WO2020158258A1 - Virtual image display device - Google Patents

Virtual image display device Download PDF

Info

Publication number
WO2020158258A1
WO2020158258A1 PCT/JP2019/050528 JP2019050528W WO2020158258A1 WO 2020158258 A1 WO2020158258 A1 WO 2020158258A1 JP 2019050528 W JP2019050528 W JP 2019050528W WO 2020158258 A1 WO2020158258 A1 WO 2020158258A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
unit
virtual image
image display
Prior art date
Application number
PCT/JP2019/050528
Other languages
French (fr)
Japanese (ja)
Inventor
潤也 横江
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020158258A1 publication Critical patent/WO2020158258A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the disclosure by this specification relates to a virtual image display device.
  • the virtual image display device disclosed in Patent Document 1 includes an image display element that displays an image, and a backlight unit that irradiates the image display element with light source light.
  • the display area of the image display element is formed in a rectangular shape.
  • the backlight unit has a light source, a lens array, a first focus lens, a second focus lens, and the like.
  • the light source is composed of two light emitting diodes (LEDs).
  • the lens array is a lens body formed by arranging a plurality of biconvex lenses vertically and horizontally. The array pitch of these biconvex lenses is sufficiently large.
  • the backlight unit has at least one of the four surfaces of the first focus lens and the second focus lens as a toroidal surface, and irradiates the light source light according to the shape of the rectangular display area. There is.
  • the backlight unit corresponding to the difference in size, that is, the aspect ratio.
  • Patent Document 1 by providing the focus lens with a toroidal surface, the illumination light is greatly expanded in the longitudinal direction corresponding to the longitudinal direction, and the irradiation range of the light source light is brought close to the shape of the illumination target portion.
  • the optical path length of the focus lens portion tends to be long, and in particular, the optical path aligned with the longitudinal corresponding direction is preferably arranged so that the light source light suitably spreads in the longitudinal corresponding direction. Since the length is set, the problem that the physical size of the device increases is found.
  • One of the purposes of the disclosure of this specification is to provide a virtual image display device that suppresses an increase in physique while enhancing the visibility of the virtual image.
  • One of the aspects disclosed herein is a virtual image display device that displays a virtual image by projecting display light of an image onto a projection unit,
  • An image display element that has an illumination target portion in which the dimension in the longitudinal direction is set to be large with respect to the dimension in the lateral direction, and that displays an image by using the light source light illuminated on the illumination target portion,
  • the backlight unit is A plurality of light source elements are arranged side by side at a predetermined interval in at least the longitudinal corresponding direction of the lateral corresponding direction corresponding to the lateral direction and the longitudinal corresponding direction corresponding to the longitudinal direction.
  • a light source section that emits light
  • a plurality of small light source lens elements arranged on the optical path between the light source section and the illumination target section and arranged at a pitch smaller than the interval along at least the short-side corresponding direction of the short-side corresponding direction and the long-side corresponding direction.
  • a small light source array lens unit in which each small light source lens element behaves so as to divide the light source light from the light source unit to form a new small light source,
  • the absolute value of the focal length in the lateral corresponding direction is smaller than the absolute value of the focal length in the longitudinal corresponding direction.
  • the small light source array lens unit is formed by arranging a plurality of small light source lens elements.
  • Such small light source lens elements are arranged at a pitch smaller than the distance between the light source elements, and behave so as to divide the light source light from the light source unit to form a small light source. That is, by arranging the small light sources in the direction corresponding to the short side at a small pitch, the small light source array lens unit functions like a linear light source or a planar light source, and the small light source array lens unit is arranged in a plurality of rows aligned in the longitudinal corresponding direction.
  • the light source element behaves like a light source having a width in the longitudinal direction.
  • the absolute value of the focal length in the lateral direction is smaller than the absolute value of the focal length in the longitudinal direction. Due to the relationship of the focal lengths, the spread angle of the split light source light emitted from each small light source of the small light source lens element in the direction corresponding to the short side becomes a relatively wide angle, so that the light source light can be appropriately spread with a short optical path length. Therefore, it is possible to realize the illumination that matches the dimension of the illumination target portion in the lateral direction.
  • the divergence angle of the split light source light emitted from each small light source by the small light source lens element in the longitudinal direction becomes a relatively narrow angle, but the small light source array lens part is already long. It behaves like a light source with a width in the corresponding direction. Therefore, it is possible to realize illumination matched to the dimension of the illumination target portion in the longitudinal direction without spreading the divided light source light from each small light source to the dimension of the illumination target portion in the longitudinal direction. Therefore, it is possible to reduce the necessity of setting a long optical path length in accordance with the longitudinal corresponding direction to illuminate a wider range.
  • FIG. 3 is a diagram showing a vertical cross section along a lateral direction or a Y direction in the display device of the first embodiment.
  • FIG. 3 is a diagram showing a vertical cross section along the longitudinal direction or the X direction in the display device of the first embodiment.
  • It is a perspective view showing the 2nd lens member and the 3rd lens member of a 1st embodiment.
  • It is a figure which shows typically the image point of the small light source by the small light source lens element of 1st Embodiment, an upper stage shows the vertical cross section along an X direction, and a lower stage shows the vertical cross section along a Y direction.
  • FIG. 7 It is a schematic diagram for explaining the integrator of the split light source light of the first embodiment. It is a schematic diagram for demonstrating the illumination characteristic of the backlight unit of 1st Embodiment. 8 is a graph for explaining the intensity of illumination light along the VIII-VIII cross section of FIG. 7. It is a perspective view showing the 2nd lens member of a 2nd embodiment. It is a figure corresponding to FIG. 2 in a modification. It is a figure corresponding to FIG. 3 in a modification.
  • the virtual image display device As shown in FIG. 1, the virtual image display device according to the first embodiment of the present disclosure is used in a vehicle 1, and a head-up display device (hereinafter, a HUD device) 10 housed in an instrument panel 2 of the vehicle 1 is provided. Is.
  • the HUD device 10 projects the display light of the image toward the projection unit 3 a provided on the windshield 3 of the vehicle 1. Accordingly, the HUD device 10 displays the image as a virtual image VRI that can be visually recognized by an occupant as a viewer. That is, when the display light of the image reflected by the projection unit 3a reaches the visual recognition area EB set inside the vehicle 1, the occupant whose eyepoint EP is located in the visual recognition area EB recognizes various information. be able to.
  • the various information displayed includes, for example, information indicating the state of the vehicle 1 such as vehicle speed and remaining fuel amount, or navigation information such as visibility assistance information and road information.
  • the windshield 3 of the vehicle 1 is a transmissive member formed of, for example, glass or synthetic resin in a translucent plate shape, and is arranged above the instrument panel 2.
  • the windshield 3 is arranged so as to be inclined from the instrument panel 2 as it goes from the front to the rear.
  • the windshield 3 forms a projection portion 3a on which the display light of the image is projected in a smooth concave shape or a flat shape.
  • the projection unit 3a does not have to be provided on the windshield 3.
  • a combiner separate from the vehicle 1 may be installed in the vehicle 1, and the combiner may be provided with the projection unit 3a.
  • the visual recognition area EB is a spatial area that can be visually recognized so that the virtual image VRI displayed by the HUD device 10 satisfies a predetermined standard (for example, the entire virtual image VRI has a predetermined luminance or more), and is also an eye box. Is called.
  • the visual recognition area EB is typically set so as to overlap with the eye lip set in the vehicle 1.
  • the eye lip is set for each eye, and is set as an ellipsoidal virtual space based on the eye range that statistically represents the spatial distribution of the eye point EP of the occupant.
  • the HUD device 10 includes a housing 11, a display unit 30, a light guide unit 21, and the like.
  • the housing 11 is made of, for example, synthetic resin or metal and has a hollow shape for housing the display unit 30, the light guide portion 21, and the like, and is installed in the instrument panel 2 of the vehicle 1.
  • the housing 11 has a window portion 12 that is optically opened on the upper surface portion that faces the projection portion 3a.
  • the window 12 is covered with, for example, a dustproof sheet 13 that can transmit display light.
  • the display 30 displays an image on the display screen 33 and projects the display light of the image toward the light guide unit 21.
  • the display 30 of this embodiment is a transmissive liquid crystal display.
  • the display device 30 has an image display element 31 and a backlight unit 41, and is configured by exposing the display screen 33 to the outside of the casing while accommodating them in a box-shaped casing having a light shielding property.
  • the light guide section 21 forms an optical path for guiding the display light emitted from the display screen 33 of the display 30.
  • the light guide section 21 has, for example, a plane mirror 22 and a concave mirror 24.
  • the sign of the combined focal length of the light guide section 21 is positive.
  • the plane mirror 22 has a reflecting surface 23 formed by evaporating aluminum on the surface of a base material made of, for example, synthetic resin or glass.
  • the reflecting surface 23 of the plane mirror 22 is formed into a smooth flat surface. Display light that has entered the plane mirror 22 from the display device 30 is reflected by the reflecting surface 23 toward the concave mirror 24.
  • the concave mirror 24 has a reflecting surface 25 formed by, for example, depositing aluminum on the surface of a base material made of synthetic resin or glass.
  • the reflecting surface 25 of the concave mirror 24 is formed in a smooth concave shape by being curved in a concave shape. Display light that has entered the concave mirror 24 from the plane mirror 22 is reflected by the reflecting surface 23 toward the projection unit 3 a.
  • the virtual image VRI can be magnified with respect to the image on the display screen 33 by reflection on the reflecting surface 25 of the concave mirror 24 having positive optical power.
  • the display light thus reflected by the concave mirror 24 is emitted to the outside of the HUD device 10 by passing through the dustproof sheet 13, and enters the projection portion 3a of the windshield 3.
  • the display light reflected by the projection unit 3a reaches the occupant's eye point EP, the occupant can visually recognize the virtual image VRI.
  • the projection unit 3a is provided on the windshield 3 as a transmissive member, the virtual image VRI is displayed so as to be superimposed on the scenery outside the vehicle viewed through the windshield 3.
  • the concave mirror 24 is rotatable around a rotary shaft 24a extending in the left-right direction in response to the driving of the stepping motor. By such rotation, the display position of the virtual image VRI can be adjusted so as to be displaced in the vertical direction.
  • the image display element 31 of the display unit 30 is a TFT liquid crystal panel using a thin film transistor (TFT), and includes, for example, a plurality of liquid crystal pixels arranged in a two-dimensional array. It is an active matrix type liquid crystal panel forming a.
  • TFT thin film transistor
  • the image display element 31 has a rectangular shape having a longitudinal direction LD and a lateral direction SD, that is, a rectangular shape. Since the liquid crystal pixels are arranged in the longitudinal direction LD and the lateral direction SD, the display screen 33 that faces the light guide portion 21 and emits the display light of the image also has the longitudinal direction LD with respect to the dimension in the lateral direction SD. It has a rectangular shape with a large size.
  • the longitudinal direction LD of the display screen 33 corresponds to the horizontal direction of the visually recognized virtual image VRI
  • the lateral direction SD of the display screen 33 corresponds to the vertical direction of the visually recognized virtual image VRI.
  • the virtual image VRI can be displayed in a horizontally long shape in the left-right direction.
  • the surface opposite to the display screen 33 across the body of the image display element 31 is an illumination target surface 32 illuminated by the light source light of the backlight unit 41.
  • the illumination target surface 32 also has a shape matching the shape of the display screen 33, specifically, a rectangular shape in which the dimension in the longitudinal direction LD is set larger than the dimension in the lateral direction SD.
  • the image display element 31 has a flat plate shape by being formed by laminating a pair of polarizing plates and a liquid crystal layer sandwiched between the pair of polarizing plates.
  • Each polarizing plate has a transmission axis and an absorption axis orthogonal to each other, and has a property of transmitting light polarized in the transmission axis direction and absorbing light polarized in the absorption axis direction.
  • the pair of polarizing plates are arranged with their transmission axes orthogonal to each other.
  • the liquid crystal layer can rotate the polarization direction of light incident on the liquid crystal layer according to the applied voltage. In this way, the image display element 31 can change the ratio of light transmitted through the polarizing plate on the light guide 21 side, that is, the transmittance for each liquid crystal pixel by rotating the polarization direction.
  • the image display element 31 controls the transmittance of each liquid crystal pixel in response to the incidence of the light source light through the illumination target surface 32, so that the image is displayed on the display screen 33 by using the light source light.
  • Adjacent liquid crystal pixels are provided with color filters of different colors (for example, red, green, and blue), and various colors can be reproduced by combining these.
  • Each liquid crystal pixel is formed so as to penetrate between the display screen 33 and the surface 32 to be illuminated, and to be formed so as to surround the transparent portion and a transparent portion that is optically opened in the normal direction of the surfaces 32 and 33. And a wiring part. Therefore, each transmission part constitutes an optical small opening. Further, since the outer peripheries of the display screen 33 and the illumination target surface 32 are surrounded by the light shielding member, the portion sandwiched between the display screen 33 and the illumination target surface 32 functions as an optical large opening.
  • the backlight unit 41 irradiates the illumination target surface 32 with the light source light.
  • the backlight unit 41 includes a light source unit 42, a first lens member 46, a second lens member 50, a third lens member 56, a diffusion plate 61 and the like.
  • the first lens member 46, the second lens member 50, the third lens member 56, and the diffusion plate 61 are arranged on the optical path between the light source unit 42 and the illumination target surface 32 of the image display element 31.
  • the light source unit 42 is formed by arranging a plurality of light source elements 43 on a light source circuit board 44.
  • the light source element 43 of this embodiment employs a light emitting diode element as a point light source, for example.
  • Each light source element 43 is electrically connected to a power source through a wiring pattern on the light source circuit board 44. More specifically, each light source element 43 is formed by sealing a chip-shaped blue light emitting diode with a yellow fluorescent material in which a yellow fluorescent agent is mixed with a transparent synthetic resin.
  • each light source element 43 emits the light source light in a radiation angle distribution in which the emission intensity relatively decreases as it deviates from the intensity peak direction PD in which the emission intensity becomes maximum.
  • the intensity peak directions PD of the light source elements 43 are substantially the same as each other, and are substantially perpendicular to the surface of the light source circuit board 44 (this is referred to as a light source arrangement surface 44a).
  • the plurality of light source elements 43 are arranged side by side so as to be displaced by at least a predetermined interval INT in at least the longitudinal corresponding direction of the lateral corresponding direction and the longitudinal corresponding direction.
  • the lateral direction corresponds to the lateral direction on the display screen 33 or the illumination target surface 32 when the display screen 33 or the illumination target surface 32 is projected onto the projection target along the direction opposite to the intensity peak direction PD.
  • the vector indicating the direction SD means the direction indicated by the vector projected onto the projection target.
  • the longitudinal corresponding direction means that when the display screen 33 or the illumination target surface 32 is projected onto the projection target along the direction opposite to the intensity peak direction PD, the longitudinal direction LD on the display screen 33 or the illumination target surface 32.
  • the light source arrangement surface 44a is the projection target.
  • the lateral corresponding direction is referred to as Y direction YD and the longitudinal corresponding direction is referred to as X direction XD.
  • the lateral direction SD and the Y direction YD coincide with each other, and the longitudinal direction LD and the direction are coincident with each other, as shown in FIGS. It coincides with the X direction XD.
  • the display screen 33 and the illumination target surface 32 are arranged to be inclined with respect to the light source arrangement surface 44a, the lateral direction SD and the Y direction YD may deviate in correspondence with the inclination, and the longitudinal direction LD and The X direction XD may deviate.
  • the plurality of light source elements 43 are arranged in one line along the X direction XD.
  • the intervals INT between the light source elements 43 are set to be substantially equal to each other.
  • the light source light emitted from each light source element 43 enters the first lens member 46.
  • the first lens member 46 shown in FIGS. 2 and 3 is made of, for example, synthetic resin or glass so as to be translucent, and has optical surfaces 46a and 46b capable of refracting light from the light source.
  • the first lens member 46 includes parallelizing lens elements 48 arranged so as to individually correspond to the light source elements 43 in a one-to-one correspondence and arranged in line with the arrangement of the light source elements 43 on the light source arrangement surface 44 a. It has a part 47.
  • Each collimating lens element 48 is arranged so as to face the corresponding light source element 43, and collects and collimates the light source light emitted from each light source element 43.
  • the collimation here means that the light source light is closer to the parallel light flux than the state immediately after being emitted from the light source element 43, and is not limited to the perfect light flux.
  • the light source elements 43 individually corresponding to the collimating lens elements 48 are slightly decentered with respect to the optical axis of each collimating lens element 48 toward the center side of the light source unit 42 in the X direction XD.
  • the arrangement is made to be adopted.
  • the distance between the collimating lens elements 48 in the X direction XD is set to be slightly larger than the distance INT between the light source elements 43.
  • the first lens member 46 of this embodiment has a planar optical surface 46a formed on the light source 42 side. Further, the first lens member 46 has an optical surface 46b having a plurality of smooth convex surfaces arranged as a parallelizing portion 47 on the side opposite to the light source portion 42, that is, on the illumination target surface 32 side.
  • the sign of the focal length of the collimating lens element 48 is positive, and its value is set to be close to the distance between the collimating lens element 48 and the light source element 43. The light source light collimated by the first lens member 46 in this manner enters the second lens member 50.
  • the second lens member 50 shown in FIGS. 2 to 4 is formed of a translucent material, for example, synthetic resin or glass, and has optical surfaces 50a and 50b capable of refracting the light from the light source.
  • the second lens member 50 has the small light source array lens section 51 on the optical surface 50a on the first lens member 46 side (in other words, the light source section 42 side), and also has the third lens member 56 side (in other words, the illumination target surface 32).
  • the short side light condensing portion 53 is provided on the optical surface 50b (on the side).
  • the small light source array lens unit 51 is formed by arranging a plurality of small light source lens elements 52.
  • the small light source lens elements 52 are arranged at a minute pitch PIT (for example, 3 mm or less) that is sufficiently smaller than the interval INT in which the light source elements 43 are arranged, and the small light source lens elements 52 are spread with no space therebetween.
  • PIT for example, 3 mm or less
  • the small light source lens elements 52 of the present embodiment are arranged in a rectangular lattice shape in two directions of Y direction YD and X direction XD.
  • the small light source lens elements 52 have common focal lengths fax and fay.
  • the absolute values of the focal lengths fax and fay of each small light source lens element 52 are set sufficiently smaller than the absolute values of the other focal lengths fbx, fby, fcx, fcy, fdx and fdy.
  • each small light source lens element 52 behaves so as to divide the light source light that is collimated from the light source unit 42 through the collimation unit 47 to form a new point-shaped small light source. That is, as shown in FIG. 5, by converging or diverging the light source light incident on each small light source lens element 52, image points IPx and IPy of the small light source are formed in the vicinity of each small light source lens element 52. .. Since the image points IPx and IPy of the small light source, which can be said to be virtual, are arranged at the small pitch PIT, the small light source array lens unit 51 functions as a whole to create a virtual planar light source.
  • each small light source lens element 52 is formed in a toroidal surface shape that is convex toward the first lens member 46 side (in other words, the light source section 42 side). With such a surface shape, in each small light source lens element 52, the absolute value of the focal length fay in the Y direction YD is set to be smaller than the absolute value of the focal length fax in the X direction XD.
  • the position of the image point IPy in the Y direction YD (more specifically, the position that minimizes the dimension of the circle of confusion in the Y direction YD) is the position of the image point IPx in the X direction XD (more specifically, , The position at which the dimension of the circle of confusion in the X direction XD is minimized), and is shifted back and forth in the traveling direction of the light source light. Then, in the divided light source light emitted from each small light source, the divergence angle ⁇ in the Y direction YD becomes larger than the divergence angle ⁇ in the X direction XD. In other words, in each small light source lens element 52, the F value in the Y direction YD is smaller than the F value in the X direction XD.
  • the positions of the image points IPx and IPy are positions determined by the function of the small light source array lens unit 51 alone without considering the influence of the optical elements arranged on the illumination target surface 32 side of the small light source array lens unit 51. .. That is, the positions of the image points IPx and IPy viewed from the image display element 31 side through the third lens member 56 and the like are affected by the magnification of the optical element described above.
  • FIGS. 2 to 4 reference numerals are given only to a part of the small light source lens element 52.
  • the small light source lens element 52 of FIGS. 2 to 4 is schematically illustrated, and has a smaller size in reality.
  • the short-side light condensing unit 53 is configured as an optical surface 50b arranged closer to the illumination target surface 32 than the positions of the image points IPx and IPy in the respective directions XD and YD of the small light source.
  • the short-side light condensing unit 53 is formed in a single plane shape that is capable of collectively refracting the divided light source light from each small light source.
  • the short-side light collecting unit 53 is configured to collect each divided light source light in at least the Y direction YD among the Y direction YD and the X direction XD.
  • the short-side light collecting portion 53 is formed in a convex cylindrical surface shape that is convex on the third lens member 56 side (in other words, the illumination target surface 32 side) and curved in the Y direction YD. ..
  • the sign of the focal length fby in the Y direction YD of the short-side light collecting unit 53 is positive.
  • the second lens member 50 divides the light source into small light sources, and the condensed light source light is incident on the third lens member 56.
  • the third lens member 56 shown in FIGS. 2 to 4 is made of, for example, synthetic resin or glass so as to be translucent, and has optical surfaces 56a and 56b capable of refracting the light from the light source.
  • the third lens member 56 has the longitudinal directivity adjusting section 58 on the optical surface 56a on the second lens member 50 side (in other words, the light source section 42 side), and also has the diffusion plate 61 side (in other words, the illumination target surface 32 side).
  • the short side directivity adjusting section 59 is provided on the optical surface 56b).
  • the longitudinal directivity adjusting unit 58 and the lateral directivity adjusting unit 59 are collectively referred to as a directivity adjusting unit 57.
  • the longitudinal directivity adjustment unit 58 adjusts the directivity in the X direction XD of the light source light that has passed through the small light source array lens unit 51.
  • the longitudinal directivity adjusting section 58 is formed in a concave cylindrical surface shape that is recessed from the second lens member 50 side (in other words, the light source section 42 side) to the opposite side and curved in the X direction XD. ..
  • the optical surface 56a formed by the longitudinal directivity adjusting unit 58 of the present embodiment is a Fresnel lens-shaped division in the X direction XD, thereby forming a collection of strip-shaped division optical surfaces extending in the Y direction YD. There is.
  • the sign of the focal length fcx of the longitudinal directivity adjusting unit 58 in the X direction XD is negative.
  • the longitudinal directivity adjustment unit 58 adjusts the directivity in the X direction XD by diverging the light source light in the X direction XD.
  • the visible region EB can be expanded in the left-right direction in which the eyes of the occupant are lined up.
  • the short-sided directivity adjustment unit 59 adjusts the directivity in the Y direction YD of the light source light that has passed through the small light source array lens unit 51.
  • the short-side directivity adjusting unit 59 is formed in a convex cylindrical surface shape that is convex on the diffusion plate 61 side (in other words, the illumination target surface 32 side) and curved in the Y direction YD.
  • the sign of the focal length fdy in the Y direction YD of the lateral directivity adjusting unit 59 is positive. In this way, the short-side directivity adjustment unit 59 adjusts the directivity in the Y direction YD by condensing the light source light in the Y direction YD.
  • the short-side directivity adjusting unit 59 By the light-convergence adjustment by the short-side directivity adjusting unit 59, it is possible to increase the brightness of the virtual image VRI by making the visible region EB compact without excessively enlarging the visible region EB in the vertical direction in which the eyes of the occupant are not aligned.
  • the light source light whose directivity is adjusted by the third lens member 56 in this way is incident on the diffusion plate 61.
  • the diffusing plate 61 shown in FIGS. 2 and 3 is arranged so as to be in a state of being close to or in a state of being bonded to the illumination target surface 32, and for example, diffusing particles such as microbeads are mixed with a base material made of a transparent synthetic resin. Is formed into a sheet or plate.
  • the diffusion plate 61 diffuses the light source light incident from the third lens member 56 side to illuminate the illumination target surface 32.
  • the divided light source lights from the respective small light sources reach by the illumination target surface 32.
  • the illumination target surface 32 Is extended to the dimension of the illumination target surface 32 in the lateral direction SD.
  • Split light source lights from the respective small light sources are superposed between both ends of the illumination target surface 32 in the lateral direction SD. That is, in the Y direction YD, the respective divided light source lights are integrated, and overall illumination is performed.
  • the divided light source light from each small light source reaches the illumination target surface 32.
  • the dimension of the illumination target surface 32 in the longitudinal direction LD is not expanded.
  • the expansion width when the divided light source light arrives is, for example, more than or equal to the interval INT between the respective light source elements 43 and is suppressed to a range not more than twice the interval INT.
  • Each of the divided light source lights illuminates an illumination range on the illumination target surface 32 that is displaced from each other in the X direction XD. That is, in the X direction XD, the integration of each split light source light is regulated, and partial illumination is performed.
  • the absolute value of the focal length fby in the Y direction YD in the short-side light converging unit 53 and the absolute value of the focal length fdy in the Y-direction YD in the short-side directivity adjusting unit 59 are the Y-direction YD in each small light source lens element 52. Is set to be sufficiently larger than the absolute value of the focal length “fay”.
  • the focal length fby in the Y direction YD of the short-side light converging unit 53 and the focal length fdy in the Y-direction YD of the short-side directivity adjusting unit 59 are the same as those of the short-side light converging unit 53 and the short-side directivity adjusting unit 59. It is set larger than the distance D between them. Further, the focal length fdy in the Y direction YD in the short-side directivity adjusting unit 59 is set to be larger than the focal length fby in the Y direction YD in the short-side light converging unit 53.
  • the divided light source lights from the respective small light sources form an overlapping state in the Y direction YD at a position closer to the illumination target surface 32 than the short-side directivity adjusting unit 59.
  • the illumination can be performed with the directivity adapted to the configuration in which the concave mirror 24 of the light guide section 21 condenses the display light.
  • the focal length fax of each small light source lens element 52 in the X direction XD is 2.03 mm.
  • the focal length face in the Y direction YD of each small light source lens element 52 is 1.22 mm.
  • the focal length fbx of the lateral light collecting portion 53 in the X direction XD is substantially infinite.
  • the focal length fby in the Y direction YD of the short light focusing portion 53 is 37.74 mm.
  • the focal length fcx of the longitudinal directivity adjusting unit 58 in the X direction XD is ⁇ 152 mm.
  • the focal length fcy of the longitudinal directivity adjusting unit 58 in the Y direction YD is substantially infinite.
  • the focal length fdx in the X direction XD of the lateral directivity adjusting unit 59 is substantially infinite.
  • the focal length fdy in the Y direction YD of the short-side directivity adjusting unit 59 is 42.05 mm.
  • the distance between the second lens member 50 and the third lens member 56 that can be approximated to the distance D is 23 mm.
  • the small light source array lens unit 51 is formed by arranging a plurality of small light source lens elements 52.
  • the small light source lens elements 52 are arranged at a pitch PIT smaller than the interval INT of the light source elements 43, and behave so as to divide the light source light from the light source unit 42 to form a small light source. That is, by arranging the small light sources in the Y direction YD with a small pitch PIT, the small light source array lens unit 51 functions like a linear light source or a planar light source, and they are arranged in the X direction XD with a shift.
  • the plurality of light source elements 43 behave like a light source having a width in the X direction XD.
  • the absolute value of the focal length fax in the Y direction YD is made smaller than the absolute value of the focal length fax in the X direction XD. Due to the relationship between the focal lengths fax and face, the spread angle ⁇ of the divided light source light in the Y direction YD emitted from each small light source of the small light source lens element 52 becomes a relatively wide angle, so that the light source light is preferably used with a short optical path length. It becomes possible to expand, and it is possible to realize illumination that matches the dimension of the illumination target surface 32 in the lateral direction SD.
  • the divergence angle ⁇ of the divided light source light in the X direction XD emitted from each small light source by the small light source lens element 52 becomes a relatively small angle, but the small light source array lens unit 51 has already been formed. Behaves like a light source with a width in the X direction XD. Therefore, it is possible to realize the illumination matched to the dimension of the illumination target surface 32 in the longitudinal direction LD without expanding the divided light source light from each small light source to the dimension of the illumination target surface 32 in the longitudinal direction LD. Therefore, it is possible to reduce the need to set a long optical path length according to the X-direction XD that should illuminate a wider range.
  • the HUD device 10 that suppresses the increase in physique while reducing the occurrence of brightness unevenness in the virtual image VRI to improve the visibility of the virtual image VRI.
  • the small light source lens elements 52 are arranged in the Y direction YD and the X direction XD, and are formed in a toroidal surface shape.
  • the toroidal surface-shaped small light source lens elements 52 By arranging the toroidal surface-shaped small light source lens elements 52 in two directions, it is possible to form a large number of small light sources in a two-dimensional manner, and the small light source array lens unit 51 is used as a planar light source with less uneven brightness. Can be made to work.
  • the split light source light incident on the illumination target surface 32 is integrated in the Y direction YD, and is regulated in the X direction XD more than in the Y direction YD. Since it is not necessary to expand the split light source light in the X direction XD to the dimension of the illumination target surface 32 in the longitudinal direction LD, it is possible to set the optical path length according to the integration in the Y direction YD. Therefore, the optical path length of the backlight unit 41 can be shortened, and the increase in the size of the device 10 can be suppressed.
  • the short-side light condensing unit 53 is arranged on the optical path on the illumination target surface 32 side of each small light source lens element 52, and collectively collects the divided light source lights in the Y direction YD. Is configured to. Due to the light condensing by the short-side light condensing unit 53, the divided light source light from each small light source lens element 52 is directed toward the illumination target surface 32, and proper superposition on the illumination target surface 32 is realized.
  • the small light source array lens portion 51 constitutes the optical surface 50a arranged on the light source portion 42 side, and the short light condensing portion 53 is arranged on the illumination target surface 32 side.
  • the small light source array lens portion 51 and the short light focusing portion 53 are integrally formed as the second lens member 50.
  • the directivity adjusting unit 57 is disposed on the optical path between the short-side light collecting unit 53 and the illumination target surface 32, and the light source light incident through the small light source array lens unit 51 is incident on the directivity adjusting unit 57. Adjust the directivity. Directivity for forming the visible region EB is adjusted at a position close to the illumination target surface 32 by the short-side light collecting unit 53, that is, at a position where the overlapping state of the divided light source lights is being created. The visible region EB can be set to an appropriate range while the backlight unit 41 exerts the effect of suppressing the uneven illumination on the illumination target surface 32. As a result, the visibility of the virtual image VRI is enhanced.
  • the directivity adjusting unit 57 condenses the light source light in the Y direction YD and diverges the light source light in the X direction XD. Since the visual recognition area EB is enlarged in the direction in which the diverging action is applied, the longitudinal direction of the visual recognition area EB and the longitudinal direction LD of the image can be matched. Therefore, when the alignment direction of both eyes is aligned with the longitudinal direction of the visual recognition area EB, it is possible to realize a virtual image VRI that is easily viewed by both eyes and that is horizontally long. As a result, the visibility of the virtual image VRI is enhanced.
  • the focal length fby in the Y direction YD of the short-side light collecting unit 53 is smaller than the focal length fdy in the Y-direction YD of the directivity adjusting unit 57, and the short-side light collecting unit 53. Is larger than the distance D between the directivity adjusting unit 57 and the directivity adjusting unit 57.
  • the second embodiment is a modification of the first embodiment.
  • the second embodiment will be described focusing on the points different from the first embodiment.
  • the small light source array lens section 251 is formed by arranging a plurality of small light source lens elements 252 as in the first embodiment.
  • the small light source lens elements 252 are arranged at a pitch PIT (for example, 3 mm or less) that is sufficiently smaller than the interval INT in which the light source elements 43 are arranged, and they are spread without any gap therebetween.
  • the small light source lens elements 252 of the second embodiment are arranged in one direction of the Y direction YD.
  • the small light source lens elements 252 may be arranged in the Y direction YD in which the divided light source light is integrated, of the Y direction YD and the X direction XD.
  • Each small light source lens element 252 has a strip shape extending in the X direction XD, and is formed in a convex cylindrical surface shape that is convex toward the first lens member 46 side (in other words, the light source section 42 side).
  • the focal length fax in the X direction XD is substantially infinite. Therefore, as in the first embodiment, in each small light source lens element 252, the relationship that the absolute value of the focal length fay in the Y direction YD is smaller than the absolute value of the focal length fax in the X direction XD is established.
  • the small light source formed by each small light source lens element 252 is like a linear light source.
  • the small light source lens elements 252 are arranged in the Y direction YD and formed in a cylindrical surface shape.
  • the difference between the absolute value of the focal length fay in the Y direction YD and the absolute value of the focal length fax in the X direction XD can be increased. Therefore, it is possible to reduce the difference between the optimum optical path length for the Y direction YD and the optimum optical path length for the X direction XD.
  • the HUD device 10 since it becomes easy to set the optical path length of the backlight unit 41 to an appropriate optical path length in both directions XD and YD, it is possible to provide the HUD device 10 in which the physical size is suppressed while enhancing the visibility of the virtual image VRI. be able to.
  • the small light source array lens unit 51 and the short-side light collecting unit 53 may be separately formed.
  • At least one of the sign of the focal length fax in the X direction XD and the sign of the focal length fay in the Y direction YD of each small light source lens element 52 may be negative.
  • the light source unit 42 may include the light source elements 43 arranged at least in the X direction XD by a predetermined distance and arranged side by side.
  • the plurality of light source elements 43 may not be arranged in a straight line along the X direction XD.
  • the plurality of light source elements 43 are arranged in a curved shape by being offset by a predetermined distance in the X direction XD and being offset in the Y direction YD by a different value for each light source element 43.
  • the plurality of light source elements 43 may be arranged in a zigzag manner by being offset in the X direction XD by a predetermined interval and being offset in the Y direction YD alternately in the opposite direction.
  • the light source unit 42 may include the light source elements 43 arranged at least in the X direction XD by a predetermined interval INT and arranged side by side. If the plurality of light source elements 43 are arranged two-dimensionally, a combination of the light source elements 43 that are displaced from each other in the X direction XD occurs. As a specific example, the plurality of light source elements 43 may be arranged in a rectangular lattice shape in two directions of the Y direction YD and the X direction XD. Further, the plurality of light source elements 43 may be arranged in a triangular lattice shape, a hexagonal lattice shape, or the like.
  • the predetermined interval INT at which the light source element 43 is displaced may be modulated.
  • the pitch PIT at which the small light source lens elements 52 are arranged may be smaller than the average interval which is the average value of the intervals INT.
  • the pitch PIT is smaller than the minimum value of the intervals INT, which is the minimum value.
  • the light source element 43 is not limited to the point light source, and may be a linear light source or a planar light source.
  • the light source unit 42 may have a configuration in which a plurality of light source elements 43 as linear light sources extending in the Y direction YD are arranged in the X direction XD. Further, the light source unit 42 may have a configuration in which a plurality of light source elements 43 serving as a planar light source are arranged so as to be separated from each other in the X direction XD.
  • the light guide section 21 may have a convex mirror instead of the plane mirror 22 or by adding a new optical element. Even when the light guide section 21 includes a convex mirror, the sign of the combined focal length of the light guide section 21 is preferably positive.
  • the focal length fby of the short-side light converging unit 53 in the Y direction YD may be set to a value substantially equal to the focal length fdy of the short-direction directivity adjusting unit 59 in the Y direction YD.
  • the diffusion plate 61 may be arranged between the second lens member 50 and the third lens member 56.
  • the longitudinal directivity adjusting portion 58 may be formed in a single concave cylindrical surface shape instead of the Fresnel lens shape.
  • the lateral directivity adjusting section 59 may be formed in a Fresnel lens shape.
  • at least a part of the longitudinal directivity adjusting unit 58 and the lateral directivity adjusting unit 59 may be configured in a combined state by one optical surface such as a toroidal surface. Good.
  • at least one of the longitudinal directivity adjusting unit 58 and the lateral directivity adjusting unit 59 may not be provided.
  • the illumination target surface 32 as the illumination target portion that functions as the illumination target of the backlight unit 41 is not limited to a rectangular shape, and may be formed in an elliptical shape, a parallelogram shape, or the like. Further, the illumination target portion may not be formed in a single plane shape and may include a three-dimensional structure.
  • the virtual image display device can be applied to various vehicles such as an aircraft, a ship, and a case that does not move such as a game case. Further, the virtual image display device can be applied to a mobile information terminal such as a head mounted display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Liquid Crystal (AREA)
  • Instrument Panels (AREA)

Abstract

Provided is a virtual image display device that displays a virtual image by projecting the display light of an image onto a projection unit. This virtual image display device comprises: an image display element that has a portion to be illuminated which has longitudinal dimensions larger than lateral dimensions, and displays an image; and a backlight unit that irradiates the portion to be illuminated with light-source light. The backlight unit is equipped with: a light source unit that has light source elements aligned with each other at predetermined intervals in a longitudinal corresponding direction (XD) which corresponds to the longitudinal direction; and a small light source array lens unit (51) that is disposed on the optical path between the light source unit and the portion to be illuminated and has small light source lens elements (52) arranged at a pitch (PIT) smaller than the predetermined interval along a lateral corresponding direction (YD) which corresponds to the lateral direction. In the small light source lens elements (52), the absolute value of the focal length (fay) in the lateral corresponding direction is smaller than the absolute value of the focal length (fax) in the longitudinal corresponding direction.

Description

虚像表示装置Virtual image display 関連出願への相互参照Cross-reference to related application
 本出願は、2019年1月28日に出願された日本特許出願番号2019-012363号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2019-012363 filed on January 28, 2019, the description of which is incorporated herein by reference.
 この明細書による開示は、虚像表示装置に関する。 The disclosure by this specification relates to a virtual image display device.
 従来、画像の表示光を投影部に投影することにより、虚像を表示する虚像表示装置が知られている。特許文献1に開示の虚像表示装置は、画像を表示する画像表示素子、及び画像表示素子へ光源光を照射するバックライトユニットを備えている。画像表示素子の表示領域は、長方形状に形成されている。 Conventionally, a virtual image display device that displays a virtual image by projecting display light of an image on a projection unit is known. The virtual image display device disclosed in Patent Document 1 includes an image display element that displays an image, and a backlight unit that irradiates the image display element with light source light. The display area of the image display element is formed in a rectangular shape.
 バックライトユニットは、光源、レンズアレイ、第1のフォーカスレンズ、及び第2のフォーカスレンズ等を有している。光源は、2つの発光ダイオード(LED)から構成されている。レンズアレイは、両凸レンズを縦横に複数配列してなるレンズ体である。この両凸レンズの配列ピッチは、十分に大きなものとなっている。 The backlight unit has a light source, a lens array, a first focus lens, a second focus lens, and the like. The light source is composed of two light emitting diodes (LEDs). The lens array is a lens body formed by arranging a plurality of biconvex lenses vertically and horizontally. The array pitch of these biconvex lenses is sufficiently large.
 また、バックライトユニットは、第1のフォーカスレンズ及び第2のフォーカスレンズの4面のうち、少なくとも1面をトロイダル面とし、長方形状の表示領域の形状に合わせた光源光の照射を実施している。 The backlight unit has at least one of the four surfaces of the first focus lens and the second focus lens as a toroidal surface, and irradiates the light source light according to the shape of the rectangular display area. There is.
特許第6248473号公報Japanese Patent No. 6248473
 画像表示素子において、例えば長方形状のような、短手方向の寸法に対して長手方向の寸法が大きく設定された照明対象部が設けられた場合では、照明ムラ、延いては輝度ムラを低減し、虚像の視認性を高めるため、寸法の違い、すなわちアスペクト比に対応したバックライトユニットの構成が求められる。 In the image display device, when an illumination target portion whose longitudinal dimension is set to be larger than its lateral dimension, such as a rectangular shape, is provided, illumination unevenness, and consequently brightness unevenness is reduced. In order to improve the visibility of the virtual image, it is necessary to configure the backlight unit corresponding to the difference in size, that is, the aspect ratio.
 この点、特許文献1では、フォーカスレンズにトロイダル面を設けることで、長手方向に対応する長手対応方向に照明光を大きく広げ、光源光の照射範囲を照明対象部の形状に近づけている。しかしながら、発明者の詳細な検討の結果、この形態では、フォーカスレンズ部分の光路長が長くなりがちであり、特に、長手対応方向に光源光が好適に拡がるように、長手対応方向に合わせた光路長を設定することになるため、装置の体格が増大するという課題が見出された。 In this regard, in Patent Document 1, by providing the focus lens with a toroidal surface, the illumination light is greatly expanded in the longitudinal direction corresponding to the longitudinal direction, and the irradiation range of the light source light is brought close to the shape of the illumination target portion. However, as a result of a detailed study by the inventor, in this embodiment, the optical path length of the focus lens portion tends to be long, and in particular, the optical path aligned with the longitudinal corresponding direction is preferably arranged so that the light source light suitably spreads in the longitudinal corresponding direction. Since the length is set, the problem that the physical size of the device increases is found.
 この明細書の開示による目的のひとつは、虚像の視認性を高めつつ、体格増大を抑制した虚像表示装置を提供することにある。 One of the purposes of the disclosure of this specification is to provide a virtual image display device that suppresses an increase in physique while enhancing the visibility of the virtual image.
 ここに開示された態様のひとつは、画像の表示光を投影部に投影することにより、虚像を表示する虚像表示装置であって、
 短手方向の寸法に対して長手方向の寸法が大きく設定された照明対象部を有し、照明対象部に照明された光源光を利用して画像を表示する画像表示素子と、
 光源光を照明対象部へ照射するバックライトユニットと、を備え、
 バックライトユニットは、
 短手方向に対応する短手対応方向及び長手方向に対応する長手対応方向のうち少なくとも長手対応方向に所定の間隔だけずれて、互いに並べられた複数の光源素子を有し、各光源素子から光源光を発する光源部と、
 光源部と照明対象部との間の光路上に配置され、短手対応方向及び長手対応方向のうち少なくとも短手対応方向に沿って、間隔よりも小さなピッチで配列された複数の小光源レンズ素子を有し、各小光源レンズ素子が光源部からの光源光を分割して新たな小光源を構成するように振る舞う小光源アレイレンズ部と、を有し、
 各小光源レンズ素子において、短手対応方向の焦点距離の絶対値は、長手対応方向の焦点距離の絶対値よりも小さい。
One of the aspects disclosed herein is a virtual image display device that displays a virtual image by projecting display light of an image onto a projection unit,
An image display element that has an illumination target portion in which the dimension in the longitudinal direction is set to be large with respect to the dimension in the lateral direction, and that displays an image by using the light source light illuminated on the illumination target portion,
A backlight unit for irradiating the illumination target portion with light from the light source;
The backlight unit is
A plurality of light source elements are arranged side by side at a predetermined interval in at least the longitudinal corresponding direction of the lateral corresponding direction corresponding to the lateral direction and the longitudinal corresponding direction corresponding to the longitudinal direction. A light source section that emits light,
A plurality of small light source lens elements arranged on the optical path between the light source section and the illumination target section and arranged at a pitch smaller than the interval along at least the short-side corresponding direction of the short-side corresponding direction and the long-side corresponding direction. And a small light source array lens unit in which each small light source lens element behaves so as to divide the light source light from the light source unit to form a new small light source,
In each small light source lens element, the absolute value of the focal length in the lateral corresponding direction is smaller than the absolute value of the focal length in the longitudinal corresponding direction.
 このような態様によると、小光源アレイレンズ部は、複数の小光源レンズ素子を配列して形成されている。こうした小光源レンズ素子は、光源素子の間隔よりも小さなピッチで配列され、光源部からの光源光を分割して小光源を構成するように振る舞う。すなわち、小光源が小さなピッチで短手対応方向に配列されることにより、線状光源ないし面状光源のように小光源アレイレンズ部が機能し、それは、長手対応方向にずれて並べられた複数の光源素子により、長手対応方向に幅をもった光源のように振る舞う。 According to such a mode, the small light source array lens unit is formed by arranging a plurality of small light source lens elements. Such small light source lens elements are arranged at a pitch smaller than the distance between the light source elements, and behave so as to divide the light source light from the light source unit to form a small light source. That is, by arranging the small light sources in the direction corresponding to the short side at a small pitch, the small light source array lens unit functions like a linear light source or a planar light source, and the small light source array lens unit is arranged in a plurality of rows aligned in the longitudinal corresponding direction. The light source element behaves like a light source having a width in the longitudinal direction.
 これに対して、各小光源レンズ素子にて、短手対応方向の焦点距離の絶対値は、長手対応方向の焦点距離の絶対値より小さくされている。この焦点距離の関係により、小光源レンズ素子の各小光源から発せられる短手対応方向の分割光源光の拡がり角が比較的広角になるため、光源光を短い光路長で好適に拡げることが可能となり、照明対象部の短手方向の寸法に合わせた照明を実現できる。短手対応方向に対して長手対応方向では、小光源レンズ素子による各小光源から発せられる長手対応方向の分割光源光の拡がり角が比較的挟角になるものの、既に小光源アレイレンズ部が長手対応方向に幅をもった光源のように振る舞っている。故に、各々の小光源からの分割光源光を、照明対象部の長手方向の寸法まで拡げずとも、照明対象部の長手方向の寸法に合わせた照明を実現することができる。したがって、より幅広の範囲を照明すべき長手対応方向に合わせた長い光路長を設定する必要性を低減できる。 On the other hand, in each small light source lens element, the absolute value of the focal length in the lateral direction is smaller than the absolute value of the focal length in the longitudinal direction. Due to the relationship of the focal lengths, the spread angle of the split light source light emitted from each small light source of the small light source lens element in the direction corresponding to the short side becomes a relatively wide angle, so that the light source light can be appropriately spread with a short optical path length. Therefore, it is possible to realize the illumination that matches the dimension of the illumination target portion in the lateral direction. In the longitudinal direction with respect to the lateral direction, the divergence angle of the split light source light emitted from each small light source by the small light source lens element in the longitudinal direction becomes a relatively narrow angle, but the small light source array lens part is already long. It behaves like a light source with a width in the corresponding direction. Therefore, it is possible to realize illumination matched to the dimension of the illumination target portion in the longitudinal direction without spreading the divided light source light from each small light source to the dimension of the illumination target portion in the longitudinal direction. Therefore, it is possible to reduce the necessity of setting a long optical path length in accordance with the longitudinal corresponding direction to illuminate a wider range.
 以上により、虚像の輝度ムラ発生を低減して虚像の視認性を高めつつ、体格増大を抑制した虚像表示装置を提供することができる。 As described above, it is possible to provide a virtual image display device that suppresses the increase in physique while reducing the occurrence of brightness unevenness in the virtual image and increasing the visibility of the virtual image.
第1実施形態のヘッドアップディスプレイ装置の車両への搭載状態を示す図である。It is a figure which shows the mounting state in the vehicle of the head-up display device of 1st Embodiment. 第1実施形態の表示器において、短手方向ないしY方向に沿った縦断面を示す図である。FIG. 3 is a diagram showing a vertical cross section along a lateral direction or a Y direction in the display device of the first embodiment. 第1実施形態の表示器において、長手方向ないしX方向に沿った縦断面を示す図である。FIG. 3 is a diagram showing a vertical cross section along the longitudinal direction or the X direction in the display device of the first embodiment. 第1実施形態の第2レンズ部材及び第3レンズ部材を示す斜視図である。It is a perspective view showing the 2nd lens member and the 3rd lens member of a 1st embodiment. 第1実施形態の小光源レンズ素子による小光源の像点を模式的に示す図であって、上段はX方向に沿った縦断面を示し、下段はY方向に沿った縦断面を示す。It is a figure which shows typically the image point of the small light source by the small light source lens element of 1st Embodiment, an upper stage shows the vertical cross section along an X direction, and a lower stage shows the vertical cross section along a Y direction. 第1実施形態の分割光源光のインテグレータを説明するための模式図である。It is a schematic diagram for explaining the integrator of the split light source light of the first embodiment. 第1実施形態のバックライトユニットの照明特性を説明するための模式図である。It is a schematic diagram for demonstrating the illumination characteristic of the backlight unit of 1st Embodiment. 図7のVIII-VIII断面に沿った照明光の強度を説明するためのグラフである。8 is a graph for explaining the intensity of illumination light along the VIII-VIII cross section of FIG. 7. 第2実施形態の第2レンズ部材を示す斜視図である。It is a perspective view showing the 2nd lens member of a 2nd embodiment. 変形例において図2に対応する図である。It is a figure corresponding to FIG. 2 in a modification. 変形例において図3に対応する図である。It is a figure corresponding to FIG. 3 in a modification.
 以下、複数の実施形態を図面に基づいて説明する。なお、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合せることができる。 A plurality of embodiments will be described below with reference to the drawings. It should be noted that, in each of the embodiments, corresponding components may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each embodiment, the configuration of the other embodiments described above can be applied to the other part of the configuration. Further, not only the combination of the configurations explicitly described in the description of each embodiment, but unless the combination is particularly hindered, the configurations of the plurality of embodiments can be partially combined even if not explicitly stated. ..
 (第1実施形態)
 図1に示すように、本開示の第1実施形態による虚像表示装置は、車両1に用いられ、当該車両1のインストルメントパネル2内に収容されるヘッドアップディスプレイ装置(以下、HUD装置)10である。HUD装置10は、車両1のウインドシールド3に設けられた投影部3aへ向けて画像の表示光を投影する。これにより、HUD装置10は、画像を、視認者としての乗員により視認可能な虚像VRIとして表示する。すなわち、投影部3aにて反射される画像の表示光が車両1の室内に設定された視認領域EBに到達することにより、視認領域EBにアイポイントEPが位置する乗員は、各種情報を認識することができる。
(First embodiment)
As shown in FIG. 1, the virtual image display device according to the first embodiment of the present disclosure is used in a vehicle 1, and a head-up display device (hereinafter, a HUD device) 10 housed in an instrument panel 2 of the vehicle 1 is provided. Is. The HUD device 10 projects the display light of the image toward the projection unit 3 a provided on the windshield 3 of the vehicle 1. Accordingly, the HUD device 10 displays the image as a virtual image VRI that can be visually recognized by an occupant as a viewer. That is, when the display light of the image reflected by the projection unit 3a reaches the visual recognition area EB set inside the vehicle 1, the occupant whose eyepoint EP is located in the visual recognition area EB recognizes various information. be able to.
 表示される各種情報としては、例えば車速、燃料残量等の車両1の状態を表す情報、又は視界補助情報、道路情報等のナビゲーション情報が挙げられる。 The various information displayed includes, for example, information indicating the state of the vehicle 1 such as vehicle speed and remaining fuel amount, or navigation information such as visibility assistance information and road information.
 以下において、特に断り書きがない限り、前、後、上、下、左及び右が示す各方向は、水平面HP上の車両1を基準として記載される。 In the following, unless otherwise specified, the directions of front, rear, upper, lower, left and right are described with reference to the vehicle 1 on the horizontal plane HP.
 車両1のウインドシールド3は、例えばガラスないし合成樹脂により透光性の板状に形成された透過部材であり、インストルメントパネル2よりも上方に配置されている。ウインドシールド3は、前方から後方へ向かう程、インストルメントパネル2とは離間するように傾斜して配置されている。ウインドシールド3は、画像の表示光が投影される投影部3aを、滑らかな凹面状又は平面状に形成している。なお、投影部3aは、ウインドシールド3に設けられていなくてもよい。例えば車両1と別体となっているコンバイナを車両1内に設置して、当該コンバイナに投影部3aが設けられていてもよい。 The windshield 3 of the vehicle 1 is a transmissive member formed of, for example, glass or synthetic resin in a translucent plate shape, and is arranged above the instrument panel 2. The windshield 3 is arranged so as to be inclined from the instrument panel 2 as it goes from the front to the rear. The windshield 3 forms a projection portion 3a on which the display light of the image is projected in a smooth concave shape or a flat shape. The projection unit 3a does not have to be provided on the windshield 3. For example, a combiner separate from the vehicle 1 may be installed in the vehicle 1, and the combiner may be provided with the projection unit 3a.
 視認領域EBは、HUD装置10により表示される虚像VRIが所定の規格を満たすように(例えば虚像VRI全体が所定の輝度以上となるように)視認可能となる空間領域であって、アイボックスとも称される。視認領域EBは、典型的には、車両1に設定されたアイリプスと重なるように設定される。アイリプスは、両眼それぞれに対して設定され、乗員のアイポイントEPの空間分布を統計的に表したアイレンジに基づいて、楕円体状の仮想的な空間として設定されている。 The visual recognition area EB is a spatial area that can be visually recognized so that the virtual image VRI displayed by the HUD device 10 satisfies a predetermined standard (for example, the entire virtual image VRI has a predetermined luminance or more), and is also an eye box. Is called. The visual recognition area EB is typically set so as to overlap with the eye lip set in the vehicle 1. The eye lip is set for each eye, and is set as an ellipsoidal virtual space based on the eye range that statistically represents the spatial distribution of the eye point EP of the occupant.
 このようなHUD装置10の具体的構成を、以下に説明する。HUD装置10は、ハウジング11、表示器30、及び導光部21等により構成されている。 A specific configuration of such a HUD device 10 will be described below. The HUD device 10 includes a housing 11, a display unit 30, a light guide unit 21, and the like.
 ハウジング11は、例えば合成樹脂ないし金属等により、表示器30及び導光部21等を収容する中空形状を呈しており、車両1のインストルメントパネル2内に設置されている。ハウジング11は、投影部3aと対向する上面部に、光学的に開口する窓部12を有している。窓部12は、例えば表示光を透過可能な防塵シート13で覆われている。 The housing 11 is made of, for example, synthetic resin or metal and has a hollow shape for housing the display unit 30, the light guide portion 21, and the like, and is installed in the instrument panel 2 of the vehicle 1. The housing 11 has a window portion 12 that is optically opened on the upper surface portion that faces the projection portion 3a. The window 12 is covered with, for example, a dustproof sheet 13 that can transmit display light.
 表示器30は、表示画面33に画像を表示し、その画像の表示光を導光部21へ向けて投射する。本実施形態の表示器30は、透過型の液晶表示器となっている。表示器30は、画像表示素子31及びバックライトユニット41を有し、例えば遮光性を有する箱状のケーシングにこれらを収容しつつ、表示画面33をケーシングの外部に露出させて構成されている。 The display 30 displays an image on the display screen 33 and projects the display light of the image toward the light guide unit 21. The display 30 of this embodiment is a transmissive liquid crystal display. The display device 30 has an image display element 31 and a backlight unit 41, and is configured by exposing the display screen 33 to the outside of the casing while accommodating them in a box-shaped casing having a light shielding property.
 導光部21は、表示器30の表示画面33から発せられた表示光を導光する光路を形成している。導光部21は、例えば平面鏡22及び凹面鏡24を有している。導光部21の合成焦点距離における符号は、正である。 The light guide section 21 forms an optical path for guiding the display light emitted from the display screen 33 of the display 30. The light guide section 21 has, for example, a plane mirror 22 and a concave mirror 24. The sign of the combined focal length of the light guide section 21 is positive.
 平面鏡22は、例えば合成樹脂ないしガラスからなる基材の表面に、アルミニウムを蒸着させること等により、反射面23を形成している。平面鏡22の反射面23は、滑らかな平面状に形成されている。表示器30から平面鏡22に入射した表示光は、その反射面23により凹面鏡24へ向けて反射される。 The plane mirror 22 has a reflecting surface 23 formed by evaporating aluminum on the surface of a base material made of, for example, synthetic resin or glass. The reflecting surface 23 of the plane mirror 22 is formed into a smooth flat surface. Display light that has entered the plane mirror 22 from the display device 30 is reflected by the reflecting surface 23 toward the concave mirror 24.
 凹面鏡24は、例えば合成樹脂ないしガラスからなる基材の表面に、アルミニウムを蒸着させること等により、反射面25を形成している。凹面鏡24の反射面25は、凹状に湾曲することで、滑らかな凹面状に形成されている。平面鏡22から凹面鏡24に入射した表示光は、その反射面23により投影部3aへ向けて反射される。ここで、正の光学パワーを有する凹面鏡24の反射面25での反射によって、虚像VRIを表示画面33上の画像に対して拡大することが可能となっている。 The concave mirror 24 has a reflecting surface 25 formed by, for example, depositing aluminum on the surface of a base material made of synthetic resin or glass. The reflecting surface 25 of the concave mirror 24 is formed in a smooth concave shape by being curved in a concave shape. Display light that has entered the concave mirror 24 from the plane mirror 22 is reflected by the reflecting surface 23 toward the projection unit 3 a. Here, the virtual image VRI can be magnified with respect to the image on the display screen 33 by reflection on the reflecting surface 25 of the concave mirror 24 having positive optical power.
 こうして凹面鏡24に反射された表示光は、防塵シート13を透過することでHUD装置10の外部へ射出され、ウインドシールド3の投影部3aに入射する。投影部3aに反射された表示光が乗員のアイポイントEPに到達すると、当該乗員は虚像VRIを視認可能となるのである。ここで、投影部3aは、透過部材としてのウインドシールド3に設けられているので、虚像VRIは、ウインドシールド3を通して視認される車外の景色と重畳して表示される。 The display light thus reflected by the concave mirror 24 is emitted to the outside of the HUD device 10 by passing through the dustproof sheet 13, and enters the projection portion 3a of the windshield 3. When the display light reflected by the projection unit 3a reaches the occupant's eye point EP, the occupant can visually recognize the virtual image VRI. Here, since the projection unit 3a is provided on the windshield 3 as a transmissive member, the virtual image VRI is displayed so as to be superimposed on the scenery outside the vehicle viewed through the windshield 3.
 また、凹面鏡24は、ステッピングモータの駆動に応じて、左右方向に伸びる回転軸24aのまわりに回動可能となっている。こうした回動によって、虚像VRIの表示位置を上下方向に変位するように調整することができる。 Moreover, the concave mirror 24 is rotatable around a rotary shaft 24a extending in the left-right direction in response to the driving of the stepping motor. By such rotation, the display position of the virtual image VRI can be adjusted so as to be displaced in the vertical direction.
 以下では、本実施形態の表示器30について詳細に説明する。図2,3に示すように、表示器30の画像表示素子31は、薄膜トランジスタ(Thin Film Transistor;TFT)を用いたTFT液晶パネルであって、例えば2次元配列にて配列された複数の液晶画素を形成しているアクティブマトリクス型の液晶パネルである。 The display device 30 of this embodiment will be described in detail below. As shown in FIGS. 2 and 3, the image display element 31 of the display unit 30 is a TFT liquid crystal panel using a thin film transistor (TFT), and includes, for example, a plurality of liquid crystal pixels arranged in a two-dimensional array. It is an active matrix type liquid crystal panel forming a.
 画像表示素子31は、長手方向LD及び短手方向SDを有する矩形状、すなわち長方形状を呈している。液晶画素が長手方向LD及び短手方向SDに配列されることで、導光部21側を向き、画像の表示光を射出する表示画面33もまた短手方向SDの寸法に対して長手方向LDの寸法が大きく設定された長方形状を呈している。 The image display element 31 has a rectangular shape having a longitudinal direction LD and a lateral direction SD, that is, a rectangular shape. Since the liquid crystal pixels are arranged in the longitudinal direction LD and the lateral direction SD, the display screen 33 that faces the light guide portion 21 and emits the display light of the image also has the longitudinal direction LD with respect to the dimension in the lateral direction SD. It has a rectangular shape with a large size.
 表示画面33の長手方向LDは、視認される虚像VRIの左右方向に対応し、表示画面33の短手方向SDは、視認される虚像VRIの上下方向に対応している。こうして虚像VRIは、左右方向に長い横長に表示されることが可能となる。 The longitudinal direction LD of the display screen 33 corresponds to the horizontal direction of the visually recognized virtual image VRI, and the lateral direction SD of the display screen 33 corresponds to the vertical direction of the visually recognized virtual image VRI. In this way, the virtual image VRI can be displayed in a horizontally long shape in the left-right direction.
 画像表示素子31の本体を挟んで表示画面33とは反対側の面は、バックライトユニット41の光源光により照明される照明対象面32となっている。照明対象面32も、表示画面33の形状に合わせた形状、詳細に、短手方向SDの寸法に対して長手方向LDの寸法が大きく設定された長方形状を呈している。 The surface opposite to the display screen 33 across the body of the image display element 31 is an illumination target surface 32 illuminated by the light source light of the backlight unit 41. The illumination target surface 32 also has a shape matching the shape of the display screen 33, specifically, a rectangular shape in which the dimension in the longitudinal direction LD is set larger than the dimension in the lateral direction SD.
 画像表示素子31は、一対の偏光板及び一対の偏光板に挟まれた液晶層等が積層されて形成されていることで、平板状を呈している。各偏光板は、互いに直交する透過軸及び吸収軸を有し、透過軸方向に偏光した光を透過させ、吸収軸方向に偏光した光を吸収する性質を有する。一対の偏光板は、透過軸を互いに直交させて配置されている。液晶層は、液晶画素毎の電圧の印加により、印加電圧に応じて液晶層に入射する光の偏光方向を回転させることが可能となっている。こうして画像表示素子31は、偏光方向の回転により、導光部21側の偏光板を透過する光の割合、すなわち透過率を、液晶画素毎に変えることができる。 The image display element 31 has a flat plate shape by being formed by laminating a pair of polarizing plates and a liquid crystal layer sandwiched between the pair of polarizing plates. Each polarizing plate has a transmission axis and an absorption axis orthogonal to each other, and has a property of transmitting light polarized in the transmission axis direction and absorbing light polarized in the absorption axis direction. The pair of polarizing plates are arranged with their transmission axes orthogonal to each other. By applying a voltage to each liquid crystal pixel, the liquid crystal layer can rotate the polarization direction of light incident on the liquid crystal layer according to the applied voltage. In this way, the image display element 31 can change the ratio of light transmitted through the polarizing plate on the light guide 21 side, that is, the transmittance for each liquid crystal pixel by rotating the polarization direction.
 したがって、画像表示素子31は、照明対象面32を介した光源光の入射に対応して、液晶画素毎の透過率が制御されることで、当該光源光を利用して表示画面33に画像を表示する。隣り合う液晶画素には、互いに異なる色(例えば赤、緑及び青)のカラーフィルタが設けられており、これらの組み合わせにより、様々な色が再現されるようになっている。 Therefore, the image display element 31 controls the transmittance of each liquid crystal pixel in response to the incidence of the light source light through the illumination target surface 32, so that the image is displayed on the display screen 33 by using the light source light. indicate. Adjacent liquid crystal pixels are provided with color filters of different colors (for example, red, green, and blue), and various colors can be reproduced by combining these.
 各液晶画素では、表示画面33及び照明対象面32間を貫通するように、面32,33の法線方向に光学的に開口して設けられる透過部と、当該透過部を囲んで形成された配線部とが設けられている。したがって、各透過部が光学的な小開口部を構成している。さらに、表示画面33及び照明対象面32の外周が遮光部材に囲まれていることで、表示画面33と照明対象面32とに挟まれた部位が光学的な大開口部として機能している。 Each liquid crystal pixel is formed so as to penetrate between the display screen 33 and the surface 32 to be illuminated, and to be formed so as to surround the transparent portion and a transparent portion that is optically opened in the normal direction of the surfaces 32 and 33. And a wiring part. Therefore, each transmission part constitutes an optical small opening. Further, since the outer peripheries of the display screen 33 and the illumination target surface 32 are surrounded by the light shielding member, the portion sandwiched between the display screen 33 and the illumination target surface 32 functions as an optical large opening.
 バックライトユニット41は、光源光を照明対象面32へ照射する。具体的に、バックライトユニット41は、光源部42、第1レンズ部材46、第2レンズ部材50、第3レンズ部材56、及び拡散板61等により構成されている。第1レンズ部材46、第2レンズ部材50、第3レンズ部材56、及び拡散板61は、光源部42と画像表示素子31の照明対象面32との間の光路上に配置されている。 The backlight unit 41 irradiates the illumination target surface 32 with the light source light. Specifically, the backlight unit 41 includes a light source unit 42, a first lens member 46, a second lens member 50, a third lens member 56, a diffusion plate 61 and the like. The first lens member 46, the second lens member 50, the third lens member 56, and the diffusion plate 61 are arranged on the optical path between the light source unit 42 and the illumination target surface 32 of the image display element 31.
 光源部42は、複数の光源素子43を光源用回路基板44上に配列して形成されている。本実施形態の光源素子43には、例えば点状光源としての発光ダイオード素子が採用されている。各光源素子43は、光源用回路基板44上の配線パターンを通じて、電源と電気的に接続されている。より詳細に、各光源素子43は、チップ状の青色発光ダイオードを、透光性を有する合成樹脂に黄色蛍光剤を混合した黄色蛍光体により封止することにより形成されていれる。青色発光ダイオードから電流量に応じて発せられる青色光により、黄色蛍光体が励起されて黄色光が発光され、青色光と黄色光との混合により、結果的に、各光源素子43から白色(より詳細には疑似白色)の光源光が発光される。 The light source unit 42 is formed by arranging a plurality of light source elements 43 on a light source circuit board 44. The light source element 43 of this embodiment employs a light emitting diode element as a point light source, for example. Each light source element 43 is electrically connected to a power source through a wiring pattern on the light source circuit board 44. More specifically, each light source element 43 is formed by sealing a chip-shaped blue light emitting diode with a yellow fluorescent material in which a yellow fluorescent agent is mixed with a transparent synthetic resin. The blue light emitted from the blue light emitting diode in accordance with the amount of current excites the yellow phosphor to emit yellow light, and as a result of the mixing of the blue light and the yellow light, the white light from each light source element 43 (more In detail, pseudo white light source light is emitted.
 ここで各光源素子43は、発光強度が最大となる強度ピーク方向PDから乖離するに従って発光強度が相対的に低下する放射角度分布にて、光源光を発光する。各光源素子43の強度ピーク方向PDは、互いに実質同一の方向であり、光源用回路基板44の表面(これを光源配置面44aと称する)に対して実質垂直な方向となっている。 Here, each light source element 43 emits the light source light in a radiation angle distribution in which the emission intensity relatively decreases as it deviates from the intensity peak direction PD in which the emission intensity becomes maximum. The intensity peak directions PD of the light source elements 43 are substantially the same as each other, and are substantially perpendicular to the surface of the light source circuit board 44 (this is referred to as a light source arrangement surface 44a).
 光源配置面44a上において、複数の光源素子43は、短手対応方向及び長手対応方向のうち、少なくとも長手対応方向に所定の間隔INTだけずれて配置されるように、互いに並べられている。 On the light source arrangement surface 44a, the plurality of light source elements 43 are arranged side by side so as to be displaced by at least a predetermined interval INT in at least the longitudinal corresponding direction of the lateral corresponding direction and the longitudinal corresponding direction.
 ここで、短手対応方向とは、表示画面33又は照明対象面32を、強度ピーク方向PDの逆方向に沿って射影対象に射影した場合に、表示画面33又は照明対象面32上の短手方向SDを示すベクトルが射影対象上に射影されたベクトルによって示される方向を意味する。同様に、長手対応方向とは、表示画面33又は照明対象面32を、強度ピーク方向PDの逆方向に沿って射影対象に射影した場合に、表示画面33又は照明対象面32上の長手方向LDを示すベクトルが射影対象上に射影されたベクトルによって示される方向を意味する。ここでは、光源配置面44aが射影対象である。以下、短手対応方向をY方向YD、長手対応方向をX方向XDと称する。 Here, the lateral direction corresponds to the lateral direction on the display screen 33 or the illumination target surface 32 when the display screen 33 or the illumination target surface 32 is projected onto the projection target along the direction opposite to the intensity peak direction PD. The vector indicating the direction SD means the direction indicated by the vector projected onto the projection target. Similarly, the longitudinal corresponding direction means that when the display screen 33 or the illumination target surface 32 is projected onto the projection target along the direction opposite to the intensity peak direction PD, the longitudinal direction LD on the display screen 33 or the illumination target surface 32. Means the direction indicated by the vector projected onto the projection target. Here, the light source arrangement surface 44a is the projection target. Hereinafter, the lateral corresponding direction is referred to as Y direction YD and the longitudinal corresponding direction is referred to as X direction XD.
 光源配置面44aと表示画面33及び照明対象面32とが平行に配置されていれば、図2,3のように、短手方向SDとY方向YDとは一致し、長手方向LDと方向とX方向XDとは、一致する。光源配置面44aに対して表示画面33及び照明対象面32が傾斜して配置されていれば、その傾斜に対応して、短手方向SDとY方向YDとはずれる場合があり、長手方向LDとX方向XDとがずれる場合がある。 If the light source arrangement surface 44a and the display screen 33 and the illumination target surface 32 are arranged in parallel, the lateral direction SD and the Y direction YD coincide with each other, and the longitudinal direction LD and the direction are coincident with each other, as shown in FIGS. It coincides with the X direction XD. If the display screen 33 and the illumination target surface 32 are arranged to be inclined with respect to the light source arrangement surface 44a, the lateral direction SD and the Y direction YD may deviate in correspondence with the inclination, and the longitudinal direction LD and The X direction XD may deviate.
 特に本実施形態では、複数の光源素子43は、X方向XDに沿って、1列に配列されている。各光源素子43間の間隔INTは、互いに実質等しく設定されている。各光源素子43から発光された光源光は、第1レンズ部材46へと入射する。 In particular, in this embodiment, the plurality of light source elements 43 are arranged in one line along the X direction XD. The intervals INT between the light source elements 43 are set to be substantially equal to each other. The light source light emitted from each light source element 43 enters the first lens member 46.
 図2,3に示す第1レンズ部材46は、例えば合成樹脂ないしガラスにより、透光性に形成され、光源光を屈折可能な光学面46a,46bを有している。第1レンズ部材46は、各光源素子43に1対1で個別に対応するように設けられた平行化レンズ素子48を、光源配置面44a上の光源素子43の配置に合わせて並べた平行化部47を有している。各平行化レンズ素子48は、対応する光源素子43と対向して配置され、各光源素子43から発せられる光源光を集光して平行化する。ここでいう平行化とは、光源光を光源素子43から射出された直後の状態よりも平行光束に近づけていればよく、光源光を完全な平行光束にするものに限られない。 The first lens member 46 shown in FIGS. 2 and 3 is made of, for example, synthetic resin or glass so as to be translucent, and has optical surfaces 46a and 46b capable of refracting light from the light source. The first lens member 46 includes parallelizing lens elements 48 arranged so as to individually correspond to the light source elements 43 in a one-to-one correspondence and arranged in line with the arrangement of the light source elements 43 on the light source arrangement surface 44 a. It has a part 47. Each collimating lens element 48 is arranged so as to face the corresponding light source element 43, and collects and collimates the light source light emitted from each light source element 43. The collimation here means that the light source light is closer to the parallel light flux than the state immediately after being emitted from the light source element 43, and is not limited to the perfect light flux.
 また、本実施形態では、各平行化レンズ素子48の光軸に対して、当該平行化レンズ素子48に個別に対応する光源素子43を、X方向XDでの光源部42中心側に僅かに偏心させた配置が採用されている。換言すると、X方向XDにて、平行化レンズ素子48間の間隔は、光源素子43間の間隔INTよりも僅かに大きく設定されている。 Further, in this embodiment, the light source elements 43 individually corresponding to the collimating lens elements 48 are slightly decentered with respect to the optical axis of each collimating lens element 48 toward the center side of the light source unit 42 in the X direction XD. The arrangement is made to be adopted. In other words, the distance between the collimating lens elements 48 in the X direction XD is set to be slightly larger than the distance INT between the light source elements 43.
 本実施形態の第1レンズ部材46は、光源部42側に平面状の光学面46aを形成している。また第1レンズ部材46は、光源部42とは反対側、すなわち照明対象面32側に、滑らかな凸面状の面が複数並んだ光学面46bを、平行化部47として形成している。平行化レンズ素子48の焦点距離における符号は、正であり、その値は平行化レンズ素子48と光源素子43との間の距離に近くなるように設定される。こうして第1レンズ部材46により平行化された光源光は、第2レンズ部材50へと入射する。 The first lens member 46 of this embodiment has a planar optical surface 46a formed on the light source 42 side. Further, the first lens member 46 has an optical surface 46b having a plurality of smooth convex surfaces arranged as a parallelizing portion 47 on the side opposite to the light source portion 42, that is, on the illumination target surface 32 side. The sign of the focal length of the collimating lens element 48 is positive, and its value is set to be close to the distance between the collimating lens element 48 and the light source element 43. The light source light collimated by the first lens member 46 in this manner enters the second lens member 50.
 図2~4に示す第2レンズ部材50は、例えば合成樹脂ないしガラスにより、透光性に形成され、光源光を屈折可能な光学面50a,50bを有している。第2レンズ部材50は、第1レンズ部材46側(換言すると光源部42側)の光学面50aに、小光源アレイレンズ部51を有すると共に、第3レンズ部材56側(換言すると照明対象面32側)の光学面50bに、短手集光部53を有している。 The second lens member 50 shown in FIGS. 2 to 4 is formed of a translucent material, for example, synthetic resin or glass, and has optical surfaces 50a and 50b capable of refracting the light from the light source. The second lens member 50 has the small light source array lens section 51 on the optical surface 50a on the first lens member 46 side (in other words, the light source section 42 side), and also has the third lens member 56 side (in other words, the illumination target surface 32). The short side light condensing portion 53 is provided on the optical surface 50b (on the side).
 小光源アレイレンズ部51は、複数の小光源レンズ素子52を配列して形成されている。各小光源レンズ素子52は、光源素子43が並べられた間隔INTよりも十分に小さな微小ピッチPIT(例えば3mm以下)にて配列され、互いに隙間なく敷き詰められている。特に本実施形態の小光源レンズ素子52は、Y方向YD及びX方向XDの2方向に、矩形格子状に配列されている。 The small light source array lens unit 51 is formed by arranging a plurality of small light source lens elements 52. The small light source lens elements 52 are arranged at a minute pitch PIT (for example, 3 mm or less) that is sufficiently smaller than the interval INT in which the light source elements 43 are arranged, and the small light source lens elements 52 are spread with no space therebetween. In particular, the small light source lens elements 52 of the present embodiment are arranged in a rectangular lattice shape in two directions of Y direction YD and X direction XD.
 各小光源レンズ素子52は、互いに共通の焦点距離fax,fayを有している。各小光源レンズ素子52の焦点距離fax,fayの絶対値は、他の焦点距離fbx,fby,fcx,fcy,fdx,fdyの絶対値よりも十分に小さく設定されている。 The small light source lens elements 52 have common focal lengths fax and fay. The absolute values of the focal lengths fax and fay of each small light source lens element 52 are set sufficiently smaller than the absolute values of the other focal lengths fbx, fby, fcx, fcy, fdx and fdy.
 こうした形態により、各小光源レンズ素子52は、光源部42から平行化部47を経て平行化された光源光を分割して、新たな点状の小光源を構成するように振る舞っている。すなわち、図5に示すように、各小光源レンズ素子52が入射する光源光を収束又は発散されることによって、各小光源レンズ素子52の近傍に小光源の像点IPx,IPyが構成される。こうした仮想的ともいえる小光源の像点IPx,IPyが小さなピッチPITで配列されているので、小光源アレイレンズ部51は、全体として、仮想的な面状光源をつくり出すように機能している。 With such a configuration, each small light source lens element 52 behaves so as to divide the light source light that is collimated from the light source unit 42 through the collimation unit 47 to form a new point-shaped small light source. That is, as shown in FIG. 5, by converging or diverging the light source light incident on each small light source lens element 52, image points IPx and IPy of the small light source are formed in the vicinity of each small light source lens element 52. .. Since the image points IPx and IPy of the small light source, which can be said to be virtual, are arranged at the small pitch PIT, the small light source array lens unit 51 functions as a whole to create a virtual planar light source.
 特に本実施形態では、各小光源レンズ素子52は、第1レンズ部材46側(換言すると光源部42側)に凸となるトロイダル面状に形成されている。こうした面形状によって、各小光源レンズ素子52において、Y方向YDの焦点距離fayの絶対値は、X方向XDの焦点距離faxの絶対値よりも小さく設定されている。したがって、各小光源において、Y方向YDにおける像点IPyの位置(より詳細に、錯乱円のY方向YDの寸法を最小とする位置)は、X方向XDにおける像点IPxの位置(より詳細に、錯乱円のX方向XDの寸法を最小とする位置)と、光源光の進行方向に前後するようにずれている。そして、各小光源から発せられる分割光源光において、Y方向YDの拡がり角βは、X方向XDの拡がり角αに対して大きな状態となる。換言すると、各小光源レンズ素子52において、Y方向YDのF値は、X方向XDのF値よりも小さい。 In particular, in this embodiment, each small light source lens element 52 is formed in a toroidal surface shape that is convex toward the first lens member 46 side (in other words, the light source section 42 side). With such a surface shape, in each small light source lens element 52, the absolute value of the focal length fay in the Y direction YD is set to be smaller than the absolute value of the focal length fax in the X direction XD. Therefore, in each small light source, the position of the image point IPy in the Y direction YD (more specifically, the position that minimizes the dimension of the circle of confusion in the Y direction YD) is the position of the image point IPx in the X direction XD (more specifically, , The position at which the dimension of the circle of confusion in the X direction XD is minimized), and is shifted back and forth in the traveling direction of the light source light. Then, in the divided light source light emitted from each small light source, the divergence angle β in the Y direction YD becomes larger than the divergence angle α in the X direction XD. In other words, in each small light source lens element 52, the F value in the Y direction YD is smaller than the F value in the X direction XD.
 なお、上記像点IPx,IPyの位置は、小光源アレイレンズ部51よりも照明対象面32側に配置された光学要素の影響を考慮しない小光源アレイレンズ部51単独の機能として定まる位置である。すなわち、画像表示素子31側から第3レンズ部材56等を通してみた像点IPx,IPyの位置は、前述の光学要素の倍率の影響を受ける。 The positions of the image points IPx and IPy are positions determined by the function of the small light source array lens unit 51 alone without considering the influence of the optical elements arranged on the illumination target surface 32 side of the small light source array lens unit 51. .. That is, the positions of the image points IPx and IPy viewed from the image display element 31 side through the third lens member 56 and the like are affected by the magnification of the optical element described above.
 なお、図2~4では、小光源レンズ素子52の一部にのみ符号が付されている。図2~4の小光源レンズ素子52は、模式的に図示されており、現実にはより微小なサイズとなっている。 Note that in FIGS. 2 to 4, reference numerals are given only to a part of the small light source lens element 52. The small light source lens element 52 of FIGS. 2 to 4 is schematically illustrated, and has a smaller size in reality.
 短手集光部53は、小光源の各方向XD,YDでの像点IPx,IPyの位置よりも照明対象面32側に配置された光学面50bとして構成されている。短手集光部53は、各小光源からの分割光源光をまとめて屈折可能な単一の面状に形成されている。短手集光部53は、各分割光源光を、Y方向YD及びX方向XDのうち、少なくともY方向YDに集光するように構成されている。 The short-side light condensing unit 53 is configured as an optical surface 50b arranged closer to the illumination target surface 32 than the positions of the image points IPx and IPy in the respective directions XD and YD of the small light source. The short-side light condensing unit 53 is formed in a single plane shape that is capable of collectively refracting the divided light source light from each small light source. The short-side light collecting unit 53 is configured to collect each divided light source light in at least the Y direction YD among the Y direction YD and the X direction XD.
 具体的に本実施形態では、短手集光部53は、第3レンズ部材56側(換言すると照明対象面32側)に凸となり、Y方向YDに湾曲する凸シリンドリカル面状に形成されている。短手集光部53のY方向YDの焦点距離fbyにおける符号は、正である。 Specifically, in this embodiment, the short-side light collecting portion 53 is formed in a convex cylindrical surface shape that is convex on the third lens member 56 side (in other words, the illumination target surface 32 side) and curved in the Y direction YD. .. The sign of the focal length fby in the Y direction YD of the short-side light collecting unit 53 is positive.
 こうして第2レンズ部材50にて、小光源に分割され、さらに集光された光源光は、第3レンズ部材56へと入射する。 Thus, the second lens member 50 divides the light source into small light sources, and the condensed light source light is incident on the third lens member 56.
 図2~4に示す第3レンズ部材56は、例えば合成樹脂ないしガラスにより、透光性に形成され、光源光を屈折可能な光学面56a,56bを有している。第3レンズ部材56は、第2レンズ部材50側(換言すると光源部42側)の光学面56aに、長手指向性調整部58を有すると共に、拡散板61側(換言すると照明対象面32側)の光学面56bに、短手指向性調整部59を有している。本実施形態では、長手指向性調整部58及び短手指向性調整部59を合わせて、単に指向性調整部57と称する。 The third lens member 56 shown in FIGS. 2 to 4 is made of, for example, synthetic resin or glass so as to be translucent, and has optical surfaces 56a and 56b capable of refracting the light from the light source. The third lens member 56 has the longitudinal directivity adjusting section 58 on the optical surface 56a on the second lens member 50 side (in other words, the light source section 42 side), and also has the diffusion plate 61 side (in other words, the illumination target surface 32 side). The short side directivity adjusting section 59 is provided on the optical surface 56b). In the present embodiment, the longitudinal directivity adjusting unit 58 and the lateral directivity adjusting unit 59 are collectively referred to as a directivity adjusting unit 57.
 長手指向性調整部58は、小光源アレイレンズ部51を経た光源光について、X方向XDの指向性を調整する。具体的に、長手指向性調整部58は、第2レンズ部材50側(換言すると光源部42側)から、その反対側へ凹み、X方向XDに湾曲する凹シリンドリカル面状に形成されている。特に本実施形態の長手指向性調整部58による光学面56aは、フレネルレンズ状にX方向XDに分割されることで、Y方向YDに延伸する短冊状の分割光学面の集合体となっている。長手指向性調整部58のX方向XDの焦点距離fcxにおける符号は、負である。こうして、長手指向性調整部58は、光源光をX方向XDに発散することで、X方向XDの指向性を調整している。長手指向性調整部58での発散調整により、視認領域EBを乗員の眼が並ぶ左右方向へ拡大することができる。 The longitudinal directivity adjustment unit 58 adjusts the directivity in the X direction XD of the light source light that has passed through the small light source array lens unit 51. Specifically, the longitudinal directivity adjusting section 58 is formed in a concave cylindrical surface shape that is recessed from the second lens member 50 side (in other words, the light source section 42 side) to the opposite side and curved in the X direction XD. .. In particular, the optical surface 56a formed by the longitudinal directivity adjusting unit 58 of the present embodiment is a Fresnel lens-shaped division in the X direction XD, thereby forming a collection of strip-shaped division optical surfaces extending in the Y direction YD. There is. The sign of the focal length fcx of the longitudinal directivity adjusting unit 58 in the X direction XD is negative. In this way, the longitudinal directivity adjustment unit 58 adjusts the directivity in the X direction XD by diverging the light source light in the X direction XD. By adjusting the divergence in the longitudinal directivity adjusting unit 58, the visible region EB can be expanded in the left-right direction in which the eyes of the occupant are lined up.
 短手指向性調整部59は、小光源アレイレンズ部51を経た光源光について、Y方向YDの指向性を調整する。具体的に、短手指向性調整部59は、拡散板61側(換言すると照明対象面32側)に凸となり、Y方向YDに湾曲する凸シリンドリカル面状に形成されている。短手指向性調整部59のY方向YDの焦点距離fdyにおける符号は、正である。こうして、短手指向性調整部59は、光源光をY方向YDに集光することで、Y方向YDの指向性を調整している。短手指向性調整部59での集光調整により、乗員の眼が並んでいない上下方向に視認領域EBを過度に拡大することなくコンパクト化して虚像VRIの輝度を高めることができる。 The short-sided directivity adjustment unit 59 adjusts the directivity in the Y direction YD of the light source light that has passed through the small light source array lens unit 51. Specifically, the short-side directivity adjusting unit 59 is formed in a convex cylindrical surface shape that is convex on the diffusion plate 61 side (in other words, the illumination target surface 32 side) and curved in the Y direction YD. The sign of the focal length fdy in the Y direction YD of the lateral directivity adjusting unit 59 is positive. In this way, the short-side directivity adjustment unit 59 adjusts the directivity in the Y direction YD by condensing the light source light in the Y direction YD. By the light-convergence adjustment by the short-side directivity adjusting unit 59, it is possible to increase the brightness of the virtual image VRI by making the visible region EB compact without excessively enlarging the visible region EB in the vertical direction in which the eyes of the occupant are not aligned.
 こうして第3レンズ部材56にて指向性が調整された光源光は、拡散板61へと入射する。図2,3に示す拡散板61は、照明対象面32に近接状態又は接着状態となるように配置され、例えば透光性の合成樹脂からなる基材にマイクロビーズ等の拡散粒子を混合することにより、シート状又は板状に形成されている。拡散板61は、第3レンズ部材56側から入射した光源光を拡散して照明対象面32を照明する。 The light source light whose directivity is adjusted by the third lens member 56 in this way is incident on the diffusion plate 61. The diffusing plate 61 shown in FIGS. 2 and 3 is arranged so as to be in a state of being close to or in a state of being bonded to the illumination target surface 32, and for example, diffusing particles such as microbeads are mixed with a base material made of a transparent synthetic resin. Is formed into a sheet or plate. The diffusion plate 61 diffuses the light source light incident from the third lens member 56 side to illuminate the illumination target surface 32.
 図2,6に示すように、表示器30の短手方向SDないしY方向YDに沿った縦断面上でみると、各小光源からの分割光源光は、照明対象面32に到達するまでに、当該照明対象面32の短手方向SDの寸法まで拡張される。照明対象面32の短手方向SDにおける両端部間に、各小光源からの分割光源光が重ね合される。すなわちY方向YDでは各分割光源光がインテグレートされて、全体照明が実施される。 As shown in FIGS. 2 and 6, when viewed in a vertical section along the short-side direction SD or the Y-direction YD of the display device 30, the divided light source lights from the respective small light sources reach by the illumination target surface 32. , Is extended to the dimension of the illumination target surface 32 in the lateral direction SD. Split light source lights from the respective small light sources are superposed between both ends of the illumination target surface 32 in the lateral direction SD. That is, in the Y direction YD, the respective divided light source lights are integrated, and overall illumination is performed.
 他方、図3,6に示すように、表示器30の長手方向LDないしX方向XDに沿った縦断面上でみると、各小光源からの分割光源光は、照明対象面32に到達するまでに、当該照明対象面32の長手方向LDの寸法まで拡張されない。分割光源光の到達時の拡張幅は、例えば、各光源素子43間の間隔INT以上であって、当該間隔INTの2倍以下の範囲に抑制される。各分割光源光は、照明対象面32のうち、互いにX方向XDにずれた照明範囲を照明する。すなわちX方向XDでは各分割光源光のインテグレートが規制されており、部分照明が実施される。 On the other hand, as shown in FIGS. 3 and 6, when viewed in a vertical section along the longitudinal direction LD or the X direction XD of the display device 30, the divided light source light from each small light source reaches the illumination target surface 32. In addition, the dimension of the illumination target surface 32 in the longitudinal direction LD is not expanded. The expansion width when the divided light source light arrives is, for example, more than or equal to the interval INT between the respective light source elements 43 and is suppressed to a range not more than twice the interval INT. Each of the divided light source lights illuminates an illumination range on the illumination target surface 32 that is displaced from each other in the X direction XD. That is, in the X direction XD, the integration of each split light source light is regulated, and partial illumination is performed.
 Y方向YDのインテグレートよりもX方向XDのインテグレートが規制されている態様、すなわちY方向YDのみインテグレータ光学系となっている態様では、図7に模式的に示すように、各小光源からの分割光源光が短手方向SDに大きく引き伸ばされたように照明される。このため、各分割光源光の重なり部分も短手方向SDに引き延ばされたようになる。故に、短手方向SDでの照明強度の勾配が抑制されることは勿論、長手方向LDにおいても、図8に模式的に示すように照明強度の均一化が図られる。 In a mode in which the integration in the X direction XD is regulated rather than the integration in the Y direction YD, that is, in the mode in which only the Y direction YD is the integrator optical system, as shown schematically in FIG. It is illuminated as if the light from the light source was greatly stretched in the lateral direction SD. Therefore, the overlapping portion of the respective divided light source lights also seems to be stretched in the lateral direction SD. Therefore, not only the gradient of the illumination intensity in the lateral direction SD is suppressed, but also in the longitudinal direction LD, the illumination intensity is made uniform as schematically shown in FIG.
 ここで図4を参照して、短手集光部53と短手指向性調整部59との焦点距離の設定及び関係について、説明する。まず、短手集光部53におけるY方向YDの焦点距離fbyの絶対値及び短手指向性調整部59におけるY方向YDの焦点距離fdyの絶対値は、各小光源レンズ素子52におけるY方向YDの焦点距離fayの絶対値よりも十分に大きく設定される。また、短手集光部53におけるY方向YDの焦点距離fby及び短手指向性調整部59におけるY方向YDの焦点距離fdyは、短手集光部53と短手指向性調整部59との間の距離Dよりも大きく設定される。さらには、短手指向性調整部59におけるY方向YDの焦点距離fdyは、短手集光部53におけるY方向YDの焦点距離fbyよりも大きく設定される。 Here, the setting and relationship of the focal lengths of the short-side light condensing unit 53 and the short-side directivity adjusting unit 59 will be described with reference to FIG. First, the absolute value of the focal length fby in the Y direction YD in the short-side light converging unit 53 and the absolute value of the focal length fdy in the Y-direction YD in the short-side directivity adjusting unit 59 are the Y-direction YD in each small light source lens element 52. Is set to be sufficiently larger than the absolute value of the focal length “fay”. The focal length fby in the Y direction YD of the short-side light converging unit 53 and the focal length fdy in the Y-direction YD of the short-side directivity adjusting unit 59 are the same as those of the short-side light converging unit 53 and the short-side directivity adjusting unit 59. It is set larger than the distance D between them. Further, the focal length fdy in the Y direction YD in the short-side directivity adjusting unit 59 is set to be larger than the focal length fby in the Y direction YD in the short-side light converging unit 53.
 このようにすることで、各小光源からの分割光源光は、Y方向YDにおいて、短手指向性調整部59よりも照明対象面32に近い位置で重ね合わせ状態を構成する。さらには、導光部21の凹面鏡24が表示光を集光する構成に適合した指向性を以って、照明を実施することができる。 By doing so, the divided light source lights from the respective small light sources form an overlapping state in the Y direction YD at a position closer to the illumination target surface 32 than the short-side directivity adjusting unit 59. Furthermore, the illumination can be performed with the directivity adapted to the configuration in which the concave mirror 24 of the light guide section 21 condenses the display light.
 以下、焦点距離及びレンズ配置の具体例を示す。図4の例において、各小光源レンズ素子52のX方向XDの焦点距離faxは、2.03mmである。各小光源レンズ素子52のY方向YDの焦点距離fayは、1.22mmである。短手集光部53のX方向XDの焦点距離fbxは、実質無限大である。短手集光部53のY方向YDの焦点距離fbyは、37.74mmである。長手指向性調整部58のX方向XDの焦点距離fcxは、-152mmである。長手指向性調整部58のY方向YDの焦点距離fcyは、実質無限大である。短手指向性調整部59のX方向XDの焦点距離fdxは、実質無限大である。短手指向性調整部59のY方向YDの焦点距離fdyは、42.05mmである。また、距離Dに近似可能な第2レンズ部材50と第3レンズ部材56との距離は、23mmである。 The following are specific examples of focal length and lens arrangement. In the example of FIG. 4, the focal length fax of each small light source lens element 52 in the X direction XD is 2.03 mm. The focal length face in the Y direction YD of each small light source lens element 52 is 1.22 mm. The focal length fbx of the lateral light collecting portion 53 in the X direction XD is substantially infinite. The focal length fby in the Y direction YD of the short light focusing portion 53 is 37.74 mm. The focal length fcx of the longitudinal directivity adjusting unit 58 in the X direction XD is −152 mm. The focal length fcy of the longitudinal directivity adjusting unit 58 in the Y direction YD is substantially infinite. The focal length fdx in the X direction XD of the lateral directivity adjusting unit 59 is substantially infinite. The focal length fdy in the Y direction YD of the short-side directivity adjusting unit 59 is 42.05 mm. The distance between the second lens member 50 and the third lens member 56 that can be approximated to the distance D is 23 mm.
 (作用効果)
 以上説明した第1実施形態の作用効果を以下に改めて説明する。
(Action effect)
The operation and effect of the first embodiment described above will be described again below.
 第1実施形態によると、小光源アレイレンズ部51は、複数の小光源レンズ素子52を配列して形成されている。こうした小光源レンズ素子52は、光源素子43の間隔INTよりも小さなピッチPITで配列され、光源部42からの光源光を分割して小光源を構成するように振る舞う。すなわち、小光源が小さなピッチPITでY方向YDに配列されることにより、線状光源ないし面状光源のように小光源アレイレンズ部51が機能し、それは、X方向XDにずれて並べられた複数の光源素子43により、X方向XDに幅をもった光源のように振る舞う。 According to the first embodiment, the small light source array lens unit 51 is formed by arranging a plurality of small light source lens elements 52. The small light source lens elements 52 are arranged at a pitch PIT smaller than the interval INT of the light source elements 43, and behave so as to divide the light source light from the light source unit 42 to form a small light source. That is, by arranging the small light sources in the Y direction YD with a small pitch PIT, the small light source array lens unit 51 functions like a linear light source or a planar light source, and they are arranged in the X direction XD with a shift. The plurality of light source elements 43 behave like a light source having a width in the X direction XD.
 これに対して、各小光源レンズ素子52にて、Y方向YDの焦点距離fayの絶対値は、X方向XDの焦点距離faxの絶対値より小さくされている。この焦点距離fax,fayの関係により、小光源レンズ素子52の各小光源から発せられるY方向YDの分割光源光の拡がり角βが比較的広角になるため、光源光を短い光路長で好適に拡げることが可能となり、照明対象面32の短手方向SDの寸法に合わせた照明を実現できる。Y方向YDに対してX方向XDでは、小光源レンズ素子52による各小光源から発せられるX方向XDの分割光源光の拡がり角αが比較的挟角になるものの、既に小光源アレイレンズ部51がX方向XDに幅をもった光源のように振る舞っている。故に、各々の小光源からの分割光源光を、照明対象面32の長手方向LDの寸法まで拡げずとも、照明対象面32の長手方向LDの寸法に合わせた照明を実現することができる。したがって、より幅広の範囲を照明すべきX方向XDに合わせた長い光路長を設定する必要性を低減できる。 On the other hand, in each small light source lens element 52, the absolute value of the focal length fax in the Y direction YD is made smaller than the absolute value of the focal length fax in the X direction XD. Due to the relationship between the focal lengths fax and face, the spread angle β of the divided light source light in the Y direction YD emitted from each small light source of the small light source lens element 52 becomes a relatively wide angle, so that the light source light is preferably used with a short optical path length. It becomes possible to expand, and it is possible to realize illumination that matches the dimension of the illumination target surface 32 in the lateral direction SD. In the X direction XD with respect to the Y direction YD, the divergence angle α of the divided light source light in the X direction XD emitted from each small light source by the small light source lens element 52 becomes a relatively small angle, but the small light source array lens unit 51 has already been formed. Behaves like a light source with a width in the X direction XD. Therefore, it is possible to realize the illumination matched to the dimension of the illumination target surface 32 in the longitudinal direction LD without expanding the divided light source light from each small light source to the dimension of the illumination target surface 32 in the longitudinal direction LD. Therefore, it is possible to reduce the need to set a long optical path length according to the X-direction XD that should illuminate a wider range.
 以上により、虚像VRIの輝度ムラ発生を低減して虚像VRIの視認性を高めつつ、体格増大を抑制したHUD装置10を提供することができる。 As described above, it is possible to provide the HUD device 10 that suppresses the increase in physique while reducing the occurrence of brightness unevenness in the virtual image VRI to improve the visibility of the virtual image VRI.
 また、第1実施形態によると、各小光源レンズ素子52は、Y方向YD及びX方向XDに配列され、トロイダル面状に形成されている。トロイダル面状の小光源レンズ素子52が2方向に配列されることにより、2次元的に多数の小光源を構成することが可能となり、小光源アレイレンズ部51を輝度ムラの少ない面状光源のように機能させることができる。 Further, according to the first embodiment, the small light source lens elements 52 are arranged in the Y direction YD and the X direction XD, and are formed in a toroidal surface shape. By arranging the toroidal surface-shaped small light source lens elements 52 in two directions, it is possible to form a large number of small light sources in a two-dimensional manner, and the small light source array lens unit 51 is used as a planar light source with less uneven brightness. Can be made to work.
 また、第1実施形態によると、照明対象面32に入射する分割光源光は、Y方向YDではインテグレートされ、X方向XDではY方向YDよりもインテグレートを規制される。照明対象面32の長手方向LDの寸法までX方向XDに分割光源光を拡張する必要がないので、Y方向YDでのインテグレートに合わせた光路長を設定可能となる。故に、バックライトユニット41の光路長が短縮可能となるので、装置10の体格増大を抑制できる。 Further, according to the first embodiment, the split light source light incident on the illumination target surface 32 is integrated in the Y direction YD, and is regulated in the X direction XD more than in the Y direction YD. Since it is not necessary to expand the split light source light in the X direction XD to the dimension of the illumination target surface 32 in the longitudinal direction LD, it is possible to set the optical path length according to the integration in the Y direction YD. Therefore, the optical path length of the backlight unit 41 can be shortened, and the increase in the size of the device 10 can be suppressed.
 また、第1実施形態によると、短手集光部53は、光路上において、各小光源レンズ素子52よりも照明対象面32側に配置され、分割光源光をまとめてY方向YDに集光するように構成されている。こうした短手集光部53による集光によって、各小光源レンズ素子52からの分割光源光が照明対象面32へ向かうようになり、当該照明対象面32での適切な重ね合わせが実現される。 Further, according to the first embodiment, the short-side light condensing unit 53 is arranged on the optical path on the illumination target surface 32 side of each small light source lens element 52, and collectively collects the divided light source lights in the Y direction YD. Is configured to. Due to the light condensing by the short-side light condensing unit 53, the divided light source light from each small light source lens element 52 is directed toward the illumination target surface 32, and proper superposition on the illumination target surface 32 is realized.
 また、第1実施形態によると、小光源アレイレンズ部51が光源部42側に配置された光学面50aを構成すると共に、短手集光部53が照明対象面32側に配置された光学面50bを構成することにより、小光源アレイレンズ部51と短手集光部53とが第2レンズ部材50として一体的に形成されている。このようにすると、小光源アレイレンズ部51と短手集光部53との間の位置合わせの精度、延いては照明の精度を高めることができ、透過率も向上できる。同時に、部品点数を抑制できるので、装置10の体格拡大を抑制できる。 Further, according to the first embodiment, the small light source array lens portion 51 constitutes the optical surface 50a arranged on the light source portion 42 side, and the short light condensing portion 53 is arranged on the illumination target surface 32 side. By configuring 50b, the small light source array lens portion 51 and the short light focusing portion 53 are integrally formed as the second lens member 50. By doing so, it is possible to improve the alignment accuracy between the small light source array lens unit 51 and the short-side light converging unit 53, and thus the illumination accuracy, and also improve the transmittance. At the same time, since the number of parts can be suppressed, expansion of the physique of the device 10 can be suppressed.
 また、第1実施形態によると、指向性調整部57は、短手集光部53と照明対象面32との間の光路上に配置され、小光源アレイレンズ部51を経て入射した光源光の指向性を調整する。短手集光部53によりも照明対象面32に近い位置、すなわち各分割光源光の重ね合わせ状態が醸成されつつある位置で、視認領域EBを形成するための指向性が調整される。バックライトユニット41に照明対象面32への照明ムラ抑制効果を発揮させつつ、視認領域EBを適切な範囲とすることができる。この結果、虚像VRIの視認性が高まる。 Further, according to the first embodiment, the directivity adjusting unit 57 is disposed on the optical path between the short-side light collecting unit 53 and the illumination target surface 32, and the light source light incident through the small light source array lens unit 51 is incident on the directivity adjusting unit 57. Adjust the directivity. Directivity for forming the visible region EB is adjusted at a position close to the illumination target surface 32 by the short-side light collecting unit 53, that is, at a position where the overlapping state of the divided light source lights is being created. The visible region EB can be set to an appropriate range while the backlight unit 41 exerts the effect of suppressing the uneven illumination on the illumination target surface 32. As a result, the visibility of the virtual image VRI is enhanced.
 また、第1実施形態によると、指向性調整部57は、Y方向YDに光源光を集光すると共に、X方向XDに光源光を発散させる。発散作用を受けた方向に視認領域EBが拡大されるので、視認領域EBの長手方向と、画像の長手方向LDを一致させることができる。このため、両眼の並び方向を視認領域EBの長手方向を合わせた場合に、両眼視し易く、かつ横長の見易い虚像VRIを実現することができる。この結果、虚像VRIの視認性が高まる。 Further, according to the first embodiment, the directivity adjusting unit 57 condenses the light source light in the Y direction YD and diverges the light source light in the X direction XD. Since the visual recognition area EB is enlarged in the direction in which the diverging action is applied, the longitudinal direction of the visual recognition area EB and the longitudinal direction LD of the image can be matched. Therefore, when the alignment direction of both eyes is aligned with the longitudinal direction of the visual recognition area EB, it is possible to realize a virtual image VRI that is easily viewed by both eyes and that is horizontally long. As a result, the visibility of the virtual image VRI is enhanced.
 また、第1実施形態によると、短手集光部53のY方向YDの焦点距離fbyは、指向性調整部57のY方向YDの焦点距離fdyよりも小さく、かつ、短手集光部53と指向性調整部57との間の距離Dよりも大きい。こうした条件を満たすことにより、指向性調整部57よりも照明対象面32側で分割光源光の重ね合わせ状態が実現される。 Further, according to the first embodiment, the focal length fby in the Y direction YD of the short-side light collecting unit 53 is smaller than the focal length fdy in the Y-direction YD of the directivity adjusting unit 57, and the short-side light collecting unit 53. Is larger than the distance D between the directivity adjusting unit 57 and the directivity adjusting unit 57. By satisfying these conditions, the overlapping state of the divided light source light is realized on the illumination target surface 32 side of the directivity adjusting unit 57.
 (第2実施形態)
 図9に示すように、第2実施形態は第1実施形態の変形例である。第2実施形態について、第1実施形態とは異なる点を中心に説明する。
(Second embodiment)
As shown in FIG. 9, the second embodiment is a modification of the first embodiment. The second embodiment will be described focusing on the points different from the first embodiment.
 第2実施形態の第2レンズ部材250においても小光源アレイレンズ部251は、第1実施形態と同様に、複数の小光源レンズ素子252を配列して形成されている。各小光源レンズ素子252は、光源素子43が並べられた間隔INTよりも十分に小さなピッチPIT(例えば3mm以下)にて配列され、互いに隙間なく敷き詰められている。ただし、第2実施形態の小光源レンズ素子252は、Y方向YDの1方向に配列されている。このように、小光源レンズ素子252は、Y方向YD及びX方向XDのうち、分割光源光がインテグレートされるY方向YDに配列されていればよい。 Also in the second lens member 250 of the second embodiment, the small light source array lens section 251 is formed by arranging a plurality of small light source lens elements 252 as in the first embodiment. The small light source lens elements 252 are arranged at a pitch PIT (for example, 3 mm or less) that is sufficiently smaller than the interval INT in which the light source elements 43 are arranged, and they are spread without any gap therebetween. However, the small light source lens elements 252 of the second embodiment are arranged in one direction of the Y direction YD. As described above, the small light source lens elements 252 may be arranged in the Y direction YD in which the divided light source light is integrated, of the Y direction YD and the X direction XD.
 各小光源レンズ素子252は、X方向XDに延伸した短冊状を呈しており、第1レンズ部材46側(換言すると光源部42側)に凸となる凸シリンドリカル面状に形成されている。こうしたシリンドリカル面の小光源レンズ素子252では、X方向XDの焦点距離faxは、実質無限大である。故に、第1実施形態と同様に、各小光源レンズ素子252において、Y方向YDの焦点距離fayの絶対値がX方向XDの焦点距離faxの絶対値よりも小さいという関係が成立している。こうした第2実施形態では、各小光源レンズ素子252が構成する小光源は、線状光源のようになる。 Each small light source lens element 252 has a strip shape extending in the X direction XD, and is formed in a convex cylindrical surface shape that is convex toward the first lens member 46 side (in other words, the light source section 42 side). In such a small light source lens element 252 having a cylindrical surface, the focal length fax in the X direction XD is substantially infinite. Therefore, as in the first embodiment, in each small light source lens element 252, the relationship that the absolute value of the focal length fay in the Y direction YD is smaller than the absolute value of the focal length fax in the X direction XD is established. In such a second embodiment, the small light source formed by each small light source lens element 252 is like a linear light source.
 以上説明した第2実施形態によると、各小光源レンズ素子252は、Y方向YDに配列され、シリンドリカル面状に形成されている。シリンドリカル面状の小光源レンズ素子252がY方向YDに配列されることにより、Y方向YDの焦点距離fayの絶対値とX方向XDの焦点距離faxの絶対値の差を大きくできる。したがって、Y方向YDに対して最適な光路長と、X方向XDに対して最適な光路長との差を縮めることが可能となる。故に、バックライトユニット41の光路長を、両方向XD,YD共に適切な光路長に設定することが容易となるので、虚像VRIの視認性を高めつつ、体格増大を抑制したHUD装置10を提供することができる。 According to the second embodiment described above, the small light source lens elements 252 are arranged in the Y direction YD and formed in a cylindrical surface shape. By arranging the cylindrical light source lens elements 252 in the Y direction YD, the difference between the absolute value of the focal length fay in the Y direction YD and the absolute value of the focal length fax in the X direction XD can be increased. Therefore, it is possible to reduce the difference between the optimum optical path length for the Y direction YD and the optimum optical path length for the X direction XD. Therefore, since it becomes easy to set the optical path length of the backlight unit 41 to an appropriate optical path length in both directions XD and YD, it is possible to provide the HUD device 10 in which the physical size is suppressed while enhancing the visibility of the virtual image VRI. be able to.
 (他の実施形態)
 以上、複数の実施形態について説明したが、本開示は、それらの実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
(Other embodiments)
Although a plurality of embodiments have been described above, the present disclosure should not be construed as being limited to those embodiments, and may be applied to various embodiments and combinations without departing from the scope of the present disclosure. You can
 具体的に変形例1としては、図10,11に示すように、小光源アレイレンズ部51と、短手集光部53とは、別体にてそれぞれ形成されていてもよい。 Specifically, as a modified example 1, as shown in FIGS. 10 and 11, the small light source array lens unit 51 and the short-side light collecting unit 53 may be separately formed.
 変形例2としては、各小光源レンズ素子52のX方向XDの焦点距離faxにおける符号及びY方向YDの焦点距離fayにおける符号のうち少なくとも一方は、負であってもよい。 As a second modification, at least one of the sign of the focal length fax in the X direction XD and the sign of the focal length fay in the Y direction YD of each small light source lens element 52 may be negative.
 変形例3としては、光源部42は、少なくともX方向XDに所定の間隔だけずれて、互いに並べられた光源素子43を含むものであればよい。複数の光源素子43がX方向XDに沿って一直線上に並べられていなくてもよい。具体例としては、複数の光源素子43は、X方向XDに所定の間隔だけずれると共に、Y方向YDにも光源素子43毎に異なる値だけオフセットされていることで、曲線状に並べられていてもよい。また、複数の光源素子43がX方向XDに所定の間隔だけずれると共に、Y方向YDにも交互に逆方向にオフセットされていることで、ジグザグに並べられていてもよい。 As a third modification, the light source unit 42 may include the light source elements 43 arranged at least in the X direction XD by a predetermined distance and arranged side by side. The plurality of light source elements 43 may not be arranged in a straight line along the X direction XD. As a specific example, the plurality of light source elements 43 are arranged in a curved shape by being offset by a predetermined distance in the X direction XD and being offset in the Y direction YD by a different value for each light source element 43. Good. Further, the plurality of light source elements 43 may be arranged in a zigzag manner by being offset in the X direction XD by a predetermined interval and being offset in the Y direction YD alternately in the opposite direction.
 変形例4としては、光源部42は、少なくともX方向XDに所定の間隔INTだけずれて、互いに並べられた光源素子43を含むものであればよい。複数の光源素子43が2次元に配列されていれば、X方向XDに互いにずれる光源素子43の組み合わせが発生する。具体例としては、複数の光源素子43がY方向YD及びX方向XDの2方向に矩形格子状に配列されていてもよい。また、複数の光源素子43は、三角格子状、六角格子状等に配列されていてもよい。 As a fourth modification, the light source unit 42 may include the light source elements 43 arranged at least in the X direction XD by a predetermined interval INT and arranged side by side. If the plurality of light source elements 43 are arranged two-dimensionally, a combination of the light source elements 43 that are displaced from each other in the X direction XD occurs. As a specific example, the plurality of light source elements 43 may be arranged in a rectangular lattice shape in two directions of the Y direction YD and the X direction XD. Further, the plurality of light source elements 43 may be arranged in a triangular lattice shape, a hexagonal lattice shape, or the like.
 変形例5としては、光源素子43がずれる所定の間隔INTは、変調していてもよい。この場合、小光源レンズ素子52が配列されるピッチPITは、間隔INTの平均値である平均間隔よりも小さければよい。ただし、ピッチPITが各間隔INTのうち最小値である最小間隔よりも小さくなっていることがより好適である。 As a fifth modification, the predetermined interval INT at which the light source element 43 is displaced may be modulated. In this case, the pitch PIT at which the small light source lens elements 52 are arranged may be smaller than the average interval which is the average value of the intervals INT. However, it is more preferable that the pitch PIT is smaller than the minimum value of the intervals INT, which is the minimum value.
 変形例6としては、光源素子43には、点状光源に限られず、線状光源又は面状光源が採用されてもよい。光源部42は、例えばY方向YDに延伸する線状光源としての光源素子43を、X方向XDに複数並べた構成であってもよい。また、光源部42は、面状光源としての光源素子43を、X方向XDに互いに離間するように複数並べた構成であってもよい。 As a sixth modification, the light source element 43 is not limited to the point light source, and may be a linear light source or a planar light source. The light source unit 42 may have a configuration in which a plurality of light source elements 43 as linear light sources extending in the Y direction YD are arranged in the X direction XD. Further, the light source unit 42 may have a configuration in which a plurality of light source elements 43 serving as a planar light source are arranged so as to be separated from each other in the X direction XD.
 変形例7としては、導光部21は、平面鏡22の代わりに、又は新たな光学素子の追加によって、凸面鏡を有していてもよい。導光部21に凸面鏡が含まれる場合であっても、導光部21の合成焦点距離における符号は、正であることが好ましい。この構成においては、短手集光部53のY方向YDの焦点距離fbyは、短手指向性調整部59のY方向YDの焦点距離fdyと実質的に等しい値に設定されてもよい。 As a modified example 7, the light guide section 21 may have a convex mirror instead of the plane mirror 22 or by adding a new optical element. Even when the light guide section 21 includes a convex mirror, the sign of the combined focal length of the light guide section 21 is preferably positive. In this configuration, the focal length fby of the short-side light converging unit 53 in the Y direction YD may be set to a value substantially equal to the focal length fdy of the short-direction directivity adjusting unit 59 in the Y direction YD.
 変形例8としては、拡散板61は、第2レンズ部材50と第3レンズ部材56との間に配置されていてもよい。 As a modified example 8, the diffusion plate 61 may be arranged between the second lens member 50 and the third lens member 56.
 変形例9としては、長手指向性調整部58は、フレネルレンズ状ではなく、単一の凹シリンドリカル面状に形成されていてもよい。逆に、短手指向性調整部59は、フレネルレンズ状に形成されていてもよい。また、図10,11に示すように、長手指向性調整部58及び短手指向性調整部59の少なくとも一部は、トロイダル面等の1つの光学面により合成状態にて構成されていてもよい。さらには、長手指向性調整部58及び短手指向性調整部59のうち少なくとも一方が設けられていなくてもよい。 As a modified example 9, the longitudinal directivity adjusting portion 58 may be formed in a single concave cylindrical surface shape instead of the Fresnel lens shape. On the contrary, the lateral directivity adjusting section 59 may be formed in a Fresnel lens shape. In addition, as shown in FIGS. 10 and 11, at least a part of the longitudinal directivity adjusting unit 58 and the lateral directivity adjusting unit 59 may be configured in a combined state by one optical surface such as a toroidal surface. Good. Furthermore, at least one of the longitudinal directivity adjusting unit 58 and the lateral directivity adjusting unit 59 may not be provided.
 変形例10としては、バックライトユニット41の照明対象として機能する照明対象部としての照明対象面32は、長方形状に限られず、楕円形状、平行四辺形状等に形成されていてもよい。また、照明対象部は、単一の面状に形成されていなくてもよく、3次元的な構造を含んでいてもよい。 As a tenth modification, the illumination target surface 32 as the illumination target portion that functions as the illumination target of the backlight unit 41 is not limited to a rectangular shape, and may be formed in an elliptical shape, a parallelogram shape, or the like. Further, the illumination target portion may not be formed in a single plane shape and may include a three-dimensional structure.
 変形例11としては、虚像表示装置は、航空機、船舶、あるいはゲーム筐体等の移動しない筐体等の各種の乗り物に適用することができる。また、虚像表示装置は、ヘッドマウントディスプレイ等の携帯情報端末に適用することができる。

 
As a modified example 11, the virtual image display device can be applied to various vehicles such as an aircraft, a ship, and a case that does not move such as a game case. Further, the virtual image display device can be applied to a mobile information terminal such as a head mounted display.

Claims (9)

  1.  画像の表示光を投影部(3a)に投影することにより、虚像(VRI)を表示する虚像表示装置であって、
     短手方向(SD)の寸法に対して長手方向(LD)の寸法が大きく設定された照明対象部(32)を有し、前記照明対象部に照明された光源光を利用して前記画像を表示する画像表示素子(31)と、
     前記光源光を前記照明対象部へ照射するバックライトユニット(41)と、を備え、
     前記バックライトユニットは、
     前記短手方向に対応する短手対応方向(YD)及び前記長手方向に対応する長手対応方向(XD)のうち少なくとも前記長手対応方向に所定の間隔(INT)だけずれて、互いに並べられた複数の光源素子(43)を有し、各前記光源素子から前記光源光を発する光源部(42)と、
     前記光源部と前記照明対象部との間の光路上に配置され、前記短手対応方向及び前記長手対応方向のうち少なくとも前記短手対応方向に沿って、前記間隔よりも小さなピッチ(PIT)で配列された複数の小光源レンズ素子(52)を有し、各前記小光源レンズ素子が前記光源部からの前記光源光を分割して新たな小光源を構成するように振る舞う小光源アレイレンズ部(51)と、を有し、
     各前記小光源レンズ素子において、前記短手対応方向の焦点距離の絶対値は、前記長手対応方向の焦点距離の絶対値よりも小さな虚像表示装置。
    A virtual image display device for displaying a virtual image (VRI) by projecting display light of an image onto a projection unit (3a),
    There is an illumination target part (32) whose dimension in the longitudinal direction (LD) is set larger than the dimension in the lateral direction (SD), and the image is displayed using the light source light illuminated by the illumination target part. An image display element (31) for displaying,
    A backlight unit (41) for irradiating the illumination target portion with the light source light,
    The backlight unit is
    A plurality of a plurality of elements arranged side by side by at least a predetermined interval (INT) in at least the longitudinal corresponding direction among the lateral corresponding direction (YD) corresponding to the lateral direction and the longitudinal corresponding direction (XD) corresponding to the longitudinal direction. A light source section (42) for emitting the light source light from each of the light source elements,
    It is arranged on an optical path between the light source unit and the illumination target unit, and at a pitch (PIT) smaller than the interval along at least the short side corresponding direction of the short side corresponding direction and the long side corresponding direction. A small light source array lens section that has a plurality of small light source lens elements (52) arranged, and each small light source lens element behaves so as to divide the light source light from the light source section to form a new small light source. (51) and,
    In each of the small light source lens elements, the virtual image display device in which the absolute value of the focal length in the lateral corresponding direction is smaller than the absolute value of the focal length in the longitudinal corresponding direction.
  2.  各前記小光源レンズ素子は、前記短手対応方向に配列され、シリンドリカル面状に形成されている請求項1に記載の虚像表示装置。 The virtual image display device according to claim 1, wherein each of the small light source lens elements is arranged in the direction corresponding to the lateral direction and formed into a cylindrical surface shape.
  3.  各前記小光源レンズ素子は、前記短手対応方向及び前記長手対応方向に配列され、トロイダル面状に形成されている請求項1に記載の虚像表示装置。 The virtual image display device according to claim 1, wherein each of the small light source lens elements is arranged in the direction corresponding to the lateral direction and the direction corresponding to the longitudinal direction and is formed in a toroidal surface shape.
  4.  前記バックライトユニットは、各前記小光源レンズ素子により分割された各前記光源光を、前記照明対象部に対して、前記短手対応方向ではインテグレートをして入射させると共に、前記長手対応方向では前記短手対応方向よりもインテグレートが規制された状態で入射させる請求項1から3のいずれか1項に記載の虚像表示装置。 The backlight unit integrates each of the light source lights divided by each of the small light source lens elements into the illumination target portion in the short-side corresponding direction and causes the light source light to enter in the long-side corresponding direction. 4. The virtual image display device according to claim 1, wherein the virtual image display device is made incident in a state in which the integration is regulated more than in the lateral direction.
  5.  前記バックライトユニットは、前記光路上において、各前記小光源レンズ素子よりも前記照明対象部側に、各前記小光源レンズ素子により分割された各前記光源光をまとめて前記短手対応方向に集光するように構成された短手集光部(53)を、さらに有する請求項1から4のいずれか1項に記載の虚像表示装置。 In the backlight unit, the light source light divided by the small light source lens elements is collectively collected in the short-side corresponding direction on the optical path closer to the illumination target portion than the small light source lens elements. The virtual image display device according to any one of claims 1 to 4, further comprising a short-side light collecting portion (53) configured to emit light.
  6.  前記小光源アレイレンズ部が前記光路上の前記光源部側に配置された光学面(50a)を構成すると共に、前記短手集光部が前記光路上の前記照明対象部側に配置された光学面(50b)を構成することにより、前記小光源アレイレンズ部と前記短手集光部とがレンズ部材(50)として一体的に形成されている請求項5に記載の虚像表示装置。 An optical system in which the small light source array lens unit constitutes an optical surface (50a) arranged on the light source unit side on the optical path, and the short light condensing unit is arranged on the illumination target unit side on the optical path. The virtual image display device according to claim 5, wherein the small light source array lens unit and the short light condensing unit are integrally formed as a lens member (50) by forming a surface (50b).
  7.  前記バックライトユニットは、前記短手集光部と前記照明対象部との間の前記光路上に配置され、前記小光源アレイレンズ部を経て入射した前記光源光の指向性を調整する指向性調整部(57)を、さらに備える請求項5又は6に記載の虚像表示装置。 The backlight unit is disposed on the optical path between the short light converging unit and the illumination target unit, and is a directivity adjustment that adjusts the directivity of the light source light that has entered through the small light source array lens unit. The virtual image display device according to claim 5, further comprising a unit (57).
  8.  前記指向性調整部は、前記短手対応方向に前記光源光を集光すると共に、前記長手対応方向に前記光源光を発散させる請求項7に記載の虚像表示装置。 The virtual image display device according to claim 7, wherein the directivity adjusting unit collects the light source light in the direction corresponding to the lateral direction and diverges the light source light in the direction corresponding to the longitudinal direction.
  9.  前記短手集光部の前記短手対応方向の焦点距離は、前記指向性調整部の前記短手対応方向の焦点距離よりも小さく、かつ、前記短手集光部と前記指向性調整部との間の距離よりも大きい請求項7又は8に記載の虚像表示装置。

     
    A focal length of the short-side light converging portion in the short-side corresponding direction is smaller than a focal length of the directivity adjusting portion in the short-side corresponding direction, and the short-side light converging portion and the directivity adjusting portion. The virtual image display device according to claim 7, wherein the virtual image display device is larger than the distance between them.

PCT/JP2019/050528 2019-01-28 2019-12-24 Virtual image display device WO2020158258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-012363 2019-01-28
JP2019012363A JP6984619B2 (en) 2019-01-28 2019-01-28 Virtual image display device

Publications (1)

Publication Number Publication Date
WO2020158258A1 true WO2020158258A1 (en) 2020-08-06

Family

ID=71840902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050528 WO2020158258A1 (en) 2019-01-28 2019-12-24 Virtual image display device

Country Status (2)

Country Link
JP (1) JP6984619B2 (en)
WO (1) WO2020158258A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406582B2 (en) * 2022-02-16 2023-12-27 ミネベアミツミ株式会社 Spread lighting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057491A (en) * 2014-09-10 2016-04-21 日本精機株式会社 Head-up display device
JP2016218391A (en) * 2015-05-26 2016-12-22 日本精機株式会社 Display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018706A (en) * 2016-07-28 2018-02-01 林テレンプ株式会社 Luminaire and headup display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057491A (en) * 2014-09-10 2016-04-21 日本精機株式会社 Head-up display device
JP2016218391A (en) * 2015-05-26 2016-12-22 日本精機株式会社 Display device

Also Published As

Publication number Publication date
JP2020118935A (en) 2020-08-06
JP6984619B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
JP6579126B2 (en) Head-up display device and image projection unit
JP6481649B2 (en) Head-up display device
CN110221430A (en) HUD system and multi-screen splicing formula diffraction display system
JP2018132772A (en) Head-up display device
JP7172840B2 (en) virtual image display
JP2014202835A (en) Illumination device and image display device
WO2019049509A1 (en) Head-up display device and image projection unit
US20070242351A1 (en) Screen, rear projector, and image display apparatus
WO2017130481A1 (en) Head up display apparatus and manufacturing method of same
WO2020158258A1 (en) Virtual image display device
JP2020170067A (en) Virtual image display device
WO2022130823A1 (en) Virtual image display device
WO2022014180A1 (en) Virtual-image display device
JP4622509B2 (en) Liquid crystal display device
US6873470B2 (en) Arrangement for the visualization of information in a motor vehicle
JP4158817B2 (en) Screen, rear projector and image display device
CN219676413U (en) Backlight module, image generation unit, head-up display device and carrier
CN115210629B (en) virtual image display device
JP7163804B2 (en) Lighting unit for head-up display
JP7318597B2 (en) virtual image display
WO2022019101A1 (en) Head-up display device and diffusion plate for head-up display
JP4457752B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912413

Country of ref document: EP

Kind code of ref document: A1