 Safety condition recognition unit 632 Safety condition planning unit 633 Safety condition judgment unit 801 Track 901 Track 902 Track 903 Driving guidance area 1002 Other vehicle 1003 Pedestrian 1202 Predicted safe orbit 1301 orbit

Claims (11)

  1.  自車に設けられたセンサにより構成される認識装置および外部との通信を実施する通信装置を備えた車両の制御を行う車両制御装置であって、
     前記認識装置または前記通信装置の少なくとも一方の入力情報を用いて軌道情報を生成する自動運転制御モジュールと、
     前記自動運転制御モジュールが生成する軌道情報と、前記認識装置または前記通信装置の少なくとも一方の入力情報を用いて周囲のオブジェクトを行動予測した結果の予測安全マップとに基づき安全性判定を行い、前記安全性判定の結果が安全の場合には前記軌道情報を出力し、前記安全性判定の結果が安全でない場合には前記認識装置または前記通信装置の少なくとも一方の入力情報並びに前記予測安全マップに基づき生成した軌道情報である予測安全軌道情報を出力する、前記自動運転制御モジュールと独立した予測安全モジュールと、を有することを特徴とする車両制御装置。
    A vehicle control device for controlling a vehicle equipped with a recognition device configured by a sensor provided in the own vehicle and a communication device for communicating with the outside,
    An automatic driving control module that generates trajectory information using input information of at least one of the recognition device or the communication device,
    Trajectory information generated by the automatic driving control module, and performs safety determination based on a predicted safety map of the result of behavior prediction of surrounding objects using the input information of at least one of the recognition device or the communication device, If the result of the safety judgment is safe, the trajectory information is output, and if the result of the safety judgment is not safe, based on the input information of at least one of the recognition device or the communication device and the predicted safety map. A vehicle control device comprising: a predicted safety module that is independent of the automatic driving control module and outputs predicted safety trajectory information that is generated trajectory information.
  2.  請求項1に記載の車両制御装置において、
     前記予測安全モジュールの出力する軌道情報と、前記認識装置の入力情報とから、所定の安全条件判断に応じた車両制御を行う信号を出力する安全条件判定モジュールをさらに有することを特徴とする車両制御装置。
    The vehicle control device according to claim 1,
    Vehicle control further comprising a safety condition determination module that outputs a signal for performing vehicle control according to a predetermined safety condition determination from the trajectory information output from the predictive safety module and the input information from the recognition device. apparatus.
  3.  請求項1に記載の車両制御装置において、
     前記予測安全モジュールによる周囲のオブジェクトの行動予測は、前記自動運転制御モジュールにおける周囲のオブジェクトの行動予測に比べ、安全に関する判定に必要な行動予測のみを実施することを特徴とする車両制御装置。
    The vehicle control device according to claim 1,
    The vehicle control device, wherein the behavior prediction of the surrounding objects by the predictive safety module performs only the behavior prediction necessary for the determination regarding safety as compared with the behavior prediction of the surrounding objects in the automatic driving control module.
  4.  請求項1に記載の車両制御装置において、
     前記予測安全モジュールによる周囲のオブジェクトの行動予測では、前記通信装置を介して受信したオブジェクトの軌道情報を用いることを特徴とする車両制御装置。
    The vehicle control device according to claim 1,
    In the behavior prediction of the surrounding objects by the predictive safety module, the trajectory information of the objects received via the communication device is used.
  5.  請求項1に記載の車両制御装置において、
     前記自動運転制御モジュールが生成する軌道情報と、前記予測安全モジュールが出力する軌道情報の構造が同様であることを特徴とする車両制御装置。
    The vehicle control device according to claim 1,
    The vehicle control device is characterized in that the track information generated by the automatic driving control module and the track information output by the predictive safety module have the same structure.
  6.  請求項1に記載の車両制御装置において、
     前記予測安全モジュールは、前記車両を運転するユーザの操作を軌道として近似して使用することを特徴とする車両制御装置。
    The vehicle control device according to claim 1,
    The predictive safety module approximates and uses an operation of a user who drives the vehicle as a trajectory.
  7.  請求項1に記載の車両制御装置において、
     前記予測安全モジュールは、前記自動運転制御モジュールより高い信頼性を持つことを特徴とする車両制御装置。
    The vehicle control device according to claim 1,
    The vehicle control device, wherein the predictive safety module has higher reliability than the automatic driving control module.
  8.  請求項2に記載の車両制御装置において、
     前記予測安全モジュールは、前記自動運転制御モジュールより高く、前記安全条件判定モジュールより低いまたは同じ信頼性を持つことを特徴とする車両制御装置。
    The vehicle control device according to claim 2,
    The predictive safety module has a reliability higher than that of the automatic driving control module and lower than or equal to that of the safety condition determination module.
  9.  請求項2に記載の車両制御装置において、
     前記自動運転制御モジュールは、前記予測安全モジュールまたは前記安全条件判定モジュールの少なくとも一方の判定条件を用いて軌道情報を生成することを特徴とする車両制御装置。
    The vehicle control device according to claim 2,
    The vehicle control device, wherein the automatic driving control module generates trajectory information by using at least one of the determination conditions of the predictive safety module and the safety condition determination module.
  10.  請求項2に記載の車両制御装置において、
     前記予測安全モジュールは、前記安全条件判定モジュールの判定条件を用いて軌道情報を生成することを特徴とする車両制御装置。
    The vehicle control device according to claim 2,
    The vehicle control device, wherein the predictive safety module generates trajectory information using the determination condition of the safety condition determination module.
  11.  自車に設けられたセンサにより構成される認識装置および外部との通信を実施する通信装置を備えた車両の制御を行う車両制御システムであって、
     前記認識装置または前記通信装置の少なくとも一方の入力情報を用いて軌道情報を生成する自動運転制御モジュールと、
     前記自動運転制御モジュールが生成する軌道情報と、前記認識装置または前記通信装置の少なくとも一方の入力情報を用いて周囲のオブジェクトを行動予測した結果の予測安全マップとに基づき安全性判定を行い、前記安全性判定の結果が安全の場合には前記軌道情報を出力し、前記安全性判定の結果が安全でない場合には前記認識装置または前記通信装置の少なくとも一方の入力情報並びに前記予測安全マップに基づき生成した軌道情報である予測安全軌道情報を出力する、前記自動運転制御モジュールと独立した予測安全モジュールと、
     前記予測安全モジュールの出力する軌道情報と、前記認識装置の入力情報とから、所定の安全条件判断に応じた車両制御を行う信号を出力する安全条件判定モジュールと、を有することを特徴とする車両制御システム。
    A vehicle control system for controlling a vehicle equipped with a recognition device configured by a sensor provided in a vehicle and a communication device for performing communication with the outside,
    An automatic driving control module that generates trajectory information using input information of at least one of the recognition device or the communication device,
    Trajectory information generated by the automatic driving control module, and performs safety determination based on a predicted safety map of the result of behavior prediction of surrounding objects using the input information of at least one of the recognition device or the communication device, If the result of the safety judgment is safe, the trajectory information is output, and if the result of the safety judgment is not safe, based on the input information of at least one of the recognition device or the communication device and the predicted safety map. Outputting predicted safety trajectory information that is generated trajectory information, a prediction safety module independent of the automatic driving control module,
    A vehicle including a safety condition determination module that outputs a signal for performing vehicle control according to a predetermined safety condition determination from the trajectory information output from the predictive safety module and the input information of the recognition device. Control system.
PCT/JP2020/000573 2019-01-31 2020-01-10 Vehicle control device and vehicle control system WO2020158342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020000166.0T DE112020000166T5 (en) 2019-01-31 2020-01-10 Vehicle control device and vehicle control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019016142A JP7223585B2 (en) 2019-01-31 2019-01-31 Vehicle control device and vehicle control system
JP2019-016142 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020158342A1 true WO2020158342A1 (en) 2020-08-06

Family

ID=71842052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000573 WO2020158342A1 (en) 2019-01-31 2020-01-10 Vehicle control device and vehicle control system

Country Status (3)

Country Link
JP (1) JP7223585B2 (en)
DE (1) DE112020000166T5 (en)
WO (1) WO2020158342A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065045A1 (en) * 2020-09-24 2022-03-31 いすゞ自動車株式会社 Automatic driving device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113715845A (en) * 2021-09-07 2021-11-30 北京百度网讯科技有限公司 Automatic driving method and device and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091042A (en) * 2015-11-05 2017-05-25 株式会社デンソー Driving support transmitter, driving support receiver, and program
JP2017154516A (en) * 2016-02-29 2017-09-07 株式会社デンソーアイティーラボラトリ Collision determination device, collision determination method, and program
JP2018513052A (en) * 2015-04-16 2018-05-24 ルノー エス.ア.エス. Method and system for managing changes in mode of operation of an automatic vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637400B2 (en) 2016-10-12 2020-01-29 本田技研工業株式会社 Vehicle control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513052A (en) * 2015-04-16 2018-05-24 ルノー エス.ア.エス. Method and system for managing changes in mode of operation of an automatic vehicle
JP2017091042A (en) * 2015-11-05 2017-05-25 株式会社デンソー Driving support transmitter, driving support receiver, and program
JP2017154516A (en) * 2016-02-29 2017-09-07 株式会社デンソーアイティーラボラトリ Collision determination device, collision determination method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065045A1 (en) * 2020-09-24 2022-03-31 いすゞ自動車株式会社 Automatic driving device
JP2022052875A (en) * 2020-09-24 2022-04-05 いすゞ自動車株式会社 Automated driving apparatus
JP7322845B2 (en) 2020-09-24 2023-08-08 いすゞ自動車株式会社 self-driving device

Also Published As

Publication number Publication date
DE112020000166T5 (en) 2021-09-02
JP2020123264A (en) 2020-08-13
JP7223585B2 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
EP3345800B1 (en) Vehicle control device and vehicle control system
US20180056998A1 (en) System and Method for Multi-Vehicle Path Planning Technical Field
WO2016021340A1 (en) Vehicle control system and action plan system provided with same
JP2018100009A (en) Vehicle control device
US20200241549A1 (en) Information processing apparatus, moving apparatus, and method, and program
US20200074851A1 (en) Control device and control method
US11613254B2 (en) Method to monitor control system of autonomous driving vehicle with multiple levels of warning and fail operations
JP7259716B2 (en) Vehicle control system and vehicle control method
CN110562222A (en) Emergency braking control method for curve scene, vehicle-mounted device and storage medium
JP2019144691A (en) Vehicle control device
KR20210070387A (en) A system for implementing fallback behaviors for autonomous vehicles
WO2020158342A1 (en) Vehicle control device and vehicle control system
JP6632581B2 (en) Travel control device, travel control method, and program
WO2023010043A1 (en) Complementary control system for an autonomous vehicle
JP6997118B2 (en) Vehicle control system
WO2022080018A1 (en) Autonomous travel control system
JP7187521B2 (en) Vehicle control device and vehicle control system
JP6636484B2 (en) Travel control device, travel control method, and program
WO2023076343A1 (en) Autonomous vehicle trajectory determination based on state transition model
JP7092955B1 (en) Vehicle control devices, vehicle control methods, and programs
WO2020044891A1 (en) Vehicle control device and vehicle control system
CN115667043A (en) Vehicle control system, vehicle integrated control device, electronic control device, network communication device, vehicle control method, and vehicle control program
WO2022144976A1 (en) Vehicle control device, vehicle control method, and program
WO2023004759A1 (en) Fault detection method, fault detection apparatus, server, and vehicle
JP5636854B2 (en) Course evaluation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748699

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20748699

Country of ref document: EP

Kind code of ref document: A1