WO2020157833A1 - ガス遮断器 - Google Patents

ガス遮断器 Download PDF

Info

Publication number
WO2020157833A1
WO2020157833A1 PCT/JP2019/003001 JP2019003001W WO2020157833A1 WO 2020157833 A1 WO2020157833 A1 WO 2020157833A1 JP 2019003001 W JP2019003001 W JP 2019003001W WO 2020157833 A1 WO2020157833 A1 WO 2020157833A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
insulating tube
circuit breaker
cooling cylinder
gas
Prior art date
Application number
PCT/JP2019/003001
Other languages
English (en)
French (fr)
Inventor
新平 中
芳友 雄治
泰規 中村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/003001 priority Critical patent/WO2020157833A1/ja
Priority to JP2019528165A priority patent/JPWO2020157833A1/ja
Publication of WO2020157833A1 publication Critical patent/WO2020157833A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts

Definitions

  • the present invention relates to a gas circuit breaker that interrupts an electric current by using a fixed contact and a movable contact inside a tank in which an insulating gas is sealed.
  • the gas circuit breaker separates the movable contact from the fixed contact in contact with the fixed contact when shutting off the current flowing through the conductor provided in the tank.
  • extinguishing the arc may be accelerated by blowing an insulating gas to an arc generated when the movable contact is separated from the fixed contact.
  • the gas circuit breaker is provided with a metal cooling cylinder that covers the periphery of the fixed contact, so that the insulating gas that has been heated to a high temperature by the heat of the arc is cooled in the cooling cylinder, Can be diffused.
  • the gas circuit breaker can suppress a decrease in withstand voltage performance due to diffusion of high-temperature insulating gas into the tank by cooling the insulating gas blown to the arc with the cooling cylinder.
  • Patent Document 1 discloses a gas circuit breaker in which an exhaust cylinder made of an insulating material is attached to a cooling cylinder.
  • the exhaust pipe has a tubular shape extending in a direction parallel to the central axis of the tank.
  • the gas circuit breaker of Patent Document 1 can suppress the occurrence of flashover due to the deterioration of withstand voltage performance by diffusing the insulating gas that has passed from the cooling cylinder to the exhaust cylinder into the tank.
  • the present invention has been made in view of the above, and an object thereof is to obtain a gas circuit breaker that can secure high withstand voltage performance and can suppress an increase in the size of a tank.
  • a gas circuit breaker includes a tank in which an insulating gas is filled, a fixed contact fixed on the central axis of the tank, and a central axis.
  • the movable contact that can reciprocate between the position when it comes in contact with the fixed contact and the position when it is separated from the fixed contact, and the insulating gas for extinguishing arc that covers the circumference of the fixed contact and
  • the cooling cylinder includes a flowable cooling cylinder and an insulator attached to an end of the cooling cylinder in the first direction parallel to the central axis, into which the insulating gas from the cooling cylinder can flow.
  • the length of the insulator in the second direction perpendicular to the central axis is longer than the length of the cooling cylinder in the second direction.
  • An enlarged view of the connecting portion between the cooling cylinder and the insulating tube in the gas circuit breaker shown in FIG. The figure which shows the connection example of a cooling cylinder and an insulating tube in case the shape of the end of a cooling cylinder differs from the cooling cylinder shown in FIG.
  • FIG. 1 is a diagram showing a main part of a gas circuit breaker 1 according to a first embodiment of the present invention.
  • the gas circuit breaker 1 has a tank 2 which is a metal container in which an insulating gas is sealed.
  • the insulating gas is a gas having electrical insulating properties and arc extinguishing properties, such as sulfur hexafluoride (SF 6 ) gas.
  • the gas circuit breaker 1 supplies an alternating current to the conductor 5 provided in the tank 2 and interrupts the alternating current flowing through the conductor 5.
  • the gas circuit breaker 1 has a movable contactor 3 that is a movable contactor in the tank 2, and a fixed contactor 4 that is a fixed contactor in the tank 2.
  • the central axis N is a central axis of a cylindrical portion of the tank 2 in which the movable contact 3 and the fixed contact 4 are housed.
  • FIG. 1 a cross section of a part of the tubular portion of the tank 2 is shown. Such a cross section is a cross section including the central axis N and the center line of the conductor 5.
  • the fixed contact 4 is fixed on the central axis N.
  • the movable contactor 3 is capable of reciprocating on the central axis N between a position where it contacts the fixed contactor 4 and a position when it is separated from the fixed contactor 4.
  • the movable contactor 3 is connected to the movable-side conductor that is the conductor 5.
  • a fixed-side conductor, which is a conductor 5, is connected to the fixed contactor 4.
  • FIG. 1 shows the fixed-side conductor of the conductor 5.
  • the gas circuit breaker 1 applies current by bringing the movable contactor 3 into contact with the fixed contactor 4, and interrupts the current by separating the movable contactor 3 from the fixed contactor 4.
  • the gas circuit breaker 1 has a drive device that operates the movable contactor 3. In FIG. 1, the drive device is not shown.
  • the gas circuit breaker 1 has a metal cooling cylinder 6 that covers the periphery of the fixed contactor 4.
  • the cooling cylinder 6 has a cylindrical shape.
  • the insulating gas for extinguishing the arc which is injected from the movable contactor 3 side to the fixed contactor 4 side, flows.
  • the central axis of the cooling cylinder 6 coincides with the central axis N of the tank 2.
  • the longitudinal direction of the cylindrical shape formed by the cooling cylinder 6 is parallel to the direction A that is the first direction.
  • the direction A is the direction of the central axis N. In FIG. 1, an arrow indicating the direction A is shown.
  • the movable contact 3 is fixed to the cooling cylinder 6.
  • the insulating support base 7 is attached to the inner wall of the tank 2 and supports the cooling cylinder 6.
  • the conductor 5 is connected to the cooling cylinder 6.
  • the fixed contactor 4 is connected to the conductor 5 via the cooling cylinder 6.
  • the gas circuit breaker 1 has an insulating tube 8 which is an insulator attached to the end of the cooling cylinder 6.
  • the insulating tube 8 is attached to the end of the cooling cylinder 6. This end is the end of the cooling cylinder 6 in the direction A, which is the end opposite to the side facing the movable contact 3.
  • the insulating gas from the cooling cylinder 6 flows into the insulating tube 8.
  • the insulating tube 8 has a cylindrical shape.
  • the central axis of the insulating tube 8 is parallel to the direction B that is the second direction.
  • the direction B is a direction perpendicular to the central axis N and included in the cross section shown in FIG.
  • the longitudinal direction of the cylindrical shape formed by the insulating tube 8 is parallel to the direction B.
  • the length of the insulating tube 8 in the direction B is longer than the length of the cooling cylinder 6 in the direction B.
  • an arrow indicating the direction B is shown.
  • the material of the insulating tube 8 is a material such as polytetrafluoroethylene (PolyTetraFluoroEthylene: PTFE), fiber reinforced plastic (Fiberglass Reinforced Plastics: FRP), aromatic polyamide resin or epoxy resin, and has insulation and heat resistance.
  • the material provided is used.
  • the material of the insulating tube 8 may be any material as long as it has insulation and heat resistance, and may be a material other than the materials listed here.
  • the adapter 9 is a component that assists in fixing the insulating tube 8 to the cooling cylinder 6. It should be noted that the shape of the insulating tube 8 may be a shape other than a cylindrical shape and can be appropriately modified. The shape of the insulating tube 8 may be an elliptic cylindrical shape.
  • FIG. 2 is an enlarged view of a portion including the insulating tube 8 in the gas circuit breaker 1 shown in FIG.
  • a connection opening 14 which is a circular opening is provided at the center of the insulating tube 8 in the direction B.
  • An adapter 9 fixed to the end of the cooling cylinder 6 is passed through the connection port 14.
  • the insulating tube 8 is attached to the cooling tube 6 in a state where the inside of the insulating tube 8 and the inside of the cooling tube 6 are connected to each other.
  • Two ends 11 of the insulating tube 8 in the direction B are both closed.
  • the insulating tube 8 has an exhaust port 12 for discharging the insulating gas flowing from the cooling cylinder 6 into the insulating tube 8 to the outside of the insulating tube 8.
  • the exhaust port 12 is provided around the connection port 14 of the insulating tube 8. In this way, the exhaust port 12 is provided at a position other than the position facing the cooling cylinder 6 in the direction A.
  • the shape and number of the exhaust ports 12 provided in the insulating tube 8 are arbitrary.
  • the insulating gas blown to the arc generated between the movable contact 3 and the fixed contact 4 advances in the direction A inside the cooling cylinder 6.
  • the insulating gas that has proceeded inside the cooling cylinder 6 enters the inside of the insulating tube 8 through the connection port 14. Since the exhaust port 12 is not provided at the position facing the cooling cylinder 6 in the direction A, the insulating gas that has proceeded in the direction A inside the insulating tube 8 hits the inner wall of the insulating tube 8 and enters the inside of the insulating tube 8.
  • the insulating gas that has proceeded in the direction A inside the insulating tube 8 diffuses inside the insulating tube 8 and is mixed with the insulating gas at room temperature existing inside the insulating tube 8.
  • the insulating gas mixed inside the insulating tube 8 flows to the outside of the insulating tube 8 through the exhaust port 12.
  • the gas circuit breaker 1 can suppress the occurrence of flashover between the end portion of the cooling cylinder 6 and the inner wall of the tank 2 due to the decrease in withstand voltage performance.
  • the length of the insulating tube 8 in the direction B By setting the length of the insulating tube 8 in the direction B to be longer than the length of the cooling tube 6 in the direction B, when the length of the insulating tube 8 in the direction B is the same as the length of the cooling tube 6 in the direction B. In comparison, the inside of the insulating tube 8 can be made wider. Since the inside of the insulating tube 8 can be widened, the high temperature insulating gas entering the insulating tube 8 is mixed with a larger amount of the insulating gas in the insulating tube 8, and thus the cooling of the high temperature insulating gas is promoted. Thereby, the gas circuit breaker 1 can ensure higher withstand voltage performance.
  • the inside of the insulating tube 8 is widened by increasing the length of the insulating tube 8 in the direction B, and the inside of the insulating tube 8 is widened by increasing the length of the insulating tube 8 in the direction of the central axis N.
  • the length of the tank 2 in the direction of the central axis N can be shortened.
  • the gas circuit breaker 1 can prevent the tank 2 from increasing in size in the direction of the central axis N.
  • FIG. 3 is an enlarged view of a connecting portion between the cooling cylinder 6 and the insulating tube 8 in the gas circuit breaker 1 shown in FIG.
  • a rounded convex portion 13 is formed at the end of the cooling cylinder 6 so as to project to the side opposite to the central axis N side.
  • the adapter 9 is joined to the surface of the end of the cooling cylinder 6 on the side of the central axis N. Further, the surface of the connection port 14 is joined to the adapter 9, so that the insulating tube 8 is attached to the cooling cylinder 6 while being in contact with the convex portion 13.
  • a bolt which is an adhesive or a fixed component, is used for joining the surfaces.
  • the adapter 9 is attached to the cooling tube 6, and then the insulating tube 8 is attached to the adapter 9. Since the adapter 9 is attached to the cooling tube 6 before the insulating tube 8, the insulating tube 8 can be stably attached to the convex portion 13 of the cooling tube 6.
  • FIG. 4 is a diagram showing an example of connection between the cooling cylinder 6 and the insulating tube 8 when the shape of the end of the cooling cylinder 6 is different from that of the cooling cylinder 6 shown in FIG.
  • a convex portion 13 is formed on the side of the central axis N.
  • the insulating tube 8 is attached to the cooling cylinder 6 by joining the surface of the connection port 14 to the surface of the end portion of the cooling cylinder 6 opposite to the side of the central axis N.
  • an adhesive or a bolt that is a fixed component is used for joining the surfaces.
  • the insulating tube 8 is directly attached to the cooling cylinder 6 without using the adapter 9.
  • the insulating tube 8 is provided at the end of the cooling cylinder 6, and the length of the insulating tube 8 in the second direction is greater than the length of the cooling cylinder 6 in the second direction.
  • the gas circuit breaker 1 can widen the inside of the insulating tube 8, it is possible to promote cooling of high-temperature insulating gas inside the insulating tube 8 and ensure high withstand voltage performance.
  • the length of the insulating tube 8 in the direction of the central axis N can be shortened, it is possible to prevent the tank 2 from increasing in size in the direction of the central axis N.
  • the gas circuit breaker 1 has an effect that a high withstand voltage performance can be secured and that the tank 2 can be prevented from increasing in size.
  • FIG. 5 is a figure which shows the principal part of the gas circuit breaker 1 concerning Embodiment 2 of this invention.
  • FIG. 5 shows a portion of the gas circuit breaker 1 including the insulating tube 20.
  • the insulating tube 20 has a plurality of exhaust ports 12 for discharging the insulating gas flowing into the insulating tube 20 from the cooling cylinder 6 to the outside of the insulating tube 20.
  • the same components as those in the above-described first embodiment are designated by the same reference numerals, and configurations different from the first embodiment will be mainly described.
  • FIG. 5 shows a plurality of exhaust ports 12 provided in a portion of the side surface of the insulating tube 20 on the inner side of the cross section shown in FIG.
  • the exhaust port 12 is also provided around the connection port 14.
  • the insulating tube 20 is the same as the insulating tube 8 according to the first embodiment, except that the exhaust port 12 is provided.
  • the shape, number, and position of the exhaust ports 12 provided in the insulating tube 20 are arbitrary.
  • the gas circuit breaker 1 disperses the flow of the insulating gas discharged from the insulating tube 20 by providing the insulating tube 20 with a plurality of exhaust ports 12. The dispersion of the insulating gas flow promotes the diffusion of the insulating gas in the tank 2. The gas circuit breaker 1 cools the insulating gas in the insulating tube 20 and promotes the diffusion of the insulating gas, so that higher withstand voltage performance can be secured.
  • FIG. 6 is a diagram showing a main part of the gas circuit breaker 1 according to the third embodiment of the present invention.
  • FIG. 6 shows a portion of the gas circuit breaker 1 including the insulating tube 30.
  • the insulating tube 30 has a direction adjusting unit 31 that adjusts the direction in which the insulating gas flows.
  • the same components as those in the first and second embodiments described above are designated by the same reference numerals, and configurations different from those in the first and second embodiments will be mainly described.
  • the two ends 11 of the insulating tube 30 are open.
  • the insulating gas that has traveled in the direction A in the cooling cylinder 6 and the insulating tube 30 flows out of the insulating tube 30 through the end 11 that is open in the direction B.
  • the direction adjusting part 31 is attached to the inner wall of the insulating tube 30.
  • the direction adjusting unit 31 has two surfaces inclined with respect to the central axis N.
  • the insulating gas that has proceeded in the direction A travels toward the end 11 by hitting such a surface. In this way, the direction adjusting unit 31 adjusts the direction in which the insulating gas flows so that the insulating gas flowing into the insulating tube 30 is directed to the end 11.
  • the insulating tube 30 is similar to the insulating tube 8 according to the first embodiment except that the end 11 is opened and the direction adjusting portion 31 is provided instead of forming the exhaust port 12.
  • the direction adjusting unit 31 is not limited to a component that is separate from the insulating tube 30.
  • the direction adjusting unit 31 may be configured by deforming a part of the tubular shape of the insulating tube 30. Also in this case, the insulating tube 30 can adjust the direction in which the insulating gas flows.
  • the gas circuit breaker 1 is provided with the direction adjusting unit 31 in the insulating tube 30 to promote the change of the traveling direction of the insulating gas inside the insulating tube 30. Inside the insulating tube 30, diffusion of the insulating gas is promoted by changing the traveling direction of the insulating gas. The insulating gas diffused inside the insulating tube 8 is mixed with the insulating gas inside the insulating tube 8 and flows out of the insulating tube 8. As a result, the gas circuit breaker 1 can promote cooling of the insulating gas inside the insulating tube 30 and can ensure higher withstand voltage performance.
  • FIG. 7 is a figure which shows the principal part of the gas circuit breaker 1 concerning Embodiment 4 of this invention.
  • FIG. 7 shows a portion of the gas circuit breaker 1 including the insulating tube 40.
  • the direction of the insulating tube 40 differs from the insulating tubes 8, 20, 30 of the first to third embodiments by 90 degrees.
  • the same components as those in the first to third embodiments are designated by the same reference numerals, and configurations different from those in the first to third embodiments will be mainly described.
  • FIG. 8 is a plan view showing an insulating tube 40 included in the gas circuit breaker 1 shown in FIG.
  • FIG. 8 shows the insulating tube 40 and the lid portion of the tank 2. Further, the cross section of the cooling cylinder 6 is shown by a broken line.
  • the insulating tube 40 has a cylindrical shape.
  • the central axis of the insulating tube 40 is parallel to the direction C.
  • the direction C is a direction perpendicular to the directions A and B.
  • the cylindrical longitudinal direction of the insulating tube 40 is parallel to the direction C.
  • it is assumed that the direction C is the second direction instead of the direction B.
  • an arrow indicating the direction C is shown.
  • the two ends 11 of the insulating tube 40 are open.
  • the insulating gas that has proceeded in the first direction in the cooling cylinder 6 and the insulating tube 40 flows out of the insulating tube 40 through the end 11 that is open in the direction C.
  • the length of the insulating tube 40 in the direction C is longer than the length of the cooling cylinder 6 in the direction C.
  • the length of the insulating tube 40 in the direction C is longer than the length of the cooling cylinder 6 in the direction C.
  • the inside of the insulating tube 40 can be made wider. Since the inside of the insulating tube 40 can be widened, the high-temperature insulating gas entering the insulating tube 40 is mixed with a larger amount of the insulating gas in the insulating tube 40, so that the cooling of the high-temperature insulating gas is promoted. Thereby, the gas circuit breaker 1 can ensure higher withstand voltage performance.
  • the inside of the insulating tube 40 is widened by increasing the length of the insulating tube 40 in the direction C, and the inside of the insulating tube 40 is widened by increasing the length of the insulating tube 40 in the direction of the central axis N.
  • the length of the tank 2 in the direction of the central axis N can be shortened.
  • the gas circuit breaker 1 can prevent the tank 2 from increasing in size in the direction of the central axis N.
  • the shape of the insulating tube 40 may be a shape other than a cylindrical shape, like the insulating tubes 8, 20, and 30 of the first to third embodiments.
  • the insulating tube 40 may have the end 11 closed and the exhaust port 12 as in the insulating tubes 8 and 20 of the first and second embodiments.
  • the insulating tube 40 may have the direction adjusting portion 31 similarly to the insulating tube 30 of the third embodiment.
  • the direction of the insulating tube 40 is different from that of the insulating tubes 8, 20, 30 of the first to third exemplary embodiments by 90 degrees, so that the insulating gas flows in the direction different from that of the first to third exemplary embodiments. Different.
  • the insulating gas flowing from the insulating tube 40 into the tank 2 is directed to the central axis N more than in the case of flowing the insulating gas in the vertical direction of the direction B. It becomes easy to flow symmetrically.
  • the direction in which the insulating gas flows can be arbitrarily set according to the direction of the insulating tube 40.

Landscapes

  • Circuit Breakers (AREA)

Abstract

ガス遮断器(1)は、絶縁ガスが封入されるタンク(2)と、タンク(2)の中心軸(N)上にて固定されている固定接触子(4)と、中心軸(N)上にて、固定接触子(4)に接触するときの位置と固定接触子(4)から離されたときの位置とを往復可能な可動接触子(3)と、固定接触子(4)の周囲を覆い、消弧のための絶縁ガスが流動可能な冷却筒(6)と、冷却筒(6)のうち中心軸(N)に平行な第1の方向における端部に取り付けられており、冷却筒(6)からの絶縁ガスが内部へ流入可能な絶縁体である絶縁チューブ(8)と、を備える。中心軸(N)に垂直な第2の方向における絶縁体の長さが第2の方向における冷却筒(6)の長さよりも長い。

Description

ガス遮断器
 本発明は、絶縁ガスが封入されたタンク内の固定接触子および可動接触子を用いて電流を遮断するガス遮断器に関する。
 ガス遮断器は、タンク内に設けられた導体を流れている電流を遮断する際に、固定接触子に接触された状態の可動接触子を固定接触子から引き離す。遮断性能の向上のために、ガス遮断器では、可動接触子が固定接触子から引き離される際に発生するアークへ絶縁ガスを吹き付けることによって、消弧の迅速化が図られることがある。また、ガス遮断器は、固定接触子の周囲を覆う金属製の冷却筒が設けられることによって、アークの熱を受けて高温になった絶縁ガスを冷却筒内にて冷却してからタンク内に拡散させ得る。ガス遮断器は、アークへ吹き付けられた絶縁ガスを冷却筒にて冷却することによって、高温の絶縁ガスがタンク内に拡散することによる耐電圧性能の低下を抑制することができる。
 大電流の遮断であるほど、またアーク時間が長いほど、冷却管での絶縁ガスの冷却が不十分となることによって、冷却管の端部とタンク内壁との間に高温の絶縁ガスが流れる可能性が高くなる。絶縁ガスの温度が高いほど絶縁ガスの耐電圧性能が低下することから、ガス遮断器は、冷却筒の端部とタンクの内壁との間にて高温の絶縁ガスが流れることによって閃絡が生じ易くなる。
 特許文献1には、絶縁物により構成されている排気筒が冷却筒に取り付けられているガス遮断器が開示されている。排気筒は、タンクの中心軸に平行な方向へ延ばされた筒形をなしている。特許文献1のガス遮断器は、冷却筒から排気筒を通った絶縁ガスをタンク内に拡散させることで、耐電圧性能の低下による閃絡の発生を抑制可能とする。
特開2003-217411号公報
 上記特許文献1の技術によれば、タンクの中心軸に平行な方向へ延ばされた排気筒を設けるために、当該方向におけるタンクの長さを長くする必要がある。このため、上記特許文献1の技術によると、ガス遮断器は、高い耐電圧性能を確保し得る一方、タンクの大型化を抑制することが困難であるという問題があった。
 本発明は、上記に鑑みてなされたものであって、高い耐電圧性能を確保でき、かつタンクの大型化を抑制可能とするガス遮断器を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかるガス遮断器は、絶縁ガスが封入されるタンクと、タンクの中心軸上にて固定されている固定接触子と、中心軸上にて、固定接触子に接触するときの位置と固定接触子から離されたときの位置とを往復可能な可動接触子と、固定接触子の周囲を覆い、消弧のための絶縁ガスが流動可能な冷却筒と、冷却筒のうち中心軸に平行な第1の方向における端部に取り付けられており、冷却筒からの絶縁ガスが内部へ流入可能な絶縁体と、を備える。中心軸に垂直な第2の方向における絶縁体の長さは、第2の方向における冷却筒の長さよりも長い。
 本発明によれば、高い耐電圧性能を確保でき、かつタンクの大型化を抑制することができるという効果を奏する。
本発明の実施の形態1にかかるガス遮断器の要部を示す図 図1に示すガス遮断器のうち絶縁チューブを含む部分の拡大図 図1に示すガス遮断器のうち冷却筒と絶縁チューブとの接続部分の拡大図 図3に示す冷却筒とは冷却筒の端部の形状が異なる場合における冷却筒と絶縁チューブとの接続例を示す図 本発明の実施の形態2にかかるガス遮断器の要部を示す図 本発明の実施の形態3にかかるガス遮断器の要部を示す図 本発明の実施の形態4にかかるガス遮断器の要部を示す図 図7に示すガス遮断器が有する絶縁チューブを示す平面図
 以下に、本発明の実施の形態にかかるガス遮断器を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかるガス遮断器1の要部を示す図である。ガス遮断器1は、絶縁ガスが封入される金属製の容器であるタンク2を有する。絶縁ガスは、六フッ化硫黄(SF)ガスなどの、電気的な絶縁性と消弧性とを有するガスである。ガス遮断器1は、タンク2内に設けられた導体5への交流電流の投入と、導体5を流れる交流電流の遮断とを行う。
 ガス遮断器1は、タンク2内にて可動とされた接触子である可動接触子3と、タンク2内にて固定された接触子である固定接触子4とを有する。中心軸Nは、タンク2のうち可動接触子3と固定接触子4とが収容されている筒状部分の中心軸である。図1では、タンク2のうち当該筒状部分の一部における断面を示している。かかる断面は、中心軸Nと導体5の中心線とを含む断面である。
 固定接触子4は、中心軸N上にて固定されている。可動接触子3は、中心軸N上にて、固定接触子4に接触するときの位置と固定接触子4から離されたときの位置とを往復可能とされている。可動接触子3は、導体5である可動側導体に接続されている。固定接触子4には、導体5である固定側導体が接続されている。図1には、導体5のうち固定側導体を示している。ガス遮断器1は、固定接触子4へ可動接触子3を接触させることによって電流を投入し、固定接触子4から可動接触子3を引き離すことによって電流を遮断する。ガス遮断器1は、可動接触子3を動作させる駆動装置を有する。図1では、駆動装置の図示を省略している。
 ガス遮断器1は、固定接触子4の周囲を覆う金属製の冷却筒6を有する。冷却筒6は、円筒形をなしている。冷却筒6の内部では、可動接触子3の側から固定接触子4の側へ噴射された消弧のための絶縁ガスが流動する。冷却筒6の中心軸は、タンク2の中心軸Nに一致している。冷却筒6がなす円筒形の長手方向は、第1の方向である方向Aと平行である。方向Aは、中心軸Nの方向である。図1には、方向Aを表す矢印を示している。
 可動接触子3は、冷却筒6に固定されている。絶縁支持台7は、タンク2の内壁に取り付けられており、冷却筒6を支持する。冷却筒6には、導体5が接続されている。固定接触子4は、冷却筒6を介して導体5に接続されている。
 ガス遮断器1は、冷却筒6の端部に取り付けられた絶縁体である絶縁チューブ8を有する。絶縁チューブ8は、冷却筒6の端部に取り付けられている。かかる端部は、冷却筒6のうち方向Aにおける端部であって、可動接触子3へ向けられた側とは逆側の端部である。絶縁チューブ8の内部には、冷却筒6からの絶縁ガスが流入する。
 絶縁チューブ8は、円筒形をなしている。絶縁チューブ8の中心軸は、第2の方向である方向Bに平行である。方向Bは、中心軸Nに垂直な方向であって、かつ図1に示す断面に含まれる方向である。絶縁チューブ8がなす円筒形の長手方向は、方向Bと平行である。方向Bにおける絶縁チューブ8の長さは、方向Bにおける冷却筒6の長さよりも長い。図1には、方向Bを表す矢印を示している。
 絶縁チューブ8の材料には、ポリテトラフルオロエチレン(PolyTetraFluoroEthylene:PTFE)、繊維強化プラスチック(Fiberglass Reinforced Plastics:FRP)、芳香族ポリアミド系樹脂またはエポキシ樹脂といった材料であって、絶縁性と耐熱性とを備えた材料が使用される。絶縁チューブ8の材料は、絶縁性と耐熱性とを備えた材料であれば良く、ここに挙げた材料以外の材料であっても良い。アダプタ9は、冷却筒6への絶縁チューブ8の固定を補助する部品である。なお、絶縁チューブ8の形状は、円筒形以外の形状であっても良く、適宜変形可能であるものとする。絶縁チューブ8の形状は、楕円筒形であっても良い。
 図2は、図1に示すガス遮断器1のうち絶縁チューブ8を含む部分の拡大図である。絶縁チューブ8のうち方向Bにおける中心には、円形の開口である接続口14が設けられている。接続口14には、冷却筒6の端部に固定されたアダプタ9が通されている。これにより、絶縁チューブ8の内部と冷却筒6の内部とが互いにつなげられた状態で、絶縁チューブ8は冷却筒6に取り付けられている。絶縁チューブ8のうち方向Bにおける2つの端11は、どちらも塞がれている。
 絶縁チューブ8は、冷却筒6から絶縁チューブ8へ流入した絶縁ガスを絶縁チューブ8の外へ排出するための排気口12を有する。排気口12は、絶縁チューブ8のうち接続口14の周囲に設けられている。このように、排気口12は、方向Aにおいて冷却筒6と対向する位置以外の位置に設けられている。絶縁チューブ8に設けられる排気口12の形状と数とは任意であるものとする。
 可動接触子3と固定接触子4との間に発生するアークへ吹き付けられた絶縁ガスは、冷却筒6の内部を方向Aへ進行する。冷却筒6の内部を進行した絶縁ガスは、接続口14を通って絶縁チューブ8の内部へ入る。方向Aにおいて冷却筒6と対向する位置には排気口12が設けられていないため、絶縁チューブ8の内部にて方向Aへ進行した絶縁ガスは、絶縁チューブ8の内壁に当たって絶縁チューブ8の内部にて拡散する。絶縁チューブ8の内部にて方向Aへ進行した絶縁ガスは、絶縁チューブ8の内部にて拡散することによって、絶縁チューブ8の内部に存在していた常温の絶縁ガスと混合される。絶縁チューブ8の内部にて混合された絶縁ガスは、排気口12を通って絶縁チューブ8の外へ流れる。
 高温の絶縁ガスが絶縁チューブ8の内部へ入った場合、高温の絶縁ガスは、絶縁チューブ8の内部の常温の絶縁ガスと混合されることによって冷却されてから、絶縁チューブ8の外へ流れる。これにより、ガス遮断器1は、冷却筒6の端部とタンク2の内壁との間における耐電圧性能の低下による閃絡の発生を抑制できる。
 方向Bにおける絶縁チューブ8の長さを、方向Bにおける冷却筒6の長さよりも長くしたことで、方向Bにおける絶縁チューブ8の長さが方向Bにおける冷却筒6の長さと同じである場合に比べて、絶縁チューブ8の内部を広くすることができる。絶縁チューブ8の内部を広くできることで、絶縁チューブ8に入る高温の絶縁ガスが絶縁チューブ8内のより多くの絶縁ガスと混合することになることから、高温の絶縁ガスの冷却が促進される。これにより、ガス遮断器1は、より高い耐電圧性能を確保することができる。
 方向Bにおける絶縁チューブ8の長さを長くすることによって絶縁チューブ8の内部を広くしたことで、中心軸Nの方向における絶縁チューブ8の長さを長くすることによって絶縁チューブ8の内部を広くする場合に比べて、中心軸Nの方向におけるタンク2の長さを短くすることができる。これにより、ガス遮断器1は、中心軸Nの方向におけるタンク2の大型化を抑制することができる。
 図3は、図1に示すガス遮断器1のうち冷却筒6と絶縁チューブ8との接続部分の拡大図である。冷却筒6の端部には、中心軸Nの側とは逆側に突出されて丸みを持たせた凸部13が形成されている。アダプタ9は、冷却筒6の端部のうち中心軸N側の面に接合される。また、接続口14の面がアダプタ9に接合されることによって、絶縁チューブ8は、凸部13に接触された状態で冷却筒6に取り付けられている。面同士の接合には、接着剤あるいは固着部品であるボルトが使用される。冷却筒6に絶縁チューブ8を取り付ける際、冷却筒6にアダプタ9が取り付けられてから、アダプタ9に絶縁チューブ8が取り付けられる。アダプタ9が絶縁チューブ8よりも先に冷却筒6に取り付けられることによって、冷却筒6の凸部13において絶縁チューブ8を安定して取り付けることができる。
 なお、冷却筒6の端部の形状が図3に示す形状とは異なる形状である場合、絶縁チューブ8は、アダプタ9を用いずに冷却筒6に取り付けられても良い。図4は、図3に示す冷却筒6とは冷却筒6の端部の形状が異なる場合における冷却筒6と絶縁チューブ8との接続例を示す図である。図4に示す冷却筒6の端部において、中心軸Nの側に凸部13が形成されている。冷却筒6の端部のうち中心軸Nの側とは逆側の面に接続口14の面が接合されることによって、絶縁チューブ8は、冷却筒6に取り付けられている。この場合も、面同士の接合には、接着剤あるいは固着部品であるボルトが使用される。これにより、絶縁チューブ8は、アダプタ9を使用せずに、冷却筒6に直接取り付けられている。
 実施の形態1によると、ガス遮断器1は、冷却筒6の端部に絶縁チューブ8を設けるとともに、第2の方向における絶縁チューブ8の長さが第2の方向における冷却筒6の長さよりも長くされている。ガス遮断器1は、絶縁チューブ8の内部を広くできることで、絶縁チューブ8の内部にて高温の絶縁ガスの冷却を促進可能とし、高い耐電圧性能を確保することができる。また、ガス遮断器1は、中心軸Nの方向における絶縁チューブ8の長さを短くできることで、中心軸Nの方向におけるタンク2の大型化を抑制することができる。これにより、ガス遮断器1は、高い耐電圧性能を確保でき、かつタンク2の大型化を抑制することができるという効果を奏する。
実施の形態2.
 図5は、本発明の実施の形態2にかかるガス遮断器1の要部を示す図である。図5には、ガス遮断器1のうち絶縁チューブ20を含む部分を示している。絶縁チューブ20は、冷却筒6から絶縁チューブ20へ流入した絶縁ガスを絶縁チューブ20の外へ排出するための複数の排気口12を有する。実施の形態2では、上記の実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。
 図5には、絶縁チューブ20の側面のうち図5に示す断面よりも奥側の部分に設けられている複数の排気口12を示している。排気口12は、接続口14の周囲にも設けられている。絶縁チューブ20は、排気口12が設けられる態様以外については、実施の形態1にかかる絶縁チューブ8と同様である。絶縁チューブ20に設けられる排気口12の形状と数と位置とは任意であるものとする。
 ガス遮断器1は、絶縁チューブ20に複数の排気口12が設けられることによって、絶縁チューブ20から排出される絶縁ガスの流れを分散させる。絶縁ガスの流れが分散されることによって、タンク2内における絶縁ガスの拡散が促進される。ガス遮断器1は、絶縁チューブ20内にて絶縁ガスを冷却させるとともに、絶縁ガスの拡散を促進可能とすることで、より高い耐電圧性能を確保することができる。
実施の形態3.
 図6は、本発明の実施の形態3にかかるガス遮断器1の要部を示す図である。図6には、ガス遮断器1のうち絶縁チューブ30を含む部分を示している。絶縁チューブ30は、絶縁ガスが流れる方向を調整する方向調整部31を有する。実施の形態3では、上記の実施の形態1および2と同一の構成要素には同一の符号を付し、実施の形態1および2とは異なる構成について主に説明する。
 絶縁チューブ30の2つの端11は開放されている。冷却筒6および絶縁チューブ30において方向Aへ進行した絶縁ガスは、方向Bへ向けて開放されている端11を通って絶縁チューブ30の外へ流れる。
 方向調整部31は、絶縁チューブ30の内壁に取り付けられている。方向調整部31は、中心軸Nに対して傾けられている2つの面を有する。方向Aへ進行した絶縁ガスは、かかる面に当たることによって端11へ向かう。このように、方向調整部31は、絶縁チューブ30へ流入した絶縁ガスが端11へ向かうように、絶縁ガスが流れる方向を調整する。絶縁チューブ30は、排気口12の形成に代えて端11が開放されている点および方向調整部31が設けられている点以外については、実施の形態1にかかる絶縁チューブ8と同様である。なお、方向調整部31は、絶縁チューブ30とは別の部品であるものに限られない。方向調整部31は、絶縁チューブ30の筒形の一部を変形させることによって構成されたものでも良い。この場合も、絶縁チューブ30は、絶縁ガスが流れる方向を調整することができる。
 ガス遮断器1は、絶縁チューブ30に方向調整部31が設けられることによって、絶縁チューブ30の内部における絶縁ガスの進行方向の変更を促進させる。絶縁チューブ30の内部では、絶縁ガスの進行方向が変更されることによって絶縁ガスの拡散が促進される。絶縁チューブ8の内部にて拡散された絶縁ガスは、絶縁チューブ8の内部の絶縁ガスと混合されて、絶縁チューブ8の外へ流れる。これにより、ガス遮断器1は、絶縁チューブ30の内部における絶縁ガスの冷却を促進可能とし、より高い耐電圧性能を確保することができる。
実施の形態4.
 図7は、本発明の実施の形態4にかかるガス遮断器1の要部を示す図である。図7には、ガス遮断器1のうち絶縁チューブ40を含む部分を示している。実施の形態4では、絶縁チューブ40の向きが、実施の形態1から3の絶縁チューブ8,20,30とは90度異なっている。実施の形態4では、上記の実施の形態1から3と同一の構成要素には同一の符号を付し、実施の形態1から3とは異なる構成について主に説明する。
 図8は、図7に示すガス遮断器1が有する絶縁チューブ40を示す平面図である。図8には、絶縁チューブ40とタンク2の蓋部分とを示している。また、冷却筒6の断面を破線により示している。
 絶縁チューブ40は、円筒形をなしている。絶縁チューブ40の中心軸は、方向Cに平行である。方向Cは、方向Aと方向Bとに垂直な方向である。絶縁チューブ40がなす円筒形の長手方向は、方向Cと平行である。実施の形態4では、方向Bに代えて、方向Cが第2の方向であるものとする。図8には、方向Cを表す矢印を示している。
 絶縁チューブ40の2つの端11は開放されている。冷却筒6および絶縁チューブ40において第1の方向へ進行した絶縁ガスは、方向Cへ向けて開放されている端11を通って絶縁チューブ40の外へ流れる。
 方向Cにおける絶縁チューブ40の長さは、方向Cにおける冷却筒6の長さよりも長い。方向Cにおける絶縁チューブ40の長さを、方向Cにおける冷却筒6の長さよりも長くしたことで、方向Cにおける絶縁チューブ40の長さが方向Cにおける冷却筒6の長さと同じである場合に比べて、絶縁チューブ40の内部を広くすることができる。絶縁チューブ40の内部を広くできることで、絶縁チューブ40に入る高温の絶縁ガスが絶縁チューブ40内のより多くの絶縁ガスと混合することになることから、高温の絶縁ガスの冷却が促進される。これにより、ガス遮断器1は、より高い耐電圧性能を確保することができる。
 方向Cにおける絶縁チューブ40の長さを長くすることによって絶縁チューブ40の内部を広くしたことで、中心軸Nの方向における絶縁チューブ40の長さを長くすることによって絶縁チューブ40の内部を広くする場合に比べて、中心軸Nの方向におけるタンク2の長さを短くすることができる。これにより、ガス遮断器1は、中心軸Nの方向におけるタンク2の大型化を抑制することができる。
 絶縁チューブ40の形状は、実施の形態1から3の絶縁チューブ8,20,30と同様に、円筒形以外の形状であっても良い。絶縁チューブ40は、実施の形態1および2の絶縁チューブ8,20と同様に、端11が塞がれるとともに排気口12を有するものであっても良い。絶縁チューブ40には、実施の形態3の絶縁チューブ30と同様に方向調整部31を有しても良い。
 ガス遮断器1は、絶縁チューブ40の向きを実施の形態1から3の絶縁チューブ8,20,30とは90度異ならせたことによって、絶縁ガスが流れる方向を実施の形態1から3とは異ならせている。絶縁チューブ40から方向Cである水平方向へ絶縁ガスを流出させることによって、方向Bである上下方向へ絶縁ガスを流出させる場合よりも絶縁チューブ40からタンク2内へ流れる絶縁ガスが中心軸Nに対称に流れ易くなる。ガス遮断器1は、絶縁チューブ40の向きに応じて、絶縁ガスが流れる方向を任意に設定することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 ガス遮断器、2 タンク、3 可動接触子、4 固定接触子、5 導体、6 冷却筒、7 絶縁支持台、8,20,30,40 絶縁チューブ、9 アダプタ、11 端、12 排気口、13 凸部、14 接続口、31 方向調整部、N 中心軸。

Claims (5)

  1.  絶縁ガスが封入されるタンクと、
     前記タンクの中心軸上にて固定されている固定接触子と、
     前記中心軸上にて、前記固定接触子に接触するときの位置と前記固定接触子から離されたときの位置とを往復可能な可動接触子と、
     前記固定接触子の周囲を覆い、消弧のための絶縁ガスが流動可能な冷却筒と、
     前記冷却筒のうち前記中心軸に平行な第1の方向における端部に取り付けられており、前記冷却筒からの絶縁ガスが内部へ流入可能な絶縁体と、を備え、
     前記中心軸に垂直な第2の方向における前記絶縁体の長さが前記第2の方向における前記冷却筒の長さよりも長いことを特徴とするガス遮断器。
  2.  前記絶縁体は、前記冷却筒から前記絶縁体へ流入した絶縁ガスを前記絶縁体の外へ排出するための排気口を有し、
     前記排気口は、前記第1の方向において前記冷却筒と対向する位置以外の位置に設けられていることを特徴とする請求項1に記載のガス遮断器。
  3.  前記絶縁体は、前記冷却筒から前記絶縁体へ流入した絶縁ガスを前記絶縁体の外へ排出するための複数の排気口を有することを特徴とする請求項1に記載のガス遮断器。
  4.  前記絶縁体は、絶縁ガスが流れる方向を調整する方向調整部を有することを特徴とする請求項1に記載のガス遮断器。
  5.  前記絶縁体は、中心軸が前記第2の方向に平行である筒形をなすことを特徴とする請求項1に記載のガス遮断器。
PCT/JP2019/003001 2019-01-29 2019-01-29 ガス遮断器 WO2020157833A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/003001 WO2020157833A1 (ja) 2019-01-29 2019-01-29 ガス遮断器
JP2019528165A JPWO2020157833A1 (ja) 2019-01-29 2019-01-29 ガス遮断器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003001 WO2020157833A1 (ja) 2019-01-29 2019-01-29 ガス遮断器

Publications (1)

Publication Number Publication Date
WO2020157833A1 true WO2020157833A1 (ja) 2020-08-06

Family

ID=71842414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003001 WO2020157833A1 (ja) 2019-01-29 2019-01-29 ガス遮断器

Country Status (2)

Country Link
JP (1) JPWO2020157833A1 (ja)
WO (1) WO2020157833A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127542U (ja) * 1985-01-30 1986-08-11
JP2002298709A (ja) * 2001-03-29 2002-10-11 Toshiba Corp パッファ形ガス遮断器
JP2003217411A (ja) * 2002-01-18 2003-07-31 Toshiba Corp ガス遮断器
JP2008502098A (ja) * 2004-06-07 2008-01-24 アーベーベー・テヒノロギー・アーゲー サーキット・ブレーカ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127542U (ja) * 1985-01-30 1986-08-11
JP2002298709A (ja) * 2001-03-29 2002-10-11 Toshiba Corp パッファ形ガス遮断器
JP2003217411A (ja) * 2002-01-18 2003-07-31 Toshiba Corp ガス遮断器
JP2008502098A (ja) * 2004-06-07 2008-01-24 アーベーベー・テヒノロギー・アーゲー サーキット・ブレーカ

Also Published As

Publication number Publication date
JPWO2020157833A1 (ja) 2021-02-18

Similar Documents

Publication Publication Date Title
TWI267245B (en) Gas insulated switchgear
US8502101B2 (en) Circuit breaker
WO2015008515A1 (ja) ガス遮断器
WO2020157833A1 (ja) ガス遮断器
US4080521A (en) Quenching contact arrangement for a compressed-gas circuit breaker
US9384924B2 (en) Gas circuit breaker
BR112013033680B1 (pt) Disjuntor que pode ser conectado em um circuito elétrico e mecanismo de distribuição e sistema de transmissão de força elétrica
BR112019020565A2 (pt) comutador de bocal duplo, e, método para comutar corrente contínua e/ou alternada em tecnologia de alta tensão
CN105359247B (zh) 具有隔离元件的保险装置
US3401243A (en) Circuit interrupter having dual-bore arc extinguishing means
JP6244262B2 (ja) ガス遮断器
WO2018066119A1 (ja) ガス遮断器
US20130161290A1 (en) Gas circuit breaker
JP2015011911A (ja) ガス遮断器
JP2016201170A (ja) ガス遮断器
US9012800B2 (en) Gas circuit breaker
CN110392917A (zh) 电开关设备
US9330866B2 (en) Electrical switching device
US3071669A (en) Circuit interrupters
JP6277083B2 (ja) ガス遮断器
US11289291B2 (en) Gas circuit breaker
US20210074496A1 (en) Gas Circuit Breaker
US20210383992A1 (en) Interrupter unit for a circuit breaker
JP6736345B2 (ja) ガス遮断器
WO2024121374A1 (en) Interrupter unit for gas-insulated high or medium voltage device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019528165

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913879

Country of ref document: EP

Kind code of ref document: A1