WO2020158293A1 - Molding material comprising carbon fiber-reinforced polycarbonate resin composition - Google Patents

Molding material comprising carbon fiber-reinforced polycarbonate resin composition Download PDF

Info

Publication number
WO2020158293A1
WO2020158293A1 PCT/JP2019/051381 JP2019051381W WO2020158293A1 WO 2020158293 A1 WO2020158293 A1 WO 2020158293A1 JP 2019051381 W JP2019051381 W JP 2019051381W WO 2020158293 A1 WO2020158293 A1 WO 2020158293A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
component
parts
acid
molding material
Prior art date
Application number
PCT/JP2019/051381
Other languages
French (fr)
Japanese (ja)
Inventor
角田 敦
国飛 華
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2020569461A priority Critical patent/JP7116198B2/en
Priority to CN201980090785.7A priority patent/CN113383035B/en
Publication of WO2020158293A1 publication Critical patent/WO2020158293A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a molding material made of a carbon fiber reinforced polycarbonate resin composition. More specifically, it relates to a molding material comprising a carbon fiber reinforced polycarbonate resin composition excellent in flame retardancy, appearance, strength and colorability.
  • a composite material in which a resin is reinforced with carbon fiber is known as a means for obtaining a resin material having high strength and suppressed brittle fracture.
  • a composite material in which a thermoplastic resin is reinforced with carbon fibers as a matrix resin also referred to as a carbon fiber reinforced thermoplastic resin, and may be abbreviated as CFRTP hereinafter
  • CFRTP carbon fiber reinforced thermoplastic resin
  • CFRTP has excellent workability and recyclability as a molding material. And is expected to be applied to various fields.
  • CFRTP is expected to be used in various applications, the demand for flame retardancy to ensure safety is increasing.
  • Patent Document 1 a resin composition composed of a polycarbonate resin reinforced with an inorganic filler and a halogenated carbonate compound has been proposed (Patent Document 1), but the expected improvement in strength was not obtained and was obtained. The product made of the resin composition had poor carbon fiber dispersion and the appearance was not satisfactory.
  • Patent Document 2 A molding material composed of a polycarbonate resin attached to a carbon fiber bundle containing a specific compound has been proposed as a material satisfying strength and appearance (Patent Document 2), but it is flame retardant depending on the specific compound used. Was insufficient and the coloring property was poor.
  • Patent Document 3 As a material having excellent strength, flame retardancy, and appearance, a method for producing a molding material in which a carbon fiber bundle preliminarily impregnated with a phosphate ester flame retardant and a thermoplastic resin is impregnated with a polycarbonate resin is disclosed.
  • Patent Document 3 Japanese Patent Document 3
  • it does not have flame retardancy capable of coping with the recent thinning, and further improvement has been demanded.
  • a molding material excellent in flame retardancy, appearance, strength and colorability has not been obtained so far.
  • An object of the present invention is to solve the above problems and to provide a molding material comprising a carbon fiber reinforced polycarbonate resin composition excellent in flame retardancy, strength, appearance and colorability.
  • the present inventors have conducted extensive studies to solve the above problems, and a polycarbonate resin composition in which a brominated flame retardant, a fluorine-containing anti-dripping agent, and a full ester of a polyhydric alcohol and an aliphatic carboxylic acid are added to the polycarbonate resin. It was found that a molding material excellent in flame retardancy, appearance, strength and colorability can be obtained by adhering the resin to carbon fiber, and thus the present invention has been accomplished.
  • an easily impregnable carbon fiber bundle comprising 100 parts by weight of carbon fiber and 3 to 15 parts by weight of one or more impregnating aids, and 50 to 2,000 parts by weight of a polycarbonate resin.
  • a molding material having the composition adhered, wherein the polycarbonate resin composition comprises (A) 1 to 100% by weight of an aromatic polycarbonate resin (component A) and (B) a polycarbonate-polydiorganosiloxane copolymer resin (component B).
  • a molding material characterized in that it contains 0.05 to 2 parts by weight and (E) a full ester of a polyhydric alcohol and an aliphatic carboxylic acid (E component).
  • the (2) impregnation aid comprises one or more aliphatic hydroxycarboxylic acid type polyesters satisfying the following formulas (1) and (2). It is the molding material according to configuration (1).
  • One of the more preferred embodiments of the present invention is (3) wherein the aliphatic hydroxycarboxylic acid type polyester has a weight average molecular weight of 3,000 to 50,000, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ .
  • One of the more preferred embodiments of the present invention is characterized in that (4) the component (A) and the component (B) contain 1 to 10 parts by weight of an adhesion improver (F component) per 100 parts by weight.
  • the molding material according to any one of the above configurations (1) to (3).
  • E component is an aliphatic carboxylic acid containing a palmitic acid component and a stearic acid component, and its peak area in gas chromatography-mass spectrometry (GC/MS method)
  • the sum of the area of the palmitic acid component (Sp) and the area of the stearic acid component (Ss) is 80% or more in the total aliphatic carboxylic acid component, and the area ratio (Ss/Sp) of both is 1.3 to 30.
  • Any of the above constitutions (1) to (4), characterized in that it is a full ester of a polyhydric alcohol having an acid value of 0.1 to 20 and an aliphatic carboxylic acid The molding material as described in 1 above.
  • One of the more preferred embodiments of the present invention is the above-mentioned constitution (1), wherein (6) the E component is a full ester of a polyhydric alcohol whose polyhydric alcohol is pentaerythritol and an aliphatic carboxylic acid.
  • the molding material according to any one of to (5).
  • F component is at least one organic compound selected from the group consisting of glycidyl methacrylate, bisphenol A type epoxy resin, polyarylate and styrene-maleic acid resin.
  • the molding material as described in any one of the above-mentioned constitutions (4) to (6).
  • One of the more preferred embodiments of the present invention is (8) a pellet having a core-sheath structure having an easily impregnable carbon fiber bundle as a core component and a polycarbonate resin composition as a sheath component (1) )-(7)
  • the molding material according to any one of items.
  • One of the more preferred embodiments of the present invention is (9) the molding material described in the above configuration (8), wherein the length of the pellet in the longitudinal direction is 3 to 10 mm.
  • One of the more preferable embodiments of the present invention is (10) a molded body made of the molding material according to any one of the above configurations (1) to (9).
  • the carbon fiber derived from the easily impregnable carbon fiber bundle is dispersed in an average fiber length of 0.3 mm or more (10). ).
  • One of the more preferred embodiments of the present invention is (12) the molded article according to the above configuration (10), in which the molded article is an OA/electrical electronic interior/exterior member.
  • One of the more preferable embodiments of the present invention is (13) the molded article according to the above configuration (10) in which the molded article is an automobile member.
  • Molded articles obtained from the molding material comprising the carbon fiber reinforced polycarbonate resin composition of the present invention are excellent in strength, flame retardancy, appearance and colorability, and therefore, OA/electrical electronic interior/exterior parts, home electrification It is useful for products, automobile parts, infrastructure related parts, housing related parts, etc., and the industrial effect produced by it is exceptional.
  • the polycarbonate resin used in the present invention is obtained by reacting a dihydric phenol with a carbonate precursor.
  • the reaction method include an interfacial polymerization method, a melt transesterification method, a solid-state transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
  • dihydric phenol examples include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis(4-hydroxyphenyl)ethane, and 2,2-bis(4-hydroxyphenyl).
  • Propane commonly called bisphenol A
  • 2,2-bis(4-hydroxy-3-methylphenyl)propane 2,2-bis(4-hydroxyphenyl)butane
  • 1,1-bis(4-hydroxyphenyl)- 1-phenylethane 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane
  • 2,2-bis(4-hydroxyphenyl) Pentane 4,4'-(p-phenylenediisopropylidene)diphenol, 4,4'-(m-phenylenediisopropylidene)diphenol, 1,1-bis(4-hydroxyphenyl)-4-isopropy
  • BPM 4,4'-(m-phenylenediisopropylidene)diphenol
  • 1,1-bis(4-hydroxy) as a part or all of the dihydric phenol component.
  • the component A constituting the resin composition is the following copolycarbonate (1) to (3). is there.
  • BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, further preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate
  • BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, further preferably 60 to 85 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Is 5 to 90 mol% (more preferably 10 to 50 mol%, further preferably 15 to 40 mol%).
  • BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, further preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and Bis -Copolymerized polycarbonate having TMC of 20 to 80 mol% (more preferably 25 to 60 mol%, further preferably 35 to 55 mol%).
  • These special polycarbonates may be used alone or in admixture of two or more kinds. Further, these can be used as a mixture with a commonly used bisphenol A type polycarbonate.
  • the water absorption of polycarbonate is a value obtained by measuring the water content after dipping it in water at 23° C. for 24 hours in accordance with ISO62-1980 using a disc-shaped test piece having a diameter of 45 mm and a thickness of 3.0 mm. is there.
  • Tg glass transition temperature
  • DSC differential scanning calorimeter
  • Carbonyl halide, carbonic acid diester or haloformate is used as the carbonate precursor, and specific examples thereof include phosgene, diphenyl carbonate or dihaloformate of dihydric phenol.
  • the aromatic polycarbonate resin of the present invention is a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher functional polyfunctional aromatic compound, and a polyester obtained by copolymerizing an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid.
  • It includes a carbonate resin, a copolycarbonate resin obtained by copolymerizing a difunctional alcohol (including an alicyclic group), and a polyester carbonate resin obtained by copolymerizing such a difunctional carboxylic acid and a difunctional alcohol. Further, it may be a mixture of two or more kinds of the obtained aromatic polycarbonate resins.
  • the branched polycarbonate resin can impart anti-drip performance to the polycarbonate resin composition of the present invention.
  • trifunctional or higher-functional polyfunctional aromatic compounds used for the branched polycarbonate resin include phloroglucin, phlorogluside, or 4,6-dimethyl-2,4,6-tris(4-hydrodiphenyl)heptene-2,2.
  • the constituent unit derived from the polyfunctional aromatic compound in the branched polycarbonate is preferably 100 mol% in total of the constituent unit derived from the dihydric phenol and the constituent unit derived from the polyfunctional aromatic compound, The amount is 0.01 to 1 mol %, more preferably 0.05 to 0.9 mol %, and further preferably 0.05 to 0.8 mol %.
  • a branched structural unit may occur as a side reaction, and the amount of the branched structural unit is preferably 100 mol% in total with the structural unit derived from the dihydric phenol, It is preferably 0.001 to 1 mol %, more preferably 0.005 to 0.9 mol %, and further preferably 0.01 to 0.8 mol %.
  • the ratio of such branched structure can be calculated by 1H-NMR measurement.
  • the ⁇ , ⁇ -dicarboxylic acid is preferable as the aliphatic bifunctional carboxylic acid.
  • the aliphatic difunctional carboxylic acid include linear saturated aliphatic dicarboxylic acids such as sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, and icosanedioic acid, and cyclohexanedicarboxylic acid.
  • alicyclic dicarboxylic acids such as An alicyclic diol is more preferable as the bifunctional alcohol, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecanedimethanol.
  • reaction modes such as the interfacial polymerization method, the melt transesterification method, the carbonate prepolymer solid phase transesterification method, and the ring-opening polymerization method of the cyclic carbonate compound, which are the production methods of the aromatic polycarbonate resin of the present invention, include various documents and patents. This method is well known in the bulletins.
  • the viscosity average molecular weight as referred to in the present invention is obtained by first using a Ostwald viscometer to calculate a specific viscosity ( ⁇ SP ) calculated by the following equation from a solution prepared by dissolving 0.7 g of polycarbonate in 100 ml of methylene chloride at 20° C.
  • Specific viscosity ( ⁇ SP ) (t ⁇ t 0 )/t 0 [T 0 is the number of seconds of methylene chloride drop, t is the number of seconds of drop of the sample solution]
  • the viscosity average molecular weight M is calculated from the determined specific viscosity ( ⁇ SP) by the following mathematical formula.
  • the viscosity average molecular weight of the aromatic polycarbonate resin in the polycarbonate resin composition of the present invention is calculated as follows. That is, the composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve the soluble component in the composition. The soluble matter is collected by Celite filtration. After that, the solvent in the obtained solution is removed. After removing the solvent, the solid is sufficiently dried to obtain a solid of a component soluble in methylene chloride. A specific viscosity at 20° C.
  • the content of the component A is 1 to 100% by weight, preferably 30 to 100% by weight, and more preferably 50 to 95% by weight, based on 100% by weight of the resin component consisting of the components A and B.
  • the content of the component A is less than 1% by weight, the colorability is poor.
  • Component B Polycarbonate-polydiorganosiloxane copolymer resin
  • the resin composition of the present invention may contain a polycarbonate-polydiorganosiloxane copolymer resin as the B component.
  • the polycarbonate-polydiorganosiloxane copolymer resin used in the present invention is a dihydric phenol deriving a structural unit represented by the following general formula (1) and a hydroxy deriving a structural unit represented by the following general formula (3).
  • a copolymer resin prepared by copolymerizing an aryl-terminated polydiorganosiloxane is preferable.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 6 to 6 carbon atoms.
  • cycloalkyl group C 6-20 cycloalkoxy group, C 2-10 alkenyl group, C 6-14 aryl group, C 6-14 aryloxy group, carbon atom
  • E and f are each an integer of 1 to 4
  • W is a single bond or at least one group selected from the group consisting of groups represented by the following general formula (2).
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17, and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or a carbon atom.
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or a substituent having 6 to 12 carbon atoms.
  • R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number.
  • q is 0 or a natural number, and p+q is a natural number of 10 to 300.
  • X is a divalent aliphatic group having 2 to 8 carbon atoms.
  • Examples of the dihydric phenol (I) for deriving the constitutional unit represented by the general formula (1) include, for example, 4,4′-dihydroxybiphenyl, bis(4-hydroxyphenyl)methane and 1,1-bis(4- Hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl) Propane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 2,2-bis(4-hydroxy-3,3'-biphenyl)propane, 2,2-bis(4- Hydroxy-3-isopropylphenyl)propane, 2,2-bis(3-t-butyl-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxy) Phenyl)octane, 2,
  • hydroxyaryl-terminated polydiorganosiloxane for deriving the constitutional unit represented by the general formula (3) for example, the compounds shown below are preferably used.
  • the hydroxyaryl-terminated polydiorganosiloxane (II) is a phenol having an olefinic unsaturated carbon-carbon bond, preferably vinylphenol, 2-allylphenol, isopropenylphenol, 2-methoxy-4-allylphenol. It can be easily produced by subjecting a terminal of a polysiloxane chain having a polymerization degree of 1 to a hydrosilylation reaction.
  • (2-allylphenol)-terminated polydiorganosiloxane and (2-methoxy-4-allylphenol)-terminated polydiorganosiloxane are preferable, and particularly (2-allylphenol)-terminated polydimethylsiloxane and (2-methoxy-4) -Allylphenol) terminated polydimethylsiloxane is preferred.
  • the hydroxyaryl-terminated polydiorganosiloxane (II) preferably has a molecular weight distribution (Mw/Mn) of 3 or less.
  • the molecular weight distribution (Mw/Mn) is more preferably 2.5 or less, still more preferably 2 or less, in order to exhibit more excellent low outgassing properties and low temperature impact properties during high temperature molding. If the amount exceeds the upper limit of the preferable range, the amount of outgas generated during high temperature molding may be large and the low temperature impact resistance may be poor.
  • the degree of polymerization (p+q) of diorganosiloxane of hydroxyaryl-terminated polydiorganosiloxane (II) is suitably 10 to 300.
  • the diorganosiloxane polymerization degree (p+q) is preferably 10 to 200, more preferably 12 to 150, and further preferably 14 to 100.
  • the impact resistance which is a characteristic of the polycarbonate-polydiorganosiloxane copolymer, will not be effectively exhibited, and above the upper limit of the preferred range, poor appearance will appear.
  • the content of polydiorganosiloxane in the total weight of the polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.1 to 50% by weight.
  • the content of the polydiorganosiloxane component is more preferably 0.5 to 30% by weight, further preferably 1 to 20% by weight. Above the lower limit of the preferred range, the strength and flame retardancy are excellent, and below the upper limit of the preferred range, a stable appearance that is unlikely to be affected by molding conditions is likely to be obtained.
  • the polydiorganosiloxane polymerization degree and the polydiorganosiloxane content can be calculated by 1 H-NMR measurement.
  • the hydroxyaryl-terminated polydiorganosiloxane (II) may be used alone or in combination of two or more.
  • a mixed solution containing an oligomer having a terminal chloroformate group is prepared by previously reacting a dihydric phenol (I) with a carbonic acid ester forming compound in a mixed solution of a water-insoluble organic solvent and an aqueous alkaline solution. To do.
  • the total amount of the dihydric phenol (I) used in the method of the present invention may be converted into the oligomer at one time, or a part of the dihydric phenol (I) may be used as a post-added monomer to form an interface in the subsequent stage.
  • You may add as a reaction raw material to a polycondensation reaction.
  • the post-addition monomer is added in order to accelerate the subsequent polycondensation reaction, and it is not necessary to intentionally add it when it is not necessary.
  • the method of this oligomer formation reaction is not particularly limited, but usually a method performed in a solvent in the presence of an acid binder is suitable.
  • the proportion of the carbonic acid ester forming compound used may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent) of the reaction. Further, when a gaseous carbonic acid ester-forming compound such as phosgene is used, a method of blowing it into the reaction system can be suitably adopted.
  • the acid binder for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof are used.
  • the ratio of the acid binder used may be appropriately determined in consideration of the stoichiometric ratio (equivalent amount) of the reaction, similarly to the above. Specifically, it is preferable to use 2 equivalents or slightly excess amount of the acid binder with respect to the number of moles of the dihydric phenol (I) used for forming the oligomer (usually 1 mole corresponds to 2 equivalents). ..
  • solvents that are inert to various reactions such as those used in the production of known polycarbonates may be used alone or as a mixed solvent.
  • Typical examples include hydrocarbon solvents such as xylene, halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene, and the like.
  • a halogenated hydrocarbon solvent such as methylene chloride is preferably used.
  • the reaction pressure for oligomer formation is not particularly limited and may be normal pressure, increased pressure or reduced pressure, but it is usually advantageous to carry out the reaction under normal pressure.
  • the reaction temperature is selected from the range of ⁇ 20 to 50° C., and in many cases, heat is generated with the polymerization, so water cooling or ice cooling is desirable.
  • the reaction time depends on other conditions and cannot be specified unconditionally, but is usually 0.2 to 10 hours.
  • the pH range of the oligomer formation reaction is the same as known interfacial reaction conditions, and the pH is always adjusted to 10 or more.
  • a mixed solution containing an oligomer of a dihydric phenol (I) having a terminal chloroformate group is thus obtained, and then the mixed solution is stirred to have a molecular weight distribution (Mw/Mn) of 3 or less.
  • the highly purified hydroxyaryl-terminated polydiorganosiloxane (II) represented by the general formula (4) is added to the dihydric phenol (I), and the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer are subjected to interfacial polycondensation.
  • a polycarbonate-polydiorganosiloxane copolymer is obtained.
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or a substituent having 6 to 12 carbon atoms.
  • R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number.
  • Q is 0 or a natural number
  • p+q is a natural number of 10 to 300.
  • X is a divalent aliphatic group having 2 to 8 carbon atoms.
  • an acid binder may be appropriately added in consideration of the stoichiometric ratio (equivalent amount) of the reaction.
  • the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof.
  • the amount of the post-added component It is preferable to use 2 equivalents or an excess of alkali with respect to the total number of moles of the polyhydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) (usually 1 mole corresponds to 2 equivalents).
  • the polycondensation by the interfacial polycondensation reaction of the dihydric phenol (I) oligomer and the hydroxyaryl-terminated polydiorganosiloxane (II) is performed by vigorously stirring the above mixed solution.
  • a terminal stopper or a molecular weight modifier is usually used.
  • the terminal terminator include compounds having a monohydric phenolic hydroxyl group.
  • the terminal terminator include compounds having a monohydric phenolic hydroxyl group.
  • the terminal terminator include compounds having a monohydric phenolic hydroxyl group.
  • examples thereof include chloride, aliphatic carboxylic acid, hydroxybenzoic acid alkyl ester, hydroxyphenylalkyl acid ester, alkyl ether phenol and the like.
  • the amount used is in the range of 100 to 0.5 mol, preferably 50 to 2 mol, based on 100 mol of all dihydric phenol compounds used, and it is naturally possible to use two or more compounds in combination. is there.
  • a catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added to accelerate the polycondensation reaction.
  • the reaction time of the polymerization reaction is preferably 30 minutes or longer, more preferably 50 minutes or longer. If desired, a small amount of an antioxidant such as sodium sulfite or hydrosulfide may be added.
  • an antioxidant such as sodium sulfite or hydrosulfide
  • a branching agent can be used in combination with the above dihydric phenol compound to give a branched polycarbonate-polydiorganosiloxane.
  • Examples of the trifunctional or higher-functional polyfunctional aromatic compound used in the branched polycarbonate-polydiorganosiloxane copolymer resin include phloroglucin, phlorogluside, or 4,6-dimethyl-2,4,6-tris(4-hydrodiphenyl).
  • the proportion of the polyfunctional compound in the branched polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.001 to 1 mol %, more preferably 0.005 to 0, based on the total amount of the aromatic polycarbonate-polydiorganosiloxane copolymer resin. 0.99 mol%, more preferably 0.01 to 0.8 mol%, particularly preferably 0.05 to 0.4 mol%.
  • the amount of the branched structure can be calculated by 1H-NMR measurement.
  • the reaction pressure may be any of reduced pressure, normal pressure, and increased pressure, but normally, it can be suitably carried out at normal pressure or the self pressure of the reaction system.
  • the reaction temperature is selected from the range of ⁇ 20 to 50° C., and in many cases, heat is generated with the polymerization, so water cooling or ice cooling is desirable.
  • the reaction time varies depending on other conditions such as the reaction temperature and therefore cannot be specified unconditionally, but is usually 0.5 to 10 hours.
  • the obtained polycarbonate-polydiorganosiloxane copolymer resin is appropriately subjected to physical treatment (mixing, fractionation, etc.) and/or chemical treatment (polymer reaction, crosslinking treatment, partial decomposition treatment, etc.) to achieve the desired reduction. It can also be obtained as a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity [ ⁇ SP /c].
  • the obtained reaction product (crude product) can be recovered as a polycarbonate-polydiorganosiloxane copolymer resin having a desired purity (purification degree) by subjecting it to various post-treatments such as a known separation and purification method. ..
  • the average size of the polydiorganosiloxane domains in the polycarbonate-polydiorganosiloxane copolymer resin molded product is preferably in the range of 1 to 40 nm.
  • the average size is more preferably 1 to 30 nm, further preferably 5 to 25 nm. Below the lower limit of this preferred range, impact resistance and flame retardancy may not be fully exhibited, and above the upper limit of this preferred range, impact resistance may not be exhibited stably. This provides a polycarbonate resin composition excellent in strength and appearance.
  • the average domain size of the polydiorganosiloxane domains of the polycarbonate-polydiorganosiloxane copolymer resin molded article of the present invention was evaluated by the small angle X-ray scattering method (Small Angle X-ray Scattering: SAXS).
  • SAXS Small Angle X-ray Scattering
  • the small-angle X-ray scattering method is a method for measuring diffuse scattering/diffraction occurring in a small-angle region within a scattering angle (2 ⁇ ) ⁇ 10°. In this small-angle X-ray scattering method, when there are regions with different electron densities of about 1 to 100 nm in the substance, diffuse scattering of X-rays is measured due to the difference in electron density.
  • the particle size of the measurement target is obtained based on the scattering angle and the scattering intensity.
  • a polycarbonate-polydiorganosiloxane copolymer resin having an aggregate structure in which polydiorganosiloxane domains are dispersed in a matrix of a polycarbonate polymer diffuse scattering of X-rays occurs due to a difference in electron density between the polycarbonate matrix and the polydiorganosiloxane domain.
  • the small-angle X-ray scattering profile was measured by measuring the scattering intensity I at each scattering angle (2 ⁇ ) in the scattering angle (2 ⁇ ) range of less than 10°, and the polydiorganosiloxane domain was a spherical domain, and the particle size distribution was uneven. Assuming that there exists, a simulation is performed using a commercially available analysis software from the temporary particle size and the temporary particle size distribution model, and the average size of the polydiorganosiloxane domain is obtained.
  • the average size of polydiorganosiloxane domains dispersed in a matrix of a polycarbonate polymer which cannot be accurately measured by observation with a transmission electron microscope, can be measured accurately, simply, and with good reproducibility. it can.
  • the average domain size means the number average of individual domain sizes.
  • average domain size used in connection with the present invention means a measurement value obtained by measuring a 1.0 mm thickness portion of a three-stage plate produced by the method described in Examples by such a small angle X-ray scattering method. Show. In addition, the analysis was performed using an isolated particle model that does not consider the interaction between particles (interference between particles).
  • the viscosity average molecular weight (M) of the polycarbonate-polydiorganosiloxane copolymer resin is not particularly limited, but is preferably 1.8 ⁇ 10 4 to 4.0 ⁇ 10 4 , and more preferably 2.0 ⁇ 10 4 to It is 3.5 ⁇ 10 4 , and more preferably 2.2 ⁇ 10 4 to 3.0 ⁇ 10 4 .
  • a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity average molecular weight of less than 1.8 ⁇ 10 4 may not be able to obtain good mechanical properties.
  • a resin composition obtained from a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity average molecular weight of more than 4.0 ⁇ 10 4 may be inferior in versatility because it is inferior in fluidity during injection molding.
  • the polycarbonate-polydiorganosiloxane copolymer resin may be obtained by mixing those having a viscosity average molecular weight outside the above range.
  • the polycarbonate-polydiorganosiloxane copolymer resin having a viscosity average molecular weight exceeding the above range (5 ⁇ 10 4 ) improves the entropy elasticity of the resin. As a result, good moldability is exhibited in gas assist molding and foam molding, which are sometimes used when molding a reinforced resin material into a structural member.
  • More preferred embodiments include a polycarbonate-polydiorganosiloxane copolymer resin (B-1-1 component) having a viscosity average molecular weight of 7 ⁇ 10 4 to 3 ⁇ 10 5 , and a viscosity average molecular weight of 1 ⁇ 10 4 to 3 ⁇ 10 4.
  • -1 component hereinafter, may be referred to as "polycarbonate-polydiorganosiloxane copolymer resin containing high molecular weight component").
  • the molecular weight of the B-1-1 component is preferably 7 ⁇ 10 4 to 2 ⁇ 10 5 , and more preferably 8 ⁇ 10 4 to It is 2 ⁇ 10 5 , more preferably 1 ⁇ 10 5 to 2 ⁇ 10 5 , and particularly preferably 1 ⁇ 10 5 to 1.6 ⁇ 10 5 .
  • the molecular weight of component B-1-2 is preferably 1 ⁇ 10 4 to 2.5 ⁇ 10 4 , more preferably 1.1 ⁇ 10 4 to 2.4 ⁇ 10 4 , and even more preferably 1.2 ⁇ 10 4. ⁇ 2.4 ⁇ 10 4 , particularly preferably 1.2 ⁇ 10 4 to 2.3 ⁇ 10 4 .
  • the polycarbonate-polydiorganosiloxane copolymer resin (B-1 component) containing a high molecular weight component is prepared by mixing the above-mentioned B-1-1 component and B-1-2 component in various ratios to satisfy a predetermined molecular weight range. You can get it.
  • the B-1-1 component is preferably 2 to 40% by weight in 100% by weight of the B-1 component, more preferably 3 to 30% by weight, and further preferably the B-1-1 component is 3 to 30% by weight.
  • the B-1-1 component is 4 to 20% by weight, and particularly preferably the B-1-1 component is 5 to 20% by weight.
  • the method for preparing the B-1 component (1) a method in which the B-1-1 component and the B-1-2 component are independently polymerized and mixed, and (2) JP-A-5-306336.
  • a method for producing so as to satisfy the condition of one component, and (3) an aromatic polycarbonate resin obtained by the production method (production method of (2)), and a separately produced B-1-1 component and/or Examples thereof include a method of mixing with the component B-1-2.
  • the viscosity average molecular weight referred to in the present invention is the Ostwald viscosity calculated from a solution prepared by dissolving 0.7 g of a polycarbonate-polydiorganosiloxane copolymer resin in 100 ml of methylene chloride at a specific viscosity ( ⁇ SP ) calculated by the following formula at 20° C.
  • ⁇ SP specific viscosity
  • Specific viscosity ( ⁇ SP ) (t ⁇ t 0 )/t 0
  • T 0 is the number of seconds of methylene chloride drop
  • t is the number of seconds of drop of the sample solution]
  • the viscosity average molecular weight M is calculated from the determined specific viscosity ( ⁇ SP ) by the following formula.
  • a specific viscosity at 20° C. is obtained from a solution prepared by dissolving 0.7 g of the solid in 100 ml of methylene chloride in the same manner as above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as above.
  • C component brominated flame retardant
  • the resin composition of the present invention contains a brominated flame retardant as the C component.
  • brominated flame retardant brominated polycarbonate (including oligomer) is particularly suitable. Brominated polycarbonate has excellent heat resistance and can significantly improve flame retardancy.
  • the structural unit represented by the following formula (5) is preferably at least 60 mol% of all structural units, more preferably at least 80 mol%, and particularly preferably substantially the following. It is a brominated polycarbonate compound comprising a structural unit represented by the formula (5).
  • X is a bromine atom
  • R is an alkylene group having 1 to 4 carbon atoms, an alkylidene group having 1 to 4 carbon atoms, or —SO 2 —.
  • R is preferably a methylene group, an ethylene group, an isopropylidene group or —SO 2 —, and particularly preferably an isopropylidene group.
  • the brominated polycarbonate has few residual chloroformate group terminals, and the terminal chlorine amount is preferably 0.3 ppm or less, more preferably 0.2 ppm or less.
  • the amount of such terminal chlorine was obtained by dissolving the sample in methylene chloride, adding 4-(p-nitrobenzyl)pyridine, and reacting with terminal chlorine (terminal chloroformate). This was analyzed by an ultraviolet-visible spectrophotometer (U, Hitachi, Ltd.). -3200) to measure and obtain.
  • the amount of terminal chlorine is 0.3 ppm or less, the thermal stability of the flame-retardant polycarbonate resin composition may be better, and molding at higher temperatures becomes possible, and as a result, the resin composition having better molding processability can be obtained. Things may be provided.
  • the brominated polycarbonate has few remaining hydroxyl groups. More specifically, the amount of terminal hydroxyl groups is preferably 0.0005 mol or less, and more preferably 0.0003 mol or less, relative to 1 mol of the structural unit of the brominated polycarbonate.
  • the amount of terminal hydroxyl groups can be determined by dissolving the sample in deuterated chloroform and measuring by 1 H-NMR method. With such an amount of terminal hydroxyl groups, the thermal stability of the flame-retardant polycarbonate resin composition may be further improved.
  • the specific viscosity of the brominated polycarbonate is preferably in the range of 0.015 to 0.1, more preferably 0.015 to 0.08.
  • the specific viscosity of the brominated polycarbonate is calculated according to the above-mentioned specific viscosity calculation formula used in calculating the viscosity average molecular weight of the polycarbonate resin which is the component A of the present invention.
  • the content of the component C is 10 to 20 parts by weight, preferably 12 to 20 parts by weight, and more preferably 12 to 18 parts by weight, based on 100 parts by weight of the total of the components A and B. If the content of the C component is less than 10 parts by weight, flame retardancy is not exhibited, and if it exceeds 20 parts by weight, the appearance is deteriorated.
  • Component D Fluorine-containing anti-dripping agent
  • the resin composition of the present invention contains a fluorine-containing anti-dripping agent as the D component. By containing this fluorine-containing anti-dripping agent, good flame retardancy can be achieved without impairing the physical properties of the molded product.
  • fluorine-containing anti-dripping agent as the component D examples include fluorine-containing polymers having a fibril forming ability, and examples of such polymers include polytetrafluoroethylene and tetrafluoroethylene-based copolymers (for example, tetrafluoroethylene/hexafluoro). Propylene copolymers, etc.), partially fluorinated polymers as shown in US Pat. No. 4,379,910, and polycarbonate resins produced from fluorinated diphenols. Among them, polytetrafluoroethylene (hereinafter sometimes referred to as PTFE) is preferable.
  • PTFE polytetrafluoroethylene
  • the molecular weight of PTFE capable of forming fibrils is extremely high, and PTFE tends to bind to each other by an external action such as shearing force to become fibrous. Its molecular weight is 1,000,000 to 10,000,000, more preferably 2,000,000 to 9,000,000 in terms of number average molecular weight determined from standard specific gravity.
  • PTFE may be in the form of an aqueous dispersion.
  • PTFE having such fibril-forming ability improves dispersibility in the resin, and it is also possible to use a PTFE mixture in a mixed form with other resins in order to obtain better flame retardancy and mechanical properties. is there.
  • Examples of commercially available PTFE capable of forming fibrils include Teflon (registered trademark) 6J manufactured by Mitsui DuPont Fluorochemical Co., Ltd., and Polyflon MPA FA500 and F-201L manufactured by Daikin Industries, Ltd.
  • Commercially available aqueous dispersions of PTFE include Fluon AD-1, AD-936 manufactured by Asahi IC Polymers Co., Ltd., Fluon D-1 and D-2 manufactured by Daikin Industries, Ltd., Mitsui DuPont Fluoro.
  • Typical examples thereof include Teflon (registered trademark) 30J manufactured by Chemical Co., Ltd.
  • the mixed form of PTFE is (1) a method in which an aqueous dispersion of PTFE and an aqueous dispersion or solution of an organic polymer are mixed and coprecipitated to obtain a coaggregation mixture (JP-A-60-258263, Japanese Unexamined Patent Publication (Kokai) No. 63-154744), (2) A method of mixing an aqueous dispersion of PTFE with dried organic polymer particles (Japanese Unexamined Patent Publication No.
  • the proportion of PTFE in the mixed form is preferably 1 to 60% by weight and more preferably 5 to 55% by weight in 100% by weight of the PTFE mixture. When the proportion of PTFE is in such a range, good dispersibility of PTFE can be achieved.
  • the ratio of the component D represents the net amount of the fluorine-containing anti-dripping agent, and in the case of PTFE in the mixed form, the net amount of PTFE.
  • the content of the component D is 0.01 to 2 parts by weight, preferably 0.1 to 1.5 parts by weight, and more preferably 0.2 to 1 with respect to 100 parts by weight of the total of the components A and B. Parts by weight. If the content of component D exceeds the above range and is too small, flame retardancy becomes insufficient. On the other hand, when the content of the component D exceeds the above range and is too large, not only the PTFE is deposited on the surface of the molded article and the appearance is deteriorated, but also the cost of the resin composition is increased.
  • the styrene-based monomer used in the organic polymer used in the polytetrafluoroethylene-based mixture of the present invention includes an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms and halogen.
  • Styrene optionally substituted with one or more groups selected from the group consisting of, for example, ortho-methylstyrene, meta-methylstyrene, para-methylstyrene, dimethylstyrene, ethyl-styrene, para-tert-butylstyrene.
  • the styrenic monomers may be used alone or in admixture of two or more.
  • the acrylic monomer used in the organic polymer used in the polytetrafluoroethylene-based mixture of the present invention contains an optionally substituted (meth)acrylate derivative.
  • the acrylic monomer is substituted with at least one group selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group, and a glycidyl group.
  • (Meth)acrylate derivatives such as (meth)acrylonitrile, methyl(meth)acrylate, ethyl(meth)acrylate, propyl(meth)acrylate, butyl(meth)acrylate, amyl(meth)acrylate, hexyl( (Meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, octyl (meth)acrylate, dodecyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate and glycidyl (meth)
  • examples thereof include acrylates, maleimides which may be substituted with an alkyl group having 1 to 6 carbon atoms, or aryl groups, for example, maleimides, N-methyl-maleimides and N-phenyl-maleimides, maleic acid, phthalic acid and itaconic acid.
  • maleimides which
  • the amount of the acrylic monomer-derived unit contained in the organic polymer used in the coating layer is preferably 8 to 11 parts by weight, more preferably 8 to 10 parts by weight, based on 100 parts by weight of the styrene-based monomer-derived unit. Parts, more preferably 8 to 9 parts by weight. If the amount of the acrylic monomer-derived unit is less than 8 parts by weight, the coating strength may be lowered, and if it is more than 11 parts by weight, the surface appearance of the molded product may be deteriorated.
  • the polytetrafluoroethylene-based mixture of the present invention preferably has a residual water content of 0.5% by weight or less, more preferably 0.2 to 0.4% by weight, still more preferably 0.1 to 0. It is 3% by weight. If the residual water content is more than 0.5% by weight, flame retardancy may be adversely affected.
  • the residual water content is dried to 0.5% by weight or less, preferably 0.2 to 0.4% by weight, more preferably 0.1 to 0.3% by weight. It is preferable to include a step.
  • the drying step can be performed using a method known in the art, for example, a hot air drying method or a vacuum drying method.
  • the initiator used in the polytetrafluoroethylene-based mixture of the present invention can be used without limitation as long as it is used in the polymerization reaction of styrene-based and/or acrylic-based monomers.
  • examples of the initiator include, but are not limited to, cumyl hydroperoxide, di-tert-butyl peroxide, benzoyl peroxide, hydrogen peroxide, and potassium peroxide.
  • One or more of the above initiators can be used in the polytetrafluoroethylene-based mixture of the present invention depending on the reaction conditions.
  • the amount of the initiator is freely selected within the range used in consideration of the amount of polytetrafluoroethylene and the kind/amount of the monomer, and is 0.15 to 0. It is preferable to use 25 parts by weight.
  • the polytetrafluoroethylene-based mixture of the present invention was manufactured by the suspension polymerization method according to the following procedure.
  • the suspension polymerization method does not require a polymerization step by emulsion dispersion in the emulsion polymerization method exemplified in Japanese Patent No. 3469391, and thus does not require an emulsifier and an electrolyte salt for coagulating and precipitating a latex after polymerization. Further, in the polytetrafluoroethylene mixture produced by the emulsion polymerization method, since the emulsifier and the electrolyte salt in the mixture easily mix and become difficult to remove, the emulsifier, the sodium metal ion derived from the electrolyte salt, and the potassium metal ion are reduced. It's difficult.
  • the polytetrafluoroethylene-based mixture used in the present invention is produced by the suspension polymerization method, it is possible to reduce sodium metal ions and potassium metal ions in the mixture because such emulsifiers and electrolyte salts are not used.
  • the heat stability and hydrolysis resistance can be improved.
  • coated branched PTFE can be used as a fluorine-containing anti-dripping agent.
  • the coated branched PTFE is a polytetrafluoroethylene-based mixture composed of branched polytetrafluoroethylene particles and an organic polymer.
  • An organic polymer preferably a styrene-based monomer, is provided outside the branched polytetrafluoroethylene. It has a coating layer made of a polymer containing a unit and/or a unit derived from an acrylic monomer. The coating layer is formed on the surface of branched polytetrafluoroethylene.
  • the coating layer preferably contains a copolymer of a styrene monomer and an acrylic monomer.
  • the polytetrafluoroethylene contained in the coated branched PTFE is branched polytetrafluoroethylene.
  • the branched polytetrafluoroethylene is particulate and preferably has a particle diameter of 0.1 to 0.6 ⁇ m, more preferably 0.3 to 0.5 ⁇ m, and still more preferably 0.3 to 0.4 ⁇ m.
  • the polytetrafluoroethylene used in the present invention preferably has a number average molecular weight of 1 ⁇ 10 4 to 1 ⁇ 10 7 , more preferably 2 ⁇ 10 6 to 9 ⁇ 10 6 , and generally has a high molecular weight. Fluoroethylene is more preferable in terms of stability. Either powder or dispersion form can be used.
  • the content of branched polytetrafluoroethylene in the coated branched PTFE is preferably 20 to 60 parts by weight, more preferably 40 to 55 parts by weight, still more preferably 47 to 100 parts by weight based on the total weight of the coated branched PTFE. It is 53 parts by weight, particularly preferably 48 to 52 parts by weight, most preferably 49 to 51 parts by weight. When the proportion of the branched polytetrafluoroethylene is within such a range, good dispersibility of the branched polytetrafluoroethylene can be achieved.
  • Component E full ester of polyhydric alcohol and aliphatic carboxylic acid
  • the E component used in the present invention is a full ester of a polyhydric alcohol and an aliphatic carboxylic acid (fatty acid full ester). When another ester is used as the E component, good colorability cannot be obtained.
  • the aliphatic carboxylic acid contains a palmitic acid component and a stearic acid component, and in the peak area in the gas chromatograph-mass spectrometry (GC/MS method), the area of the palmitic acid component (Sp) and the area of the stearic acid component ( It is preferable that the total of Ss) and the total aliphatic carboxylic acid component is 80% or more and the area ratio (Ss/Sp) of both is 1.3 to 30.
  • GC/MS method gas chromatograph-mass spectrometry
  • the full ester in the present invention does not necessarily have an esterification rate of 100%, and may be 80% or more, preferably 85% or more.
  • the pyrolysis methylation method is used as the GC/MS method in the present invention. That is, a fatty acid full ester as a sample is reacted with methylammonium hydroxide as a reaction reagent on a pyrofil to decompose the fatty acid full ester and produce a methyl ester derivative of a fatty acid, and a GC/MS measurement is performed on the derivative. It is a thing. From such measurement, the total ratio of Ss and Sp in the total aliphatic carboxylic acid component and their area ratio (Ss/Sp) are calculated. Therefore, the peak area of each component is based on each methyl ester derivative.
  • the upper limit of the area ratio (Ss/Sp) is more preferably 10, more preferably 4, and particularly preferably 2. If the area ratio is less than 1.3, good colorability may not be obtained, and if it exceeds 30, strength may be reduced.
  • the fatty acid full ester contained preferably contains the palmitic acid component and the stearic acid component in the specific ratios as described above, and the aspect thereof may be any, for example, the following aspect: Can be mentioned.
  • the production of fatty acid full esters is not particularly limited, and polyhydric alcohols and aliphatic carboxylic acids are conventionally known. It is possible by various methods.
  • reaction catalyst examples include sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide, calcium oxide, barium oxide, magnesium oxide, zinc oxide, sodium carbonate, potassium carbonate, and organotin compounds such as 2-ethylhexyltin. Are listed.
  • aspects of the production method of the fatty acid full ester satisfying the above area ratio (Ss/Sp) of the invention include the following.
  • a full ester is obtained by reacting stearic acid having a purity of about 100% with a polyhydric alcohol. Similarly, palmitic acid and polyhydric alcohol are reacted to obtain a full ester. These are blended with the polycarbonate resin so that the above area ratio (Ss/Sp) is satisfied in the composition of the present invention as in the above aspect (ii).
  • a full-ester is obtained by reacting an aliphatic carboxylic acid containing stearic acid and palmitic acid with a polyhydric alcohol in a composition ratio that satisfies the above area ratio (Ss/Sp) conditions.
  • the resin composition of the present invention is obtained by blending the full ester with a polycarbonate resin.
  • the aspect (3) is particularly preferable among the above. This is because such an aspect is simple in the production of the composition and is highly uniform because it is produced as an integral compound.
  • aliphatic carboxylic acids such as stearic acid and palmitic acid are usually produced from various vegetable fats and animal fats and oils. Since these oils and fats are ester compounds containing various aliphatic carboxylic acids as their components, the stearic acid produced usually contains a large amount of other aliphatic carboxylic acid components such as palmitic acid. Therefore, in order to produce the aliphatic carboxylic acid used in the aspect (3) of the present invention, stearic acid and palmitic acid are used to prepare an aliphatic carboxylic acid satisfying the conditions of the above area ratio (Ss/Sp).
  • Palm oil is widely used as a raw material for aliphatic carboxylic acids because of its production cost advantage. However, in the present invention, it is not appropriate to use such an aliphatic carboxylic acid derived from palm oil in the above aspect (3).
  • fats and oils as a raw material for the aliphatic carboxylic acid include animal fats and oils such as beef tallow and lard, and linseed oil, safflower oil, sunflower oil, soybean oil, corn oil, peanut oil, cottonseed oil, sesame oil, olive oil, and the like.
  • the vegetable oils and fats of the above can be mentioned.
  • animal fats and oils are preferable, and beef tallow is more preferable, because they contain more stearic acid.
  • oleostearine containing a large amount of saturated components such as stearic acid and palmitic acid is preferable.
  • the polyhydric alcohol used preferably has 3 to 32 carbon atoms.
  • Specific examples of the polyhydric alcohol include glycerin, diglycerin, polyglycerin (for example, decaglycerin, etc.), pentaerythritol, dipentaerythritol, diethylene glycol, propylene glycol and the like, among which pentaerythritol is preferable.
  • the acid value of the fatty acid full ester is preferably low from the viewpoint of suppressing the strength reduction, while it is preferably relatively high from the viewpoint of improving the coloring property.
  • the acid value of the fatty acid full ester is preferably in the range of 0.1 to 20, more preferably in the range of 2 to 18, and even more preferably in the range of 5 to 15. If the oxidation is less than 0.1, good colorability may not be obtained, and if it exceeds 2, strength may be reduced.
  • the acid value is the mg number of potassium hydroxide required to neutralize free fatty acids and the like contained in 1 g of the sample, and can be determined by the method specified in JIS K0070. Although the relationship between the acid value and the reduction of the releasing force is not clear in the above, it is considered that the unreacted free carboxylic acid is likely to migrate to the surface during molding.
  • the hydroxyl value of the fatty acid full ester is preferably low from the viewpoint of suppressing strength reduction and improving colorability, while too low is not preferable because the manufacturing time increases and the cost increases.
  • the hydroxyl value of the fatty acid full ester is preferably in the range of 0.1 to 40, more preferably in the range of 1 to 30, and even more preferably in the range of 2 to 20.
  • the hydroxyl value is the number of mg of potassium hydroxide required to neutralize the acetic acid bound to the hydroxyl group when 1 g of the sample is acetylated, and can be determined by the method specified in JIS K0070. ..
  • the iodine value of the fatty acid full ester is preferably low from the viewpoint of suppressing the reduction in strength.
  • the iodine value of the fatty acid full ester is preferably 10 or less, more preferably 1 or less.
  • the iodine value is an amount obtained by converting the amount of halogen bound when 100 g of a sample is reacted with halogen into the g number of iodine, and can be obtained by the method specified in JIS K0070.
  • the 5% weight loss temperature in TGA (thermogravimetric analysis) measurement of fatty acid full ester is preferably moderately low from the viewpoint of improving the colorability, and is preferably high from the viewpoint of suppressing strength reduction.
  • the 5% weight loss temperature of the fatty acid full ester is preferably in the range of 250 to 400°C, more preferably in the range of 280 to 360°C, further preferably in the range of 300 to 350°C, particularly preferably in the range of 310 to 340°C.
  • the 5% weight loss temperature is determined by the TGA measuring device under the measurement condition that the temperature is raised from 23° C. in a nitrogen gas atmosphere to 600° C. at a heating rate of 20° C./min.
  • the content of the E component is 0.05 to 2 parts by weight, preferably 0.1 to 1 part by weight, and more preferably 0.2 to 0. 0, based on 100 parts by weight of the total of the A component and the B component. 8 parts by weight.
  • the adhesion improver used as the F component of the present invention is a compound that improves the adhesion between the resin composition and the carbon fiber. Among them, an organic compound having at least one functional group selected from the group consisting of an epoxy group, a carboxylic acid group and an acid anhydride group in one molecule is preferably used.
  • the above organic compound may be contained.
  • the resin composition of the present invention is blended with the above-mentioned organic compound, it becomes possible to strengthen the adhesiveness between the resin composition and the carbon fiber, whereby the strength improving effect is remarkably exhibited.
  • the epoxy group-containing compound is not particularly limited as long as it is an organic compound containing an epoxy group, and examples thereof include a phenoxy resin and an epoxy resin.
  • phenoxy resins represented by the following general formula (6).
  • X is at least one group selected from the group consisting of groups represented by the following general formula (7)
  • Y is a residue of a compound that reacts with a hydrogen atom or a hydroxyl group
  • n is an integer of 0 or more.
  • epoxy resin examples include epoxy resins represented by the following general formula (8).
  • examples of the compound that reacts with a hydroxyl group include a compound having an ester, a carbonate, an epoxy group, a carboxylic acid anhydride, an acid halide, a compound having an isocyanate group, and the like.
  • an intramolecular ester is preferable, and examples thereof include caprolactone.
  • the compound in which Y is a hydrogen atom can be easily produced from divalent phenols and epichlorohydrin.
  • a compound in which Y is a residue of a compound that reacts with a hydroxyl group can be easily produced by mixing a phenoxy resin produced from a divalent phenol and epichlorohydrin with a compound that reacts with the hydroxyl group under heating. You can
  • the epoxy resin represented by the above general formula (7) can be easily produced from divalent phenols and epichlorohydrin.
  • dihydric phenols include bisphenol A type epoxy resins such as 2,2-bis(4-hydroxyphenyl)propane [bisphenol A], 1,1-bis(4-hydroxyphenyl)ethane and 4,4′-dihydroxy. Biphenyl or the like is used.
  • phenoxy resins bisphenol A type
  • epoxy resin bisphenol A type
  • the weight average molecular weight of the phenoxy resin and the epoxy resin is not particularly limited, but is usually 5,000 to 100,000, preferably 8,000 to 80,000, more preferably 10,000 to 50,000. is there. When the weight average molecular weight is in the range of 5,000 to 100,000, the mechanical properties are particularly good.
  • a polymer of a vinyl unit containing a glycidyl group can be mentioned.
  • the glycidyl group-containing vinyl unit include glycidyl methacrylate, glycidyl itaconate, diglycidyl itaconate, allyl glycidyl ether, styrene-4-glycidyl ether, and 4-glycidyl styrene, which have impact resistance and strength improving effects.
  • Glycidyl methacrylate is most preferably used because of its large size.
  • the carboxylic acid group-containing compound is not particularly limited as long as it is an organic compound containing a carboxylic acid group, but from the viewpoint of compatibility with the component A, aromatic polyesters such as polybutylene terephthalate, polyethylene terephthalate and polyarylate. A resin is preferable, and polybutylene terephthalate is most preferably used because it is excellent in impact resistance and fluidity.
  • aromatic polybutylene terephthalate resin and the aromatic polyethylene terephthalate resin which are preferably used in the present invention of the dicarboxylic acid component and the diol component forming the polyester, 70 mol% or more of 100 mol% of the dicarboxylic acid component is aromatic.
  • An aromatic polyester resin that is a dicarboxylic acid is preferable, more preferably 90 mol% or more, and most preferably 99 mol% or more is an aromatic polyester resin that is an aromatic dicarboxylic acid.
  • dicarboxylic acid examples include terephthalic acid, isophthalic acid, adipic acid, 2-chloroterephthalic acid, 2,5-dichloroterephthalic acid, 2-methylterephthalic acid, 4,4-stilbenedicarboxylic acid and 4,4-biphenyldicarboxylic acid.
  • Acid orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, bisbenzoic acid, bis(p-carboxyphenyl)methane, anthracene dicarboxylic acid, 4,4-diphenyl ether dicarboxylic acid, 4,4- Examples thereof include diphenoxyethanedicarboxylic acid, 5-Nasulfoisophthalic acid, ethylene-bis-p-benzoic acid and the like. These dicarboxylic acids can be used alone or in admixture of two or more.
  • the aromatic polyester resin of the present invention can be copolymerized with an aliphatic dicarboxylic acid component of less than 30 mol% in addition to the above aromatic dicarboxylic acid.
  • an aliphatic dicarboxylic acid component of less than 30 mol% in addition to the above aromatic dicarboxylic acid.
  • Specific examples thereof include adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
  • the diol component of the present invention include ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, trans- or cis-2,2.
  • the method for producing the aromatic polybutylene terephthalate resin and the aromatic polyethylene terephthalate resin used in the present invention in the presence of a polycondensation catalyst containing titanium, germanium, antimony, etc., dicarboxylic acid while heating. It is carried out by polymerizing the component and the diol component and discharging the by-produced water or lower alcohol out of the system.
  • a polycondensation catalyst containing titanium, germanium, antimony, etc., dicarboxylic acid while heating. It is carried out by polymerizing the component and the diol component and discharging the by-produced water or lower alcohol out of the system.
  • examples of the germanium-based polymerization catalyst include germanium oxide, hydroxide, halide, alcoholate, phenolate, and the like, and more specifically, germanium oxide, germanium hydroxide, germanium tetrachloride, tetramethoxygermanium, and the like. Can be illustrated.
  • compounds such as manganese, zinc, calcium and magnesium used in the transesterification reaction which is a prior stage of polycondensation which is conventionally known can be used in combination, and phosphoric acid or phosphorus after the transesterification reaction is completed. It is also possible to deactivate such a catalyst with an acid compound or the like for polycondensation.
  • the method for producing the aromatic polybutylene terephthalate resin and the aromatic polyethylene terephthalate resin can be either batch type or continuous polymerization type.
  • the molecular weight of the aromatic polybutylene terephthalate resin and the aromatic polyethylene terephthalate resin of the present invention is not particularly limited, but the intrinsic viscosity measured at 25° C. with o-chlorophenol as a solvent is 0.4 to 1.5. It is preferably 0.5 to 1.2, and particularly preferably 0.5 to 1.2.
  • the amount of terminal carboxyl groups of the aromatic polybutylene terephthalate resin and aromatic polyethylene terephthalate resin used in the present invention is preferably 5 to 75 eq/ton, more preferably 5 to 70 eq/ton, and further preferably 7 to 65 eq/ton. Is.
  • the aromatic polyarylate resin preferably used in the present invention is obtained from an aromatic dicarboxylic acid or its derivative and a dihydric phenol or its derivative.
  • the aromatic dicarboxylic acid used for preparing the polyarylate may be any one as long as it reacts with the dihydric phenol to give a satisfactory polymer, and one kind or a mixture of two or more kinds is used.
  • aromatic dicarboxylic acid components include terephthalic acid and isophthalic acid. It may also be a mixture of these.
  • dihydric phenol component examples include 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane and 2,2-bis(4- Hydroxy-3,5-dichlorophenyl)propane, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, 4,4'- Dihydroxydiphenylmethane, 2,2'-bis(4hydroxy-3,5-dimethylphenyl)propane, 1,1-bis(4-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 4, 4'-dihydroxydiphenyl, hydroquinone and the like can be mentioned. Although these dihydric phenol components are para-substituted, other isomers may be used.
  • preferable polyarylate resins include those in which the aromatic dicarboxylic acid component is terephthalic acid and isophthalic acid and the dihydric phenol component is 2,2-bis(4-hydroxyphenyl)propane (bisphenol A).
  • polyarylate resins include those in which the aromatic dicarboxylic acid component is terephthalic acid and the dihydric phenol component is bisphenol A and hydroquinone.
  • the viscosity average molecular weight of the polyarylate resin in the present invention is preferably in the range of about 7,000 to 100,000 from the viewpoint of physical properties and extrusion processability.
  • the polyarylate resin either of the interfacial polycondensation method and the transesterification reaction method can be selected.
  • the acid anhydride group-containing compound as a maleic acid resin, a marquise series (maleic acid resin, manufactured by Arakawa Chemical Co., Ltd.), an alaster series (styrene-maleic acid resin, manufactured by Arakawa Chemical Co., Ltd.), an isovan series ( Isobutylene-maleic anhydride block copolymer, manufactured by Kuraray Co., Ltd., and the like, and styrene-maleic acid resin is most preferably used from the viewpoint of compatibility with the component A.
  • a marquise series maleic acid resin, manufactured by Arakawa Chemical Co., Ltd.
  • an alaster series styrene-maleic acid resin, manufactured by Arakawa Chemical Co., Ltd.
  • an isovan series Isobutylene-maleic anhydride block copolymer, manufactured by Kuraray Co., Ltd., and the like
  • the content of the component F is preferably 1 to 10 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of the resin composition including the components A and B.
  • the easily impregnable carbon fiber bundle in the present invention means a polycarbonate resin composition (preferably a plasticized polycarbonate resin composition, by containing 3 to 15 parts by weight of an impregnation aid with respect to 100 parts by weight of carbon fibers. ) Is easily impregnated with the carbon fiber bundle.
  • the impregnation aid preferably satisfies the following formulas (1) and (2).
  • Viscosity at 300°C ⁇ 10 Pa ⁇ s (1) 2 ⁇ (Tg 0 ⁇ Tg 1 )/D (2)
  • D is the proportion (% by weight) of the impregnating aid in the resin composition comprising the polycarbonate resin and the impregnating aid
  • Tg 1 is the resin composition obtained by adding the impregnating aid to the polycarbonate resin in this proportion.
  • Glass transition temperature (° C.) and Tg 0 represent the glass transition temperature (° C.) of the polycarbonate resin.
  • the easily impregnable carbon fiber bundle may be any carbon fiber bundle containing an impregnation aid in a predetermined amount with respect to the carbon fiber, a method for producing the same, and a form in which the carbon fiber and the impregnation aid are contained. It doesn't matter.
  • the impregnation aid used in the present invention preferably satisfies the above formula (1), which has a low viscosity state at 300° C. which is a typical processing temperature of a general-purpose polycarbonate, and This means that viscosity measurement as a liquid at 300° C. is possible.
  • the viscosity of the impregnation aid at 300° C. is preferably 8 Pa ⁇ s or less, and more preferably 6 Pa ⁇ s or less. If the viscosity at 300° C. exceeds 10 Pa ⁇ s, the dispersibility of the carbon fiber in the resin may be impaired during molding, and a good appearance may not be obtained.
  • a rotary viscometer is suitable as a method for measuring the viscosity of the impregnation aid as a liquid. Specifically, a method of measuring with a parallel plate with a high temperature tank can be exemplified.
  • the impregnation aid preferably satisfies the above formula (2).
  • the impregnation aid does not have to have (Tg 0 ⁇ Tg 1 )/D of 2 or more in the entire range of the compounding amount of 3 to 15 parts by weight per 100 parts by weight of the polycarbonate. It may be 2 or more in a part of the blending amount range.
  • (Tg 0 ⁇ Tg 1 )/D is 2 or more, it has an effect of promoting impregnation, and (Tg 0 ⁇ Tg 1 )/D is more preferably 3 or more.
  • the easily impregnable carbon fiber bundle used in the present invention may contain plural kinds of impregnation aids, and the impregnation aid used in the present invention is selected from the group consisting of aliphatic hydroxycarboxylic acid-based polyesters. It is preferable that it is one or more of These aliphatic hydroxycarboxylic acid type polyesters used as the impregnation aid will be described later in detail.
  • the amount of the impregnation aid attached to the easily impregnable carbon fiber bundle is 3 to 15 parts by weight, preferably 5 to 12 parts by weight, more preferably 6 to 10 parts by weight, based on 100 parts by weight of the carbon fibers.
  • the amount is less than 3 parts by weight, the impregnability of the polycarbonate resin into the carbon fibers is insufficient, so that the appearance and colorability of the resulting molded article are deteriorated, and when the amount is more than 15 parts by weight, the impregnability is excellent, but the matrix resin When the glass transition temperature of a polycarbonate resin is lowered, the flame retardancy of the obtained molded article is lowered.
  • a general-purpose carbon fiber bundle is impregnated by one or more kinds selected from the group selected from a dipping method, a spray method, a roller transfer method, a slit coater method and the like.
  • a method of incorporating an auxiliary is exemplified.
  • the impregnation auxiliary agent mainly adheres to the surface of the carbon fiber bundle, and a part of the impregnation auxiliary agent also penetrates into the inside of the carbon fiber bundle. Seem.
  • the form of the impregnation aid in the production of the easily impregnable carbon fiber bundle can be handled as an aqueous emulsion, an organic solvent diluted solution, or a heated viscous or molten liquid.
  • a preferred combination of the production method and the form of the impregnation aid is a dipping method or a roller transfer method in the case of an aqueous emulsion, but a drying step under an atmosphere of 100° C. or higher is required to sufficiently dry the water.
  • a general coating method such as a slit coater method is possible, and it is possible to apply an appropriate amount to the carbon fiber bundle and then apply it uniformly with a smoothing roll or the like.
  • the impregnation aid is attached to the carbon fiber bundle as uniformly as possible.
  • a method of more uniformly adhering the impregnation aid to the carbon fiber bundle a method of attaching the impregnation aid to the carbon fiber bundle by the above method and then heat-treating again at a temperature at which the viscosity of these impregnation aids is sufficiently lowered Is exemplified.
  • the heat treatment for example, hot air, a hot plate, a roller, an infrared heater or the like can be used, and a roller is preferably used.
  • the carbon fiber contained in the molding material of the present invention may be any carbon fiber such as polyacrylonitrile (PAN) type, petroleum/petroleum pitch type, rayon type and lignin type.
  • PAN polyacrylonitrile
  • PAN-based carbon fiber made from PAN is preferable because it has excellent productivity and mechanical properties on a factory scale.
  • a general carbon fiber is a carbon fiber filament in which 1,000 to 50,000 single fibers form a fiber bundle.
  • the carbon fiber bundle in the present invention includes such general carbon fiber filaments, but the carbon fiber filaments are further superposed and combined into a yarn, or the combined yarn is twisted to form a twisted yarn. Is also included.
  • the carbon fibers contained in the molding material of the present invention those having an oxygen-containing functional group introduced on the surface by a surface treatment are also preferable in order to enhance the adhesiveness between the carbon fibers and the polycarbonate.
  • the carbon fiber bundle is stabilized in order to stabilize the step of uniformly attaching the impregnation aid to the carbon fiber bundle. It is preferable that it is treated with a converging agent for imparting converging property.
  • a converging agent for imparting converging property.
  • the sizing agent those known for producing carbon fiber filaments can be used.
  • the carbon fiber bundle even if the oil agent used for improving the slipperiness during production remains, it can be used without problems in the present invention.
  • the term "surface treatment agent” may be used in the sense of a superordinate concept including the impregnation aid and the other treatment agents such as the above-mentioned sizing agent.
  • the aliphatic hydroxycarboxylic acid-based polyester that can be used as the impregnation aid is a polyester composed of an aliphatic hydroxycarboxylic acid residue, and may be a single-polymerized polyester composed of a single aliphatic hydroxycarboxylic acid residue. It may be a copolyester containing certain aliphatic hydroxycarboxylic acid residues.
  • the aliphatic hydroxycarboxylic acid-based polyester is a residue other than the aliphatic hydroxycarboxylic acid residue, such as a diol residue or a dicarboxylic acid, in an amount of less than 50 mol% of the residues constituting the polymer.
  • a copolyester containing an acid residue or the like may be used, but a homopolymer to which no copolymerization component is intentionally added is preferable because it is easily available.
  • the weight average molecular weight of the aliphatic hydroxycarboxylic acid type polyester used in the present invention is preferably 3,000 to 50,000.
  • the range is more preferably 5,000 to 20,000, further preferably 8,000 to 15,000.
  • a known method such as a high temperature GPC method can be used.
  • the aliphatic hydroxycarboxylic acid-based polyester is not particularly limited, but each homopolymer of ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, and enanthlactone, And a copolymer of two or more kinds of these monomers, and ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valero having a weight average molecular weight of 3,000 to 50,000 are preferable.
  • a lactone polymer not only a polymer obtained by ring-opening polymerization of a lactone but also an aliphatic hydroxycarboxylic acid or a derivative thereof which is an equivalent of the lactone is used as a raw material. Polymers of similar structure are also included.
  • the polycarbonate resin composition adheres to the easily impregnable carbon fiber bundle in an amount of 50 to 2,000 parts by weight per 100 parts by weight of the carbon fiber contained in the easily impregnable carbon fiber bundle.
  • the amount is preferably 66 to 1,900 parts by weight, more preferably 100 to 1,800 parts by weight. If the amount of adhesion is less than 50 parts by weight, the predetermined shape of the molding material cannot be obtained, and if it exceeds 2,000 parts by weight, good strength cannot be obtained.
  • the shape of the molding material of the present invention is not particularly limited, and examples thereof include a columnar shape, a plate shape, a granular shape, a lump shape, a thread shape (string shape), a net shape, and the like, and a plurality of molding materials having different shapes may be used for molding. It is possible.
  • the method of forming the molding material of the present invention by attaching the polycarbonate resin composition to the easily impregnable carbon fiber bundle, a method of coating the surface of the easily impregnable carbon fiber bundle with a polycarbonate resin composition in a molten state, A method of casting a melted polycarbonate resin composition using a T-die or the like after stacking the easily impregnable carbon fiber bundles, and laminating the easily impregnated carbon fiber bundles into a film-like polycarbonate resin composition resin A method of laminating and laminating, a method of spraying a powdery polycarbonate resin composition after aligning the easily impregnable carbon fiber bundle, and the like.
  • an aggregate of easily impregnable fiber bundles cut into a predetermined length can be used in the same manner.
  • the molding material of the present invention preferably has a core-sheath structure having an easily impregnable carbon fiber bundle as a core component and a polycarbonate resin composition as a sheath component, and particularly, for the molding material of the present invention, for injection molding.
  • the easily impregnable carbon fiber bundle is obtained by cutting a strand coated with the polycarbonate resin composition around the strand with a strand cutter, the easily impregnable carbon fiber bundle as a core component, a polycarbonate resin composition.
  • a pellet having a core-sheath structure having a sheath component is more preferable, and a pellet having a longitudinal length of about 3 to 10 mm (hereinafter, also referred to as a core-sheath pellet) is more preferable.
  • the diameter of the core-sheath pellet is not particularly limited, but is preferably 1/10 or more and 2 times or less the pellet length, and more preferably 1/4 or more of the pellet length and equal to or less than the pellet length. (Other ingredients)
  • Various additives may be added to the polycarbonate resin composition of the present invention within a range that does not impair the effects of the present invention.
  • additives examples include phosphorus-based heat stabilizers, phenol-based heat stabilizers, sulfur-containing antioxidants, release agents, ultraviolet absorbers, hindered amine-based light stabilizers, compatibilizers, flame retardants, dyes and pigments, and the like. To be Hereinafter, these additives will be specifically described.
  • phosphorus heat stabilizer As the phosphorus-based stabilizer used in the present invention, any of a phosphite compound, a phosphonite compound and a phosphate compound can be used.
  • phosphite compounds can be used. Specific examples include phosphite compounds represented by the following general formula (9), phosphite compounds represented by the following general formula (10), and phosphite compounds represented by the following general formula (11).
  • R 31 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group or an alkaryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a halo or alkylthio (alkyl group) thereof.
  • R 32 and R 33 are each a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group or an alkylaryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, and an alkyl group having 4 to 20 carbon atoms]
  • a cycloalkyl group and a 2-(4-oxyphenyl)propyl-substituted aryl group having 15 to 25 carbon atoms are shown.
  • the cycloalkyl group and the aryl group can be selected from those not substituted with an alkyl group and those substituted with an alkyl group.
  • R 34 and R 35 are alkyl groups having 12 to 15 carbon atoms. It should be noted that R 34 and R 35 can be selected whether they are the same as or different from each other.
  • Examples of the phosphonite compound include a phosphonite compound represented by the following general formula (12) and a phosphonite compound represented by the following general formula (13).
  • Ar 1 and Ar 2 represent an aryl group or an alkylaryl group having 6 to 20 carbon atoms or a 2-(4-oxyphenyl)propyl-substituted aryl group having 15 to 25 carbon atoms, and four Ar 1 are Either the same or different from each other can be selected. Alternatively, the two Ar 2 can be selected to be the same or different from each other.
  • Preferred specific examples of the phosphite compound represented by the general formula (9) include diphenylisooctylphosphite, 2,2'-methylenebis(4,6-di-tert-butylphenyl)octylphosphite, diphenylmono. (Tridecyl)phosphite, phenyldiisodecylphosphite, and phenyldi(tridecyl)phosphite.
  • Preferred specific examples of the phosphite compound represented by the general formula (10) include distearyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, and bis(2 ,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, dicyclohexylpentaerythritol diphosphite and the like are preferable, and distearyl pentaerythritol diphosphite is preferable, Examples thereof include bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite and bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphi
  • a preferred specific example of the phosphite compound represented by the general formula (11) is 4,4'-isopropylidenediphenol tetratridecyl phosphite.
  • phosphonite compound represented by the general formula (12) include tetrakis(2,4-di-iso-propylphenyl)-4,4′-biphenylenediphosphonite and tetrakis(2,4-di).
  • the tetrakis(2,4-di-tert-butylphenyl)-biphenylene diphosphonite is preferably a mixture of two or more kinds, specifically, tetrakis(2,4-di-tert-butylphenyl)-4,4. '-Biphenylenediphosphonite, tetrakis(2,4-di-tert-butylphenyl)-4,3'-biphenylenediphosphonite and tetrakis(2,4-di-tert-butylphenyl)-3,3' -One or two or more kinds of biphenylenediphosphonite can be used in combination, but a mixture of these three kinds is preferable.
  • Preferred specific examples of the phosphonite compound represented by the above general formula (13) include bis(2,4-di-iso-propylphenyl)-4-phenyl-phenylphosphonite and bis(2,4-di-n).
  • Di-tert-butylphenyl)-phenyl-phenylphosphonite is preferred, and bis(2,4-di-tert-butylphenyl)-phenyl-phenylphosphonite is more preferred.
  • the bis(2,4-di-tert-butylphenyl)-phenyl-phenylphosphonite is preferably a mixture of two or more kinds, specifically, bis(2,4-di-tert-butylphenyl)-4- One or two of phenyl-phenylphosphonite and bis(2,4-di-tert-butylphenyl)-3-phenyl-phenylphosphonite can be used in combination, but preferably two of these are used. It is a mixture. In the case of a mixture of two kinds, the mixing ratio by weight is preferably in the range of 5:1 to 4, more preferably in the range of 5:2 to 3.
  • tributyl phosphate trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl.
  • Phosphate, diisopropyl phosphate and the like can be mentioned, with preference given to trimethyl phosphate.
  • more preferable compounds include compounds represented by the following general formulas (14) and (15).
  • R 36 and R 37 each independently represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, an aryl group or an aralkyl group. ]
  • R 41 , R 42 , R 43 , R 44 , R 47 , R 48 and R 49 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, an aryl group or aralkyl.
  • R 45 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and
  • R 46 represents a hydrogen atom or a methyl group.
  • R 36 and R 37 are preferably alkyl groups having 1 to 12 carbon atoms, and more preferably alkyl groups having 1 to 8 carbon atoms.
  • Specific examples of the compound represented by the formula (14) include tris(dimethylphenyl)phosphite, tris(diethylphenyl)phosphite, tris(di-iso-propylphenyl)phosphite, tris(di-n-butyl).
  • Phenyl)phosphite tris(2,4-di-tert-butylphenyl)phosphite, tris(2,6-di-tert-butylphenyl)phosphite, tris(2,6-di-tert-butylphenyl) Examples of the phosphite include tris(2,6-di-tert-butylphenyl)phosphite.
  • the compound represented by the formula (15) include phosphite derived from 2,2′-methylenebis(4,6-di-tert-butylphenol) and 2,6-di-tert-butylphenol, 2 , 2'-methylenebis(4,6-di-tert-butylphenol) and a phosphite derived from phenol, especially from 2,2'-methylenebis(4,6-di-tert-butylphenol) and phenol. Derived phosphites are preferred.
  • the content of the phosphorus-based heat stabilizer is preferably 0.001 to 3.0 parts by weight, more preferably 0.01 to 2.0 parts by weight, based on 100 parts by weight of the total of the components A and B, and It is preferably 0.05 to 1.0 part by weight. If the content of the phosphorus-based heat stabilizer is less than 0.001 part by weight, the mechanical properties may not be sufficiently exhibited, and if it exceeds 3.0 parts by weight, the mechanical properties may not be sufficiently exhibited.
  • the phenol-based stabilizer used in the present invention generally includes hindered phenols, semi-hindered phenols, and less hindered phenol compounds, but particularly from the viewpoint of applying a heat-stable formulation to polypropylene-based resins.
  • a hindered phenol compound is more preferably used.
  • Specific examples of such hindered phenol compounds include vitamin E, n-octadecyl- ⁇ -(4′-hydroxy-3′,5′-di-tert-butylfel)propionate, 2-tert-butyl-6.
  • n-octadecyl- ⁇ -(4′-hydroxy-3′,5′-di-tert-butylfel)propionate 2-tert-butyl-6-(3′-tert-butyl-5′-methyl) -2'-hydroxybenzyl)-4-methylphenyl acrylate, 3,9-bis ⁇ 2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1,- Dimethylethyl ⁇ -2,4,8,10-tetraoxaspiro[5,5]undecane, and tetrakis[methylene-3-(3',5'-di-tert-butyl-4-hydroxyphenyl)propionate]methane
  • n-octadecyl- ⁇ -(4′-hydroxy-3′,5′-di-tert-butylfel)propionate is more preferable.
  • sulfur-containing antioxidant can also be used as an antioxidant in the polycarbonate resin composition of the present invention. In particular, it is suitable when the resin composition is used for rotational molding or compression molding.
  • Specific examples of the sulfur-containing antioxidant include dilauryl-3,3'-thiodipropionic acid ester, ditridecyl-3,3'-thiodipropionic acid ester, dimyristyl-3,3'-thiodipropionic acid ester.
  • the phosphorus-based stabilizer, the phenol-based stabilizer, and the sulfur-containing antioxidant listed above can be used alone or in combination of two or more kinds.
  • the content of the phenolic stabilizer and the sulfur-containing antioxidant is preferably 0.0001 to 1 part by weight based on 100 parts by weight of the total of the component A and the component B.
  • the amount is more preferably 0.0005 to 0.5 part by weight, still more preferably 0.001 to 0.2 part by weight.
  • the polycarbonate resin composition of the present invention may contain an ultraviolet absorber.
  • benzophenone-based compounds include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy- 5-Sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydride benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2 ,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodium sulfoxybenzophenone, bis(5-benzoyl-4-hydroxy-2-methoxyphenyl) ) Methane, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-methoxy-2'-carboxybenzophenone and the like are exempl
  • benzotriazole type for example, 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-(2-hydroxy-3, 5-dicumylphenyl)phenylbenzotriazole, 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-5-chlorobenzotriazole, 2,2'-methylenebis[4-(1,1,3 ,3-Tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol], 2-(2-hydroxy-3,5-di-tert-butylphenyl)benzotriazole, 2-(2- Hydroxy-3,5-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3,5-di-tert-amylphenyl)benzotriazole, 2-(2-hydroxy-5) -Tert-octyl
  • hydroxyphenyl triazine type for example, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexyloxyphenol, 2-(4,6-diphenyl-1,3,5 -Triazin-2-yl)-5-methyloxyphenol, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-ethyloxyphenol, 2-(4,6-diphenyl -1,3,5-triazin-2-yl)-5-propyloxyphenol and 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-butyloxyphenol It is illustrated.
  • the phenyl group of the above exemplified compounds such as 2-(4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl)-5-hexyloxyphenol is 2,4-dimethyl.
  • a compound having a phenyl group is exemplified.
  • cyclic imino ester system for example, 2,2'-p-phenylenebis(3,1-benzoxazin-4-one), 2,2'-(4,4'-diphenylene)bis(3,1-benzoxazine -4-one), 2,2′-(2,6-naphthalene)bis(3,1-benzoxazin-4-one) and the like.
  • cyanoacrylates for example, 1,3-bis-[(2'-cyano-3',3'-diphenylacryloyl)oxy]-2,2-bis[(2-cyano-3,3-diphenylacryloyl)oxy ] Methyl)propane, 1,3-bis-[(2-cyano-3,3-diphenylacryloyl)oxy]benzene and the like are exemplified.
  • the above-mentioned UV absorber has a structure of a monomer compound capable of radical polymerization, whereby the UV-absorbing monomer and/or the light-stable monomer having a hindered amine structure and an alkyl (meth)acrylate are used.
  • It may be a polymer type ultraviolet absorber obtained by copolymerizing with a monomer such as.
  • Preferred examples of the ultraviolet absorbing monomer include compounds having a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic iminoester skeleton, and a cyanoacrylate skeleton in the ester substituent of a (meth)acrylic acid ester.
  • a benzotriazole type and a hydroxyphenyl triazine type are preferable in terms of ultraviolet absorption ability
  • a cyclic iminoester type and a cyanoacrylate type are preferable in terms of heat resistance and hue (transparency).
  • the above UV absorbers may be used alone or as a mixture of two or more kinds.
  • the content of the ultraviolet absorber is preferably 0.01 to 2 parts by weight, more preferably 0.02 to 2 parts by weight, and further preferably 0.03 with respect to 100 parts by weight as the total of the components A and B. To 1 part by weight, more preferably 0.05 to 0.5 part by weight.
  • the polycarbonate resin composition of the present invention may contain a hindered amine light stabilizer.
  • the hindered amine light stabilizer is generally called HALS (Hindered Amine Light Stabilizer) and is a compound having a 2,2,6,6-tetramethylpiperidine skeleton in its structure, for example, 4-acetoxy-2,2,6.
  • Hindered amine light stabilizers are roughly classified into NH type (hydrogen is bonded to nitrogen atom), NR type (alkyl group (R) is bonded to nitrogen atom) according to the bonding partner of nitrogen atom in piperidine skeleton, There are three types of N-OR type (alkoxy group (OR) is bonded to nitrogen atom), but when applied to a polycarbonate resin, it is a low basic type NR from the viewpoint of the basicity of the hindered amine light stabilizer. Type and N-OR type are more preferable.
  • the hindered amine light stabilizers can be used alone or in combination of two or more kinds.
  • the content of the hindered amine light stabilizer is preferably 0 to 1 part by weight, more preferably 0.05 to 1 part by weight, still more preferably 0, based on 100 parts by weight of the total of the components A and B. 0.08 to 0.7 part by weight, particularly preferably 0.1 to 0.5 part by weight. If the content of the hindered amine-based light stabilizer is more than 1 part by weight, the appearance may be deteriorated due to gas generation and the physical properties may be deteriorated due to decomposition of the polycarbonate resin, which is not preferable. If it is less than 0.05 part by weight, sufficient light resistance may not be exhibited.
  • the polycarbonate resin composition of the present invention can further contain various dyes and pigments to provide molded articles exhibiting various design properties.
  • a fluorescent whitening agent or a fluorescent dye that emits light other than that it is possible to impart a better design effect by utilizing the emission color.
  • a fiber-reinforced polypropylene resin composition which is colored with an extremely small amount of dye and pigment and has a vivid color-forming property.
  • Examples of the fluorescent dye (including a fluorescent whitening agent) used in the present invention include coumarin fluorescent dye, benzopyran fluorescent dye, perylene fluorescent dye, anthraquinone fluorescent dye, thioindigo fluorescent dye, xanthene fluorescent dye. , Xanthone-based fluorescent dyes, thioxanthene-based fluorescent dyes, thioxanthone-based fluorescent dyes, thiazine-based fluorescent dyes, and diaminostilbene-based fluorescent dyes.
  • coumarin-based fluorescent dyes, benzopyran-based fluorescent dyes, and perylene-based fluorescent dyes which have good heat resistance and little deterioration during molding of a polycarbonate resin, are preferable.
  • the dye other than the bluing agent and the fluorescent dye perylene dyes, coumarin dyes, thioindigo dyes, anthraquinone dyes, thioxanthone dyes, ferrocyanides such as dark blue, perinone dyes, quinoline dyes, quinacridone. Examples thereof include dyes, dioxazine dyes, isoindolinone dyes, and phthalocyanine dyes.
  • the resin composition of the present invention can be blended with a metallic pigment to obtain a better metallic color.
  • the metallic pigment those having a metal coating or a metal oxide coating on various plate-like fillers are suitable.
  • the content of the above dye/pigment is preferably 0.00001 to 1 part by weight, and more preferably 0.00005 to 0.5 part by weight, based on 100 parts by weight of the total of the components A and B.
  • Other resins may be used in a small proportion within the range in which the effects of the present invention are exhibited.
  • Such other resins include polyamide resins, polyimide resins, polyetherimide resins, polyurethane resins, silicone resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, polyolefin resins other than polypropylene resins, polymethacrylate resins, phenolic resins. Resins such as epoxy resin can be used. (Other filling materials) In the polycarbonate resin composition of the present invention, other fillers may be used in a small proportion within the range in which the effects of the present invention are exhibited.
  • Such other fillers include potassium whisker titanate, zinc oxide whiskers, alumina fibers, silicon carbide fibers, ceramic fibers, asbestos fibers, gypsum fibers, fibrous fillers such as metal fibers, wollastonite, sericite, kaolin, Silicates such as mica, clay, bentonite, asbestos, talc and alumina silicate, swelling layered silicates such as montmorillonite and synthetic mica, metal compounds such as alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide and iron oxide , Carbonates such as calcium carbonate, magnesium carbonate, dolomite, sulfates such as calcium sulfate and barium sulfate, non-fibrous fillers such as glass beads, ceramic beads, boron nitride, silicon carbide, calcium phosphate and silica.
  • fibrous fillers such as metal fibers, wollastonite, sericite, kaolin, Silicates such as mica, clay, bentonite, asbestos
  • the polycarbonate resin composition of the present invention may contain a small proportion of additives known per se in order to impart various functions to the molded article and improve the characteristics.
  • additives include sliding agents (for example, PTFE particles), fluorescent dyes, inorganic fluorescent substances (for example, fluorescent substances having aluminate as a mother crystal), antistatic agents, crystal nucleating agents, inorganic and organic antibacterial agents.
  • Photocatalyst type antifouling agents for example, fine particle titanium oxide, fine particle zinc oxide
  • radical generators for example, infrared absorbers (heat ray absorbers), and photochromic agents.
  • the polycarbonate resin composition is impregnated into the easily impregnable carbon fiber bundle, and the carbon fiber bundle of the easily impregnable carbon fiber bundle is released and molded, and then cooled.
  • the invention of a method for producing a molded article is also included.
  • to disperse and disperse the carbon fiber bundle of the easily impregnable carbon fiber bundle means that the carbon fiber bundle is as large as the carbon fiber does not become a lump in the molded body. It means that it is defibrated and dispersed, and it is excellent even if you do not completely loosen the carbon fiber bundles such as carbon fiber filaments to each of the constituent thousands of tens of thousands of carbon fiber single yarns. A molded product having excellent physical properties and appearance can be obtained.
  • the above molding material can be used in various forms suitable for the molding method adopted.
  • a strand in which a polycarbonate resin composition is coated around an easily impregnable carbon fiber bundle is used as a pellet-shaped molding material obtained by cutting the strand with a strand cutter into a length of about 3 to 10 mm. be able to.
  • press molding is effective for obtaining a large plate-shaped molded product.
  • a plate-shaped molding material obtained by laminating a polycarbonate resin composition and a bundle of easily impregnable carbon fibers, which is heated to a plasticizing temperature of the polycarbonate resin composition or higher, It is also possible to perform molding under a predetermined press pressure after installation in.
  • a method of molding using a preform body obtained by previously heating and pressing the molding material according to the present invention is also effective.
  • the molding material and the carbon fiber content of the molding and the proportion thereof That is, the composition based on mass is naturally the same. Therefore, the amount of the carbon fiber or the polycarbonate resin composition contained in the molded product of the present invention and the preferable range thereof are as described above for the molding material.
  • the carbon fiber content of either one of the molding material or the obtained molded body ( The rate) can be measured and this can be regarded as the content (rate) of the other carbon fiber. Further, even when the molding material of the present invention is molded by adding other molding materials, additives, etc., the calculation is performed based on the addition amount thereof, and the molding material or molded article of the present invention The carbon fiber content (rate) of the other can be determined from the carbon fiber content (rate) of either one.
  • a conventional carbon fiber reinforced thermoplastic resin molded product is a pellet or the like in which the thermoplastic resin and the carbon fiber are melt-kneaded by a twin-screw extruder or the like in order to make the carbon fiber uniformly dispersed in the thermoplastic resin. It is obtained by molding as a material.
  • this method since the carbon fiber is crushed in the extruder due to the high shearing and kneading, and the length of the carbon fiber in the obtained molded product becomes less than 0.3 mm, the physical property reinforcing effect of the fiber is obtained. Will decrease.
  • the molded body of the molding material of the present invention has excellent impregnation properties of the polycarbonate resin composition into the carbon fiber bundle, it is not necessary to knead the carbon fiber bundle and the molten resin with high shear. Therefore, the carbon fibers remain in the obtained molded product for a long time, and the mechanical strength is excellent.
  • the molded product of the present invention is preferably a molded product in which carbon fibers in which the easily impregnable carbon fiber bundles are unwound are dispersed with an average fiber length of 0.3 mm or more, more preferably the carbon fiber. Are dispersed with an average fiber length of 0.4 mm or more.
  • the average fiber length of the remaining carbon fibers there is no particular upper limit on the average fiber length of the remaining carbon fibers, and it depends on the application and the molding method employed.
  • a mean fiber of carbon fibers The length is generally about 10 mm or less, and a carbon fiber bundle impregnated with a thermoplastic resin having a higher degree is more likely to be broken during injection molding. Therefore, the average fiber length is often 2 mm or less.
  • the molded product of the present invention is preferably one in which the relationship of the following formula (C) is established in a tensile test piece having an ISO527 standard wall thickness of 4 mm.
  • the fact that the above formula (C) is satisfied means that in the molded product of the carbon fiber reinforced thermoplastic resin, the tensile strength of the molded product is extremely high as compared with the carbon fiber content, and it is extremely preferable in terms of cost and performance. ..
  • the present invention which is considered to be the best by the present inventors, is a compilation of preferable ranges of the above-mentioned requirements. Of course, the present invention is not limited to these forms.
  • Bending elastic modulus A bending test piece was prepared from the molding material obtained by the following method using an injection molding machine, and the bending elastic modulus was measured according to ISO178. 3) Colorability The molding material obtained by the following method was injection-molded using an injection molding machine under the conditions of a cylinder temperature of 300° C. and a mold temperature of 80° C. to obtain a molded body (width 50 mm, length 90 mm, A thickness of 2 mm) was obtained. The appearance color tone of the obtained molded body was visually confirmed.
  • the L* value of the reflected light of the obtained molded body was measured by using a spectrocolorimeter (model name “U4100”, manufactured by Hitachi High-Technologies Corporation) in accordance with ISO 11664-4, using a C light source and a visual field. It was calculated from tristimulus values X, Y and Z measured by reflection measurement under the condition of an angle of 2°. For the reflection measurement, an integrating sphere was used, and the specular reflection component and the diffuse reflection component were integrated and received. The obtained L* value of 30 or less was judged to be good in colorability. 4) Flame retardance The molding material obtained by the following method is dried at 120° C. for 6 hours with a hot air circulation dryer, and the cylinder temperature is 280° C.
  • a bent type twin-screw extruder with a diameter of 30 mm (TEX30 ⁇ -38.5BW-3V, Japan Steel Works, Ltd.) was used, and the melt was kneaded at a screw rotation speed of 230 rpm, a discharge rate of 25 kg/h and a vent vacuum degree of 3 kPa. Pellets were obtained.
  • the extrusion temperature was 280° C. from the first supply port to the die.
  • the easily impregnable carbon fiber bundle was coated with a resin composition composed of the above-mentioned pellets melted at 280° C.
  • a component Aromatic polycarbonate resin (polycarbonate resin powder having a viscosity average molecular weight of 25,100 made from bisphenol A and phosgene by a conventional method, Panlite L-1250WQ (product name) manufactured by Teijin Ltd.)
  • A-2 Aromatic polycarbonate resin (polycarbonate resin powder having a viscosity average molecular weight of 19,700 made from bisphenol A and phosgene by a conventional method, Panlite L-1225WX (product name) manufactured by Teijin Ltd.)
  • B component B-1: Polycarbonate-polydiorganosiloxane copolymer resin (viscosity average molecular weight 24,000, PDMS amount 8.4%, PDMS degree of polymerization 37, Panlite W-0111 (trade name) manufactured by Teijin Ltd.)
  • B-2 Polycarbonate-polydiorganosiloxane copolymer resin (viscosity average molecular weight 24,000, PDMS amount 8.4%, PD
  • E-3 Ratio of higher alcohol fatty acid ester (ester of monoalcohol having 10 to 20 carbon atoms and fatty acid having 10 to 20 carbon atoms) and triglyceride (ester of glycerin and fatty acid having 10 to 20 carbon atoms) is 30 : 70 (weight ratio) mixture (Rikemar SL-900 (trade name) manufactured by Riken Vitamin Co., Ltd.)
  • E-4 Low molecular weight polyethylene (high wax HW405MP (trade name) manufactured by Mitsui Chemicals, Inc.) (F component)
  • CF-1 Polycaprolactone which is an aliphatic hydroxycarboxylic acid type polyester (PLACCEL (registered trademark) H1P molecular weight 10000 manufactured by Daicel Chemical Industries, Ltd.) was used as an impregnation aid, and this was made into an emulsion liquid having a nonvolatile content of 12% by weight.
  • PLACCEL registered trademark
  • the content of the polycaprolactone impregnation aid in this easily impregnable carbon fiber bundle was 5% by weight (5.3 parts by weight per 100 parts by weight of carbon fiber).
  • CF-2 The same operation as in CF-1 was performed, except that the carbon fiber filaments were treated as an emulsion liquid having a nonvolatile content of 25% by weight as the emulsified solution of polycaprolactone as the impregnation aid.
  • the content of the polycaprolactone impregnation aid in this easily impregnable carbon fiber bundle was 10% by weight (11.1 parts by weight per 100 parts by weight of carbon fiber).
  • CF-3 The same operation as in CF-1 was carried out, except that the carbon fiber filament was treated as an emulsion liquid having a nonvolatile content of 5% by weight as an emulsified solution of polycaprolactone as an impregnation aid.
  • the content of polycaprolactone in this easily impregnable carbon fiber bundle was 1.9% by weight (2 parts by weight per 100 parts by weight of carbon fiber).
  • CF-4 The same operation as that for CF-1 was performed except that the carbon fiber filament was treated as an emulsion liquid having a nonvolatile content of 35% by weight as an emulsified solution of polycaprolactone as an impregnation aid.
  • the content of the polycaprolactone impregnation aid in this easily impregnable carbon fiber bundle was 14.5% by weight (17 parts by weight per 100 parts by weight of carbon fiber).
  • the compounding material of the present invention can provide a molding material excellent in flame retardancy, appearance, strength and colorability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The present invention provides a molding material comprising a carbon fiber-reinforced polycarbonate resin composition, said molding material having superior flame retardancy, external appearance, strength, and colorability. In this molding material, 50-2,000 parts by weight of a polycarbonate resin composition is adhered to a readily impregnable carbon fiber bundle that comprises 100 parts by weight of carbon fibers and 3-15 parts by weight of one or more types of impregnation aid. The molding material is characterized in that the polycarbonate resin composition includes (C) 10-20 parts by weight of a bromine-based flame retardant (C component), (D) 0.01-2 parts by weight of a fluorine-including drip prevention agent (D component), and (E) 0.05-2 parts by weight of a full ester (E component) of a polyvalent alcohol and an aliphatic carboxylic acid, per 100 parts by weight of a resin component that consists of (A) 1-100wt% of an aromatic polycarbonate resin (A component) and (B) 0-99wt% of a polycarbonate-polydiorganosiloxane copolymer resin (B component).

Description

炭素繊維強化ポリカーボネート樹脂組成物からなる成形用材料Molding material comprising carbon fiber reinforced polycarbonate resin composition
 本発明は、炭素繊維強化ポリカーボネート樹脂組成物からなる成形用材料に関する。さらに詳しくは難燃性、外観、強度および着色性に優れた炭素繊維強化ポリカーボネート樹脂組成物からなる成形用材料に関する。 The present invention relates to a molding material made of a carbon fiber reinforced polycarbonate resin composition. More specifically, it relates to a molding material comprising a carbon fiber reinforced polycarbonate resin composition excellent in flame retardancy, appearance, strength and colorability.
 強度が高く、脆弱破壊性が抑制された樹脂材料を得る手段として、樹脂を炭素繊維で強化した複合材料が知られている。特に、マトリックス樹脂として熱可塑性樹脂を炭素繊維で強化した複合材料(炭素繊維強化熱可塑性樹脂とも言い、以下、CFRTPと略することがある)は、成形用材料として易加工性およびリサイクル性に優れており、様々な分野への応用が期待されている。一方で、CFRTPは様々な用途展開が期待されるに伴い、安全性を確保するための難燃化要求への対応が増している。また、近年の成形品形状の複雑さや成形品肉厚の薄肉化、および塗装工程の省略による成形品外観に対する要求レベルの向上などから、難燃性に加えて従来にも増して高度な表面外観、良好な着色性が求められる場合が生じている。 A composite material in which a resin is reinforced with carbon fiber is known as a means for obtaining a resin material having high strength and suppressed brittle fracture. In particular, a composite material in which a thermoplastic resin is reinforced with carbon fibers as a matrix resin (also referred to as a carbon fiber reinforced thermoplastic resin, and may be abbreviated as CFRTP hereinafter) has excellent workability and recyclability as a molding material. And is expected to be applied to various fields. On the other hand, as CFRTP is expected to be used in various applications, the demand for flame retardancy to ensure safety is increasing. In addition to the flame retardancy and the higher surface appearance than before, due to the complexity of the shape of the molded product in recent years, the thinning of the molded product thickness, and the improvement of the required level for the appearance of the molded product by omitting the painting process. In some cases, good colorability is required.
 こうした背景のなか、無機充填剤で強化されたポリカーボネート樹脂とハロゲン化カーボネート化合物からなる樹脂組成物が提案されている(特許文献1)が、期待される強度の改良は十分でなく、得られた樹脂組成物からなる製品は炭素繊維の分散が悪く外観は満足できるものではなかった。強度と外観を満足するものとして、特定の化合物を含む炭素繊維束に付着したポリカーボネート樹脂からなる成形用材料が提案されている(特許文献2)が、使用している特定の化合物により難燃性は不十分であり、また着色性に劣るものであった。強度、難燃性、外観に優れるものとして、リン酸エステル系難燃剤と熱可塑性樹脂を予め含浸させた炭素繊維束をポリカーボネート樹脂で含浸させた成形材料の製造方法などが開示されている。(特許文献3)しかしながら、近年の薄肉化に対応できる難燃性は有しておらず、更なる改善が求められていた。上述の如く、これまで難燃性、外観、強度および着色性に優れた成形用材料は得られていなかった。 Against this background, a resin composition composed of a polycarbonate resin reinforced with an inorganic filler and a halogenated carbonate compound has been proposed (Patent Document 1), but the expected improvement in strength was not obtained and was obtained. The product made of the resin composition had poor carbon fiber dispersion and the appearance was not satisfactory. A molding material composed of a polycarbonate resin attached to a carbon fiber bundle containing a specific compound has been proposed as a material satisfying strength and appearance (Patent Document 2), but it is flame retardant depending on the specific compound used. Was insufficient and the coloring property was poor. As a material having excellent strength, flame retardancy, and appearance, a method for producing a molding material in which a carbon fiber bundle preliminarily impregnated with a phosphate ester flame retardant and a thermoplastic resin is impregnated with a polycarbonate resin is disclosed. (Patent Document 3) However, it does not have flame retardancy capable of coping with the recent thinning, and further improvement has been demanded. As described above, a molding material excellent in flame retardancy, appearance, strength and colorability has not been obtained so far.
特許第4588154号公報Japanese Patent No. 4588154 WO2013/137246号公報WO2013/137246 特開2014-159559号公報JP, 2014-159559, A
 本発明の課題は、上記問題を解決し、難燃性、強度、外観および着色性に優れた炭素繊維強化ポリカーボネート樹脂組成物からなる成形用材料を提供することである。 An object of the present invention is to solve the above problems and to provide a molding material comprising a carbon fiber reinforced polycarbonate resin composition excellent in flame retardancy, strength, appearance and colorability.
 本発明者らは、かかる課題を解決するため鋭意検討した結果、ポリカーボネート樹脂に臭素系難燃剤、含フッ素滴下防止剤および多価アルコールと脂肪族カルボン酸とのフルエステルを添加したポリカーボネート樹脂組成物を炭素繊維に付着させることで、難燃性、外観、強度および着色性に優れた成形用材料を得ることができることを見出し本発明に達した。 The present inventors have conducted extensive studies to solve the above problems, and a polycarbonate resin composition in which a brominated flame retardant, a fluorine-containing anti-dripping agent, and a full ester of a polyhydric alcohol and an aliphatic carboxylic acid are added to the polycarbonate resin. It was found that a molding material excellent in flame retardancy, appearance, strength and colorability can be obtained by adhering the resin to carbon fiber, and thus the present invention has been accomplished.
 すなわち本発明によれば、(1)炭素繊維100重量部および1種以上の含侵助剤3~15重量部からなる易含侵性炭素繊維束に、50~2,000重量部のポリカーボネート樹脂組成物が付着している成形用材料であって、ポリカーボネート樹脂組成物が(A)芳香族ポリカーボネート樹脂(A成分)1~100重量%および(B)ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(B成分)0~99重量%からなる樹脂成分100重量部に対し、(C)臭素系難燃剤(C成分)10~20重量部、(D)含フッ素滴下防止剤(D成分)0.01~2重量部および(E)多価アルコールと脂肪族カルボン酸とのフルエステル(E成分)0.05~2重量部を含有していることを特徴とする成形用材料が提供される。 That is, according to the present invention, (1) an easily impregnable carbon fiber bundle comprising 100 parts by weight of carbon fiber and 3 to 15 parts by weight of one or more impregnating aids, and 50 to 2,000 parts by weight of a polycarbonate resin. A molding material having the composition adhered, wherein the polycarbonate resin composition comprises (A) 1 to 100% by weight of an aromatic polycarbonate resin (component A) and (B) a polycarbonate-polydiorganosiloxane copolymer resin (component B). ) 10 to 20 parts by weight of (C) brominated flame retardant (C component) and (D) 0.01 to 2 of fluorine-containing anti-dripping agent (D component) per 100 parts by weight of resin component consisting of 0 to 99% by weight. There is provided a molding material, characterized in that it contains 0.05 to 2 parts by weight and (E) a full ester of a polyhydric alcohol and an aliphatic carboxylic acid (E component).
 本発明のより好適な態様の一つは(2)含浸助剤が下記式(1)および下記式(2)を満たす1種以上の脂肪族ヒドロキシカルボン酸系ポリエステルからなることを特徴とする上記構成(1)に記載の成形用材料である。 One of the more preferred embodiments of the present invention is characterized in that the (2) impregnation aid comprises one or more aliphatic hydroxycarboxylic acid type polyesters satisfying the following formulas (1) and (2). It is the molding material according to configuration (1).
  300℃における含侵助剤の粘度≦10Pa・s・・・(1)  
  2≦(Tg―Tg)/D・・・(2)
[式中、Dはポリカーボネート樹脂および含侵助剤よりなる樹脂組成物中の含侵助剤の割合(重量%)、Tgはポリカーボネート樹脂に該割合で含侵助剤を添加した樹脂組成物のガラス転移温度(℃)、Tgはポリカーボネート樹脂のガラス転移温度(℃)を表す。]
 本発明のより好適な態様の一つは(3)脂肪族ヒドロキシカルボン酸系ポリエステルが、重量平均分子量3,000~50,000であるε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの単独重合体および重量平均分子量3,000~50,000であるこれら2種以上のモノマーの共重合体からなる群より選ばれる1種以上の化合物であることを特徴とする上記構成(2)に記載の成形用材料である。
Viscosity of the impregnation aid at 300° C.≦10 Pa·s (1)
2≦(Tg 0 −Tg 1 )/D (2)
[Wherein D is the proportion (% by weight) of the impregnating aid in the resin composition comprising the polycarbonate resin and the impregnating aid, and Tg 1 is the resin composition obtained by adding the impregnating aid to the polycarbonate resin in this proportion. Glass transition temperature (° C.) and Tg 0 represent the glass transition temperature (° C.) of the polycarbonate resin. ]
One of the more preferred embodiments of the present invention is (3) wherein the aliphatic hydroxycarboxylic acid type polyester has a weight average molecular weight of 3,000 to 50,000, ε-caprolactone, δ-caprolactone, β-propiolactone, γ. One selected from the group consisting of homopolymers of butyrolactone, δ-valerolactone, γ-valerolactone, enanthlactone and copolymers of two or more of these monomers having a weight average molecular weight of 3,000 to 50,000 It is a molding material as described in the above constitution (2), which is the above compound.
 本発明のより好適な態様の一つは(4)A成分とB成分との合計100重量部に対し、(F)密着性改良剤(F成分)1~10重量部を含有することを特徴とする上記構成(1)~(3)のいずれか一項に記載の成形用材料である。 One of the more preferred embodiments of the present invention is characterized in that (4) the component (A) and the component (B) contain 1 to 10 parts by weight of an adhesion improver (F component) per 100 parts by weight. The molding material according to any one of the above configurations (1) to (3).
 本発明のより好適な態様の一つは(5)E成分が、脂肪族カルボン酸がパルミチン酸成分とステアリン酸成分とを含み、そのガスクロマトグラフ-質量分析法(GC/MS法)におけるピーク面積においてパルミチン酸成分の面積(Sp)とステアリン酸成分の面積(Ss)との合計が全脂肪族カルボン酸成分中80%以上でありかつ両者の面積比(Ss/Sp)が1.3~30である脂肪族カルボン酸であり、かつ酸価が0.1~20である多価アルコールと脂肪族カルボン酸とのフルエステルであることを特徴とする上記構成(1)~(4)のいずれか一項に記載の成形用材料である。 According to one of the more preferred embodiments of the present invention, (5) E component is an aliphatic carboxylic acid containing a palmitic acid component and a stearic acid component, and its peak area in gas chromatography-mass spectrometry (GC/MS method) In, the sum of the area of the palmitic acid component (Sp) and the area of the stearic acid component (Ss) is 80% or more in the total aliphatic carboxylic acid component, and the area ratio (Ss/Sp) of both is 1.3 to 30. Any of the above constitutions (1) to (4), characterized in that it is a full ester of a polyhydric alcohol having an acid value of 0.1 to 20 and an aliphatic carboxylic acid The molding material as described in 1 above.
 本発明のより好適な態様の一つは(6)E成分が、多価アルコールがペンタエリスリトールである多価アルコールと脂肪族カルボン酸とのフルエステルであることを特徴とする上記構成(1)~(5)のいずれか一項に記載の成形用材料である。 One of the more preferred embodiments of the present invention is the above-mentioned constitution (1), wherein (6) the E component is a full ester of a polyhydric alcohol whose polyhydric alcohol is pentaerythritol and an aliphatic carboxylic acid. The molding material according to any one of to (5).
 本発明のより好適な態様の一つは(7)F成分がグリシジルメタクリレート、ビスフェノールA型エポキシ樹脂、ポリアリレートおよびスチレン-マレイン酸樹脂からなる群より選ばれる少なくとも1種の有機化合物であることを特徴とする上記構成(4)~(6)のいずれか一項に記載の成形用材料である。 One of the more preferred embodiments of the present invention is that (7) F component is at least one organic compound selected from the group consisting of glycidyl methacrylate, bisphenol A type epoxy resin, polyarylate and styrene-maleic acid resin. The molding material as described in any one of the above-mentioned constitutions (4) to (6).
 本発明のより好適な態様の一つは(8)易含浸性炭素繊維束を芯成分、ポリカーボネート樹脂組成物を鞘成分とする芯鞘型構造のペレットであることを特徴とする上記構成(1)~(7)のいずれか一項に記載の成形用材料である。 One of the more preferred embodiments of the present invention is (8) a pellet having a core-sheath structure having an easily impregnable carbon fiber bundle as a core component and a polycarbonate resin composition as a sheath component (1) )-(7) The molding material according to any one of items.
 本発明のより好適な態様の一つは(9)ペレットの長手方向の長さが3~10mmであることを特徴とする上記構成(8)に記載の成形用材料である。 One of the more preferred embodiments of the present invention is (9) the molding material described in the above configuration (8), wherein the length of the pellet in the longitudinal direction is 3 to 10 mm.
 本発明のより好適な態様の一つは(10)上記構成(1)~(9)のいずれか一項に記載の成形用材料からなる成形体である。 One of the more preferable embodiments of the present invention is (10) a molded body made of the molding material according to any one of the above configurations (1) to (9).
 本発明のより好適な態様の一つは(11)易含浸性炭素繊維束に由来する炭素繊維が平均繊維長0.3mm以上の長さで分散していることを特徴とする上記構成(10)に記載の成形体である。 (11) The carbon fiber derived from the easily impregnable carbon fiber bundle is dispersed in an average fiber length of 0.3 mm or more (10). ).
 本発明のより好適な態様の一つは(12)成形体がOA・電気電子用内外装部材である上記構成(10)に記載の成形体である。 One of the more preferred embodiments of the present invention is (12) the molded article according to the above configuration (10), in which the molded article is an OA/electrical electronic interior/exterior member.
 本発明のより好適な態様の一つは(13)成形体が自動車用部材である上記構成(10)に記載の成形体である。 One of the more preferable embodiments of the present invention is (13) the molded article according to the above configuration (10) in which the molded article is an automobile member.
 本発明の炭素繊維強化ポリカーボネート樹脂組成物からなる成形用材料から得られた成形品は、強度、難燃性、外観および着色性に優れていることからOA・電気電子用内外装部品、家庭電化製品、自動車用部材、インフラ関連部品、住設関連部品等に有用であり、その奏する産業上の効果は格別である。 Molded articles obtained from the molding material comprising the carbon fiber reinforced polycarbonate resin composition of the present invention are excellent in strength, flame retardancy, appearance and colorability, and therefore, OA/electrical electronic interior/exterior parts, home electrification It is useful for products, automobile parts, infrastructure related parts, housing related parts, etc., and the industrial effect produced by it is exceptional.
 以下、本発明について具体的に説明する。
(A成分:ポリカーボネート樹脂)
 本発明において使用されるポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法および環状カーボネート化合物の開環重合法などを挙げることができる。
Hereinafter, the present invention will be specifically described.
(A component: polycarbonate resin)
The polycarbonate resin used in the present invention is obtained by reacting a dihydric phenol with a carbonate precursor. Examples of the reaction method include an interfacial polymerization method, a melt transesterification method, a solid-state transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
 ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’-ビフェノール、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、4,4’-(p-フェニレンジイソプロピリデン)ジフェノール、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシフェニル)エステル、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィド、9,9-ビス(4-ヒドロキシフェニル)フルオレンおよび9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4-ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。 Typical examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis(4-hydroxyphenyl)ethane, and 2,2-bis(4-hydroxyphenyl). ) Propane (commonly called bisphenol A), 2,2-bis(4-hydroxy-3-methylphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 1,1-bis(4-hydroxyphenyl)- 1-phenylethane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 2,2-bis(4-hydroxyphenyl) Pentane, 4,4'-(p-phenylenediisopropylidene)diphenol, 4,4'-(m-phenylenediisopropylidene)diphenol, 1,1-bis(4-hydroxyphenyl)-4-isopropylcyclohexane , Bis(4-hydroxyphenyl) oxide, bis(4-hydroxyphenyl) sulfide, bis(4-hydroxyphenyl) sulfoxide, bis(4-hydroxyphenyl) sulfone, bis(4-hydroxyphenyl) ketone, bis(4- Hydroxyphenyl) ester, bis(4-hydroxy-3-methylphenyl) sulfide, 9,9-bis(4-hydroxyphenyl)fluorene and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene. To be A preferred dihydric phenol is bis(4-hydroxyphenyl)alkane, and among them, bisphenol A is particularly preferred from the viewpoint of impact resistance and is widely used.
 本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ-トをA成分として使用することが可能である。 In the present invention, in addition to bisphenol A-based polycarbonate which is a general-purpose polycarbonate, it is possible to use a special polycarbonate produced by using other dihydric phenols as the A component.
 例えば、2価フェノール成分の一部又は全部として、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(以下“Bis-TMC”と略称することがある)、9,9-ビス(4-ヒドロキシフェニル)フルオレン及び9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ-ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。 For example, 4,4'-(m-phenylenediisopropylidene)diphenol (hereinafter sometimes abbreviated as "BPM"), 1,1-bis(4-hydroxy) as a part or all of the dihydric phenol component. (Phenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane (hereinafter sometimes abbreviated as “Bis-TMC”), 9,9-bis(4-hydroxyphenyl) Polycarbonate (homopolymer or copolymer) using fluorene and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene (hereinafter sometimes abbreviated as "BCF") has a dimension due to water absorption. It is suitable for applications in which changes and morphological stability are particularly demanding. These dihydric phenols other than BPA are preferably used in an amount of 5 mol% or more, particularly 10 mol% or more, based on the total amount of the dihydric phenol components constituting the polycarbonate.
 殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)~(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつBCFが20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10~95モル%(より好適には50~90モル%、さらに好適には60~85モル%)であり、かつBCFが5~90モル%(より好適には10~50モル%、さらに好適には15~40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつBis-TMCが20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
Particularly, when high rigidity and better hydrolysis resistance are required, it is particularly preferable that the component A constituting the resin composition is the following copolycarbonate (1) to (3). is there.
(1) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, further preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Is 20 to 80 mol% (more preferably 25 to 60 mol%, further preferably 35 to 55 mol%).
(2) BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, further preferably 60 to 85 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Is 5 to 90 mol% (more preferably 10 to 50 mol%, further preferably 15 to 40 mol%).
(3) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, further preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and Bis -Copolymerized polycarbonate having TMC of 20 to 80 mol% (more preferably 25 to 60 mol%, further preferably 35 to 55 mol%).
 これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。 These special polycarbonates may be used alone or in admixture of two or more kinds. Further, these can be used as a mixture with a commonly used bisphenol A type polycarbonate.
 これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6-172508号公報、特開平8-27370号公報、特開2001-55435号公報及び特開2002-117580号公報等に詳しく記載されている。 The production method and characteristics of these special polycarbonates are described in detail, for example, in JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435, and JP-A-2002-117580. ing.
 なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05~0.15%、好ましくは0.06~0.13%であり、かつTgが120~180℃であるポリカーボネート、あるいは
(ii)Tgが160~250℃、好ましくは170~230℃であり、かつ吸水率が0.10~0.30%、好ましくは0.13~0.30%、より好ましくは0.14~0.27%であるポリカーボネート。
Among the various polycarbonates described above, those having a water absorption and a Tg (glass transition temperature) within the following ranges by adjusting the copolymerization composition and the like have good hydrolysis resistance of the polymer itself, and Since it is remarkably excellent in low warpage after molding, it is particularly suitable in a field where morphological stability is required.
(I) a polycarbonate having a water absorption of 0.05 to 0.15%, preferably 0.06 to 0.13% and a Tg of 120 to 180° C., or (ii) a Tg of 160 to 250° C., A polycarbonate having a temperature of 170 to 230° C. and a water absorption of 0.10 to 0.30%, preferably 0.13 to 0.30%, more preferably 0.14 to 0.27%.
 ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62-1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。 Here, the water absorption of polycarbonate is a value obtained by measuring the water content after dipping it in water at 23° C. for 24 hours in accordance with ISO62-1980 using a disc-shaped test piece having a diameter of 45 mm and a thickness of 3.0 mm. is there. Further, Tg (glass transition temperature) is a value obtained by a differential scanning calorimeter (DSC) measurement according to JIS K7121.
 カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。 Carbonyl halide, carbonic acid diester or haloformate is used as the carbonate precursor, and specific examples thereof include phosgene, diphenyl carbonate or dihaloformate of dihydric phenol.
 前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明の芳香族ポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。 In producing an aromatic polycarbonate resin by an interfacial polymerization method of the dihydric phenol and the carbonate precursor, a catalyst, an end terminating agent, and an antioxidant for preventing the dihydric phenol from being oxidized, if necessary. Etc. may be used. The aromatic polycarbonate resin of the present invention is a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher functional polyfunctional aromatic compound, and a polyester obtained by copolymerizing an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid. It includes a carbonate resin, a copolycarbonate resin obtained by copolymerizing a difunctional alcohol (including an alicyclic group), and a polyester carbonate resin obtained by copolymerizing such a difunctional carboxylic acid and a difunctional alcohol. Further, it may be a mixture of two or more kinds of the obtained aromatic polycarbonate resins.
 分岐ポリカーボネート樹脂は、本発明のポリカーボネート樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。 The branched polycarbonate resin can impart anti-drip performance to the polycarbonate resin composition of the present invention. Examples of trifunctional or higher-functional polyfunctional aromatic compounds used for the branched polycarbonate resin include phloroglucin, phlorogluside, or 4,6-dimethyl-2,4,6-tris(4-hydrodiphenyl)heptene-2,2. ,4,6-Trimethyl-2,4,6-tris(4-hydroxyphenyl)heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tris(4-hydroxyphenyl) Ethane, 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane, 2,6-bis(2-hydroxy-5-methylbenzyl)-4-methylphenol, 4-{4-[ 1,1-bis(4-hydroxyphenyl)ethyl]benzene}-α,α-dimethylbenzylphenol and other trisphenols, tetra(4-hydroxyphenyl)methane, bis(2,4-dihydroxyphenyl)ketone, 1, Examples thereof include 4-bis(4,4-dihydroxytriphenylmethyl)benzene, trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and acid chlorides thereof, among which 1,1,1-tris(4-hydroxy) Phenyl)ethane and 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane are preferable, and 1,1,1-tris(4-hydroxyphenyl)ethane is particularly preferable.
 分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、好ましくは0.01~1モル%、より好ましくは0.05~0.9モル%、さらに好ましくは0.05~0.8モル%である。 The constituent unit derived from the polyfunctional aromatic compound in the branched polycarbonate is preferably 100 mol% in total of the constituent unit derived from the dihydric phenol and the constituent unit derived from the polyfunctional aromatic compound, The amount is 0.01 to 1 mol %, more preferably 0.05 to 0.9 mol %, and further preferably 0.05 to 0.8 mol %.
 また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、好ましくは0.001~1モル%、より好ましくは0.005~0.9モル%、さらに好ましくは0.01~0.8モル%であるものが好ましい。なお、かかる分岐構造の割合については1H-NMR測定により算出することが可能である。 In particular, in the case of the melt transesterification method, a branched structural unit may occur as a side reaction, and the amount of the branched structural unit is preferably 100 mol% in total with the structural unit derived from the dihydric phenol, It is preferably 0.001 to 1 mol %, more preferably 0.005 to 0.9 mol %, and further preferably 0.01 to 0.8 mol %. The ratio of such branched structure can be calculated by 1H-NMR measurement.
 脂肪族の二官能性のカルボン酸は、α,ω-ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。 The α,ω-dicarboxylic acid is preferable as the aliphatic bifunctional carboxylic acid. Examples of the aliphatic difunctional carboxylic acid include linear saturated aliphatic dicarboxylic acids such as sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, and icosanedioic acid, and cyclohexanedicarboxylic acid. Preferred are alicyclic dicarboxylic acids such as An alicyclic diol is more preferable as the bifunctional alcohol, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecanedimethanol.
 本発明の芳香族ポリカーボネート樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマー固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。 The reaction modes such as the interfacial polymerization method, the melt transesterification method, the carbonate prepolymer solid phase transesterification method, and the ring-opening polymerization method of the cyclic carbonate compound, which are the production methods of the aromatic polycarbonate resin of the present invention, include various documents and patents. This method is well known in the bulletins.
 本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
  比粘度(ηSP)=(t-t)/t
  [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
The viscosity average molecular weight as referred to in the present invention is obtained by first using a Ostwald viscometer to calculate a specific viscosity (η SP ) calculated by the following equation from a solution prepared by dissolving 0.7 g of polycarbonate in 100 ml of methylene chloride at 20° C.
Specific viscosity (η SP )=(t−t 0 )/t 0
[T 0 is the number of seconds of methylene chloride drop, t is the number of seconds of drop of the sample solution]
The viscosity average molecular weight M is calculated from the determined specific viscosity (ηSP) by the following mathematical formula.
  ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
  [η]=1.23×10-40.83
  c=0.7
 尚、本発明のポリカーボネート樹脂組成物における芳香族ポリカーボネート樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20~30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η]=1.23×10 −4 M 0.83
c=0.7
The viscosity average molecular weight of the aromatic polycarbonate resin in the polycarbonate resin composition of the present invention is calculated as follows. That is, the composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve the soluble component in the composition. The soluble matter is collected by Celite filtration. After that, the solvent in the obtained solution is removed. After removing the solvent, the solid is sufficiently dried to obtain a solid of a component soluble in methylene chloride. A specific viscosity at 20° C. is obtained from a solution prepared by dissolving 0.7 g of the solid in 100 ml of methylene chloride in the same manner as above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as above.
 A成分の含有量は、A成分およびB成分からなる樹脂成分100重量%中、1~100重量%であり、30~100重量%が好ましく、50~95重量%がより好ましい。A成分の含有量が1重量%未満では着色性に劣る。
(B成分:ポリカーボネート-ポリジオルガノシロキサン共重合樹脂)
 本発明の樹脂組成物はB成分としてポリカーボネート-ポリジオルガノシロキサン共重合樹脂を含有することができる。本発明で使用されるポリカーボネート-ポリジオルガノシロキサン共重合樹脂は下記一般式(1)で表される構成単位を誘導する二価フェノールおよび下記一般式(3)で表される構成単位を誘導するヒドロキシアリール末端ポリジオルガノシロキサンを共重合させることにより調製される共重合樹脂であることが好ましい。
The content of the component A is 1 to 100% by weight, preferably 30 to 100% by weight, and more preferably 50 to 95% by weight, based on 100% by weight of the resin component consisting of the components A and B. When the content of the component A is less than 1% by weight, the colorability is poor.
(Component B: Polycarbonate-polydiorganosiloxane copolymer resin)
The resin composition of the present invention may contain a polycarbonate-polydiorganosiloxane copolymer resin as the B component. The polycarbonate-polydiorganosiloxane copolymer resin used in the present invention is a dihydric phenol deriving a structural unit represented by the following general formula (1) and a hydroxy deriving a structural unit represented by the following general formula (3). A copolymer resin prepared by copolymerizing an aryl-terminated polydiorganosiloxane is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[上記一般式(1)において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~18のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~14のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1~4の整数であり、Wは単結合もしくは下記一般式(2)で表される基からなる群より選ばれる少なくとも一つの基である。) [In the general formula (1), R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 6 to 6 carbon atoms. 20 cycloalkyl group, C 6-20 cycloalkoxy group, C 2-10 alkenyl group, C 6-14 aryl group, C 6-14 aryloxy group, carbon atom Represents a group selected from the group consisting of an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxyl group, and when there are a plurality of groups, they may be the same or different. E and f are each an integer of 1 to 4, and W is a single bond or at least one group selected from the group consisting of groups represented by the following general formula (2). )
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[上記一般式(2)においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1~18のアルキル基、炭素原子数6~14のアリール基及び炭素原子数7~20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1~10の整数、hは4~7の整数である。] [In the general formula (2), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17, and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or a carbon atom. Represents a group selected from the group consisting of an aryl group having 6 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, wherein R 19 and R 20 are each independently a hydrogen atom, a halogen atom, or a carbon atom having 1 to 18 carbon atoms; Alkyl group having 1 to 10 carbon atoms, cycloalkyl group having 6 to 20 carbon atoms, cycloalkoxy group having 6 to 20 carbon atoms, alkenyl group having 2 to 10 carbon atoms, and 6 carbon atoms From an aryl group having 14 to 14, an aryloxy group having 6 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxyl group Represents a group selected from the group consisting of two or more, and when there are plural groups, they may be the same or different, g is an integer of 1 to 10, and h is an integer of 4 to 7. ]
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[上記一般式(3)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1~12のアルキル基又は炭素数6~12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10~300の自然数である。Xは炭素数2~8の二価脂肪族基である。]
 一般式(1)で表される構成単位を誘導する二価フェノール(I)としては、例えば、4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3,3’-ビフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、4,4’-ジヒドロキシジフェニルエ-テル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエ-テル、4,4’-スルホニルジフェノール、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、2,2’-ジメチル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド、2,2’-ジフェニル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルフィド、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,3-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,8-ビス(4-ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’-(1,3-アダマンタンジイル)ジフェノール、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等が挙げられる。
[In the general formula (3), R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or a substituent having 6 to 12 carbon atoms. Or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number. And q is 0 or a natural number, and p+q is a natural number of 10 to 300. X is a divalent aliphatic group having 2 to 8 carbon atoms. ]
Examples of the dihydric phenol (I) for deriving the constitutional unit represented by the general formula (1) include, for example, 4,4′-dihydroxybiphenyl, bis(4-hydroxyphenyl)methane and 1,1-bis(4- Hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl) Propane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 2,2-bis(4-hydroxy-3,3'-biphenyl)propane, 2,2-bis(4- Hydroxy-3-isopropylphenyl)propane, 2,2-bis(3-t-butyl-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxy) Phenyl)octane, 2,2-bis(3-bromo-4-hydroxyphenyl)propane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, 2,2-bis(3-cyclohexyl-) 4-hydroxyphenyl)propane, 1,1-bis(3-cyclohexyl-4-hydroxyphenyl)cyclohexane, bis(4-hydroxyphenyl)diphenylmethane, 9,9-bis(4-hydroxyphenyl)fluorene, 9,9- Bis(4-hydroxy-3-methylphenyl)fluorene, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)cyclopentane, 4,4′-dihydroxydiphenylether 4,4'-dihydroxy-3,3'-dimethyldiphenylether, 4,4'-sulfonyldiphenol, 4,4'-dihydroxydiphenylsulfoxide, 4,4'-dihydroxydiphenylsulfide, 2,2'-Dimethyl-4,4'-sulfonyldiphenol,4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, 2,2'-diphenyl -4,4'-sulfonyldiphenol, 4,4'-dihydroxy-3,3'-diphenyldiphenylsulfoxide, 4,4'-dihydroxy-3,3'-diphenyldiphenylsulfide, 1,3-bis{2- (4-hydroxyphenyl)propyl}benzene, 1,4-bis{2-(4-hydroxyphenyl)propyl}benzene, 1,4 -Bis(4-hydroxyphenyl)cyclohexane, 1,3-bis(4-hydroxyphenyl)cyclohexane, 4,8-bis(4-hydroxyphenyl)tricyclo[5.2.1.02,6]decane, 4, 4'-(1,3-adamantanediyl)diphenol, 1,3-bis(4-hydroxyphenyl)-5,7-dimethyladamantane and the like can be mentioned.
 なかでも、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-スルホニルジフェノール、2,2’-ジメチル-4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2-ビス(4-ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。 Among them, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 4,4′-sulfonyldiphenol, 2,2′-dimethyl- 4,4'-sulfonyldiphenol, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 1,3-bis{2-(4-hydroxyphenyl)propyl}benzene, 1,4-bis{ 2-(4-hydroxyphenyl)propyl}benzene is preferred, especially 2,2-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane (BPZ), 4,4′- Sulfonyldiphenol and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene are preferred. Of these, 2,2-bis(4-hydroxyphenyl)propane, which has excellent strength and good durability, is most suitable. These may be used alone or in combination of two or more.
 上記一般式(3)で表される構成単位を誘導するヒドロキシアリール末端ポリジオルガノシロキサンとしては、例えば下記に示すような化合物が好適に用いられる。 As the hydroxyaryl-terminated polydiorganosiloxane for deriving the constitutional unit represented by the general formula (3), for example, the compounds shown below are preferably used.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素-炭素結合を有するフェノール類、好適にはビニルフェノール、2-アリルフェノール、イソプロペニルフェノール、2-メトキシ-4-アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2-アリルフェノール)末端ポリジオルガノシロキサン、(2-メトキシ-4-アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2-アリルフェノール)末端ポリジメチルシロキサン、(2-メトキシ-4-アリルフェノール)末端ポリジメチルシロキサンが好ましい。ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、その分子量分布(Mw/Mn)が3以下であることが好ましい。さらに優れた高温成形時の低アウトガス性と低温衝撃性を発現させるために、かかる分子量分布(Mw/Mn)はより好ましくは2.5以下であり、さらに好ましくは2以下である。かかる好適な範囲の上限を超えると高温成形時のアウトガス発生量が多く、また、低温衝撃性に劣る場合がある。 The hydroxyaryl-terminated polydiorganosiloxane (II) is a phenol having an olefinic unsaturated carbon-carbon bond, preferably vinylphenol, 2-allylphenol, isopropenylphenol, 2-methoxy-4-allylphenol. It can be easily produced by subjecting a terminal of a polysiloxane chain having a polymerization degree of 1 to a hydrosilylation reaction. Among them, (2-allylphenol)-terminated polydiorganosiloxane and (2-methoxy-4-allylphenol)-terminated polydiorganosiloxane are preferable, and particularly (2-allylphenol)-terminated polydimethylsiloxane and (2-methoxy-4) -Allylphenol) terminated polydimethylsiloxane is preferred. The hydroxyaryl-terminated polydiorganosiloxane (II) preferably has a molecular weight distribution (Mw/Mn) of 3 or less. The molecular weight distribution (Mw/Mn) is more preferably 2.5 or less, still more preferably 2 or less, in order to exhibit more excellent low outgassing properties and low temperature impact properties during high temperature molding. If the amount exceeds the upper limit of the preferable range, the amount of outgas generated during high temperature molding may be large and the low temperature impact resistance may be poor.
 また、高度な耐衝撃性を実現するためにヒドロキシアリール末端ポリジオルガノシロキサン(II)のジオルガノシロキサン重合度(p+q)は10~300が適切である。かかるジオルガノシロキサン重合度(p+q)は好ましくは10~200、より好ましくは12~150、更に好ましくは14~100である。かかる好適な範囲の下限未満では、ポリカーボネート-ポリジオルガノシロキサン共重合体の特徴である耐衝撃性が有効に発現せず、かかる好適な範囲の上限を超えると外観不良が現れる。 Moreover, in order to realize a high degree of impact resistance, the degree of polymerization (p+q) of diorganosiloxane of hydroxyaryl-terminated polydiorganosiloxane (II) is suitably 10 to 300. The diorganosiloxane polymerization degree (p+q) is preferably 10 to 200, more preferably 12 to 150, and further preferably 14 to 100. Below the lower limit of the preferred range, the impact resistance, which is a characteristic of the polycarbonate-polydiorganosiloxane copolymer, will not be effectively exhibited, and above the upper limit of the preferred range, poor appearance will appear.
 ポリカーボネート-ポリジオルガノシロキサン共重合樹脂全重量に占めるポリジオルガノシロキサン含有量は0.1~50重量%が好ましい。かかるポリジオルガノシロキサン成分含有量はより好ましくは0.5~30重量%、さらに好ましくは1~20重量%である。かかる好適な範囲の下限以上では、強度や難燃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい安定した外観が得られやすい。かかるポリジオルガノシロキサン重合度、ポリジオルガノシロキサン含有量は、H-NMR測定により算出することが可能である。 The content of polydiorganosiloxane in the total weight of the polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.1 to 50% by weight. The content of the polydiorganosiloxane component is more preferably 0.5 to 30% by weight, further preferably 1 to 20% by weight. Above the lower limit of the preferred range, the strength and flame retardancy are excellent, and below the upper limit of the preferred range, a stable appearance that is unlikely to be affected by molding conditions is likely to be obtained. The polydiorganosiloxane polymerization degree and the polydiorganosiloxane content can be calculated by 1 H-NMR measurement.
 本発明において、ヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、また、2種以上を用いてもよい。 In the present invention, the hydroxyaryl-terminated polydiorganosiloxane (II) may be used alone or in combination of two or more.
 また、本発明の妨げにならない範囲で、上記二価フェノール(I)、ヒドロキシアリール末端ポリジオルガノシロキサン(II)以外の他のコモノマーを共重合体の全重量に対して10重量%以下の範囲で併用することもできる。 Further, within a range not hindering the present invention, other comonomer other than the above dihydric phenol (I) and hydroxyaryl-terminated polydiorganosiloxane (II) is added in an amount of 10% by weight or less based on the total weight of the copolymer. It can also be used together.
 本発明においては、あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中における二価フェノール(I)と炭酸エステル形成性化合物の反応により末端クロロホルメート基を有するオリゴマーを含む混合溶液を調製する。 In the present invention, a mixed solution containing an oligomer having a terminal chloroformate group is prepared by previously reacting a dihydric phenol (I) with a carbonic acid ester forming compound in a mixed solution of a water-insoluble organic solvent and an aqueous alkaline solution. To do.
 二価フェノール(I)のオリゴマーを生成するにあたり、本発明の方法に用いられる二価フェノール(I)の全量を一度にオリゴマーにしてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。 In producing the oligomer of the dihydric phenol (I), the total amount of the dihydric phenol (I) used in the method of the present invention may be converted into the oligomer at one time, or a part of the dihydric phenol (I) may be used as a post-added monomer to form an interface in the subsequent stage. You may add as a reaction raw material to a polycondensation reaction. The post-addition monomer is added in order to accelerate the subsequent polycondensation reaction, and it is not necessary to intentionally add it when it is not necessary.
 このオリゴマー生成反応の方式は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。 The method of this oligomer formation reaction is not particularly limited, but usually a method performed in a solvent in the presence of an acid binder is suitable.
 炭酸エステル形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、ホスゲン等のガス状の炭酸エステル形成性化合物を使用する場合、これを反応系に吹き込む方法が好適に採用できる。 The proportion of the carbonic acid ester forming compound used may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent) of the reaction. Further, when a gaseous carbonic acid ester-forming compound such as phosgene is used, a method of blowing it into the reaction system can be suitably adopted.
 前記酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、オリゴマーの形成に使用する二価フェノール(I)のモル数(通常1モルは2当量に相当)に対して2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。 As the acid binder, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof are used. The ratio of the acid binder used may be appropriately determined in consideration of the stoichiometric ratio (equivalent amount) of the reaction, similarly to the above. Specifically, it is preferable to use 2 equivalents or slightly excess amount of the acid binder with respect to the number of moles of the dihydric phenol (I) used for forming the oligomer (usually 1 mole corresponds to 2 equivalents). ..
 前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレン等の炭化水素溶媒、塩化メチレン、クロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレン等のハロゲン化炭化水素溶媒が好適に用いられる。 As the solvent, solvents that are inert to various reactions such as those used in the production of known polycarbonates may be used alone or as a mixed solvent. Typical examples include hydrocarbon solvents such as xylene, halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene, and the like. Particularly, a halogenated hydrocarbon solvent such as methylene chloride is preferably used.
 オリゴマー生成の反応圧力は特に制限はなく、常圧、加圧、減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は-20~50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2~10時間で行われる。オリゴマー生成反応のpH範囲は、公知の界面反応条件と同様であり、pHは常に10以上に調製される。 The reaction pressure for oligomer formation is not particularly limited and may be normal pressure, increased pressure or reduced pressure, but it is usually advantageous to carry out the reaction under normal pressure. The reaction temperature is selected from the range of −20 to 50° C., and in many cases, heat is generated with the polymerization, so water cooling or ice cooling is desirable. The reaction time depends on other conditions and cannot be specified unconditionally, but is usually 0.2 to 10 hours. The pH range of the oligomer formation reaction is the same as known interfacial reaction conditions, and the pH is always adjusted to 10 or more.
 本発明はこのようにして、末端クロロホルメート基を有する二価フェノール(I)のオリゴマーを含む混合溶液を得た後、該混合溶液を攪拌しながら分子量分布(Mw/Mn)が3以下まで高度に精製された一般式(4)で表わされるヒドロキシアリール末端ポリジオルガノシロキサン(II)を二価フェノール(I)に加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該オリゴマーを界面重縮合させることによりポリカーボネート-ポリジオルガノシロキサン共重合体を得る。 According to the present invention, a mixed solution containing an oligomer of a dihydric phenol (I) having a terminal chloroformate group is thus obtained, and then the mixed solution is stirred to have a molecular weight distribution (Mw/Mn) of 3 or less. The highly purified hydroxyaryl-terminated polydiorganosiloxane (II) represented by the general formula (4) is added to the dihydric phenol (I), and the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer are subjected to interfacial polycondensation. Thus, a polycarbonate-polydiorganosiloxane copolymer is obtained.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(上記一般式(4)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1~12のアルキル基又は炭素数6~12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10~300の自然数である。Xは炭素数2~8の二価脂肪族基である。)
 界面重縮合反応を行うにあたり、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。具体的には、使用するヒドロキシアリール末端ポリジオルガノシロキサン(II)、又は上記の如く二価フェノール(I)の一部を後添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。
(In the general formula (4), R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or a substituent having 6 to 12 carbon atoms. Or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number. , Q is 0 or a natural number, p+q is a natural number of 10 to 300. X is a divalent aliphatic group having 2 to 8 carbon atoms.)
In carrying out the interfacial polycondensation reaction, an acid binder may be appropriately added in consideration of the stoichiometric ratio (equivalent amount) of the reaction. Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof. Specifically, when the hydroxyaryl-terminated polydiorganosiloxane (II) to be used or a part of the dihydric phenol (I) as described above is added as a post-added monomer to this reaction step, the amount of the post-added component It is preferable to use 2 equivalents or an excess of alkali with respect to the total number of moles of the polyhydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) (usually 1 mole corresponds to 2 equivalents).
 二価フェノール(I)のオリゴマーとヒドロキシアリール末端ポリジオルガノシロキサン(II)との界面重縮合反応による重縮合は、上記混合液を激しく攪拌することにより行われる。 The polycondensation by the interfacial polycondensation reaction of the dihydric phenol (I) oligomer and the hydroxyaryl-terminated polydiorganosiloxane (II) is performed by vigorously stirring the above mixed solution.
 かかる重合反応においては、末端停止剤或いは分子量調節剤が通常使用される。末端停止剤としては一価のフェノール性水酸基を有する化合物が挙げられ、通常のフェノール、p-tert-ブチルフェノール、p-クミルフェノール、トリブロモフェノールなどの他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、ヒドロキシフェニルアルキル酸エステル、アルキルエーテルフェノールなどが例示される。その使用量は用いる全ての二価フェノール系化合物100モルに対して、100~0.5モル、好ましくは50~2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。 In such a polymerization reaction, a terminal stopper or a molecular weight modifier is usually used. Examples of the terminal terminator include compounds having a monohydric phenolic hydroxyl group. In addition to ordinary phenol, p-tert-butylphenol, p-cumylphenol, tribromophenol, etc., long-chain alkylphenols, aliphatic carboxylic acids, etc. Examples thereof include chloride, aliphatic carboxylic acid, hydroxybenzoic acid alkyl ester, hydroxyphenylalkyl acid ester, alkyl ether phenol and the like. The amount used is in the range of 100 to 0.5 mol, preferably 50 to 2 mol, based on 100 mol of all dihydric phenol compounds used, and it is naturally possible to use two or more compounds in combination. is there.
 重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加してもよい。 A catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added to accelerate the polycondensation reaction.
 かかる重合反応の反応時間は、好ましくは30分以上、更に好ましくは50分以上である。所望に応じ、亜硫酸ナトリウム、ハイドロサルファイドなどの酸化防止剤を少量添加してもよい。 The reaction time of the polymerization reaction is preferably 30 minutes or longer, more preferably 50 minutes or longer. If desired, a small amount of an antioxidant such as sodium sulfite or hydrosulfide may be added.
 分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネート-ポリジオルガノシロキサンとすることができる。かかる分岐ポリカーボネート-ポリジオルガノシロキサン共重合樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。分岐ポリカーボネート-ポリジオルガノシロキサン共重合樹脂中の多官能性化合物の割合は、芳香族ポリカーボネート-ポリジオルガノシロキサン共重合樹脂全量中、好ましくは0.001~1モル%、より好ましくは0.005~0.9モル%、さらに好ましくは0.01~0.8モル%、特に好ましくは0.05~0.4モル%である。なお、かかる分岐構造量については1H-NMR測定により算出することが可能である。 A branching agent can be used in combination with the above dihydric phenol compound to give a branched polycarbonate-polydiorganosiloxane. Examples of the trifunctional or higher-functional polyfunctional aromatic compound used in the branched polycarbonate-polydiorganosiloxane copolymer resin include phloroglucin, phlorogluside, or 4,6-dimethyl-2,4,6-tris(4-hydrodiphenyl). ) Heptene-2,2,4,6-trimethyl-2,4,6-tris(4-hydroxyphenyl)heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tris (4-hydroxyphenyl)ethane, 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane, 2,6-bis(2-hydroxy-5-methylbenzyl)-4-methylphenol, 4-{4-[1,1-bis(4-hydroxyphenyl)ethyl]benzene}-α,α-dimethylbenzylphenol and other trisphenols, tetra(4-hydroxyphenyl)methane, bis(2,4-dihydroxy) Examples thereof include phenyl)ketone, 1,4-bis(4,4-dihydroxytriphenylmethyl)benzene, trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and acid chlorides thereof, among which 1,1,1 -Tris(4-hydroxyphenyl)ethane and 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane are preferable, and 1,1,1-tris(4-hydroxyphenyl)ethane is particularly preferable. .. The proportion of the polyfunctional compound in the branched polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.001 to 1 mol %, more preferably 0.005 to 0, based on the total amount of the aromatic polycarbonate-polydiorganosiloxane copolymer resin. 0.99 mol%, more preferably 0.01 to 0.8 mol%, particularly preferably 0.05 to 0.4 mol%. The amount of the branched structure can be calculated by 1H-NMR measurement.
 反応圧力は、減圧、常圧、加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は-20~50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5~10時間で行われる。 The reaction pressure may be any of reduced pressure, normal pressure, and increased pressure, but normally, it can be suitably carried out at normal pressure or the self pressure of the reaction system. The reaction temperature is selected from the range of −20 to 50° C., and in many cases, heat is generated with the polymerization, so water cooling or ice cooling is desirable. The reaction time varies depending on other conditions such as the reaction temperature and therefore cannot be specified unconditionally, but is usually 0.5 to 10 hours.
 場合により、得られたポリカーボネート-ポリジオルガノシロキサン共重合樹脂に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηSP/c]のポリカーボネート-ポリジオルガノシロキサン共重合樹脂として取得することもできる。 In some cases, the obtained polycarbonate-polydiorganosiloxane copolymer resin is appropriately subjected to physical treatment (mixing, fractionation, etc.) and/or chemical treatment (polymer reaction, crosslinking treatment, partial decomposition treatment, etc.) to achieve the desired reduction. It can also be obtained as a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity [η SP /c].
 得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート-ポリジオルガノシロキサン共重合樹脂として回収することができる。  The obtained reaction product (crude product) can be recovered as a polycarbonate-polydiorganosiloxane copolymer resin having a desired purity (purification degree) by subjecting it to various post-treatments such as a known separation and purification method. ‥
 ポリカーボネート-ポリジオルガノシロキサン共重合樹脂成形品中のポリジオルガノシロキサンドメインの平均サイズは、1~40nmの範囲が好ましい。かかる平均サイズはより好ましくは1~30nm、更に好ましくは5~25nmである。かかる好適な範囲の下限未満では、耐衝撃性や難燃性が十分に発揮されず、かかる好適な範囲の上限を超えると耐衝撃性が安定して発揮されない場合がある。これにより強度および外観に優れたポリカーボネート樹脂組成物が提供される。 The average size of the polydiorganosiloxane domains in the polycarbonate-polydiorganosiloxane copolymer resin molded product is preferably in the range of 1 to 40 nm. The average size is more preferably 1 to 30 nm, further preferably 5 to 25 nm. Below the lower limit of this preferred range, impact resistance and flame retardancy may not be fully exhibited, and above the upper limit of this preferred range, impact resistance may not be exhibited stably. This provides a polycarbonate resin composition excellent in strength and appearance.
 本発明におけるポリカーボネート-ポリジオルガノシロキサン共重合樹脂成形品のポリジオルガノシロキサンドメインの平均ドメインサイズは、小角エックス線散乱法(Small Angle X-ray Scattering:SAXS)により評価した。小角エックス線散乱法とは、散乱角(2θ)<1 0°以内の小角領域で生じる散漫な散乱・回折を測定する方法である。この小角エックス線散乱法では、物質中に1~100nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。ポリカーボネートポリマーのマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造となるポリカーボネート-ポリジオルガノシロキサン共重合樹脂の場合、ポリカーボネートマトリックスとポリジオルガノシロキサンドメインの電子密度差により、エックス線の散漫散乱が生じる。散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度I を測定して、小角エックス線散乱プロファイルを測定し、ポリジオルガノシロキサンドメインが球状ドメインであり、粒径分布のばらつきが存在すると仮定して、仮の粒径と仮の粒径分布モデルから、市販の解析ソフトウェアを用いてシミュレーションを行い、ポリジオルガノシロキサンドメインの平均サイズを求める。小角エックス線散乱法によれば、透過型電子顕微鏡による観察では正確に測定できない、ポリカーボネートポリマーのマトリックス中に分散したポリジオルガノシロキサンドメインの平均サイズを、精度よく、簡便に、再現性良く測定することができる。平均ドメインサイズとは個々のドメインサイズの数平均を意味する。 The average domain size of the polydiorganosiloxane domains of the polycarbonate-polydiorganosiloxane copolymer resin molded article of the present invention was evaluated by the small angle X-ray scattering method (Small Angle X-ray Scattering: SAXS). The small-angle X-ray scattering method is a method for measuring diffuse scattering/diffraction occurring in a small-angle region within a scattering angle (2θ)<10°. In this small-angle X-ray scattering method, when there are regions with different electron densities of about 1 to 100 nm in the substance, diffuse scattering of X-rays is measured due to the difference in electron density. The particle size of the measurement target is obtained based on the scattering angle and the scattering intensity. In the case of a polycarbonate-polydiorganosiloxane copolymer resin having an aggregate structure in which polydiorganosiloxane domains are dispersed in a matrix of a polycarbonate polymer, diffuse scattering of X-rays occurs due to a difference in electron density between the polycarbonate matrix and the polydiorganosiloxane domain. The small-angle X-ray scattering profile was measured by measuring the scattering intensity I at each scattering angle (2θ) in the scattering angle (2θ) range of less than 10°, and the polydiorganosiloxane domain was a spherical domain, and the particle size distribution was uneven. Assuming that there exists, a simulation is performed using a commercially available analysis software from the temporary particle size and the temporary particle size distribution model, and the average size of the polydiorganosiloxane domain is obtained. According to the small angle X-ray scattering method, the average size of polydiorganosiloxane domains dispersed in a matrix of a polycarbonate polymer, which cannot be accurately measured by observation with a transmission electron microscope, can be measured accurately, simply, and with good reproducibility. it can. The average domain size means the number average of individual domain sizes.
 本発明に関連して用いる用語「平均ドメインサイズ」は、かかる小角エックス線散乱法により、実施例記載の方法で作製した3段型プレートの厚み1.0mm部を測定することにより得られる測定値を示す。また、粒子間相互作用(粒子間干渉)を考慮しない孤立粒子モデルにて解析を行った。 The term "average domain size" used in connection with the present invention means a measurement value obtained by measuring a 1.0 mm thickness portion of a three-stage plate produced by the method described in Examples by such a small angle X-ray scattering method. Show. In addition, the analysis was performed using an isolated particle model that does not consider the interaction between particles (interference between particles).
 ポリカーボネート-ポリジオルガノシロキサン共重合樹脂の粘度平均分子量(M)は、特に限定されないが、好ましくは1.8×10~4.0×10であり、より好ましくは2.0×10~3.5×10、さらに好ましくは2.2×10~3.0×10である。粘度平均分子量が1.8×10未満のポリカーボネート-ポリジオルガノシロキサン共重合樹脂では、良好な機械的特性が得られない場合がある。一方、粘度平均分子量が4.0×10を超えるポリカーボネート-ポリジオルガノシロキサン共重合樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る場合がある。 The viscosity average molecular weight (M) of the polycarbonate-polydiorganosiloxane copolymer resin is not particularly limited, but is preferably 1.8×10 4 to 4.0×10 4 , and more preferably 2.0×10 4 to It is 3.5×10 4 , and more preferably 2.2×10 4 to 3.0×10 4 . A polycarbonate-polydiorganosiloxane copolymer resin having a viscosity average molecular weight of less than 1.8×10 4 may not be able to obtain good mechanical properties. On the other hand, a resin composition obtained from a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity average molecular weight of more than 4.0×10 4 may be inferior in versatility because it is inferior in fluidity during injection molding.
 なお、前記ポリカーボネート-ポリジオルガノシロキサン共重合樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(5×10)を超える粘度平均分子量を有するポリカーボネート-ポリジオルガノシロキサン共重合樹脂は、樹脂のエントロピー弾性が向上する。その結果、強化樹脂材料を構造部材に成形する際に使用されることのあるガスアシスト成形、および発泡成形において、良好な成形加工性を発現する。より好適な態様としては、粘度平均分子量7×10~3×10のポリカーボネート-ポリジオルガノシロキサン共重合樹脂(B-1-1成分)、および粘度平均分子量1×10~3×10のポリカーボネート-ポリジオルガノシロキサン共重合樹脂(B-1-2成分)からなり、その粘度平均分子量が1.6×10~3.5×10であるポリカーボネート-ポリジオルガノシロキサン共重合樹脂(B-1成分)(以下、“高分子量成分含有ポリカーボネート-ポリジオルガノシロキサン共重合樹脂”と称することがある)も使用できる。 The polycarbonate-polydiorganosiloxane copolymer resin may be obtained by mixing those having a viscosity average molecular weight outside the above range. In particular, the polycarbonate-polydiorganosiloxane copolymer resin having a viscosity average molecular weight exceeding the above range (5×10 4 ) improves the entropy elasticity of the resin. As a result, good moldability is exhibited in gas assist molding and foam molding, which are sometimes used when molding a reinforced resin material into a structural member. More preferred embodiments include a polycarbonate-polydiorganosiloxane copolymer resin (B-1-1 component) having a viscosity average molecular weight of 7×10 4 to 3×10 5 , and a viscosity average molecular weight of 1×10 4 to 3×10 4. Polycarbonate-polydiorganosiloxane copolymer resin (B-1-2 component) having a viscosity average molecular weight of 1.6×10 4 to 3.5×10 4 (B-1-2). -1 component) (hereinafter, may be referred to as "polycarbonate-polydiorganosiloxane copolymer resin containing high molecular weight component").
 かかる高分子量成分含有ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(B-1成分)において、B-1-1成分の分子量は7×10~2×10が好ましく、より好ましくは8×10~2×10、さらに好ましくは1×10~2×10、特に好ましくは1×10~1.6×10である。またB-1-2成分の分子量は1×10~2.5×10が好ましく、より好ましくは1.1×10~2.4×10、さらに好ましくは1.2×10~2.4×10、特に好ましくは1.2×10~2.3×10である。 In such a high molecular weight component-containing polycarbonate-polydiorganosiloxane copolymer resin (B-1 component), the molecular weight of the B-1-1 component is preferably 7×10 4 to 2×10 5 , and more preferably 8×10 4 to It is 2×10 5 , more preferably 1×10 5 to 2×10 5 , and particularly preferably 1×10 5 to 1.6×10 5 . The molecular weight of component B-1-2 is preferably 1×10 4 to 2.5×10 4 , more preferably 1.1×10 4 to 2.4×10 4 , and even more preferably 1.2×10 4. ˜2.4×10 4 , particularly preferably 1.2×10 4 to 2.3×10 4 .
 高分子量成分含有ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(B-1成分)は前記B-1-1成分とB-1-2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、B-1成分100重量%中、B-1-1成分が2~40重量%の場合であり、より好ましくはB-1-1成分が3~30重量%であり、さらに好ましくはB-1-1成分が4~20重量%であり、特に好ましくはB-1-1成分が5~20重量%である。 The polycarbonate-polydiorganosiloxane copolymer resin (B-1 component) containing a high molecular weight component is prepared by mixing the above-mentioned B-1-1 component and B-1-2 component in various ratios to satisfy a predetermined molecular weight range. You can get it. The B-1-1 component is preferably 2 to 40% by weight in 100% by weight of the B-1 component, more preferably 3 to 30% by weight, and further preferably the B-1-1 component is 3 to 30% by weight. The B-1-1 component is 4 to 20% by weight, and particularly preferably the B-1-1 component is 5 to 20% by weight.
 また、B-1成分の調製方法としては、(1)B-1-1成分とB-1-2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5-306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内において製造する方法を用い、かかる芳香族ポリカーボネート樹脂を本発明のB-1成分の条件を満足するよう製造する方法、および(3)かかる製造方法((2)の製造法)により得られた芳香族ポリカーボネート樹脂と、別途製造されたB-1-1成分および/またはB-1-2成分とを混合する方法などを挙げることができる。 As the method for preparing the B-1 component, (1) a method in which the B-1-1 component and the B-1-2 component are independently polymerized and mixed, and (2) JP-A-5-306336. A method of producing an aromatic polycarbonate resin showing a plurality of polymer peaks in a molecular weight distribution chart by the GPC method in the same system, as represented by the method disclosed in Japanese Patent Publication No. A method for producing so as to satisfy the condition of one component, and (3) an aromatic polycarbonate resin obtained by the production method (production method of (2)), and a separately produced B-1-1 component and/or Examples thereof include a method of mixing with the component B-1-2.
 本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート-ポリジオルガノシロキサン共重合樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
  比粘度(ηSP)=(t-t)/t
  [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
The viscosity average molecular weight referred to in the present invention is the Ostwald viscosity calculated from a solution prepared by dissolving 0.7 g of a polycarbonate-polydiorganosiloxane copolymer resin in 100 ml of methylene chloride at a specific viscosity (η SP ) calculated by the following formula at 20° C. Using a total,
Specific viscosity (η SP )=(t−t 0 )/t 0
[T 0 is the number of seconds of methylene chloride drop, t is the number of seconds of drop of the sample solution]
The viscosity average molecular weight M is calculated from the determined specific viscosity (η SP ) by the following formula.
  ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
  [η]=1.23×10-40.83
  c=0.7
 尚、本発明のポリカーボネート樹脂組成物におけるポリカーボネート-ポリジオルガノシロキサン共重合樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20~30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。
(C成分:臭素系難燃剤)
 本発明の樹脂組成物は、C成分としては、臭素系難燃剤を含有する。臭素系難燃剤としては、臭素化ポリカーボネート(オリゴマーを含む)が特に好適である。臭素化ポリカーボネートは耐熱性に優れ、かつ大幅に難燃性を向上できる。本発明で使用する臭素化ポリカーボネートは、下記式(5)で表される構成単位が全構成単位の好ましくは少なくとも60モル%、より好ましくは少なくとも80モル%であり、特に好ましくは実質的に下記式(5)で表される構成単位からなる臭素化ポリカーボネート化合物である。
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η]=1.23×10 −4 M 0.83
c=0.7
The calculation of the viscosity average molecular weight of the polycarbonate-polydiorganosiloxane copolymer resin in the polycarbonate resin composition of the present invention is carried out as follows. That is, the composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve the soluble component in the composition. The soluble matter is collected by Celite filtration. After that, the solvent in the obtained solution is removed. After removing the solvent, the solid is sufficiently dried to obtain a solid of a component soluble in methylene chloride. A specific viscosity at 20° C. is obtained from a solution prepared by dissolving 0.7 g of the solid in 100 ml of methylene chloride in the same manner as above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as above.
(C component: brominated flame retardant)
The resin composition of the present invention contains a brominated flame retardant as the C component. As the brominated flame retardant, brominated polycarbonate (including oligomer) is particularly suitable. Brominated polycarbonate has excellent heat resistance and can significantly improve flame retardancy. In the brominated polycarbonate used in the present invention, the structural unit represented by the following formula (5) is preferably at least 60 mol% of all structural units, more preferably at least 80 mol%, and particularly preferably substantially the following. It is a brominated polycarbonate compound comprising a structural unit represented by the formula (5).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(5)中、Xは臭素原子、Rは炭素数1~4のアルキレン基、炭素数1~4のアルキリデン基または-SO-である。 In the formula (5), X is a bromine atom, R is an alkylene group having 1 to 4 carbon atoms, an alkylidene group having 1 to 4 carbon atoms, or —SO 2 —.
 また、かかる式(5)において、好適にはRはメチレン基、エチレン基、イソプロピリデン基、-SO-、特に好ましくはイソプロピリデン基を示す。 Further, in the formula (5), R is preferably a methylene group, an ethylene group, an isopropylidene group or —SO 2 —, and particularly preferably an isopropylidene group.
 臭素化ポリカーボネートは、残存するクロロホーメート基末端が少なく、末端塩素量が0.3ppm以下であることが好ましく、より好ましくは0.2ppm以下である。かかる末端塩素量は、試料を塩化メチレンに溶解し、4-(p-ニトロベンジル)ピリジンを加えて末端塩素(末端クロロホーメート)と反応させ、これを紫外可視分光光度計(日立製作所製U-3200)により測定して求めることができる。末端塩素量が0.3ppm以下であると、難燃性ポリカーボネート樹脂組成物の熱安定性がより良好となる場合があり、更に高温の成形が可能となり、その結果成形加工性により優れた樹脂組成物が提供される場合がある。 The brominated polycarbonate has few residual chloroformate group terminals, and the terminal chlorine amount is preferably 0.3 ppm or less, more preferably 0.2 ppm or less. The amount of such terminal chlorine was obtained by dissolving the sample in methylene chloride, adding 4-(p-nitrobenzyl)pyridine, and reacting with terminal chlorine (terminal chloroformate). This was analyzed by an ultraviolet-visible spectrophotometer (U, Hitachi, Ltd.). -3200) to measure and obtain. When the amount of terminal chlorine is 0.3 ppm or less, the thermal stability of the flame-retardant polycarbonate resin composition may be better, and molding at higher temperatures becomes possible, and as a result, the resin composition having better molding processability can be obtained. Things may be provided.
 また臭素化ポリカーボネートは、残存する水酸基末端が少ないことが好ましい。より具体的には臭素化ポリカーボネートの構成単位1モルに対して、末端水酸基量が0.0005モル以下であることが好ましく、より好ましくは0.0003モル以下である。末端水酸基量は、試料を重クロロホルムに溶解し、H-NMR法により測定して求めることができる。かかる末端水酸基量であると、難燃性ポリカーボネート樹脂組成物の熱安定性が更に向上する場合がある。 Further, it is preferable that the brominated polycarbonate has few remaining hydroxyl groups. More specifically, the amount of terminal hydroxyl groups is preferably 0.0005 mol or less, and more preferably 0.0003 mol or less, relative to 1 mol of the structural unit of the brominated polycarbonate. The amount of terminal hydroxyl groups can be determined by dissolving the sample in deuterated chloroform and measuring by 1 H-NMR method. With such an amount of terminal hydroxyl groups, the thermal stability of the flame-retardant polycarbonate resin composition may be further improved.
 臭素化ポリカーボネートの比粘度は、好ましくは0.015~0.1の範囲、より好ましくは0.015~0.08の範囲である。臭素化ポリカーボネートの比粘度は、前述した本発明のA成分であるポリカーボネート樹脂の粘度平均分子量を算出するに際し使用した上記比粘度の算出式に従って算出されたものである。 The specific viscosity of the brominated polycarbonate is preferably in the range of 0.015 to 0.1, more preferably 0.015 to 0.08. The specific viscosity of the brominated polycarbonate is calculated according to the above-mentioned specific viscosity calculation formula used in calculating the viscosity average molecular weight of the polycarbonate resin which is the component A of the present invention.
 C成分の含有量はA成分とB成分との合計100重量部に対し、10~20重量部であり、好ましくは12~20重量部、より好ましくは12~18重量部である。C成分の含有量が10重量部未満では難燃性が発現せず、20重量部を超えると外観が悪化する。
(D成分:含フッ素滴下防止剤)
 本発明の樹脂組成物は、D成分として含フッ素滴下防止剤を含有する。この含フッ素滴下防止剤の含有により、成形品の物性を損なうことなく、良好な難燃性を達成することができる。  
The content of the component C is 10 to 20 parts by weight, preferably 12 to 20 parts by weight, and more preferably 12 to 18 parts by weight, based on 100 parts by weight of the total of the components A and B. If the content of the C component is less than 10 parts by weight, flame retardancy is not exhibited, and if it exceeds 20 parts by weight, the appearance is deteriorated.
(Component D: Fluorine-containing anti-dripping agent)
The resin composition of the present invention contains a fluorine-containing anti-dripping agent as the D component. By containing this fluorine-containing anti-dripping agent, good flame retardancy can be achieved without impairing the physical properties of the molded product.
 D成分の含フッ素滴下防止剤としては、フィブリル形成能を有する含フッ素ポリマーを挙げることができ、かかるポリマーとしてはポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、など)、米国特許第4379910号公報に示されるような部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート樹脂などを挙げることができる。中でも好ましくはポリテトラフルオロエチレン(以下PTFEと称することがある)である。   Examples of the fluorine-containing anti-dripping agent as the component D include fluorine-containing polymers having a fibril forming ability, and examples of such polymers include polytetrafluoroethylene and tetrafluoroethylene-based copolymers (for example, tetrafluoroethylene/hexafluoro). Propylene copolymers, etc.), partially fluorinated polymers as shown in US Pat. No. 4,379,910, and polycarbonate resins produced from fluorinated diphenols. Among them, polytetrafluoroethylene (hereinafter sometimes referred to as PTFE) is preferable.  
 フィブリル形成能を有するPTFEの分子量は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その分子量は、標準比重から求められる数平均分子量において100万~1000万、より好ましく200万~900万である。かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、さらに良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。   The molecular weight of PTFE capable of forming fibrils is extremely high, and PTFE tends to bind to each other by an external action such as shearing force to become fibrous. Its molecular weight is 1,000,000 to 10,000,000, more preferably 2,000,000 to 9,000,000 in terms of number average molecular weight determined from standard specific gravity. In addition to the solid form, such PTFE may be in the form of an aqueous dispersion. Further, PTFE having such fibril-forming ability improves dispersibility in the resin, and it is also possible to use a PTFE mixture in a mixed form with other resins in order to obtain better flame retardancy and mechanical properties. is there.  
 かかるフィブリル形成能を有するPTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン工業(株)のポリフロンMPA FA500およびF-201Lなどを挙げることができる。PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ(株)製のフルオンAD-1、AD-936、ダイキン工業(株)製のフルオンD-1およびD-2、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)30Jなどを代表として挙げることができる。   Examples of commercially available PTFE capable of forming fibrils include Teflon (registered trademark) 6J manufactured by Mitsui DuPont Fluorochemical Co., Ltd., and Polyflon MPA FA500 and F-201L manufactured by Daikin Industries, Ltd. Commercially available aqueous dispersions of PTFE include Fluon AD-1, AD-936 manufactured by Asahi IC Polymers Co., Ltd., Fluon D-1 and D-2 manufactured by Daikin Industries, Ltd., Mitsui DuPont Fluoro. Typical examples thereof include Teflon (registered trademark) 30J manufactured by Chemical Co., Ltd.  
 混合形態のPTFEとしては、(1)PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い、共凝集混合物を得る方法(特開昭60-258263号公報、特開昭63-154744号公報などに記載された方法)、(2)PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4-272957号公報に記載された方法)、(3)PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06-220210号公報、特開平08-188653号公報などに記載された方法)、(4)PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9-95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、さらに該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11-29679号などに記載された方法)により得られたものが使用できる。これら混合形態のPTFEの市販品としては、三菱ケミカル(株)の「メタブレン A3800」(商品名)などを挙げることができる。   The mixed form of PTFE is (1) a method in which an aqueous dispersion of PTFE and an aqueous dispersion or solution of an organic polymer are mixed and coprecipitated to obtain a coaggregation mixture (JP-A-60-258263, Japanese Unexamined Patent Publication (Kokai) No. 63-154744), (2) A method of mixing an aqueous dispersion of PTFE with dried organic polymer particles (Japanese Unexamined Patent Publication No. 4-272957) (3) A method in which an aqueous dispersion of PTFE and an organic polymer particle solution are uniformly mixed, and the respective media are simultaneously removed from the mixture (JP-A 06-220210, JP-A 08-188653, etc.). Described method), (4) a method of polymerizing a monomer forming an organic polymer in an aqueous dispersion of PTFE (method described in JP-A-9-95583), and (5) PTFE A method in which an aqueous dispersion and an organic polymer dispersion are uniformly mixed, and then a vinyl-based monomer is further polymerized in the mixed dispersion to obtain a mixture (method described in JP-A No. 11-29679). What was obtained by can be used. Commercially available products of these mixed forms of PTFE include METHYBRENE A3800 (trade name) manufactured by Mitsubishi Chemical Corporation.  
 混合形態におけるPTFEの割合としては、PTFE混合物100重量%中、PTFEが1~60重量%が好ましく、より好ましくは5~55重量%である。PTFEの割合がかかる範囲にある場合は、PTFEの良好な分散性を達成することができる。なお、上記D成分の割合は正味の含フッ素滴下防止剤の量を示し、混合形態のPTFEの場合には、正味のPTFE量を示す。   The proportion of PTFE in the mixed form is preferably 1 to 60% by weight and more preferably 5 to 55% by weight in 100% by weight of the PTFE mixture. When the proportion of PTFE is in such a range, good dispersibility of PTFE can be achieved. The ratio of the component D represents the net amount of the fluorine-containing anti-dripping agent, and in the case of PTFE in the mixed form, the net amount of PTFE.  
 D成分の含有量は、A成分とB成分との合計100重量部に対して、0.01~2重量部、好ましくは0.1~1.5重量部、より好ましくは0.2~1重量部である。D成分の含有量が上記範囲を超えて少なすぎる場合には難燃性が不十分となる。一方、D成分の含有量が上記範囲を超えて多すぎる場合にはPTFEが成形品表面に析出し外観不良となるばかりでなく、樹脂組成物のコストアップに繋がる。 The content of the component D is 0.01 to 2 parts by weight, preferably 0.1 to 1.5 parts by weight, and more preferably 0.2 to 1 with respect to 100 parts by weight of the total of the components A and B. Parts by weight. If the content of component D exceeds the above range and is too small, flame retardancy becomes insufficient. On the other hand, when the content of the component D exceeds the above range and is too large, not only the PTFE is deposited on the surface of the molded article and the appearance is deteriorated, but also the cost of the resin composition is increased.
 また本発明のポリテトラフルオロエチレン系混合体に使用される有機系重合体に使用されるスチレン系単量体としては、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基およびハロゲンからなる群より選ばれた1つ以上の基で置換されてもよいスチレン、例えば、オルト-メチルスチレン、メタ-メチルスチレン、パラ-メチルスチレン、ジメチルスチレン、エチル-スチレン、パラ-tert-ブチルスチレン、メトキシスチレン、フルオロスチレン、モノブロモスチレン、ジブロモスチレン、およびトリブロモスチレン、ビニルキシレン、ビニルナフタレンが例示されるが、これらに制限されない。前記スチレン系単量体は単独又は2つ以上の種類を混合して使用することができる。 The styrene-based monomer used in the organic polymer used in the polytetrafluoroethylene-based mixture of the present invention includes an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms and halogen. Styrene optionally substituted with one or more groups selected from the group consisting of, for example, ortho-methylstyrene, meta-methylstyrene, para-methylstyrene, dimethylstyrene, ethyl-styrene, para-tert-butylstyrene. , Methoxystyrene, fluorostyrene, monobromostyrene, dibromostyrene, and tribromostyrene, vinylxylene, vinylnaphthalene, but are not limited thereto. The styrenic monomers may be used alone or in admixture of two or more.
 本発明のポリテトラフルオロエチレン系混合体に使用される有機系重合体に使用されるアクリル系単量体は、置換されてもよい(メタ)アクリレート誘導体を含む。具体的に前記アクリル系単量体としては、炭素数1~20のアルキル基、炭素数3~8のシクロアルキル基、アリール基、及びグリシジル基からなる群より選ばれた1つ以上基により置換されてもよい(メタ)アクリレート誘導体、例えば(メタ)アクリロ二トリル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートおよびグリシジル(メタ)アクリレート、炭素数1~6のアルキル基、又はアリール基により置換されてもよいマレイミド、例えば、マレイミド、N-メチル-マレイミドおよびN-フェニル-マレイミド、マレイン酸、フタル酸およびイタコン酸が例示されるが、これらに制限されない。前記アクリル系単量体は単独又は2つ以上の種類を混合して使用することができる。これらの中でも(メタ)アクリロ二トリルが好ましい。 The acrylic monomer used in the organic polymer used in the polytetrafluoroethylene-based mixture of the present invention contains an optionally substituted (meth)acrylate derivative. Specifically, the acrylic monomer is substituted with at least one group selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group, and a glycidyl group. (Meth)acrylate derivatives, such as (meth)acrylonitrile, methyl(meth)acrylate, ethyl(meth)acrylate, propyl(meth)acrylate, butyl(meth)acrylate, amyl(meth)acrylate, hexyl( (Meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, octyl (meth)acrylate, dodecyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate and glycidyl (meth) Examples thereof include acrylates, maleimides which may be substituted with an alkyl group having 1 to 6 carbon atoms, or aryl groups, for example, maleimides, N-methyl-maleimides and N-phenyl-maleimides, maleic acid, phthalic acid and itaconic acid. However, it is not limited to these. The acrylic monomers may be used alone or in admixture of two or more. Among these, (meth)acrylonitrile is preferable.
 コーティング層に用いられる有機重合体に含まれるアクリル系単量体由来単位の量は、スチレン系単量体由来単位100重量部に対して好ましくは8~11重量部、より好ましくは8~10重量部、さらに好ましくは8~9重量部である。アクリル系単量体由来単位が8重量部より少ないとコーティング強度が低下することがあり、11重量部より多いと成形品の表面外観が悪くなり得る。 The amount of the acrylic monomer-derived unit contained in the organic polymer used in the coating layer is preferably 8 to 11 parts by weight, more preferably 8 to 10 parts by weight, based on 100 parts by weight of the styrene-based monomer-derived unit. Parts, more preferably 8 to 9 parts by weight. If the amount of the acrylic monomer-derived unit is less than 8 parts by weight, the coating strength may be lowered, and if it is more than 11 parts by weight, the surface appearance of the molded product may be deteriorated.
 本発明のポリテトラフルオロエチレン系混合体は、残存水分含量が0.5重量%以下であることが好ましく、より好ましくは0.2~0.4重量%、さらに好ましくは0.1~0.3重量%である。残存水分量が0.5重量%より多いと難燃性に悪影響を与えることがある。 The polytetrafluoroethylene-based mixture of the present invention preferably has a residual water content of 0.5% by weight or less, more preferably 0.2 to 0.4% by weight, still more preferably 0.1 to 0. It is 3% by weight. If the residual water content is more than 0.5% by weight, flame retardancy may be adversely affected.
 本発明のポリテトラフルオロエチレン系混合体の製造工程には、開始剤の存在下でスチレン系単量体及びアクリル単量体からなるグループより選ばれた1つ以上の単量体を含むコーティング層を分岐状ポリテトラフルオロエチレンの外部に形成するステップが含まれる。さらに、前記コーティング層形成のステップ後に残存水分含量を0.5重量%以下、好ましくは0.2~0.4重量%、より好ましくは0.1~0.3重量%となるように乾燥させるステップを含むことが好ましい。乾燥のステップは、例えば、熱風乾燥又は真空乾燥方法のような当業界に公知にされた方法を用いて行うことができる。 In the manufacturing process of the polytetrafluoroethylene-based mixture of the present invention, a coating layer containing one or more monomers selected from the group consisting of styrene-based monomers and acrylic monomers in the presence of an initiator. Is external to the branched polytetrafluoroethylene. Further, after the step of forming the coating layer, the residual water content is dried to 0.5% by weight or less, preferably 0.2 to 0.4% by weight, more preferably 0.1 to 0.3% by weight. It is preferable to include a step. The drying step can be performed using a method known in the art, for example, a hot air drying method or a vacuum drying method.
 本発明のポリテトラフルオロエチレン系混合体に使用される開始剤は、スチレン系及び/又はアクリル系単量体の重合反応に使用されるものであれば制限なく使用され得る。前記開始剤としては、クミルハイドロパーオキサイド、ジ-tert-ブチルパーオキサイド、ベンゾイルパーオキサイド、ハイドロゲンパーオキサイド、およびポタシウムパーオキサイドが例示されるが、これらに制限されない。本発明のポリテトラフルオロエチレン系混合体には、反応条件に応じて前記開始剤を1種以上使用することができる。前記開始剤の量は、ポリテトラフルオロエチレンの量及び単量体の種類/量を考慮して使用される範囲内で自由に選択され、全組成物の量を基準として0.15~0.25重量部使用することが好ましい。 The initiator used in the polytetrafluoroethylene-based mixture of the present invention can be used without limitation as long as it is used in the polymerization reaction of styrene-based and/or acrylic-based monomers. Examples of the initiator include, but are not limited to, cumyl hydroperoxide, di-tert-butyl peroxide, benzoyl peroxide, hydrogen peroxide, and potassium peroxide. One or more of the above initiators can be used in the polytetrafluoroethylene-based mixture of the present invention depending on the reaction conditions. The amount of the initiator is freely selected within the range used in consideration of the amount of polytetrafluoroethylene and the kind/amount of the monomer, and is 0.15 to 0. It is preferable to use 25 parts by weight.
 本発明のポリテトラフルオロエチレン系混合体は、懸濁重合法により下記の手順にて製造を行った。 The polytetrafluoroethylene-based mixture of the present invention was manufactured by the suspension polymerization method according to the following procedure.
 まず、反応器中に水および分岐状ポリテトラフルオロエチレンディスパージョン(固形濃度:60%、ポリテトラフルオロエチレン粒子径:0.15~0.3μm)を入れた後、攪拌しながらアクリルモノマー、スチレンモノマーおよび水溶性開始剤としてクメンハイドロパーオキサイドを添加し80~90℃にて9時間反応を行なった。反応終了後、遠心分離機にて30分間遠心分離を行うことにより水分を除去し、ペースト状の生成物を得た。その後、生成物のペーストを熱風乾燥機にて80~100℃にて8時間乾燥した。その後、かかる乾燥した生成物の粉砕を行い本発明のポリテトラフルオロエチレン系混合体を得た。 First, water and branched polytetrafluoroethylene dispersion (solid concentration: 60%, polytetrafluoroethylene particle size: 0.15 to 0.3 μm) were put into a reactor, and then acrylic monomer and styrene were added while stirring. Cumene hydroperoxide was added as a monomer and a water-soluble initiator, and the reaction was carried out at 80 to 90° C. for 9 hours. After completion of the reaction, water was removed by centrifugation for 30 minutes in a centrifuge to obtain a pasty product. Then, the product paste was dried in a hot air dryer at 80 to 100° C. for 8 hours. Then, the dried product was pulverized to obtain a polytetrafluoroethylene-based mixture of the present invention.
 かかる懸濁重合法は、特許3469391号公報などに例示される乳化重合法における乳化分散による重合工程を必要としないため、乳化剤および重合後のラテックスを凝固沈殿するための電解質塩類を必要としない。また乳化重合法で製造されたポリテトラフルオロエチレン混合体では、混合体中の乳化剤および電解質塩類が混在しやすく取り除きにくくなるため、かかる乳化剤、電解質塩類由来のナトリウム金属イオン、カリウム金属イオンを低減することは難しい。本発明で使用するポリテトラフルオロエチレン系混合体は、懸濁重合法で製造されているため、かかる乳化剤、電解質塩類を使用しないことから混合体中のナトリウム金属イオン、カリウム金属イオンが低減することができ、熱安定性および耐加水分解性を向上することができる。 The suspension polymerization method does not require a polymerization step by emulsion dispersion in the emulsion polymerization method exemplified in Japanese Patent No. 3469391, and thus does not require an emulsifier and an electrolyte salt for coagulating and precipitating a latex after polymerization. Further, in the polytetrafluoroethylene mixture produced by the emulsion polymerization method, since the emulsifier and the electrolyte salt in the mixture easily mix and become difficult to remove, the emulsifier, the sodium metal ion derived from the electrolyte salt, and the potassium metal ion are reduced. It's difficult. Since the polytetrafluoroethylene-based mixture used in the present invention is produced by the suspension polymerization method, it is possible to reduce sodium metal ions and potassium metal ions in the mixture because such emulsifiers and electrolyte salts are not used. The heat stability and hydrolysis resistance can be improved.
 また、本発明では含フッ素滴下防止剤として被覆分岐PTFEを使用することができる。被覆分岐PTFEは分岐状ポリテトラフルオロエチレン粒子および有機系重合体からなるポリテトラフルオロエチレン系混合体であり、分岐状ポリテトラフルオロエチレンの外部に有機系重合体、好ましくはスチレン系単量体由来単位及び/又はアクリル系単量体由来単位を含む重合体からなるコーティング層を有する。前記コーティング層は、分岐状ポリテトラフルオロエチレンの表面上に形成される。また、前記コーティング層はスチレン系単量体及びアクリル系単量体の共重合体を含むことが好ましい。 Further, in the present invention, coated branched PTFE can be used as a fluorine-containing anti-dripping agent. The coated branched PTFE is a polytetrafluoroethylene-based mixture composed of branched polytetrafluoroethylene particles and an organic polymer. An organic polymer, preferably a styrene-based monomer, is provided outside the branched polytetrafluoroethylene. It has a coating layer made of a polymer containing a unit and/or a unit derived from an acrylic monomer. The coating layer is formed on the surface of branched polytetrafluoroethylene. Also, the coating layer preferably contains a copolymer of a styrene monomer and an acrylic monomer.
 被覆分岐PTFEに含まれるポリテトラフルオロエチレンは分岐状ポリテトラフルオロエチレンである。含まれるポリテトラフルオロエチレンが分岐状ポリテトラフルオロエチレンでない場合、ポリテトラフルオロエチレンの添加が少ない場合の滴下防止効果が不十分となる。分岐状ポリテトラフルオロエチレンは粒子状であり、好ましくは0.1~0.6μm、より好ましくは0.3~0.5μm、さらに好ましくは0.3~0.4μmの粒子径を有する。0.1μmより粒子径が小さい場合には成形品の表面外観に優れるが、0.1μmより小さい粒子径を有するポリテトラフルオロエチレンを商業的に入手することは難しい。また0.6μmより粒子径が大きい場合には成形品の表面外観が悪くなる場合がある。本発明に使用されるポリテトラフルオロエチレンの数平均分子量は1×10~1×10が好ましく、より好ましくは2×10~9×10であり、一般的に高い分子量のポリテトラフルオロエチレンが安定性の側面においてより好ましい。粉末又は分散液の形態いずれも使用され得る。 The polytetrafluoroethylene contained in the coated branched PTFE is branched polytetrafluoroethylene. When the contained polytetrafluoroethylene is not branched polytetrafluoroethylene, the effect of preventing dripping becomes insufficient when the amount of polytetrafluoroethylene added is small. The branched polytetrafluoroethylene is particulate and preferably has a particle diameter of 0.1 to 0.6 μm, more preferably 0.3 to 0.5 μm, and still more preferably 0.3 to 0.4 μm. When the particle size is smaller than 0.1 μm, the surface appearance of the molded product is excellent, but it is difficult to commercially obtain polytetrafluoroethylene having a particle size smaller than 0.1 μm. If the particle size is larger than 0.6 μm, the surface appearance of the molded product may be deteriorated. The polytetrafluoroethylene used in the present invention preferably has a number average molecular weight of 1×10 4 to 1×10 7 , more preferably 2×10 6 to 9×10 6 , and generally has a high molecular weight. Fluoroethylene is more preferable in terms of stability. Either powder or dispersion form can be used.
 被覆分岐PTFEにおける分岐状ポリテトラフルオロエチレンの含有量は、被覆分岐PTFEの総重量100重量部に対して、好ましくは20~60重量部、より好ましくは40~55重量部、さらに好ましくは47~53重量部、特に好ましくは48~52重量部、最も好ましくは49~51重量部である。分岐状ポリテトラフルオロエチレンの割合がかかる範囲にある場合は、分岐状ポリテトラフルオロエチレンの良好な分散性を達成することができる。
(E成分:多価アルコールと脂肪族カルボン酸とのフルエステル)
 本発明で使用するE成分は、多価アルコールと脂肪族カルボン酸とのフルエステル(脂肪酸フルエステル)である。E成分として他のエステルを使用した場合、良好な着色性が得られない。該脂肪族カルボン酸はパルミチン酸成分とステアリン酸成分とを含み、そのガスクロマトグラフ-質量分析法(GC/MS法)におけるピーク面積において、パルミチン酸成分の面積(Sp)とステアリン酸成分の面積(Ss)との合計が全脂肪族カルボン酸成分中80%以上でありかつ両者の面積比(Ss/Sp)が1.3~30であることが好ましい。
The content of branched polytetrafluoroethylene in the coated branched PTFE is preferably 20 to 60 parts by weight, more preferably 40 to 55 parts by weight, still more preferably 47 to 100 parts by weight based on the total weight of the coated branched PTFE. It is 53 parts by weight, particularly preferably 48 to 52 parts by weight, most preferably 49 to 51 parts by weight. When the proportion of the branched polytetrafluoroethylene is within such a range, good dispersibility of the branched polytetrafluoroethylene can be achieved.
(Component E: full ester of polyhydric alcohol and aliphatic carboxylic acid)
The E component used in the present invention is a full ester of a polyhydric alcohol and an aliphatic carboxylic acid (fatty acid full ester). When another ester is used as the E component, good colorability cannot be obtained. The aliphatic carboxylic acid contains a palmitic acid component and a stearic acid component, and in the peak area in the gas chromatograph-mass spectrometry (GC/MS method), the area of the palmitic acid component (Sp) and the area of the stearic acid component ( It is preferable that the total of Ss) and the total aliphatic carboxylic acid component is 80% or more and the area ratio (Ss/Sp) of both is 1.3 to 30.
 本発明でフルエステルとは、そのエステル化率が必ずしも100%である必要はなく、80%以上であればよく、好ましくは85%以上である。 The full ester in the present invention does not necessarily have an esterification rate of 100%, and may be 80% or more, preferably 85% or more.
 本発明におけるGC/MS法は、熱分解メチル化法を使用する。すなわちパイロフィル上において試料である脂肪酸フルエステルと反応試剤である水酸化メチルアンモニウムを反応させて脂肪酸フルエステルを分解すると共に脂肪酸のメチルエステル誘導体を生成させ、かかる誘導体に対してGC/MS測定を行うものである。かかる測定から全脂肪族カルボン酸成分中におけるSsとSpとの合計の割合、およびそれらの面積比(Ss/Sp)を算出する。したがってそれぞれの成分のピーク面積は、それぞれのメチルエステル誘導体に基づくものである。 The pyrolysis methylation method is used as the GC/MS method in the present invention. That is, a fatty acid full ester as a sample is reacted with methylammonium hydroxide as a reaction reagent on a pyrofil to decompose the fatty acid full ester and produce a methyl ester derivative of a fatty acid, and a GC/MS measurement is performed on the derivative. It is a thing. From such measurement, the total ratio of Ss and Sp in the total aliphatic carboxylic acid component and their area ratio (Ss/Sp) are calculated. Therefore, the peak area of each component is based on each methyl ester derivative.
 上記の面積比(Ss/Sp)は、その上限は10がより好ましく、4が更に好ましく、2が特に好ましい。該面積比が1.3未満であると、良好な着色性が得られない場合があり、30を超えると強度低下が生じる場合がある。 The upper limit of the area ratio (Ss/Sp) is more preferably 10, more preferably 4, and particularly preferably 2. If the area ratio is less than 1.3, good colorability may not be obtained, and if it exceeds 30, strength may be reduced.
 本発明の組成物は、含有する脂肪酸フルエステルが、上記の如く特定割合のパルミチン酸成分とステアリン酸成分とを含むことが好ましく、その態様はいかなるものであってもよく、例えば次の態様が挙げられる。
態様(i):上記の面積比(Ss/Sp)を満足する1種の脂肪酸フルエステルをポリカーボネート樹脂中に配合してなる樹脂組成物
態様(ii):上記の面積比(Ss/Sp)を満足するように2種以上の脂肪酸フルエステルをポリカーボネート樹脂中に配合してなる樹脂組成物
 脂肪酸フルエステルの製造は、特に限定されるものではなく、多価アルコールと脂肪族カルボン酸とを従来公知の各種方法により可能である。反応触媒としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化亜鉛、炭酸ナトリウム、炭酸カリウム、並びに2-エチルヘキシル錫などの有機錫化合物が挙げられる。
In the composition of the present invention, the fatty acid full ester contained preferably contains the palmitic acid component and the stearic acid component in the specific ratios as described above, and the aspect thereof may be any, for example, the following aspect: Can be mentioned.
Aspect (i): Resin composition obtained by blending one type of fatty acid full ester satisfying the above area ratio (Ss/Sp) in a polycarbonate resin. Aspect (ii): The above area ratio (Ss/Sp) Resin composition in which two or more fatty acid full esters are blended in a polycarbonate resin so as to satisfy the requirements. The production of fatty acid full esters is not particularly limited, and polyhydric alcohols and aliphatic carboxylic acids are conventionally known. It is possible by various methods. Examples of the reaction catalyst include sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide, calcium oxide, barium oxide, magnesium oxide, zinc oxide, sodium carbonate, potassium carbonate, and organotin compounds such as 2-ethylhexyltin. Are listed.
 また発明の上記の面積比(Ss/Sp)を満足する脂肪酸フルエステルの製造の態様として例えば以下のものを挙げることができる。
態様(1):ほぼ純度100%のステアリン酸と多価アルコールとを反応させてフルエステルを得る。同様にパルミチン酸と多価アルコールとを反応させてフルエステルを得る。これらを上記態様(ii)の如く本発明の組成物中において上記の面積比(Ss/Sp)の条件を満足するようポリカーボネート樹脂に配合する。
態様(2):ステアリン酸およびパルミチン酸の両者を含む脂肪族カルボン酸と多価アルコールとを反応させてフルエステルを得る。これらの2種以上を上記態様(ii)の如く組合せて組成物中において上記の面積比(Ss/Sp)の条件を満足するようにポリカーボネート樹脂に配合する。
態様(3):上記の面積比(Ss/Sp)の条件を満足する組成割合でステアリン酸およびパルミチン酸を含む脂肪族カルボン酸と多価アルコールとを反応させてフルエステルを得る。該フルエステルをポリカーボネート樹脂に配合して本発明の樹脂組成物を得る。
Further, examples of the production method of the fatty acid full ester satisfying the above area ratio (Ss/Sp) of the invention include the following.
Aspect (1): A full ester is obtained by reacting stearic acid having a purity of about 100% with a polyhydric alcohol. Similarly, palmitic acid and polyhydric alcohol are reacted to obtain a full ester. These are blended with the polycarbonate resin so that the above area ratio (Ss/Sp) is satisfied in the composition of the present invention as in the above aspect (ii).
Aspect (2): A full ester is obtained by reacting an aliphatic carboxylic acid containing both stearic acid and palmitic acid with a polyhydric alcohol. Two or more kinds of these are combined as in the above embodiment (ii) and blended in a polycarbonate resin so as to satisfy the above area ratio (Ss/Sp) conditions in the composition.
Aspect (3): A full-ester is obtained by reacting an aliphatic carboxylic acid containing stearic acid and palmitic acid with a polyhydric alcohol in a composition ratio that satisfies the above area ratio (Ss/Sp) conditions. The resin composition of the present invention is obtained by blending the full ester with a polycarbonate resin.
 上記の中でも特に好ましいのは態様(3)である。かかる態様は組成物の製造において簡便であると共に、一体の化合物として製造されその均一性が高いためである。 The aspect (3) is particularly preferable among the above. This is because such an aspect is simple in the production of the composition and is highly uniform because it is produced as an integral compound.
 上記態様(3)で使用される脂肪族カルボン酸について説明する。ステアリン酸やパルミチン酸などの脂肪族カルボン酸は、よく知られたとおり通常各種の植物性油脂や動物性油脂より製造される。これらの油脂類はその成分として各種の脂肪族カルボン酸を含んだエステル化合物であるため、例えば、製造されたステアリン酸は通常パルミチン酸などの他の脂肪族カルボン酸成分を多量に含む。したがって、本発明の(3)の態様で使用される脂肪族カルボン酸を製造するためには、ステアリン酸およびパルミチン酸を上記の面積比(Ss/Sp)の条件を満足する脂肪族カルボン酸を使用する必要があり、そして該条件に適した油脂を脂肪族カルボン酸の原料として使用することが適切である。かかる脂肪族カルボン酸は2種以上の原料からなるものを混合して所定の組成条件することも可能であるが、より好ましいのは1種の原料から所定の組成条件を満足するものである。 Explain the aliphatic carboxylic acid used in the above aspect (3). As well known, aliphatic carboxylic acids such as stearic acid and palmitic acid are usually produced from various vegetable fats and animal fats and oils. Since these oils and fats are ester compounds containing various aliphatic carboxylic acids as their components, the stearic acid produced usually contains a large amount of other aliphatic carboxylic acid components such as palmitic acid. Therefore, in order to produce the aliphatic carboxylic acid used in the aspect (3) of the present invention, stearic acid and palmitic acid are used to prepare an aliphatic carboxylic acid satisfying the conditions of the above area ratio (Ss/Sp). It is necessary to use, and it is appropriate to use a fat and oil suitable for the conditions as a raw material of the aliphatic carboxylic acid. It is possible to mix two or more kinds of the above-mentioned aliphatic carboxylic acids so as to have a predetermined composition condition, but it is more preferable to satisfy the predetermined composition condition from one kind of raw material.
 脂肪族カルボン酸の原料となる油脂としては、パーム油がその生産コストの有利性から広く使用されている。しかしながら本発明においてはかかるパーム油由来の脂肪族カルボン酸を上記態様(3)において使用することは適切とはいえない。脂肪族カルボン酸の原料となる油脂としては、例えば牛脂および豚脂などの動物性油脂、並びにアマニ油、サフラワー油、ヒマワリ油、大豆油、トウモロコシ油、落花生油、綿実油、ゴマ油、およびオリーブ油などの植物性油脂を挙げることができる。上記の中でもステアリン酸をより多く含む点で動物性油脂が好ましく、更に牛脂がより好ましい。更に牛脂の中でもステアリン酸およびパルミチン酸などの飽和成分を多く含むオレオステアリンが好ましい。 Palm oil is widely used as a raw material for aliphatic carboxylic acids because of its production cost advantage. However, in the present invention, it is not appropriate to use such an aliphatic carboxylic acid derived from palm oil in the above aspect (3). Examples of fats and oils as a raw material for the aliphatic carboxylic acid include animal fats and oils such as beef tallow and lard, and linseed oil, safflower oil, sunflower oil, soybean oil, corn oil, peanut oil, cottonseed oil, sesame oil, olive oil, and the like. The vegetable oils and fats of the above can be mentioned. Among the above, animal fats and oils are preferable, and beef tallow is more preferable, because they contain more stearic acid. Further, among beef tallow, oleostearine containing a large amount of saturated components such as stearic acid and palmitic acid is preferable.
 一方、使用される多価アルコールは、その炭素原子数が3~32であるものが好ましい。多価アルコールの具体例としては、グリセリン、ジグリセリン、ポリグリセリン(例えばデカグリセリンなど)、ペンタエリスリトール、ジペンタエリスリトール、ジエチレングリコール、およびプロピレングリコールなどが挙げられ、中でもペンタエリスリトールが好ましい。 On the other hand, the polyhydric alcohol used preferably has 3 to 32 carbon atoms. Specific examples of the polyhydric alcohol include glycerin, diglycerin, polyglycerin (for example, decaglycerin, etc.), pentaerythritol, dipentaerythritol, diethylene glycol, propylene glycol and the like, among which pentaerythritol is preferable.
 脂肪酸フルエステルにおける酸価、水酸基価、ヨウ素価、およびTGA(熱重量解析)測定における5%重量減少温度などについて説明する。 Explain the acid value, hydroxyl value, iodine value of fatty acid full ester, and 5% weight loss temperature in TGA (thermogravimetric analysis) measurement.
 脂肪酸フルエステルの酸価は、強度低下抑制の点からは低いことが好ましく、一方着色性の向上の点からは比較的高いことが好ましい。脂肪酸フルエステルの酸価は0.1~20の範囲が好ましく、2~18の範囲がより好ましく、5~15の範囲が更に好ましい。酸化が0.1未満では良好な着色性が得られない場合があり、2を超えると強度低下が生じる場合がある。ここで酸価は試料1g中に含まれる遊離脂肪酸などを中和するのに必要とする水酸化カリウムのmg数であり、JIS K 0070に規定された方法により求めることができる。尚、上記において酸価と離型力の低減との関係は明確ではないものの、未反応の遊離カルボン酸が成形時に表面へ移行しやすいためではないかと考えられる。 The acid value of the fatty acid full ester is preferably low from the viewpoint of suppressing the strength reduction, while it is preferably relatively high from the viewpoint of improving the coloring property. The acid value of the fatty acid full ester is preferably in the range of 0.1 to 20, more preferably in the range of 2 to 18, and even more preferably in the range of 5 to 15. If the oxidation is less than 0.1, good colorability may not be obtained, and if it exceeds 2, strength may be reduced. Here, the acid value is the mg number of potassium hydroxide required to neutralize free fatty acids and the like contained in 1 g of the sample, and can be determined by the method specified in JIS K0070. Although the relationship between the acid value and the reduction of the releasing force is not clear in the above, it is considered that the unreacted free carboxylic acid is likely to migrate to the surface during molding.
 脂肪酸フルエステルの水酸基価は、強度低下抑制や着色性向上の点からは低いことが好ましく、一方あまりに低いことは製造時間の増大によりコストが増大するため好ましくない。脂肪酸フルエステルの水酸基価は、0.1~40の範囲が好ましく、1~30の範囲がより好ましく、2~20の範囲がさらに好ましい。ここで水酸基価は試料1gをアセチル化させたとき、水酸基と結合した酢酸を中和するのに必要とする水酸化カリウムのmg数であり、JIS K 0070に規定された方法により求めることができる。 The hydroxyl value of the fatty acid full ester is preferably low from the viewpoint of suppressing strength reduction and improving colorability, while too low is not preferable because the manufacturing time increases and the cost increases. The hydroxyl value of the fatty acid full ester is preferably in the range of 0.1 to 40, more preferably in the range of 1 to 30, and even more preferably in the range of 2 to 20. Here, the hydroxyl value is the number of mg of potassium hydroxide required to neutralize the acetic acid bound to the hydroxyl group when 1 g of the sample is acetylated, and can be determined by the method specified in JIS K0070. ..
 脂肪酸フルエステルのヨウ素価は、強度低下抑制の点から低いことが好ましい。脂肪酸フルエステルのヨウ素価は10以下が好ましく、1以下がより好ましい。かかるヨウ素価は試料100gにハロゲンを反応させたとき、結合するハロゲンの量をヨウ素のg数に換算した量であり、JIS K 0070に規定された方法により求めることができる。 Io The iodine value of the fatty acid full ester is preferably low from the viewpoint of suppressing the reduction in strength. The iodine value of the fatty acid full ester is preferably 10 or less, more preferably 1 or less. The iodine value is an amount obtained by converting the amount of halogen bound when 100 g of a sample is reacted with halogen into the g number of iodine, and can be obtained by the method specified in JIS K0070.
 脂肪酸フルエステルのTGA(熱重量解析)測定における5%重量減少温度は、着色性の向上の点からは適度に低いことが好ましく、強度低下抑制の点からは高いことが好ましい。脂肪酸フルエステルの5%重量減少温度は、250~400℃の範囲が好ましく、280~360℃の範囲がより好ましく、300~350℃の範囲がさらに好ましく、310~340℃の範囲が特に好ましい。かかる5%重量減少温度は、TGA測定装置において窒素ガス雰囲気中における23℃から20℃/分の昇温速度で600℃まで昇温する測定条件により求められる。尚、上記においてかかる5%重量減少温度と離型力の低減との関係は明確ではないものの、該重量減少温度が上記範囲にあるものは、未反応の遊離カルボン酸などの揮発性の高い成分を適度に含有し、かかる成分が成形時に表面へ移行しやすいためではないかと考えられる。 The 5% weight loss temperature in TGA (thermogravimetric analysis) measurement of fatty acid full ester is preferably moderately low from the viewpoint of improving the colorability, and is preferably high from the viewpoint of suppressing strength reduction. The 5% weight loss temperature of the fatty acid full ester is preferably in the range of 250 to 400°C, more preferably in the range of 280 to 360°C, further preferably in the range of 300 to 350°C, particularly preferably in the range of 310 to 340°C. The 5% weight loss temperature is determined by the TGA measuring device under the measurement condition that the temperature is raised from 23° C. in a nitrogen gas atmosphere to 600° C. at a heating rate of 20° C./min. Although the relationship between the 5% weight loss temperature and the reduction of the mold release force is not clear in the above, those having a weight loss temperature in the above range have high volatility components such as unreacted free carboxylic acid. It is considered that this is due to the fact that the above components are contained in an appropriate amount and such components easily migrate to the surface during molding.
 E成分の含有量は、A成分とB成分との合計100重量部に対し、0.05~2重量部であり、好ましくは0.1~1重量部、より好ましくは0.2~0.8重量部である。多価脂肪酸エステルが0.05重量部よりも少ない場合は外観の向上が十分でなく、2重量部より多く使用すると成形品の難燃性低下を招く。
(F成分:密着性改良剤)
 本発明のF成分として使用される密着性改良剤は樹脂組成物と炭素繊維との密着性を向上させる化合物である。その中でも1分子中にエポキシ基、カルボン酸基および酸無水物基からなる群より選ばれる官能基を少なくとも1種類有する有機化合物が好ましく使用される。
The content of the E component is 0.05 to 2 parts by weight, preferably 0.1 to 1 part by weight, and more preferably 0.2 to 0. 0, based on 100 parts by weight of the total of the A component and the B component. 8 parts by weight. When the amount of polyvalent fatty acid ester is less than 0.05 parts by weight, the appearance is not sufficiently improved, and when it is used in excess of 2 parts by weight, the flame retardancy of the molded product is lowered.
(F component: adhesion improver)
The adhesion improver used as the F component of the present invention is a compound that improves the adhesion between the resin composition and the carbon fiber. Among them, an organic compound having at least one functional group selected from the group consisting of an epoxy group, a carboxylic acid group and an acid anhydride group in one molecule is preferably used.
 本発明においては、本発明の効果である強度改善効果を顕著に発現させるために、上記の有機化合物を含有せしめてもよい。本発明の樹脂組成物は、上記の有機化合物を配合せしめることにより、樹脂組成物と炭素繊維の密着性を強固にせしめることが可能となり、これにより強度改善効果が顕著に発現する。 In the present invention, in order to remarkably exhibit the strength improving effect which is the effect of the present invention, the above organic compound may be contained. When the resin composition of the present invention is blended with the above-mentioned organic compound, it becomes possible to strengthen the adhesiveness between the resin composition and the carbon fiber, whereby the strength improving effect is remarkably exhibited.
 エポキシ基含有化合物としては、エポキシ基を含有する有機化合物であれば特に制限はないが、フェノキシ樹脂及びエポキシ樹脂を挙げることができる。 The epoxy group-containing compound is not particularly limited as long as it is an organic compound containing an epoxy group, and examples thereof include a phenoxy resin and an epoxy resin.
 フェノキシ樹脂としては、例えば、下記一般式(6)で表わされるフェノキシ樹脂が挙げられる。 Examples of the phenoxy resin include phenoxy resins represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Xは下記一般式(7)で表される基からなる群より選ばれる少なくとも一つの基、Yは水素原子又は水酸基と反応する化合物の残基、nは0以上の整数である。) (In the formula, X is at least one group selected from the group consisting of groups represented by the following general formula (7), Y is a residue of a compound that reacts with a hydrogen atom or a hydroxyl group, and n is an integer of 0 or more. .)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、Phはフェニル基を示す。)
 エポキシ樹脂としては、例えば、下記一般式(8)で表わされるエポキシ樹脂が挙げられる。
(In the formula, Ph represents a phenyl group.)
Examples of the epoxy resin include epoxy resins represented by the following general formula (8).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、X及びnは一般式(6)と同じである。)
 上記一般式(6)において、水酸基と反応する化合物としては、エステル、カーボネート、エポキシ基などを有する化合物、カルボン酸無水物、酸ハライド、イソシアナート基などを有する化合物等を挙げることができ、エステルとしては、特に分子内エステルが好ましく、例えばカプロラクトン等が挙げられる。上記一般式(6)で表わされるフェノキシ樹脂において、Yが水素原子である化合物は、二価のフェノール類とエピクロルヒドリンから容易に製造することができる。また、Yが水酸基と反応する化合物の残基である化合物は、二価のフェノール類とエピクロルヒドリンから製造したフェノキシ樹脂と上記水酸基と反応する化合物を加熱下で混合することにより、容易に製造することができる。
(In the formula, X and n are the same as those in the general formula (6).)
In the general formula (6), examples of the compound that reacts with a hydroxyl group include a compound having an ester, a carbonate, an epoxy group, a carboxylic acid anhydride, an acid halide, a compound having an isocyanate group, and the like. In particular, an intramolecular ester is preferable, and examples thereof include caprolactone. In the phenoxy resin represented by the general formula (6), the compound in which Y is a hydrogen atom can be easily produced from divalent phenols and epichlorohydrin. A compound in which Y is a residue of a compound that reacts with a hydroxyl group can be easily produced by mixing a phenoxy resin produced from a divalent phenol and epichlorohydrin with a compound that reacts with the hydroxyl group under heating. You can
 上記一般式(7)で表わされるエポキシ樹脂は、二価のフェノール類とエピクロルヒドリンから容易に製造することができる。二価フェノール類としては、2,2-ビス(4-ヒドロキシフェニル)プロパン〔ビスフェノールA〕などのビスフェノールA型エポキシ樹脂、1,1-ビス(4-ヒドロキシフェニル)エタン又は4,4’-ジヒドロキシビフェニルなどが用いられる。 The epoxy resin represented by the above general formula (7) can be easily produced from divalent phenols and epichlorohydrin. Examples of dihydric phenols include bisphenol A type epoxy resins such as 2,2-bis(4-hydroxyphenyl)propane [bisphenol A], 1,1-bis(4-hydroxyphenyl)ethane and 4,4′-dihydroxy. Biphenyl or the like is used.
 フェノキシ樹脂及びエポキシ樹脂として、市販品を用いることもできる。フェノキシ樹脂(ビスフェノールA型)の市販品としては、PKHB(InChem社製、Mw=13,700)、PKHH(InChem社製、Mw=29,000)、PKFE(InChem社製、Mw=36,800)、YP-50(東都化成社製、Mw=43,500)等が挙げられる。また、エポキシ樹脂(ビスフェノールA型)の市販品としては、EPICLON HM-101(大日本インキ化学工業社製、Mw=48,000)、jER1256(三菱化学株式会社製、Mw=26,600)等が挙げられる。 Commercially available products can also be used as the phenoxy resin and the epoxy resin. Commercially available phenoxy resins (bisphenol A type) include PKHB (InChem, Mw=13,700), PKHH (InChem, Mw=29,000), PKFE (InChem, Mw=36,800). ), YP-50 (manufactured by Tohto Kasei Co., Ltd., Mw=43,500) and the like. Commercial products of epoxy resin (bisphenol A type) include EPICLON HM-101 (manufactured by Dainippon Ink and Chemicals, Inc., Mw=48,000), jER1256 (manufactured by Mitsubishi Chemical Corporation, Mw=26,600), etc. Are listed.
 フェノキシ樹脂およびエポキシ樹脂の重量平均分子量としては特に限定されるものではないが、通常5,000~100,000、好ましくは8,000~80,000、更に好ましくは10,000~50,000である。重量平均分子量が5,000~100,000の範囲であると、特に機械的物性が良好である。 The weight average molecular weight of the phenoxy resin and the epoxy resin is not particularly limited, but is usually 5,000 to 100,000, preferably 8,000 to 80,000, more preferably 10,000 to 50,000. is there. When the weight average molecular weight is in the range of 5,000 to 100,000, the mechanical properties are particularly good.
 また、エポキシ基を含有する有機化合物としてグリシジル基含有ビニル系単位の重合体が挙げられる。グリシジル基含有ビニル系単位の具体例として、グリシジルメタクリレート、イタコン酸グリシジル、イタコン酸ジグリシジル、アリルグリシジルエーテル、スチレン-4-グリシジルエーテルまたは4-グリシジルスチレンなどが挙げられ、耐衝撃性や強度改善効果が大きいという観点から、グリシジルメタクリレートが最も好ましく使用される。 Also, as an organic compound containing an epoxy group, a polymer of a vinyl unit containing a glycidyl group can be mentioned. Specific examples of the glycidyl group-containing vinyl unit include glycidyl methacrylate, glycidyl itaconate, diglycidyl itaconate, allyl glycidyl ether, styrene-4-glycidyl ether, and 4-glycidyl styrene, which have impact resistance and strength improving effects. Glycidyl methacrylate is most preferably used because of its large size.
 カルボン酸基含有化合物としては、カルボン酸基を含有する有機化合物であれば特に制限はないが、A成分との相溶性の観点から、ポリブチレンテレフタレート、ポリエチレンテレフタレート及びポリアリレートのような芳香族ポリエステル樹脂が好ましく、耐衝撃性や流動性に優れる点から、ポリブチレンテレフタレートが最も好ましく用いられる。 The carboxylic acid group-containing compound is not particularly limited as long as it is an organic compound containing a carboxylic acid group, but from the viewpoint of compatibility with the component A, aromatic polyesters such as polybutylene terephthalate, polyethylene terephthalate and polyarylate. A resin is preferable, and polybutylene terephthalate is most preferably used because it is excellent in impact resistance and fluidity.
 本発明で好適に使用される芳香族ポリブチレンテレフタレート樹脂及び芳香族ポリエチレンテレフタレート樹脂としては、ポリエステルを形成するジカルボン酸成分とジオール成分の内、ジカルボン酸成分100モル%の70モル%以上が芳香族ジカルボン酸である芳香族ポリエステル樹脂が好ましく、より好ましくは90モル%以上、最も好ましくは99モル%以上が芳香族ジカルボン酸である芳香族ポリエステル樹脂である。このジカルボン酸の例として、テレフタル酸、イソフタル酸、アジピン酸、2-クロロテレフタル酸、2,5-ジクロロテレフタル酸、2-メチルテレフタル酸、4,4-スチルベンジカルボン酸、4,4-ビフェニルジカルボン酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ビス安息香酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4-ジフェニルエーテルジカルボン酸、4,4-ジフェノキシエタンジカルボン酸、5-Naスルホイソフタル酸、エチレン-ビス-p-安息香酸等があげられる。これらのジカルボン酸は単独でまたは2種以上混合して使用することができる。本発明の芳香族ポリエステル樹脂には、上記の芳香族ジカルボン酸以外に、30モル%未満の脂肪族ジカルボン酸成分を共重合することができる。その具体例として、アジピン酸、セバシン酸、アゼライン酸、ドデカン二酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等があげられる。本発明のジオール成分としては、例えばエチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、トランス-またはシス-2,2,4,4-テトラメチル-1,3-シクロブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、デカメチレングリコール、シクロヘキサンジオール、p-キシレンジオール、ビスフェノールA、テトラブロモビスフェノールA、テトラブロモビスフェノールA-ビス(2-ヒドロキシエチルエーテル)などを挙げることができる。これらは単独でも、2種以上を混合して使用することができる。尚、ジオール成分中の二価フェノールは30モル%以下であることが好ましい。 As the aromatic polybutylene terephthalate resin and the aromatic polyethylene terephthalate resin which are preferably used in the present invention, of the dicarboxylic acid component and the diol component forming the polyester, 70 mol% or more of 100 mol% of the dicarboxylic acid component is aromatic. An aromatic polyester resin that is a dicarboxylic acid is preferable, more preferably 90 mol% or more, and most preferably 99 mol% or more is an aromatic polyester resin that is an aromatic dicarboxylic acid. Examples of this dicarboxylic acid include terephthalic acid, isophthalic acid, adipic acid, 2-chloroterephthalic acid, 2,5-dichloroterephthalic acid, 2-methylterephthalic acid, 4,4-stilbenedicarboxylic acid and 4,4-biphenyldicarboxylic acid. Acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, bisbenzoic acid, bis(p-carboxyphenyl)methane, anthracene dicarboxylic acid, 4,4-diphenyl ether dicarboxylic acid, 4,4- Examples thereof include diphenoxyethanedicarboxylic acid, 5-Nasulfoisophthalic acid, ethylene-bis-p-benzoic acid and the like. These dicarboxylic acids can be used alone or in admixture of two or more. The aromatic polyester resin of the present invention can be copolymerized with an aliphatic dicarboxylic acid component of less than 30 mol% in addition to the above aromatic dicarboxylic acid. Specific examples thereof include adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid. Examples of the diol component of the present invention include ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, trans- or cis-2,2. 4,4-Tetramethyl-1,3-cyclobutanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,3 Examples thereof include cyclohexanedimethanol, decamethylene glycol, cyclohexanediol, p-xylenediol, bisphenol A, tetrabromobisphenol A, tetrabromobisphenol A-bis(2-hydroxyethyl ether) and the like. These may be used alone or in combination of two or more. The dihydric phenol content in the diol component is preferably 30 mol% or less.
 本発明に使用される芳香族ポリブチレンテレフタレート樹脂及び芳香族ポリエチレンテレフタレート樹脂の製造方法については、常法に従い、チタン、ゲルマニウム、アンチモン等を含有する重縮合触媒の存在下に、加熱しながらジカルボン酸成分と前記ジオール成分とを重合させ、副生する水または低級アルコールを系外に排出することにより行われる。例えば、ゲルマニウム系重合触媒としては、ゲルマニウムの酸化物、水酸化物、ハロゲン化物、アルコラート、フェノラート等が例示でき、更に具体的には、酸化ゲルマニウム、水酸化ゲルマニウム、四塩化ゲルマニウム、テトラメトキシゲルマニウム等が例示できる。また本発明では、従来公知の重縮合の前段階であるエステル交換反応において使用される、マンガン、亜鉛、カルシウム、マグネシウム等の化合物を併せて使用でき、およびエステル交換反応終了後にリン酸または亜リン酸の化合物等により、かかる触媒を失活させて重縮合することも可能である。更に芳香族ポリブチレンテレフタレート樹脂及び芳香族ポリエチレンテレフタレート樹脂の製造方法は、バッチ式、連続重合式のいずれの方法をとることも可能である。 Regarding the method for producing the aromatic polybutylene terephthalate resin and the aromatic polyethylene terephthalate resin used in the present invention, according to a conventional method, in the presence of a polycondensation catalyst containing titanium, germanium, antimony, etc., dicarboxylic acid while heating. It is carried out by polymerizing the component and the diol component and discharging the by-produced water or lower alcohol out of the system. For example, examples of the germanium-based polymerization catalyst include germanium oxide, hydroxide, halide, alcoholate, phenolate, and the like, and more specifically, germanium oxide, germanium hydroxide, germanium tetrachloride, tetramethoxygermanium, and the like. Can be illustrated. Further, in the present invention, compounds such as manganese, zinc, calcium and magnesium used in the transesterification reaction which is a prior stage of polycondensation which is conventionally known can be used in combination, and phosphoric acid or phosphorus after the transesterification reaction is completed. It is also possible to deactivate such a catalyst with an acid compound or the like for polycondensation. Furthermore, the method for producing the aromatic polybutylene terephthalate resin and the aromatic polyethylene terephthalate resin can be either batch type or continuous polymerization type.
 本発明の芳香族ポリブチレンテレフタレート樹脂及び芳香族ポリエチレンテレフタレート樹脂の分子量については特に制限されないが、o-クロロフェノールを溶媒として25℃で測定した固有粘度が0.4~1.5であるのが好ましく、特に好ましくは0.5~1.2である。 The molecular weight of the aromatic polybutylene terephthalate resin and the aromatic polyethylene terephthalate resin of the present invention is not particularly limited, but the intrinsic viscosity measured at 25° C. with o-chlorophenol as a solvent is 0.4 to 1.5. It is preferably 0.5 to 1.2, and particularly preferably 0.5 to 1.2.
 また本発明に使用される芳香族ポリブチレンテレフタレート樹脂及び芳香族ポリエチレンテレフタレート樹脂の末端カルボキシル基量は好ましくは5~75eq/ton、より好ましくは5~70eq/ton、さらに好ましくは7~65eq/tonである。 The amount of terminal carboxyl groups of the aromatic polybutylene terephthalate resin and aromatic polyethylene terephthalate resin used in the present invention is preferably 5 to 75 eq/ton, more preferably 5 to 70 eq/ton, and further preferably 7 to 65 eq/ton. Is.
 本発明で好適に使用される芳香族ポリアリレート樹脂としては、芳香族ジカルボン酸またはその誘導体と二価フェノールまたはその誘導体とから得られるものである。ポリアリレートの調製に用いられる芳香族ジカルボン酸としては、二価フェノールと反応し満足な重合体を与えるものであればいかなるものでもよく、1種または2種以上を混合して用いられる。 The aromatic polyarylate resin preferably used in the present invention is obtained from an aromatic dicarboxylic acid or its derivative and a dihydric phenol or its derivative. The aromatic dicarboxylic acid used for preparing the polyarylate may be any one as long as it reacts with the dihydric phenol to give a satisfactory polymer, and one kind or a mixture of two or more kinds is used.
 好ましい芳香族ジカルボン酸成分として、テレフタル酸、イソフタル酸が挙げられる。またこれらの混合物であってもよい。 Favorable aromatic dicarboxylic acid components include terephthalic acid and isophthalic acid. It may also be a mixture of these.
 二価フェノール成分の具体例としては、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルメタン、2,2’-ビス(4ヒドロキシ-3,5-ジメチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4’-ジヒドロキシジフェニル、ハイドロキノンなどが挙げられる。これら二価フェノール成分はパラ置換体であるが、他の異性体を使用してもよく、さらに二価フェノール成分にエチレングリコール、プロピレングリコール、ネオペンチルグリコールなどを併用してもよい。 Specific examples of the dihydric phenol component include 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane and 2,2-bis(4- Hydroxy-3,5-dichlorophenyl)propane, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, 4,4'- Dihydroxydiphenylmethane, 2,2'-bis(4hydroxy-3,5-dimethylphenyl)propane, 1,1-bis(4-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 4, 4'-dihydroxydiphenyl, hydroquinone and the like can be mentioned. Although these dihydric phenol components are para-substituted, other isomers may be used, and ethylene glycol, propylene glycol, neopentyl glycol and the like may be used in combination with the dihydric phenol component.
 上記の中でも好ましいポリアリレート樹脂としては、芳香族ジカルボン酸成分がテレフタル酸およびイソフタル酸からなり、二価フェノール成分として2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)からなるものが挙げられる。テレフタル酸とイソフタル酸との割合は、テレフタル酸/イソフタル酸=9/1~1/9(モル比)が好ましく、特に溶融加工性、性能バランスの点で7/3~3/7が望ましい。 Among the above, preferable polyarylate resins include those in which the aromatic dicarboxylic acid component is terephthalic acid and isophthalic acid and the dihydric phenol component is 2,2-bis(4-hydroxyphenyl)propane (bisphenol A). To be The ratio of terephthalic acid to isophthalic acid is preferably terephthalic acid/isophthalic acid=9/1 to 1/9 (molar ratio), and particularly preferably 7/3 to 3/7 in terms of melt processability and performance balance.
 他の代表的なポリアリレート樹脂としては、芳香族ジカルボン酸成分がテレフタル酸からなり、二価フェノール成分がビスフェノールAおよびハイドロキノンからなるものが挙げられる。かかるビスフェノールAとハイドロキノンとの割合は、ビスフェノールA/ハイドロキノン=50/50~70/30(モル比)が好ましく、55/45~70/30がより好ましく、60/40~70/30が更に好ましい。 Other representative polyarylate resins include those in which the aromatic dicarboxylic acid component is terephthalic acid and the dihydric phenol component is bisphenol A and hydroquinone. The ratio of such bisphenol A and hydroquinone is preferably bisphenol A/hydroquinone=50/50 to 70/30 (molar ratio), more preferably 55/45 to 70/30, and further preferably 60/40 to 70/30. ..
 本発明におけるポリアリレート樹脂の粘度平均分子量は約7,000~100,000の範囲が物性および押出加工性から好ましい。またポリアリレート樹脂は界面重縮合法およびエステル交換反応法のいずれの重合方法も選択できる。 酸無水物基含有化合物としては、マレイン酸樹脂として、マルキードシリーズ(マレイン酸樹脂、荒川化学株式会社製)、アラスターシリーズ(スチレン-マレイン酸樹脂、荒川化学株式会社製)、イソバンシリーズ(イソブチレン-無水マレイン酸ブロックコポリマー、株式会社クラレ製)などが挙げられ、A成分との相溶性の観点から、スチレン-マレイン酸樹脂が最も好ましく用いられる。 The viscosity average molecular weight of the polyarylate resin in the present invention is preferably in the range of about 7,000 to 100,000 from the viewpoint of physical properties and extrusion processability. For the polyarylate resin, either of the interfacial polycondensation method and the transesterification reaction method can be selected. As the acid anhydride group-containing compound, as a maleic acid resin, a marquise series (maleic acid resin, manufactured by Arakawa Chemical Co., Ltd.), an alaster series (styrene-maleic acid resin, manufactured by Arakawa Chemical Co., Ltd.), an isovan series ( Isobutylene-maleic anhydride block copolymer, manufactured by Kuraray Co., Ltd., and the like, and styrene-maleic acid resin is most preferably used from the viewpoint of compatibility with the component A.
 F成分の含有量はA成分およびB成分からなる樹脂組成物100重量部に対し、好ましくは1~10重量部、より好ましくは1~5重量部である。F成分の含有量が1重量部未満では、優れた強度を有する樹脂組成物が得られない場合がある。また、10重量部を超えると、難燃性が低下する場合がある。
[易含浸性炭素繊維束]
 本発明における易含浸性炭素繊維束とは、炭素繊維100重量部に対し、含侵助剤を3~15重量部を含むことにより、ポリカーボネート樹脂組成物(好ましくは可塑化されたポリカーボネート樹脂組成物)により容易に含浸されることを特徴とする炭素繊維束である。  
The content of the component F is preferably 1 to 10 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of the resin composition including the components A and B. When the content of the F component is less than 1 part by weight, a resin composition having excellent strength may not be obtained. Further, if it exceeds 10 parts by weight, flame retardancy may decrease.
[Easily impregnable carbon fiber bundle]
The easily impregnable carbon fiber bundle in the present invention means a polycarbonate resin composition (preferably a plasticized polycarbonate resin composition, by containing 3 to 15 parts by weight of an impregnation aid with respect to 100 parts by weight of carbon fibers. ) Is easily impregnated with the carbon fiber bundle.
 含侵助剤は、下記式(1)および下記式(2)を満たすことが好ましい 
300℃における粘度≦10Pa・s・・・(1)  
2≦(Tg―Tg)/D・・・(2)
[式中、Dはポリカーボネート樹脂および含侵助剤よりなる樹脂組成物中の含侵助剤の割合(重量%)、Tgはポリカーボネート樹脂に該割合で含侵助剤を添加した樹脂組成物のガラス転移温度(℃)、Tgはポリカーボネート樹脂のガラス転移温度(℃)を表す。]
 この易含浸性炭素繊維束は、炭素繊維に対し、含浸助剤を所定の量にて含む炭素繊維束であれば良く、その製造方法や、炭素繊維と含浸助剤とが含まれている形態を問わない。本発明で用いる含浸助剤は、上記式(1)を満たすことが好ましく、これは、含浸助剤が汎用のポリカーボネートの代表的な加工温度である300℃において、低粘度状態であり、かつ、300℃において液体としての粘度測定が可能なものであることを意味する。含浸助剤の300℃における粘度は8Pa・s以下であることが好ましく、6Pa・s以下であることがより好ましい。 300℃における粘度が10Pa・sを超えると成形時に樹脂への炭素繊維の分散性が損なわれ良好な外観が得られない場合がある。 
The impregnation aid preferably satisfies the following formulas (1) and (2).
Viscosity at 300°C ≤ 10 Pa·s (1)
2≦(Tg 0 −Tg 1 )/D (2)
[Wherein D is the proportion (% by weight) of the impregnating aid in the resin composition comprising the polycarbonate resin and the impregnating aid, and Tg 1 is the resin composition obtained by adding the impregnating aid to the polycarbonate resin in this proportion. Glass transition temperature (° C.) and Tg 0 represent the glass transition temperature (° C.) of the polycarbonate resin. ]
The easily impregnable carbon fiber bundle may be any carbon fiber bundle containing an impregnation aid in a predetermined amount with respect to the carbon fiber, a method for producing the same, and a form in which the carbon fiber and the impregnation aid are contained. It doesn't matter. The impregnation aid used in the present invention preferably satisfies the above formula (1), which has a low viscosity state at 300° C. which is a typical processing temperature of a general-purpose polycarbonate, and This means that viscosity measurement as a liquid at 300° C. is possible. The viscosity of the impregnation aid at 300° C. is preferably 8 Pa·s or less, and more preferably 6 Pa·s or less. If the viscosity at 300° C. exceeds 10 Pa·s, the dispersibility of the carbon fiber in the resin may be impaired during molding, and a good appearance may not be obtained.
 なお、上記式(1)について、含浸助剤の液体としての粘度を測定する方法としては、回転式粘度計が適している。具体的には高温槽付きパラレルプレートにて測定する方法などを例示することができる。   Regarding the above formula (1), a rotary viscometer is suitable as a method for measuring the viscosity of the impregnation aid as a liquid. Specifically, a method of measuring with a parallel plate with a high temperature tank can be exemplified.  
 更に、含浸助剤は、上記式(2)を満たすことが好ましい。上記式(2)おいて、含浸助剤は、ポリカーボネート100重量部あたり、3~15重量部の配合量の範囲全域で、(Tg―Tg)/Dが2以上である必要は無く、当該配合量範囲の一部で、2以上であれば良い。(Tg―Tg)/Dが2以上であることにより、含浸を促進する効果を有するものであり、(Tg―Tg)/Dが3以上であるとより好ましい。(Tg―Tg)/Dが2未満の場合、含浸助剤がポリカーボネートと相溶化していない状態であり、そのため、ポリカーボネートのTgが殆どそのまま計測されると推測している。(Tg―Tg)/Dが2未満の含浸助剤を炭素繊維束に加え、これにポリカーボネートを付着させたものを成形しても、含浸助剤による含浸促進効果は著しく低いもので、得られる成形体において炭素繊維の分散不良が発生する場合がある。   Further, the impregnation aid preferably satisfies the above formula (2). In the above formula (2), the impregnation aid does not have to have (Tg 0 −Tg 1 )/D of 2 or more in the entire range of the compounding amount of 3 to 15 parts by weight per 100 parts by weight of the polycarbonate. It may be 2 or more in a part of the blending amount range. When (Tg 0 −Tg 1 )/D is 2 or more, it has an effect of promoting impregnation, and (Tg 0 −Tg 1 )/D is more preferably 3 or more. When (Tg 0 −Tg 1 )/D is less than 2, the impregnation aid is in a state not compatibilized with the polycarbonate, and therefore, it is presumed that the Tg of the polycarbonate is measured almost as it is. Even if an impregnation aid having a (Tg 0 −Tg 1 )/D of less than 2 is added to a carbon fiber bundle and a polycarbonate is adhered to the bundle, the effect of promoting impregnation by the impregnation aid is extremely low. In the obtained molded product, carbon fiber may be poorly dispersed.
 また、上記式(2)について、ポリカーボネート樹脂や、ポリカーボネート樹脂と含浸助剤との樹脂組成物のガラス転移温度を測定する方法としては、示差走査熱量測定(DSC)による方法などが挙げられる。   Regarding the above formula (2), as a method for measuring the glass transition temperature of the polycarbonate resin or the resin composition of the polycarbonate resin and the impregnation aid, a method by differential scanning calorimetry (DSC) and the like can be mentioned.  
 本発明にて用いられる易含浸性炭素繊維束は、複数種の含浸助剤を含むものでも良く、また本発明において用いられる含浸助剤としては、脂肪族ヒドロキシカルボン酸系ポリエステルからなる群より選ばれる1種類以上のものであることが好ましい。含浸助剤として用いられるこれらの脂肪族ヒドロキシカルボン酸系ポリエステルについては、後に詳細に記載する。易含浸性炭素繊維束に付着させる含浸助剤の量は、炭素繊維100重量部に対し3~15重量部であり、好ましくは5~12重量部、より好ましくは6~10重量部である。3重量部未満では、炭素繊維へのポリカーボネート樹脂の易含浸性が不十分となるため得られる成形体の外観および着色性が低下し、15重量部より多いと含浸性は優れるが、マトリクス樹脂であるポリカーボネート樹脂のガラス転移温度が低下することにより得られる成形体の難燃性が低下する。   The easily impregnable carbon fiber bundle used in the present invention may contain plural kinds of impregnation aids, and the impregnation aid used in the present invention is selected from the group consisting of aliphatic hydroxycarboxylic acid-based polyesters. It is preferable that it is one or more of These aliphatic hydroxycarboxylic acid type polyesters used as the impregnation aid will be described later in detail. The amount of the impregnation aid attached to the easily impregnable carbon fiber bundle is 3 to 15 parts by weight, preferably 5 to 12 parts by weight, more preferably 6 to 10 parts by weight, based on 100 parts by weight of the carbon fibers. When the amount is less than 3 parts by weight, the impregnability of the polycarbonate resin into the carbon fibers is insufficient, so that the appearance and colorability of the resulting molded article are deteriorated, and when the amount is more than 15 parts by weight, the impregnability is excellent, but the matrix resin When the glass transition temperature of a polycarbonate resin is lowered, the flame retardancy of the obtained molded article is lowered.  
 易含浸性炭素繊維束の代表的な製法としては、ディッピング法、スプレー法、ローラー転写法、スリットコーター法などから選ばれる群より選ばれる1種類以上の方法にて、汎用の炭素繊維束に含浸助剤を含ませる方法が例示される。これらの方法において、炭素繊維束に含浸助剤を含ませた場合、含浸助剤は主に炭素繊維束の表面に付着し、一部は炭素繊維束の内部にも浸み込んでいるものと思われる。   As a typical production method of the easily impregnable carbon fiber bundle, a general-purpose carbon fiber bundle is impregnated by one or more kinds selected from the group selected from a dipping method, a spray method, a roller transfer method, a slit coater method and the like. A method of incorporating an auxiliary is exemplified. In these methods, when the carbon fiber bundle contains an impregnation auxiliary agent, the impregnation auxiliary agent mainly adheres to the surface of the carbon fiber bundle, and a part of the impregnation auxiliary agent also penetrates into the inside of the carbon fiber bundle. Seem.  
 易含浸性炭素繊維束を製造する際における含浸助剤の形態としては、水性エマルジョン、有機溶媒希釈溶液、または加熱された粘調または溶融状態の液体として取り扱うことが可能である。製造方法と含浸助剤の形態との好ましい組合せとしては、水性エマルジョンの場合、ディッピング法、ローラー転写法であるが、十分に水分を乾燥させるために100℃以上の雰囲気下での乾燥工程が必要となる。また加熱粘調液体の場合、スリットコーター法などの一般的なコーティング手法が可能であり、適量を炭素繊維束に付着させた後にスムージングロールなどで均一に付着させることが可能である。   The form of the impregnation aid in the production of the easily impregnable carbon fiber bundle can be handled as an aqueous emulsion, an organic solvent diluted solution, or a heated viscous or molten liquid. A preferred combination of the production method and the form of the impregnation aid is a dipping method or a roller transfer method in the case of an aqueous emulsion, but a drying step under an atmosphere of 100° C. or higher is required to sufficiently dry the water. Becomes Further, in the case of the heated viscous liquid, a general coating method such as a slit coater method is possible, and it is possible to apply an appropriate amount to the carbon fiber bundle and then apply it uniformly with a smoothing roll or the like.  
 本発明の成形用材料を用いて成形し、炭素繊維がポリカーボネートに均質に分散した成形体を得るためには、炭素繊維束に含浸助剤をできるだけ均一に付着させるのが好ましい。炭素繊維束に含浸助剤をより均一に付着させる方法として、上記方法により含浸助剤を炭素繊維束に付着させた後、これら含浸助剤の粘度が十分に低下する温度以上に再度熱処理する方法が例示される。また、該熱処理には、例えば、熱風、熱板、ローラー、赤外線ヒーターなどを使用することができ、ローラーを用いることが好ましい。  
[炭素繊維]  
 本発明の成形用材料に含まれる炭素繊維は、ポリアクリロニトリル(PAN)系、石油・石油ピッチ系、レーヨン系、リグニン系など、何れの炭素繊維であっても良い。特に、PANを原料としたPAN系炭素繊維が、工場規模における生産性及び機械的特性に優れており好ましい。  
In order to obtain a molded product in which carbon fibers are homogeneously dispersed in polycarbonate by molding using the molding material of the present invention, it is preferable that the impregnation aid is attached to the carbon fiber bundle as uniformly as possible. As a method of more uniformly adhering the impregnation aid to the carbon fiber bundle, a method of attaching the impregnation aid to the carbon fiber bundle by the above method and then heat-treating again at a temperature at which the viscosity of these impregnation aids is sufficiently lowered Is exemplified. Further, for the heat treatment, for example, hot air, a hot plate, a roller, an infrared heater or the like can be used, and a roller is preferably used.
[Carbon fiber]
The carbon fiber contained in the molding material of the present invention may be any carbon fiber such as polyacrylonitrile (PAN) type, petroleum/petroleum pitch type, rayon type and lignin type. In particular, PAN-based carbon fiber made from PAN is preferable because it has excellent productivity and mechanical properties on a factory scale.
 炭素繊維としては、平均直径5~10μmのものが好ましく使用できる。なお、一般的な炭素繊維は、1,000~50,000本の単繊維が繊維束となった炭素繊維フィラメントである。本発明における炭素繊維束には、そのような一般的な炭素繊維フィラメントも含まれるが、該炭素繊維フィラメントを、更に重ね合わせて合糸したものや、合糸に撚りを掛け撚糸としたもの等も含まれる。本発明の成形用材料に含まれる炭素繊維としては、炭素繊維とポリカーボネートとの接着性を高めるため、表面処理によって、表面に含酸素官能基を導入されたものも好ましい。   As carbon fibers, those having an average diameter of 5 to 10 μm can be preferably used. A general carbon fiber is a carbon fiber filament in which 1,000 to 50,000 single fibers form a fiber bundle. The carbon fiber bundle in the present invention includes such general carbon fiber filaments, but the carbon fiber filaments are further superposed and combined into a yarn, or the combined yarn is twisted to form a twisted yarn. Is also included. As the carbon fibers contained in the molding material of the present invention, those having an oxygen-containing functional group introduced on the surface by a surface treatment are also preferable in order to enhance the adhesiveness between the carbon fibers and the polycarbonate.  
 また、前述のように、炭素繊維束に含浸助剤を含ませることにより易含浸性炭素繊維束を作る場合、含浸助剤を炭素繊維束に均一に付着させる工程を安定させるため、炭素繊維束としては、収束性を持たせる為の収束剤で処理されたものであると好ましい。収束剤としては、炭素繊維フィラメント製造用に公知のものを使用することができる。また、炭素繊維束としては、製造時に滑り性を上げるために使用された油剤が残存したものであっても、本願発明において問題無く使用することができる。なお、以後、含浸助剤と、上記の収束剤といったその他の処理剤とを包含する上位概念の意味で、表面処理剤との表現をする場合がある。
[脂肪族ヒドロキシカルボン酸系ポリエステル]  
 本発明において、含浸助剤として使用できる脂肪族ヒドロキシカルボン酸系ポリエステルは、脂肪族ヒドロキシカルボン酸残基からなるポリエステルであり、単独の脂肪族ヒドロキシカルボン酸残基からなる単重合ポリエステルでもよく、複数種の脂肪族ヒドロキシカルボン酸残基を含む共重合ポリエステルでもよい。また、該脂肪族ヒドロキシカルボン酸系ポリエステルとしては、ポリマーを構成する残基のうち、50モル%未満の量にて、脂肪族ヒドロキシカルボン酸残基以外の残基、例えば、ジオール残基やジカルボン酸残基などを含む共重合ポリエステルであっても良いが、意図的に共重合成分を加えられていない単重合体が、入手し易い点で好ましい。  
Further, as described above, when the easily impregnable carbon fiber bundle is made by including the impregnation aid in the carbon fiber bundle, the carbon fiber bundle is stabilized in order to stabilize the step of uniformly attaching the impregnation aid to the carbon fiber bundle. It is preferable that it is treated with a converging agent for imparting converging property. As the sizing agent, those known for producing carbon fiber filaments can be used. Further, as the carbon fiber bundle, even if the oil agent used for improving the slipperiness during production remains, it can be used without problems in the present invention. In addition, hereinafter, the term "surface treatment agent" may be used in the sense of a superordinate concept including the impregnation aid and the other treatment agents such as the above-mentioned sizing agent.
[Aliphatic Hydroxycarboxylic Acid Polyester]
In the present invention, the aliphatic hydroxycarboxylic acid-based polyester that can be used as the impregnation aid is a polyester composed of an aliphatic hydroxycarboxylic acid residue, and may be a single-polymerized polyester composed of a single aliphatic hydroxycarboxylic acid residue. It may be a copolyester containing certain aliphatic hydroxycarboxylic acid residues. Further, the aliphatic hydroxycarboxylic acid-based polyester is a residue other than the aliphatic hydroxycarboxylic acid residue, such as a diol residue or a dicarboxylic acid, in an amount of less than 50 mol% of the residues constituting the polymer. A copolyester containing an acid residue or the like may be used, but a homopolymer to which no copolymerization component is intentionally added is preferable because it is easily available.
 本発明に用いられる脂肪族ヒドロキシカルボン酸系ポリエステルの重量平均分子量は、3,000~50,000であるのが好ましい。重量平均分子量が3,000~50,000の範囲であると、ポリカーボネート樹脂との親和性がよく、また乳化も容易である。より好ましくは5,000~20,000、さらに好ましくは8,000~15,000の範囲である。なお、重量平均分子量の測定方法としては、高温GPC法など公知の方法を使用することができる。   The weight average molecular weight of the aliphatic hydroxycarboxylic acid type polyester used in the present invention is preferably 3,000 to 50,000. When the weight average molecular weight is in the range of 3,000 to 50,000, the affinity with the polycarbonate resin is good and the emulsification is easy. The range is more preferably 5,000 to 20,000, further preferably 8,000 to 15,000. As a method for measuring the weight average molecular weight, a known method such as a high temperature GPC method can be used.  
 脂肪族ヒドロキシカルボン酸系ポリエステルは、特に限定されないが、ε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの各単独重合体、およびこれら2種以上のモノマーの共重合体であることが好ましく、重量平均分子量が3,000~50,000のε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの各単独重合体および重量平均分子量が3,000~50,000のこれら2種以上のモノマーの共重合体からなる群より選ばれる1種類以上のものであることがより好ましい。特に好ましくは、重量平均分子量が3、000~50,000のε-カプロラクトン、又はδ-カプロラクトンの各単独重合体である。なお、本願発明においてラクトン類の重合体というときは、実際に、ラクトン類を開環重合させた重合体だけでなく、該ラクトン類の等価体である脂肪族ヒドロキシカルボン酸やその誘導体を原料とする同様の構造の重合体も含まれる。 
[成形用材料]  
 本発明の成形用材料は、上記の易含浸性炭素繊維束に、ポリカーボネート樹脂組成物が、易含浸性炭素繊維束に含まれる炭素繊維100重量部あたり50~2,000重量部付着しているものであり、66~1,900重量部がより好ましく、100~1,800重量部であることがさらに好ましい。付着量が50重量部未満であると、所定の成形用材料の形状を得ることができず、2,000重量を超えると、良好な強度を得られない。本発明の成形用材料の形状は特に限定されず、柱状、板状、粒状、塊状、糸状(紐状)、網状等が挙げられ、異なる形状の成形用材料を複数種用いて成形することも可能である。  
The aliphatic hydroxycarboxylic acid-based polyester is not particularly limited, but each homopolymer of ε-caprolactone, δ-caprolactone, β-propiolactone, γ-butyrolactone, δ-valerolactone, γ-valerolactone, and enanthlactone, And a copolymer of two or more kinds of these monomers, and ε-caprolactone, δ-caprolactone, β-propiolactone, γ-butyrolactone, δ-valero having a weight average molecular weight of 3,000 to 50,000 are preferable. One or more selected from the group consisting of homopolymers of lactone, γ-valerolactone, and enanthlactone, and copolymers of two or more kinds of these monomers having a weight average molecular weight of 3,000 to 50,000. Is more preferable. Particularly preferred are homopolymers of ε-caprolactone or δ-caprolactone having a weight average molecular weight of 3,000 to 50,000. In the present invention, when referring to a lactone polymer, not only a polymer obtained by ring-opening polymerization of a lactone but also an aliphatic hydroxycarboxylic acid or a derivative thereof which is an equivalent of the lactone is used as a raw material. Polymers of similar structure are also included.
[Molding material]
In the molding material of the present invention, the polycarbonate resin composition adheres to the easily impregnable carbon fiber bundle in an amount of 50 to 2,000 parts by weight per 100 parts by weight of the carbon fiber contained in the easily impregnable carbon fiber bundle. The amount is preferably 66 to 1,900 parts by weight, more preferably 100 to 1,800 parts by weight. If the amount of adhesion is less than 50 parts by weight, the predetermined shape of the molding material cannot be obtained, and if it exceeds 2,000 parts by weight, good strength cannot be obtained. The shape of the molding material of the present invention is not particularly limited, and examples thereof include a columnar shape, a plate shape, a granular shape, a lump shape, a thread shape (string shape), a net shape, and the like, and a plurality of molding materials having different shapes may be used for molding. It is possible.
 前記の易含浸性炭素繊維束にポリカーボネート樹脂組成物を付着させ、本発明の成形用材料とする方法としては、易含浸性炭素繊維束の表面に溶融状態のポリカーボネート樹脂組成物を被覆する方法、易含浸性炭素繊維束を引き並べた上にTダイなどを使って溶融状態のポリカーボネート樹脂組成物をキャストし積層化する方法、引き並べた易含浸性炭素繊維束にフィルム状ポリカーボネート樹脂組成物樹脂を積層ラミネートする方法、易含浸性炭素繊維束を引きそろえた上に粉末状ポリカーボネート樹脂組成物を吹きつける方法などが挙げられる。連続上に引き並べられた易含浸性炭素繊維束の替わりに、所定の長さに切断された易含浸性繊維束の集合体を同様に用いることも可能である。   The method of forming the molding material of the present invention by attaching the polycarbonate resin composition to the easily impregnable carbon fiber bundle, a method of coating the surface of the easily impregnable carbon fiber bundle with a polycarbonate resin composition in a molten state, A method of casting a melted polycarbonate resin composition using a T-die or the like after stacking the easily impregnable carbon fiber bundles, and laminating the easily impregnated carbon fiber bundles into a film-like polycarbonate resin composition resin A method of laminating and laminating, a method of spraying a powdery polycarbonate resin composition after aligning the easily impregnable carbon fiber bundle, and the like. Instead of the easily impregnable carbon fiber bundles arranged in a continuous manner, an aggregate of easily impregnable fiber bundles cut into a predetermined length can be used in the same manner.  
 本発明の成形用材用は、易含浸性炭素繊維束を芯成分、ポリカーボネート樹脂組成物を鞘成分とする芯鞘型構造であることが好ましく、特に、本発明の成形用材用で、射出成形用のものとしては、易含浸性炭素繊維束の周囲がポリカーボネート樹脂組成物で被覆されたストランドをストランドカッターにて切断するなどして得られる、易含浸性炭素繊維束を芯成分、ポリカーボネート樹脂組成物を鞘成分とする芯鞘型構造の、ペレットであることがより好ましく、長手方向の長さが3~10mm程度のペレット(以下、芯鞘型ペレットと称することがある)が更に好ましい。該芯鞘型ペレットの直径に特に制限は無いが、ペレット長さの1/10以上2倍以下であると好ましく、ペレット長さの1/4以上かつペレット長さと同等以下であるとより好ましい。
(その他の成分)
 本発明のポリカーボネート樹脂組成物には本発明の効果を損なわない範囲で各種添加剤を配合することができる。かかる添加剤としては、リン系熱安定剤、フェノール系熱安定剤、イオウ含有酸化防止剤、離型剤、紫外線吸収剤、ヒンダードアミン系光安定剤、相溶化剤、難燃剤、染顔料などが挙げられる。以下これら添加剤について具体的に説明する。
(リン系熱安定剤)
 本発明に使用されるリン系安定剤としては、ホスファイト化合物、ホスホナイト化合物、およびホスフェート化合物のいずれも使用可能である。
The molding material of the present invention preferably has a core-sheath structure having an easily impregnable carbon fiber bundle as a core component and a polycarbonate resin composition as a sheath component, and particularly, for the molding material of the present invention, for injection molding. As the one, the easily impregnable carbon fiber bundle is obtained by cutting a strand coated with the polycarbonate resin composition around the strand with a strand cutter, the easily impregnable carbon fiber bundle as a core component, a polycarbonate resin composition. A pellet having a core-sheath structure having a sheath component is more preferable, and a pellet having a longitudinal length of about 3 to 10 mm (hereinafter, also referred to as a core-sheath pellet) is more preferable. The diameter of the core-sheath pellet is not particularly limited, but is preferably 1/10 or more and 2 times or less the pellet length, and more preferably 1/4 or more of the pellet length and equal to or less than the pellet length.
(Other ingredients)
Various additives may be added to the polycarbonate resin composition of the present invention within a range that does not impair the effects of the present invention. Examples of such additives include phosphorus-based heat stabilizers, phenol-based heat stabilizers, sulfur-containing antioxidants, release agents, ultraviolet absorbers, hindered amine-based light stabilizers, compatibilizers, flame retardants, dyes and pigments, and the like. To be Hereinafter, these additives will be specifically described.
(Phosphorus heat stabilizer)
As the phosphorus-based stabilizer used in the present invention, any of a phosphite compound, a phosphonite compound and a phosphate compound can be used.
 ホスファイト化合物としては、さまざまなものを用いることができる。具体的には例えば下記一般式(9)で表わされるホスファイト化合物、下記一般式(10)で表わされるホスファイト化合物、および下記一般式(11)で表わされるホスファイト化合物を挙げることができる。 A variety of phosphite compounds can be used. Specific examples include phosphite compounds represented by the following general formula (9), phosphite compounds represented by the following general formula (10), and phosphite compounds represented by the following general formula (11).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式中R31は、水素原子または炭素数1~20のアルキル基、炭素数6~20のアリール基ないしアルカリール基、炭素数7~30のアラルキル基、またはこれらのハロ、アルキルチオ(アルキル基は炭素数1~30)またはヒドロキシ置換基を示し、3個のR31は互いに同一または互いに異なるいずれの場合も選択でき、また2価フェノール類から誘導されることにより環状構造も選択できる。] [Wherein R 31 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group or an alkaryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a halo or alkylthio (alkyl group) thereof. Represents a C1 to C30) or hydroxy substituent, and three R 31 s may be the same or different from each other, and a cyclic structure may be selected by being derived from a dihydric phenol. ]
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式中R32、R33はそれぞれ水素原子、炭素数1~20のアルキル基、炭素数6~20のアリール基ないしアルキルアリール基、炭素数7~30のアラルキル基、炭素数4~20のシクロアルキル基、炭素数15~25の2-(4-オキシフェニル)プロピル置換アリール基を示す。なお、シクロアルキル基およびアリール基は、アルキル基で置換されていないもの、またはアルキル基で置換されているもののいずれも選択できる。] [Wherein R 32 and R 33 are each a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group or an alkylaryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, and an alkyl group having 4 to 20 carbon atoms] A cycloalkyl group and a 2-(4-oxyphenyl)propyl-substituted aryl group having 15 to 25 carbon atoms are shown. The cycloalkyl group and the aryl group can be selected from those not substituted with an alkyl group and those substituted with an alkyl group. ]
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式中R34、R35は炭素数12~15のアルキル基である。なお、R34およびR35は互いに同一または互いに異なるいずれの場合も選択できる。] 
 ホスホナイト化合物としては下記一般式(12)で表わされるホスホナイト化合物、および下記一般式(13)で表わされるホスホナイト化合物を挙げることができる。
[Wherein R 34 and R 35 are alkyl groups having 12 to 15 carbon atoms]. It should be noted that R 34 and R 35 can be selected whether they are the same as or different from each other. ]
Examples of the phosphonite compound include a phosphonite compound represented by the following general formula (12) and a phosphonite compound represented by the following general formula (13).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式中、Ar、Arは炭素数6~20のアリール基ないしアルキルアリール基、または炭素数15~25の2-(4-オキシフェニル)プロピル置換アリール基を示し、4つのArは互いに同一、または互いに異なるいずれも選択できる。または2つのArは互いに同一、または互いに異なるいずれも選択できる。]
 上記一般式(9)で表されるホスファイト化合物の好ましい具体例としては、ジフェニルイソオクチルホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイトが挙げられる。
[Wherein Ar 1 and Ar 2 represent an aryl group or an alkylaryl group having 6 to 20 carbon atoms or a 2-(4-oxyphenyl)propyl-substituted aryl group having 15 to 25 carbon atoms, and four Ar 1 are Either the same or different from each other can be selected. Alternatively, the two Ar 2 can be selected to be the same or different from each other. ]
Preferred specific examples of the phosphite compound represented by the general formula (9) include diphenylisooctylphosphite, 2,2'-methylenebis(4,6-di-tert-butylphenyl)octylphosphite, diphenylmono. (Tridecyl)phosphite, phenyldiisodecylphosphite, and phenyldi(tridecyl)phosphite.
 上記一般式(10)で表されるホスファイト化合物の好ましい具体例としては、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられ、好ましくはジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイトを挙げることができる。かかるホスファイト化合物は1種、または2種以上を併用することができる。 Preferred specific examples of the phosphite compound represented by the general formula (10) include distearyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, and bis(2 ,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, dicyclohexylpentaerythritol diphosphite and the like are preferable, and distearyl pentaerythritol diphosphite is preferable, Examples thereof include bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite and bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite. Such phosphite compounds can be used alone or in combination of two or more.
 上記一般式(11)で表されるホスファイト化合物の好ましい具体例としては、4,4’-イソプロピリデンジフェノールテトラトリデシルホスファイトを挙げることができる。 A preferred specific example of the phosphite compound represented by the general formula (11) is 4,4'-isopropylidenediphenol tetratridecyl phosphite.
 上記一般式(12)で表されるホスホナイト化合物の好ましい具体例としては、テトラキス(2,4-ジ-iso-プロピルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-n-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-iso-プロピルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-n-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト等が挙げられ、テトラキス(ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイトが好ましく、テトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイトがより好ましい。このテトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイトは、2種以上の混合物が好ましく、具体的にはテトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイトおよび、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイトの1種もしくは2種以上を併用して使用可能であるが、好ましくはかかる3種の混合物である。 Specific preferred examples of the phosphonite compound represented by the general formula (12) include tetrakis(2,4-di-iso-propylphenyl)-4,4′-biphenylenediphosphonite and tetrakis(2,4-di). -N-butylphenyl)-4,4'-biphenylenediphosphonite, tetrakis(2,4-di-tert-butylphenyl)-4,4'-biphenylenediphosphonite, tetrakis(2,4-di-tert) -Butylphenyl)-4,3'-biphenylenediphosphonite, tetrakis(2,4-di-tert-butylphenyl)-3,3'-biphenylenediphosphonite, tetrakis(2,6-di-iso-propyl) Phenyl)-4,4'-biphenylenediphosphonite, tetrakis(2,6-di-n-butylphenyl)-4,4'-biphenylenediphosphonite, tetrakis(2,6-di-tert-butylphenyl) -4,4'-biphenylenediphosphonite, tetrakis(2,6-di-tert-butylphenyl)-4,3'-biphenylenediphosphonite, tetrakis(2,6-di-tert-butylphenyl)-3 , 3'-biphenylenediphosphonite and the like, tetrakis(di-tert-butylphenyl)-biphenylenediphosphonite is preferable, and tetrakis(2,4-di-tert-butylphenyl)-biphenylenediphosphonite is more preferable. preferable. The tetrakis(2,4-di-tert-butylphenyl)-biphenylene diphosphonite is preferably a mixture of two or more kinds, specifically, tetrakis(2,4-di-tert-butylphenyl)-4,4. '-Biphenylenediphosphonite, tetrakis(2,4-di-tert-butylphenyl)-4,3'-biphenylenediphosphonite and tetrakis(2,4-di-tert-butylphenyl)-3,3' -One or two or more kinds of biphenylenediphosphonite can be used in combination, but a mixture of these three kinds is preferable.
 上記一般式(13)で表されるホスホナイト化合物の好ましい具体例としては、ビス(2,4-ジ-iso-プロピルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイトビス(2,6-ジ-iso-プロピルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト等が挙げられ、ビス(ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトが好ましく、ビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトがより好ましい。このビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトは、2種以上の混合物が好ましく、具体的にはビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、およびビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイトの1種もしくは2種を併用して使用可能であるが、好ましくはかかる2種の混合物である。また、2種の混合物の場合その混合比は、重量比で5:1~4の範囲が好ましく、5:2~3の範囲がより好ましい。 Preferred specific examples of the phosphonite compound represented by the above general formula (13) include bis(2,4-di-iso-propylphenyl)-4-phenyl-phenylphosphonite and bis(2,4-di-n). -Butylphenyl)-3-phenyl-phenylphosphonite, bis(2,4-di-tert-butylphenyl)-4-phenyl-phenylphosphonite, bis(2,4-di-tert-butylphenyl)-3 -Phenyl-phenylphosphonite bis(2,6-di-iso-propylphenyl)-4-phenyl-phenylphosphonite, bis(2,6-di-n-butylphenyl)-3-phenyl-phenylphosphonite, Examples thereof include bis(2,6-di-tert-butylphenyl)-4-phenyl-phenylphosphonite and bis(2,6-di-tert-butylphenyl)-3-phenyl-phenylphosphonite. Di-tert-butylphenyl)-phenyl-phenylphosphonite is preferred, and bis(2,4-di-tert-butylphenyl)-phenyl-phenylphosphonite is more preferred. The bis(2,4-di-tert-butylphenyl)-phenyl-phenylphosphonite is preferably a mixture of two or more kinds, specifically, bis(2,4-di-tert-butylphenyl)-4- One or two of phenyl-phenylphosphonite and bis(2,4-di-tert-butylphenyl)-3-phenyl-phenylphosphonite can be used in combination, but preferably two of these are used. It is a mixture. In the case of a mixture of two kinds, the mixing ratio by weight is preferably in the range of 5:1 to 4, more preferably in the range of 5:2 to 3.
 一方、ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリメチルホスフェートである。 On the other hand, as the phosphate compound, tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl. Phosphate, diisopropyl phosphate and the like can be mentioned, with preference given to trimethyl phosphate.
 上記のリン含有熱安定剤の中で、さらに好ましい化合物としては、以下の一般式(14)および(15)で表される化合物を挙げることができる。 Among the phosphorus-containing heat stabilizers, more preferable compounds include compounds represented by the following general formulas (14) and (15).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式中、R36およびR37は、それぞれ独立して炭素原子数1~12のアルキル基、シクロアルキル基、アリール基またはアラルキル基を示す。] [In the formula, R 36 and R 37 each independently represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, an aryl group or an aralkyl group. ]
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[式中、R41、R42、R43、R44、R47、R48およびR49はそれぞれ独立して水素原子、炭素原子数1~12のアルキル基、シクロアルキル基、アリール基またはアラルキル基を示し、R45は水素原子または炭素原子数1~4のアルキル基を示し、およびR46は水素原子またはメチル基を示す。]
 式(14)中、好ましくはR36およびR37は炭素原子数1~12のアルキル基であり、より好ましくは炭素原子数1~8のアルキル基である。式(14)で表される化合物としては具体的に、トリス(ジメチルフェニル)ホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-iso-プロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイトなどが挙げられ、特にトリス(2,6-ジ-tert-ブチルフェニル)ホスファイトが好ましい。
[Wherein R 41 , R 42 , R 43 , R 44 , R 47 , R 48 and R 49 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, an aryl group or aralkyl. R 45 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 46 represents a hydrogen atom or a methyl group. ]
In formula (14), R 36 and R 37 are preferably alkyl groups having 1 to 12 carbon atoms, and more preferably alkyl groups having 1 to 8 carbon atoms. Specific examples of the compound represented by the formula (14) include tris(dimethylphenyl)phosphite, tris(diethylphenyl)phosphite, tris(di-iso-propylphenyl)phosphite, tris(di-n-butyl). Phenyl)phosphite, tris(2,4-di-tert-butylphenyl)phosphite, tris(2,6-di-tert-butylphenyl)phosphite, tris(2,6-di-tert-butylphenyl) Examples of the phosphite include tris(2,6-di-tert-butylphenyl)phosphite.
 式(15)で表される化合物としては具体的に、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェノール)と2,6-ジ-tert-ブチルフェノールから誘導されるホスファイト、 2,2’-メチレンビス(4,6-ジ-tert-ブチルフェノール)とフェノールから誘導されるホスファイト、が挙げられ、特に2,2’-メチレンビス(4,6-ジ-tert-ブチルフェノール)とフェノールから誘導されるホスファイトが好ましい。 Specific examples of the compound represented by the formula (15) include phosphite derived from 2,2′-methylenebis(4,6-di-tert-butylphenol) and 2,6-di-tert-butylphenol, 2 , 2'-methylenebis(4,6-di-tert-butylphenol) and a phosphite derived from phenol, especially from 2,2'-methylenebis(4,6-di-tert-butylphenol) and phenol. Derived phosphites are preferred.
 リン系熱安定剤の含有量はA成分とB成分との合計100重量部に対して、好ましくは0.001~3.0重量部、より好ましくは0.01~2.0重量部、さらに好ましくは0.05~1.0重量部である。リン系熱安定剤の含有量が0.001重量部未満では機械特性が十分に発現せず、3.0重量部を超えても機械特性を十分に発現しない場合がある。
(フェノール系熱安定剤)
 本発明に使用されるフェノール系安定剤としては、一般的にヒンダードフェノール、セミヒンダードフェノール、レスヒンダードフェノール化合物が挙げられるが、ポリプロピレン系樹脂に対して熱安定処方を施すという観点で特にヒンダードフェノール化合物がより好適に用いられる。かかるヒンダードフェノール化合物としては、具体例としては、例えばビタミンE、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェル)プロピオネート、2-tert-ブチル-6-(3’-tert-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-tert-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネートジエチルエステル、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、2,2’-ジメチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)2,2’-エチリデン-ビス(4,6-ジ-tert-ブチルフェノール)、2,2’-ブチリデン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、トリエチレングリコール-N-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、1,6-へキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ビス[2-tert-ブチル-4-メチル6-(3-tert-ブチル-5-メチル-2-ヒドロキシベンジル)フェニル]テレフタレート、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1,-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-チオビス(4-メチル-6-tert-ブチルフェノール)、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド、4,4’-ジ-チオビス(2,6-ジ-tert-ブチルフェノール)、4,4’-トリ-チオビス(2,6-ジ-tert-ブチルフェノール)、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’,5’-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、N,N’-ヘキサメチレンビス-(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナミド)、N,N’-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)イソシアヌレート、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、1,3,5-トリス2[3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンなどを挙げることができ、好ましく使用できる。
The content of the phosphorus-based heat stabilizer is preferably 0.001 to 3.0 parts by weight, more preferably 0.01 to 2.0 parts by weight, based on 100 parts by weight of the total of the components A and B, and It is preferably 0.05 to 1.0 part by weight. If the content of the phosphorus-based heat stabilizer is less than 0.001 part by weight, the mechanical properties may not be sufficiently exhibited, and if it exceeds 3.0 parts by weight, the mechanical properties may not be sufficiently exhibited.
(Phenolic heat stabilizer)
The phenol-based stabilizer used in the present invention generally includes hindered phenols, semi-hindered phenols, and less hindered phenol compounds, but particularly from the viewpoint of applying a heat-stable formulation to polypropylene-based resins. A hindered phenol compound is more preferably used. Specific examples of such hindered phenol compounds include vitamin E, n-octadecyl-β-(4′-hydroxy-3′,5′-di-tert-butylfel)propionate, 2-tert-butyl-6. -(3'-tert-butyl-5'-methyl-2'-hydroxybenzyl)-4-methylphenyl acrylate, 2,6-di-tert-butyl-4-(N,N-dimethylaminomethyl)phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2′-methylenebis(4-methyl-6-tert-butylphenol), 2,2′-methylenebis(4-ethyl-6-tert) -Butylphenol), 4,4'-methylenebis(2,6-di-tert-butylphenol), 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,2'-dimethylene-bis(6- α-methyl-benzyl-p-cresol)2,2′-ethylidene-bis(4,6-di-tert-butylphenol), 2,2′-butylidene-bis(4-methyl-6-tert-butylphenol), 4,4′-butylidene bis(3-methyl-6-tert-butylphenol), triethylene glycol-N-bis-3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionate, 1,6- Hexanediol bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, bis[2-tert-butyl-4-methyl 6-(3-tert-butyl-5-methyl-2 -Hydroxybenzyl)phenyl]terephthalate, 3,9-bis{2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1,-dimethylethyl}-2, 4,8,10-Tetraoxaspiro[5,5]undecane, 4,4'-thiobis(6-tert-butyl-m-cresol), 4,4'-thiobis(3-methyl-6-tert-butylphenol) ), 2,2′-thiobis(4-methyl-6-tert-butylphenol), bis(3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4,4′-di-thiobis(2,2) 6-di-tert-butylphenol), 4,4'-tri-thiobis(2,6-di-tert-butylphenol), 2,4-bis(n-octylthio)-6-(4 -Hydroxy-3',5'-di-tert-butylanilino)-1,3,5-triazine, N,N'-hexamethylenebis-(3,5-di-tert-butyl-4-hydroxyhydrocinnamide ), N,N′-bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl]hydrazine, 1,1,3-tris(2-methyl-4-hydroxy-5-tert) -Butylphenyl)butane, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, tris(3,5-di-tert-butyl) -4-Hydroxyphenyl)isocyanurate, Tris(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-Tris(4-tert-butyl-3-hydroxy-2,6 -Dimethylbenzyl) isocyanurate, 1,3,5-tris2[3(3,5-di-tert-butyl-4-hydroxyphenyl)propionyloxy]ethyl isocyanurate, tetrakis[methylene-3-(3', 5′-di-tert-butyl-4-hydroxyphenyl)propionate]methane and the like can be mentioned, and preferably used.
 より好ましくは、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェル)プロピオネート、2-tert-ブチル-6-(3’-tert-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1,-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、およびテトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンであり、さらにn-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェル)プロピオネートが好ましい。
(イオウ含有酸化防止剤)
 本発明のポリカーボネート樹脂組成物には、酸化防止剤としてイオウ含有酸化防止剤を使用することもできる。特に樹脂組成物が回転成形や圧縮成形に使用される場合には好適である。かかるイオウ含有酸化防止剤の具体例としては、ジラウリル-3,3’-チオジプロピオン酸エステル、ジトリデシル-3,3’-チオジプロピオン酸エステル、ジミリスチル-3,3’-チオジプロピオン酸エステル、ジステアリル-3,3’-チオジプロピオン酸エステル、ラウリルステアリル-3,3’-チオジプロピオン酸エステル、ペンタエリスリトールテトラ(β-ラウリルチオプロピオネート)エステル、ビス[2-メチル-4-(3-ラウリルチオプロピオニルオキシ)-5-tert-ブチルフェニル]スルフィド、オクタデシルジスルフィド、メルカプトベンズイミダゾール、2-メルカプト-6-メチルベンズイミダゾール、1,1’-チオビス(2-ナフトール)などを挙げることができる。より好ましくは、ペンタエリスリトールテトラ(β-ラウリルチオプロピオネート)エステルを挙げることができる。
More preferably, n-octadecyl-β-(4′-hydroxy-3′,5′-di-tert-butylfel)propionate, 2-tert-butyl-6-(3′-tert-butyl-5′-methyl) -2'-hydroxybenzyl)-4-methylphenyl acrylate, 3,9-bis{2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1,- Dimethylethyl}-2,4,8,10-tetraoxaspiro[5,5]undecane, and tetrakis[methylene-3-(3',5'-di-tert-butyl-4-hydroxyphenyl)propionate]methane And n-octadecyl-β-(4′-hydroxy-3′,5′-di-tert-butylfel)propionate is more preferable.
(Sulfur-containing antioxidant)
A sulfur-containing antioxidant can also be used as an antioxidant in the polycarbonate resin composition of the present invention. In particular, it is suitable when the resin composition is used for rotational molding or compression molding. Specific examples of the sulfur-containing antioxidant include dilauryl-3,3'-thiodipropionic acid ester, ditridecyl-3,3'-thiodipropionic acid ester, dimyristyl-3,3'-thiodipropionic acid ester. , Distearyl-3,3'-thiodipropionate, laurylstearyl-3,3'-thiodipropionate, pentaerythritol tetra(β-laurylthiopropionate) ester, bis[2-methyl-4 -(3-laurylthiopropionyloxy)-5-tert-butylphenyl] sulfide, octadecyl disulfide, mercaptobenzimidazole, 2-mercapto-6-methylbenzimidazole, 1,1′-thiobis(2-naphthol), etc. be able to. More preferably, pentaerythritol tetra(β-laurylthiopropionate) ester can be mentioned.
 上記に挙げたリン系安定剤、フェノール系安定剤、およびイオウ含有酸化防止剤はそれぞれ単独または2種以上併用することができる。フェノール系安定剤およびイオウ含有酸化防止剤の含有量は、A成分とB成分との合計100重量部に対し、0.0001~1重量部であることが好ましい。より好ましくは0.0005~0.5重量部であり、さらに好ましくは0.001~0.2重量部である。
(紫外線吸収剤)
 本発明のポリカーボネート樹脂組成物は紫外線吸収剤を含有することができる。ベンゾフェノン系では、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-ベンジロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシトリハイドライドレイトベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-5-ソジウムスルホキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-ヒドロキシ-4-n-ドデシルオキシベンソフェノン、および2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノンなどが例示される。
The phosphorus-based stabilizer, the phenol-based stabilizer, and the sulfur-containing antioxidant listed above can be used alone or in combination of two or more kinds. The content of the phenolic stabilizer and the sulfur-containing antioxidant is preferably 0.0001 to 1 part by weight based on 100 parts by weight of the total of the component A and the component B. The amount is more preferably 0.0005 to 0.5 part by weight, still more preferably 0.001 to 0.2 part by weight.
(UV absorber)
The polycarbonate resin composition of the present invention may contain an ultraviolet absorber. Examples of benzophenone-based compounds include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy- 5-Sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydride benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2 ,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodium sulfoxybenzophenone, bis(5-benzoyl-4-hydroxy-2-methoxyphenyl) ) Methane, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-methoxy-2'-carboxybenzophenone and the like are exemplified.
 ベンゾトリアゾール系では、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジクミルフェニル)フェニルベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)、および2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル]ベンゾトリアゾ-ル、並びに2-(2’-ヒドロキシ-5-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2-(2’―ヒドロキシ-5-アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2-ヒドロキシフェニル-2H-ベンゾトリアゾール骨格を有する重合体などが例示される。 In the benzotriazole type, for example, 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-(2-hydroxy-3, 5-dicumylphenyl)phenylbenzotriazole, 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-5-chlorobenzotriazole, 2,2'-methylenebis[4-(1,1,3 ,3-Tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol], 2-(2-hydroxy-3,5-di-tert-butylphenyl)benzotriazole, 2-(2- Hydroxy-3,5-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3,5-di-tert-amylphenyl)benzotriazole, 2-(2-hydroxy-5) -Tert-octylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-butylphenyl)benzotriazole, 2-(2-hydroxy-4-octoxyphenyl)benzotriazole, 2,2'- Methylenebis(4-cumyl-6-benzotriazolephenyl), 2,2'-p-phenylenebis(1,3-benzoxazin-4-one), and 2-[2-hydroxy-3-(3,4,4) 5,6-Tetrahydrophthalimidomethyl)-5-methylphenyl]benzotriazole, and vinyl monomer copolymerizable with 2-(2'-hydroxy-5-methacryloxyethylphenyl)-2H-benzotriazole and the monomer 2-hydroxyphenyl-2H, such as a copolymer with 2-(2'-hydroxy-5-acryloxyethylphenyl)-2H-benzotriazole and a vinyl monomer copolymerizable with the monomer Examples thereof include polymers having a benzotriazole skeleton.
 ヒドロキシフェニルトリアジン系では、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-メチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-エチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-プロピルオキシフェノール、および2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ブチルオキシフェノールなどが例示される。さらに2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4-ジメチルフェニル基となった化合物が例示される。 In the hydroxyphenyl triazine type, for example, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexyloxyphenol, 2-(4,6-diphenyl-1,3,5 -Triazin-2-yl)-5-methyloxyphenol, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-ethyloxyphenol, 2-(4,6-diphenyl -1,3,5-triazin-2-yl)-5-propyloxyphenol and 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-butyloxyphenol It is illustrated. Furthermore, the phenyl group of the above exemplified compounds such as 2-(4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl)-5-hexyloxyphenol is 2,4-dimethyl. A compound having a phenyl group is exemplified.
 環状イミノエステル系では、例えば2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(4,4’-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、および2,2’-(2,6-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)などが例示される。 In the cyclic imino ester system, for example, 2,2'-p-phenylenebis(3,1-benzoxazin-4-one), 2,2'-(4,4'-diphenylene)bis(3,1-benzoxazine -4-one), 2,2′-(2,6-naphthalene)bis(3,1-benzoxazin-4-one) and the like.
 シアノアクリレート系では、例えば1,3-ビス-[(2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ]-2,2-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3-ビス-[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。 In the case of cyanoacrylates, for example, 1,3-bis-[(2'-cyano-3',3'-diphenylacryloyl)oxy]-2,2-bis[(2-cyano-3,3-diphenylacryloyl)oxy ] Methyl)propane, 1,3-bis-[(2-cyano-3,3-diphenylacryloyl)oxy]benzene and the like are exemplified.
 さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/またはヒンダードアミン構造を有する光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。上記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。 Further, the above-mentioned UV absorber has a structure of a monomer compound capable of radical polymerization, whereby the UV-absorbing monomer and/or the light-stable monomer having a hindered amine structure and an alkyl (meth)acrylate are used. It may be a polymer type ultraviolet absorber obtained by copolymerizing with a monomer such as. Preferred examples of the ultraviolet absorbing monomer include compounds having a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic iminoester skeleton, and a cyanoacrylate skeleton in the ester substituent of a (meth)acrylic acid ester. It
 上記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相(透明性)の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。上記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。 Among the above, a benzotriazole type and a hydroxyphenyl triazine type are preferable in terms of ultraviolet absorption ability, and a cyclic iminoester type and a cyanoacrylate type are preferable in terms of heat resistance and hue (transparency). The above UV absorbers may be used alone or as a mixture of two or more kinds.
 紫外線吸収剤の含有量は、A成分とB成分との合計100重量部に対して、好ましくは0.01~2重量部、より好ましくは0.02~2重量部、さらに好ましくは0.03~1重量部、更に好ましくは0.05~0.5重量部である。
(ヒンダードアミン系光安定剤)
 本発明のポリカーボネート樹脂組成物はヒンダードアミン系光安定剤を含有することができる。ヒンダードアミン系光安定剤は一般にHALS(Hindered Amine Light Stabilizer)と呼ばれ、2,2,6,6-テトラメチルピペリジン骨格を構造中に有する化合物であり、例えば、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(フェニルアセトキシ)-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアリルオキシ-2,2,6,6-テトラメチルピペリジン、4-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-フェノキシ-2,2,6,6-テトラメチルピペリジン、4-(エチルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(シクロヘキシルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(フェニルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、ビス(2,2,6,6-テトラメチル-4-ピペリジル)カーボネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)オキサレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)マロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)テレフタレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)カーボネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)オキサレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)マロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)アジペート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)テレフタレート、N,N’-ビス-2,2,6,6-テトラメチル-4-ピペリジニル-1,3-ベンゼンジカルボキシアミド、1,2-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)エタン、α,α'-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-p-キシレン、ビス(2,2,6,6-テトラメチル-4-ピペリジルトリレン-2,4-ジカルバメート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-ヘキサメチレン-1,6-ジカルバメート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,5-トリカルボキシレート、N,N’,N’’,N’’’-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,4-トリカルボキシレート、1-[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}ブチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6-テトラメチルピペリジン、及び1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールとβ,β,β',β'-テトラメチル-3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物などが挙げられる。
The content of the ultraviolet absorber is preferably 0.01 to 2 parts by weight, more preferably 0.02 to 2 parts by weight, and further preferably 0.03 with respect to 100 parts by weight as the total of the components A and B. To 1 part by weight, more preferably 0.05 to 0.5 part by weight.
(Hindered amine light stabilizer)
The polycarbonate resin composition of the present invention may contain a hindered amine light stabilizer. The hindered amine light stabilizer is generally called HALS (Hindered Amine Light Stabilizer) and is a compound having a 2,2,6,6-tetramethylpiperidine skeleton in its structure, for example, 4-acetoxy-2,2,6. ,6-Tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-2,2,6,6-tetramethylpiperidine, 4-(phenylacetoxy)-2, 2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-methoxy-2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2, 2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6,6-tetramethylpiperidine, 4-benzyloxy-2,2,6,6-tetramethylpiperidine, 4-phenoxy-2, 2,6,6-tetramethylpiperidine, 4-(ethylcarbamoyloxy)-2,2,6,6-tetramethylpiperidine, 4-(cyclohexylcarbamoyloxy)-2,2,6,6-tetramethylpiperidine, 4-(phenylcarbamoyloxy)-2,2,6,6-tetramethylpiperidine, bis(2,2,6,6-tetramethyl-4-piperidyl)carbonate, bis(2,2,6,6-tetra Methyl-4-piperidyl)oxalate, bis(2,2,6,6-tetramethyl-4-piperidyl)malonate, bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(2,2 2,6,6-tetramethyl-4-piperidyl)adipate, bis(2,2,6,6-tetramethyl-4-piperidyl)terephthalate, bis(1,2,2,6,6-pentamethyl-4-) Piperidyl)carbonate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)oxalate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)malonate, bis(1,2,2 2,6,6-pentamethyl-4-piperidyl) sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl) adipate, bis(1,2,2,6,6-pentamethyl-4- Piperidyl) terephthalate, N,N'-bis-2,2,6,6-tetramethyl-4-piperidinyl-1,3-benzenedicarboxamide, 1,2-bis(2,2,6,6-tetra Methyl-4-pi Peridyloxy)ethane, α,α'-bis(2,2,6,6-tetramethyl-4-piperidyloxy)-p-xylene, bis(2,2,6,6-tetramethyl-4-piperidyltolylene -2,4-dicarbamate, bis(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylene-1,6-dicarbamate, tris(2,2,6,6-tetramethyl-4) -Piperidyl)-benzene-1,3,5-tricarboxylate, N,N',N",N'"-tetrakis-(4,6-bis-(butyl-(N-methyl-2,2) ,6,6-Tetramethylpiperidin-4-yl)amino)-triazin-2-yl)-4,7-diazadecane-1,10-diamine, dibutylamine·1,3,5-triazine·N,N′ -Polycondensation product of bis(2,2,6,6-tetramethyl-4-piperidyl)-1,6-hexamethylenediamine and N-(2,2,6,6-tetramethyl-4-piperidyl)butylamine , Poly[{6-(1,1,3,3-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl}{(2,2,6,6-tetramethyl-4- Piperidyl)imino}hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl)imino}], tetrakis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3 ,4-butanetetracarboxylate, tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)-1,2,3,4-butanetetracarboxylate, tris(2,2,6,6- Tetramethyl-4-piperidyl)-benzene-1,3,4-tricarboxylate, 1-[2-{3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxy}butyl]- 4-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxy]2,2,6,6-tetramethylpiperidine, and 1,2,3,4-butanetetracarboxylic acid 1,2,2,6,6-Pentamethyl-4-piperidinol and β,β,β',β'-Tetramethyl-3,9-[2,4,8,10-tetraoxaspiro(5,5) Undecane] and a condensate with diethanol.
 ヒンダードアミン系光安定剤はピペリジン骨格中の窒素原子の結合相手により大きく分けて、N-H型(窒素原子に水素が結合)、N-R型(窒素原子にアルキル基(R)が結合)、N-OR型(窒素原子にアルコキシ基(OR)が結合)の3タイプがあるが、ポリカーボネート樹脂に適用する際、ヒンダードアミン系光安定剤の塩基性の観点から、低塩基性であるN-R型、N-OR型を用いるのがより好ましい。上記ヒンダードアミン系光安定剤は、単独でまたは2種以上を組合せて使用することができる。 Hindered amine light stabilizers are roughly classified into NH type (hydrogen is bonded to nitrogen atom), NR type (alkyl group (R) is bonded to nitrogen atom) according to the bonding partner of nitrogen atom in piperidine skeleton, There are three types of N-OR type (alkoxy group (OR) is bonded to nitrogen atom), but when applied to a polycarbonate resin, it is a low basic type NR from the viewpoint of the basicity of the hindered amine light stabilizer. Type and N-OR type are more preferable. The hindered amine light stabilizers can be used alone or in combination of two or more kinds.
 ヒンダードアミン系光安定剤の含有量は、A成分とB成分との合計100重量部に対し、0~1重量部であることが好ましく、0.05~1重量部がより好ましく、さらに好ましくは0.08~0.7重量部、特に好ましくは0.1~0.5重量部である。ヒンダードアミン系光安定剤の含有量が1重量部より多いとガス発生による外観不良やポリカーボネート樹脂の分解による物性低下が起こる場合があり好ましくない。また、0.05重量部未満であると、十分な耐光性が発現しない場合がある。
(染顔料)
 本発明のポリカーボネート樹脂組成物には更に各種の染顔料を含有し多様な意匠性を発現する成形品を提供できる。蛍光増白剤やそれ以外の発光をする蛍光染料を配合することにより、発光色を生かした更に良好な意匠効果を付与することができる。また極微量の染顔料による着色、かつ鮮やかな発色性を有する繊維強化ポリプロピレン樹脂組成物もまた提供可能である。
The content of the hindered amine light stabilizer is preferably 0 to 1 part by weight, more preferably 0.05 to 1 part by weight, still more preferably 0, based on 100 parts by weight of the total of the components A and B. 0.08 to 0.7 part by weight, particularly preferably 0.1 to 0.5 part by weight. If the content of the hindered amine-based light stabilizer is more than 1 part by weight, the appearance may be deteriorated due to gas generation and the physical properties may be deteriorated due to decomposition of the polycarbonate resin, which is not preferable. If it is less than 0.05 part by weight, sufficient light resistance may not be exhibited.
(Dye and pigment)
The polycarbonate resin composition of the present invention can further contain various dyes and pigments to provide molded articles exhibiting various design properties. By blending a fluorescent whitening agent or a fluorescent dye that emits light other than that, it is possible to impart a better design effect by utilizing the emission color. Further, it is possible to provide a fiber-reinforced polypropylene resin composition which is colored with an extremely small amount of dye and pigment and has a vivid color-forming property.
 本発明で使用する蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。これらの中でも耐熱性が良好でポリカーボネート樹脂の成形加工時における劣化が少ないクマリン系蛍光染料、ベンゾピラン系蛍光染料、およびペリレン系蛍光染料が好適である。 Examples of the fluorescent dye (including a fluorescent whitening agent) used in the present invention include coumarin fluorescent dye, benzopyran fluorescent dye, perylene fluorescent dye, anthraquinone fluorescent dye, thioindigo fluorescent dye, xanthene fluorescent dye. , Xanthone-based fluorescent dyes, thioxanthene-based fluorescent dyes, thioxanthone-based fluorescent dyes, thiazine-based fluorescent dyes, and diaminostilbene-based fluorescent dyes. Among these, coumarin-based fluorescent dyes, benzopyran-based fluorescent dyes, and perylene-based fluorescent dyes, which have good heat resistance and little deterioration during molding of a polycarbonate resin, are preferable.
 上記ブルーイング剤および蛍光染料以外の染料としては、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青等のフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、およびフタロシアニン系染料などを挙げることができる。更に本発明の樹脂組成物はメタリック顔料を配合してより良好なメタリック色彩を得ることもできる。メタリック顔料としては、各種板状フィラーに金属被膜または金属酸化物被膜を有するものが好適である。 As the dye other than the bluing agent and the fluorescent dye, perylene dyes, coumarin dyes, thioindigo dyes, anthraquinone dyes, thioxanthone dyes, ferrocyanides such as dark blue, perinone dyes, quinoline dyes, quinacridone. Examples thereof include dyes, dioxazine dyes, isoindolinone dyes, and phthalocyanine dyes. Further, the resin composition of the present invention can be blended with a metallic pigment to obtain a better metallic color. As the metallic pigment, those having a metal coating or a metal oxide coating on various plate-like fillers are suitable.
 上記の染顔料の含有量は、A成分とB成分との合計100重量部に対して、0.00001~1重量部が好ましく、0.00005~0.5重量部がより好ましい。
(他の樹脂)
 本発明のポリカーボネート樹脂組成物には、他の樹脂を本発明の効果を発揮する範囲において、少割合使用することもできる。
The content of the above dye/pigment is preferably 0.00001 to 1 part by weight, and more preferably 0.00005 to 0.5 part by weight, based on 100 parts by weight of the total of the components A and B.
(Other resins)
In the polycarbonate resin composition of the present invention, other resins may be used in a small proportion within the range in which the effects of the present invention are exhibited.
 かかる他の樹脂としては、例えば、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリプロピレン樹脂以外のポリオレフィン樹脂、ポリメタクリレート樹脂、フェノール樹脂、エポキシ樹脂等の樹脂が挙げられる。
(その他充填材)
 本発明のポリカーボネート樹脂組成物には、他の充填材を本発明の効果を発揮する範囲において、少割合使用することもできる。
Examples of such other resins include polyamide resins, polyimide resins, polyetherimide resins, polyurethane resins, silicone resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, polyolefin resins other than polypropylene resins, polymethacrylate resins, phenolic resins. Resins such as epoxy resin can be used.
(Other filling materials)
In the polycarbonate resin composition of the present invention, other fillers may be used in a small proportion within the range in which the effects of the present invention are exhibited.
 かかる他の充填材としてはチタン酸カリウィスカ、酸化亜鉛ウィスカ、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填剤、ワラストナイト、セリサイト、カオリン、マイカ、クレー、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、モンモリロナイト、合成雲母などの膨潤性の層状珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラス・ビーズ、セラミックビ-ズ、窒化ホウ素、炭化珪素、燐酸カルシウムおよびシリカなどの非繊維状充填剤が挙げられる。
(その他の添加剤)
 本発明のポリカーボネート樹脂組成物には、成形品に種々の機能の付与や特性改善のために、それ自体知られた添加物を少割合配合することができる。これら添加物は本発明の目的を損なわない限り、通常の配合量である。かかる添加剤としては、摺動剤(例えばPTFE粒子)、蛍光染料、無機系蛍光体(例えばアルミン酸塩を母結晶とする蛍光体)、帯電防止剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(例えば微粒子酸化チタン、微粒子酸化亜鉛)、ラジカル発生剤、赤外線吸収剤(熱線吸収剤)、およびフォトクロミック剤などが挙げられる。
[成形体及びその製造方法]  
 本発明の成形用材料を、従来技術のように、独立した工程にて強化繊維に熱可塑性樹脂を含浸させる為の処理をすることなく、既存の熱可塑性樹脂成形プロセスにて成形することにより、成形用材料において、易含浸性炭素繊維束へポリカーボネート樹脂組成物が含浸し、炭素繊維束を解きつつ溶融流動して金型内に広がることにより、良好な物性の成形体を得ることが可能である。  
Such other fillers include potassium whisker titanate, zinc oxide whiskers, alumina fibers, silicon carbide fibers, ceramic fibers, asbestos fibers, gypsum fibers, fibrous fillers such as metal fibers, wollastonite, sericite, kaolin, Silicates such as mica, clay, bentonite, asbestos, talc and alumina silicate, swelling layered silicates such as montmorillonite and synthetic mica, metal compounds such as alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide and iron oxide , Carbonates such as calcium carbonate, magnesium carbonate, dolomite, sulfates such as calcium sulfate and barium sulfate, non-fibrous fillers such as glass beads, ceramic beads, boron nitride, silicon carbide, calcium phosphate and silica. Can be mentioned.
(Other additives)
The polycarbonate resin composition of the present invention may contain a small proportion of additives known per se in order to impart various functions to the molded article and improve the characteristics. The amounts of these additives to be added are usual amounts unless the object of the present invention is impaired. Such additives include sliding agents (for example, PTFE particles), fluorescent dyes, inorganic fluorescent substances (for example, fluorescent substances having aluminate as a mother crystal), antistatic agents, crystal nucleating agents, inorganic and organic antibacterial agents. , Photocatalyst type antifouling agents (for example, fine particle titanium oxide, fine particle zinc oxide), radical generators, infrared absorbers (heat ray absorbers), and photochromic agents.
[Molded body and manufacturing method thereof]
By molding the molding material of the present invention in the existing thermoplastic resin molding process without performing a treatment for impregnating the reinforcing fiber with the thermoplastic resin in an independent step as in the prior art, In a molding material, a polycarbonate resin composition is impregnated into a carbon fiber bundle that is easily impregnated, melts and flows while unraveling the carbon fiber bundle, and spreads in the mold, so that a molded body with good physical properties can be obtained. is there.
 つまり、本願には、前記の本発明の成形用材料からなる成形体の発明、および該成形用材料を、前記ポリカーボネート樹脂組成物の可塑化温度以上の温度の状態で金型内に存在させることにより、該成形用材料において、前記の易含浸性炭素繊維束に該ポリカーボネート樹脂組成物を含浸させて、該易含浸性炭素繊維束の炭素繊維束を解き分散させつつ成形した後、冷却することを特徴とする成形体の製造方法の発明も包含される。   That is, in the present application, the invention of a molded article made of the above-described molding material of the present invention, and the molding material being present in the mold at a temperature of the plasticizing temperature of the polycarbonate resin composition or higher. In the molding material, the polycarbonate resin composition is impregnated into the easily impregnable carbon fiber bundle, and the carbon fiber bundle of the easily impregnable carbon fiber bundle is released and molded, and then cooled. The invention of a method for producing a molded article is also included.  
 本発明の成形体の製造方法において、“易含浸性炭素繊維束の炭素繊維束を解き分散させる”とは、成形体において炭素繊維が塊状物となることが無い程度にまで、炭素繊維束が解繊され分散されることを意味し、炭素繊維フィラメント等の炭素繊維束を、その構成する数千~数万本の炭素繊維単糸1本1本まで完全に解くまでしなくても、優れた物性および外観の成形体を得ることができる。   In the method for producing a molded body of the present invention, "to disperse and disperse the carbon fiber bundle of the easily impregnable carbon fiber bundle" means that the carbon fiber bundle is as large as the carbon fiber does not become a lump in the molded body. It means that it is defibrated and dispersed, and it is excellent even if you do not completely loosen the carbon fiber bundles such as carbon fiber filaments to each of the constituent thousands of tens of thousands of carbon fiber single yarns. A molded product having excellent physical properties and appearance can be obtained.  
 本発明の成形体を製造するにおいて、前記の成形用材料を、採用する成形方法に適した種々の形態として用いることができる。例えば、射出成形にて成形する場合は、易含浸性炭素繊維束の周囲にポリカーボネート樹脂組成物を被覆したストランドをストランドカッターにて長さ3~10mm程度に切断したペレット状の成形用材料として用いることができる。   In the production of the molded article of the present invention, the above molding material can be used in various forms suitable for the molding method adopted. For example, in the case of molding by injection molding, a strand in which a polycarbonate resin composition is coated around an easily impregnable carbon fiber bundle is used as a pellet-shaped molding material obtained by cutting the strand with a strand cutter into a length of about 3 to 10 mm. be able to.  
 また、板状の大型成形体を得る場合には、プレス成形が有効である。プレス成形を行う場合には、ポリカーボネート樹脂組成物と易含浸性炭素繊維束とを積層した板状の成形用材料とし、これを、ポリカーボネート樹脂組成物の可塑化温度以上に加熱し、プレス型内に設置後、所定のプレス圧にて成形することも可能である。形状などによっては、予め本発明にかかる成形用材料を加熱プレスして得られるプリフォーム体を用いて成形する方法なども有効である。   Also, press molding is effective for obtaining a large plate-shaped molded product. When performing press molding, a plate-shaped molding material obtained by laminating a polycarbonate resin composition and a bundle of easily impregnable carbon fibers, which is heated to a plasticizing temperature of the polycarbonate resin composition or higher, It is also possible to perform molding under a predetermined press pressure after installation in. Depending on the shape and the like, a method of molding using a preform body obtained by previously heating and pressing the molding material according to the present invention is also effective.  
 本発明の成形用材料を用い、他の成形用材料や添加剤を加えることなく、成形を行って成形体を得た場合、該成形用材料と該成形体の炭素繊維を含有する量や割合、つまり質量基準の組成は当然同じである。よって本発明の成形体に含まれる炭素繊維やポリカーボネート樹脂組成物の量やその好ましい範囲については、成形用材料について前述したものである。   When a molding is obtained using the molding material of the present invention without adding other molding materials or additives, the molding material and the carbon fiber content of the molding and the proportion thereof That is, the composition based on mass is naturally the same. Therefore, the amount of the carbon fiber or the polycarbonate resin composition contained in the molded product of the present invention and the preferable range thereof are as described above for the molding material.  
 なお、本発明の成形用材料を用いて、他の成形用材料や添加剤を加えることなく成形を行った場合は、成形用材料または得られた成形体のいずれか一方の炭素繊維含有量(率)を測定し、これを他方の炭素繊維含有量(率)とみなすことができる。また、本発明の成形用材料に、他の成形用材料や添加剤等を加えて成形を行った場合でも、それらの添加量を元に計算を行い、本発明の成形用材料または成形体のいずれか一方の炭素繊維含有量(率)から、他方の炭素繊維含有量(率)を求めることができる。   When the molding material of the present invention is used for molding without adding other molding materials or additives, the carbon fiber content of either one of the molding material or the obtained molded body ( The rate) can be measured and this can be regarded as the content (rate) of the other carbon fiber. Further, even when the molding material of the present invention is molded by adding other molding materials, additives, etc., the calculation is performed based on the addition amount thereof, and the molding material or molded article of the present invention The carbon fiber content (rate) of the other can be determined from the carbon fiber content (rate) of either one.  
 従来の炭素繊維強化熱可塑性樹脂の成形体は、炭素繊維が熱可塑性樹脂に均質に分散した状態にするために、2軸押出機等にて熱可塑性樹脂と炭素繊維とを溶融混練したペレット等を材料として成形することによって得られている。しかしこの方法では、高いせん断をかけて混練するために、炭素繊維が押出機内で破砕され、得られる成形体中の炭素繊維長さが0.3mm未満となってしまうため、繊維による物性補強効果が低下してしまう。これに対し、本発明の成形用材料の成形体は、炭素繊維束へのポリカーボネート樹脂組成物の含浸性に優れるため、高いせん断で炭素繊維束と溶融樹脂とを混練する必要がない。このため得られる成形体中に炭素繊維が長いまま残存し、機械的強度に優れたものとなる。   A conventional carbon fiber reinforced thermoplastic resin molded product is a pellet or the like in which the thermoplastic resin and the carbon fiber are melt-kneaded by a twin-screw extruder or the like in order to make the carbon fiber uniformly dispersed in the thermoplastic resin. It is obtained by molding as a material. However, in this method, since the carbon fiber is crushed in the extruder due to the high shearing and kneading, and the length of the carbon fiber in the obtained molded product becomes less than 0.3 mm, the physical property reinforcing effect of the fiber is obtained. Will decrease. On the other hand, since the molded body of the molding material of the present invention has excellent impregnation properties of the polycarbonate resin composition into the carbon fiber bundle, it is not necessary to knead the carbon fiber bundle and the molten resin with high shear. Therefore, the carbon fibers remain in the obtained molded product for a long time, and the mechanical strength is excellent.  
 本発明の成形体は、成形体において、易含浸性炭素繊維束が解かれた炭素繊維が、平均繊維長0.3mm以上の長さで分散しているものが好ましく、更に好ましくは該炭素繊維が平均繊維長0.4mm以上の長さで分散しているものである。本発明の成形体において、残存する炭素繊維の平均繊維長の上限に特に制限は無く、用途や採用される成形方法による。例えば、易含浸性炭素繊維束の周囲にポリカーボネート樹脂組成物を被覆したストランドをストランドカッターにてペレット状にして成形用材料として用いて射出成形により得られた成形体については、炭素繊維の平均繊維長10mm以下程度が一般的であり、熱可塑性樹脂による含浸された度合が高い炭素繊維束ほど、射出成型時に折損が起きやすいことから、平均繊維長が2mm以下の場合も多い。   The molded product of the present invention is preferably a molded product in which carbon fibers in which the easily impregnable carbon fiber bundles are unwound are dispersed with an average fiber length of 0.3 mm or more, more preferably the carbon fiber. Are dispersed with an average fiber length of 0.4 mm or more. In the molded product of the present invention, there is no particular upper limit on the average fiber length of the remaining carbon fibers, and it depends on the application and the molding method employed. For example, for a molded product obtained by injection molding using a strand coated with a polycarbonate resin composition around a bundle of easily impregnable carbon fibers as a molding material in the form of pellets, a mean fiber of carbon fibers The length is generally about 10 mm or less, and a carbon fiber bundle impregnated with a thermoplastic resin having a higher degree is more likely to be broken during injection molding. Therefore, the average fiber length is often 2 mm or less.  
 更に、本発明の成形体は、ISO527規格肉厚4mmの引張試験片においては 下式(C)の関係が成り立つものが好ましい。    Furthermore, the molded product of the present invention is preferably one in which the relationship of the following formula (C) is established in a tensile test piece having an ISO527 standard wall thickness of 4 mm.  
 炭素繊維含有率(重量%)×3+90<引張強度(MPa) ・・・(C)  
 上記式(C)が成り立つことは、炭素繊維強化熱可塑性樹脂の成形体において、炭素繊維含有率に比べて、成形体の引張強度が極めて高く、コストおよび性能の面で極めて好ましいことを意味する。
Carbon fiber content (% by weight)×3+90<tensile strength (MPa) (C)
The fact that the above formula (C) is satisfied means that in the molded product of the carbon fiber reinforced thermoplastic resin, the tensile strength of the molded product is extremely high as compared with the carbon fiber content, and it is extremely preferable in terms of cost and performance. ..
 本発明者らが現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。 The present invention, which is considered to be the best by the present inventors, is a compilation of preferable ranges of the above-mentioned requirements. Of course, the present invention is not limited to these forms.
 次に本発明の実施例及び比較例を詳述するが、本発明はこれらによって限定されるものではない。なお、実施例中の各測定項目は下記の方法で測定した。
(I)成形用材料の評価 
1)表面外観  
 下記の方法で得られた成形用材料の表面外観を観察し、炭素繊維束へのポリカーボネートの含浸が不十分だったことにより発生する直径3mm以上の繊維状物質の塊および気泡が表面に確認されなかったものを○(良好)、繊維状物質の塊は確認されなかったものの気泡が確認されたものを△(やや良好)、繊維状物質の塊が確認されたものを×(不良)とした。  
2)曲げ弾性率
 下記の方法で得られた成形用材料より曲げ試験片を射出成形機により作成し、ISO178に準拠し曲げ弾性率の測定を行った。
3)着色性
 下記の方法で得られた成形用材料を、射出成形機を用い、シリンダー温度300℃、金型温度80℃の条件で射出成形を行い、成形体(幅50mm、長さ90mm、厚さ2mm)を得た。得られた成形体の外観色調を目視にて確認した。また、得られた成形体の反射光のL*値は、ISO 11664-4に準拠して、分光測色計(機種名「U4100」、株式会社 日立ハイテクノロジーズ製)を用い、C光源、視野角2°の条件で、反射測定により測定した三刺激値X、Y、Zから算出した。反射測定は、積分球を用い、正反射成分と拡散反射成分とを集積して受光した。得られたL*値は30以下を着色性良好と判断した。
4)難燃性
 下記の方法で得られた成形用材料を120℃で6時間、熱風循環式乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN-5Y]によりシリンダー温度280℃、金型温度80℃で難燃性評価用の試験片を成形した。UL規格94の垂直燃焼試験を、厚み0.7mmで行いその等級を評価した。なお、判定がV-0、V-1、V-2のいずれの基準も満たすことが出来なかった場合「notV」と示すこととする。
[製造例1~18、実施例1~15、比較例1-11]
 表1に示す組成で、全成分からなる混合物を押出機の第1供給口から供給した。かかる混合物はV型ブレンダーで混合して得た。押出は径30mmφのベント式二軸押出機((株)日本製鋼所TEX30α-38.5BW-3V)を使用し、スクリュー回転数230rpm、吐出量25kg/h、ベントの真空度3kPaで溶融混練しペレットを得た。なお、押出温度については、第1供給口からダイス部分まで280℃で実施した。次に、易含浸性炭素繊維束を、出口径3mmの電線被覆用クロスヘッドダイを用いて280℃で溶融された上記ペレットからなる樹脂組成物で被覆し、これを長さ6mmに切断し、表2および表3からなる直径3.2mm、長さ6mmの射出成形に適した芯鞘型ペレットである成形用材料を得た。
Next, Examples and Comparative Examples of the present invention will be described in detail, but the present invention is not limited thereto. Each measurement item in the examples was measured by the following method.
(I) Evaluation of molding material
1) Surface appearance
The surface appearance of the molding material obtained by the following method was observed, and lumps and bubbles of a fibrous substance having a diameter of 3 mm or more, which were generated due to insufficient impregnation of the carbon fiber bundle with polycarbonate, were confirmed on the surface. Those that did not exist were rated as ○ (good), lumps of fibrous material were not confirmed, but those where air bubbles were confirmed were rated as Δ (somewhat good), and those where lumps of fibrous material were confirmed were marked as × (bad). ..
2) Bending elastic modulus A bending test piece was prepared from the molding material obtained by the following method using an injection molding machine, and the bending elastic modulus was measured according to ISO178.
3) Colorability The molding material obtained by the following method was injection-molded using an injection molding machine under the conditions of a cylinder temperature of 300° C. and a mold temperature of 80° C. to obtain a molded body (width 50 mm, length 90 mm, A thickness of 2 mm) was obtained. The appearance color tone of the obtained molded body was visually confirmed. Further, the L* value of the reflected light of the obtained molded body was measured by using a spectrocolorimeter (model name “U4100”, manufactured by Hitachi High-Technologies Corporation) in accordance with ISO 11664-4, using a C light source and a visual field. It was calculated from tristimulus values X, Y and Z measured by reflection measurement under the condition of an angle of 2°. For the reflection measurement, an integrating sphere was used, and the specular reflection component and the diffuse reflection component were integrated and received. The obtained L* value of 30 or less was judged to be good in colorability.
4) Flame retardance The molding material obtained by the following method is dried at 120° C. for 6 hours with a hot air circulation dryer, and the cylinder temperature is 280° C. by an injection molding machine [TOSHIBA MACHINE CO., Ltd. IS150EN-5Y]. A test piece for flame retardancy evaluation was molded at a mold temperature of 80°C. A vertical burning test of UL standard 94 was performed with a thickness of 0.7 mm to evaluate the grade. In addition, when the judgment fails to satisfy any of the criteria of V-0, V-1, and V-2, it is indicated as "notV".
[Production Examples 1-18, Examples 1-15, Comparative Example 1-11]
A mixture having the composition shown in Table 1 and composed of all components was supplied from the first supply port of the extruder. Such a mixture was obtained by mixing with a V-type blender. For the extrusion, a bent type twin-screw extruder with a diameter of 30 mm (TEX30α-38.5BW-3V, Japan Steel Works, Ltd.) was used, and the melt was kneaded at a screw rotation speed of 230 rpm, a discharge rate of 25 kg/h and a vent vacuum degree of 3 kPa. Pellets were obtained. The extrusion temperature was 280° C. from the first supply port to the die. Next, the easily impregnable carbon fiber bundle was coated with a resin composition composed of the above-mentioned pellets melted at 280° C. using a wire-cover crosshead die having an outlet diameter of 3 mm, and this was cut into a length of 6 mm, A molding material as shown in Tables 2 and 3 having a diameter of 3.2 mm and a length of 6 mm, which is a core-sheath type pellet suitable for injection molding, was obtained.
 なお、表1~表3中の記号表記の各成分は下記の通りである。
[使用組成]
 実施例では、下記の成分を使用した。
(A成分)
A-1:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量25,100のポリカーボネート樹脂粉末、帝人(株)製 パンライトL-1250WQ(製品名))
A-2:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量19,700のポリカーボネート樹脂粉末、帝人(株)製 パンライトL-1225WX(製品名))
(B成分)
B-1:ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(粘度平均分子量24,000、PDMS量8.4%、PDMS重合度37、帝人(株)製パンライトW-0111(商品名))
B-2:ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(粘度平均分子量19,50、PDMS量8.4%、PDMS重合度37、帝人(株)製パンライトW-00528商品名))
(C成分)
C-1:臭素系難燃剤(ビスフェノールA骨格を有する臭素化カーボネートオリゴマー、帝人(株)製 FG-8500(製品名))
C-2:臭素系難燃剤(ビスフェノールA骨格を有する臭素化カーボネートオリゴマー、帝人(株)製 FG-7000(製品名))
(D成分)
D-1:被覆PTFE(スチレン-アクリロニトリル共重合物で被覆されたポリテトラフルオロエチレン(ポリテトラフルオロエチレン含有量50重量%)、Shine polymer社製 SN3307PF(商品名))
D-2:フィブリル形成能を有するポリテトラフルオロエチレン(ダイキン工業(株)製ポリフロンFA500H(商品名))
(E成分)
E-1:GC/MS法におけるステアリン酸成分の面積(Ss)とパルミチン酸成分の面積(Sp)との合計が全脂肪族カルボン酸成分中94%であり、それらの面積比(Ss/Sp)が1.44である、ペンタエリスリトールと脂肪族カルボン酸とのフルエステル(理研ビタミン(株)製:リケスターEW-400(商品名)、酸価:9、水酸基価:6、ヨウ素価:0.4、およびTGA5%重量減少温度:322℃、該脂肪族カルボン酸は動物性油脂を原料とする。)
E-2:SsとSpとの合計が全脂肪族カルボン酸成分中91%であり、それらの面積比(Ss/Sp)が1.11である、ペンタエリスリトールと脂肪族カルボン酸とのフルエステル(コグニスジャパン(株)製:ロキシオールVPG-861(商品名)、酸価:1、水酸基価:7、ヨウ素価:0、およびTGA5%重量減少温度:390℃、該脂肪族カルボン酸は植物性油脂を原料とする。)
E-3:高級アルコール脂肪酸エステル( 炭素数10~20 のモノアルコールと炭素数10~20の脂肪酸とのエステル) とトリグリセライド( グリセリンと炭素数10~20の脂肪酸とのエステル) との割合が30:70(重量比)の混合物(理研ビタミン(株)製リケマールSL-900(商品名) )
E-4:低分子量ポリエチレン(三井化学(株)製ハイワックスHW405MP(商品名))
(F成分)
F-1:ビスフェノールA型エポキシ樹脂(三菱化学(株)製jER1256(商品名)、Mw=26,600)
(その他の成分)
P-1:リン系難燃剤(レゾルシノールビス(ジ-2,6-キシリルホスフェート)、大八化学工業(株)製 PX-200(製品名))
TMP:トリメチルホスフェート
CB:30重量部のカーボンブラック(三菱化学(株)製:カーボンブラックMA-100(商品名))、3重量部のホワイトミネラルオイル(エクソンモービル製:Crystol N352(商品名))、0.2重量部のモンタン酸エステルワックス(クラリアントジャパン(株)製:リコルブWE-1パウダー(商品名))および66.8重量部のビスフェノールA型ポリカーボネート樹脂(帝人化成(株)製:CM-1000(商品名)、粘度平均分子量16,000)の4成分の合計100重量部を二軸押出機を用いて溶融混合して製造されたカーボンブラックマスターペレット。
(易含浸炭素繊維束)
CF-1:含浸助剤として、脂肪族ヒドロキシカルボン酸系ポリエステルであるポリカプロラクトン(ダイセル化学工業製PLACCEL(登録商標)H1P 分子量10000)を用い、これを不揮発分12重量%のエマルジョン液としたものに、炭素繊維束としてPAN系炭素繊維フィラメント(東邦テナックス社製STS40 24K相当 繊維直径7.0μm フィラメント本数24000本、引張強度4000MPa)を通過させた後、ニップロールにて過剰に付着した溶液を取り除き、更にその後、180℃に加熱された熱風乾燥炉内を2分間かけて通過させ、乾燥させた。上記処理により得られた易含浸炭素繊維束を200℃に加熱した直径60mmの2本の金属製ロールに沿わせ、再度の加熱処理を行い、炭素繊維束に、より含浸助剤が均一に付着した含浸性炭素繊維束とした。この易含浸性炭素繊維束のポリカプロラクトン含浸助剤の含有率は5重量%(炭素繊維100重量部あたり5.3重量部)であった。
CF-2:含侵助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分25重量%のエマルジョン液として炭素繊維フィラメントを処理すること以外は、CF-1と同様の操作を行った。この易含浸性炭素繊維束のポリカプロラクトン含浸助剤の含有率は10重量%(炭素繊維100重量部あたり11.1重量部)であった。
CF-3:含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分5重量%のエマルジョン液として炭素繊維フィラメントを処理すること以外は、CF-1と同様の操作を行った。この易含浸性炭素繊維束のポリカプロラクトンの含有率は1.9重量%(炭素繊維100重量部あたり2重量部)であった。
CF-4:含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分35重量%のエマルジョン液として炭素繊維フィラメントを処理すること以外は、CF-1と同様の操作を行った。この易含浸性炭素繊維束のポリカプロラクトン含浸助剤の含有率は14.5重量%(炭素繊維100重量部あたり17重量部)であった。
The components represented by symbols in Tables 1 to 3 are as follows.
[Use composition]
In the examples, the following components were used.
(A component)
A-1: Aromatic polycarbonate resin (polycarbonate resin powder having a viscosity average molecular weight of 25,100 made from bisphenol A and phosgene by a conventional method, Panlite L-1250WQ (product name) manufactured by Teijin Ltd.)
A-2: Aromatic polycarbonate resin (polycarbonate resin powder having a viscosity average molecular weight of 19,700 made from bisphenol A and phosgene by a conventional method, Panlite L-1225WX (product name) manufactured by Teijin Ltd.)
(B component)
B-1: Polycarbonate-polydiorganosiloxane copolymer resin (viscosity average molecular weight 24,000, PDMS amount 8.4%, PDMS degree of polymerization 37, Panlite W-0111 (trade name) manufactured by Teijin Ltd.)
B-2: Polycarbonate-polydiorganosiloxane copolymer resin (viscosity average molecular weight 19,50, PDMS amount 8.4%, PDMS degree of polymerization 37, Panlite W-00528 trade name manufactured by Teijin Ltd.)
(C component)
C-1: Brominated flame retardant (brominated carbonate oligomer having bisphenol A skeleton, FG-8500 (product name) manufactured by Teijin Ltd.)
C-2: Brominated flame retardant (brominated carbonate oligomer having bisphenol A skeleton, FG-7000 (product name) manufactured by Teijin Ltd.)
(D component)
D-1: Coated PTFE (polytetrafluoroethylene coated with styrene-acrylonitrile copolymer (polytetrafluoroethylene content 50% by weight), SN3307PF (trade name) manufactured by Shine polymer)
D-2: Polytetrafluoroethylene capable of forming fibrils (Polyflon FA500H (trade name) manufactured by Daikin Industries, Ltd.)
(E component)
E-1: The total area of the stearic acid component (Ss) and the area of the palmitic acid component (Sp) in the GC/MS method was 94% in the total aliphatic carboxylic acid component, and their area ratio (Ss/Sp ) Is 1.44, a full ester of pentaerythritol and an aliphatic carboxylic acid (manufactured by Riken Vitamin Co., Ltd.: Riquester EW-400 (trade name), acid value: 9, hydroxyl value: 6, iodine value: 0) ., and TGA 5% weight loss temperature: 322° C., the aliphatic carboxylic acid is made from animal fats and oils.)
E-2: Full ester of pentaerythritol and aliphatic carboxylic acid in which the total of Ss and Sp is 91% in the total aliphatic carboxylic acid component, and their area ratio (Ss/Sp) is 1.11. (Manufactured by Cognis Japan KK: Roxyol VPG-861 (trade name), acid value: 1, hydroxyl value: 7, iodine value: 0, and TGA 5% weight loss temperature: 390° C., the aliphatic carboxylic acid is vegetable Oil and fat as raw material.)
E-3: Ratio of higher alcohol fatty acid ester (ester of monoalcohol having 10 to 20 carbon atoms and fatty acid having 10 to 20 carbon atoms) and triglyceride (ester of glycerin and fatty acid having 10 to 20 carbon atoms) is 30 : 70 (weight ratio) mixture (Rikemar SL-900 (trade name) manufactured by Riken Vitamin Co., Ltd.)
E-4: Low molecular weight polyethylene (high wax HW405MP (trade name) manufactured by Mitsui Chemicals, Inc.)
(F component)
F-1: Bisphenol A type epoxy resin (Mitsubishi Chemical Corporation jER1256 (trade name), Mw=26,600)
(Other ingredients)
P-1: Phosphorus flame retardant (resorcinol bis(di-2,6-xylyl phosphate), PX-200 (product name) manufactured by Daihachi Chemical Industry Co., Ltd.)
TMP: trimethyl phosphate CB: 30 parts by weight of carbon black (manufactured by Mitsubishi Chemical Corporation: carbon black MA-100 (trade name)), 3 parts by weight of white mineral oil (manufactured by Exxon Mobil: Crystall N352 (trade name)) , 0.2 part by weight of montanic acid ester wax (manufactured by Clariant Japan Co., Ltd.: Ricorb WE-1 powder (trade name)) and 66.8 parts by weight of bisphenol A type polycarbonate resin (manufactured by Teijin Chemicals Ltd.: CM Carbon black master pellets produced by melt mixing 100 parts by weight of four components of -1000 (trade name) and viscosity average molecular weight of 16,000 using a twin-screw extruder.
(Easily impregnated carbon fiber bundle)
CF-1: Polycaprolactone which is an aliphatic hydroxycarboxylic acid type polyester (PLACCEL (registered trademark) H1P molecular weight 10000 manufactured by Daicel Chemical Industries, Ltd.) was used as an impregnation aid, and this was made into an emulsion liquid having a nonvolatile content of 12% by weight. After passing a PAN-based carbon fiber filament (corresponding to STS40 24K manufactured by Toho Tenax Co., Ltd., fiber diameter 7.0 μm, number of filaments 24000, tensile strength 4000 MPa) as a carbon fiber bundle, the excessively adhered solution was removed by a nip roll, After that, it was passed through a hot air drying oven heated to 180° C. for 2 minutes to be dried. The easily impregnated carbon fiber bundle obtained by the above treatment is placed along two metal rolls having a diameter of 60 mm heated to 200° C., and the heat treatment is performed again, so that the impregnation auxiliary agent is evenly attached to the carbon fiber bundle. It was set as the impregnable carbon fiber bundle. The content of the polycaprolactone impregnation aid in this easily impregnable carbon fiber bundle was 5% by weight (5.3 parts by weight per 100 parts by weight of carbon fiber).
CF-2: The same operation as in CF-1 was performed, except that the carbon fiber filaments were treated as an emulsion liquid having a nonvolatile content of 25% by weight as the emulsified solution of polycaprolactone as the impregnation aid. The content of the polycaprolactone impregnation aid in this easily impregnable carbon fiber bundle was 10% by weight (11.1 parts by weight per 100 parts by weight of carbon fiber).
CF-3: The same operation as in CF-1 was carried out, except that the carbon fiber filament was treated as an emulsion liquid having a nonvolatile content of 5% by weight as an emulsified solution of polycaprolactone as an impregnation aid. The content of polycaprolactone in this easily impregnable carbon fiber bundle was 1.9% by weight (2 parts by weight per 100 parts by weight of carbon fiber).
CF-4: The same operation as that for CF-1 was performed except that the carbon fiber filament was treated as an emulsion liquid having a nonvolatile content of 35% by weight as an emulsified solution of polycaprolactone as an impregnation aid. The content of the polycaprolactone impregnation aid in this easily impregnable carbon fiber bundle was 14.5% by weight (17 parts by weight per 100 parts by weight of carbon fiber).
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表2および表3から本発明の配合により、難燃性、外観、強度および着色性に優れた成形用材料が得られることが分かる。 From Tables 2 and 3, it can be seen that the compounding material of the present invention can provide a molding material excellent in flame retardancy, appearance, strength and colorability.

Claims (13)

  1.  炭素繊維100重量部および1種以上の含侵助剤3~15重量部からなる易含侵性炭素繊維束に、50~2,000重量部のポリカーボネート樹脂組成物が付着している成形用材料であって、ポリカーボネート樹脂組成物が(A)芳香族ポリカーボネート樹脂(A成分)1~100重量%および(B)ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(B成分)0~99重量%からなる樹脂成分100重量部に対し、(C)臭素系難燃剤(C成分)10~20重量部、(D)含フッ素滴下防止剤(D成分)0.01~2重量部および(E)多価アルコールと脂肪族カルボン酸とのフルエステル(E成分)0.05~2重量部を含有していることを特徴とする成形用材料。 A molding material in which 50 to 2,000 parts by weight of a polycarbonate resin composition is adhered to an easily impregnated carbon fiber bundle consisting of 100 parts by weight of carbon fiber and 3 to 15 parts by weight of one or more impregnating aids. Wherein the polycarbonate resin composition comprises (A) 1 to 100% by weight of an aromatic polycarbonate resin (component A) and (B) 0 to 99% by weight of a polycarbonate-polydiorganosiloxane copolymer resin (component B). With respect to 100 parts by weight, (C) brominated flame retardant (C component) 10 to 20 parts by weight, (D) fluorine-containing anti-dripping agent (D component) 0.01 to 2 parts by weight, and (E) polyhydric alcohol A molding material containing 0.05 to 2 parts by weight of a full ester (E component) with an aliphatic carboxylic acid.
  2.  含浸助剤が下記式(1)および下記式(2)を満たす1種以上の脂肪族ヒドロキシカルボン酸系ポリエステルからなることを特徴とする請求項1に記載の成形用材料。
    300℃における含侵助剤の粘度≦10Pa・s・・・(1)  
    2≦(Tg―Tg)/D・・・(2)
    [式中、Dはポリカーボネート樹脂および含侵助剤よりなる樹脂組成物中の含侵助剤の割合(重量%)、Tgはポリカーボネート樹脂に該割合で含侵助剤を添加した樹脂組成物のガラス転移温度(℃)、Tgはポリカーボネート樹脂のガラス転移温度(℃)を表す。]
    The molding material according to claim 1, wherein the impregnation aid is made of one or more aliphatic hydroxycarboxylic acid-based polyesters satisfying the following formulas (1) and (2).
    Viscosity of the impregnation aid at 300° C.≦10 Pa·s (1)
    2≦(Tg 0 −Tg 1 )/D (2)
    [Wherein D is the proportion (% by weight) of the impregnating aid in the resin composition comprising the polycarbonate resin and the impregnating aid, and Tg 1 is the resin composition obtained by adding the impregnating aid to the polycarbonate resin in this proportion. Glass transition temperature (° C.) and Tg 0 represent the glass transition temperature (° C.) of the polycarbonate resin. ]
  3.  脂肪族ヒドロキシカルボン酸系ポリエステルが、重量平均分子量3,000~50,000であるε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの単独重合体および重量平均分子量3,000~50,000であるこれら2種以上のモノマーの共重合体からなる群より選ばれる1種以上の化合物であることを特徴とする請求項2記載の成形用材料。 Aliphatic hydroxycarboxylic acid polyester having a weight average molecular weight of 3,000 to 50,000, ε-caprolactone, δ-caprolactone, β-propiolactone, γ-butyrolactone, δ-valerolactone, γ-valerolactone, and enanthate. The one or more compounds selected from the group consisting of homopolymers of lactones and copolymers of these two or more monomers having a weight average molecular weight of 3,000 to 50,000. Molding material.
  4.  A成分とB成分との合計100重量部に対し、(F)密着性改良剤(F成分)1~10重量部を含有することを特徴とする請求項1~3のいずれか一項に記載の成形用材料。 4. The adhesive composition according to claim 1, wherein 1 to 10 parts by weight of the (F) adhesion improver (F component) is contained in 100 parts by weight of the total of the A component and the B component. Molding material.
  5.  E成分が、脂肪族カルボン酸がパルミチン酸成分とステアリン酸成分とを含み、そのガスクロマトグラフ-質量分析法(GC/MS法)におけるピーク面積においてパルミチン酸成分の面積(Sp)とステアリン酸成分の面積(Ss)との合計が全脂肪族カルボン酸成分中80%以上でありかつ両者の面積比(Ss/Sp)が1.3~30である脂肪族カルボン酸であり、かつ酸価が0.1~20である多価アルコールと脂肪族カルボン酸とのフルエステルであることを特徴とする請求項1~4のいずれか一項に記載の成形用材料。 The E component is an aliphatic carboxylic acid containing a palmitic acid component and a stearic acid component, and the area of the palmitic acid component (Sp) and the stearic acid component of the peak area in the gas chromatograph-mass spectrometry (GC/MS method) An aliphatic carboxylic acid having a total area (Ss) of 80% or more in the total aliphatic carboxylic acid component and an area ratio (Ss/Sp) of both of them of 1.3 to 30, and having an acid value of 0. 5. The molding material according to any one of claims 1 to 4, which is a full ester of a polyhydric alcohol having 1 to 20 and an aliphatic carboxylic acid.
  6.  E成分が、多価アルコールがペンタエリスリトールである多価アルコールと脂肪族カルボン酸とのフルエステルであることを特徴とする請求項1~5のいずれか一項に記載の成形用材料。 The molding material according to any one of claims 1 to 5, wherein the E component is a full ester of a polyhydric alcohol whose polyhydric alcohol is pentaerythritol and an aliphatic carboxylic acid.
  7.  F成分がグリシジルメタクリレート、ビスフェノールA型エポキシ樹脂、ポリアリレートおよびスチレン-マレイン酸樹脂からなる群より選ばれる少なくとも1種の有機化合物であることを特徴とする請求項4~6のいずれか一項に記載の成形用材料。 The F component is at least one organic compound selected from the group consisting of glycidyl methacrylate, bisphenol A type epoxy resin, polyarylate and styrene-maleic acid resin, according to any one of claims 4 to 6. The molding material described.
  8.  易含浸性炭素繊維束を芯成分、ポリカーボネート樹脂組成物を鞘成分とする芯鞘型構造のペレットであることを特徴とする請求項1~7のいずれか一項に記載の成形用材料。 The molding material according to any one of claims 1 to 7, which is a pellet having a core-sheath structure having an easily impregnable carbon fiber bundle as a core component and a polycarbonate resin composition as a sheath component.
  9.  ペレットの長手方向の長さが3~10mmであることを特徴とする請求項8に記載の成形用材料。 The molding material according to claim 8, wherein the length of the pellet in the longitudinal direction is 3 to 10 mm.
  10.  請求項1~9のいずれか一項に記載の成形用材料からなる成形体。 A molded body made of the molding material according to any one of claims 1 to 9.
  11.  易含浸性炭素繊維束に由来する炭素繊維が平均繊維長0.3mm以上の長さで分散していることを特徴とする請求項10に記載の成形体。 The molded product according to claim 10, wherein the carbon fibers derived from the easily impregnable carbon fiber bundle are dispersed with an average fiber length of 0.3 mm or more.
  12.  成形体がOA・電気電子用内外装部材である請求項10に記載の成形体。 The molded product according to claim 10, which is an interior/exterior member for OA/electrical and electronic equipment.
  13.  成形体が自動車用部材である請求項10に記載の成形体。 The molded product according to claim 10, which is a member for automobiles.
PCT/JP2019/051381 2019-01-30 2019-12-27 Molding material comprising carbon fiber-reinforced polycarbonate resin composition WO2020158293A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020569461A JP7116198B2 (en) 2019-01-30 2019-12-27 Molding material made of carbon fiber reinforced polycarbonate resin composition
CN201980090785.7A CN113383035B (en) 2019-01-30 2019-12-27 Molding material comprising carbon fiber-reinforced polycarbonate resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-014407 2019-01-30
JP2019014407 2019-01-30

Publications (1)

Publication Number Publication Date
WO2020158293A1 true WO2020158293A1 (en) 2020-08-06

Family

ID=71840517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051381 WO2020158293A1 (en) 2019-01-30 2019-12-27 Molding material comprising carbon fiber-reinforced polycarbonate resin composition

Country Status (4)

Country Link
JP (1) JP7116198B2 (en)
CN (1) CN113383035B (en)
TW (1) TWI830851B (en)
WO (1) WO2020158293A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316238B (en) * 2021-12-10 2023-06-09 卓尔博(宁波)精密机电股份有限公司 Bisphenol A type polycarbonate composite material for motor housing and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025790A (en) * 2010-07-20 2012-02-09 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and molded article comprising the same
WO2013137246A1 (en) * 2012-03-14 2013-09-19 帝人株式会社 Molding material, molded product thereof, and method for producing said molded product
JP2015034191A (en) * 2013-08-07 2015-02-19 帝人株式会社 Transparent flame retardant thermoplastic resin composition and molded part thereof
JP2015081333A (en) * 2013-10-24 2015-04-27 帝人株式会社 Carbon fiber reinforced polycarbonate resin composition
WO2018043360A1 (en) * 2016-08-31 2018-03-08 帝人株式会社 Laminate and method for producing fiber-reinforced resin composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025790A (en) * 2010-07-20 2012-02-09 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and molded article comprising the same
WO2013137246A1 (en) * 2012-03-14 2013-09-19 帝人株式会社 Molding material, molded product thereof, and method for producing said molded product
JP2015034191A (en) * 2013-08-07 2015-02-19 帝人株式会社 Transparent flame retardant thermoplastic resin composition and molded part thereof
JP2015081333A (en) * 2013-10-24 2015-04-27 帝人株式会社 Carbon fiber reinforced polycarbonate resin composition
WO2018043360A1 (en) * 2016-08-31 2018-03-08 帝人株式会社 Laminate and method for producing fiber-reinforced resin composite

Also Published As

Publication number Publication date
JPWO2020158293A1 (en) 2021-10-14
TWI830851B (en) 2024-02-01
CN113383035B (en) 2023-08-01
TW202037649A (en) 2020-10-16
JP7116198B2 (en) 2022-08-09
CN113383035A (en) 2021-09-10

Similar Documents

Publication Publication Date Title
JP5684588B2 (en) Polycarbonate resin composition and molded article
US11180652B2 (en) Thermoplastic resin composition and molded product using same
JP2006249288A (en) Light-diffusing aromatic polycarbonate resin composition
JP6328985B2 (en) Polycarbonate resin composition
DE60206575T2 (en) Flame retardant aromatic polycarbonate resin composition and molding compositions prepared therefrom
JP6588219B2 (en) Polycarbonate resin composition
JP2017132913A (en) Antibacterial polycarbonate resin composition
JP6807634B2 (en) Fiber reinforced polypropylene resin composition
JP5457876B2 (en) POLYLACTIC ACID RESIN COMPOSITION, MOLDED ARTICLE OBTAINED BY MOLDING THE POLYLACTIC ACID RESIN, ELECTRIC PRODUCT CASE, AND ELECTRIC PRODUCT INTERNAL COMPONENT
JP7116198B2 (en) Molding material made of carbon fiber reinforced polycarbonate resin composition
JP2016003329A (en) Polycarbonate resin composition
JP7208069B2 (en) Fiber-reinforced polypropylene resin composition
JP7260251B2 (en) Flame-retardant polycarbonate resin composition
JP6495669B2 (en) Flame retardant polycarbonate resin composition
JP5558926B2 (en) Flame retardant polycarbonate resin composition
WO2019146606A1 (en) Reusable medical container
JP2021134266A (en) Polycarbonate resin composition
JP6495144B2 (en) Thermoplastic resin composition and molded article
JP7267839B2 (en) Flame-retardant polycarbonate resin composition
TWI818043B (en) Polycarbonate resin composition
JP2018016756A (en) Polycarbonate resin composition
JP6567927B2 (en) Thermoplastic resin composition and molded article
JP7428558B2 (en) Flame retardant polycarbonate resin composition
JP6640540B2 (en) Thermoplastic resin composition and molded article
JPH0465461A (en) Polycarbonate resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569461

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912418

Country of ref document: EP

Kind code of ref document: A1