WO2020158325A1 - Optical component position adjustment support device, method for supporting optical component position adjustment, optical component position adjustment support program, and method for manufacturing lens device - Google Patents

Optical component position adjustment support device, method for supporting optical component position adjustment, optical component position adjustment support program, and method for manufacturing lens device Download PDF

Info

Publication number
WO2020158325A1
WO2020158325A1 PCT/JP2020/000366 JP2020000366W WO2020158325A1 WO 2020158325 A1 WO2020158325 A1 WO 2020158325A1 JP 2020000366 W JP2020000366 W JP 2020000366W WO 2020158325 A1 WO2020158325 A1 WO 2020158325A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical member
lens device
adjustment support
data
evaluation data
Prior art date
Application number
PCT/JP2020/000366
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 和哉
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020569474A priority Critical patent/JP7059406B2/en
Publication of WO2020158325A1 publication Critical patent/WO2020158325A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to an optical member position adjustment support device, an optical member position adjustment support method, an optical member position adjustment support program, and a lens device manufacturing method.
  • a lens device used for an image pickup device such as a digital camera or a projection device such as a projector has a plurality of optical members such as a lens, a diaphragm, and a mirror. Therefore, due to manufacturing errors and assembling errors of the optical members, a desired resolution characteristic may not be obtained even if the lens device is manufactured as designed.
  • Patent Document 1 in the lens optical system, in order to obtain a desired resolution characteristic, the amount of adjustment of the position of the adjusted lens in the plane perpendicular to the optical axis of the lens optical system is machine-learned. It is described that it asks for it. More specifically, in Patent Document 1, the performance value of the lens optical system is obtained in a state where the zoom lens of the lens optical system is moved to the tele end and the wide end, and the performance value is input to the neural network, A method of obtaining a movement adjustment amount of a lens to be adjusted by a neural network is described.
  • Patent Document 2 and Patent Document 3 in a module including an image sensor and a lens, a chart is imaged by the image sensor at different positions in the optical axis direction to obtain a resolution evaluation value. It is described that the position adjustment between the image sensor and the lens is performed based on the above.
  • Patent Document 1 obtains the performance value of the lens optical system with the focus position of the lens optical system fixed to one, and obtains the adjustment amount of the lens to be adjusted based on this performance value. is there. Therefore, for example, when there are a plurality of adjusted lenses, when it is necessary to adjust the tilt of the adjusted lens, or when it is necessary to adjust the position of the adjusted lens in the optical axis direction, The position cannot be adjusted accurately.
  • Patent Documents 2 and 3 are techniques for adjusting the positional relationship between the lens and the image sensor, and do not adjust the position of the optical member in the lens device.
  • the present invention has been made in view of the above circumstances, and an optical member position adjustment support device, an optical member position adjustment support method, and an optical member position that enable highly accurate position adjustment of an optical member in a lens device. It is an object to provide an adjustment support program and a lens device manufacturing method.
  • An optical member position adjustment support device of the present invention changes a distance between an image forming position of a lens device having a plurality of optical members including an adjusted optical member and an evaluation position in the optical axis direction of the lens device into a plurality of values.
  • a measurement evaluation acquisition unit that acquires measurement evaluation data based on the first resolution performance data of the lens device obtained at the evaluation position, the measurement evaluation data, and the same configuration as the lens device.
  • An optical member position adjustment support method of the present invention changes a distance between an image forming position of a lens device having a plurality of optical members including an optical member to be adjusted and an evaluation position in the optical axis direction of the lens device into a plurality of values.
  • An optical member position adjustment support program of the present invention changes a distance between an image forming position of a lens device having a plurality of optical members including an adjusted optical member and an evaluation position in the optical axis direction of the lens device into a plurality of values.
  • a method for manufacturing a lens device according to the present invention is a method for manufacturing a lens device having a plurality of optical members including an optical member to be adjusted, wherein an image forming position of the lens device and an evaluation position in the optical axis direction of the lens device.
  • a first step of generating actually measured evaluation data based on the first resolution performance data of the lens device obtained at the evaluated position, and the actually measured evaluation data First information on the position of the adjusted optical member in each of the virtual lens devices, which is necessary for setting the resolution characteristics of each of the virtual lens devices of the same configuration as the lens device to a predetermined property, and
  • each virtual lens device based on the second resolution performance data of each virtual lens device obtained at the evaluation position Adjustment support which is information indicating the amount of adjustment of the position of the optical member to be adjusted in the lens device, which is necessary for setting the resolution characteristic of the lens device to the predetermined characteristic based on design evaluation data.
  • an optical member position adjustment support device an optical member position adjustment support method, an optical member position adjustment support program, and a lens device manufacturing method that enable highly accurate position adjustment of an optical member in a lens device.
  • FIG. 9 shows an example of the lens apparatus 1 manufactured using the position adjustment support device 100 of the optical member which is one Embodiment of this invention. It is a schematic diagram showing a schematic configuration of a position adjustment support device 100. It is a schematic diagram which shows the measuring system of the 1st resolution performance data required for generation of measurement evaluation data. It is the figure which looked at the resolution chart 2 shown in FIG. 2 from the lens apparatus 1 side in the optical axis direction Z. It is a schematic diagram which shows an example of the 1st resolution performance data corresponding to a low frequency pattern. It is a schematic diagram which shows an example of the 1st resolution performance data corresponding to a high frequency pattern. It is a figure which shows an example of the data registered into the database 103 shown in FIG. 9 is a schematic diagram showing the configuration of a position adjustment support device 100A that is a second modification of the position adjustment support device 100. FIG. 9 is a flowchart for explaining a modified example of the method for manufacturing the lens device 1.
  • FIG. 1 is a schematic view showing an example of a lens device 1 manufactured by using a position adjustment support device 100 for an optical member, which is an embodiment of the present invention.
  • the lens device 1 is used for an imaging device such as a digital camera or a projection device such as a projector. Below, the lens apparatus 1 is demonstrated as what is utilized for an imaging device.
  • the lens device 1 includes a plurality of optical members provided in the lens barrel 10 (four optical members including a first lens 11, a second lens 12, a third lens 13, and a fourth lens 14 in the example of FIG. 1). ) Is provided.
  • the first lens 11, the second lens 12, the third lens 13, and the fourth lens 14 are arranged in this order from the subject side along the optical axis K of the lens device 1.
  • the direction in which the optical axis K extends is called the optical axis direction Z.
  • the fourth lens 14 is a focus lens. By moving the fourth lens 14 in the optical axis direction Z, the image forming position of the subject by the lens device 1 can be changed.
  • the lens device 1 is manufactured, for example, as follows.
  • the first lens 11, the second lens 12, the third lens 13, and the fourth lens 14 are arranged in the lens barrel 10 according to the design values, and the first lens 11 and the fourth lens 14 are arranged in the lens barrel 10.
  • the second lens 12 and the third lens 13 are temporarily fixed to the lens barrel 10 so that they can be moved with respect to the lens barrel 10.
  • the lens device 1 in which the first lens 11 and the fourth lens 14 are fixed to the lens barrel 10 and the second lens 12 and the third lens 13 are temporarily fixed to the lens barrel 10 will be described below. Also referred to as device 1.
  • the positions of the first lens 11, the second lens 12, the third lens 13, and the fourth lens 14 in the lens device 1 before adjustment are referred to as initial positions.
  • the second lens is adjusted so that the resolution performance (specifically, the optical transfer function (Modulated Transfer Function: MTF)) of the lens device 1 before the adjustment becomes a predetermined performance (hereinafter, referred to as a desired performance).
  • MTF Modulated Transfer Function
  • 12 and the position of each of the third lens 13 in the optical axis direction Z, and the position of each of the second lens 12 and the third lens 13 including the inclination of the optical axis of each of the second lens 12 and the third lens 13. Adjust. After completion of this adjustment, the second lens 12 and the third lens 13 are permanently fixed to the lens barrel 10, and the lens device 1 is completed.
  • the position adjustment assisting device 100 described below has an initial position of each of the second lens 12 and the third lens 13 in the optical axis direction Z such that the resolution performance of the lens device 1 before the adjustment becomes a desired performance.
  • This position adjustment work is performed by automatically generating the adjustment amount from the position and the adjustment amount of the inclination of the optical axis of each of the second lens 12 and the third lens 13 with respect to the initial position based on huge simulation data. It is to support.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the position adjustment support device 100.
  • the position adjustment support device 100 includes a measurement evaluation acquisition unit 101, an adjustment support information generation unit 102, and a database (DB) 103.
  • the position adjustment support device 100 includes various processors that execute programs to perform processing, a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • the database 103 is included in the ROM, for example.
  • a processor whose circuit configuration can be changed after manufacturing such as a CPU (Central Processing Unit) and an FPGA (Field Programmable Gate Array) that are general-purpose processors that execute programs to perform various processes
  • a programmable electric logic device (PLD) which is the above, or a dedicated electric circuit, which is a processor having a circuit configuration specifically designed to execute a specific process such as an ASIC (Application Specific Integrated Circuit), is included. .. More specifically, the structures of these various processors are electric circuits in which circuit elements such as semiconductor elements are combined.
  • the position adjustment support device 100 may be configured by one of various processors, or may be a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). It may be configured.
  • the processor of the position adjustment support device 100 functions as the actual measurement evaluation acquisition unit 101 and the adjustment support information generation unit 102 by executing the program including the position adjustment support program stored in the ROM.
  • the measurement evaluation acquisition unit 101 acquires the measurement evaluation data and temporarily stores it in the RAM.
  • the actually measured evaluation data is obtained in a state in which the distance between the image forming position of the lens device 1 before adjustment and the evaluation position in the optical axis direction Z of the lens device 1 before adjustment is changed to a plurality of values.
  • 2 is data based on the first resolution performance data of the lens apparatus 1 in FIG.
  • FIG. 3 is a schematic diagram showing a measurement system of the first resolution performance data necessary for generating the measurement evaluation data.
  • a resolution chart 2 in which a predetermined pattern is formed is arranged at a predetermined position on the object side front side of the lens device 1 before adjustment.
  • the image pickup device 3 is arranged at a position opposite to the subject side of the lens device 1 before adjustment so as to be movable in the optical axis direction Z.
  • the position of the light receiving surface of the image sensor 3 in the optical axis direction Z is the evaluation position for evaluating the imaging performance of the lens device 1.
  • FIG. 4 is a view of the resolution chart 2 shown in FIG. 2 viewed from the lens device 1 side in the optical axis direction Z.
  • the resolution chart 2 is a rectangular plane perpendicular to the optical axis direction Z, the direction X coincides with the longitudinal direction of the light receiving surface of the image sensor 3, and the direction Y perpendicular to the direction X indicates the light receiving surface of the image sensor 3. It matches the lateral direction.
  • the direction X and the direction Y are perpendicular to the optical axis direction Z.
  • a first pattern 21 is formed in the central portion that intersects the optical axis K of the lens device 1 before adjustment.
  • the first pattern 21 includes a low frequency pattern LP having a low spatial frequency in which lines extending in the direction Y are arranged at a first interval in the direction X and a low frequency pattern LP in the direction Y.
  • the extending line includes a high frequency pattern HP having a high spatial frequency and arranged in the direction X at a second interval narrower than the first interval.
  • the second pattern 22 is formed at a predetermined position on the circumference of a circle 24 centered on a point intersecting the optical axis K of the lens device 1 before adjustment.
  • the third pattern 23 is formed on the circumference of the circle 24 at a position different from the position where the second pattern 22 is formed.
  • the second pattern 22 and the third pattern 23 are each composed of a pair of a low frequency pattern LP and a high frequency pattern HP.
  • Each of the first pattern 21, the second pattern 22, and the third pattern 23 is a pattern in which straight lines extending in the direction Y are arranged in the direction X, but straight lines extending in the direction X are in the direction Y. It may be an arrayed pattern or may include both patterns. Further, the number of patterns included in the resolution chart 2 is not limited to three, that is, the first pattern 21, the second pattern 22, and the third pattern 23, and may be four or more.
  • the center position intersecting the optical axis K is set as a reference image height, and the center of the center position is on the circumference of a circle.
  • the position is defined as the image height whose value depends on the radius of this circle.
  • the second pattern 22 and the third pattern 23 on the circumference of the circle 24 in the captured image of the resolution chart 2 shown in FIG. 4 have the same image height.
  • the first pattern 21, the second pattern 22 and the third pattern 23 can be said to have different image heights.
  • the image height of the first pattern 21 constitutes the first image height
  • the image height of the second pattern 22 constitutes the second image height
  • the image height of the third pattern 23 is the third image height. Make up.
  • the position of the fourth lens 14 of the lens device 1 before adjustment is further fixed to a predetermined position.
  • the position of the fourth lens 14 of the lens device 1 before adjustment (in other words, the focus position) is fixed, and the position of the resolution chart 2 is also fixed. Therefore, the image formation position of the resolution chart 2 by the lens device 1 before adjustment is fixed.
  • the resolution chart 2 is imaged by the image sensor 3 at each moving position while moving the image sensor 3 in the optical axis direction Z within a predetermined range.
  • the distance in other words, defocus amount
  • 5 and 6 show an example of the result of obtaining the MTF value indicating the resolution performance of each pattern to be obtained.
  • the horizontal axis represents the position of the light receiving surface of the image sensor 3 in the optical axis direction Z in the measurement system of FIG. 3, and the vertical axis represents the MTF value.
  • FIG. 5 shows the resolution performance data 21L, the resolution performance data 22L, and the resolution performance data 23L.
  • the resolution performance data 21L is data indicating the MTF value of the low frequency pattern LP of the first pattern 21 in each of the plurality of captured images described above.
  • the resolution performance data 22L is data indicating the MTF value of the low-frequency pattern LP of the second pattern 22 in each of the plurality of captured images described above.
  • the resolution performance data 23L is data indicating the MTF value of the low-frequency pattern LP of the third pattern 23 in each of the plurality of captured images described above.
  • FIG. 6 shows resolution performance data 21H, resolution performance data 22H, and resolution performance data 23H.
  • the resolution performance data 21H is data indicating the MTF value of the high frequency pattern HP of the first pattern 21 in each of the plurality of captured images described above.
  • the resolution performance data 22H is data indicating the MTF value of the high frequency pattern HP of the second pattern 22 in each of the plurality of captured images described above.
  • the resolution performance data 23H is data indicating the measurement result of the MTF value of the high frequency pattern HP of the third pattern 23 in each of the plurality of captured images described above.
  • the resolution performance data 21L, the resolution performance data 22L, the resolution performance data 23L, the resolution performance data 21H, the resolution performance data 22H, and the resolution performance data 23H respectively form first resolution performance data. ..
  • the peak value of the MTF value in the resolution performance data 21L shown in FIG. 5 is generated as the measurement evaluation data 21Lb, and the information on the position of the image sensor 3 when the peak value is obtained is generated as the measurement evaluation data 21La. It
  • the peak value of the MTF value in the resolution performance data 22L shown in FIG. 5 is generated as the measured evaluation data 22Lb, and the information on the position of the image sensor 3 when the peak value is obtained is generated as the measured evaluation data 22La.
  • the peak value of the MTF value in the resolution performance data 23L shown in FIG. 5 is generated as the measured evaluation data 23Lb, and the information on the position of the image sensor 3 when the peak value is obtained is generated as the measured evaluation data 23La.
  • the peak value of the MTF value in the resolution performance data 21H shown in FIG. 6 is generated as the measurement evaluation data 21Hb, and the information on the position of the image sensor 3 when the peak value is obtained is generated as the measurement evaluation data 21Ha.
  • the peak value of the MTF value in the resolution performance data 22H shown in FIG. 6 is generated as the measured evaluation data 22Hb, and the information on the position of the image sensor 3 when the peak value is obtained is generated as the measured evaluation data 22Ha.
  • the peak value of the MTF value in the resolution performance data 23H shown in FIG. 6 is generated as the measured evaluation data 23Hb, and the information of the position of the image sensor 3 when the peak value is obtained is generated as the measured evaluation data 23Ha.
  • the actual measurement evaluation data 21La, the actual measurement evaluation data 22La, the actual measurement evaluation data 23La, the actual measurement evaluation data 21Ha, the actual measurement evaluation data 22Ha, and the actual measurement evaluation data 23Ha are the results of the lens apparatus 1 when the peak value of the MTF value is obtained.
  • the information corresponds to the distance between the image position and the light receiving surface (evaluation position) of the image sensor 3.
  • the present invention is not limited to this.
  • the position of the image sensor 3 is fixed and the resolution chart 2 is moved in the optical axis direction Z, so that the image formation position of the resolution chart 2 by the lens device 1 and the light reception of the image sensor 3 are received.
  • the distance to the surface may be changed.
  • the optical axis direction Z of the resolution chart 2 is obtained. The information of the position of is used.
  • the position of the image sensor 3 is fixed, and the fourth lens 14, which is a focus lens, is moved in the optical axis direction Z, so that the image forming position of the resolution chart 2 by the lens device 1 is changed.
  • the distance from the light receiving surface of the image sensor 3 may be changed.
  • the information corresponding to the above distance (defocus amount) when the peak value in the actually measured evaluation data is obtained is replaced with the information on the position of the image pickup element 3 in the optical axis direction of the fourth lens 14.
  • Information on the position of Z is used.
  • the resolution performance data can also be acquired by projecting the resolution chart 2 on the screen via the lens device 1 and capturing the projected image. In this case, in FIG.
  • the resolution chart 2 is displayed as a display image on a display unit such as a liquid crystal display panel, and this display image is projected on the screen by the lens device 1. Further, instead of the image pickup device 3, an image pickup device for picking up a projected image of the resolution chart 2 projected on this screen is provided. Then, for example, with the position of the screen fixed and the focus position of the lens device 1 fixed, a projection image is taken by the imaging device while moving the display unit in the optical axis direction, and the first resolution performance data is generated. Good. In this configuration, the position of the imaging device becomes the evaluation position, and the distance between the image formation position of the resolution chart 2 by the lens device 1 and the evaluation position changes due to the movement of the display unit.
  • the adjustment support information generation unit 102 shown in FIG. 2 is based on each actual measurement evaluation data acquired by the actual measurement evaluation acquisition unit 101 and the design evaluation data and the first information registered in the database 103, before adjustment.
  • the adjustment support information which is the information indicating the adjustment amount of the positions of the second lens 12 and the third lens 13 in the lens device 1 necessary for setting the resolution property of the lens device 1 to a desired property, is output.
  • the adjustment support information generation unit 102 also functions as an “output unit” that outputs the adjustment support information.
  • FIG. 7 is a diagram showing an example of data registered in the database 103 shown in FIG.
  • the database 103 stores design data with errors of n (n is a natural number of 2 or more) virtual lens devices A1, A2, A3, A4, A5,..., An having the same configuration as the lens device 1 of FIG. It is registered.
  • the design data with error includes the design values (shape, refractive index, etc.) of each of the first lens 11, the second lens 12, the third lens 13, and the fourth lens 14 of the lens device 1, the first lens 11, the It is data in which a random error is added to a design value (arrangement interval or the like in the optical axis direction Z) regarding the arrangement of the second lens 12, the third lens 13, and the fourth lens 14.
  • the error given to each of the virtual lens devices A1 to An is the assembly error of the first lens 11, the second lens 12, the third lens 13, and the fourth lens 14, the first lens 11, the second lens 12, the An error in the range of several times of various errors such as a manufacturing error of each of the third lens 13 and the fourth lens 14 is randomly given by, for example, Monte Carlo simulation.
  • the first design evaluation data, the second design evaluation data, and the first information are registered in association with each of the n design data with error.
  • the first design evaluation data and the second design evaluation data are collectively referred to as design evaluation data.
  • the first design evaluation data is based on the design data with error of the corresponding virtual lens device Ak (k is 1 to n), and the virtual lens device of this design data with error is measured by the measurement system of FIG. 5 and FIG. 6 obtained when applied to the simulation is simulated, and the actual measurement evaluation data 21La and the actual measurement evaluation data 21Lb obtained based on the simulation result are simulated. , Simulation values of the measurement evaluation data 22La, the measurement evaluation data 22Lb, the measurement evaluation data 23La, and the measurement evaluation data 23Lb.
  • the second design evaluation data is based on the design data with error of the corresponding virtual lens device Ak (k is 1 to n), and the virtual lens device of this design data with error is measured by the measurement system of FIG. 5 and FIG. 6 obtained when applied to FIG. 6 is simulated, and the actual measurement evaluation data 21Ha and the actual measurement evaluation data 21Hb obtained based on the simulation result are simulated. , Simulation values of the measurement evaluation data 22Ha, the measurement evaluation data 22Hb, the measurement evaluation data 23Ha, and the measurement evaluation data 23Hb.
  • the first information sets the resolution performance of the virtual lens device Ak (k is any of 1 to n) corresponding to this, which is determined based on the design data with error, to the above-mentioned desired performance. This is information on the adjustment amount (position adjustment amount in the optical axis direction Z, inclination adjustment amount of the optical axis) of the second lens 12 and the third lens 13 necessary for this.
  • the first information is also obtained by simulation.
  • the adjustment support information generation unit 102 extracts from the database 103 the design evaluation data that is most similar to the combination of the twelve actual measurement evaluation data acquired by the actual measurement evaluation acquisition unit 101.
  • the adjustment support information generation unit 102 extracts the design evaluation data that is most similar to the combination of the twelve pieces of actual measurement evaluation data, and outputs the first information corresponding to the extracted design evaluation data as the adjustment support information.
  • This adjustment support information is notified to the manufacturer of the lens device 1 by being displayed on a display unit (not shown), for example.
  • the manufacturer adjusts the positions of the second lens 12 and the third lens 13 in the optical axis direction Z and the inclination of the optical axis according to the adjustment support information.
  • the above adjustment support information is output to this manufacturing apparatus.
  • the manufacturing apparatus adjusts the position of the second lens 12 and the third lens 13 in the optical axis direction Z and the inclination of the optical axis according to the adjustment support information.
  • the position adjustment assisting device 100 performs the actual measurement generated based on the first resolution performance data obtained by changing the distance between the image forming position of the lens device 1 and the position of the light receiving surface of the image sensor 3.
  • the adjustment support information is output using the evaluation data as an input. Therefore, the adjustment support information can include information on the inclinations of the optical axes of the second lens 12 and the third lens 13 and the positions in the optical axis direction Z. Therefore, even with a lens device having many optical members, it is possible to accurately adjust the optical member to be adjusted.
  • the optimum evaluation is performed by the simple process of extracting the design evaluation data most similar to the combination of the twelve actually measured evaluation data from the design evaluation data registered in the database 103. Adjustment support information can be output. Therefore, it is possible to shorten the time until the output of the adjustment support information and reduce the manufacturing cost of the position adjustment support device 100.
  • the position adjustment assisting apparatus 100 acquires the peak value of the MTF value and the position of the image sensor 3 when the peak value is obtained as the measurement evaluation data. Therefore, when there are a plurality of adjusted optical members, it is possible to generate adjustment support information capable of obtaining high resolution characteristics even when adjusting the tilt or the position of the optical member in the optical axis direction.
  • the actual measurement evaluation data and the design evaluation data are data showing the resolution performance for the first pattern 21 near the optical axis K, and the second pattern 22 and the second pattern 22 having an image height larger than that of the first pattern 21, respectively.
  • the actual measurement evaluation data and the design evaluation data each include data indicating the resolution performance with respect to the second pattern 22 and the third pattern 23 located at different positions with the same image height. Therefore, it is possible to accurately generate the adjustment support information including the inclinations of the second lens 12 and the third lens 13, the distance between the second lens 12 and the adjacent optical member, and the distance between the third lens 13 and the adjacent optical member. You can
  • the actual measurement evaluation data and the design evaluation data each include data indicating the resolution performance for the low frequency pattern LP having a low spatial frequency and data indicating the resolution performance for the high frequency pattern HP having a high spatial frequency. Therefore, the accuracy of the adjustment support information can be improved.
  • the adjustment support information generation unit 102 extracts, from the database 103, a plurality of design evaluation data similar to the combination of the twelve actual measurement evaluation data acquired by the actual measurement evaluation acquisition unit 101, and corresponds to the plurality of design evaluation data.
  • the adjustment support information may be generated and output using one piece of information.
  • the adjustment support information generation unit 102 generates, for example, a first graph from twelve actual measurement evaluation data, generates n second graphs from each design evaluation data, and calculates the shape of the n second graphs and the first graph.
  • the shape of the graph is compared with the design evaluation data (the first design evaluation data) that is the origin of the second graph closest to the shape of the first graph, and the second closest to the shape of the first graph.
  • the design evaluation data (referred to as the second design evaluation data) from which the two graphs are generated is taken as the extraction result.
  • the adjustment support information generation unit 102 outputs the average value of the first information corresponding to each of the first design evaluation data and the second design evaluation data as the adjustment support information. For example, the adjustment support information generation unit 102 simply averages the tilt adjustment amount that is the first information corresponding to the first design evaluation data and the tilt adjustment amount that is the first information corresponding to the second design evaluation data. And outputs it as the adjustment support information of the inclination of the optical axis, and outputs the position adjustment amount which is the first information corresponding to the first design evaluation data and the position adjustment amount which is the first information corresponding to the second design evaluation data. Simply average and output as adjustment support information for the position in the optical axis direction.
  • the adjustment support information generation unit 102 sets the tilt adjustment amount, which is the first information corresponding to the first design evaluation data, and the tilt adjustment amount, which is the first information corresponding to the second design evaluation data, to the first design.
  • the weight corresponding to the evaluation data is increased and the weighted average is output, and output as inclination adjustment support information.
  • the adjustment support information generation unit 102 sets the position adjustment amount, which is the first information corresponding to the first design evaluation data, and the position adjustment amount, which is the first information corresponding to the second design evaluation data, to the first design.
  • the weight corresponding to the evaluation data is increased and the weighted average is output, which is output as the adjustment support information of the position in the optical axis direction.
  • the adjustment support information is generated by the plurality of first information corresponding to the plurality of design evaluation data, so that the accuracy of the adjustment support information can be improved.
  • FIG. 8 is a schematic diagram showing a configuration of a position adjustment support device 100A which is a second modification of the position adjustment support device 100.
  • the position adjustment support device 100A is different from the position adjustment support device 100 in that the adjustment support information generation unit 102 generates the adjustment support information by the information generation model 102a.
  • the information generation model 102a is a model generated by machine learning in which n pieces of design evaluation data registered in the database 103 and the first information corresponding to each design evaluation data are used as teacher data. Is input to generate and output adjustment support information suitable for the measured evaluation data.
  • machine learning for generating the information generation model 102a an arbitrary algorithm such as deep learning, a partial least squares method, a support vector regression method, a random forest method, or a decision tree method can be used.
  • the adjustment support information is generated by the information generation model 102a generated by machine learning, so that the accuracy of the adjustment support information can be increased.
  • the information generation model 102a also functions as an "output unit" that outputs the adjustment support information.
  • FIG. 9 is a flowchart for explaining a modified example of the method for manufacturing the lens device 1.
  • the actually measured evaluation data group ML including the data 23Lb is generated (step S1), and the actually measured evaluation data group ML is input to the position adjustment support device 100 (step S2).
  • the adjustment support information generation unit 102 causes the adjustment support information generation unit 102 to be the first design evaluation most similar to the actual measurement evaluation data group ML from the database 103.
  • the data is extracted, and the first information corresponding to the extracted first design evaluation data is output as the adjustment support information IL (step S3).
  • step S4 position adjustment work (primary adjustment) of the second lens 12 and the third lens 13 is performed (step S4). Then, for the lens device 1 after this position adjustment work, using the measurement system shown in FIG. 3, the actual measurement evaluation data 21Ha, the actual measurement evaluation data 21Hb, the actual measurement evaluation data 22Ha, the actual measurement evaluation data 22Hb, the actual measurement evaluation data 23Ha, A measurement evaluation data group MH including the measurement evaluation data 23Hb is generated (step S5), and the measurement evaluation data group MH is input to the position adjustment support device 100 (step S6).
  • the adjustment support information generation unit 102 causes the adjustment support information generation unit 102 to select the second design evaluation most similar to the actual measurement evaluation data group MH from the database 103.
  • the data is extracted, and the first information corresponding to the extracted second design evaluation data is output as the adjustment support information IH (step S7).
  • step S8 position adjustment work (secondary adjustment) of the second lens 12 and the third lens 13 is performed (step S8), and in that state, the second lens 12 and the third lens 13 are performed. Is fixed to the lens barrel 10 to complete the lens device 1.
  • the process of generating the adjustment support information IL from the measured evaluation data group ML corresponding to the low frequency pattern LP, the process of generating the adjustment support information IH from the measured evaluation data group MH corresponding to the high frequency pattern HP By separately performing the above, the positions of the second lens 12 and the third lens 13 are adjusted with high accuracy and the resolution characteristics of the lens device 1 are desired, regardless of the resolution performance of the lens device 1 before adjustment. Can be a property of
  • the adjustment support information generation unit 102 When the adjustment support information generation unit 102 generates the adjustment support information by the information generation model 102a, the first design evaluation data and the corresponding first information are used as the teacher data as the information generation model 102a.
  • a low-frequency model generated by machine learning and a high-frequency model generated by machine learning using second design evaluation data and corresponding first information as teacher data may be prepared. ..
  • the adjustment support information generation unit 102 applies this to the low frequency model to generate the adjustment support information IL for primary adjustment by the low frequency model.
  • this may be applied to the high frequency model to generate the adjustment support information IH for secondary adjustment by the high frequency model.
  • the lens device 1 is configured to include only lenses as optical members, the optical members included in the lens device 1 may include components other than lenses such as a diaphragm, a prism, and a mirror. Further, the number of optical members to be adjusted in the lens device 1 may not be plural, but may be only one.
  • a plurality of optical members for example, the first lens 11, the second lens 12, the third lens 13, and the third lens 13 of the above-described embodiment
  • the first position of the lens device obtained at the evaluation position in a state in which the distance between the imaging position of the lens device having the four lenses 14) and the evaluation position in the optical axis direction of the lens device is changed to a plurality of values.
  • the resolution performance data for example, the resolution performance data 21L, the resolution performance data 22L, the resolution performance data 23L, the resolution performance data 21H, the resolution performance data 22H, and the resolution performance data 23H of the above-described embodiment).
  • a measurement evaluation acquisition unit that acquires measurement evaluation data based on The measured evaluation data and the position of the optical member to be adjusted in each virtual lens device, which is necessary for setting the resolution characteristics of each of the virtual lens devices having the same configuration as the lens device to a predetermined characteristic First information indicating the adjustment amount, and in the state in which the distance in each of the virtual lens devices is changed to the plurality of values, in the second resolution performance data of each of the virtual lens devices obtained at the evaluation position. Based on the design evaluation data of each of the virtual lens devices based on the above, an adjustment amount of the position of the adjusted optical member in the lens device, which is necessary for setting the resolution characteristics of the lens device to the predetermined characteristics.
  • a position adjustment support device for an optical member which includes an output unit (for example, the adjustment support information generation unit 102 of the above-described embodiment) that outputs adjustment support information that is information indicating
  • the position adjustment support device for an optical member as described above, The output unit extracts one of the design evaluation data similar to the measured evaluation data from the design evaluation data of each virtual lens device, and obtains the extracted design evaluation data of the virtual lens device.
  • a position adjustment support device for an optical member which outputs, as the adjustment support information, the first information necessary for setting a resolution property to the predetermined property.
  • the position adjustment support device for an optical member as described above extracts a plurality of the design evaluation data similar to the actual measurement evaluation data from the design evaluation data of each virtual lens device, and obtains each of the plurality of the design evaluation data.
  • a position adjustment assisting device for an optical member which generates the adjustment assisting information by using the first information necessary for setting the resolution characteristic of the device to the predetermined characteristic.
  • the output unit outputs the adjustment support information from the measured evaluation data by a model (for example, the information generation model 102a of the above-described embodiment) generated by machine learning using the design evaluation data and the first information as teacher data.
  • a model for example, the information generation model 102a of the above-described embodiment
  • the position adjustment support device for an optical member according to any one of (1) to (4),
  • the first resolution performance data is data indicating the resolution performance of the lens device in the state where the distance is each of the plurality of values
  • the actual measurement evaluation data includes information corresponding to the peak value of the resolution performance in the first resolution performance data and the distance in the state where the peak value is obtained (for example, the image sensor 3 of the embodiment described above).
  • Position and a position adjustment support device for an optical member.
  • the position adjustment support device for an optical member according to any one of (1) to (5),
  • the actual measurement evaluation data is first actual measurement evaluation data based on the first resolution performance data at the first image height at the evaluation position (for example, actual measurement evaluation data 21La, 21Lb, 21Ha, 21Hb in the above-described embodiment), Second actual measurement evaluation data based on the first resolution performance data at the second image height different from the first image height at the evaluation position (for example, actual measurement evaluation data 22La, 22Lb, 22Ha, 22Hb in the above-described embodiment).
  • a position adjustment support device for an optical member including.
  • the position adjustment support device for an optical member as described above The second actual measurement evaluation data is first sub actual measurement evaluation data based on the first resolution performance data at the first position of the second image height at the evaluation position (for example, the actual measurement evaluation data 22La of the above-described embodiment, 22Lb, 22Ha, 22Hb) and second sub-measurement evaluation data based on the first resolution performance data at a second position different from the first position of the second image height at the evaluation position (for example, the above-described implementation.
  • Position evaluation support device for an optical member including the actual measurement evaluation data 23La, 23Lb, 23Ha, 23Hb).
  • the first resolution performance data is the first sub-resolution performance data (for example, the resolution performance data 21L of the above-described embodiment) for the evaluation object of the first spatial frequency (for example, the low frequency pattern LP of the above-described embodiment). , 22L, 23L) and a second spatial frequency different from the first spatial frequency (for example, the high-frequency pattern HP of the above-described embodiment), the second sub-resolution performance data (for example, the resolution of the above-described embodiment).
  • Performance data 21H, 22H, 23H The actual measurement evaluation data is based on the first sub-resolution performance data (for example, the actual measurement evaluation data 21La, 21Lb, 22La, 21Lb, 23La, 23Lb of the embodiment described above) and the second sub-resolution performance data.
  • a position adjustment support device for an optical member which includes a base (for example, actual measurement evaluation data 21Ha, 21Hb, 22Ha, 22Hb, 23Ha, 23Hb of the above-described embodiment).
  • the position adjustment support device for an optical member according to any one of (1) to (8),
  • the adjustment support information includes an adjustment amount of the position of the adjusted optical member in the optical axis direction of the lens device, and an adjustment amount of the inclination of the optical axis of the adjusted optical member. ..
  • the position adjustment support device for an optical member is a position of an optical member including a plurality of above-mentioned adjusted optical members, and at least one fixed optical member (for example, the 1st lens 11 and the 4th lens 14 of the above-mentioned embodiment) which does not require position adjustment. Adjustment support device.
  • an adjustment amount of the position of the adjusted optical member in the lens device which is necessary for setting the resolution characteristics of the lens device to the predetermined characteristics.
  • An output step of outputting adjustment support information which is information indicating the position adjustment support method of the optical member.
  • a method for assisting position adjustment of an optical member which outputs the first information necessary for setting a resolution characteristic to the predetermined characteristic as the adjustment assistance information.
  • (13) A method for supporting position adjustment of an optical member as described above, In the output step, a plurality of the design evaluation data similar to the measured evaluation data is extracted from the design evaluation data of each virtual lens device, and each of the plurality of the design evaluation data is obtained the virtual lens.
  • a position adjustment support method for an optical member which generates the adjustment support information by using the first information necessary for setting the resolution characteristic of the device to the predetermined characteristic.
  • the method for assisting position adjustment of an optical member according to any one of (11) to (14),
  • the first resolution performance data is data indicating the resolution performance of the lens device in the state where the distance is each of the plurality of values
  • the actual measurement evaluation data is a position adjustment support method for an optical member including a peak value of the resolution performance in the first resolution performance data and information corresponding to the distance in a state where the peak value is obtained. ..
  • a method for assisting position adjustment of an optical member according to any one of (11) to (15),
  • the actual measurement evaluation data is the first actual measurement evaluation data based on the first resolution performance data at the first image height at the evaluation position, and the second image height different from the first image height at the evaluation position.
  • a position adjustment support method for an optical member comprising: second measurement evaluation data based on first resolution performance data.
  • a method for assisting position adjustment of an optical member according to any one of (11) to (17), The first resolution performance data, the first sub-resolution performance data for the evaluation object of the first spatial frequency, and the second sub-resolution performance for the evaluation object of the second spatial frequency different from the first spatial frequency.
  • the adjustment support information includes an adjustment amount of the position of the adjusted optical member in the optical axis direction of the lens device and an adjustment amount of the tilt of the optical axis of the adjusted optical member. ..
  • the lens apparatus is a method of assisting position adjustment of an optical member, which includes a plurality of the optical members to be adjusted and at least one fixed optical member that does not require position adjustment.
  • an adjustment amount of the position of the adjusted optical member in the lens device which is necessary for setting the resolution characteristics of the lens device to the predetermined characteristics.
  • a first step of generating measured evaluation data based on (for example, step S1 and step S5 of the above-described embodiment), The measured evaluation data and the position of the optical member to be adjusted in each virtual lens device, which is necessary for setting the resolution characteristics of each of the virtual lens devices having the same configuration as the lens device to a predetermined characteristic
  • the virtual images based on the second resolution performance data of the virtual lens devices obtained at the evaluation position.
  • information indicating the amount of adjustment of the position of the optical member to be adjusted in the lens device, which is necessary for setting the resolution characteristic of the lens device to the predetermined characteristic.
  • a second step (for example, step S2 or step S6 of the above-described embodiment) of inputting the actual measurement evaluation data to a position adjustment support device for an optical member that includes an output unit that outputs certain adjustment support information, Manufacturing a lens device including a third step of adjusting the position of the optical member to be adjusted according to the adjustment support information output from the position adjustment support apparatus (for example, step S4 or step S8 of the above-described embodiment).
  • a method of manufacturing a lens device comprising:
  • the first step includes a first sub-step (for example, step S1 of the above-described embodiment) that generates the actual measurement evaluation data based on the first resolution performance data for the evaluation object having the first spatial frequency, and the first sub-step.
  • a second sub-process (for example, step S5 of the above-described embodiment) that generates the actual measurement evaluation data based on the first resolution performance data for the evaluation object having the second spatial frequency higher than the one spatial frequency.
  • the second step is divided into a third sub step (for example, step S2 of the above-described embodiment) of inputting the actually measured evaluation data generated in the first sub step to the position adjustment support device, and the second sub step.
  • the third step is a fifth sub step of adjusting the position of the optical member to be adjusted according to the adjustment support information output from the position adjustment support device in the third sub step (for example, step S4 in the above-described embodiment).
  • a sixth sub-step of adjusting the position of the optical member to be adjusted according to the adjustment support information output from the position adjustment support device by the fourth sub-step (for example, step S8 of the above-described embodiment), Including After performing the primary adjustment of the position of the optical member to be adjusted by performing the first sub-step, the third sub-step, and the fifth sub-step, the second sub-step, the fourth sub-step, the sixth A method of manufacturing a lens device, wherein a sub-process is performed to perform a secondary adjustment of the position of the optical member to be adjusted.
  • the present invention it is possible to adjust the position of the optical member easily and with high accuracy, and to set the resolution characteristic of the lens device to a desired characteristic.

Abstract

Provided are an optical component position adjustment support device, a method for supporting optical component position adjustment, an optical component position adjustment support program, and a method for manufacturing a lens device, which allow highly accurate positional adjustment for an optical component in a lens device. A position adjustment support device 100 comprises: a measurement evaluation acquisition unit 101 for acquiring measurement evaluation data for a lens device 1 that is acquired in a condition in which a defocus amount has been changed; and an output unit which refers to the measurement evaluation data, first information that indicates an adjustment amount for the position of an optical component to be adjusted in each of a plurality of virtual lens devices having the same configuration as the lens device 1, and design evaluation data for each virtual lens device obtained in a condition in which a defocus amount has been changed in each virtual lens device, said adjustment amount required for making the resolution characteristic of each virtual lens device match a predetermined characteristic, and accordingly outputs adjustment support information, which indicates an adjustment amount for the position of the optical component to be adjusted.

Description

光学部材の位置調整支援装置、光学部材の位置調整支援方法、光学部材の位置調整支援プログラム、レンズ装置の製造方法Optical member position adjustment support device, optical member position adjustment support method, optical member position adjustment support program, lens device manufacturing method

 本発明は、光学部材の位置調整支援装置、光学部材の位置調整支援方法、光学部材の位置調整支援プログラム、レンズ装置の製造方法に関する。

The present invention relates to an optical member position adjustment support device, an optical member position adjustment support method, an optical member position adjustment support program, and a lens device manufacturing method.

 デジタルカメラ等の撮像装置又はプロジェクタ等の投影装置等に用いられるレンズ装置は、レンズ、絞り、ミラー等の複数の光学部材を有する。このため、各光学部材の製造誤差及び組立誤差等により、設計通りにレンズ装置を製造しても、所望の解像特性を得られないことがある。

A lens device used for an image pickup device such as a digital camera or a projection device such as a projector has a plurality of optical members such as a lens, a diaphragm, and a mirror. Therefore, due to manufacturing errors and assembling errors of the optical members, a desired resolution characteristic may not be obtained even if the lens device is manufactured as designed.

 そこで、特許文献1には、レンズ光学系において、所望の解像特性を得るために、レンズ光学系の光軸に垂直な面内における被調整レンズの位置の調整量を、機械学習を利用して求めることが記載されている。より具体的には、特許文献1には、レンズ光学系のズームレンズをテレ端とワイド端にそれぞれ移動させた状態においてレンズ光学系の性能値を求め、この性能値をニューラルネットワークに入力し、ニューラルネットワークによって被調整レンズの移動調整量を求める方法が記載されている。

Therefore, in Patent Document 1, in the lens optical system, in order to obtain a desired resolution characteristic, the amount of adjustment of the position of the adjusted lens in the plane perpendicular to the optical axis of the lens optical system is machine-learned. It is described that it asks for it. More specifically, in Patent Document 1, the performance value of the lens optical system is obtained in a state where the zoom lens of the lens optical system is moved to the tele end and the wide end, and the performance value is input to the neural network, A method of obtaining a movement adjustment amount of a lens to be adjusted by a neural network is described.

 また、特許文献2及び特許文献3には、撮像素子とレンズとを含むモジュールにおいて、撮像素子により光軸方向の異なる位置でチャートを撮像して解像評価値を求め、この解像評価値に基づいて撮像素子とレンズとの位置調整を行うことが記載されている。

Further, in Patent Document 2 and Patent Document 3, in a module including an image sensor and a lens, a chart is imaged by the image sensor at different positions in the optical axis direction to obtain a resolution evaluation value. It is described that the position adjustment between the image sensor and the lens is performed based on the above.

特開2008-170981号公報JP, 2008-170981, A 特開2010-021985号公報JP, 2010-021985, A WO2015/129120号公報WO2015/129120

 特許文献1に記載の方法は、レンズ光学系の合焦位置を1つに固定した状態にてレンズ光学系の性能値を求め、この性能値に基づいて被調整レンズの調整量を求めるものである。このため、例えば被調整レンズが複数ある場合、被調整レンズの傾きを調整する必要がある場合、又は被調整レンズの光軸方向の位置を調整する必要がある場合等には、被調整レンズの位置調整を正確に行うことができない。

The method described in Patent Document 1 obtains the performance value of the lens optical system with the focus position of the lens optical system fixed to one, and obtains the adjustment amount of the lens to be adjusted based on this performance value. is there. Therefore, for example, when there are a plurality of adjusted lenses, when it is necessary to adjust the tilt of the adjusted lens, or when it is necessary to adjust the position of the adjusted lens in the optical axis direction, The position cannot be adjusted accurately.

 特許文献2、3は、レンズと撮像素子との位置関係を調整する技術であり、レンズ装置内の光学部材の位置調整を行うものではない。

Patent Documents 2 and 3 are techniques for adjusting the positional relationship between the lens and the image sensor, and do not adjust the position of the optical member in the lens device.

 本発明は、上記事情に鑑みてなされたものであり、レンズ装置における光学部材の高精度な位置調整を可能とする光学部材の位置調整支援装置、光学部材の位置調整支援方法、光学部材の位置調整支援プログラム、レンズ装置の製造方法を提供することを目的とする。

The present invention has been made in view of the above circumstances, and an optical member position adjustment support device, an optical member position adjustment support method, and an optical member position that enable highly accurate position adjustment of an optical member in a lens device. It is an object to provide an adjustment support program and a lens device manufacturing method.

 本発明の光学部材の位置調整支援装置は、被調整光学部材を含む複数の光学部材を有するレンズ装置の結像位置と上記レンズ装置の光軸方向における評価位置との距離を複数の値に変えた状態において、上記評価位置にて得られた上記レンズ装置の第一の解像性能データに基づく実測評価データを取得する実測評価取得部と、上記実測評価データと、上記レンズ装置と同じ構成の複数の仮想レンズ装置の各々の解像特性を予め決められた特性とするために必要な上記各仮想レンズ装置における上記被調整光学部材の位置の調整量を示す第一情報と、上記各仮想レンズ装置において上記距離を上記複数の値に変えた状態にておいて、上記評価位置にて得られた上記各仮想レンズ装置の第二の解像性能データに基づく上記各仮想レンズ装置の設計評価データと、に基づいて、上記レンズ装置の解像特性を上記予め決められた特性とするために必要な上記レンズ装置における上記被調整光学部材の位置の調整量を示す情報である調整支援情報を出力する出力部と、を備えるものである。

An optical member position adjustment support device of the present invention changes a distance between an image forming position of a lens device having a plurality of optical members including an adjusted optical member and an evaluation position in the optical axis direction of the lens device into a plurality of values. In this state, a measurement evaluation acquisition unit that acquires measurement evaluation data based on the first resolution performance data of the lens device obtained at the evaluation position, the measurement evaluation data, and the same configuration as the lens device. First information indicating the adjustment amount of the position of the adjusted optical member in each of the virtual lens devices, which is necessary for setting the resolution characteristics of each of the plurality of virtual lens devices to a predetermined property, and each of the virtual lenses Design evaluation data of each virtual lens device based on the second resolution performance data of each virtual lens device obtained at the evaluation position while the distance is changed to the plurality of values in the device. Based on the above, and outputs adjustment support information that is information indicating the amount of adjustment of the position of the adjusted optical member in the lens device, which is necessary to make the resolution characteristic of the lens device the predetermined characteristic. And an output unit for

 本発明の光学部材の位置調整支援方法は、被調整光学部材を含む複数の光学部材を有するレンズ装置の結像位置と上記レンズ装置の光軸方向における評価位置との距離を複数の値に変えた状態において、上記評価位置にて得られた上記レンズ装置の第一の解像性能データに基づく実測評価データを取得するステップと、上記実測評価データと、上記レンズ装置と同じ構成の複数の仮想レンズ装置の各々の解像特性を予め決められた特性とするために必要な上記各仮想レンズ装置における上記被調整光学部材の位置の調整量を示す第一情報と、上記各仮想レンズ装置において上記距離を上記複数の値に変えた状態において、上記評価位置にて得られた上記各仮想レンズ装置の第二の解像性能データに基づく上記各仮想レンズ装置の設計評価データと、に基づいて、上記レンズ装置の解像特性を上記予め決められた特性とするために必要な上記レンズ装置における上記被調整光学部材の位置の調整量を示す情報である調整支援情報を出力する出力ステップと、を備えるものである。

An optical member position adjustment support method of the present invention changes a distance between an image forming position of a lens device having a plurality of optical members including an optical member to be adjusted and an evaluation position in the optical axis direction of the lens device into a plurality of values. In this state, a step of acquiring actually measured evaluation data based on the first resolution performance data of the lens device obtained at the evaluated position, the actually measured evaluation data, and a plurality of virtual images having the same configuration as the lens device. First information indicating the amount of adjustment of the position of the optical member to be adjusted in each of the virtual lens devices, which is necessary for setting the resolution characteristics of each of the lens devices to a predetermined property, and in each of the virtual lens devices described above, In the state of changing the distance to the plurality of values, based on the design evaluation data of each virtual lens device based on the second resolution performance data of each virtual lens device obtained at the evaluation position, based on An output step of outputting adjustment support information, which is information indicating an adjustment amount of the position of the adjusted optical member in the lens device, which is necessary for setting the resolution property of the lens device to the predetermined property. Be prepared.

 本発明の光学部材の位置調整支援プログラムは、被調整光学部材を含む複数の光学部材を有するレンズ装置の結像位置と上記レンズ装置の光軸方向における評価位置との距離を複数の値に変えた状態において、上記評価位置にて得られた上記レンズ装置の第一の解像性能データに基づく実測評価データを取得するステップと、上記実測評価データと、上記レンズ装置と同じ構成の複数の仮想レンズ装置の各々の解像特性を予め決められた特性とするために必要な上記各仮想レンズ装置における上記被調整光学部材の位置の調整量を示す第一情報と、上記各仮想レンズ装置において上記距離を上記複数の値に変えた状態において、上記評価位置にて得られた上記各仮想レンズ装置の第二の解像性能データに基づく上記各仮想レンズ装置の設計評価データと、に基づいて、上記レンズ装置の解像特性を上記予め決められた特性とするために必要な上記レンズ装置における上記被調整光学部材の位置の調整量を示す情報である調整支援情報を出力する出力ステップと、をコンピュータに実行させるためのものである。

An optical member position adjustment support program of the present invention changes a distance between an image forming position of a lens device having a plurality of optical members including an adjusted optical member and an evaluation position in the optical axis direction of the lens device into a plurality of values. In this state, a step of acquiring actually measured evaluation data based on the first resolution performance data of the lens device obtained at the evaluated position, the actually measured evaluation data, and a plurality of virtual images having the same configuration as the lens device. First information indicating the amount of adjustment of the position of the optical member to be adjusted in each of the virtual lens devices, which is necessary for setting the resolution characteristics of each of the lens devices to a predetermined property, and in each of the virtual lens devices described above, In the state of changing the distance to the plurality of values, based on the design evaluation data of each virtual lens device based on the second resolution performance data of each virtual lens device obtained at the evaluation position, based on An output step of outputting adjustment support information, which is information indicating an adjustment amount of the position of the adjusted optical member in the lens device, which is necessary for setting the resolution property of the lens device to the predetermined property. It is intended to be executed by a computer.

 本発明のレンズ装置の製造方法は、被調整光学部材を含む複数の光学部材を有するレンズ装置の製造方法であって、上記レンズ装置の結像位置と上記レンズ装置の光軸方向における評価位置との距離を複数の値に変えた状態において、上記評価位置にて得られた上記レンズ装置の第一の解像性能データに基づく実測評価データを生成する第一工程と、上記実測評価データと、上記レンズ装置と同じ構成の複数の仮想レンズ装置の各々の解像特性を予め決められた特性とするために必要な上記各仮想レンズ装置における上記被調整光学部材の位置の第一情報と、上記各仮想レンズ装置において上記距離を上記複数の値に変えた状態にておいて、上記評価位置にて得られた上記各仮想レンズ装置の第二の解像性能データに基づく上記各仮想レンズ装置の設計評価データと、に基づいて、上記レンズ装置の解像特性を上記予め決められた特性とするために必要な上記レンズ装置における上記被調整光学部材の位置の調整量を示す情報である調整支援情報を出力する出力部を備える光学部材の位置調整支援装置に上記実測評価データを入力する第二工程と、上記位置調整支援装置から出力された上記調整支援情報にしたがって、上記被調整光学部材の位置を調整する第三工程と、を備えるものである。

A method for manufacturing a lens device according to the present invention is a method for manufacturing a lens device having a plurality of optical members including an optical member to be adjusted, wherein an image forming position of the lens device and an evaluation position in the optical axis direction of the lens device. In a state in which the distance of is changed to a plurality of values, a first step of generating actually measured evaluation data based on the first resolution performance data of the lens device obtained at the evaluated position, and the actually measured evaluation data, First information on the position of the adjusted optical member in each of the virtual lens devices, which is necessary for setting the resolution characteristics of each of the virtual lens devices of the same configuration as the lens device to a predetermined property, and In the state where the distance is changed to the plurality of values in each virtual lens device, each virtual lens device based on the second resolution performance data of each virtual lens device obtained at the evaluation position Adjustment support, which is information indicating the amount of adjustment of the position of the optical member to be adjusted in the lens device, which is necessary for setting the resolution characteristic of the lens device to the predetermined characteristic based on design evaluation data. According to the second step of inputting the actually measured evaluation data to the position adjustment support device for the optical member including the output unit for outputting information, and the adjustment support information output from the position adjustment support device, the adjusted optical member And a third step of adjusting the position.

 本発明によれば、レンズ装置における光学部材の高精度な位置調整を可能とする光学部材の位置調整支援装置、光学部材の位置調整支援方法、光学部材の位置調整支援プログラム、レンズ装置の製造方法を提供することができる。

According to the present invention, an optical member position adjustment support device, an optical member position adjustment support method, an optical member position adjustment support program, and a lens device manufacturing method that enable highly accurate position adjustment of an optical member in a lens device. Can be provided.

本発明の一実施形態である光学部材の位置調整支援装置100を利用して製造されるレンズ装置1の一例を示す模式図である。It is a schematic diagram which shows an example of the lens apparatus 1 manufactured using the position adjustment support device 100 of the optical member which is one Embodiment of this invention. 位置調整支援装置100の概略構成を示す模式図である。It is a schematic diagram showing a schematic configuration of a position adjustment support device 100. 実測評価データの生成に必要な第一の解像性能データの測定系を示す模式図である。It is a schematic diagram which shows the measuring system of the 1st resolution performance data required for generation of measurement evaluation data. 図2に示す解像度チャート2を光軸方向Zにレンズ装置1側から見た図である。It is the figure which looked at the resolution chart 2 shown in FIG. 2 from the lens apparatus 1 side in the optical axis direction Z. 低周波パターンに対応する第一の解像性能データの一例を示す模式図である。It is a schematic diagram which shows an example of the 1st resolution performance data corresponding to a low frequency pattern. 高周波パターンに対応する第一の解像性能データの一例を示す模式図である。It is a schematic diagram which shows an example of the 1st resolution performance data corresponding to a high frequency pattern. 図2に示すデータベース103に登録されているデータの一例を示す図である。It is a figure which shows an example of the data registered into the database 103 shown in FIG. 位置調整支援装置100の第二変形例である位置調整支援装置100Aの構成を示す模式図である。9 is a schematic diagram showing the configuration of a position adjustment support device 100A that is a second modification of the position adjustment support device 100. FIG. レンズ装置1の製造方法の変形例を説明するためのフローチャートである。9 is a flowchart for explaining a modified example of the method for manufacturing the lens device 1.

 以下、本発明の実施形態について図面を参照して説明する。

Hereinafter, embodiments of the present invention will be described with reference to the drawings.

 図1は、本発明の一実施形態である光学部材の位置調整支援装置100を利用して製造されるレンズ装置1の一例を示す模式図である。レンズ装置1は、デジタルカメラ等の撮像装置又はプロジェクタ等の投影装置等に利用される。以下では、レンズ装置1が撮像装置に利用されるものとして説明する。

FIG. 1 is a schematic view showing an example of a lens device 1 manufactured by using a position adjustment support device 100 for an optical member, which is an embodiment of the present invention. The lens device 1 is used for an imaging device such as a digital camera or a projection device such as a projector. Below, the lens apparatus 1 is demonstrated as what is utilized for an imaging device.

 レンズ装置1は、レンズ鏡筒10内に設けられた複数の光学部材(図1の例では、第一レンズ11、第二レンズ12、第三レンズ13、及び第四レンズ14の4つの光学部材)を備える。第一レンズ11、第二レンズ12、第三レンズ13、及び第四レンズ14は、レンズ装置1の光軸Kに沿って被写体側からこの順番にて配置されている。光軸Kの延びる方向を光軸方向Zという。

The lens device 1 includes a plurality of optical members provided in the lens barrel 10 (four optical members including a first lens 11, a second lens 12, a third lens 13, and a fourth lens 14 in the example of FIG. 1). ) Is provided. The first lens 11, the second lens 12, the third lens 13, and the fourth lens 14 are arranged in this order from the subject side along the optical axis K of the lens device 1. The direction in which the optical axis K extends is called the optical axis direction Z.

 第一レンズ11、第二レンズ12、第三レンズ13、及び第四レンズ14のうち、例えば第四レンズ14はフォーカスレンズである。第四レンズ14が光軸方向Zに移動することによって、レンズ装置1による被写体の結像位置を変えることができる。

Of the first lens 11, the second lens 12, the third lens 13, and the fourth lens 14, for example, the fourth lens 14 is a focus lens. By moving the fourth lens 14 in the optical axis direction Z, the image forming position of the subject by the lens device 1 can be changed.

 レンズ装置1は、例えば次のようにして製造される。レンズ鏡筒10内に、設計値にしたがって、第一レンズ11、第二レンズ12、第三レンズ13、及び第四レンズ14を配置し、第一レンズ11と第四レンズ14をレンズ鏡筒10に固定する。また、第二レンズ12及び第三レンズ13は、レンズ鏡筒10に対して動かせるようレンズ鏡筒10に仮固定される。第一レンズ11と第四レンズ14がレンズ鏡筒10に固定され、第二レンズ12及び第三レンズ13がレンズ鏡筒10に仮固定された状態のレンズ装置1を、以下では調整前のレンズ装置1ともいう。調整前のレンズ装置1における第一レンズ11、第二レンズ12、第三レンズ13、及び第四レンズ14の各々の位置を初期位置という。

The lens device 1 is manufactured, for example, as follows. The first lens 11, the second lens 12, the third lens 13, and the fourth lens 14 are arranged in the lens barrel 10 according to the design values, and the first lens 11 and the fourth lens 14 are arranged in the lens barrel 10. Fixed to. The second lens 12 and the third lens 13 are temporarily fixed to the lens barrel 10 so that they can be moved with respect to the lens barrel 10. The lens device 1 in which the first lens 11 and the fourth lens 14 are fixed to the lens barrel 10 and the second lens 12 and the third lens 13 are temporarily fixed to the lens barrel 10 will be described below. Also referred to as device 1. The positions of the first lens 11, the second lens 12, the third lens 13, and the fourth lens 14 in the lens device 1 before adjustment are referred to as initial positions.

 その後、調整前のレンズ装置1の解像性能(具体的には光学伝達関数(Modulated Transfer Function:MTF))が予め決められた性能(以下、所望の性能という)となるように、第二レンズ12と第三レンズ13の各々の光軸方向Zの位置と、第二レンズ12と第三レンズ13の各々の光軸の傾きとを含む、第二レンズ12と第三レンズ13の各々の位置の調整を行う。この調整の終了後、第二レンズ12及び第三レンズ13がレンズ鏡筒10に本固定されて、レンズ装置1が完成される。

After that, the second lens is adjusted so that the resolution performance (specifically, the optical transfer function (Modulated Transfer Function: MTF)) of the lens device 1 before the adjustment becomes a predetermined performance (hereinafter, referred to as a desired performance). 12 and the position of each of the third lens 13 in the optical axis direction Z, and the position of each of the second lens 12 and the third lens 13 including the inclination of the optical axis of each of the second lens 12 and the third lens 13. Adjust. After completion of this adjustment, the second lens 12 and the third lens 13 are permanently fixed to the lens barrel 10, and the lens device 1 is completed.

 以下で説明する位置調整支援装置100は、調整前のレンズ装置1の解像性能が所望の性能となるような、第二レンズ12と第三レンズ13の各々の光軸方向Zの位置の初期位置からの調整量と、第二レンズ12と第三レンズ13の各々の光軸の初期位置に対する傾きの調整量と、を膨大なシミュレーションデータに基づいて自動生成することによって、この位置調整作業を支援するものである。

The position adjustment assisting device 100 described below has an initial position of each of the second lens 12 and the third lens 13 in the optical axis direction Z such that the resolution performance of the lens device 1 before the adjustment becomes a desired performance. This position adjustment work is performed by automatically generating the adjustment amount from the position and the adjustment amount of the inclination of the optical axis of each of the second lens 12 and the third lens 13 with respect to the initial position based on huge simulation data. It is to support.

 図2は、位置調整支援装置100の概略構成を示す模式図である。位置調整支援装置100は、実測評価取得部101と、調整支援情報生成部102と、データベース(DB)103と、を備える。位置調整支援装置100は、プログラムを実行して処理を行う各種のプロセッサと、RAM(Random Access Memory)と、ROM(Read Only Memory)を含む。データベース103は、例えばROMに含まれる。

FIG. 2 is a schematic diagram showing a schematic configuration of the position adjustment support device 100. The position adjustment support device 100 includes a measurement evaluation acquisition unit 101, an adjustment support information generation unit 102, and a database (DB) 103. The position adjustment support device 100 includes various processors that execute programs to perform processing, a RAM (Random Access Memory), and a ROM (Read Only Memory). The database 103 is included in the ROM, for example.

 本明細書における各種のプロセッサとしては、プログラムを実行して各種処理を行う汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、又はASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。これら各種のプロセッサの構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。

As various processors in this specification, a processor whose circuit configuration can be changed after manufacturing such as a CPU (Central Processing Unit) and an FPGA (Field Programmable Gate Array) that are general-purpose processors that execute programs to perform various processes A programmable electric logic device (PLD), which is the above, or a dedicated electric circuit, which is a processor having a circuit configuration specifically designed to execute a specific process such as an ASIC (Application Specific Integrated Circuit), is included. .. More specifically, the structures of these various processors are electric circuits in which circuit elements such as semiconductor elements are combined.

 位置調整支援装置100は、各種のプロセッサのうちの1つで構成されてもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせ又はCPUとFPGAの組み合わせ)で構成されてもよい。

The position adjustment support device 100 may be configured by one of various processors, or may be a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). It may be configured.

 位置調整支援装置100のプロセッサは、ROMに記憶された位置調整支援プログラムを含むプログラムを実行することにより、実測評価取得部101と、調整支援情報生成部102として機能する。

The processor of the position adjustment support device 100 functions as the actual measurement evaluation acquisition unit 101 and the adjustment support information generation unit 102 by executing the program including the position adjustment support program stored in the ROM.

 実測評価取得部101は、調整前のレンズ装置1の解像性能を示す実測評価データの入力がなされた場合に、この実測評価データを取得してRAMに一時記憶する。

When the measurement evaluation data indicating the resolution performance of the lens device 1 before adjustment is input, the measurement evaluation acquisition unit 101 acquires the measurement evaluation data and temporarily stores it in the RAM.

 実測評価データは、調整前のレンズ装置1の結像位置と、調整前のレンズ装置1の光軸方向Zにおける評価位置との距離を複数の値に変えた状態にて得られる、この評価位置におけるレンズ装置1の第一の解像性能データに基づくデータである。

The actually measured evaluation data is obtained in a state in which the distance between the image forming position of the lens device 1 before adjustment and the evaluation position in the optical axis direction Z of the lens device 1 before adjustment is changed to a plurality of values. 2 is data based on the first resolution performance data of the lens apparatus 1 in FIG.

 図3は、実測評価データの生成に必要な第一の解像性能データの測定系を示す模式図である。図3に示す測定系は、調整前のレンズ装置1の被写体側前方の所定位置に、所定のパターンが形成された解像度チャート2が配置されている。また、調整前のレンズ装置1の被写体側と反対側の位置には、撮像素子3が光軸方向Zに移動自在に配置されている。図3の測定系においては、光軸方向Zにおける撮像素子3の受光面の位置が、レンズ装置1の結像性能を評価する評価位置となる。

FIG. 3 is a schematic diagram showing a measurement system of the first resolution performance data necessary for generating the measurement evaluation data. In the measurement system shown in FIG. 3, a resolution chart 2 in which a predetermined pattern is formed is arranged at a predetermined position on the object side front side of the lens device 1 before adjustment. Further, the image pickup device 3 is arranged at a position opposite to the subject side of the lens device 1 before adjustment so as to be movable in the optical axis direction Z. In the measurement system of FIG. 3, the position of the light receiving surface of the image sensor 3 in the optical axis direction Z is the evaluation position for evaluating the imaging performance of the lens device 1.

 図4は、図2に示す解像度チャート2を光軸方向Zにレンズ装置1側から見た図である。解像度チャート2は、光軸方向Zに垂直な矩形平面であり、方向Xが撮像素子3の受光面の長手方向と一致しており、方向Xに垂直な方向Yが撮像素子3の受光面の短手方向と一致している。方向X及び方向Yは光軸方向Zに垂直となっている。

FIG. 4 is a view of the resolution chart 2 shown in FIG. 2 viewed from the lens device 1 side in the optical axis direction Z. The resolution chart 2 is a rectangular plane perpendicular to the optical axis direction Z, the direction X coincides with the longitudinal direction of the light receiving surface of the image sensor 3, and the direction Y perpendicular to the direction X indicates the light receiving surface of the image sensor 3. It matches the lateral direction. The direction X and the direction Y are perpendicular to the optical axis direction Z.

 解像度チャート2には、調整前のレンズ装置1の光軸Kと交わる中心部分に、第一のパターン21が形成されている。第一のパターン21は、図4中に拡大図を示しているように、方向Yに延びる線が方向Xに第一の間隔で配列された空間周波数の低い低周波パターンLPと、方向Yに延びる線が方向Xに第一の間隔よりも狭い第二の間隔で配列された空間周波数の高い高周波パターンHPと、を含む。

In the resolution chart 2, a first pattern 21 is formed in the central portion that intersects the optical axis K of the lens device 1 before adjustment. As shown in an enlarged view in FIG. 4, the first pattern 21 includes a low frequency pattern LP having a low spatial frequency in which lines extending in the direction Y are arranged at a first interval in the direction X and a low frequency pattern LP in the direction Y. The extending line includes a high frequency pattern HP having a high spatial frequency and arranged in the direction X at a second interval narrower than the first interval.

 また、解像度チャート2には、調整前のレンズ装置1の光軸Kと交わる点を中心とした円24の円周上の所定の位置に第二のパターン22が形成されている。更に、円24の円周上の第二のパターン22が形成された位置とは異なる位置に、第三のパターン23が形成されている。第二のパターン22と第三のパターン23は、それぞれ、第一のパターン21と同様に、低周波パターンLPと高周波パターンHPのペアにより構成されている。

Further, in the resolution chart 2, the second pattern 22 is formed at a predetermined position on the circumference of a circle 24 centered on a point intersecting the optical axis K of the lens device 1 before adjustment. Further, the third pattern 23 is formed on the circumference of the circle 24 at a position different from the position where the second pattern 22 is formed. Similarly to the first pattern 21, the second pattern 22 and the third pattern 23 are each composed of a pair of a low frequency pattern LP and a high frequency pattern HP.

 なお、第一のパターン21、第二のパターン22、及び第三のパターン23の各々は、方向Yに延びる直線が方向Xに配列されたパターンであるが、方向Xに延びる直線が方向Yに配列されたパターンであってもよいし、これら両方のパターンを含むものであってもよい。また、解像度チャート2に含まれるパターンの数は、第一のパターン21、第二のパターン22、第三のパターン23の3つに限らず、4つ以上であってもよい。

Each of the first pattern 21, the second pattern 22, and the third pattern 23 is a pattern in which straight lines extending in the direction Y are arranged in the direction X, but straight lines extending in the direction X are in the direction Y. It may be an arrayed pattern or may include both patterns. Further, the number of patterns included in the resolution chart 2 is not limited to three, that is, the first pattern 21, the second pattern 22, and the third pattern 23, and may be four or more.

 本明細書においては、解像度チャート2を撮像素子3によって撮像して得られる撮像画像において、光軸Kと交わる中心位置を基準の像高とし、この中心位置を中心とした円の円周上の位置を、この円の半径に応じた値の像高として定義する。

In the present specification, in a captured image obtained by capturing the resolution chart 2 by the image sensor 3, the center position intersecting the optical axis K is set as a reference image height, and the center of the center position is on the circumference of a circle. The position is defined as the image height whose value depends on the radius of this circle.

 したがって、図4に示す解像度チャート2の撮像画像における円24の円周上にある第二のパターン22と第三のパターン23は、同じ像高のパターンと言うことができる。また、第一のパターン21と、第二のパターン22及び第三のパターン23とは、異なる像高のパターンと言うことができる。第一のパターン21の像高は第一の像高を構成し、第二のパターン22の像高は第二の像高を構成し、第三のパターン23の像高は第三の像高を構成する。

Therefore, it can be said that the second pattern 22 and the third pattern 23 on the circumference of the circle 24 in the captured image of the resolution chart 2 shown in FIG. 4 have the same image height. Further, the first pattern 21, the second pattern 22 and the third pattern 23 can be said to have different image heights. The image height of the first pattern 21 constitutes the first image height, the image height of the second pattern 22 constitutes the second image height, and the image height of the third pattern 23 is the third image height. Make up.

 図3に示す測定系では、更に、調整前のレンズ装置1の第四レンズ14の位置が予め決められた位置に固定されている。このように、図3の測定系において、調整前のレンズ装置1の第四レンズ14の位置(換言すると焦点位置)は固定であり、解像度チャート2の位置も固定である。このため、調整前のレンズ装置1による解像度チャート2の結像位置は固定となっている。

In the measurement system shown in FIG. 3, the position of the fourth lens 14 of the lens device 1 before adjustment is further fixed to a predetermined position. As described above, in the measurement system of FIG. 3, the position of the fourth lens 14 of the lens device 1 before adjustment (in other words, the focus position) is fixed, and the position of the resolution chart 2 is also fixed. Therefore, the image formation position of the resolution chart 2 by the lens device 1 before adjustment is fixed.

 図3に示す測定系では、撮像素子3を光軸方向Zに所定の範囲にて移動させながら、各移動位置において撮像素子3によって解像度チャート2を撮像する。これにより、調整前のレンズ装置1によって結像される解像度チャート2の結像位置と、撮像素子3の受光面(評価位置)との距離(換言するとデフォーカス量)を複数の値に変化させた状態で、解像度チャート2の撮像画像が複数得られる。

In the measurement system shown in FIG. 3, the resolution chart 2 is imaged by the image sensor 3 at each moving position while moving the image sensor 3 in the optical axis direction Z within a predetermined range. As a result, the distance (in other words, defocus amount) between the image formation position of the resolution chart 2 imaged by the lens device 1 before adjustment and the light receiving surface (evaluation position) of the image sensor 3 is changed to a plurality of values. In this state, a plurality of captured images of the resolution chart 2 are obtained.

 このようにして得られた、デフォーカス量の異なる複数の撮像画像の各々において、第一のパターン21の低周波パターンLPの画像、第二のパターン22の低周波パターンLPの画像、第三のパターン23の低周波パターンLPの画像、第一のパターン21の高周波パターンHPの画像、第二のパターン22の高周波パターンHPの画像、及び第三のパターン23の高周波パターンHPの画像のそれぞれから求められる各パターンの解像性能を示すMTF値を求めた結果の一例を図5及び図6に示す。図5及び図6において、横軸は、図3の測定系における撮像素子3の受光面の光軸方向Zの位置を示し、縦軸はMTF値を示す。

In each of the plurality of captured images having different defocus amounts obtained in this way, the image of the low frequency pattern LP of the first pattern 21, the image of the low frequency pattern LP of the second pattern 22, and the third image Obtained from each of the image of the low frequency pattern LP of the pattern 23, the image of the high frequency pattern HP of the first pattern 21, the image of the high frequency pattern HP of the second pattern 22, and the image of the high frequency pattern HP of the third pattern 23. 5 and 6 show an example of the result of obtaining the MTF value indicating the resolution performance of each pattern to be obtained. 5 and 6, the horizontal axis represents the position of the light receiving surface of the image sensor 3 in the optical axis direction Z in the measurement system of FIG. 3, and the vertical axis represents the MTF value.

 図5には、解像性能データ21Lと、解像性能データ22Lと、解像性能データ23Lと、が示されている。解像性能データ21Lは、上記の複数の撮像画像の各々における、第一のパターン21の低周波パターンLPのMTF値を示すデータである。解像性能データ22Lは、上記の複数の撮像画像の各々における、第二のパターン22の低周波パターンLPのMTF値を示すデータである。解像性能データ23Lは、上記の複数の撮像画像の各々における、第三のパターン23の低周波パターンLPのMTF値を示すデータである。

FIG. 5 shows the resolution performance data 21L, the resolution performance data 22L, and the resolution performance data 23L. The resolution performance data 21L is data indicating the MTF value of the low frequency pattern LP of the first pattern 21 in each of the plurality of captured images described above. The resolution performance data 22L is data indicating the MTF value of the low-frequency pattern LP of the second pattern 22 in each of the plurality of captured images described above. The resolution performance data 23L is data indicating the MTF value of the low-frequency pattern LP of the third pattern 23 in each of the plurality of captured images described above.

 図6には、解像性能データ21Hと、解像性能データ22Hと、解像性能データ23Hと、が示されている。解像性能データ21Hは、上記の複数の撮像画像の各々における、第一のパターン21の高周波パターンHPのMTF値を示すデータである。解像性能データ22Hは、上記の複数の撮像画像の各々における、第二のパターン22の高周波パターンHPのMTF値を示すデータである。解像性能データ23Hは、上記の複数の撮像画像の各々における、第三のパターン23の高周波パターンHPのMTF値の測定結果を示すデータである。解像性能データ21L、解像性能データ22L、解像性能データ23L、解像性能データ21H、解像性能データ22H、及び解像性能データ23Hは、それぞれ、第一の解像性能データを構成する。

FIG. 6 shows resolution performance data 21H, resolution performance data 22H, and resolution performance data 23H. The resolution performance data 21H is data indicating the MTF value of the high frequency pattern HP of the first pattern 21 in each of the plurality of captured images described above. The resolution performance data 22H is data indicating the MTF value of the high frequency pattern HP of the second pattern 22 in each of the plurality of captured images described above. The resolution performance data 23H is data indicating the measurement result of the MTF value of the high frequency pattern HP of the third pattern 23 in each of the plurality of captured images described above. The resolution performance data 21L, the resolution performance data 22L, the resolution performance data 23L, the resolution performance data 21H, the resolution performance data 22H, and the resolution performance data 23H respectively form first resolution performance data. ..

 図5に示した解像性能データ21LにおけるMTF値のピーク値が実測評価データ21Lbとして生成され、そのピーク値が得られたときの撮像素子3の位置の情報が、実測評価データ21Laとして生成される。

The peak value of the MTF value in the resolution performance data 21L shown in FIG. 5 is generated as the measurement evaluation data 21Lb, and the information on the position of the image sensor 3 when the peak value is obtained is generated as the measurement evaluation data 21La. It

 図5に示した解像性能データ22LにおけるMTF値のピーク値が実測評価データ22Lbとして生成され、そのピーク値が得られたときの撮像素子3の位置の情報が、実測評価データ22Laとして生成される。

The peak value of the MTF value in the resolution performance data 22L shown in FIG. 5 is generated as the measured evaluation data 22Lb, and the information on the position of the image sensor 3 when the peak value is obtained is generated as the measured evaluation data 22La. It

 図5に示した解像性能データ23LにおけるMTF値のピーク値が実測評価データ23Lbとして生成され、そのピーク値が得られたときの撮像素子3の位置の情報が、実測評価データ23Laとして生成される。

The peak value of the MTF value in the resolution performance data 23L shown in FIG. 5 is generated as the measured evaluation data 23Lb, and the information on the position of the image sensor 3 when the peak value is obtained is generated as the measured evaluation data 23La. It

 図6に示した解像性能データ21HにおけるMTF値のピーク値が実測評価データ21Hbとして生成され、そのピーク値が得られたときの撮像素子3の位置の情報が、実測評価データ21Haとして生成される。

The peak value of the MTF value in the resolution performance data 21H shown in FIG. 6 is generated as the measurement evaluation data 21Hb, and the information on the position of the image sensor 3 when the peak value is obtained is generated as the measurement evaluation data 21Ha. It

 図6に示した解像性能データ22HにおけるMTF値のピーク値が実測評価データ22Hbとして生成され、そのピーク値が得られたときの撮像素子3の位置の情報が、実測評価データ22Haとして生成される。

The peak value of the MTF value in the resolution performance data 22H shown in FIG. 6 is generated as the measured evaluation data 22Hb, and the information on the position of the image sensor 3 when the peak value is obtained is generated as the measured evaluation data 22Ha. It

 図6に示した解像性能データ23HにおけるMTF値のピーク値が実測評価データ23Hbとして生成され、そのピーク値が得られたときの撮像素子3の位置の情報が、実測評価データ23Haとして生成される。

The peak value of the MTF value in the resolution performance data 23H shown in FIG. 6 is generated as the measured evaluation data 23Hb, and the information of the position of the image sensor 3 when the peak value is obtained is generated as the measured evaluation data 23Ha. It

 実測評価データ21La、実測評価データ22La、実測評価データ23La、実測評価データ21Ha、実測評価データ22Ha、及び実測評価データ23Haは、それぞれ、MTF値のピーク値が得られたときのレンズ装置1の結像位置と撮像素子3の受光面(評価位置)との距離に対応する情報となる。

The actual measurement evaluation data 21La, the actual measurement evaluation data 22La, the actual measurement evaluation data 23La, the actual measurement evaluation data 21Ha, the actual measurement evaluation data 22Ha, and the actual measurement evaluation data 23Ha are the results of the lens apparatus 1 when the peak value of the MTF value is obtained. The information corresponds to the distance between the image position and the light receiving surface (evaluation position) of the image sensor 3.

 これら各実測評価データの生成は、図3に示す測定系を例えばコンピュータによって自動制御することで行われる。

Generation of each of these actually measured evaluation data is performed by automatically controlling the measurement system shown in FIG. 3 by, for example, a computer.

 なお、図3に示す測定系は撮像素子3を移動させるものとしたが、これに限らない。例えば、図3に示す測定系において、撮像素子3の位置は固定とし、解像度チャート2を光軸方向Zに移動させることで、レンズ装置1による解像度チャート2の結像位置と撮像素子3の受光面との距離を変化させてもよい。この場合には、実測評価データにおけるピーク値が得られたときの上記の距離(デフォーカス量)に対応する情報として、撮像素子3の位置の情報の代わりに、解像度チャート2の光軸方向Zの位置の情報が用いられる。

Although the measurement system shown in FIG. 3 moves the image pickup device 3, the present invention is not limited to this. For example, in the measurement system shown in FIG. 3, the position of the image sensor 3 is fixed and the resolution chart 2 is moved in the optical axis direction Z, so that the image formation position of the resolution chart 2 by the lens device 1 and the light reception of the image sensor 3 are received. The distance to the surface may be changed. In this case, as information corresponding to the above distance (defocus amount) when the peak value in the actually measured evaluation data is obtained, instead of the information on the position of the image sensor 3, the optical axis direction Z of the resolution chart 2 is obtained. The information of the position of is used.

 また、図3に示す測定系において、撮像素子3の位置は固定とし、フォーカスレンズである第四レンズ14を光軸方向Zに移動させることによって、レンズ装置1による解像度チャート2の結像位置と撮像素子3の受光面との距離を変化させてもよい。この場合には、実測評価データにおけるピーク値が得られたときの上記の距離(デフォーカス量)に対応する情報として、撮像素子3の位置の情報の代わりに、第四レンズ14の光軸方向Zの位置の情報が用いられる。

 尚、解像性能データは、解像度チャート2をレンズ装置1を介してスクリーンに投影し、投影された画像を撮像することによって取得することもできる。この場合、図3において、解像度チャート2を液晶表示パネル等の表示部に表示させた表示画像として、この表示画像をレンズ装置1によってスクリーン上に投影させる。更に、撮像素子3の代わりに、このスクリーンに投影された解像度チャート2の投影像を撮像する撮像装置を設ける。そして、例えば、スクリーンの位置は固定とし、レンズ装置1のフォーカス位置は固定として、表示部を光軸方向に移動させながら撮像装置によって投影像を撮像して第一の解像性能データを生成すればよい。この構成においては、撮像装置の位置が評価位置となって、表示部の移動により、レンズ装置1による解像度チャート2の結像位置と評価位置との距離が変化することになる。

Further, in the measurement system shown in FIG. 3, the position of the image sensor 3 is fixed, and the fourth lens 14, which is a focus lens, is moved in the optical axis direction Z, so that the image forming position of the resolution chart 2 by the lens device 1 is changed. The distance from the light receiving surface of the image sensor 3 may be changed. In this case, the information corresponding to the above distance (defocus amount) when the peak value in the actually measured evaluation data is obtained is replaced with the information on the position of the image pickup element 3 in the optical axis direction of the fourth lens 14. Information on the position of Z is used.

The resolution performance data can also be acquired by projecting the resolution chart 2 on the screen via the lens device 1 and capturing the projected image. In this case, in FIG. 3, the resolution chart 2 is displayed as a display image on a display unit such as a liquid crystal display panel, and this display image is projected on the screen by the lens device 1. Further, instead of the image pickup device 3, an image pickup device for picking up a projected image of the resolution chart 2 projected on this screen is provided. Then, for example, with the position of the screen fixed and the focus position of the lens device 1 fixed, a projection image is taken by the imaging device while moving the display unit in the optical axis direction, and the first resolution performance data is generated. Good. In this configuration, the position of the imaging device becomes the evaluation position, and the distance between the image formation position of the resolution chart 2 by the lens device 1 and the evaluation position changes due to the movement of the display unit.

 図2に示した調整支援情報生成部102は、実測評価取得部101によって取得された各実測評価データと、データベース103に登録されている設計評価データ及び第一情報とに基づいて、調整前のレンズ装置1の解像特性を所望の特性とするために必要なこのレンズ装置1における第二レンズ12及び第三レンズ13の位置の調整量を示す情報である調整支援情報を出力する。調整支援情報生成部102は、調整支援情報を出力する「出力部」としても機能する。

The adjustment support information generation unit 102 shown in FIG. 2 is based on each actual measurement evaluation data acquired by the actual measurement evaluation acquisition unit 101 and the design evaluation data and the first information registered in the database 103, before adjustment. The adjustment support information, which is the information indicating the adjustment amount of the positions of the second lens 12 and the third lens 13 in the lens device 1 necessary for setting the resolution property of the lens device 1 to a desired property, is output. The adjustment support information generation unit 102 also functions as an “output unit” that outputs the adjustment support information.

 図7は、図2に示すデータベース103に登録されているデータの一例を示す図である。データベース103には、図1のレンズ装置1と同じ構成のn個(nは2以上の自然数)の仮想レンズ装置A1、A2、A3、A4、A5、・・・、Anの誤差付設計データが登録されている。

FIG. 7 is a diagram showing an example of data registered in the database 103 shown in FIG. The database 103 stores design data with errors of n (n is a natural number of 2 or more) virtual lens devices A1, A2, A3, A4, A5,..., An having the same configuration as the lens device 1 of FIG. It is registered.

 誤差付設計データは、レンズ装置1の第一レンズ11、第二レンズ12、第三レンズ13、及び第四レンズ14の各々の設計値(形状、屈折率等)と、第一レンズ11、第二レンズ12、第三レンズ13、及び第四レンズ14の配置に関する設計値(光軸方向Zの配置間隔等)とに、ランダムな誤差を付与したデータである。

The design data with error includes the design values (shape, refractive index, etc.) of each of the first lens 11, the second lens 12, the third lens 13, and the fourth lens 14 of the lens device 1, the first lens 11, the It is data in which a random error is added to a design value (arrangement interval or the like in the optical axis direction Z) regarding the arrangement of the second lens 12, the third lens 13, and the fourth lens 14.

 仮想レンズ装置A1~Anの各々に付与される誤差は、第一レンズ11、第二レンズ12、第三レンズ13、及び第四レンズ14の組立誤差、第一レンズ11、第二レンズ12、第三レンズ13、及び第四レンズ14の各々の製造誤差等の各種誤差の数倍の範囲の誤差を、例えばモンテカルロシミュレーションによってランダムに付与したものとなっている。

The error given to each of the virtual lens devices A1 to An is the assembly error of the first lens 11, the second lens 12, the third lens 13, and the fourth lens 14, the first lens 11, the second lens 12, the An error in the range of several times of various errors such as a manufacturing error of each of the third lens 13 and the fourth lens 14 is randomly given by, for example, Monte Carlo simulation.

 データベース103には、このn個の誤差付設計データの各々に、第一の設計評価データと、第二の設計評価データと、第一情報と、が対応付けて登録されている。第一の設計評価データと第二の設計評価データを総称して設計評価データという。

In the database 103, the first design evaluation data, the second design evaluation data, and the first information are registered in association with each of the n design data with error. The first design evaluation data and the second design evaluation data are collectively referred to as design evaluation data.

 第一の設計評価データは、これに対応する仮想レンズ装置Ak(kは1~nのいずれか)の誤差付設計データに基づいて、この誤差付設計データの仮想レンズ装置を図3の測定系に適用した場合に得られる図5及び図6に示した解像性能データ(第二の解像性能データ)をシミュレーションし、そのシミュレーション結果に基づいて得られた実測評価データ21La、実測評価データ21Lb、実測評価データ22La、実測評価データ22Lb、実測評価データ23La、及び実測評価データ23Lbのシミュレーション値である。

The first design evaluation data is based on the design data with error of the corresponding virtual lens device Ak (k is 1 to n), and the virtual lens device of this design data with error is measured by the measurement system of FIG. 5 and FIG. 6 obtained when applied to the simulation is simulated, and the actual measurement evaluation data 21La and the actual measurement evaluation data 21Lb obtained based on the simulation result are simulated. , Simulation values of the measurement evaluation data 22La, the measurement evaluation data 22Lb, the measurement evaluation data 23La, and the measurement evaluation data 23Lb.

 第二の設計評価データは、これに対応する仮想レンズ装置Ak(kは1~nのいずれか)の誤差付設計データに基づいて、この誤差付設計データの仮想レンズ装置を図3の測定系に適用した場合に得られる図5及び図6に示した解像性能データ(第二の解像性能データ)をシミュレーションし、そのシミュレーション結果に基づいて得られた実測評価データ21Ha、実測評価データ21Hb、実測評価データ22Ha、実測評価データ22Hb、実測評価データ23Ha、及び実測評価データ23Hbのシミュレーション値である。

The second design evaluation data is based on the design data with error of the corresponding virtual lens device Ak (k is 1 to n), and the virtual lens device of this design data with error is measured by the measurement system of FIG. 5 and FIG. 6 obtained when applied to FIG. 6 is simulated, and the actual measurement evaluation data 21Ha and the actual measurement evaluation data 21Hb obtained based on the simulation result are simulated. , Simulation values of the measurement evaluation data 22Ha, the measurement evaluation data 22Hb, the measurement evaluation data 23Ha, and the measurement evaluation data 23Hb.

 第一情報は、これに対応する仮想レンズ装置Ak(kは1~nのいずれか)の誤差付設計データに基づいて決まるこの仮想レンズ装置Akの解像性能を、上記の所望の性能にするために必要な第二レンズ12と第三レンズ13の調整量(光軸方向Zの位置調整量、光軸の傾き調整量)の情報である。第一情報もシミュレーションによって求められたものである。

The first information sets the resolution performance of the virtual lens device Ak (k is any of 1 to n) corresponding to this, which is determined based on the design data with error, to the above-mentioned desired performance. This is information on the adjustment amount (position adjustment amount in the optical axis direction Z, inclination adjustment amount of the optical axis) of the second lens 12 and the third lens 13 necessary for this. The first information is also obtained by simulation.

 調整支援情報生成部102は、実測評価取得部101によって取得された12個の実測評価データの組み合わせに最も類似する設計評価データをデータベース103から抽出する。この抽出方法は様々である。例えば、12個の実測評価データから第一グラフを生成し、各設計評価データからn個の第二グラフを生成し、n個の第二グラフの形状と第一グラフの形状とを比較して、第一グラフの形状に最も近い第二グラフの生成元となった設計評価データを抽出結果とする。

The adjustment support information generation unit 102 extracts from the database 103 the design evaluation data that is most similar to the combination of the twelve actual measurement evaluation data acquired by the actual measurement evaluation acquisition unit 101. There are various extraction methods. For example, a first graph is generated from twelve actual measurement evaluation data, n second graphs are generated from each design evaluation data, and the shapes of the n second graphs and the shape of the first graph are compared. , The design evaluation data that is the origin of the second graph closest to the shape of the first graph is taken as the extraction result.

 調整支援情報生成部102は、12個の実測評価データの組み合わせに最も類似する設計評価データを抽出すると、この抽出した設計評価データに対応する第一情報を調整支援情報として出力する。この調整支援情報は、例えば、図示しない表示部に表示されるなどして、レンズ装置1の製造者に通知される。製造者は、この調整支援情報にしたがって、第二レンズ12と第三レンズ13の光軸方向Zの位置及び光軸の傾きを調整する。

The adjustment support information generation unit 102 extracts the design evaluation data that is most similar to the combination of the twelve pieces of actual measurement evaluation data, and outputs the first information corresponding to the extracted design evaluation data as the adjustment support information. This adjustment support information is notified to the manufacturer of the lens device 1 by being displayed on a display unit (not shown), for example. The manufacturer adjusts the positions of the second lens 12 and the third lens 13 in the optical axis direction Z and the inclination of the optical axis according to the adjustment support information.

 第二レンズ12と第三レンズ13の光軸方向Zの位置及び光軸の傾きを人の手ではなく製造装置によって調整する場合には、上記の調整支援情報がこの製造装置に出力される。製造装置は、調整支援情報にしたがって、第二レンズ12と第三レンズ13の光軸方向Zの位置及び光軸の傾きを調整する。

When the positions of the second lens 12 and the third lens 13 in the optical axis direction Z and the inclinations of the optical axes are adjusted by a manufacturing apparatus rather than by a human hand, the above adjustment support information is output to this manufacturing apparatus. The manufacturing apparatus adjusts the position of the second lens 12 and the third lens 13 in the optical axis direction Z and the inclination of the optical axis according to the adjustment support information.

 以上のように、位置調整支援装置100は、レンズ装置1の結像位置と撮像素子3の受光面の位置との距離を変えて得られる第一の解像性能データに基づいて生成された実測評価データを入力として調整支援情報を出力する。このため、調整支援情報として第二レンズ12、第三レンズ13の光軸の傾き及び光軸方向Zの位置の情報を含めることができる。したがって、光学部材の多いレンズ装置であっても、被調整光学部材の調整を精度よく行うことが可能となる。

As described above, the position adjustment assisting device 100 performs the actual measurement generated based on the first resolution performance data obtained by changing the distance between the image forming position of the lens device 1 and the position of the light receiving surface of the image sensor 3. The adjustment support information is output using the evaluation data as an input. Therefore, the adjustment support information can include information on the inclinations of the optical axes of the second lens 12 and the third lens 13 and the positions in the optical axis direction Z. Therefore, even with a lens device having many optical members, it is possible to accurately adjust the optical member to be adjusted.

 また、位置調整支援装置100によれば、データベース103に登録された設計評価データの中から、12個の実測評価データの組み合わせに最も類似する設計評価データを抽出するという簡易な処理によって、最適な調整支援情報を出力することができる。したがって、調整支援情報の出力までの時間短縮、位置調整支援装置100の製造コスト低減が可能となる。

Further, according to the position adjustment support device 100, the optimum evaluation is performed by the simple process of extracting the design evaluation data most similar to the combination of the twelve actually measured evaluation data from the design evaluation data registered in the database 103. Adjustment support information can be output. Therefore, it is possible to shorten the time until the output of the adjustment support information and reduce the manufacturing cost of the position adjustment support device 100.

 また、位置調整支援装置100は、MTF値のピーク値と、そのピーク値が得られたときの撮像素子3の位置を実測評価データとして取得する。このため、複数の被調整光学部材がある場合、被調整光学部材の傾きや光軸方向位置を調整する場合でも、高い解像特性を得ることが可能な調整支援情報を生成することができる。

Further, the position adjustment assisting apparatus 100 acquires the peak value of the MTF value and the position of the image sensor 3 when the peak value is obtained as the measurement evaluation data. Therefore, when there are a plurality of adjusted optical members, it is possible to generate adjustment support information capable of obtaining high resolution characteristics even when adjusting the tilt or the position of the optical member in the optical axis direction.

 また、実測評価データと設計評価データは、それぞれ、光軸K近傍の第一のパターン21に対する解像性能を示すデータと、第一のパターン21よりも大きな像高にある第二のパターン22及び第三のパターン23に対する解像性能を示すデータとを含む。このため、レンズ装置1の光軸Kの周辺だけでなく、光軸Kから離れた位置での解像特性も含めて所望の特性となるような調整支援情報を生成することができる。

Further, the actual measurement evaluation data and the design evaluation data are data showing the resolution performance for the first pattern 21 near the optical axis K, and the second pattern 22 and the second pattern 22 having an image height larger than that of the first pattern 21, respectively. Data showing the resolution performance for the third pattern 23. Therefore, it is possible to generate the adjustment support information having desired characteristics including not only the periphery of the optical axis K of the lens apparatus 1 but also the resolution characteristics at positions apart from the optical axis K.

 また、実測評価データと設計評価データは、それぞれ、同じ像高の異なる位置にある第二のパターン22及び第三のパターン23に対する解像性能を示すデータを含む。このため、第二レンズ12及び第三レンズ13の各々の傾き、第二レンズ12と隣接光学部材の距離、第三レンズ13と隣接光学部材の距離を含めた調整支援情報を精度よく生成することができる。

The actual measurement evaluation data and the design evaluation data each include data indicating the resolution performance with respect to the second pattern 22 and the third pattern 23 located at different positions with the same image height. Therefore, it is possible to accurately generate the adjustment support information including the inclinations of the second lens 12 and the third lens 13, the distance between the second lens 12 and the adjacent optical member, and the distance between the third lens 13 and the adjacent optical member. You can

 また、実測評価データと設計評価データは、それぞれ、空間周波数の低い低周波パターンLPに対する解像性能を示すデータと、空間周波数の高い高周波パターンHPに対する解像性能を示すデータとを含む。このため、調整支援情報の精度を高めることができる。

The actual measurement evaluation data and the design evaluation data each include data indicating the resolution performance for the low frequency pattern LP having a low spatial frequency and data indicating the resolution performance for the high frequency pattern HP having a high spatial frequency. Therefore, the accuracy of the adjustment support information can be improved.

 以下、位置調整支援装置100の変形例を説明する。

Hereinafter, modified examples of the position adjustment support device 100 will be described.

(第一変形例)

 調整支援情報生成部102は、実測評価取得部101によって取得された12個の実測評価データの組み合わせに類似する複数の設計評価データをデータベース103から抽出し、この複数の設計評価データに対応する第一情報を利用して、調整支援情報を生成し出力してもよい。

(First modification)

The adjustment support information generation unit 102 extracts, from the database 103, a plurality of design evaluation data similar to the combination of the twelve actual measurement evaluation data acquired by the actual measurement evaluation acquisition unit 101, and corresponds to the plurality of design evaluation data. The adjustment support information may be generated and output using one piece of information.

 調整支援情報生成部102は、例えば、12個の実測評価データから第一グラフを生成し、各設計評価データからn個の第二グラフを生成し、n個の第二グラフの形状と第一グラフの形状とを比較して、第一グラフの形状に最も近い第二グラフの生成元となった設計評価データ(1番目設計評価データという)と、第一グラフの形状に2番目に近い第二グラフの生成元となった設計評価データ(2番目設計評価データという)とを抽出結果とする。

The adjustment support information generation unit 102 generates, for example, a first graph from twelve actual measurement evaluation data, generates n second graphs from each design evaluation data, and calculates the shape of the n second graphs and the first graph. The shape of the graph is compared with the design evaluation data (the first design evaluation data) that is the origin of the second graph closest to the shape of the first graph, and the second closest to the shape of the first graph. The design evaluation data (referred to as the second design evaluation data) from which the two graphs are generated is taken as the extraction result.

 そして、調整支援情報生成部102は、1番目設計評価データと2番目設計評価データの各々に対応する第一情報の平均値を調整支援情報として出力する。例えば、調整支援情報生成部102は、1番目設計評価データに対応する第一情報である傾き調整量と、2番目設計評価データに対応する第一情報である傾き調整量とを単純に平均して、光軸の傾きの調整支援情報として出力し、1番目設計評価データに対応する第一情報である位置調整量と、2番目設計評価データに対応する第一情報である位置調整量とを単純に平均して、光軸方向位置の調整支援情報として出力する。

Then, the adjustment support information generation unit 102 outputs the average value of the first information corresponding to each of the first design evaluation data and the second design evaluation data as the adjustment support information. For example, the adjustment support information generation unit 102 simply averages the tilt adjustment amount that is the first information corresponding to the first design evaluation data and the tilt adjustment amount that is the first information corresponding to the second design evaluation data. And outputs it as the adjustment support information of the inclination of the optical axis, and outputs the position adjustment amount which is the first information corresponding to the first design evaluation data and the position adjustment amount which is the first information corresponding to the second design evaluation data. Simply average and output as adjustment support information for the position in the optical axis direction.

 または、調整支援情報生成部102は、1番目設計評価データに対応する第一情報である傾き調整量と、2番目設計評価データに対応する第一情報である傾き調整量とを、1番目設計評価データに対応する方に重み付けを大きくして加重平均して、傾きの調整支援情報として出力する。また、調整支援情報生成部102は、1番目設計評価データに対応する第一情報である位置調整量と、2番目設計評価データに対応する第一情報である位置調整量とを、1番目設計評価データに対応する方に重み付けを大きくして加重平均して、光軸方向位置の調整支援情報として出力する。

Alternatively, the adjustment support information generation unit 102 sets the tilt adjustment amount, which is the first information corresponding to the first design evaluation data, and the tilt adjustment amount, which is the first information corresponding to the second design evaluation data, to the first design. The weight corresponding to the evaluation data is increased and the weighted average is output, and output as inclination adjustment support information. Further, the adjustment support information generation unit 102 sets the position adjustment amount, which is the first information corresponding to the first design evaluation data, and the position adjustment amount, which is the first information corresponding to the second design evaluation data, to the first design. The weight corresponding to the evaluation data is increased and the weighted average is output, which is output as the adjustment support information of the position in the optical axis direction.

 第一変形例によれば、複数の設計評価データに対応する複数の第一の情報によって調整支援情報が生成されるため、調整支援情報の精度を高めることができる。

According to the first modified example, the adjustment support information is generated by the plurality of first information corresponding to the plurality of design evaluation data, so that the accuracy of the adjustment support information can be improved.

(第二変形例)

 図8は、位置調整支援装置100の第二変形例である位置調整支援装置100Aの構成を示す模式図である。位置調整支援装置100Aは、調整支援情報生成部102が情報生成モデル102aによって調整支援情報を生成する点が位置調整支援装置100とは異なる。

(Second modified example)

FIG. 8 is a schematic diagram showing a configuration of a position adjustment support device 100A which is a second modification of the position adjustment support device 100. The position adjustment support device 100A is different from the position adjustment support device 100 in that the adjustment support information generation unit 102 generates the adjustment support information by the information generation model 102a.

 情報生成モデル102aは、データベース103に登録されたn個の設計評価データと、この各設計評価データに対応する第一情報とを教師データとする機械学習によって生成されたモデルであり、実測評価データを入力とし、この実測評価データに適した調整支援情報を生成して出力する。情報生成モデル102aを生成するための機械学習としては、ディープラーニング、部分的最小二乗法、サポートベクター回帰法、ランダムフォレスト法、決定木法等の任意のアルゴリズムを用いることができる。

The information generation model 102a is a model generated by machine learning in which n pieces of design evaluation data registered in the database 103 and the first information corresponding to each design evaluation data are used as teacher data. Is input to generate and output adjustment support information suitable for the measured evaluation data. As machine learning for generating the information generation model 102a, an arbitrary algorithm such as deep learning, a partial least squares method, a support vector regression method, a random forest method, or a decision tree method can be used.

 第二変形例によれば、機械学習によって生成された情報生成モデル102aによって調整支援情報が生成されるため、調整支援情報の精度を高めることができる。ここで、情報生成モデル102aは、調整支援情報を出力する「出力部」としても機能する。

According to the second modified example, the adjustment support information is generated by the information generation model 102a generated by machine learning, so that the accuracy of the adjustment support information can be increased. Here, the information generation model 102a also functions as an "output unit" that outputs the adjustment support information.

(第三変形例)

 以上の説明では、位置調整支援装置100に12個の実測評価データを入力して最終的な調整支援情報を得て、この調整支援情報にしたがい、第二レンズ12と第三レンズ13を1度だけ調整してレンズ装置1を完成させるものとしたが。しかし、調整前のレンズ装置1の解像性能によっては、高周波パターンHPに対する実測評価データの信頼性が低くなる可能性がある。

(Third modification)

In the above description, 12 pieces of actually measured evaluation data are input to the position adjustment support device 100 to obtain the final adjustment support information, and the second lens 12 and the third lens 13 are set once according to the adjustment support information. Only the adjustment was made to complete the lens device 1. However, depending on the resolution performance of the lens device 1 before adjustment, the reliability of the measured evaluation data for the high frequency pattern HP may be low.

 そこで、まず、低周波パターンLPに対する6個の実測評価データを位置調整支援装置100に入力し、一次調整のための調整支援情報を得て、この調整支援情報にしたがって第二レンズ12と第三レンズ13の粗調整を行う。次に、粗調整後のレンズ装置1によって得た高周波パターンHPに対する6個の実測評価データを位置調整支援装置100に入力し、最終調整のための調整支援情報を得て、この調整支援情報にしたがって第二レンズ12と第三レンズ13の最終調整(二次調整)を行うことが好ましい。以下、この場合の動作を詳細に説明する。

Therefore, first, six pieces of actually measured evaluation data for the low-frequency pattern LP are input to the position adjustment support device 100 to obtain adjustment support information for the primary adjustment, and the second lens 12 and the third lens 12 according to the adjustment support information. The coarse adjustment of the lens 13 is performed. Next, six pieces of actually measured evaluation data for the high frequency pattern HP obtained by the lens device 1 after the coarse adjustment are input to the position adjustment support device 100 to obtain the adjustment support information for the final adjustment, and to obtain this adjustment support information. Therefore, it is preferable to perform the final adjustment (secondary adjustment) of the second lens 12 and the third lens 13. Hereinafter, the operation in this case will be described in detail.

 図9は、レンズ装置1の製造方法の変形例を説明するためのフローチャートである。まず、調整前のレンズ装置1に対し、図3に示す測定系を利用して、実測評価データ21La、実測評価データ21Lb、実測評価データ22La、実測評価データ22Lb、実測評価データ23La、及び実測評価データ23Lbからなる実測評価データ群MLが生成され(ステップS1)、実測評価データ群MLが位置調整支援装置100に入力される(ステップS2)。

FIG. 9 is a flowchart for explaining a modified example of the method for manufacturing the lens device 1. First, for the lens device 1 before adjustment, using the measurement system shown in FIG. 3, the measurement evaluation data 21La, the measurement evaluation data 21Lb, the measurement evaluation data 22La, the measurement evaluation data 22Lb, the measurement evaluation data 23La, and the measurement evaluation. The actually measured evaluation data group ML including the data 23Lb is generated (step S1), and the actually measured evaluation data group ML is input to the position adjustment support device 100 (step S2).

 位置調整支援装置100では、実測評価取得部101が実測評価データ群MLを取得すると、調整支援情報生成部102が、データベース103の中から、実測評価データ群MLに最も類似する第一の設計評価データを抽出し、抽出した第一の設計評価データに対応する第一情報を、調整支援情報ILとして出力する(ステップS3)。

In the position adjustment support device 100, when the actual measurement evaluation acquisition unit 101 acquires the actual measurement evaluation data group ML, the adjustment support information generation unit 102 causes the adjustment support information generation unit 102 to be the first design evaluation most similar to the actual measurement evaluation data group ML from the database 103. The data is extracted, and the first information corresponding to the extracted first design evaluation data is output as the adjustment support information IL (step S3).

 次に、この調整支援情報ILにしたがって、第二レンズ12と第三レンズ13の位置調整作業(一次調整)が実施される(ステップS4)。その後、この位置調整作業後のレンズ装置1に対し、図3に示す測定系を利用して、実測評価データ21Ha、実測評価データ21Hb、実測評価データ22Ha、実測評価データ22Hb、実測評価データ23Ha、及び実測評価データ23Hbからなる実測評価データ群MHが生成され(ステップS5)、実測評価データ群MHが位置調整支援装置100に入力される(ステップS6)。

Next, according to this adjustment support information IL, position adjustment work (primary adjustment) of the second lens 12 and the third lens 13 is performed (step S4). Then, for the lens device 1 after this position adjustment work, using the measurement system shown in FIG. 3, the actual measurement evaluation data 21Ha, the actual measurement evaluation data 21Hb, the actual measurement evaluation data 22Ha, the actual measurement evaluation data 22Hb, the actual measurement evaluation data 23Ha, A measurement evaluation data group MH including the measurement evaluation data 23Hb is generated (step S5), and the measurement evaluation data group MH is input to the position adjustment support device 100 (step S6).

 位置調整支援装置100では、実測評価取得部101が実測評価データ群MHを取得すると、調整支援情報生成部102が、データベース103の中から、実測評価データ群MHに最も類似する第二の設計評価データを抽出し、抽出した第二の設計評価データに対応する第一情報を、調整支援情報IHとして出力する(ステップS7)。

In the position adjustment support device 100, when the actual measurement evaluation acquisition unit 101 acquires the actual measurement evaluation data group MH, the adjustment support information generation unit 102 causes the adjustment support information generation unit 102 to select the second design evaluation most similar to the actual measurement evaluation data group MH from the database 103. The data is extracted, and the first information corresponding to the extracted second design evaluation data is output as the adjustment support information IH (step S7).

 次に、この調整支援情報IHにしたがって、第二レンズ12と第三レンズ13の位置調整作業(二次調整)が実施され(ステップS8)、その状態で、第二レンズ12と第三レンズ13がレンズ鏡筒10に固定されて、レンズ装置1が完成される。

Next, according to the adjustment support information IH, position adjustment work (secondary adjustment) of the second lens 12 and the third lens 13 is performed (step S8), and in that state, the second lens 12 and the third lens 13 are performed. Is fixed to the lens barrel 10 to complete the lens device 1.

 以上のように、低周波パターンLPに対応する実測評価データ群MLから調整支援情報ILを生成する処理と、高周波パターンHPに対応する実測評価データ群MHから調整支援情報IHを生成する処理と、を分けて行うことで、調整前のレンズ装置1の解像性能によらずに、第二レンズ12と第三レンズ13の位置を高精度に調整して、レンズ装置1の解像特性を所望の特性とすることができる。

As described above, the process of generating the adjustment support information IL from the measured evaluation data group ML corresponding to the low frequency pattern LP, the process of generating the adjustment support information IH from the measured evaluation data group MH corresponding to the high frequency pattern HP, By separately performing the above, the positions of the second lens 12 and the third lens 13 are adjusted with high accuracy and the resolution characteristics of the lens device 1 are desired, regardless of the resolution performance of the lens device 1 before adjustment. Can be a property of

 なお、調整支援情報生成部102が情報生成モデル102aによって調整支援情報を生成する場合には、情報生成モデル102aとして、第一の設計評価データとこれに対応する第一情報とを教師データとする機械学習によって生成された低周波用モデルと、第二の設計評価データとこれに対応する第一情報とを教師データとする機械学習によって生成された高周波用モデルと、を用意しておけばよい。

When the adjustment support information generation unit 102 generates the adjustment support information by the information generation model 102a, the first design evaluation data and the corresponding first information are used as the teacher data as the information generation model 102a. A low-frequency model generated by machine learning and a high-frequency model generated by machine learning using second design evaluation data and corresponding first information as teacher data may be prepared. ..

 そして、調整支援情報生成部102は、実測評価データ群MLが入力された場合には、これを低周波用モデルに適用して、低周波用モデルによって一次調整用の調整支援情報ILを生成し、実測評価データ群MHが入力された場合には、これを高周波用モデルに適用して、高周波用モデルによって二次調整用の調整支援情報IHを生成すればよい。

Then, when the measured evaluation data group ML is input, the adjustment support information generation unit 102 applies this to the low frequency model to generate the adjustment support information IL for primary adjustment by the low frequency model. When the actually measured evaluation data group MH is input, this may be applied to the high frequency model to generate the adjustment support information IH for secondary adjustment by the high frequency model.

 また、レンズ装置1は、光学部材としてレンズのみを有する構成としているが、レンズ装置1が有する光学部材には絞り、プリズム、ミラー等のレンズ以外のものが含まれていてもよい。また、レンズ装置1における被調整光学部材は複数ではなく、1つのみであってもよい。

Further, although the lens device 1 is configured to include only lenses as optical members, the optical members included in the lens device 1 may include components other than lenses such as a diaphragm, a prism, and a mirror. Further, the number of optical members to be adjusted in the lens device 1 may not be plural, but may be only one.

 以上説明してきたように、本明細書には以下の事項が開示されている。

As described above, the following items are disclosed in this specification.

(1)

 被調整光学部材(例えば上述した実施形態の第二レンズ12、第三レンズ13)を含む複数の光学部材(例えば上述した実施形態の第一レンズ11、第二レンズ12、第三レンズ13、第四レンズ14)を有するレンズ装置の結像位置と上記レンズ装置の光軸方向における評価位置との距離を複数の値に変えた状態において、上記評価位置にて得られた上記レンズ装置の第一の解像性能データ(例えば上述した実施形態の解像性能データ21L、解像性能データ22L、解像性能データ23L、解像性能データ21H、解像性能データ22H、及び解像性能データ23H)に基づく実測評価データを取得する実測評価取得部と、

 上記実測評価データと、上記レンズ装置と同じ構成の複数の仮想レンズ装置の各々の解像特性を予め決められた特性とするために必要な上記各仮想レンズ装置における上記被調整光学部材の位置の調整量を示す第一情報と、上記各仮想レンズ装置において上記距離を上記複数の値に変えた状態において、上記評価位置にて得られた上記各仮想レンズ装置の第二の解像性能データに基づく上記各仮想レンズ装置の設計評価データと、に基づいて、上記レンズ装置の解像特性を上記予め決められた特性とするために必要な上記レンズ装置における上記被調整光学部材の位置の調整量を示す情報である調整支援情報を出力する出力部(例えば上述した実施形態の調整支援情報生成部102)と、を備える光学部材の位置調整支援装置。

(1)

A plurality of optical members (for example, the first lens 11, the second lens 12, the third lens 13, and the third lens 13 of the above-described embodiment) including the adjusted optical member (for example, the second lens 12 and the third lens 13 of the above-described embodiment). The first position of the lens device obtained at the evaluation position in a state in which the distance between the imaging position of the lens device having the four lenses 14) and the evaluation position in the optical axis direction of the lens device is changed to a plurality of values. Of the resolution performance data (for example, the resolution performance data 21L, the resolution performance data 22L, the resolution performance data 23L, the resolution performance data 21H, the resolution performance data 22H, and the resolution performance data 23H of the above-described embodiment). A measurement evaluation acquisition unit that acquires measurement evaluation data based on

The measured evaluation data and the position of the optical member to be adjusted in each virtual lens device, which is necessary for setting the resolution characteristics of each of the virtual lens devices having the same configuration as the lens device to a predetermined characteristic First information indicating the adjustment amount, and in the state in which the distance in each of the virtual lens devices is changed to the plurality of values, in the second resolution performance data of each of the virtual lens devices obtained at the evaluation position. Based on the design evaluation data of each of the virtual lens devices based on the above, an adjustment amount of the position of the adjusted optical member in the lens device, which is necessary for setting the resolution characteristics of the lens device to the predetermined characteristics. A position adjustment support device for an optical member, which includes an output unit (for example, the adjustment support information generation unit 102 of the above-described embodiment) that outputs adjustment support information that is information indicating

(2)

 (1)記載の光学部材の位置調整支援装置であって、

 上記出力部は、上記各仮想レンズ装置の上記設計評価データの中から上記実測評価データに類似する1つの上記設計評価データを抽出し、上記抽出した上記設計評価データが得られる上記仮想レンズ装置の解像特性を上記予め決められた特性とするために必要な上記第一情報を、上記調整支援情報として出力する光学部材の位置調整支援装置。

(2)

(1) The position adjustment support device for an optical member as described above,

The output unit extracts one of the design evaluation data similar to the measured evaluation data from the design evaluation data of each virtual lens device, and obtains the extracted design evaluation data of the virtual lens device. A position adjustment support device for an optical member, which outputs, as the adjustment support information, the first information necessary for setting a resolution property to the predetermined property.

(3)

 (1)記載の光学部材の位置調整支援装置であって、

 上記出力部は、上記各仮想レンズ装置の上記設計評価データの中から上記実測評価データに類似する複数の上記設計評価データを抽出し、上記複数の上記設計評価データの各々が得られる上記仮想レンズ装置の解像特性を上記予め決められた特性とするために必要な上記第一情報を用いて上記調整支援情報を生成する光学部材の位置調整支援装置。

(3)

(1) The position adjustment support device for an optical member as described above,

The output unit extracts a plurality of the design evaluation data similar to the actual measurement evaluation data from the design evaluation data of each virtual lens device, and obtains each of the plurality of the design evaluation data. A position adjustment assisting device for an optical member, which generates the adjustment assisting information by using the first information necessary for setting the resolution characteristic of the device to the predetermined characteristic.

(4)

 (1)記載の光学部材の位置調整支援装置であって、

 上記出力部は、上記設計評価データと上記第一情報を教師データとする機械学習によって生成されたモデル(例えば上述した実施形態の情報生成モデル102a)によって、上記実測評価データから上記調整支援情報を生成する光学部材の位置調整支援装置。

(4)

(1) The position adjustment support device for an optical member as described above,

The output unit outputs the adjustment support information from the measured evaluation data by a model (for example, the information generation model 102a of the above-described embodiment) generated by machine learning using the design evaluation data and the first information as teacher data. Position adjustment support device for optical member to be generated.

(5)

 (1)から(4)のいずれか1つに記載の光学部材の位置調整支援装置であって、

 上記第一の解像性能データは、上記距離が上記複数の値の各々である状態における上記レンズ装置の解像性能を示すデータであり、

 上記実測評価データは、上記第一の解像性能データにおける上記解像性能のピーク値と、上記ピーク値が得られた状態の上記距離に対応する情報(例えば上述した実施形態の撮像素子3の位置)と、を含む光学部材の位置調整支援装置。

(5)

The position adjustment support device for an optical member according to any one of (1) to (4),

The first resolution performance data is data indicating the resolution performance of the lens device in the state where the distance is each of the plurality of values,

The actual measurement evaluation data includes information corresponding to the peak value of the resolution performance in the first resolution performance data and the distance in the state where the peak value is obtained (for example, the image sensor 3 of the embodiment described above). Position) and a position adjustment support device for an optical member.

(6)

 (1)から(5)のいずれか1つに記載の光学部材の位置調整支援装置であって、

 上記実測評価データは、上記評価位置の第一像高における上記第一の解像性能データに基づく第一実測評価データ(例えば上述した実施形態の実測評価データ21La、21Lb、21Ha、21Hb)と、上記評価位置の上記第一像高とは異なる第二像高における上記第一の解像性能データに基づく第二実測評価データ(例えば上述した実施形態の実測評価データ22La、22Lb、22Ha、22Hb)と、を含む光学部材の位置調整支援装置。

(6)

The position adjustment support device for an optical member according to any one of (1) to (5),

The actual measurement evaluation data is first actual measurement evaluation data based on the first resolution performance data at the first image height at the evaluation position (for example, actual measurement evaluation data 21La, 21Lb, 21Ha, 21Hb in the above-described embodiment), Second actual measurement evaluation data based on the first resolution performance data at the second image height different from the first image height at the evaluation position (for example, actual measurement evaluation data 22La, 22Lb, 22Ha, 22Hb in the above-described embodiment). And a position adjustment support device for an optical member including.

(7)

 (6)記載の光学部材の位置調整支援装置であって、

 上記第二実測評価データは、上記評価位置の上記第二像高の第一位置における上記第一の解像性能データに基づく第一サブ実測評価データ(例えば上述した実施形態の実測評価データ22La、22Lb、22Ha、22Hb)と、上記評価位置の上記第二像高の上記第一位置とは異なる第二位置における上記第一の解像性能データに基づく第二サブ実測評価データ(例えば上述した実施形態の実測評価データ23La、23Lb、23Ha、23Hb)と、を含む光学部材の位置調整支援装置。

(7)

(6) The position adjustment support device for an optical member as described above,

The second actual measurement evaluation data is first sub actual measurement evaluation data based on the first resolution performance data at the first position of the second image height at the evaluation position (for example, the actual measurement evaluation data 22La of the above-described embodiment, 22Lb, 22Ha, 22Hb) and second sub-measurement evaluation data based on the first resolution performance data at a second position different from the first position of the second image height at the evaluation position (for example, the above-described implementation. Position evaluation support device for an optical member, including the actual measurement evaluation data 23La, 23Lb, 23Ha, 23Hb).

(8)

 (1)から(7)のいずれか1つに記載の光学部材の位置調整支援装置であって、

 上記第一の解像性能データは、第一空間周波数の評価対象物(例えば上述した実施形態の低周波パターンLP)に対する第一サブ解像性能データ(例えば上述した実施形態の解像性能データ21L、22L、23L)と、上記第一空間周波数と異なる第二空間周波数の評価対象物(例えば上述した実施形態の高周波パターンHP)に対する第二サブ解像性能データ(例えば上述した実施形態の解像性能データ21H、22H、23H)と、を含み、

 上記実測評価データは、上記第一サブ解像性能データに基づくもの(例えば上述した実施形態の実測評価データ21La、21Lb、22La、21Lb、23La、23Lb)と、上記第二サブ解像性能データに基づくもの(例えば上述した実施形態の実測評価データ21Ha、21Hb、22Ha、22Hb、23Ha、23Hb)と、を含む光学部材の位置調整支援装置。

(8)

The position adjustment support device for an optical member according to any one of (1) to (7),

The first resolution performance data is the first sub-resolution performance data (for example, the resolution performance data 21L of the above-described embodiment) for the evaluation object of the first spatial frequency (for example, the low frequency pattern LP of the above-described embodiment). , 22L, 23L) and a second spatial frequency different from the first spatial frequency (for example, the high-frequency pattern HP of the above-described embodiment), the second sub-resolution performance data (for example, the resolution of the above-described embodiment). Performance data 21H, 22H, 23H),

The actual measurement evaluation data is based on the first sub-resolution performance data (for example, the actual measurement evaluation data 21La, 21Lb, 22La, 21Lb, 23La, 23Lb of the embodiment described above) and the second sub-resolution performance data. A position adjustment support device for an optical member, which includes a base (for example, actual measurement evaluation data 21Ha, 21Hb, 22Ha, 22Hb, 23Ha, 23Hb of the above-described embodiment).

(9)

 (1)から(8)のいずれか1つに記載の光学部材の位置調整支援装置であって、

 上記調整支援情報は、上記レンズ装置の光軸方向における上記被調整光学部材の位置の調整量と、上記被調整光学部材の光軸の傾きの調整量と、を含む光学部材の位置調整支援装置。

(9)

The position adjustment support device for an optical member according to any one of (1) to (8),

The adjustment support information includes an adjustment amount of the position of the adjusted optical member in the optical axis direction of the lens device, and an adjustment amount of the inclination of the optical axis of the adjusted optical member. ..

(10)

 (1)から(9)のいずれか1つに記載の光学部材の位置調整支援装置であって、

 上記レンズ装置は、複数の上記被調整光学部材と、位置調整が不要な少なくとも1つの固定光学部材(例えば上述した実施形態の第一レンズ11、第四レンズ14)と、を含む光学部材の位置調整支援装置。

(10)

The position adjustment support device for an optical member according to any one of (1) to (9),

The above-mentioned lens device is a position of an optical member including a plurality of above-mentioned adjusted optical members, and at least one fixed optical member (for example, the 1st lens 11 and the 4th lens 14 of the above-mentioned embodiment) which does not require position adjustment. Adjustment support device.

(11)

 被調整光学部材を含む複数の光学部材を有するレンズ装置の結像位置と上記レンズ装置の光軸方向における評価位置との距離を複数の値に変えた状態において、上記評価位置にて得られた上記レンズ装置の第一の解像性能データに基づく実測評価データを取得するステップと、

 上記実測評価データと、上記レンズ装置と同じ構成の複数の仮想レンズ装置の各々の解像特性を予め決められた特性とするために必要な上記各仮想レンズ装置における上記被調整光学部材の位置の調整量を示す第一情報と、上記各仮想レンズ装置において上記距離を上記複数の値に変えた状態において、上記評価位置にて得られた上記各仮想レンズ装置の第二の解像性能データに基づく上記各仮想レンズ装置の設計評価データと、に基づいて、上記レンズ装置の解像特性を上記予め決められた特性とするために必要な上記レンズ装置における上記被調整光学部材の位置の調整量を示す情報である調整支援情報を出力する出力ステップと、を備える光学部材の位置調整支援方法。

(11)

Obtained at the evaluation position in a state in which the distance between the imaging position of the lens device having a plurality of optical members including the adjusted optical member and the evaluation position in the optical axis direction of the lens device is changed to a plurality of values. Acquiring actual measurement evaluation data based on the first resolution performance data of the lens device,

The measured evaluation data and the position of the optical member to be adjusted in each virtual lens device, which is necessary for setting the resolution characteristics of each of the virtual lens devices having the same configuration as the lens device to a predetermined characteristic First information indicating the adjustment amount, and in the state in which the distance in each of the virtual lens devices is changed to the plurality of values, in the second resolution performance data of each of the virtual lens devices obtained at the evaluation position. Based on the design evaluation data of each of the virtual lens devices based on the above, an adjustment amount of the position of the adjusted optical member in the lens device, which is necessary for setting the resolution characteristics of the lens device to the predetermined characteristics. An output step of outputting adjustment support information which is information indicating the position adjustment support method of the optical member.

(12)

 (11)記載の光学部材の位置調整支援方法であって、

 上記出力ステップでは、上記各仮想レンズ装置の上記設計評価データの中から上記実測評価データに類似する1つの上記設計評価データを抽出し、上記抽出した上記設計評価データが得られる上記仮想レンズ装置の解像特性を上記予め決められた特性とするために必要な上記第一情報を、上記調整支援情報として出力する光学部材の位置調整支援方法。

(12)

(11) A method for supporting position adjustment of an optical member as described above,

In the output step, one design evaluation data similar to the actual measurement evaluation data is extracted from the design evaluation data of each virtual lens device, and the extracted design evaluation data of the virtual lens device is obtained. A method for assisting position adjustment of an optical member, which outputs the first information necessary for setting a resolution characteristic to the predetermined characteristic as the adjustment assistance information.

(13)

 (11)記載の光学部材の位置調整支援方法であって、

 上記出力ステップでは、上記各仮想レンズ装置の上記設計評価データの中から上記実測評価データに類似する複数の上記設計評価データを抽出し、上記複数の上記設計評価データの各々が得られる上記仮想レンズ装置の解像特性を上記予め決められた特性とするために必要な上記第一情報を用いて上記調整支援情報を生成する光学部材の位置調整支援方法。

(13)

(11) A method for supporting position adjustment of an optical member as described above,

In the output step, a plurality of the design evaluation data similar to the measured evaluation data is extracted from the design evaluation data of each virtual lens device, and each of the plurality of the design evaluation data is obtained the virtual lens. A position adjustment support method for an optical member, which generates the adjustment support information by using the first information necessary for setting the resolution characteristic of the device to the predetermined characteristic.

(14)

 (11)記載の光学部材の位置調整支援方法であって、

 上記出力ステップでは、上記設計評価データと上記第一情報を教師データとする機械学習によって生成されたモデルによって、上記実測評価データから上記調整支援情報を生成する光学部材の位置調整支援方法。

(14)

(11) A method for supporting position adjustment of an optical member as described above,

In the output step, an optical member position adjustment support method for generating the adjustment support information from the actual measurement evaluation data by a model generated by machine learning using the design evaluation data and the first information as teacher data.

(15)

 (11)から(14)のいずれか1つに記載の光学部材の位置調整支援方法であって、

 上記第一の解像性能データは、上記距離が上記複数の値の各々である状態における上記レンズ装置の解像性能を示すデータであり、

 上記実測評価データは、上記第一の解像性能データにおける上記解像性能のピーク値と、上記ピーク値が得られた状態の上記距離に対応する情報と、を含む光学部材の位置調整支援方法。

(15)

The method for assisting position adjustment of an optical member according to any one of (11) to (14),

The first resolution performance data is data indicating the resolution performance of the lens device in the state where the distance is each of the plurality of values,

The actual measurement evaluation data is a position adjustment support method for an optical member including a peak value of the resolution performance in the first resolution performance data and information corresponding to the distance in a state where the peak value is obtained. ..

(16)

 (11)から(15)のいずれか1つに記載の光学部材の位置調整支援方法であって、

 上記実測評価データは、上記評価位置の第一像高における上記第一の解像性能データに基づく第一実測評価データと、上記評価位置の上記第一像高とは異なる第二像高における上記第一の解像性能データに基づく第二実測評価データと、を含む光学部材の位置調整支援方法。

(16)

A method for assisting position adjustment of an optical member according to any one of (11) to (15),

The actual measurement evaluation data is the first actual measurement evaluation data based on the first resolution performance data at the first image height at the evaluation position, and the second image height different from the first image height at the evaluation position. A position adjustment support method for an optical member, comprising: second measurement evaluation data based on first resolution performance data.

(17)

 (16)記載の光学部材の位置調整支援方法であって、

 上記第二実測評価データは、上記評価位置の上記第二像高の第一位置における上記第一の解像性能データに基づく第一サブ実測評価データと、上記評価位置の上記第二像高の上記第一位置とは異なる第二位置における上記第一の解像性能データに基づく第二サブ実測評価データと、を含む光学部材の位置調整支援方法。

(17)

(16) The position adjustment support method for an optical member as described above,

The second actual measurement evaluation data, the first sub-measurement evaluation data based on the first resolution performance data at the first position of the second image height of the evaluation position, and the second image height of the evaluation position A position adjustment support method for an optical member, comprising: a second sub actually measured evaluation data based on the first resolution performance data at a second position different from the first position.

(18)

 (11)から(17)のいずれか1つに記載の光学部材の位置調整支援方法であって、

 上記第一の解像性能データは、第一空間周波数の評価対象物に対する第一サブ解像性能データと、上記第一空間周波数と異なる第二空間周波数の評価対象物に対する第二サブ解像性能データと、を含み、

 上記実測評価データは、上記第一サブ解像性能データに基づくものと、上記第二サブ解像性能データに基づくものと、を含む光学部材の位置調整支援方法。

(18)

A method for assisting position adjustment of an optical member according to any one of (11) to (17),

The first resolution performance data, the first sub-resolution performance data for the evaluation object of the first spatial frequency, and the second sub-resolution performance for the evaluation object of the second spatial frequency different from the first spatial frequency. Including data and

A method for assisting position adjustment of an optical member, wherein the actual measurement evaluation data includes one based on the first sub-resolution performance data and one based on the second sub-resolution performance data.

(19)

 (11)から(18)のいずれか1つに記載の光学部材の位置調整支援方法であって、

 上記調整支援情報は、上記レンズ装置の光軸方向における上記被調整光学部材の位置の調整量と、上記被調整光学部材の光軸の傾きの調整量と、を含む光学部材の位置調整支援方法。

(19)

The method for assisting position adjustment of an optical member according to any one of (11) to (18),

The adjustment support information includes an adjustment amount of the position of the adjusted optical member in the optical axis direction of the lens device and an adjustment amount of the tilt of the optical axis of the adjusted optical member. ..

(20)

 (11)から(19)のいずれか1つに記載の光学部材の位置調整支援方法であって、

 上記レンズ装置は、複数の上記被調整光学部材と、位置調整が不要な少なくとも1つの固定光学部材と、を含む光学部材の位置調整支援方法。

(20)

A method for assisting position adjustment of an optical member according to any one of (11) to (19),

The lens apparatus is a method of assisting position adjustment of an optical member, which includes a plurality of the optical members to be adjusted and at least one fixed optical member that does not require position adjustment.

(21)

 被調整光学部材を含む複数の光学部材を有するレンズ装置の結像位置と上記レンズ装置の光軸方向における評価位置との距離を複数の値に変えた状態において、上記評価位置にて得られた上記レンズ装置の第一の解像性能データに基づく実測評価データを取得するステップと、

 上記実測評価データと、上記レンズ装置と同じ構成の複数の仮想レンズ装置の各々の解像特性を予め決められた特性とするために必要な上記各仮想レンズ装置における上記被調整光学部材の位置の調整量を示す第一情報と、上記各仮想レンズ装置において上記距離を上記複数の値に変えた状態において、上記評価位置にて得られた上記各仮想レンズ装置の第二の解像性能データに基づく上記各仮想レンズ装置の設計評価データと、に基づいて、上記レンズ装置の解像特性を上記予め決められた特性とするために必要な上記レンズ装置における上記被調整光学部材の位置の調整量を示す情報である調整支援情報を出力する出力ステップと、をコンピュータに実行させるための光学部材の位置調整支援プログラム。

(21)

Obtained at the evaluation position in a state in which the distance between the imaging position of the lens device having a plurality of optical members including the adjusted optical member and the evaluation position in the optical axis direction of the lens device is changed to a plurality of values. Acquiring actual measurement evaluation data based on the first resolution performance data of the lens device,

The measured evaluation data and the position of the optical member to be adjusted in each virtual lens device, which is necessary for setting the resolution characteristics of each of the virtual lens devices having the same configuration as the lens device to a predetermined characteristic First information indicating the adjustment amount, and in the state in which the distance in each of the virtual lens devices is changed to the plurality of values, in the second resolution performance data of each of the virtual lens devices obtained at the evaluation position. Based on the design evaluation data of each of the virtual lens devices based on the above, an adjustment amount of the position of the adjusted optical member in the lens device, which is necessary for setting the resolution characteristics of the lens device to the predetermined characteristics. And an output step of outputting adjustment support information that is information indicating the position of the optical member position adjustment support program.

(22)

 被調整光学部材を含む複数の光学部材を有するレンズ装置の製造方法であって、

 上記レンズ装置の結像位置と上記レンズ装置の光軸方向における評価位置との距離を複数の値に変えた状態において、上記評価位置にて得られた上記レンズ装置の第一の解像性能データに基づく実測評価データを生成する第一工程(例えば上述した実施形態のステップS1、ステップS5)と、

 上記実測評価データと、上記レンズ装置と同じ構成の複数の仮想レンズ装置の各々の解像特性を予め決められた特性とするために必要な上記各仮想レンズ装置における上記被調整光学部材の位置の第一情報と、上記各仮想レンズ装置において上記距離を上記複数の値に変えた状態において、上記評価位置にて得られた上記各仮想レンズ装置の第二の解像性能データに基づく上記各仮想レンズ装置の設計評価データと、に基づいて、上記レンズ装置の解像特性を上記予め決められた特性とするために必要な上記レンズ装置における上記被調整光学部材の位置の調整量を示す情報である調整支援情報を出力する出力部を備える光学部材の位置調整支援装置に上記実測評価データを入力する第二工程(例えば上述した実施形態のステップS2、ステップS6)と、

 上記位置調整支援装置から出力された上記調整支援情報にしたがって、上記被調整光学部材の位置を調整する第三工程(例えば上述した実施形態のステップS4、ステップS8)と、を備えるレンズ装置の製造方法。

(22)

A method for manufacturing a lens device having a plurality of optical members including an optical member to be adjusted,

First resolution performance data of the lens device obtained at the evaluation position in a state in which the distance between the imaging position of the lens device and the evaluation position in the optical axis direction of the lens device is changed to a plurality of values. A first step of generating measured evaluation data based on (for example, step S1 and step S5 of the above-described embodiment),

The measured evaluation data and the position of the optical member to be adjusted in each virtual lens device, which is necessary for setting the resolution characteristics of each of the virtual lens devices having the same configuration as the lens device to a predetermined characteristic In the state where the distance is changed to the plurality of values in the first information and the virtual lens devices, the virtual images based on the second resolution performance data of the virtual lens devices obtained at the evaluation position. Based on the design evaluation data of the lens device, information indicating the amount of adjustment of the position of the optical member to be adjusted in the lens device, which is necessary for setting the resolution characteristic of the lens device to the predetermined characteristic. A second step (for example, step S2 or step S6 of the above-described embodiment) of inputting the actual measurement evaluation data to a position adjustment support device for an optical member that includes an output unit that outputs certain adjustment support information,

Manufacturing a lens device including a third step of adjusting the position of the optical member to be adjusted according to the adjustment support information output from the position adjustment support apparatus (for example, step S4 or step S8 of the above-described embodiment). Method.

(23)

 (22)記載のレンズ装置の製造方法であって、

 上記第一工程は、第一空間周波数の評価対象物に対する上記第一の解像性能データに基づく上記実測評価データを生成する第一サブ工程(例えば上述した実施形態のステップS1)と、上記第一空間周波数よりも高い第二空間周波数の評価対象物に対する上記第一の解像性能データに基づく上記実測評価データを生成する第二サブ工程(例えば上述した実施形態のステップS5)と、を含み、

 上記第二工程は、上記第一サブ工程にて生成した上記実測評価データを上記位置調整支援装置に入力する第三サブ工程(例えば上述した実施形態のステップS2)と、上記第二サブ工程にて生成した上記実測評価データを上記位置調整支援装置に入力する第四サブ工程(例えば上述した実施形態のステップS6)と、を含み、

 上記第三工程は、上記第三サブ工程によって上記位置調整支援装置から出力された上記調整支援情報にしたがって上記被調整光学部材の位置を調整する第五サブ工程(例えば上述した実施形態のステップS4)と、上記第四サブ工程によって上記位置調整支援装置から出力された上記調整支援情報にしたがって上記被調整光学部材の位置を調整する第六サブ工程(例えば上述した実施形態のステップS8)と、を含み、

 上記第一サブ工程、上記第三サブ工程、上記第五サブ工程を行って上記被調整光学部材の位置の一次調整を行った後、上記第二サブ工程、上記第四サブ工程、上記第六サブ工程を行って上記被調整光学部材の位置の二次調整を行うレンズ装置の製造方法。

(23)

A method of manufacturing a lens device according to (22), comprising:

The first step includes a first sub-step (for example, step S1 of the above-described embodiment) that generates the actual measurement evaluation data based on the first resolution performance data for the evaluation object having the first spatial frequency, and the first sub-step. A second sub-process (for example, step S5 of the above-described embodiment) that generates the actual measurement evaluation data based on the first resolution performance data for the evaluation object having the second spatial frequency higher than the one spatial frequency. ,

The second step is divided into a third sub step (for example, step S2 of the above-described embodiment) of inputting the actually measured evaluation data generated in the first sub step to the position adjustment support device, and the second sub step. And a fourth sub-step (for example, step S6 of the above-described embodiment) of inputting the actually-measured evaluation data generated as described above into the position adjustment support device,

The third step is a fifth sub step of adjusting the position of the optical member to be adjusted according to the adjustment support information output from the position adjustment support device in the third sub step (for example, step S4 in the above-described embodiment). ), and a sixth sub-step of adjusting the position of the optical member to be adjusted according to the adjustment support information output from the position adjustment support device by the fourth sub-step (for example, step S8 of the above-described embodiment), Including

After performing the primary adjustment of the position of the optical member to be adjusted by performing the first sub-step, the third sub-step, and the fifth sub-step, the second sub-step, the fourth sub-step, the sixth A method of manufacturing a lens device, wherein a sub-process is performed to perform a secondary adjustment of the position of the optical member to be adjusted.

 本発明によれば、光学部材の位置調整を簡易且つ高精度に調整してレンズ装置の解像特性を所望の特性とすることができる。

According to the present invention, it is possible to adjust the position of the optical member easily and with high accuracy, and to set the resolution characteristic of the lens device to a desired characteristic.

1 レンズ装置

10 レンズ鏡筒

11 第一レンズ

12 第二レンズ

13 第三レンズ

14 第四レンズ

K 光軸

Z 光軸方向

100、100A 位置調整支援装置

101 実測評価取得部

102 調整支援情報生成部

102a 情報生成モデル

103 データベース

2 解像度チャート

21 第一のパターン

22 第二のパターン

23 第三のパターン

24 円

LP 低周波パターン

HP 高周波パターン

21L、22L、23L、21H、22H、23H 解像性能データ

21La、21Lb、21Ha、21Hb 実測評価データ

22La、22Lb、22Ha、22Hb 実測評価データ

23La、23Lb、23Ha、23Hb 実測評価データ

1 lens device

10 lens barrel

11 First lens

12 Second lens

13 Third lens

14 Fourth lens

K optical axis

Z optical axis direction

100, 100A position adjustment support device

101 Actual measurement evaluation acquisition unit

102 Adjustment support information generation unit

102a information generation model

103 database

2 resolution chart

21 First pattern

22 second pattern

23 Third pattern

24 yen

LP low frequency pattern

HP high frequency pattern

21L, 22L, 23L, 21H, 22H, 23H Resolution performance data

21La, 21Lb, 21Ha, 21Hb Actual evaluation data

22La, 22Lb, 22Ha, 22Hb Actual evaluation data

23La, 23Lb, 23Ha, 23Hb Actual evaluation data

Claims (23)


  1.  被調整光学部材を含む複数の光学部材を有するレンズ装置の結像位置と前記レンズ装置の光軸方向における評価位置との距離を複数の値に変えた状態において、前記評価位置にて得られた前記レンズ装置の第一の解像性能データに基づく実測評価データを取得する実測評価取得部と、

     前記実測評価データと、前記レンズ装置と同じ構成の複数の仮想レンズ装置の各々の解像特性を予め決められた特性とするために必要な前記各仮想レンズ装置における前記被調整光学部材の位置の調整量を示す第一情報と、前記各仮想レンズ装置において前記距離を前記複数の値に変えた状態において、前記評価位置にて得られた前記各仮想レンズ装置の第二の解像性能データに基づく前記各仮想レンズ装置の設計評価データと、に基づいて、前記レンズ装置の解像特性を前記予め決められた特性とするために必要な前記レンズ装置における前記被調整光学部材の位置の調整量を示す情報である調整支援情報を出力する出力部と、を備える光学部材の位置調整支援装置。

    Obtained at the evaluation position in a state in which the distance between the image forming position of the lens device having a plurality of optical members including the adjusted optical member and the evaluation position in the optical axis direction of the lens device is changed to a plurality of values. An actual measurement evaluation acquisition unit that acquires actual measurement evaluation data based on the first resolution performance data of the lens device,

    The measured evaluation data and the position of the optical member to be adjusted in each virtual lens device necessary for setting the resolution characteristics of each of the virtual lens devices having the same configuration as the lens device to a predetermined characteristic. In the state where the distance is changed to the plurality of values in each virtual lens device and the first information indicating the adjustment amount, the second resolution performance data of each virtual lens device obtained at the evaluation position is obtained. Based on the design evaluation data of each of the virtual lens devices based on the above, an adjustment amount of the position of the adjusted optical member in the lens device, which is necessary for setting the resolution property of the lens device to the predetermined property. An output unit that outputs adjustment support information that is information indicating the position adjustment support device for an optical member.

  2.  請求項1記載の光学部材の位置調整支援装置であって、

     前記出力部は、前記各仮想レンズ装置の前記設計評価データの中から前記実測評価データに類似する1つの前記設計評価データを抽出し、前記抽出した前記設計評価データが得られる前記仮想レンズ装置の解像特性を前記予め決められた特性とするために必要な前記第一情報を、前記調整支援情報として出力する光学部材の位置調整支援装置。

    The position adjustment support device for an optical member according to claim 1,

    The output unit extracts one of the design evaluation data similar to the actual measurement evaluation data from the design evaluation data of each virtual lens device, and the virtual design of the virtual lens device is such that the extracted design evaluation data is obtained. A position adjustment support device for an optical member, which outputs, as the adjustment support information, the first information necessary for setting a resolution characteristic to the predetermined characteristic.

  3.  請求項1記載の光学部材の位置調整支援装置であって、

     前記出力部は、前記各仮想レンズ装置の前記設計評価データの中から前記実測評価データに類似する複数の前記設計評価データを抽出し、前記複数の前記設計評価データの各々が得られる前記仮想レンズ装置の解像特性を前記予め決められた特性とするために必要な前記第一情報を用いて前記調整支援情報を生成する光学部材の位置調整支援装置。

    The position adjustment support device for an optical member according to claim 1,

    The output unit extracts a plurality of the design evaluation data similar to the actual measurement evaluation data from the design evaluation data of each of the virtual lens devices, and obtains each of the plurality of the design evaluation data. A position adjustment assisting device for an optical member, which generates the adjustment assisting information by using the first information necessary for setting a resolution characteristic of the device to the predetermined characteristic.

  4.  請求項1記載の光学部材の位置調整支援装置であって、

     前記出力部は、前記設計評価データと前記第一情報を教師データとする機械学習によって生成されたモデルによって、前記実測評価データから前記調整支援情報を生成する光学部材の位置調整支援装置。

    The position adjustment support device for an optical member according to claim 1,

    The position adjustment support device for an optical member, wherein the output unit generates the adjustment support information from the actual evaluation data by a model generated by machine learning using the design evaluation data and the first information as teacher data.

  5.  請求項1から4のいずれか1項記載の光学部材の位置調整支援装置であって、

     前記第一の解像性能データは、前記距離が前記複数の値の各々である状態における前記レンズ装置の解像性能を示すデータであり、

     前記実測評価データは、前記第一の解像性能データにおける前記解像性能のピーク値と、前記ピーク値が得られた状態の前記距離に対応する情報と、を含む光学部材の位置調整支援装置。

    The position adjustment support device for an optical member according to any one of claims 1 to 4,

    The first resolution performance data is data indicating the resolution performance of the lens device in a state where the distance is each of the plurality of values,

    The actual measurement evaluation data includes an optical member position adjustment support device including a peak value of the resolution performance in the first resolution performance data and information corresponding to the distance in a state where the peak value is obtained. ..

  6.  請求項1から5のいずれか1項記載の光学部材の位置調整支援装置であって、

     前記実測評価データは、前記評価位置の第一像高における前記第一の解像性能データに基づく第一実測評価データと、前記評価位置の前記第一像高とは異なる第二像高における前記第一の解像性能データに基づく第二実測評価データと、を含む光学部材の位置調整支援装置。

    The position adjustment support device for an optical member according to any one of claims 1 to 5,

    The actual measurement evaluation data is the first actual measurement evaluation data based on the first resolution performance data at the first image height at the evaluation position, and the second image height different from the first image height at the evaluation position. A position adjustment support device for an optical member, comprising: second measurement evaluation data based on first resolution performance data.

  7.  請求項6記載の光学部材の位置調整支援装置であって、

     前記第二実測評価データは、前記評価位置の前記第二像高の第一位置における前記第一の解像性能データに基づく第一サブ実測評価データと、前記評価位置の前記第二像高の前記第一位置とは異なる第二位置における前記第一の解像性能データに基づく第二サブ実測評価データと、を含む光学部材の位置調整支援装置。

    The position adjustment support device for an optical member according to claim 6,

    The second actual measurement evaluation data, the first sub-measurement evaluation data based on the first resolution performance data at the first position of the second image height of the evaluation position, and the second image height of the evaluation position. A position adjustment support device for an optical member, comprising: a second sub actually measured evaluation data based on the first resolution performance data at a second position different from the first position.

  8.  請求項1から7のいずれか1項記載の光学部材の位置調整支援装置であって、

     前記第一の解像性能データは、第一空間周波数の評価対象物に対する第一サブ解像性能データと、前記第一空間周波数と異なる第二空間周波数の評価対象物に対する第二サブ解像性能データと、を含み、

     前記実測評価データは、前記第一サブ解像性能データに基づくものと、前記第二サブ解像性能データに基づくものと、を含む光学部材の位置調整支援装置。

    The position adjustment support device for an optical member according to any one of claims 1 to 7,

    The first resolution performance data is a first sub-resolution performance data for an evaluation object of a first spatial frequency, and a second sub-resolution performance for an evaluation object of a second spatial frequency different from the first spatial frequency. Including data and

    The position adjustment support device for an optical member, wherein the actual measurement evaluation data includes one based on the first sub-resolution performance data and one based on the second sub-resolution performance data.

  9.  請求項1から8のいずれか1項記載の光学部材の位置調整支援装置であって、

     前記調整支援情報は、前記レンズ装置の光軸方向における前記被調整光学部材の位置の調整量と、前記被調整光学部材の光軸の傾きの調整量と、を含む光学部材の位置調整支援装置。

    The position adjustment support device for an optical member according to any one of claims 1 to 8,

    The adjustment support information includes an adjustment amount of the position of the adjusted optical member in the optical axis direction of the lens device and an adjustment amount of the tilt of the optical axis of the adjusted optical member. ..

  10.  請求項1から9のいずれか1項記載の光学部材の位置調整支援装置であって、

     前記レンズ装置は、複数の前記被調整光学部材と、位置調整が不要な少なくとも1つの固定光学部材と、を含む光学部材の位置調整支援装置。

    The position adjustment support device for an optical member according to any one of claims 1 to 9,

    The lens device is an optical member position adjustment support device including a plurality of the adjusted optical members and at least one fixed optical member that does not require position adjustment.

  11.  被調整光学部材を含む複数の光学部材を有するレンズ装置の結像位置と前記レンズ装置の光軸方向における評価位置との距離を複数の値に変えた状態にて得られるデータである、前記評価位置における前記レンズ装置の第一の解像性能データ、に基づく実測評価データを取得するステップと、

     前記実測評価データと、前記レンズ装置と同じ構成の複数の仮想レンズ装置の各々の解像特性を予め決められた特性とするために必要な前記各仮想レンズ装置における前記被調整光学部材の位置の調整量を示す第一情報と、前記各仮想レンズ装置において前記距離を前記複数の値に変えた状態にて得られるデータである、前記評価位置における前記各仮想レンズ装置の第二の解像性能データ、に基づく前記各仮想レンズ装置の設計評価データと、に基づいて、前記レンズ装置の解像特性を前記予め決められた特性とするために必要な前記レンズ装置における前記被調整光学部材の位置の調整量を示す情報である調整支援情報を出力する出力ステップと、を備える光学部材の位置調整支援方法。

    The evaluation is data obtained by changing the distance between the imaging position of the lens device having a plurality of optical members including the optical member to be adjusted and the evaluation position in the optical axis direction of the lens device to a plurality of values. A step of acquiring actual measurement evaluation data based on the first resolution performance data of the lens device at a position;

    The measured evaluation data and the position of the optical member to be adjusted in each virtual lens device necessary for setting the resolution characteristics of each of the virtual lens devices having the same configuration as the lens device to a predetermined characteristic. The second information performance of each virtual lens device at the evaluation position, which is data obtained in a state where the distance is changed to the plurality of values in each virtual lens device and the first information indicating the adjustment amount. Position of the optical member to be adjusted in the lens device, which is necessary for setting the resolution characteristic of the lens device to the predetermined characteristic based on the design evaluation data of each virtual lens device based on the data. And a step of outputting adjustment support information that is information indicating the adjustment amount of the optical member position adjustment support method.

  12.  請求項11記載の光学部材の位置調整支援方法であって、

     前記出力ステップでは、前記各仮想レンズ装置の前記設計評価データの中から前記実測評価データに類似する1つの前記設計評価データを抽出し、前記抽出した前記設計評価データが得られる前記仮想レンズ装置の解像特性を前記予め決められた特性とするために必要な前記第一情報を、前記調整支援情報として出力する光学部材の位置調整支援方法。

    The optical member position adjustment support method according to claim 11,

    In the output step, one of the design evaluation data similar to the measured evaluation data is extracted from the design evaluation data of each virtual lens device, and the extracted design evaluation data of the virtual lens device is obtained. A method for assisting position adjustment of an optical member, which outputs the first information necessary for setting a resolution characteristic to the predetermined characteristic as the adjustment assistance information.

  13.  請求項11記載の光学部材の位置調整支援方法であって、

     前記出力ステップでは、前記各仮想レンズ装置の前記設計評価データの中から前記実測評価データに類似する複数の前記設計評価データを抽出し、前記複数の前記設計評価データの各々が得られる前記仮想レンズ装置の解像特性を前記予め決められた特性とするために必要な前記第一情報を用いて前記調整支援情報を生成する光学部材の位置調整支援方法。

    The optical member position adjustment support method according to claim 11,

    In the output step, a plurality of the design evaluation data similar to the actual measurement evaluation data is extracted from the design evaluation data of each virtual lens device, and each of the plurality of the design evaluation data is obtained the virtual lens. A position adjustment support method for an optical member, which generates the adjustment support information by using the first information necessary for setting a resolution characteristic of an apparatus to the predetermined characteristic.

  14.  請求項11記載の光学部材の位置調整支援方法であって、

     前記出力ステップでは、前記設計評価データと前記第一情報を教師データとする機械学習によって生成されたモデルによって、前記実測評価データから前記調整支援情報を生成する光学部材の位置調整支援方法。

    The optical member position adjustment support method according to claim 11,

    In the output step, an optical member position adjustment support method for generating the adjustment support information from the actually measured evaluation data by a model generated by machine learning using the design evaluation data and the first information as teacher data.

  15.  請求項11から14のいずれか1項記載の光学部材の位置調整支援方法であって、

     前記第一の解像性能データは、前記距離が前記複数の値の各々である状態における前記レンズ装置の解像性能を示すデータであり、

     前記実測評価データは、前記第一の解像性能データにおける前記解像性能のピーク値と、前記ピーク値が得られた状態の前記距離に対応する情報と、を含む光学部材の位置調整支援方法。

    The method for supporting position adjustment of an optical member according to any one of claims 11 to 14,

    The first resolution performance data is data indicating the resolution performance of the lens device in a state where the distance is each of the plurality of values,

    The actually measured evaluation data is a position adjustment support method for an optical member including a peak value of the resolution performance in the first resolution performance data and information corresponding to the distance in a state where the peak value is obtained. ..

  16.  請求項11から15のいずれか1項記載の光学部材の位置調整支援方法であって、

     前記実測評価データは、前記評価位置の第一像高における前記第一の解像性能データに基づく第一実測評価データと、前記評価位置の前記第一像高とは異なる第二像高における前記第一の解像性能データに基づく第二実測評価データと、を含む光学部材の位置調整支援方法。

    A method for assisting position adjustment of an optical member according to any one of claims 11 to 15,

    The actual measurement evaluation data is the first actual measurement evaluation data based on the first resolution performance data at the first image height at the evaluation position, and the second image height different from the first image height at the evaluation position. A position adjustment support method for an optical member, comprising: second measurement evaluation data based on first resolution performance data.

  17.  請求項16記載の光学部材の位置調整支援方法であって、

     前記第二実測評価データは、前記評価位置の前記第二像高の第一位置における前記第一の解像性能データに基づく第一サブ実測評価データと、前記評価位置の前記第二像高の前記第一位置とは異なる第二位置における前記第一の解像性能データに基づく第二サブ実測評価データと、を含む光学部材の位置調整支援方法。

    A method for supporting position adjustment of an optical member according to claim 16,

    The second actual measurement evaluation data, the first sub-measurement evaluation data based on the first resolution performance data at the first position of the second image height of the evaluation position, and the second image height of the evaluation position. A position adjustment support method for an optical member, comprising: a second sub actually measured evaluation data based on the first resolution performance data at a second position different from the first position.

  18.  請求項11から17のいずれか1項記載の光学部材の位置調整支援方法であって、

     前記第一の解像性能データは、第一空間周波数の評価対象物に対する第一サブ解像性能データと、前記第一空間周波数と異なる第二空間周波数の評価対象物に対する第二サブ解像性能データと、を含み、

     前記実測評価データは、前記第一サブ解像性能データに基づくものと、前記第二サブ解像性能データに基づくものと、を含む光学部材の位置調整支援方法。

    A method for supporting position adjustment of an optical member according to any one of claims 11 to 17,

    The first resolution performance data is a first sub-resolution performance data for an evaluation object of a first spatial frequency, and a second sub-resolution performance for an evaluation object of a second spatial frequency different from the first spatial frequency. Including data and

    The position adjustment support method for an optical member, wherein the actually measured evaluation data includes one based on the first sub-resolution performance data and one based on the second sub-resolution performance data.

  19.  請求項11から18のいずれか1項記載の光学部材の位置調整支援方法であって、

     前記調整支援情報は、前記レンズ装置の光軸方向における前記被調整光学部材の位置の調整量と、前記被調整光学部材の光軸の傾きの調整量と、を含む光学部材の位置調整支援方法。

    A method for supporting position adjustment of an optical member according to any one of claims 11 to 18,

    The adjustment support information includes a position adjustment support method for an optical member including an adjustment amount of the position of the adjusted optical member in the optical axis direction of the lens device and an adjustment amount of an inclination of the optical axis of the adjusted optical member. ..

  20.  請求項11から19のいずれか1項記載の光学部材の位置調整支援方法であって、

     前記レンズ装置は、複数の前記被調整光学部材と、位置調整が不要な少なくとも1つの固定光学部材と、を含む光学部材の位置調整支援方法。

    A method for assisting position adjustment of an optical member according to any one of claims 11 to 19,

    The lens device is a method of assisting position adjustment of an optical member, which includes a plurality of the adjusted optical members and at least one fixed optical member that does not require position adjustment.

  21.  被調整光学部材を含む複数の光学部材を有するレンズ装置の結像位置と前記レンズ装置の光軸方向における評価位置との距離を複数の値に変えた状態において、前記評価位置にて得られた前記レンズ装置の第一の解像性能データに基づく実測評価データを取得するステップと、

     前記実測評価データと、前記レンズ装置と同じ構成の複数の仮想レンズ装置の各々の解像特性を予め決められた特性とするために必要な前記各仮想レンズ装置における前記被調整光学部材の位置の調整量を示す第一情報と、前記各仮想レンズ装置において前記距離を前記複数の値に変えた状態において、前記評価位置にて得られた前記各仮想レンズ装置の第二の解像性能データに基づく前記各仮想レンズ装置の設計評価データと、に基づいて、前記レンズ装置の解像特性を前記予め決められた特性とするために必要な前記レンズ装置における前記被調整光学部材の位置の調整量を示す情報である調整支援情報を出力する出力ステップと、をコンピュータに実行させるための光学部材の位置調整支援プログラム。

    Obtained at the evaluation position in a state in which the distance between the image forming position of the lens device having a plurality of optical members including the adjusted optical member and the evaluation position in the optical axis direction of the lens device is changed to a plurality of values. Acquiring actual measurement evaluation data based on the first resolution performance data of the lens device,

    The measured evaluation data and the position of the optical member to be adjusted in each virtual lens device necessary for setting the resolution characteristics of each of the virtual lens devices having the same configuration as the lens device to a predetermined characteristic. In the state where the distance is changed to the plurality of values in each virtual lens device and the first information indicating the adjustment amount, the second resolution performance data of each virtual lens device obtained at the evaluation position is obtained. Based on the design evaluation data of each of the virtual lens devices based on the above, an adjustment amount of the position of the adjusted optical member in the lens device, which is necessary for setting the resolution property of the lens device to the predetermined property. And an output step of outputting adjustment support information which is information indicating the position adjustment support program for the optical member.

  22.  被調整光学部材を含む複数の光学部材を有するレンズ装置の製造方法であって、

     前記レンズ装置の結像位置と前記レンズ装置の光軸方向における評価位置との距離を複数の値に変えた状態において、前記評価位置にて得られた前記レンズ装置の第一の解像性能データに基づく実測評価データを生成する第一工程と、

     前記実測評価データと、前記レンズ装置と同じ構成の複数の仮想レンズ装置の各々の解像特性を予め決められた特性とするために必要な前記各仮想レンズ装置における前記被調整光学部材の位置の第一情報と、前記各仮想レンズ装置において前記距離を前記複数の値に変えた状態において、前記評価位置にて得られた前記各仮想レンズ装置の第二の解像性能データに基づく前記各仮想レンズ装置の設計評価データと、に基づいて、前記レンズ装置の解像特性を前記予め決められた特性とするために必要な前記レンズ装置における前記被調整光学部材の位置の調整量を示す情報である調整支援情報を出力する出力部を備える光学部材の位置調整支援装置に前記実測評価データを入力する第二工程と、

     前記位置調整支援装置から出力された前記調整支援情報にしたがって、前記被調整光学部材の位置を調整する第三工程と、を備えるレンズ装置の製造方法。

    A method for manufacturing a lens device having a plurality of optical members including an optical member to be adjusted,

    First resolution performance data of the lens device obtained at the evaluation position in a state in which the distance between the imaging position of the lens device and the evaluation position in the optical axis direction of the lens device is changed to a plurality of values. A first step of generating measured evaluation data based on

    The measured evaluation data and the position of the optical member to be adjusted in each virtual lens device necessary for setting the resolution characteristics of each of the virtual lens devices having the same configuration as the lens device to a predetermined characteristic. The first information and each virtual based on the second resolution performance data of each virtual lens device obtained at the evaluation position in a state in which the distance is changed to the plurality of values in each virtual lens device. Based on the design evaluation data of the lens device, with information indicating the adjustment amount of the position of the adjusted optical member in the lens device, which is necessary for setting the resolution characteristic of the lens device to the predetermined characteristic. A second step of inputting the actual measurement evaluation data to a position adjustment support device for an optical member, which includes an output unit that outputs certain adjustment support information,

    A third step of adjusting the position of the adjusted optical member according to the adjustment support information output from the position adjustment support apparatus.

  23.  請求項22記載のレンズ装置の製造方法であって、

     前記第一工程は、第一空間周波数の評価対象物に対する前記第一の解像性能データに基づく前記実測評価データを生成する第一サブ工程と、前記第一空間周波数よりも高い第二空間周波数の評価対象物に対する前記第一の解像性能データに基づく前記実測評価データを生成する第二サブ工程と、を含み、

     前記第二工程は、前記第一サブ工程にて生成した前記実測評価データを前記位置調整支援装置に入力する第三サブ工程と、前記第二サブ工程にて生成した前記実測評価データを前記位置調整支援装置に入力する第四サブ工程と、を含み、

     前記第三工程は、前記第三サブ工程によって前記位置調整支援装置から出力された前記調整支援情報にしたがって前記被調整光学部材の位置を調整する第五サブ工程と、前記第四サブ工程によって前記位置調整支援装置から出力された前記調整支援情報にしたがって前記被調整光学部材の位置を調整する第六サブ工程と、を含み、

     前記第一サブ工程、前記第三サブ工程、前記第五サブ工程を行って前記被調整光学部材の位置の一次調整を行った後、前記第二サブ工程、前記第四サブ工程、前記第六サブ工程を行って前記被調整光学部材の位置の二次調整を行うレンズ装置の製造方法。

    The method of manufacturing a lens device according to claim 22, wherein

    The first step, the first sub-step of generating the measurement evaluation data based on the first resolution performance data for the evaluation object of the first spatial frequency, the second spatial frequency higher than the first spatial frequency A second sub-step of generating the measured evaluation data based on the first resolution performance data for the evaluation object of

    The second step includes a third sub-step of inputting the measured evaluation data generated in the first sub-step to the position adjustment support device, and the measured evaluation data generated in the second sub-step in the position. A fourth sub-step of inputting to the adjustment support device,

    The third step is a fifth sub-step of adjusting the position of the adjusted optical member according to the adjustment support information output from the position adjustment support device in the third sub-step, and the fourth sub-step A sixth sub-step of adjusting the position of the optical member to be adjusted according to the adjustment support information output from the position adjustment support device,

    After performing the first sub-step, the third sub-step, and the fifth sub-step to perform the primary adjustment of the position of the adjusted optical member, the second sub-step, the fourth sub-step, and the sixth sub-step. A method of manufacturing a lens device, wherein a sub-step is performed to perform secondary adjustment of the position of the optical member to be adjusted.
PCT/JP2020/000366 2019-01-31 2020-01-09 Optical component position adjustment support device, method for supporting optical component position adjustment, optical component position adjustment support program, and method for manufacturing lens device WO2020158325A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020569474A JP7059406B2 (en) 2019-01-31 2020-01-09 Optical member position adjustment support device, optical member position adjustment support method, optical member position adjustment support program, lens device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-016083 2019-01-31
JP2019016083 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020158325A1 true WO2020158325A1 (en) 2020-08-06

Family

ID=71842050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000366 WO2020158325A1 (en) 2019-01-31 2020-01-09 Optical component position adjustment support device, method for supporting optical component position adjustment, optical component position adjustment support program, and method for manufacturing lens device

Country Status (2)

Country Link
JP (1) JP7059406B2 (en)
WO (1) WO2020158325A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209056A1 (en) * 2021-03-31 2022-10-06 富士フイルム株式会社 Wavefront aberration derivation method, machine learning model generation method, lens optical system manufacturing method, wavefront aberration derivation device, and wavefront aberration derivation program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098875A (en) * 2000-09-26 2002-04-05 Olympus Optical Co Ltd Method for adjusting optical system and adjusting device
JP2008170981A (en) * 2006-12-14 2008-07-24 Fujifilm Corp Eccentricity adjustment method, apparatus, and program for lens optical system
JP2008244494A (en) * 2000-12-28 2008-10-09 Nikon Corp Method of adjusting focusing characteristics, exposure method and exposure device, program, information recording medium, method of manufacturing device, and manufacturing method
JP2010230745A (en) * 2009-03-26 2010-10-14 Suwa Optronics:Kk Lens alignment device and method for controlling the lens alignment device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098875A (en) * 2000-09-26 2002-04-05 Olympus Optical Co Ltd Method for adjusting optical system and adjusting device
JP2008244494A (en) * 2000-12-28 2008-10-09 Nikon Corp Method of adjusting focusing characteristics, exposure method and exposure device, program, information recording medium, method of manufacturing device, and manufacturing method
JP2008170981A (en) * 2006-12-14 2008-07-24 Fujifilm Corp Eccentricity adjustment method, apparatus, and program for lens optical system
JP2010230745A (en) * 2009-03-26 2010-10-14 Suwa Optronics:Kk Lens alignment device and method for controlling the lens alignment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209056A1 (en) * 2021-03-31 2022-10-06 富士フイルム株式会社 Wavefront aberration derivation method, machine learning model generation method, lens optical system manufacturing method, wavefront aberration derivation device, and wavefront aberration derivation program

Also Published As

Publication number Publication date
JPWO2020158325A1 (en) 2021-10-28
JP7059406B2 (en) 2022-04-25

Similar Documents

Publication Publication Date Title
CN110447220B (en) Calibration device, calibration method, optical device, imaging device, and projection device
JP6576945B2 (en) Calibration apparatus, calibration method, optical apparatus, photographing apparatus, projection apparatus, measurement system, and measurement method
CN102483511B (en) Method and device for aligning a lens with an optical system
WO2017195801A1 (en) Calibration device, calibration method, optical device, imaging device, projection device, measurement system and measurement method
WO2018029950A1 (en) Calibration device, calibration method, optical device, imaging device and projection device
JP5919100B2 (en) ADJUSTING OPTICAL SYSTEM ADJUSTING METHOD AND COMPENSATING OPTICAL SYSTEM
JP5841844B2 (en) Image processing apparatus and image processing method
US9652847B2 (en) Method for calibrating a digital optical imaging system having a zoom system, method for correcting aberrations in a digital optical imaging system having a zoom system, and digital optical imaging system
JP6112909B2 (en) Shape measuring device and shape measuring method using Shack-Hartmann sensor
Huang High precision optical surface metrology using deflectometry
JP5595463B2 (en) Wavefront optical measuring device
WO2020158325A1 (en) Optical component position adjustment support device, method for supporting optical component position adjustment, optical component position adjustment support program, and method for manufacturing lens device
JP2017037194A (en) Exposure device control method, exposure device, program, and article manufacturing method
Fontbonne et al. Experimental validation of hybrid optical–digital imaging system for extended depth-of-field based on co-optimized binary phase masks
CN105933593A (en) Focus Position Detection Device And Focus Position Detection Method
Schenker et al. Effects of misalignments on the modulation transfer function measurement of camera lenses analyzed in optomechanical simulations
CN101918793A (en) Distance measuring apparatus
Gorevoy et al. Optimization of a geometrical calibration procedure for stereoscopic endoscopy systems
CN114062265A (en) Method for evaluating stability of supporting structure of visual system
KR0139572B1 (en) Image distortion calibration method using nervous network
WO2022209056A1 (en) Wavefront aberration derivation method, machine learning model generation method, lens optical system manufacturing method, wavefront aberration derivation device, and wavefront aberration derivation program
Gorevoy et al. Modeling and optimization of a geometrical calibration procedure for stereoscopic video endoscopes
TWI546569B (en) Method and device for aligning a lens with an optical system
Duarte et al. Single shot plenoptic optical imaging inspection of a head-up display: projection distance, astigmatism, field curvature, and distortions
JP2018200268A (en) Image recognition device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20747904

Country of ref document: EP

Kind code of ref document: A1