WO2022144976A1 - Vehicle control device, vehicle control method, and program - Google Patents

Vehicle control device, vehicle control method, and program Download PDF

Info

Publication number
WO2022144976A1
WO2022144976A1 PCT/JP2020/049143 JP2020049143W WO2022144976A1 WO 2022144976 A1 WO2022144976 A1 WO 2022144976A1 JP 2020049143 W JP2020049143 W JP 2020049143W WO 2022144976 A1 WO2022144976 A1 WO 2022144976A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
mode
driving mode
driver
driving
Prior art date
Application number
PCT/JP2020/049143
Other languages
French (fr)
Japanese (ja)
Inventor
勝也 八代
宏史 小黒
圭輔 畑
真吾 伊藤
歩 堀場
忠彦 加納
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2020/049143 priority Critical patent/WO2022144976A1/en
Priority to JP2022528265A priority patent/JPWO2022144976A1/ja
Publication of WO2022144976A1 publication Critical patent/WO2022144976A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle control device, a vehicle control method, and a program.
  • Patent Document 1 An in-vehicle system including an automatic driving possibility notification unit for notifying the information is disclosed (Patent Document 1).
  • the information stored in the map is used to mechanically notify the possibility of automatic operation, but there are cases where flexible and stepwise control cannot be performed according to the existence of the speed limit area.
  • the present invention has been made in consideration of such circumstances, and provides a vehicle control device, a vehicle control method, and a program capable of performing flexible and stepwise control according to the existence of a speed limiting area. That is one of the purposes.
  • the vehicle control device has the following configuration. (1):
  • the vehicle control device has a recognition unit that recognizes the surrounding conditions of the vehicle, and one or both of steering or acceleration / deceleration of the vehicle regardless of the operation of the driver of the vehicle.
  • the operation control unit for controlling the vehicle and the operation mode of the vehicle are determined to be one of a plurality of operation modes including a first operation mode and a second operation mode, and the second operation mode is the operation.
  • the task assigned to the person is a light operation mode as compared with the first operation mode, and at least a part of the plurality of operation modes including the second operation mode is controlled by the operation control unit.
  • the recognition unit includes a mode determination unit that changes the operation mode of the vehicle to an operation mode in which the task is more severe when the task related to the determined operation mode is not executed by the driver. Recognizing that a speed limit area for the vehicle exists within the reference distance on the traveling direction side of the vehicle, the mode determination unit recognizes the speed limit area due to the recognition unit recognizing the speed limit area. It limits the implementation of the second operation mode.
  • the recognition unit performs recognition based on the detection result of the external world sensor and recognition based on the map information, and the map information including the speed information of the vehicle and the vehicle. Based on the position information of the vehicle, it is recognized that the speed limiting area for the vehicle exists within the reference distance on the traveling direction side of the vehicle.
  • the recognition unit has either map information including vehicle speed information, position information of the vehicle, or output information of a recognition device that recognizes peripheral objects of the vehicle.
  • map information including vehicle speed information, position information of the vehicle, or output information of a recognition device that recognizes peripheral objects of the vehicle.
  • the second operation mode is an operation mode in which the driver is not tasked with grasping an operator that accepts a steering operation
  • the first operation mode is. This is an operation mode in which the driver needs to operate the vehicle for at least one of steering and acceleration / deceleration of the vehicle.
  • the second operation mode is an operation mode in which the driver is not tasked with grasping an operator that accepts a steering operation.
  • the first operation mode is an operation mode in which the driver is tasked with at least a task of grasping the operator that accepts a steering operation by the driver.
  • the second driving mode is a driving mode for automatically or partially automatically changing lanes
  • the first driving mode is automatically or partially. This is a driving mode that does not partially automatically change lanes.
  • the mode determination unit recognizes that the vehicle has entered the speed limit area, or the vehicle enters the speed limit area. In the foreground, the implementation of the second operation mode is restricted.
  • the computer mounted on the vehicle recognizes the surrounding situation of the vehicle and steers or adds the vehicle without depending on the operation of the driver of the vehicle.
  • One or both of the decelerations are controlled, and the driving mode of the vehicle is determined to be one of a plurality of driving modes including a first driving mode and a second driving mode, and the second driving mode is
  • the task imposed on the driver is a light driving mode as compared with the first driving mode, and at least a part of the plurality of driving modes including the second driving mode is of the driver of the vehicle.
  • the vehicle is switched to a driving mode in which the task is more severe.
  • the second driving mode is changed, the speed limit area for the vehicle is recognized within the reference distance on the traveling direction side of the vehicle, and the speed limit area is recognized. It limits the implementation of the operation mode.
  • the program according to another aspect of the present invention causes a computer mounted on the vehicle to recognize the surrounding situation of the vehicle, and steers or accelerates / decelerates the vehicle without depending on the operation of the driver of the vehicle.
  • One or both of them are controlled, and the operation mode of the vehicle is determined to be one of a plurality of operation modes including a first operation mode and a second operation mode, and the second operation mode is the operation.
  • the task assigned to the person is a light operation mode as compared with the first operation mode, and at least a part of the plurality of operation modes including the second operation mode is controlled, and the determined operation mode is controlled.
  • the driving mode of the vehicle is changed to a driving mode in which the task is more severe, and the speed limit area for the vehicle exists within the reference distance on the traveling direction side of the vehicle. This is to limit the implementation of the second operation mode due to the recognition of the speed limit area.
  • FIG. 1 is a configuration diagram of a vehicle system 1 using the vehicle control device according to the first embodiment.
  • the vehicle on which the vehicle system 1 is mounted is, for example, a vehicle such as a two-wheeled vehicle, a three-wheeled vehicle, or a four-wheeled vehicle, and the drive source thereof is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, or a combination thereof.
  • the electric motor operates by using the electric power generated by the generator connected to the internal combustion engine or the electric power generated by the secondary battery or the fuel cell.
  • the vehicle system 1 includes, for example, a camera 10, a radar device 12, a LIDAR (Light Detection and Ringing) 14, an object recognition device 16, a communication device 20, an HMI (Human Machine Interface) 30, and a vehicle sensor 40. , A navigation device 50, an MPU (Map Positioning Unit) 60, a driving controller 80, an automatic driving control device 100, a traveling driving force output device 200, a braking device 210, and a steering device 220. These devices and devices are connected to each other by multiple communication lines such as CAN (Controller Area Network) communication lines, serial communication lines, wireless communication networks, and the like.
  • the camera 10, radar device 12, and LIDAR 14 are examples of "outside world sensors.”
  • the configuration shown in FIG. 1 is merely an example, and a part of the configuration may be omitted or another configuration may be added.
  • the camera 10 is a digital camera that uses a solid-state image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the camera 10 is attached to an arbitrary position of the vehicle on which the vehicle system 1 is mounted (hereinafter referred to as the own vehicle M).
  • the own vehicle M When photographing the front, the camera 10 is attached to the upper part of the front windshield, the back surface of the rear-view mirror, and the like.
  • the camera 10 periodically and repeatedly images the periphery of the own vehicle M, for example.
  • the camera 10 may be a stereo camera.
  • the camera 10 is an example of a "recognition device".
  • the radar device 12 radiates radio waves such as millimeter waves around the own vehicle M, and also detects radio waves (reflected waves) reflected by the object to detect at least the position (distance and direction) of the object.
  • the radar device 12 is attached to an arbitrary position on the own vehicle M.
  • the radar device 12 may detect the position and velocity of the object by the FM-CW (Frequency Modified Continuous Wave) method.
  • FM-CW Frequency Modified Continuous Wave
  • the LIDAR14 irradiates the periphery of the own vehicle M with light (or an electromagnetic wave having a wavelength close to that of light) and measures scattered light.
  • the LIDAR 14 detects the distance to the object based on the time from light emission to light reception.
  • the emitted light is, for example, a pulsed laser beam.
  • the LIDAR 14 is attached to any position on the own vehicle M.
  • the object recognition device 16 performs sensor fusion processing on the detection results of a part or all of the camera 10, the radar device 12, and the LIDAR 14, and recognizes the position, type, speed, and the like of the object.
  • the object recognition device 16 outputs the recognition result to the automatic operation control device 100.
  • the object recognition device 16 may output the detection results of the camera 10, the radar device 12, and the LIDAR 14 to the automatic operation control device 100 as they are.
  • the object recognition device 16 may be omitted from the vehicle system 1.
  • the communication device 20 communicates with another vehicle existing in the vicinity of the own vehicle M by using, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or wirelessly. Communicates with various server devices via the base station.
  • a cellular network for example, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or wirelessly.
  • the HMI 30 presents various information to the occupants of the own vehicle M and accepts input operations by the occupants.
  • the HMI 30 includes various display devices, speakers, buzzers, touch panels, switches, keys and the like.
  • the vehicle sensor 40 includes a vehicle speed sensor that detects the speed of the own vehicle M, an acceleration sensor that detects the acceleration, a yaw rate sensor that detects the angular velocity around the vertical axis, an orientation sensor that detects the direction of the own vehicle M, and the like.
  • the navigation device 50 includes, for example, a GNSS (Global Navigation Satellite System) receiver 51, a navigation HMI 52, and a route determination unit 53.
  • the navigation device 50 holds the first map information 54 in a storage device such as an HDD (Hard Disk Drive) or a flash memory.
  • the GNSS receiver 51 identifies the position of the own vehicle M based on the signal received from the GNSS satellite.
  • the position of the own vehicle M may be specified or complemented by an INS (Inertial Navigation System) using the output of the vehicle sensor 40.
  • the navigation HMI 52 includes a display device, a speaker, a touch panel, keys, and the like.
  • the navigation HMI 52 may be partially or wholly shared with the above-mentioned HMI 30.
  • the route determination unit 53 has a route from the position of the own vehicle M (or an arbitrary position input) specified by the GNSS receiver 51 to the destination input by the occupant using the navigation HMI 52 (hereinafter,).
  • the route on the map) is determined with reference to the first map information 54.
  • the first map information 54 is, for example, information in which a road shape is expressed by a link indicating a road and a node connected by the link.
  • the first map information 54 may include road curvature, POI (Point Of Interest) information, and the like.
  • the route on the map is output to MPU60.
  • the navigation device 50 may provide route guidance using the navigation HMI 52 based on the route on the map.
  • the navigation device 50 may be realized by, for example, the function of a terminal device such as a smartphone or a tablet terminal owned by an occupant.
  • the navigation device 50 may transmit the current position and the destination to the navigation server via the communication device 20 and acquire a route equivalent to the route on the map from the navigation server.
  • the MPU 60 includes, for example, a recommended lane determination unit 61, and holds the second map information 62 in a storage device such as an HDD or a flash memory.
  • the recommended lane determination unit 61 divides the route on the map provided by the navigation device 50 into a plurality of blocks (for example, divides the route into 100 [m] units with respect to the vehicle traveling direction), and refers to the second map information 62. Determine the recommended lane for each block.
  • the recommended lane determination unit 61 determines which lane to drive from the left. When a branch point exists on the route on the map, the recommended lane determination unit 61 determines the recommended lane so that the own vehicle M can travel on a reasonable route to proceed to the branch destination.
  • the second map information 62 is map information with higher accuracy than the first map information 54.
  • the second map information 62 includes, for example, information on the center of the lane, information on the boundary of the lane, and the like. Further, the second map information 62 may include road information, traffic regulation information including a speed limit, address information (address / zip code), facility information, telephone number information, road sign information, and the like.
  • the second map information 62 may be updated at any time by the communication device 20 communicating with another device.
  • the driver monitor camera 70 is, for example, a digital camera that uses a solid-state image sensor such as a CCD or CMOS.
  • the driver monitor camera 70 is a position and orientation in which the head of an occupant (hereinafter referred to as a driver) seated in the driver's seat of the own vehicle M can be imaged from the front (in the direction in which the face is imaged), and is arbitrary in the own vehicle M. It can be attached to a place.
  • the driver monitor camera 70 is attached to the upper part of the display device provided in the central portion of the instrument panel of the own vehicle M.
  • the driving controller 80 includes, for example, an accelerator pedal, a brake pedal, a shift lever, and other controls in addition to the steering wheel 82.
  • a sensor for detecting the amount of operation or the presence or absence of operation is attached to the operation controller 80, and the detection result is the automatic operation control device 100, or the traveling driving force output device 200, the brake device 210, and the steering device. It is output to a part or all of 220.
  • the steering wheel 82 is an example of an “operator that accepts a steering operation by the driver”. The operator does not necessarily have to be annular, and may be in the form of a deformed steer, a joystick, a button, or the like.
  • a steering grip sensor 84 is attached to the steering wheel 82.
  • the steering grip sensor 84 is realized by a capacitance sensor or the like, and automatically outputs a signal capable of detecting whether or not the driver is gripping the steering wheel 82 (meaning that the steering wheel 82 is in contact with the steering wheel 82). It is output to the operation control device 100.
  • the automatic operation control device 100 includes, for example, a first control unit 120 and a second control unit 160.
  • the first control unit 120 and the second control unit 160 are realized by, for example, a hardware processor such as a CPU (Central Processing Unit) executing a program (software), respectively.
  • a hardware processor such as a CPU (Central Processing Unit) executing a program (software), respectively.
  • some or all of these components are hardware (circuits) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). It may be realized by the part; including circuitry), or it may be realized by the cooperation of software and hardware.
  • the program may be stored in advance in a storage device (a storage device including a non-transient storage medium) such as an HDD or a flash memory of the automatic operation control device 100, or may be detachable such as a DVD or a CD-ROM. It is stored in a storage medium, and may be installed in the HDD or flash memory of the automatic operation control device 100 by mounting the storage medium (non-transient storage medium) in the drive device.
  • a storage device a storage device including a non-transient storage medium
  • a storage device such as an HDD or a flash memory of the automatic operation control device 100
  • It is stored in a storage medium, and may be installed in the HDD or flash memory of the automatic operation control device 100 by mounting the storage medium (non-transient storage medium) in the drive device.
  • the automatic driving control device 100 is an example of the "vehicle control device", and a combination of the action plan generation unit 140 and the second control unit 160, which will be described later, is an example of the "operation control unit”.
  • FIG. 2 is a functional configuration diagram of the first control unit 120 and the second control unit 160.
  • the first control unit 120 includes, for example, a recognition unit 130, an action plan generation unit 140, and a mode determination unit 150.
  • the first control unit 120 realizes a function by AI (Artificial Intelligence) and a function by a model given in advance in parallel. For example, the function of "recognizing an intersection” is executed in parallel with the recognition of an intersection by deep learning or the like and the recognition based on predetermined conditions (there are signals that can be matched with patterns, road markings, etc.). It may be realized by scoring and comprehensively evaluating. This ensures the reliability of automated driving.
  • AI Artificial Intelligence
  • the recognition unit 130 recognizes the position, speed, acceleration, and other states of objects around the own vehicle M based on the information input from the camera 10, the radar device 12, and the LIDAR 14 via the object recognition device 16. do.
  • the position of the object is recognized as, for example, a position on absolute coordinates with the representative point (center of gravity, center of drive axis, etc.) of the own vehicle M as the origin, and is used for control.
  • the position of the object may be represented by a representative point such as the center of gravity or a corner of the object, or may be represented by a region.
  • the "state" of an object may include the object's acceleration, jerk, or "behavioral state” (eg, whether it is changing lanes or is about to change lanes).
  • the recognition unit 130 recognizes, for example, the lane (traveling lane) in which the own vehicle M is traveling.
  • the recognition unit 130 has a road lane marking pattern (for example, an arrangement of a solid line and a broken line) obtained from the second map information 62 and a road lane marking around the own vehicle M recognized from the image captured by the camera 10. By comparing with the pattern of, the driving lane is recognized.
  • the recognition unit 130 may recognize the traveling lane by recognizing not only the road marking line but also the running road boundary (road boundary) including the road marking line, the shoulder, the median strip, the guardrail, and the like. .. In this recognition, the position of the own vehicle M acquired from the navigation device 50 and the processing result by the INS may be added.
  • the recognition unit 130 also recognizes stop lines, obstacles, red lights, tollhouses, and other road events.
  • the recognition unit 130 When recognizing the traveling lane, the recognition unit 130 recognizes the position and posture of the own vehicle M with respect to the traveling lane.
  • the recognition unit 130 determines, for example, the deviation of the reference point of the own vehicle M from the center of the lane and the angle formed with respect to the line connecting the center of the lane in the traveling direction of the own vehicle M with respect to the relative position of the own vehicle M with respect to the traveling lane. And may be recognized as a posture. Instead, the recognition unit 130 recognizes the position of the reference point of the own vehicle M with respect to any side end portion (road division line or road boundary) of the traveling lane as the relative position of the own vehicle M with respect to the traveling lane. You may.
  • the action plan generation unit 140 travels in the recommended lane determined by the recommended lane determination unit 61, and the own vehicle M automatically (driver) so as to be able to respond to the surrounding conditions of the own vehicle M.
  • the target trajectory contains, for example, a speed element.
  • the target track is expressed as an arrangement of points (track points) to be reached by the own vehicle M in order.
  • the track point is a point to be reached by the own vehicle M for each predetermined mileage (for example, about several [m]) along the road, and separately, for a predetermined sampling time (for example, about 0 comma number [sec]).
  • Target velocity and target acceleration are generated as part of the target trajectory.
  • the track point may be a position to be reached by the own vehicle M at the sampling time for each predetermined sampling time. In this case, the information of the target velocity and the target acceleration is expressed by the interval of the orbital points.
  • the action plan generation unit 140 may set an event for automatic driving when generating a target trajectory.
  • Autonomous driving events include constant speed driving events, low speed following driving events, lane change events, branching events, merging events, takeover events, and the like.
  • the action plan generation unit 140 generates a target trajectory according to the activated event.
  • the mode determination unit 150 determines the operation mode of the own vehicle M to be one of a plurality of operation modes in which the task imposed on the driver is different.
  • the mode determination unit 150 includes, for example, a driver state determination unit 152 and a mode change processing unit 154. These individual functions will be described later.
  • FIG. 3 is a diagram showing an example of the correspondence relationship between the driving mode, the control state of the own vehicle M, and the task.
  • the operation mode of the own vehicle M includes, for example, five modes from mode A to mode E.
  • the degree of automation of the control state that is, the operation control of the own vehicle M, is highest in mode A, then in the order of mode B, mode C, and mode D, and is lowest in mode E.
  • the task imposed on the driver is the mildest in mode A, followed by mode B, mode C, and mode D in that order, and mode E is the most severe.
  • the modes D and E are in a control state that is not automatic driving, the automatic driving control device 100 is responsible for ending the control related to automatic driving and shifting to driving support or manual driving.
  • mode A and / or mode B is an example of a "second operation mode”
  • a part or all of modes C, mode D, and mode E is an example of a "first operation mode”.
  • mode A the vehicle is in an automatic driving state, and neither forward monitoring nor gripping of the steering wheel 82 (steering gripping in the figure) is imposed on the driver.
  • the driver is required to be in a position to quickly shift to manual operation in response to a request from the system centered on the automatic operation control device 100.
  • automated driving as used herein means that both steering and acceleration / deceleration are controlled without depending on the driver's operation.
  • the front means the space in the traveling direction of the own vehicle M that is visually recognized through the front windshield.
  • Mode A is a condition that the own vehicle M is traveling at a predetermined speed (for example, about 50 [km / h]) or less on a motorway such as an expressway, and there is a vehicle in front to be followed. It is an operation mode that can be executed when is satisfied, and may be referred to as TJP (Traffic Jam Pilot). When this condition is no longer satisfied, the mode determination unit 150 changes the operation mode of the own vehicle M to the mode B.
  • TJP Traffic Jam Pilot
  • Mode B the driver is in a driving support state, and the driver is tasked with monitoring the front of the own vehicle M (hereinafter referred to as forward monitoring), but is not tasked with gripping the steering wheel 82.
  • mode C the driving support state is set, and the driver is tasked with the task of forward monitoring and the task of gripping the steering wheel 82.
  • Mode D is a driving mode that requires a certain degree of driving operation by the driver with respect to at least one of steering or acceleration / deceleration of the own vehicle M.
  • driving support such as ACC (Adaptive Cruise Control) or LKAS (Lane Keeping Assist System) is provided.
  • mode E both steering and acceleration / deceleration are in a state of manual operation that requires a driving operation by the driver.
  • mode D and mode E the driver is naturally tasked with monitoring the front of the vehicle M.
  • the automatic driving control device 100 executes the lane change according to the driving mode.
  • the lane change includes a lane change (1) according to a system request and a lane change (2) according to a driver request.
  • the lane change (1) is to change the lane for overtaking and to proceed toward the destination, which is performed when the speed of the vehicle in front is smaller than the standard with respect to the speed of the own vehicle.
  • There is a lane change (a lane change due to a change in the recommended lane).
  • the lane change (2) changes the lane of the own vehicle M toward the operation direction when the direction indicator is operated by the driver when the conditions related to the speed and the positional relationship with the surrounding vehicles are satisfied. It is something that makes you.
  • the automatic driving control device 100 does not execute either the lane change (1) or (2) in the mode A.
  • the driving support device executes both the lane change (1) and (2) in mode B.
  • the driving support device does not execute the lane change (1) but executes the lane change (2) in the mode C.
  • the driving support device does not execute any of the lane changes (1) and (2) in modes D and E.
  • the mode in which the lane change (1) is not executed and the lane change (2) is executed, or the lane change (2) is not executed and the lane change (1) is executed is "partially automatic. This is an example of "changing lanes".
  • the driving support device may be one that performs a partially automatic lane change in mode B.
  • the mode determination unit 150 changes the operation mode of the own vehicle M to an operation mode in which the task is more severe when the task related to the determined operation mode (hereinafter referred to as the current operation mode) is not executed by the driver.
  • the mode determination unit 150 uses the HMI 30 to urge the driver to shift to manual driving, and if the driver does not respond, the own vehicle M is moved to the shoulder of the road and gradually stopped, and automatic driving is stopped. I do. After the automatic driving is stopped, the own vehicle is in the mode D or E, and the own vehicle M can be started by the manual operation of the driver.
  • stop automatic operation when the driver is in a position where he / she cannot shift to manual driving in response to a request from the system (for example, when he / she continues to look outside the permissible area or when a sign that driving becomes difficult is detected. ).
  • the mode determination unit 150 urges the driver to monitor the front using the HMI 30, and if the driver does not respond, the vehicle M is brought to the shoulder and gradually stopped. , Stop automatic operation, and so on. If the driver is not monitoring the front in mode C, or is not gripping the steering wheel 82, the mode determination unit 150 uses the HMI 30 to give the driver forward monitoring and / or grip the steering wheel 82. If the driver does not respond, the vehicle M is brought closer to the road shoulder and gradually stopped, and automatic driving is stopped.
  • the driver state determination unit 152 monitors the driver's state for the above mode change, and determines whether or not the driver's state is in a state corresponding to the task. For example, the driver state determination unit 152 analyzes the image captured by the driver monitor camera 70 and performs posture estimation processing, and whether or not the driver is in a position where he / she cannot shift to manual driving in response to a request from the system. To judge. Further, the driver state determination unit 152 analyzes the image captured by the driver monitor camera 70 and performs line-of-sight estimation processing to determine whether or not the driver is monitoring the front.
  • the mode change processing unit 154 performs various processes for changing the mode. For example, the mode change processing unit 154 instructs the action plan generation unit 140 to generate a target trajectory for shoulder stop, gives an operation instruction to a driving support device (not shown), and gives an action to the driver. HMI30 is controlled to encourage.
  • the second control unit 160 sets the traveling driving force output device 200, the brake device 210, and the steering device 220 so that the own vehicle M passes the target trajectory generated by the action plan generation unit 140 at the scheduled time. Control.
  • the second control unit 160 includes, for example, an acquisition unit 162, a speed control unit 164, and a steering control unit 166.
  • the acquisition unit 162 acquires the information of the target trajectory (orbit point) generated by the action plan generation unit 140 and stores it in a memory (not shown).
  • the speed control unit 164 controls the traveling driving force output device 200 or the brake device 210 based on the speed element associated with the target trajectory stored in the memory.
  • the steering control unit 166 controls the steering device 220 according to the degree of bending of the target trajectory stored in the memory.
  • the processing of the speed control unit 164 and the steering control unit 166 is realized by, for example, a combination of feedforward control and feedback control.
  • the steering control unit 166 executes a combination of feedforward control according to the curvature of the road in front of the own vehicle M and feedback control based on the deviation from the target track.
  • the traveling driving force output device 200 outputs the traveling driving force (torque) for the vehicle to travel to the drive wheels.
  • the traveling driving force output device 200 includes, for example, a combination of an internal combustion engine, an electric motor, a transmission, and the like, and an ECU (Electronic Control Unit) that controls them.
  • the ECU controls the above configuration according to the information input from the second control unit 160 or the information input from the operation controller 80.
  • the brake device 210 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU.
  • the brake ECU controls the electric motor according to the information input from the second control unit 160 or the information input from the operation controller 80 so that the brake torque corresponding to the braking operation is output to each wheel.
  • the brake device 210 may include a mechanism for transmitting the hydraulic pressure generated by the operation of the brake pedal included in the operation operator 80 to the cylinder via the master cylinder as a backup.
  • the brake device 210 is not limited to the configuration described above, and is an electronically controlled hydraulic brake device that controls the actuator according to the information input from the second control unit 160 to transmit the hydraulic pressure of the master cylinder to the cylinder. May be good.
  • the steering device 220 includes, for example, a steering ECU and an electric motor.
  • the electric motor for example, exerts a force on the rack and pinion mechanism to change the direction of the steering wheel.
  • the steering ECU drives the electric motor according to the information input from the second control unit 160 or the information input from the operation controller 80, and changes the direction of the steering wheel.
  • the recognition unit 130 recognizes that there is a speed limit area in which the mode A or B should be terminated within the reference distance on the traveling direction side of the own vehicle M.
  • the recognition unit 130 is set to pass the speed limit area, for example, when the recommended lane determined by the MPU 60 passes through the speed limit area, and the speed limit is detected by the object recognition device 16 within a reference distance. Recognize that a restricted area exists.
  • the mode determination unit 150 limits the mode A or B because the recognition unit 130 recognizes the speed limiting area.
  • restrictive means that in addition to changing the mode to mode C, D, or E, a part of the function of the mode is stopped or reduced without changing the current mode. do.
  • steering grip is basically unnecessary, but when changing lanes or entering a branch road, steering grip is required to manually change lanes or enter a branch road. It is conceivable to execute with.
  • FIG. 4 is a diagram for explaining control when passing through the speed limit area.
  • the own vehicle M is traveling on the main line ML, and the route on the map to enter the branch road SL in order to reach the destination is determined.
  • the MPU 60 sets recommended lanes based on the route on the map.
  • the arrow RL indicates a guidance route in which the recommended lanes are connected.
  • TS is a road sign indicating a speed limit, and indicates that the legal speed on the branch road SL is 40 km / h as an example.
  • the recognition unit 130 first recognizes that the own vehicle M should enter the speed limit area (that is, the branch road SL) based on the recommended route acquired from the MPU 60. At this time, the recognition unit 130 provides information including at least the start point SP, the boundary line BL, the road sign TS, and the image of the speed limit area (hereinafter referred to as “speed limit area information”) in the second map information 62. Get from. At the same time, the recognition unit 130 acquires the speed limiting area information acquired by the camera 10, the radar device 12, or the LIDAR 14 from the object recognition device 16. Next, the recognition unit 130 compares the speed limit area information acquired from the second map information 62 with the speed limit area information acquired from the object recognition device 16, and determines whether or not these information match. judge.
  • the recognition unit 130 recognizes that these information match, and the distance between the own vehicle M and the start point SP is the reference distance D based on the position of the own vehicle M and the position of the start point SP in the speed limiting area. When it recognizes that the following has occurred, it notifies the mode determination unit 150 to that effect.
  • the mode determination unit 150 limits the operation mode when the operation mode at that time is mode A or B in response to the notification from the recognition unit 130. "Restricting the operation mode” means limiting the implementation of the above-mentioned second operation mode and switching to the first operation mode at an appropriate timing. The same applies hereinafter.
  • the second map information 62 stores erroneous speed limiting area information, it is different from the speed limiting area information acquired from the object recognition device 16, so that it is possible to prevent the operation mode from being erroneously restricted. Can be done.
  • the mode determination unit 150 may execute mode C in the middle until the operation mode is changed from mode A or B to mode D or E. In this case, if the driver does not grip the steering wheel 82 during the period of mode C, the action plan generation unit 140 temporarily stops the own vehicle on the shoulder or the like, and then sets the operation mode to mode D or E. You may change it. Further, the operation mode may be changed from mode A or B to mode C instead of changing the operation mode from mode A or B to mode D or E.
  • FIG. 5 is a diagram for explaining control when passing through the speed limit area.
  • the own vehicle M has entered the branch road SL, and the route on the map that goes straight on the branch road SL is determined.
  • the road sign TS is not set in FIG. Therefore, the own vehicle M cannot acquire the speed limit area information regarding the road sign TS from the object recognition device 16, and as a result, the own vehicle M has the branch road SL in the speed limit area. It is assumed that the vehicle has entered the branch road SL in the mode A or B.
  • the recognition unit 130 has acquired the speed limit area information regarding the branch road SL from the second map information 62 in advance.
  • the recognition unit 130 acquires image information from the object recognition device 16 when the own vehicle M crosses the boundary line BL and enters the branch road SL.
  • the recognition unit 130 When the recognition unit 130 identifies that the own vehicle M has entered the speed limit area, the recognition unit 130 notifies the mode determination unit 150 to that effect.
  • the mode determination unit 150 limits the operation mode when the operation mode at that time is mode A or B in response to the notification from the recognition unit 130. As a result, even when the information regarding the road sign TS cannot be acquired from the object recognition device 16, the operation mode can be appropriately restricted by detecting that the own vehicle M has entered the branch road SL.
  • FIG. 6 is a flowchart showing an example of the flow of processing executed by the recognition unit 130 and the mode determination unit 150 according to the first embodiment.
  • the processing of this flowchart is started, for example, when the automatic operation is started.
  • the mode determination unit 150 determines whether or not the current driving mode of the own vehicle M is mode A or B (step S100). When the current driving mode of the own vehicle M is not the mode A or B, the mode determining unit 150 repeatedly determines the step S100.
  • the recognition unit 130 determines whether or not the speed limit area is recognized based on the second map information 62 (step S101). ). Specifically, the recognition unit 130 can determine whether or not the speed limit area has been recognized depending on whether or not the speed limit area information has been acquired from the MPU 60. When it is determined that the speed limit area has been recognized based on the second map information 62, the recognition unit 130 determines whether or not the speed limit area has been recognized based on the camera information (step S102). Specifically, the recognition unit 130 can determine whether or not the speed limit area has been recognized depending on whether or not the information regarding the road sign TS indicating the speed limit has been acquired from the object recognition device 16. When it is determined that the speed limiting area is not recognized based on the second map information 62, the recognition unit 130 repeats the determination in step S101.
  • the recognition unit 130 When it is determined that the speed limit area has been recognized based on the camera information, the recognition unit 130 has the speed limit area recognized based on the second map information 62 and the speed limit area recognized based on the camera information. It is determined whether or not they match (step S103). Specifically, the recognition unit 130 matches the recognized speed limit areas by comparing the information such as the start point SP, the boundary line BL, the road sign TS, and the image included in the speed limit area information with each other. It can be determined whether or not it is.
  • the recognition unit 130 is on the traveling direction side of the own vehicle M. It is determined whether or not the speed limiting area exists within the reference distance (step S104). For example, the recognition unit 130 has a speed limit area within the reference distance on the traveling direction side of the own vehicle M based on the second map information 62 and the position information of the own vehicle M acquired from the navigation device 50. It is possible to determine whether or not to do so. Further, for example, the recognition unit 130 determines whether or not the speed limit area exists within the reference distance on the traveling direction side of the own vehicle M based on the output information of the camera 10 that recognizes the peripheral objects of the own vehicle M. It can be determined. These determination criteria may be used as an AND condition or an OR condition.
  • the mode determination unit 150 limits the driving mode (step S105).
  • the recognition unit 130 repeats the determination in step S104.
  • the mode determination unit 150 limits the operation mode, the processing of this flowchart ends.
  • FIG. 7 is a flowchart showing another example of the flow of processing executed by the recognition unit 130 and the mode determination unit 150 according to the first embodiment. Since the processes of steps S100 to S103 and the processes of step S105 in this flowchart are the same as the processes shown in the flowchart of FIG. 6, the description thereof will be omitted again.
  • the recognition unit 130 determines whether or not the own vehicle M has entered the speed limit area (step S204). For example, the recognition unit 130 may determine whether or not the own vehicle M has entered the speed limit area based on the second map information 62 and the position information of the own vehicle M acquired from the navigation device 50. can. Further, for example, the recognition unit 130 can determine whether or not the own vehicle M has entered the speed limit area based on the output information of the camera 10 that recognizes the peripheral objects of the own vehicle M. These determination criteria may be used as an AND condition or an OR condition.
  • the mode determination unit 150 limits the operation mode (step S105). Instead, the mode determination unit 150 limits the operation mode before the own vehicle M enters the speed limit area (before a predetermined distance, or at a time when it is expected to enter after a predetermined time has passed). You may.
  • the recognition unit 130 repeatedly performs the determination in step S204. As a result, even when the information regarding the road sign TS cannot be acquired from the object recognition device 16, the operation mode can be restricted by detecting that the own vehicle M has entered the branch road SL.
  • flexible and stepwise control can be performed according to the existence of the speed limiting area.
  • the speed limit area information acquired from the second map information 62 is compared with the speed limit area information acquired from the object recognition device 16, and when these speed limit area information match. , The operation mode is changed.
  • the second embodiment at least one of the acquisition of the speed limit area information based on the second map information 62 and the acquisition of the speed limit area information from the object recognition device 16 occurs.
  • FIG. 8 is a flowchart showing an example of the flow of processing executed by the recognition unit 130 and the mode determination unit 150 according to the second embodiment.
  • the mode determination unit 150 determines whether or not the current driving mode of the own vehicle M is mode A or B (step S300). When the current driving mode of the own vehicle M is not the mode A or B, the mode determining unit 150 repeatedly determines the step S300.
  • the recognition unit 130 determines whether or not the speed limit area is recognized based on the second map information 62 (step S301). ). When it is determined that the speed limit area has been recognized based on the second map information 62, the recognition unit 130 determines whether or not the speed limit area exists within the reference distance on the traveling direction side of the own vehicle M. (Step S304). On the other hand, when it is determined that the speed limiting area is not recognized based on the second map information 62, the recognition unit 130 determines whether or not the speed limiting area is recognized based on the camera information (step). S302).
  • the recognition unit 130 determines whether or not the speed limit area exists within the reference distance on the traveling direction side of the own vehicle M (step). S304). On the other hand, if it is determined that the speed limiting area is not recognized based on the camera information, the recognition unit 130 returns the process to step S301.
  • the mode determination unit 150 limits the driving mode (step S305).
  • the recognition unit 130 repeats the determination in step S304.
  • the mode determination unit 150 limits the operation mode, the processing of this flowchart ends.
  • the mode determination unit 150 limits the operation mode. That is, by limiting the operation mode in a wider range than the determination in the first embodiment, it is possible to reliably cope with the existence of the speed limiting area.
  • FIG. 9 is a flowchart showing another example of the flow of processing executed by the recognition unit 130 and the mode determination unit 150 according to the second embodiment. Since the processes of steps S300 to S302 and the processes of step S305 in this flowchart are the same as the processes shown in the flowchart of FIG. 8, the description thereof will be omitted again.
  • the recognition unit 130 determines whether or not the own vehicle M has entered the speed limit area (step S404).
  • the mode determination unit 150 limits the operation mode (step S305).
  • the recognition unit 130 repeatedly performs the determination in step S404. As a result, even when the information regarding the road sign TS cannot be acquired from the object recognition device 16, the operation mode can be restricted by detecting that the own vehicle M has entered the branch road SL.
  • the recognition unit 130 determines that the own vehicle M has entered the speed limiting area, and the mode determination unit 150 limits the driving mode. That is, by limiting the operation mode in a wider range than the determination in the first embodiment, it is possible to reliably cope with the existence of the speed limiting area.
  • a storage device that stores the program and With a hardware processor, When the hardware processor executes the program, Recognize the surrounding situation of the vehicle, Controlling one or both of steering or acceleration / deceleration of the vehicle without relying on the operation of the driver of the vehicle.
  • the driving mode of the vehicle is determined to be one of a plurality of driving modes including a first driving mode and a second driving mode, and the second driving mode is the task assigned to the driver. It is a light driving mode as compared with the first driving mode, and at least a part of the plurality of driving modes including the second driving mode is steering and steering of the vehicle without depending on the operation of the driver of the vehicle.
  • the mode determination unit limits the implementation of the second operation mode due to the recognition unit recognizing the speed limiting area.
  • a vehicle control unit configured as such.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Provided is a vehicle control device comprising: a recognition unit that recognizes the surrounding condition of a vehicle; a driving control unit that controls one or both of steering and acceleration/deceleration of the vehicle without relying on an operation by the driver of the vehicle; and a mode-setting unit that sets the driving mode of the vehicle to any of a plurality of driving modes including a first driving mode and a second driving mode. The recognition unit recognizes the existence of a vehicle speed limit area within a reference distance in the traveling direction of the vehicle, and the mode-setting unit restricts execution of the second driving mode in response to recognition of the vehicle speed limit area by the recognition unit.

Description

車両制御装置、車両制御方法、およびプログラムVehicle control devices, vehicle control methods, and programs
 本発明は、車両制御装置、車両制御方法、およびプログラムに関する。 The present invention relates to a vehicle control device, a vehicle control method, and a program.
 従来、自車が通過した道路について高精度地図情報の有無を繰り返し判定する格納判定処理部と、繰り返し判定された結果を示す情報を取得する格納情報取得処理部と、格納情報取得処理部によって取得した情報を通知する自動運転可否通知部とを備える車載システムの発明が開示されている(特許文献1)。 Conventionally, it is acquired by a storage determination processing unit that repeatedly determines the presence or absence of high-precision map information for the road on which the own vehicle has passed, a storage information acquisition processing unit that acquires information indicating the result of the repeated determination, and a storage information acquisition processing unit. The invention of an in-vehicle system including an automatic driving possibility notification unit for notifying the information is disclosed (Patent Document 1).
特開2018-189594号公報Japanese Unexamined Patent Publication No. 2018-189594
 従来の技術では、地図に格納された情報で機械的に自動運転可否を通知しているが、速度制限エリアの存在に応じて柔軟かつ段階的な制御をすることができない場合があった。 In the conventional technique, the information stored in the map is used to mechanically notify the possibility of automatic operation, but there are cases where flexible and stepwise control cannot be performed according to the existence of the speed limit area.
 本発明は、このような事情を考慮してなされたものであり、速度制限エリアの存在に応じて柔軟かつ段階的な制御をすることができる車両制御装置、車両制御方法、およびプログラムを提供することを目的の一つとする。 The present invention has been made in consideration of such circumstances, and provides a vehicle control device, a vehicle control method, and a program capable of performing flexible and stepwise control according to the existence of a speed limiting area. That is one of the purposes.
 この発明に係る車両制御装置は、以下の構成を採用した。
 (1):この発明の一態様に係る車両制御装置は、車両の周辺状況を認識する認識部と、前記車両の運転者の操作に依らずに前記車両の操舵または加減速のうち一方または双方を制御する運転制御部と、前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記運転制御部により制御されるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更するモード決定部と、を備え、前記認識部は、前記車両の進行方向側の基準距離以内に、前記車両に対する速度制限エリアが存在することを認識し、前記モード決定部は、前記認識部が前記速度制限エリアを認識したことに起因して、前記第2の運転モードの実施を制限するものである。
The vehicle control device according to the present invention has the following configuration.
(1): The vehicle control device according to one aspect of the present invention has a recognition unit that recognizes the surrounding conditions of the vehicle, and one or both of steering or acceleration / deceleration of the vehicle regardless of the operation of the driver of the vehicle. The operation control unit for controlling the vehicle and the operation mode of the vehicle are determined to be one of a plurality of operation modes including a first operation mode and a second operation mode, and the second operation mode is the operation. The task assigned to the person is a light operation mode as compared with the first operation mode, and at least a part of the plurality of operation modes including the second operation mode is controlled by the operation control unit. The recognition unit includes a mode determination unit that changes the operation mode of the vehicle to an operation mode in which the task is more severe when the task related to the determined operation mode is not executed by the driver. Recognizing that a speed limit area for the vehicle exists within the reference distance on the traveling direction side of the vehicle, the mode determination unit recognizes the speed limit area due to the recognition unit recognizing the speed limit area. It limits the implementation of the second operation mode.
 (2):上記(1)の態様において、前記認識部は、外界センサの検出結果に基づく認識と、地図情報とに基づく認識とを行い、車両の速度情報が含まれる前記地図情報と前記車両の位置情報とに基づいて、前記車両の進行方向側の基準距離以内に、前記車両に対する速度制限エリアが存在することを認識するものである。 (2): In the aspect of (1) above, the recognition unit performs recognition based on the detection result of the external world sensor and recognition based on the map information, and the map information including the speed information of the vehicle and the vehicle. Based on the position information of the vehicle, it is recognized that the speed limiting area for the vehicle exists within the reference distance on the traveling direction side of the vehicle.
 (3):上記(1)の態様において、前記認識部は、車両の速度情報が含まれる地図情報と前記車両の位置情報と、前記車両の周辺物体を認識する認識デバイスの出力情報とのいずれもが、前記車両の進行方向側の基準距離以内に、前記車両に対する速度制限エリアが存在することを示しているとき、前記速度制限エリアの存在を認識するものである。 (3): In the embodiment of (1) above, the recognition unit has either map information including vehicle speed information, position information of the vehicle, or output information of a recognition device that recognizes peripheral objects of the vehicle. However, when it is shown that the speed limiting area for the vehicle exists within the reference distance on the traveling direction side of the vehicle, the existence of the speed limiting area is recognized.
 (4):上記(1)の態様において、前記第2の運転モードは、前記運転者に、操舵操作を受け付ける操作子を把持するタスクが課されない運転モードであり、前記第1の運転モードは、前記車両の操舵および加減速の少なくとも一方に関して前記運転者による運転操作が必要な運転モードであるものである。 (4): In the aspect of (1) above, the second operation mode is an operation mode in which the driver is not tasked with grasping an operator that accepts a steering operation, and the first operation mode is. This is an operation mode in which the driver needs to operate the vehicle for at least one of steering and acceleration / deceleration of the vehicle.
 (5):上記(1)の態様において、前記第2の運転モードは、前記運転者に、操舵操作を受け付ける操作子を把持するタスクが課されない運転モードであり、
 前記第1の運転モードは、前記運転者に、少なくとも、前記運転者による操舵操作を受け付ける前記操作子を把持するタスクが課される運転モードであるものである。
(5): In the aspect of (1) above, the second operation mode is an operation mode in which the driver is not tasked with grasping an operator that accepts a steering operation.
The first operation mode is an operation mode in which the driver is tasked with at least a task of grasping the operator that accepts a steering operation by the driver.
 (6):上記(1)の態様において、前記第2の運転モードは、自動的または部分的に自動的な車線変更を実行する運転モードであり、前記第1の運転モードは、自動的または部分的に自動的な車線変更を実行しない運転モードであるものである。 (6): In the aspect of (1) above, the second driving mode is a driving mode for automatically or partially automatically changing lanes, and the first driving mode is automatically or partially. This is a driving mode that does not partially automatically change lanes.
 (7):上記(1)の態様において、前記モード決定部は、前記認識部が、前記車両が前記速度制限エリアへ進入したことを認識したとき、または前記車両が前記速度制限エリアへ進入する手前で、前記第2の運転モードの実施を制限するものである。 (7): In the embodiment of (1) above, the mode determination unit recognizes that the vehicle has entered the speed limit area, or the vehicle enters the speed limit area. In the foreground, the implementation of the second operation mode is restricted.
 (8):本発明の他の態様に係る車両制御方法は、車両に搭載されたコンピュータが、車両の周辺状況を認識し、前記車両の運転者の操作に依らずに前記車両の操舵または加減速のうち一方または双方を制御し、前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御することで行われるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更し、前記車両の進行方向側の基準距離以内に、前記車両に対する速度制限エリアが存在することを認識し、前記速度制限エリアを認識したことに起因して、前記第2の運転モードの実施を制限するものである。 (8): In the vehicle control method according to another aspect of the present invention, the computer mounted on the vehicle recognizes the surrounding situation of the vehicle and steers or adds the vehicle without depending on the operation of the driver of the vehicle. One or both of the decelerations are controlled, and the driving mode of the vehicle is determined to be one of a plurality of driving modes including a first driving mode and a second driving mode, and the second driving mode is The task imposed on the driver is a light driving mode as compared with the first driving mode, and at least a part of the plurality of driving modes including the second driving mode is of the driver of the vehicle. It is performed by controlling the steering and acceleration / deceleration of the vehicle without depending on the operation, and when the task related to the determined driving mode is not executed by the driver, the vehicle is switched to a driving mode in which the task is more severe. The second driving mode is changed, the speed limit area for the vehicle is recognized within the reference distance on the traveling direction side of the vehicle, and the speed limit area is recognized. It limits the implementation of the operation mode.
 (9):本発明の他の態様に係るプログラムは、車両に搭載されたコンピュータに、車両の周辺状況を認識させ、前記車両の運転者の操作に依らずに前記車両の操舵または加減速のうち一方または双方を制御させ、前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定させ、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部を制御させ、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更させ、前記車両の進行方向側の基準距離以内に、前記車両に対する速度制限エリアが存在することを認識させ、前記速度制限エリアを認識したことに起因して、前記第2の運転モードの実施を制限させるものである。 (9): The program according to another aspect of the present invention causes a computer mounted on the vehicle to recognize the surrounding situation of the vehicle, and steers or accelerates / decelerates the vehicle without depending on the operation of the driver of the vehicle. One or both of them are controlled, and the operation mode of the vehicle is determined to be one of a plurality of operation modes including a first operation mode and a second operation mode, and the second operation mode is the operation. The task assigned to the person is a light operation mode as compared with the first operation mode, and at least a part of the plurality of operation modes including the second operation mode is controlled, and the determined operation mode is controlled. When the task according to the above is not executed by the driver, the driving mode of the vehicle is changed to a driving mode in which the task is more severe, and the speed limit area for the vehicle exists within the reference distance on the traveling direction side of the vehicle. This is to limit the implementation of the second operation mode due to the recognition of the speed limit area.
 上記(1)~(9)の態様によれば、速度制限エリアの存在に応じて柔軟かつ段階的な制御をすることができる。 According to the above aspects (1) to (9), flexible and stepwise control can be performed according to the existence of the speed limiting area.
実施形態に係る車両制御装置を利用した車両システムの構成図である。It is a block diagram of the vehicle system using the vehicle control device which concerns on embodiment. 第1制御部および第2制御部の機能構成図である。It is a functional block diagram of the 1st control unit and the 2nd control unit. 運転モードと自車両の制御状態、およびタスクの対応関係の一例を示す図である。It is a figure which shows an example of the correspondence relation of a driving mode, a control state of own vehicle, and a task. 速度制限エリアを通過する際の制御について説明するための図である。It is a figure for demonstrating the control when passing through a speed limiting area. 速度制限エリアを通過する際の制御について説明するための図である。It is a figure for demonstrating the control when passing through a speed limiting area. 第1実施形態に係る認識部130およびモード決定部150により実行される処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process executed by the recognition unit 130 and the mode determination unit 150 which concerns on 1st Embodiment. 第1実施形態に係る認識部130およびモード決定部150により実行される処理の流れの他の一例を示すフローチャートである。It is a flowchart which shows the other example of the flow of the process executed by the recognition unit 130 and the mode determination unit 150 which concerns on 1st Embodiment. 第2実施形態に係る認識部130およびモード決定部150により実行される処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process executed by the recognition unit 130 and the mode determination unit 150 which concerns on 2nd Embodiment. 第2実施形態に係る認識部130およびモード決定部150により実行される処理の流れの他の一例を示すフローチャートである。It is a flowchart which shows the other example of the flow of the process executed by the recognition unit 130 and the mode determination unit 150 which concerns on 2nd Embodiment.
 以下、図面を参照し、本発明の車両制御装置、車両制御方法、およびプログラムの実施形態について説明する。 Hereinafter, the vehicle control device, the vehicle control method, and the embodiment of the program of the present invention will be described with reference to the drawings.
<第1実施形態>
 [全体構成]
 図1は、第1実施形態に係る車両制御装置を利用した車両システム1の構成図である。車両システム1が搭載される車両は、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせである。電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。
<First Embodiment>
[overall structure]
FIG. 1 is a configuration diagram of a vehicle system 1 using the vehicle control device according to the first embodiment. The vehicle on which the vehicle system 1 is mounted is, for example, a vehicle such as a two-wheeled vehicle, a three-wheeled vehicle, or a four-wheeled vehicle, and the drive source thereof is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, or a combination thereof. The electric motor operates by using the electric power generated by the generator connected to the internal combustion engine or the electric power generated by the secondary battery or the fuel cell.
 車両システム1は、例えば、カメラ10と、レーダ装置12と、LIDAR(Light Detection and Ranging)14と、物体認識装置16と、通信装置20と、HMI(Human Machine Interface)30と、車両センサ40と、ナビゲーション装置50と、MPU(Map Positioning Unit)60と、運転操作子80と、自動運転制御装置100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とを備える。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。カメラ10、レーダ装置12、およびLIDAR14は、「外界センサ」の一例である。なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。 The vehicle system 1 includes, for example, a camera 10, a radar device 12, a LIDAR (Light Detection and Ringing) 14, an object recognition device 16, a communication device 20, an HMI (Human Machine Interface) 30, and a vehicle sensor 40. , A navigation device 50, an MPU (Map Positioning Unit) 60, a driving controller 80, an automatic driving control device 100, a traveling driving force output device 200, a braking device 210, and a steering device 220. These devices and devices are connected to each other by multiple communication lines such as CAN (Controller Area Network) communication lines, serial communication lines, wireless communication networks, and the like. The camera 10, radar device 12, and LIDAR 14 are examples of "outside world sensors." The configuration shown in FIG. 1 is merely an example, and a part of the configuration may be omitted or another configuration may be added.
 カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ10は、車両システム1が搭載される車両(以下、自車両M)の任意の箇所に取り付けられる。前方を撮像する場合、カメラ10は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ10は、例えば、周期的に繰り返し自車両Mの周辺を撮像する。カメラ10は、ステレオカメラであってもよい。カメラ10は、「認識デバイス」の一例である。 The camera 10 is a digital camera that uses a solid-state image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). The camera 10 is attached to an arbitrary position of the vehicle on which the vehicle system 1 is mounted (hereinafter referred to as the own vehicle M). When photographing the front, the camera 10 is attached to the upper part of the front windshield, the back surface of the rear-view mirror, and the like. The camera 10 periodically and repeatedly images the periphery of the own vehicle M, for example. The camera 10 may be a stereo camera. The camera 10 is an example of a "recognition device".
 レーダ装置12は、自車両Mの周辺にミリ波などの電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置12は、自車両Mの任意の箇所に取り付けられる。レーダ装置12は、FM-CW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。 The radar device 12 radiates radio waves such as millimeter waves around the own vehicle M, and also detects radio waves (reflected waves) reflected by the object to detect at least the position (distance and direction) of the object. The radar device 12 is attached to an arbitrary position on the own vehicle M. The radar device 12 may detect the position and velocity of the object by the FM-CW (Frequency Modified Continuous Wave) method.
 LIDAR14は、自車両Mの周辺に光(或いは光に近い波長の電磁波)を照射し、散乱光を測定する。LIDAR14は、発光から受光までの時間に基づいて、対象までの距離を検出する。照射される光は、例えば、パルス状のレーザー光である。LIDAR14は、自車両Mの任意の箇所に取り付けられる。 LIDAR14 irradiates the periphery of the own vehicle M with light (or an electromagnetic wave having a wavelength close to that of light) and measures scattered light. The LIDAR 14 detects the distance to the object based on the time from light emission to light reception. The emitted light is, for example, a pulsed laser beam. The LIDAR 14 is attached to any position on the own vehicle M.
 物体認識装置16は、カメラ10、レーダ装置12、およびLIDAR14のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度などを認識する。物体認識装置16は、認識結果を自動運転制御装置100に出力する。物体認識装置16は、カメラ10、レーダ装置12、およびLIDAR14の検出結果をそのまま自動運転制御装置100に出力してよい。車両システム1から物体認識装置16が省略されてもよい。 The object recognition device 16 performs sensor fusion processing on the detection results of a part or all of the camera 10, the radar device 12, and the LIDAR 14, and recognizes the position, type, speed, and the like of the object. The object recognition device 16 outputs the recognition result to the automatic operation control device 100. The object recognition device 16 may output the detection results of the camera 10, the radar device 12, and the LIDAR 14 to the automatic operation control device 100 as they are. The object recognition device 16 may be omitted from the vehicle system 1.
 通信装置20は、例えば、セルラー網やWi-Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用して、自車両Mの周辺に存在する他車両と通信し、或いは無線基地局を介して各種サーバ装置と通信する。 The communication device 20 communicates with another vehicle existing in the vicinity of the own vehicle M by using, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or wirelessly. Communicates with various server devices via the base station.
 HMI30は、自車両Mの乗員に対して各種情報を提示すると共に、乗員による入力操作を受け付ける。HMI30は、各種表示装置、スピーカ、ブザー、タッチパネル、スイッチ、キーなどを含む。 The HMI 30 presents various information to the occupants of the own vehicle M and accepts input operations by the occupants. The HMI 30 includes various display devices, speakers, buzzers, touch panels, switches, keys and the like.
 車両センサ40は、自車両Mの速度を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。 The vehicle sensor 40 includes a vehicle speed sensor that detects the speed of the own vehicle M, an acceleration sensor that detects the acceleration, a yaw rate sensor that detects the angular velocity around the vertical axis, an orientation sensor that detects the direction of the own vehicle M, and the like.
 ナビゲーション装置50は、例えば、GNSS(Global Navigation Satellite System)受信機51と、ナビHMI52と、経路決定部53とを備える。ナビゲーション装置50は、HDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置に第1地図情報54を保持している。GNSS受信機51は、GNSS衛星から受信した信号に基づいて、自車両Mの位置を特定する。自車両Mの位置は、車両センサ40の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。ナビHMI52は、表示装置、スピーカ、タッチパネル、キーなどを含む。ナビHMI52は、前述したHMI30と一部または全部が共通化されてもよい。経路決定部53は、例えば、GNSS受信機51により特定された自車両Mの位置(或いは入力された任意の位置)から、ナビHMI52を用いて乗員により入力された目的地までの経路(以下、地図上経路)を、第1地図情報54を参照して決定する。第1地図情報54は、例えば、道路を示すリンクと、リンクによって接続されたノードとによって道路形状が表現された情報である。第1地図情報54は、道路の曲率やPOI(Point Of Interest)情報などを含んでもよい。地図上経路は、MPU60に出力される。ナビゲーション装置50は、地図上経路に基づいて、ナビHMI52を用いた経路案内を行ってもよい。ナビゲーション装置50は、例えば、乗員の保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。ナビゲーション装置50は、通信装置20を介してナビゲーションサーバに現在位置と目的地を送信し、ナビゲーションサーバから地図上経路と同等の経路を取得してもよい。 The navigation device 50 includes, for example, a GNSS (Global Navigation Satellite System) receiver 51, a navigation HMI 52, and a route determination unit 53. The navigation device 50 holds the first map information 54 in a storage device such as an HDD (Hard Disk Drive) or a flash memory. The GNSS receiver 51 identifies the position of the own vehicle M based on the signal received from the GNSS satellite. The position of the own vehicle M may be specified or complemented by an INS (Inertial Navigation System) using the output of the vehicle sensor 40. The navigation HMI 52 includes a display device, a speaker, a touch panel, keys, and the like. The navigation HMI 52 may be partially or wholly shared with the above-mentioned HMI 30. The route determination unit 53, for example, has a route from the position of the own vehicle M (or an arbitrary position input) specified by the GNSS receiver 51 to the destination input by the occupant using the navigation HMI 52 (hereinafter,). The route on the map) is determined with reference to the first map information 54. The first map information 54 is, for example, information in which a road shape is expressed by a link indicating a road and a node connected by the link. The first map information 54 may include road curvature, POI (Point Of Interest) information, and the like. The route on the map is output to MPU60. The navigation device 50 may provide route guidance using the navigation HMI 52 based on the route on the map. The navigation device 50 may be realized by, for example, the function of a terminal device such as a smartphone or a tablet terminal owned by an occupant. The navigation device 50 may transmit the current position and the destination to the navigation server via the communication device 20 and acquire a route equivalent to the route on the map from the navigation server.
 MPU60は、例えば、推奨車線決定部61を含み、HDDやフラッシュメモリなどの記憶装置に第2地図情報62を保持している。推奨車線決定部61は、ナビゲーション装置50から提供された地図上経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、第2地図情報62を参照してブロックごとに推奨車線を決定する。推奨車線決定部61は、左から何番目の車線を走行するといった決定を行う。推奨車線決定部61は、地図上経路に分岐箇所が存在する場合、自車両Mが、分岐先に進行するための合理的な経路を走行できるように、推奨車線を決定する。 The MPU 60 includes, for example, a recommended lane determination unit 61, and holds the second map information 62 in a storage device such as an HDD or a flash memory. The recommended lane determination unit 61 divides the route on the map provided by the navigation device 50 into a plurality of blocks (for example, divides the route into 100 [m] units with respect to the vehicle traveling direction), and refers to the second map information 62. Determine the recommended lane for each block. The recommended lane determination unit 61 determines which lane to drive from the left. When a branch point exists on the route on the map, the recommended lane determination unit 61 determines the recommended lane so that the own vehicle M can travel on a reasonable route to proceed to the branch destination.
 第2地図情報62は、第1地図情報54よりも高精度な地図情報である。第2地図情報62は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。また、第2地図情報62には、道路情報、制限速度を含む交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報、道路標識情報などが含まれてよい。第2地図情報62は、通信装置20が他装置と通信することにより、随時、アップデートされてよい。 The second map information 62 is map information with higher accuracy than the first map information 54. The second map information 62 includes, for example, information on the center of the lane, information on the boundary of the lane, and the like. Further, the second map information 62 may include road information, traffic regulation information including a speed limit, address information (address / zip code), facility information, telephone number information, road sign information, and the like. The second map information 62 may be updated at any time by the communication device 20 communicating with another device.
 ドライバモニタカメラ70は、例えば、CCDやCMOS等の固体撮像素子を利用したデジタルカメラである。ドライバモニタカメラ70は、自車両Mの運転席に着座した乗員(以下、運転者)の頭部を正面から(顔面を撮像する向きで)撮像可能な位置および向きで、自車両Mにおける任意の箇所に取り付けられる。例えば、ドライバモニタカメラ70は、自車両Mのインストルメントパネルの中央部に設けられたディスプレイ装置の上部に取り付けられる。 The driver monitor camera 70 is, for example, a digital camera that uses a solid-state image sensor such as a CCD or CMOS. The driver monitor camera 70 is a position and orientation in which the head of an occupant (hereinafter referred to as a driver) seated in the driver's seat of the own vehicle M can be imaged from the front (in the direction in which the face is imaged), and is arbitrary in the own vehicle M. It can be attached to a place. For example, the driver monitor camera 70 is attached to the upper part of the display device provided in the central portion of the instrument panel of the own vehicle M.
 運転操作子80は、例えば、ステアリングホイール82の他、アクセルペダル、ブレーキペダル、シフトレバー、その他の操作子を含む。運転操作子80には、操作量あるいは操作の有無を検出するセンサが取り付けられており、その検出結果は、自動運転制御装置100、もしくは、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220のうち一部または全部に出力される。ステアリングホイール82は、「運転者による操舵操作を受け付ける操作子」の一例である。操作子は、必ずしも環状である必要は無く、異形ステアやジョイスティック、ボタンなどの形態であってもよい。ステアリングホイール82には、ステアリング把持センサ84が取り付けられている。ステアリング把持センサ84は、静電容量センサなどにより実現され、運転者がステアリングホイール82を把持している(力を加えられる状態で接していることをいう)か否かを検知可能な信号を自動運転制御装置100に出力する。 The driving controller 80 includes, for example, an accelerator pedal, a brake pedal, a shift lever, and other controls in addition to the steering wheel 82. A sensor for detecting the amount of operation or the presence or absence of operation is attached to the operation controller 80, and the detection result is the automatic operation control device 100, or the traveling driving force output device 200, the brake device 210, and the steering device. It is output to a part or all of 220. The steering wheel 82 is an example of an “operator that accepts a steering operation by the driver”. The operator does not necessarily have to be annular, and may be in the form of a deformed steer, a joystick, a button, or the like. A steering grip sensor 84 is attached to the steering wheel 82. The steering grip sensor 84 is realized by a capacitance sensor or the like, and automatically outputs a signal capable of detecting whether or not the driver is gripping the steering wheel 82 (meaning that the steering wheel 82 is in contact with the steering wheel 82). It is output to the operation control device 100.
 自動運転制御装置100は、例えば、第1制御部120と、第2制御部160とを備える。第1制御部120と第2制御部160は、それぞれ、例えば、CPU(Central Processing Unit)などのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め自動運転制御装置100のHDDやフラッシュメモリなどの記憶装置(非一過性の記憶媒体を備える記憶装置)に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体(非一過性の記憶媒体)がドライブ装置に装着されることで自動運転制御装置100のHDDやフラッシュメモリにインストールされてもよい。自動運転制御装置100は「車両制御装置」の一例であり、後述する行動計画生成部140と第2制御部160を合わせたものが「運転制御部」の一例である。 The automatic operation control device 100 includes, for example, a first control unit 120 and a second control unit 160. The first control unit 120 and the second control unit 160 are realized by, for example, a hardware processor such as a CPU (Central Processing Unit) executing a program (software), respectively. In addition, some or all of these components are hardware (circuits) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). It may be realized by the part; including circuitry), or it may be realized by the cooperation of software and hardware. The program may be stored in advance in a storage device (a storage device including a non-transient storage medium) such as an HDD or a flash memory of the automatic operation control device 100, or may be detachable such as a DVD or a CD-ROM. It is stored in a storage medium, and may be installed in the HDD or flash memory of the automatic operation control device 100 by mounting the storage medium (non-transient storage medium) in the drive device. The automatic driving control device 100 is an example of the "vehicle control device", and a combination of the action plan generation unit 140 and the second control unit 160, which will be described later, is an example of the "operation control unit".
 図2は、第1制御部120および第2制御部160の機能構成図である。第1制御部120は、例えば、認識部130と、行動計画生成部140と、モード決定部150とを備える。第1制御部120は、例えば、AI(Artificial Intelligence;人工知能)による機能と、予め与えられたモデルによる機能とを並行して実現する。例えば、「交差点を認識する」機能は、ディープラーニング等による交差点の認識と、予め与えられた条件(パターンマッチング可能な信号、道路標示などがある)に基づく認識とが並行して実行され、双方に対してスコア付けして総合的に評価することで実現されてよい。これによって、自動運転の信頼性が担保される。 FIG. 2 is a functional configuration diagram of the first control unit 120 and the second control unit 160. The first control unit 120 includes, for example, a recognition unit 130, an action plan generation unit 140, and a mode determination unit 150. The first control unit 120, for example, realizes a function by AI (Artificial Intelligence) and a function by a model given in advance in parallel. For example, the function of "recognizing an intersection" is executed in parallel with the recognition of an intersection by deep learning or the like and the recognition based on predetermined conditions (there are signals that can be matched with patterns, road markings, etc.). It may be realized by scoring and comprehensively evaluating. This ensures the reliability of automated driving.
 認識部130は、カメラ10、レーダ装置12、およびLIDAR14から物体認識装置16を介して入力された情報に基づいて、自車両Mの周辺にある物体の位置、および速度、加速度等の状態を認識する。物体の位置は、例えば、自車両Mの代表点(重心や駆動軸中心など)を原点とした絶対座標上の位置として認識され、制御に使用される。物体の位置は、その物体の重心やコーナー等の代表点で表されてもよいし、領域で表されてもよい。物体の「状態」とは、物体の加速度やジャーク、あるいは「行動状態」(例えば車線変更をしている、またはしようとしているか否か)を含んでもよい。 The recognition unit 130 recognizes the position, speed, acceleration, and other states of objects around the own vehicle M based on the information input from the camera 10, the radar device 12, and the LIDAR 14 via the object recognition device 16. do. The position of the object is recognized as, for example, a position on absolute coordinates with the representative point (center of gravity, center of drive axis, etc.) of the own vehicle M as the origin, and is used for control. The position of the object may be represented by a representative point such as the center of gravity or a corner of the object, or may be represented by a region. The "state" of an object may include the object's acceleration, jerk, or "behavioral state" (eg, whether it is changing lanes or is about to change lanes).
 また、認識部130は、例えば、自車両Mが走行している車線(走行車線)を認識する。例えば、認識部130は、第2地図情報62から得られる道路区画線のパターン(例えば実線と破線の配列)と、カメラ10によって撮像された画像から認識される自車両Mの周辺の道路区画線のパターンとを比較することで、走行車線を認識する。なお、認識部130は、道路区画線に限らず、道路区画線や路肩、縁石、中央分離帯、ガードレールなどを含む走路境界(道路境界)を認識することで、走行車線を認識してもよい。この認識において、ナビゲーション装置50から取得される自車両Mの位置やINSによる処理結果が加味されてもよい。また、認識部130は、一時停止線、障害物、赤信号、料金所、その他の道路事象を認識する。 Further, the recognition unit 130 recognizes, for example, the lane (traveling lane) in which the own vehicle M is traveling. For example, the recognition unit 130 has a road lane marking pattern (for example, an arrangement of a solid line and a broken line) obtained from the second map information 62 and a road lane marking around the own vehicle M recognized from the image captured by the camera 10. By comparing with the pattern of, the driving lane is recognized. The recognition unit 130 may recognize the traveling lane by recognizing not only the road marking line but also the running road boundary (road boundary) including the road marking line, the shoulder, the median strip, the guardrail, and the like. .. In this recognition, the position of the own vehicle M acquired from the navigation device 50 and the processing result by the INS may be added. The recognition unit 130 also recognizes stop lines, obstacles, red lights, tollhouses, and other road events.
 認識部130は、走行車線を認識する際に、走行車線に対する自車両Mの位置や姿勢を認識する。認識部130は、例えば、自車両Mの基準点の車線中央からの乖離、および自車両Mの進行方向の車線中央を連ねた線に対してなす角度を、走行車線に対する自車両Mの相対位置および姿勢として認識してもよい。これに代えて、認識部130は、走行車線のいずれかの側端部(道路区画線または道路境界)に対する自車両Mの基準点の位置などを、走行車線に対する自車両Mの相対位置として認識してもよい。 When recognizing the traveling lane, the recognition unit 130 recognizes the position and posture of the own vehicle M with respect to the traveling lane. The recognition unit 130 determines, for example, the deviation of the reference point of the own vehicle M from the center of the lane and the angle formed with respect to the line connecting the center of the lane in the traveling direction of the own vehicle M with respect to the relative position of the own vehicle M with respect to the traveling lane. And may be recognized as a posture. Instead, the recognition unit 130 recognizes the position of the reference point of the own vehicle M with respect to any side end portion (road division line or road boundary) of the traveling lane as the relative position of the own vehicle M with respect to the traveling lane. You may.
 行動計画生成部140は、原則的には推奨車線決定部61により決定された推奨車線を走行し、更に、自車両Mの周辺状況に対応できるように、自車両Mが自動的に(運転者の操作に依らずに)将来走行する目標軌道を生成する。目標軌道は、例えば、速度要素を含んでいる。例えば、目標軌道は、自車両Mの到達すべき地点(軌道点)を順に並べたものとして表現される。軌道点は、道なり距離で所定の走行距離(例えば数[m]程度)ごとの自車両Mの到達すべき地点であり、それとは別に、所定のサンプリング時間(例えば0コンマ数[sec]程度)ごとの目標速度および目標加速度が、目標軌道の一部として生成される。また、軌道点は、所定のサンプリング時間ごとの、そのサンプリング時刻における自車両Mの到達すべき位置であってもよい。この場合、目標速度や目標加速度の情報は軌道点の間隔で表現される。 In principle, the action plan generation unit 140 travels in the recommended lane determined by the recommended lane determination unit 61, and the own vehicle M automatically (driver) so as to be able to respond to the surrounding conditions of the own vehicle M. Generate a target track to travel in the future (regardless of the operation of). The target trajectory contains, for example, a speed element. For example, the target track is expressed as an arrangement of points (track points) to be reached by the own vehicle M in order. The track point is a point to be reached by the own vehicle M for each predetermined mileage (for example, about several [m]) along the road, and separately, for a predetermined sampling time (for example, about 0 comma number [sec]). ) Target velocity and target acceleration are generated as part of the target trajectory. Further, the track point may be a position to be reached by the own vehicle M at the sampling time for each predetermined sampling time. In this case, the information of the target velocity and the target acceleration is expressed by the interval of the orbital points.
 行動計画生成部140は、目標軌道を生成するにあたり、自動運転のイベントを設定してよい。自動運転のイベントには、定速走行イベント、低速追従走行イベント、車線変更イベント、分岐イベント、合流イベント、テイクオーバーイベントなどがある。行動計画生成部140は、起動させたイベントに応じた目標軌道を生成する。 The action plan generation unit 140 may set an event for automatic driving when generating a target trajectory. Autonomous driving events include constant speed driving events, low speed following driving events, lane change events, branching events, merging events, takeover events, and the like. The action plan generation unit 140 generates a target trajectory according to the activated event.
 モード決定部150は、自車両Mの運転モードを、運転者に課されるタスクが異なる複数の運転モードのいずれかに決定する。モード決定部150は、例えば、運転者状態判定部152と、モード変更処理部154とを備える。これらの個別の機能については後述する。 The mode determination unit 150 determines the operation mode of the own vehicle M to be one of a plurality of operation modes in which the task imposed on the driver is different. The mode determination unit 150 includes, for example, a driver state determination unit 152 and a mode change processing unit 154. These individual functions will be described later.
 図3は、運転モードと自車両Mの制御状態、およびタスクの対応関係の一例を示す図である。自車両Mの運転モードには、例えば、モードAからモードEの5つのモードがある。制御状態すなわち自車両Mの運転制御の自動化度合いは、モードAが最も高く、次いでモードB、モードC、モードDの順に低くなり、モードEが最も低い。この逆に、運転者に課されるタスクは、モードAが最も軽度であり、次いでモードB、モードC、モードDの順に重度となり、モードEが最も重度である。なお、モードDおよびEでは自動運転でない制御状態となるため、自動運転制御装置100としては自動運転に係る制御を終了し、運転支援または手動運転に移行させるまでが責務である。以下、それぞれの運転モードの内容について例示する。なお、モードAおよび/またはモードBが「第2の運転モード」の一例であり、モードC、モードD、モードEのうち一部または全部が「第1の運転モード」の一例である。 FIG. 3 is a diagram showing an example of the correspondence relationship between the driving mode, the control state of the own vehicle M, and the task. The operation mode of the own vehicle M includes, for example, five modes from mode A to mode E. The degree of automation of the control state, that is, the operation control of the own vehicle M, is highest in mode A, then in the order of mode B, mode C, and mode D, and is lowest in mode E. On the contrary, the task imposed on the driver is the mildest in mode A, followed by mode B, mode C, and mode D in that order, and mode E is the most severe. Since the modes D and E are in a control state that is not automatic driving, the automatic driving control device 100 is responsible for ending the control related to automatic driving and shifting to driving support or manual driving. Hereinafter, the contents of each operation mode will be illustrated. Note that mode A and / or mode B is an example of a "second operation mode", and a part or all of modes C, mode D, and mode E is an example of a "first operation mode".
 モードAでは、自動運転の状態となり、運転者には前方監視、ステアリングホイール82の把持(図ではステアリング把持)のいずれも課されない。但し、モードAであっても運転者は、自動運転制御装置100を中心としたシステムからの要求に応じて速やかに手動運転に移行できる体勢であることが要求される。なお、ここで言う自動運転とは、操舵、加減速のいずれも運転者の操作に依らずに制御されることをいう。前方とは、フロントウインドシールドを介して視認される自車両Mの進行方向の空間を意味する。モードAは、例えば、高速道路などの自動車専用道路において、所定速度(例えば50[km/h]程度)以下で自車両Mが走行しており、追従対象の前走車両が存在するなどの条件が満たされる場合に実行可能な運転モードであり、TJP(Traffic Jam Pilot)と称される場合もある。この条件が満たされなくなった場合、モード決定部150は、モードBに自車両Mの運転モードを変更する。 In mode A, the vehicle is in an automatic driving state, and neither forward monitoring nor gripping of the steering wheel 82 (steering gripping in the figure) is imposed on the driver. However, even in mode A, the driver is required to be in a position to quickly shift to manual operation in response to a request from the system centered on the automatic operation control device 100. The term "automatic driving" as used herein means that both steering and acceleration / deceleration are controlled without depending on the driver's operation. The front means the space in the traveling direction of the own vehicle M that is visually recognized through the front windshield. Mode A is a condition that the own vehicle M is traveling at a predetermined speed (for example, about 50 [km / h]) or less on a motorway such as an expressway, and there is a vehicle in front to be followed. It is an operation mode that can be executed when is satisfied, and may be referred to as TJP (Traffic Jam Pilot). When this condition is no longer satisfied, the mode determination unit 150 changes the operation mode of the own vehicle M to the mode B.
 モードBでは、運転支援の状態となり、運転者には自車両Mの前方を監視するタスク(以下、前方監視)が課されるが、ステアリングホイール82を把持するタスクは課されない。モードCでは、運転支援の状態となり、運転者には前方監視のタスクと、ステアリングホイール82を把持するタスクが課される。モードDは、自車両Mの操舵または加減速のうち少なくとも一方に関して、ある程度の運転者による運転操作が必要な運転モードである。例えば、モードDでは、ACC(Adaptive Cruise Control)やLKAS(Lane Keeping Assist System)といった運転支援が行われる。モードEでは、操舵、加減速ともに運転者による運転操作が必要な手動運転の状態となる。モードD、モードEともに、当然ながら運転者には自車両Mの前方を監視するタスクが課される。 In mode B, the driver is in a driving support state, and the driver is tasked with monitoring the front of the own vehicle M (hereinafter referred to as forward monitoring), but is not tasked with gripping the steering wheel 82. In mode C, the driving support state is set, and the driver is tasked with the task of forward monitoring and the task of gripping the steering wheel 82. Mode D is a driving mode that requires a certain degree of driving operation by the driver with respect to at least one of steering or acceleration / deceleration of the own vehicle M. For example, in mode D, driving support such as ACC (Adaptive Cruise Control) or LKAS (Lane Keeping Assist System) is provided. In mode E, both steering and acceleration / deceleration are in a state of manual operation that requires a driving operation by the driver. In both mode D and mode E, the driver is naturally tasked with monitoring the front of the vehicle M.
 自動運転制御装置100(および運転支援装置(不図示))は、運転モードに応じた自動車線変更を実行する。自動車線変更には、システム要求による自動車線変更(1)と、運転者要求による自動車線変更(2)がある。自動車線変更(1)には、前走車両の速度が自車両の速度に比して基準以上に小さい場合に行われる、追い越しのための自動車線変更と、目的地に向けて進行するための自動車線変更(推奨車線が変更されたことによる自動車線変更)とがある。自動車線変更(2)は、速度や周辺車両との位置関係等に関する条件が満たされた場合において、運転者により方向指示器が操作された場合に、操作方向に向けて自車両Mを車線変更させるものである。 The automatic driving control device 100 (and the driving support device (not shown)) executes the lane change according to the driving mode. The lane change includes a lane change (1) according to a system request and a lane change (2) according to a driver request. The lane change (1) is to change the lane for overtaking and to proceed toward the destination, which is performed when the speed of the vehicle in front is smaller than the standard with respect to the speed of the own vehicle. There is a lane change (a lane change due to a change in the recommended lane). The lane change (2) changes the lane of the own vehicle M toward the operation direction when the direction indicator is operated by the driver when the conditions related to the speed and the positional relationship with the surrounding vehicles are satisfied. It is something that makes you.
 自動運転制御装置100は、モードAにおいて、自動車線変更(1)および(2)のいずれも実行しない。運転支援装置(不図示)は、モードBにおいて、自動車線変更(1)および(2)のいずれも実行する。運転支援装置(不図示)は、モードCにおいて、自動車線変更(1)は実行せず自動車線変更(2)を実行する。運転支援装置(不図示)は、モードD及びモードEにおいて、自動車線変更(1)および(2)のいずれも実行されない。自動車線変更(1)は実行せず自動車線変更(2)を実行する、又は自動車線変更(2)は実行せず自動車線変更(1)を実行するモードは、「部分的に自動的な車線変更」の一例である。運転支援装置(不図示)は、モードBにおいて、部分的に自動的な車線変更を実行するものであってもよい。 The automatic driving control device 100 does not execute either the lane change (1) or (2) in the mode A. The driving support device (not shown) executes both the lane change (1) and (2) in mode B. The driving support device (not shown) does not execute the lane change (1) but executes the lane change (2) in the mode C. The driving support device (not shown) does not execute any of the lane changes (1) and (2) in modes D and E. The mode in which the lane change (1) is not executed and the lane change (2) is executed, or the lane change (2) is not executed and the lane change (1) is executed is "partially automatic. This is an example of "changing lanes". The driving support device (not shown) may be one that performs a partially automatic lane change in mode B.
 モード決定部150は、決定した運転モード(以下、現運転モード)に係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに自車両Mの運転モードを変更する。 The mode determination unit 150 changes the operation mode of the own vehicle M to an operation mode in which the task is more severe when the task related to the determined operation mode (hereinafter referred to as the current operation mode) is not executed by the driver.
 例えば、モードAにおいて運転者が、システムからの要求に応じて手動運転に移行できない体勢である場合(例えば許容エリア外の脇見を継続している場合や、運転困難となる予兆が検出された場合)、モード決定部150は、HMI30を用いて運転者に手動運転への移行を促し、運転者が応じなければ自車両Mを路肩に寄せて徐々に停止させ、自動運転を停止する、といった制御を行う。自動運転を停止した後は、自車両はモードDまたはEの状態になり、運転者の手動操作によって自車両Mを発進させることが可能となる。以下、「自動運転を停止」に関して同様である。モードBにおいて運転者が前方を監視していない場合、モード決定部150は、HMI30を用いて運転者に前方監視を促し、運転者が応じなければ自車両Mを路肩に寄せて徐々に停止させ、自動運転を停止する、といった制御を行う。モードCにおいて運転者が前方を監視していない場合、或いはステアリングホイール82を把持していない場合、モード決定部150は、HMI30を用いて運転者に前方監視を、および/またはステアリングホイール82を把持するように促し、運転者が応じなければ自車両Mを路肩に寄せて徐々に停止させ、自動運転を停止する、といった制御を行う。 For example, in mode A, when the driver is in a position where he / she cannot shift to manual driving in response to a request from the system (for example, when he / she continues to look outside the permissible area or when a sign that driving becomes difficult is detected. ), The mode determination unit 150 uses the HMI 30 to urge the driver to shift to manual driving, and if the driver does not respond, the own vehicle M is moved to the shoulder of the road and gradually stopped, and automatic driving is stopped. I do. After the automatic driving is stopped, the own vehicle is in the mode D or E, and the own vehicle M can be started by the manual operation of the driver. Hereinafter, the same applies to "stop automatic operation". When the driver is not monitoring the front in mode B, the mode determination unit 150 urges the driver to monitor the front using the HMI 30, and if the driver does not respond, the vehicle M is brought to the shoulder and gradually stopped. , Stop automatic operation, and so on. If the driver is not monitoring the front in mode C, or is not gripping the steering wheel 82, the mode determination unit 150 uses the HMI 30 to give the driver forward monitoring and / or grip the steering wheel 82. If the driver does not respond, the vehicle M is brought closer to the road shoulder and gradually stopped, and automatic driving is stopped.
 運転者状態判定部152は、上記のモード変更のために運転者の状態を監視し、運転者の状態がタスクに応じた状態であるか否かを判定する。例えば、運転者状態判定部152は、ドライバモニタカメラ70が撮像した画像を解析して姿勢推定処理を行い、運転者が、システムからの要求に応じて手動運転に移行できない体勢であるか否かを判定する。また、運転者状態判定部152は、ドライバモニタカメラ70が撮像した画像を解析して視線推定処理を行い、運転者が前方を監視しているか否かを判定する。 The driver state determination unit 152 monitors the driver's state for the above mode change, and determines whether or not the driver's state is in a state corresponding to the task. For example, the driver state determination unit 152 analyzes the image captured by the driver monitor camera 70 and performs posture estimation processing, and whether or not the driver is in a position where he / she cannot shift to manual driving in response to a request from the system. To judge. Further, the driver state determination unit 152 analyzes the image captured by the driver monitor camera 70 and performs line-of-sight estimation processing to determine whether or not the driver is monitoring the front.
 モード変更処理部154は、モード変更のための各種処理を行う。例えば、モード変更処理部154は、行動計画生成部140に路肩停止のための目標軌道を生成するように指示したり、運転支援装置(不図示)に作動指示をしたり、運転者に行動を促すためにHMI30の制御をしたりする。 The mode change processing unit 154 performs various processes for changing the mode. For example, the mode change processing unit 154 instructs the action plan generation unit 140 to generate a target trajectory for shoulder stop, gives an operation instruction to a driving support device (not shown), and gives an action to the driver. HMI30 is controlled to encourage.
 第2制御部160は、行動計画生成部140によって生成された目標軌道を、予定の時刻通りに自車両Mが通過するように、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220を制御する。 The second control unit 160 sets the traveling driving force output device 200, the brake device 210, and the steering device 220 so that the own vehicle M passes the target trajectory generated by the action plan generation unit 140 at the scheduled time. Control.
 図2に戻り、第2制御部160は、例えば、取得部162と、速度制御部164と、操舵制御部166とを備える。取得部162は、行動計画生成部140により生成された目標軌道(軌道点)の情報を取得し、メモリ(不図示)に記憶させる。速度制御部164は、メモリに記憶された目標軌道に付随する速度要素に基づいて、走行駆動力出力装置200またはブレーキ装置210を制御する。操舵制御部166は、メモリに記憶された目標軌道の曲がり具合に応じて、ステアリング装置220を制御する。速度制御部164および操舵制御部166の処理は、例えば、フィードフォワード制御とフィードバック制御との組み合わせにより実現される。一例として、操舵制御部166は、自車両Mの前方の道路の曲率に応じたフィードフォワード制御と、目標軌道からの乖離に基づくフィードバック制御とを組み合わせて実行する。 Returning to FIG. 2, the second control unit 160 includes, for example, an acquisition unit 162, a speed control unit 164, and a steering control unit 166. The acquisition unit 162 acquires the information of the target trajectory (orbit point) generated by the action plan generation unit 140 and stores it in a memory (not shown). The speed control unit 164 controls the traveling driving force output device 200 or the brake device 210 based on the speed element associated with the target trajectory stored in the memory. The steering control unit 166 controls the steering device 220 according to the degree of bending of the target trajectory stored in the memory. The processing of the speed control unit 164 and the steering control unit 166 is realized by, for example, a combination of feedforward control and feedback control. As an example, the steering control unit 166 executes a combination of feedforward control according to the curvature of the road in front of the own vehicle M and feedback control based on the deviation from the target track.
 走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、内燃機関、電動機、および変速機などの組み合わせと、これらを制御するECU(Electronic Control Unit)とを備える。ECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って、上記の構成を制御する。 The traveling driving force output device 200 outputs the traveling driving force (torque) for the vehicle to travel to the drive wheels. The traveling driving force output device 200 includes, for example, a combination of an internal combustion engine, an electric motor, a transmission, and the like, and an ECU (Electronic Control Unit) that controls them. The ECU controls the above configuration according to the information input from the second control unit 160 or the information input from the operation controller 80.
 ブレーキ装置210は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ブレーキECUとを備える。ブレーキECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置210は、運転操作子80に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置210は、上記説明した構成に限らず、第2制御部160から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。 The brake device 210 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU. The brake ECU controls the electric motor according to the information input from the second control unit 160 or the information input from the operation controller 80 so that the brake torque corresponding to the braking operation is output to each wheel. The brake device 210 may include a mechanism for transmitting the hydraulic pressure generated by the operation of the brake pedal included in the operation operator 80 to the cylinder via the master cylinder as a backup. The brake device 210 is not limited to the configuration described above, and is an electronically controlled hydraulic brake device that controls the actuator according to the information input from the second control unit 160 to transmit the hydraulic pressure of the master cylinder to the cylinder. May be good.
 ステアリング装置220は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って、電動モータを駆動し、転舵輪の向きを変更させる。 The steering device 220 includes, for example, a steering ECU and an electric motor. The electric motor, for example, exerts a force on the rack and pinion mechanism to change the direction of the steering wheel. The steering ECU drives the electric motor according to the information input from the second control unit 160 or the information input from the operation controller 80, and changes the direction of the steering wheel.
 [速度制限エリアに応じた制御]
 以下、速度制限エリアに応じたモードAまたはBの終了に関する制御の内容について説明する。認識部130は、自車両Mの進行方向側の基準距離以内に、モードAまたはBを終了すべき速度制限エリアが存在することを認識する。認識部130は、例えば、MPU60により決定された推奨車線が速度制限エリアを通過するように設定され、かつ物体認識装置16によって速度制限を示す道路標識が基準距離以内で検知された場合に、速度制限エリアが存在することを認識する。モード決定部150は、認識部130が速度制限エリアを認識したことに起因して、モードAまたはBを制限する。なお、モードを「制限」するとは、モードをモードC、D、またはEに変更することに加えて、現モードを変更することなく、当該モードの機能の一部を停止又は縮小することを意味する。例えば、モードBを制限する場合、ステアリング把持は基本的に不要としつつも、車線変更又は分岐路への進入の際にはステアリングの把持を要求して、車線変更又は分岐路への進入を手動で実行させることが考えられる。
[Control according to the speed limit area]
Hereinafter, the content of control regarding the end of modes A or B according to the speed limiting area will be described. The recognition unit 130 recognizes that there is a speed limit area in which the mode A or B should be terminated within the reference distance on the traveling direction side of the own vehicle M. The recognition unit 130 is set to pass the speed limit area, for example, when the recommended lane determined by the MPU 60 passes through the speed limit area, and the speed limit is detected by the object recognition device 16 within a reference distance. Recognize that a restricted area exists. The mode determination unit 150 limits the mode A or B because the recognition unit 130 recognizes the speed limiting area. Note that "restricting" a mode means that in addition to changing the mode to mode C, D, or E, a part of the function of the mode is stopped or reduced without changing the current mode. do. For example, when mode B is restricted, steering grip is basically unnecessary, but when changing lanes or entering a branch road, steering grip is required to manually change lanes or enter a branch road. It is conceivable to execute with.
 図4は、速度制限エリアを通過する際の制御について説明するための図である。本図の場面において、自車両Mは本線MLを走行しており、目的地に到達するために分岐路SLに進入する地図上経路が決定されている。MPU60は、地図上経路に基づいて推奨車線を設定している。図中、矢印RLは、推奨車線を連ねた誘導経路を示している。TSは速度制限を示す道路標識であり、分岐路SLでの法定速度が一例として時速40kmであることを示している。 FIG. 4 is a diagram for explaining control when passing through the speed limit area. In the scene of this figure, the own vehicle M is traveling on the main line ML, and the route on the map to enter the branch road SL in order to reach the destination is determined. The MPU 60 sets recommended lanes based on the route on the map. In the figure, the arrow RL indicates a guidance route in which the recommended lanes are connected. TS is a road sign indicating a speed limit, and indicates that the legal speed on the branch road SL is 40 km / h as an example.
 認識部130は、MPU60から取得した推奨経路に基づいて、まず自車両Mが速度制限エリア(すなわち、分岐路SL)に進入すべきことを認識する。このとき、認識部130は、当該速度制限エリアの開始点SP、境界線BL、道路標識TS、及び画像を少なくとも含む情報(以下、「速度制限エリア情報」と称する)を、第2地図情報62から取得する。同時に、認識部130は、カメラ10、レーダ装置12、又はLIDAR14によって取得された速度制限エリア情報を、物体認識装置16から取得する。次に、認識部130は、第2地図情報62から取得した速度制限エリア情報と、物体認識装置16から取得した速度制限エリア情報とを比較して、これらの情報が一致しているか否かを判定する。認識部130は、これらの情報が一致したことを認識し、かつ自車両Mの位置と速度制限エリアの開始点SPの位置とに基づいて自車両Mと開始点SPとの距離が基準距離D以下になったことを認識したときに、その旨をモード決定部150に通知する。モード決定部150は、認識部130からの通知に応じて、その時点の運転モードがモードAまたはBである場合に、運転モードを制限する。「運転モードを制限する」とは、前述した第2の運転モードの実施を制限し、適宜のタイミングで第1の運転モードに切り替えることをいう。以下同様である。これにより、第2地図情報62が誤った速度制限エリア情報を格納していた場合に、物体認識装置16から取得した速度制限エリア情報と異なるため、運転モードが誤って制限されることを防ぐことができる。 The recognition unit 130 first recognizes that the own vehicle M should enter the speed limit area (that is, the branch road SL) based on the recommended route acquired from the MPU 60. At this time, the recognition unit 130 provides information including at least the start point SP, the boundary line BL, the road sign TS, and the image of the speed limit area (hereinafter referred to as “speed limit area information”) in the second map information 62. Get from. At the same time, the recognition unit 130 acquires the speed limiting area information acquired by the camera 10, the radar device 12, or the LIDAR 14 from the object recognition device 16. Next, the recognition unit 130 compares the speed limit area information acquired from the second map information 62 with the speed limit area information acquired from the object recognition device 16, and determines whether or not these information match. judge. The recognition unit 130 recognizes that these information match, and the distance between the own vehicle M and the start point SP is the reference distance D based on the position of the own vehicle M and the position of the start point SP in the speed limiting area. When it recognizes that the following has occurred, it notifies the mode determination unit 150 to that effect. The mode determination unit 150 limits the operation mode when the operation mode at that time is mode A or B in response to the notification from the recognition unit 130. "Restricting the operation mode" means limiting the implementation of the above-mentioned second operation mode and switching to the first operation mode at an appropriate timing. The same applies hereinafter. As a result, when the second map information 62 stores erroneous speed limiting area information, it is different from the speed limiting area information acquired from the object recognition device 16, so that it is possible to prevent the operation mode from being erroneously restricted. Can be done.
 なお、モード決定部150は、モードAまたはBからモードDまたはEに運転モードを変更するまでの間に、モードCを途中に実行してもよい。この場合において、モードCである期間で運転者がステアリングホイール82を把持しなかった場合、行動計画生成部140は、路肩などに一旦自車両を停止させ、その後でモードDまたはEに運転モードを変更してもよい。また、モードAまたはBからモードDまたはEに運転モードを変更するのに変えて、モードAまたはBからモードCに運転モードを変更するようにしてもよい。 Note that the mode determination unit 150 may execute mode C in the middle until the operation mode is changed from mode A or B to mode D or E. In this case, if the driver does not grip the steering wheel 82 during the period of mode C, the action plan generation unit 140 temporarily stops the own vehicle on the shoulder or the like, and then sets the operation mode to mode D or E. You may change it. Further, the operation mode may be changed from mode A or B to mode C instead of changing the operation mode from mode A or B to mode D or E.
 図5は、速度制限エリアを通過する際の制御について説明するための図である。本図の場面において、自車両Mは分岐路SLに進入しており、そのまま分岐路SLを直進する地図上経路が決定されている。図4とは異なり、図5においては道路標識TSが設定されていない。そのため、自車両Mは、物体認識装置16から道路標識TSに関する速度制限エリア情報を取得することができず、その結果、自車両Mは、分岐路SLが速度制限エリアであるにも関わらず、モードAまたはBの状態で分岐路SLに進入したと仮定する。 FIG. 5 is a diagram for explaining control when passing through the speed limit area. In the scene of this figure, the own vehicle M has entered the branch road SL, and the route on the map that goes straight on the branch road SL is determined. Unlike FIG. 4, the road sign TS is not set in FIG. Therefore, the own vehicle M cannot acquire the speed limit area information regarding the road sign TS from the object recognition device 16, and as a result, the own vehicle M has the branch road SL in the speed limit area. It is assumed that the vehicle has entered the branch road SL in the mode A or B.
 このとき、認識部130は、分岐路SLに関する速度制限エリア情報を第2地図情報62から事前に取得している。一方、認識部130は、自車両Mが境界線BLを横断し、分岐路SLに進入する際の画像情報を物体認識装置16から取得している。この画像情報は、例えば、自車両Mが走行していた三車線の経路が一車線に変わったことを示す情報や、境界線BLを横断した画像情報を含む。そこで、認識部130は、第2地図情報62から取得した速度制限エリア情報と、物体認識装置16から取得した画像情報(=速度制限エリア情報)とを比較して、自車両Mが速度制限エリアに進入したことを特定することができる。認識部130は、自車両Mが速度制限エリアに進入したことを特定すると、その旨をモード決定部150に通知する。モード決定部150は、認識部130からの通知に応じて、その時点の運転モードがモードAまたはBである場合に、運転モードを制限する。これにより、物体認識装置16から道路標識TSに関する情報が取得できなかった場合にも、自車両Mが分岐路SLに進入したことを検知することにより、運転モードを適切に制限することができる。 At this time, the recognition unit 130 has acquired the speed limit area information regarding the branch road SL from the second map information 62 in advance. On the other hand, the recognition unit 130 acquires image information from the object recognition device 16 when the own vehicle M crosses the boundary line BL and enters the branch road SL. This image information includes, for example, information indicating that the route of the three lanes in which the own vehicle M was traveling has changed to one lane, and image information crossing the boundary line BL. Therefore, the recognition unit 130 compares the speed limit area information acquired from the second map information 62 with the image information (= speed limit area information) acquired from the object recognition device 16, and the own vehicle M has the speed limit area. It is possible to identify that you have entered. When the recognition unit 130 identifies that the own vehicle M has entered the speed limit area, the recognition unit 130 notifies the mode determination unit 150 to that effect. The mode determination unit 150 limits the operation mode when the operation mode at that time is mode A or B in response to the notification from the recognition unit 130. As a result, even when the information regarding the road sign TS cannot be acquired from the object recognition device 16, the operation mode can be appropriately restricted by detecting that the own vehicle M has entered the branch road SL.
 [処理フロー]
 図6は、第1実施形態に係る認識部130およびモード決定部150により実行される処理の流れの一例を示すフローチャートである。本フローチャートの処理は、例えば、自動運転が開始されたときに開始される。
[Processing flow]
FIG. 6 is a flowchart showing an example of the flow of processing executed by the recognition unit 130 and the mode determination unit 150 according to the first embodiment. The processing of this flowchart is started, for example, when the automatic operation is started.
 まず、モード決定部150は、現在の自車両Mの運転モードがモードAまたはBであるか否かを判定する(ステップS100)。現在の自車両Mの運転モードがモードAまたはBでは無い場合、モード決定部150は、ステップS100の判定を繰り返し行う。 First, the mode determination unit 150 determines whether or not the current driving mode of the own vehicle M is mode A or B (step S100). When the current driving mode of the own vehicle M is not the mode A or B, the mode determining unit 150 repeatedly determines the step S100.
 現在の自車両Mの運転モードがモードAまたはBであると判定された場合、認識部130は、第2地図情報62に基づいて、速度制限エリアを認識したか否かを判定する(ステップS101)。具体的には、認識部130は、MPU60から速度制限エリア情報を取得したか否かに応じて、速度制限エリアを認識したか否かを判定することができる。第2地図情報62に基づいて、速度制限エリアを認識したと判定された場合、認識部130は、カメラ情報に基づいて、速度制限エリアを認識したか否かを判定する(ステップS102)。具体的には、認識部130は、物体認識装置16から速度制限を示す道路標識TSに関する情報を取得したか否かに応じて、速度制限エリアを認識したか否かを判定することができる。第2地図情報62に基づいて、速度制限エリアを認識していないと判定された場合、認識部130は、ステップS101の判定を繰り返し行う。 When it is determined that the current driving mode of the own vehicle M is mode A or B, the recognition unit 130 determines whether or not the speed limit area is recognized based on the second map information 62 (step S101). ). Specifically, the recognition unit 130 can determine whether or not the speed limit area has been recognized depending on whether or not the speed limit area information has been acquired from the MPU 60. When it is determined that the speed limit area has been recognized based on the second map information 62, the recognition unit 130 determines whether or not the speed limit area has been recognized based on the camera information (step S102). Specifically, the recognition unit 130 can determine whether or not the speed limit area has been recognized depending on whether or not the information regarding the road sign TS indicating the speed limit has been acquired from the object recognition device 16. When it is determined that the speed limiting area is not recognized based on the second map information 62, the recognition unit 130 repeats the determination in step S101.
 カメラ情報に基づいて、速度制限エリアを認識したと判定された場合、認識部130は、第2地図情報62に基づいて認識した速度制限エリアと、カメラ情報に基づいて認識した速度制限エリアとが一致しているか否かを判定する(ステップS103)。具体的には、認識部130は、速度制限エリア情報に含まれる開始点SP、境界線BL、道路標識TS、及び画像等の情報を相互に比較することによって、認識した速度制限エリアが一致しているか否かを判定することができる。 When it is determined that the speed limit area has been recognized based on the camera information, the recognition unit 130 has the speed limit area recognized based on the second map information 62 and the speed limit area recognized based on the camera information. It is determined whether or not they match (step S103). Specifically, the recognition unit 130 matches the recognized speed limit areas by comparing the information such as the start point SP, the boundary line BL, the road sign TS, and the image included in the speed limit area information with each other. It can be determined whether or not it is.
 第2地図情報62に基づいて認識した速度制限エリアと、カメラ情報に基づいて認識した速度制限エリアとが一致していると判定された場合、認識部130は、自車両Mの進行方向側の基準距離以内に、速度制限エリアが存在するか否かを判定する(ステップS104)。例えば、認識部130は、第2地図情報62と、ナビゲーション装置50から取得された自車両Mの位置情報とに基づいて、自車両Mの進行方向側の基準距離以内に、速度制限エリアが存在するか否かを判定することができる。また、例えば、認識部130は、自車両Mの周辺物体を認識するカメラ10の出力情報に基づいて、自車両Mの進行方向側の基準距離以内に、速度制限エリアが存在するか否かを判定することができる。これらの判定基準は、AND条件として用いられてもよいし、OR条件として用いられてもよい。 When it is determined that the speed limit area recognized based on the second map information 62 and the speed limit area recognized based on the camera information match, the recognition unit 130 is on the traveling direction side of the own vehicle M. It is determined whether or not the speed limiting area exists within the reference distance (step S104). For example, the recognition unit 130 has a speed limit area within the reference distance on the traveling direction side of the own vehicle M based on the second map information 62 and the position information of the own vehicle M acquired from the navigation device 50. It is possible to determine whether or not to do so. Further, for example, the recognition unit 130 determines whether or not the speed limit area exists within the reference distance on the traveling direction side of the own vehicle M based on the output information of the camera 10 that recognizes the peripheral objects of the own vehicle M. It can be determined. These determination criteria may be used as an AND condition or an OR condition.
 自車両Mの進行方向側の基準距離以内に、速度制限エリアが存在すると判定された場合、モード決定部150は、運転モードを制限する(ステップS105)。自車両Mの進行方向側の基準距離以内に、速度制限エリアが存在しないと判定された場合、認識部130は、ステップS104の判定を繰り返し行う。モード決定部150が運転モードを制限することにより、本フローチャートの処理が終了する。 When it is determined that the speed limit area exists within the reference distance on the traveling direction side of the own vehicle M, the mode determination unit 150 limits the driving mode (step S105). When it is determined that the speed limit area does not exist within the reference distance on the traveling direction side of the own vehicle M, the recognition unit 130 repeats the determination in step S104. When the mode determination unit 150 limits the operation mode, the processing of this flowchart ends.
 以上の通り、本フローチャートの処理によれば、第2地図情報62から取得した速度制限エリア情報と、物体認識装置16から取得した速度制限エリア情報とを比較した結果これらの速度制限エリア情報が一致し、かつ進行方向側の基準距離以内に速度制限エリアが存在すると判定されたときにのみ、運転モードを制限する。この結果、速度制限エリア情報を比較した上で運転モードを制限することにより、運転モードが誤って制限されることを防ぐことができる。 As described above, according to the process of this flowchart, as a result of comparing the speed limit area information acquired from the second map information 62 and the speed limit area information acquired from the object recognition device 16, these speed limit area information are one. However, the operation mode is restricted only when it is determined that the speed limiting area exists within the reference distance on the traveling direction side. As a result, by limiting the operation mode after comparing the speed limit area information, it is possible to prevent the operation mode from being erroneously restricted.
 図7は、第1実施形態に係る認識部130およびモード決定部150により実行される処理の流れの他の一例を示すフローチャートである。このフローチャートにおけるステップS100からステップS103の処理及びステップS105の処理は、図6のフローチャートに示す処理と同一であるため、再度の説明を省略する。ステップS103にて、認識した速度制限エリアが一致していると判定された場合、認識部130は、自車両Mが速度制限エリアに進入したか否かを判定する(ステップS204)。例えば、認識部130は、第2地図情報62と、ナビゲーション装置50から取得された自車両Mの位置情報とに基づいて、自車両Mが速度制限エリアに進入したか否かを判定することができる。また、例えば、認識部130は、自車両Mの周辺物体を認識するカメラ10の出力情報に基づいて、自車両Mが速度制限エリアに進入したか否かを判定することができる。これらの判定基準は、AND条件として用いられてもよいし、OR条件として用いられてもよい。 FIG. 7 is a flowchart showing another example of the flow of processing executed by the recognition unit 130 and the mode determination unit 150 according to the first embodiment. Since the processes of steps S100 to S103 and the processes of step S105 in this flowchart are the same as the processes shown in the flowchart of FIG. 6, the description thereof will be omitted again. When it is determined in step S103 that the recognized speed limit areas match, the recognition unit 130 determines whether or not the own vehicle M has entered the speed limit area (step S204). For example, the recognition unit 130 may determine whether or not the own vehicle M has entered the speed limit area based on the second map information 62 and the position information of the own vehicle M acquired from the navigation device 50. can. Further, for example, the recognition unit 130 can determine whether or not the own vehicle M has entered the speed limit area based on the output information of the camera 10 that recognizes the peripheral objects of the own vehicle M. These determination criteria may be used as an AND condition or an OR condition.
 自車両Mが速度制限エリアに進入したと判定された場合、モード決定部150は、運転モードを制限する(ステップS105)。これに代えて、モード決定部150は、自車両Mが速度制限エリアへ進入する手前で(所定距離手前、或いはあと所定時間経過したら進入すると予想される時点で)、運転モードを制限するようにしてもよい。一方、自車両Mが速度制限エリアに進入していないと判定された場合、認識部130は、ステップS204の判定を繰り返し行う。これにより、物体認識装置16から道路標識TSに関する情報が取得できなかった場合にも、自車両Mが分岐路SLに進入したことを検知することにより、運転モードを制限することができる。 When it is determined that the own vehicle M has entered the speed limit area, the mode determination unit 150 limits the operation mode (step S105). Instead, the mode determination unit 150 limits the operation mode before the own vehicle M enters the speed limit area (before a predetermined distance, or at a time when it is expected to enter after a predetermined time has passed). You may. On the other hand, when it is determined that the own vehicle M has not entered the speed limit area, the recognition unit 130 repeatedly performs the determination in step S204. As a result, even when the information regarding the road sign TS cannot be acquired from the object recognition device 16, the operation mode can be restricted by detecting that the own vehicle M has entered the branch road SL.
 以上の通り、本フローチャートの処理によれば、第2地図情報62から取得した速度制限エリア情報と、物体認識装置16から取得した速度制限エリア情報とを比較した結果これらの速度制限エリア情報が一致し、かつ自車両Mが速度制限エリアに進入したと判定されたときに、運転モードを制限する。この結果、速度制限エリア情報を比較した上で運転モードを制限することにより、運転モードが誤って制限されることを防ぐことができる。 As described above, according to the process of this flowchart, as a result of comparing the speed limit area information acquired from the second map information 62 and the speed limit area information acquired from the object recognition device 16, these speed limit area information is one. However, when it is determined that the own vehicle M has entered the speed limit area, the operation mode is restricted. As a result, by limiting the operation mode after comparing the speed limit area information, it is possible to prevent the operation mode from being erroneously restricted.
 以上説明した第1実施形態によれば、速度制限エリアの存在に応じて柔軟かつ段階的な制御をすることができる。 According to the first embodiment described above, flexible and stepwise control can be performed according to the existence of the speed limiting area.
<第2実施形態>
 上記説明した第1実施形態は、第2地図情報62から取得した速度制限エリア情報と、物体認識装置16から取得した速度制限エリア情報とを比較し、これらの速度制限エリア情報が一致した場合に、運転モードを変更するものである。これに対し、第2実施形態では、第2地図情報62に基づいて速度制限エリア情報を取得したことと、物体認識装置16から速度制限エリア情報を取得したこととのうち少なくとも一方が生じた場合に、認識部130が速度制限エリアを認識したと判定する。
<Second Embodiment>
In the first embodiment described above, the speed limit area information acquired from the second map information 62 is compared with the speed limit area information acquired from the object recognition device 16, and when these speed limit area information match. , The operation mode is changed. On the other hand, in the second embodiment, at least one of the acquisition of the speed limit area information based on the second map information 62 and the acquisition of the speed limit area information from the object recognition device 16 occurs. In addition, it is determined that the recognition unit 130 has recognized the speed limit area.
 図8は、第2実施形態に係る認識部130およびモード決定部150により実行される処理の流れの一例を示すフローチャートである。 FIG. 8 is a flowchart showing an example of the flow of processing executed by the recognition unit 130 and the mode determination unit 150 according to the second embodiment.
 まず、モード決定部150は、現在の自車両Mの運転モードがモードAまたはBであるか否かを判定する(ステップS300)。現在の自車両Mの運転モードがモードAまたはBでは無い場合、モード決定部150は、ステップS300の判定を繰り返し行う。 First, the mode determination unit 150 determines whether or not the current driving mode of the own vehicle M is mode A or B (step S300). When the current driving mode of the own vehicle M is not the mode A or B, the mode determining unit 150 repeatedly determines the step S300.
 現在の自車両Mの運転モードがモードAまたはBであると判定された場合、認識部130は、第2地図情報62に基づいて、速度制限エリアを認識したか否かを判定する(ステップS301)。第2地図情報62に基づいて、速度制限エリアを認識したと判定された場合、認識部130は、自車両Mの進行方向側の基準距離以内に、速度制限エリアが存在するか否かを判定する(ステップS304)。一方、第2地図情報62に基づいて、速度制限エリアを認識していないと判定された場合、認識部130は、カメラ情報に基づいて、速度制限エリアを認識したか否かを判定する(ステップS302)。カメラ情報に基づいて、速度制限エリアを認識したと判定された場合、認識部130は、自車両Mの進行方向側の基準距離以内に、速度制限エリアが存在するか否かを判定する(ステップS304)。一方、カメラ情報に基づいて、速度制限エリアを認識していないと判定された場合、認識部130は、処理をステップS301に戻す。 When it is determined that the current driving mode of the own vehicle M is mode A or B, the recognition unit 130 determines whether or not the speed limit area is recognized based on the second map information 62 (step S301). ). When it is determined that the speed limit area has been recognized based on the second map information 62, the recognition unit 130 determines whether or not the speed limit area exists within the reference distance on the traveling direction side of the own vehicle M. (Step S304). On the other hand, when it is determined that the speed limiting area is not recognized based on the second map information 62, the recognition unit 130 determines whether or not the speed limiting area is recognized based on the camera information (step). S302). When it is determined that the speed limit area is recognized based on the camera information, the recognition unit 130 determines whether or not the speed limit area exists within the reference distance on the traveling direction side of the own vehicle M (step). S304). On the other hand, if it is determined that the speed limiting area is not recognized based on the camera information, the recognition unit 130 returns the process to step S301.
 自車両Mの進行方向側の基準距離以内に、速度制限エリアが存在すると判定された場合、モード決定部150は、運転モードを制限する(ステップS305)。自車両Mの進行方向側の基準距離以内に、速度制限エリアが存在しないと判定された場合、認識部130は、ステップS304の判定を繰り返し行う。モード決定部150が運転モードを制限することにより、本フローチャートの処理が終了する。 When it is determined that the speed limit area exists within the reference distance on the traveling direction side of the own vehicle M, the mode determination unit 150 limits the driving mode (step S305). When it is determined that the speed limit area does not exist within the reference distance on the traveling direction side of the own vehicle M, the recognition unit 130 repeats the determination in step S304. When the mode determination unit 150 limits the operation mode, the processing of this flowchart ends.
 以上の通り、本フローチャートの処理によれば、第2地図情報62に基づいて速度制限エリア情報を取得したことと、物体認識装置16から速度制限エリア情報を取得したこととのうち少なくとも一方が生じた場合に、認識部130が速度制限エリアを認識したと判定し、モード決定部150は、運転モードを制限する。すなわち、第1実施形態における判定に比して、より広範な場合に運転モードを制限することにより、速度制限エリアの存在により確実に対応することができる。 As described above, according to the process of this flowchart, at least one of the acquisition of the speed limit area information based on the second map information 62 and the acquisition of the speed limit area information from the object recognition device 16 occurs. If this is the case, it is determined that the recognition unit 130 has recognized the speed limiting area, and the mode determination unit 150 limits the operation mode. That is, by limiting the operation mode in a wider range than the determination in the first embodiment, it is possible to reliably cope with the existence of the speed limiting area.
 図9は、第2実施形態に係る認識部130およびモード決定部150により実行される処理の流れの他の一例を示すフローチャートである。このフローチャートにおけるステップS300からステップS302の処理及びステップS305の処理は、図8のフローチャートに示す処理と同一であるため、再度の説明を省略する。ステップS301又はS302にて、速度制限エリアが認識された場合、認識部130は、自車両Mが速度制限エリアに進入したか否かを判定する(ステップS404)。 FIG. 9 is a flowchart showing another example of the flow of processing executed by the recognition unit 130 and the mode determination unit 150 according to the second embodiment. Since the processes of steps S300 to S302 and the processes of step S305 in this flowchart are the same as the processes shown in the flowchart of FIG. 8, the description thereof will be omitted again. When the speed limit area is recognized in step S301 or S302, the recognition unit 130 determines whether or not the own vehicle M has entered the speed limit area (step S404).
 自車両Mが速度制限エリアに進入したと判定された場合、モード決定部150は、運転モードを制限する(ステップS305)。一方、自車両Mが速度制限エリアに進入していないと判定された場合、認識部130は、ステップS404の判定を繰り返し行う。これにより、物体認識装置16から道路標識TSに関する情報が取得できなかった場合にも、自車両Mが分岐路SLに進入したことを検知することにより、運転モードを制限することができる。 When it is determined that the own vehicle M has entered the speed limit area, the mode determination unit 150 limits the operation mode (step S305). On the other hand, when it is determined that the own vehicle M has not entered the speed limit area, the recognition unit 130 repeatedly performs the determination in step S404. As a result, even when the information regarding the road sign TS cannot be acquired from the object recognition device 16, the operation mode can be restricted by detecting that the own vehicle M has entered the branch road SL.
 以上の通り、本フローチャートの処理によれば、第2地図情報62に基づいて速度制限エリア情報を取得したことと、物体認識装置16から速度制限エリア情報を取得したこととのうち少なくとも一方が生じた場合に、認識部130が、自車両Mが速度制限エリアに進入したと判定し、モード決定部150は、運転モードを制限する。すなわち、第1実施形態における判定に比して、より広範な場合に運転モードを制限することにより、速度制限エリアの存在により確実に対応することができる。 As described above, according to the process of this flowchart, at least one of the acquisition of the speed limit area information based on the second map information 62 and the acquisition of the speed limit area information from the object recognition device 16 occurs. In this case, the recognition unit 130 determines that the own vehicle M has entered the speed limiting area, and the mode determination unit 150 limits the driving mode. That is, by limiting the operation mode in a wider range than the determination in the first embodiment, it is possible to reliably cope with the existence of the speed limiting area.
 以上の通り、第2実施形態によれば、第1実施形態と同様、速度制限エリアの存在に応じて柔軟かつ段階的な制御をすることができる。また、第2実施形態によれば、第1実施形態における判定に比して、より広範な場合に運転モードを制限することにより、速度制限エリアの存在により確実に対応することができる。 As described above, according to the second embodiment, as in the first embodiment, flexible and stepwise control can be performed according to the existence of the speed limiting area. Further, according to the second embodiment, by limiting the operation mode in a wider range than the determination in the first embodiment, it is possible to reliably cope with the existence of the speed limiting area.
 上記説明した実施形態は、以下のように表現することができる。
 プログラムを記憶した記憶装置と、
 ハードウェアプロセッサと、を備え、
 前記ハードウェアプロセッサが前記プログラムを実行することにより、
 車両の周辺状況を認識し、
 前記車両の運転者の操作に依らずに前記車両の操舵または加減速のうち一方または双方を制御し、
 前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御することで行われるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更し、
 前記車両の進行方向側の基準距離以内に、前記車両に対する速度制限エリアが存在することを認識し、
 前記モード決定部は、前記認識部が前記速度制限エリアを認識したことに起因して、前記第2の運転モードの実施を制限する、
 ように構成されている、車両制御装置。
The embodiment described above can be expressed as follows.
A storage device that stores the program and
With a hardware processor,
When the hardware processor executes the program,
Recognize the surrounding situation of the vehicle,
Controlling one or both of steering or acceleration / deceleration of the vehicle without relying on the operation of the driver of the vehicle.
The driving mode of the vehicle is determined to be one of a plurality of driving modes including a first driving mode and a second driving mode, and the second driving mode is the task assigned to the driver. It is a light driving mode as compared with the first driving mode, and at least a part of the plurality of driving modes including the second driving mode is steering and steering of the vehicle without depending on the operation of the driver of the vehicle. It is performed by controlling acceleration / deceleration, and when the task related to the determined driving mode is not executed by the driver, the driving mode of the vehicle is changed to a driving mode in which the task is more severe.
Recognizing that there is a speed limit area for the vehicle within the reference distance on the traveling direction side of the vehicle,
The mode determination unit limits the implementation of the second operation mode due to the recognition unit recognizing the speed limiting area.
A vehicle control unit configured as such.
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。 Although the embodiments for carrying out the present invention have been described above using the embodiments, the present invention is not limited to these embodiments, and various modifications and substitutions are made without departing from the gist of the present invention. Can be added.
10 カメラ
12 レーダ装置
14 LIDAR
16 物体認識装置
70 ドライバモニタカメラ
82 ステアリングホイール
84 ステアリング把持センサ
100 自動運転制御装置
130 認識部
140 行動計画生成部
150 モード決定部
152 運転者状態判定部
154 モード変更処理部
10 Camera 12 Radar device 14 LIDAR
16 Object recognition device 70 Driver monitor camera 82 Steering wheel 84 Steering grip sensor 100 Automatic driving control device 130 Recognition unit 140 Action plan generation unit 150 Mode determination unit 152 Driver status determination unit 154 Mode change processing unit

Claims (9)

  1.  車両の周辺状況を認識する認識部と、
     前記車両の運転者の操作に依らずに前記車両の操舵または加減速のうち一方または双方を制御する運転制御部と、
     前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記運転制御部により制御されるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更するモード決定部と、
     を備え、
     前記認識部は、前記車両の進行方向側の基準距離以内に、前記車両に対する速度制限エリアが存在することを認識し、
     前記モード決定部は、前記認識部が前記速度制限エリアを認識したことに起因して、前記第2の運転モードの実施を制限する、
     車両制御装置。
    A recognition unit that recognizes the surrounding conditions of the vehicle,
    A driving control unit that controls one or both of steering or acceleration / deceleration of the vehicle without depending on the operation of the driver of the vehicle.
    The driving mode of the vehicle is determined to be one of a plurality of driving modes including a first driving mode and a second driving mode, and the second driving mode is the task assigned to the driver. The operation mode is lighter than that of the first operation mode, and at least a part of the plurality of operation modes including the second operation mode is controlled by the operation control unit, and the determined operation is performed. A mode determination unit that changes the driving mode of the vehicle to a driving mode in which the task is more severe when the task related to the mode is not executed by the driver.
    Equipped with
    The recognition unit recognizes that a speed limit area for the vehicle exists within the reference distance on the traveling direction side of the vehicle, and recognizes that the speed limit area exists for the vehicle.
    The mode determination unit limits the implementation of the second operation mode due to the recognition unit recognizing the speed limiting area.
    Vehicle control unit.
  2.  前記認識部は、外界センサの検出結果に基づく認識と、地図情報とに基づく認識とを行い、
     車両の速度情報が含まれる前記地図情報と前記車両の位置情報とに基づいて、前記車両の進行方向側の基準距離以内に、前記車両に対する速度制限エリアが存在することを認識する、
     請求項1記載の車両制御装置。
    The recognition unit performs recognition based on the detection result of the external world sensor and recognition based on the map information.
    Based on the map information including the speed information of the vehicle and the position information of the vehicle, it is recognized that the speed limit area for the vehicle exists within the reference distance on the traveling direction side of the vehicle.
    The vehicle control device according to claim 1.
  3.  前記認識部は、車両の速度情報が含まれる地図情報と前記車両の位置情報と、前記車両の周辺物体を認識する認識デバイスの出力情報とのいずれもが、前記車両の進行方向側の基準距離以内に、前記車両に対する速度制限エリアが存在することを示しているとき、前記速度制限エリアの存在を認識する、
     請求項1記載の車両制御装置。
    In the recognition unit, map information including vehicle speed information, position information of the vehicle, and output information of a recognition device that recognizes peripheral objects of the vehicle are all reference distances on the traveling direction side of the vehicle. Recognizing the existence of the speed limiting area when it indicates that there is a speed limiting area for the vehicle within.
    The vehicle control device according to claim 1.
  4.  前記第2の運転モードは、前記運転者に、操舵操作を受け付ける操作子を把持するタスクが課されない運転モードであり、
     前記第1の運転モードは、前記車両の操舵または加減速の少なくとも一方に関して前記運転者による運転操作が必要な運転モードである、
     請求項1記載の車両制御装置。
    The second operation mode is an operation mode in which the driver is not tasked with grasping the operator that accepts the steering operation.
    The first driving mode is a driving mode that requires a driving operation by the driver for at least one of steering or acceleration / deceleration of the vehicle.
    The vehicle control device according to claim 1.
  5.  前記第2の運転モードは、前記運転者に、操舵操作を受け付ける操作子を把持するタスクが課されない運転モードであり、
     前記第1の運転モードは、前記運転者に、少なくとも、前記運転者による操舵操作を受け付ける前記操作子を把持するタスクが課される運転モードである、
     請求項1記載の車両制御装置。
    The second operation mode is an operation mode in which the driver is not tasked with grasping the operator that accepts the steering operation.
    The first operation mode is an operation mode in which the driver is tasked with at least a task of grasping the operator that accepts a steering operation by the driver.
    The vehicle control device according to claim 1.
  6.  前記第2の運転モードは、自動的または部分的に自動的な車線変更を実行する運転モードであり
     前記第1の運転モードは、自動的または部分的に自動的な車線変更を実行しない運転モードである、
     請求項1記載の車両制御装置。
    The second driving mode is a driving mode in which an automatic or partially automatic lane change is executed, and the first driving mode is a driving mode in which an automatic or partially automatic lane change is not executed. Is,
    The vehicle control device according to claim 1.
  7.  前記モード決定部は、前記認識部が、前記車両が前記速度制限エリアへ進入したことを認識したとき、または前記車両が前記速度制限エリアへ進入する手前で、前記第2の運転モードの実施を制限する、
     請求項1記載の車両制御装置。
    The mode determination unit executes the second operation mode when the recognition unit recognizes that the vehicle has entered the speed limit area, or before the vehicle enters the speed limit area. Restrict,
    The vehicle control device according to claim 1.
  8.  車両に搭載されたコンピュータが、
     車両の周辺状況を認識し、
     前記車両の運転者の操作に依らずに前記車両の操舵または加減速のうち一方または双方を制御し、
     前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御することで行われるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更し、
     前記車両の進行方向側の基準距離以内に、前記車両に対する速度制限エリアが存在することを認識し、
     前記速度制限エリアを認識したことに起因して、前記第2の運転モードの実施を制限する、
     車両制御方法。
    The computer installed in the vehicle
    Recognize the surrounding situation of the vehicle,
    Controlling one or both of steering or acceleration / deceleration of the vehicle without relying on the operation of the driver of the vehicle.
    The driving mode of the vehicle is determined to be one of a plurality of driving modes including a first driving mode and a second driving mode, and the second driving mode is the task assigned to the driver. It is a light driving mode as compared with the first driving mode, and at least a part of the plurality of driving modes including the second driving mode is steering and steering of the vehicle without depending on the operation of the driver of the vehicle. It is performed by controlling acceleration / deceleration, and when the task related to the determined driving mode is not executed by the driver, the driving mode of the vehicle is changed to a driving mode in which the task is more severe.
    Recognizing that there is a speed limit area for the vehicle within the reference distance on the traveling direction side of the vehicle,
    Due to the recognition of the speed limiting area, the implementation of the second operation mode is restricted.
    Vehicle control method.
  9.  車両に搭載されたコンピュータに、
     車両の周辺状況を認識させ、
     前記車両の運転者の操作に依らずに前記車両の操舵または加減速のうち一方または双方を制御させ、
     前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定させ、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御することで行われるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更させ、
     前記車両の進行方向側の基準距離以内に、前記車両に対する速度制限エリアが存在することを認識させ、
     前記速度制限エリアを認識したことに起因して、前記第2の運転モードの実施を制限させる、
     プログラム。
    On the computer installed in the vehicle,
    Recognize the surrounding situation of the vehicle
    One or both of steering or acceleration / deceleration of the vehicle is controlled without depending on the operation of the driver of the vehicle.
    The driving mode of the vehicle is determined to be one of a plurality of driving modes including a first driving mode and a second driving mode, and the second driving mode is the task assigned to the driver. It is a light driving mode as compared with the first driving mode, and at least a part of the plurality of driving modes including the second driving mode is steering and steering of the vehicle without depending on the operation of the driver of the vehicle. It is performed by controlling acceleration / deceleration, and when the task related to the determined driving mode is not executed by the driver, the driving mode of the vehicle is changed to a driving mode in which the task is more severe.
    Recognize that there is a speed limit area for the vehicle within the reference distance on the traveling direction side of the vehicle.
    Due to the recognition of the speed limiting area, the implementation of the second operation mode is restricted.
    program.
PCT/JP2020/049143 2020-12-28 2020-12-28 Vehicle control device, vehicle control method, and program WO2022144976A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/049143 WO2022144976A1 (en) 2020-12-28 2020-12-28 Vehicle control device, vehicle control method, and program
JP2022528265A JPWO2022144976A1 (en) 2020-12-28 2020-12-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/049143 WO2022144976A1 (en) 2020-12-28 2020-12-28 Vehicle control device, vehicle control method, and program

Publications (1)

Publication Number Publication Date
WO2022144976A1 true WO2022144976A1 (en) 2022-07-07

Family

ID=82260324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049143 WO2022144976A1 (en) 2020-12-28 2020-12-28 Vehicle control device, vehicle control method, and program

Country Status (2)

Country Link
JP (1) JPWO2022144976A1 (en)
WO (1) WO2022144976A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126086A (en) * 2005-11-07 2007-05-24 Nissan Motor Co Ltd Vehicle position estimation device, traveling support device for vehicle and vehicle position estimation method
JP2017132290A (en) * 2016-01-25 2017-08-03 日立オートモティブシステムズ株式会社 Automatic drive control device and automatic drive control method
JP2020535541A (en) * 2017-09-29 2020-12-03 トヨタ モーター ヨーロッパ Systems and methods for driver assistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6976280B2 (en) * 2019-03-28 2021-12-08 本田技研工業株式会社 Vehicle control devices, vehicle control methods, and programs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126086A (en) * 2005-11-07 2007-05-24 Nissan Motor Co Ltd Vehicle position estimation device, traveling support device for vehicle and vehicle position estimation method
JP2017132290A (en) * 2016-01-25 2017-08-03 日立オートモティブシステムズ株式会社 Automatic drive control device and automatic drive control method
JP2020535541A (en) * 2017-09-29 2020-12-03 トヨタ モーター ヨーロッパ Systems and methods for driver assistance

Also Published As

Publication number Publication date
JPWO2022144976A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP2022103827A (en) Vehicle control device, vehicle control method, and program
JP2022103505A (en) Vehicle control device, vehicle control method, and program
US11827246B2 (en) Vehicle control device, vehicle control method, and storage medium
WO2022144977A1 (en) Vehicle control device, vehicle system, vehicle control method, and program
US20230398990A1 (en) Mobile body control device, mobile body control method, and storage medium
JP2022096236A (en) Vehicle control device, vehicle control method and program
US20230303099A1 (en) Vehicle control device, vehicle control method, and storage medium
JP7470157B2 (en) Vehicle control device, vehicle control method, and program
JP7308880B2 (en) VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND PROGRAM
JP2023030146A (en) Vehicle control device, vehicle control method, and program
JP7092955B1 (en) Vehicle control devices, vehicle control methods, and programs
WO2022144958A1 (en) Vehicle control device, vehicle control method, and program
WO2022144976A1 (en) Vehicle control device, vehicle control method, and program
JP7075550B1 (en) Vehicle control devices, vehicle control methods, and programs
WO2022144974A1 (en) Vehicle control device, vehicle control method, and program
WO2022144970A1 (en) Vehicle control device, vehicle control method, and program
JP7048832B1 (en) Vehicle control devices, vehicle control methods, and programs
WO2022144950A1 (en) Vehicle control device, vehicle control method, and program
WO2022144954A1 (en) Vehicle control device, vehicle control method, and program
US11834048B2 (en) Vehicle control device, vehicle control method, and recording medium
JP7203885B2 (en) VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND PROGRAM
US12030530B2 (en) Vehicle control device, vehicle control method, and storage medium
JP2022103474A (en) Vehicle control device, vehicle control method, and program
JP2022103723A (en) Vehicle control device, vehicle control method, and program
JP2023150513A (en) Vehicle control device, vehicle control method and program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022528265

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967989

Country of ref document: EP

Kind code of ref document: A1