WO2020156937A1 - Isocyanatterminierte präpolymere für textilbeschichtungen - Google Patents

Isocyanatterminierte präpolymere für textilbeschichtungen Download PDF

Info

Publication number
WO2020156937A1
WO2020156937A1 PCT/EP2020/051716 EP2020051716W WO2020156937A1 WO 2020156937 A1 WO2020156937 A1 WO 2020156937A1 EP 2020051716 W EP2020051716 W EP 2020051716W WO 2020156937 A1 WO2020156937 A1 WO 2020156937A1
Authority
WO
WIPO (PCT)
Prior art keywords
isocyanate
alkyl
weight
coating composition
coating
Prior art date
Application number
PCT/EP2020/051716
Other languages
English (en)
French (fr)
Inventor
Jürgen Köcher
Rafael LANGER
Original Assignee
Covestro Intellectual Property Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Intellectual Property Gmbh & Co. Kg filed Critical Covestro Intellectual Property Gmbh & Co. Kg
Publication of WO2020156937A1 publication Critical patent/WO2020156937A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/161Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/092Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/166Catalysts not provided for in the groups C08G18/18 - C08G18/26
    • C08G18/168Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • C08G18/2825Alkanols, cycloalkanols or arylalkanols including terpenealcohols having at least 6 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4808Mixtures of two or more polyetherdiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes

Definitions

  • the present invention relates to low-solvent coating compositions which can be crosslinked to form isocyanurate groups. These are particularly well suited for the coating of textiles.
  • Solvent-free or low-solvent coating compositions for textiles based on NCO prepolymers are generally known and are described, for example, in DE 2 902 090 A1.
  • the coating systems comprise 2 constituents, a ketoxime-blocked polyisocyanate and a compound which has two amino groups which react with one another at temperatures above 120 ° C. At these temperatures, the ketoxime groups are split off and the NCO groups are released and are available for reaction with the amine component.
  • the systems described also have good storage stability at ambient temperatures. Elastic films having acceptable mechanical stability can be obtained from the coating compositions. However, ketoximes, such as butanone oxime, are always released during film formation.
  • a fundamental problem with systems with blocked isocyanates is the release of such blocking agents during the curing process. Any blocking agent may remain in the coating in residues after curing. Furthermore, part of the blocking agent is released into the exhaust air. Low molecular weight blocking agents all have a certain toxic potential, which could lead to health hazards if these coated textiles come into contact with the end user. In addition, a special exhaust air treatment is required for the manufacturing process.
  • coating compositions which are stable in storage at ambient temperature and do not release blocking agents such as ketoximes or other compounds when crosslinked or fully reacted and form films.
  • These coating compositions should also be cured at elevated temperature within a few minutes to give tack-free films.
  • the coatings obtained should have the advantageous properties of the systems known in the prior art.
  • blocking agent-free systems can be constructed on the basis of two-component polyurethane systems. These systems consist of an isocyanate and a polyol component, which can usually be cured with the help of catalysts at high temperatures to form elastic films.
  • the object of the present invention was therefore to provide suitable, low-solvent and blocking agent-free one-component coating compositions for textile coating which are stable in storage at ambient temperature and cure quickly in the coating process at temperatures above 100 ° C. to form tack-free films.
  • the films obtained from corresponding coating compositions should have good elastic and mechanical properties.
  • Crosslinking reactions are known in which isocyanate groups react with other isocyanate groups in the absence of isocyanate-reactive groups. This creates, for example, isocyanurate, uretdione or biuret groups. Such reactions have already been successfully used to build up plastics in general (WO 2016/170059) and coatings in particular (WO 2018/073303).
  • the present invention relates in a first embodiment to a coating composition with a molar ratio of isocyanate groups to isocyanate-reactive groups of at least 3: 1 containing a) at least 70% based on the total weight of the
  • Coating composition at least one isocyanate-terminated prepolymer A, which is characterized by an NCO content of 2% by weight to 4% by weight; b) at least one trimerization catalyst B; and c) a solvent content of at most 5% by weight based on the total weight of the coating composition.
  • the coating composition according to the invention contains components A and B.
  • at least one additive C can also be included.
  • the proportion of the at least one prepolymer A based on the total amount of components A, B and C is at least 70% by weight, preferably at least 80% by weight and more preferably at least 90% by weight.
  • the coating composition according to the invention is characterized in that it has a low content of organic solvents. Based on the total mass of the coating composition according to the invention, this is at most 5.0% by weight, preferably at most 1.0% by weight and more preferably at most 0.5% by weight.
  • the molar ratio of isocyanate groups to isocyanate-reactive groups in the coating composition according to the invention is at least 3: 1, preferably at least 5: 1 and more preferably at least 10: 1.
  • "Isocyanate-reactive groups" in the sense of the present patent application are hydroxyl, amino and Thiol groups.
  • the coating composition according to the invention can also contain further compounds with free isocyanate groups, for example monomeric or oligomeric polyisocyanates.
  • these deteriorate the mechanical properties of the coating, so that the proportion by weight of such compounds is limited to at most 5% by weight, preferably at most 2% by weight, based on the weight of component A.
  • Component A of the coating composition according to the invention is an isocyanate-terminated prepolymer or a mixture of at least two isocyanate-terminated prepolymers.
  • Such prepolymers are produced by reacting an isocyanate component Al and an isocyanate-reactive component A2.
  • the term “isocyanate component” denotes the entirety of all compounds with isocyanate groups in the reaction mixture that is used to prepare prepolymer A.
  • the term “isocyanate-reactive component” denotes the totality of all compounds with isocyanate-reactive groups in the reaction mixture that is used to prepare prepolymer A.
  • the isocyanate-reactive component A2 preferably contains at least one polyol. Both components must have an average functionality of at least 1.5. When reacting both components, a molar ratio of isocyanate groups to isocyanate-reactive groups of 2.2: 1 to 1.4: 1 must be observed.
  • the isocyanate-terminated prepolymer A preferably has an average isocyanate functionality of at least 1.8 isocyanate groups per molecule. More preferably, it has an average isocyanate functionality between 1.8 and 2.2 isocyanate groups per molecule. In particular, the average isocyanate functionality per molecule is 2.0. If the average isocyanate functionality is too low, the coatings produced with it no longer cure completely and remain sticky. If the isocyanate functionalities are too high, the coatings become brittle.
  • the isocyanate content of prepolymer A is between 1.5% and 5.0% by weight, preferably between 1.5% and 4.5% by weight, more preferably between 1.8% by weight. % and 4.5% by weight. If the isocyanate content is below this range, the coatings no longer cure completely and remain tacky. If the isocyanate content is too high, the coatings become brittle.
  • Isocyanate-terminated prepolymers A which can be used according to the invention have a number-average molecular weight, determined by gel permeation chromatography in tetrahydrofuran at 23 ° C. according to DIN 55672-1: 2016-03, between 1,500 g / mol and 6,500 g / mol, preferably between 1,700 g / mol and 5,500 g / mol and more preferably between 2,500 g / mol and 4,500 g / mol.
  • Prepolymers A with higher molecular weights generally have too high a viscosity. If the molecular weight is below the lower limits mentioned, the coatings produced with the coating composition do not have sufficient flexibility.
  • monomeric and oligomeric isocyanates are suitable as constituents of the isocyanate component Al for building up the prepolymers A which can be used according to the invention.
  • These can be isocyanates with aromatically bound isocyanate groups or those with araliphatic bound isocyanate groups, those with cycloaliphatically bound isocyanate groups or those with aliphatically bound isocyanate groups.
  • Polyisocyanates with araliphatically bonded isocyanate groups which are particularly suitable according to the invention are 1,3- and l-bis-bis-fisocyanatomethyl jbenzene (xylylene diisocyanate; XDI), 1,3-and 1,4-bis (l-isocyanato-l-methyethyl) benzene ( TMXDI) and bis (4- (l-isocyanato-l-methylethyl) phenyl) carbonate.
  • XDI xylylene diisocyanate
  • TMXDI 1,3-and 1,4-bis (l-isocyanato-l-methyethyl) benzene
  • TMXDI 1,4-bis (l-isocyanato-l-methylethyl) phenyl) carbonate.
  • Polyisocyanates with cycloaliphatically bonded isocyanate groups which are particularly suitable according to the invention are 1,3- and 1,4-diisocyanatocyclohexane, 1,4-diisocyanato-3,3,5-trimethylcyclohexane, 1,3-diisocyanato-2-methylcyclohexane, 1,3-diisocyanato- 4-methylcyclohexane, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane, isophorone diisocyanate; (IPDI), 1-isocyanato-l-methyl-4 (3) -isocyanatomethylcyclohexane, 2,4'- and 4,4'-
  • Diisocyanatodicyclohexylmethane H12MDI
  • 1,3- and 1,4-bis isocyanatomethyl) cyclohexane
  • bis- (isocyanatomethyl) norbornane NBDI
  • 4,4'-diisocyanato-3,3'-dimethyldicyclohexylmethane 4,4'- Diisocyanato-3,3 ', 5,5'-tetramethyl-dicyclohexylmethane
  • isocyanate with aliphatically bonded isocyanate groups all the isocyanate groups are bonded to a carbon atom which is part of an open carbon chain. This can be unsaturated in one or more places.
  • the aliphatically bound isocyanate group or - in the case of polyisocyanates - the aliphatically bound isocyanate groups are preferably bonded to the terminal carbon atoms of the carbon chain.
  • polyisocyanates with aliphatically bound isocyanate groups are 1,4-diisocyanatobutane (BDI), 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), 2-methyl-1,5-diisocyanatopentane, 1,5- Diisocyanato-2,2-dimethylpentane, 2,2,4- or 2,4,4-trimethyl-1,6-diisocyanatohexane and 1,10-diisocyanatodecane.
  • BDI 1,4-diisocyanatobutane
  • PDI 1,5-diisocyanatopentane
  • HDI 1,6-diisocyanatohexane
  • 2-methyl-1,5-diisocyanatopentane 1,5- Diisocyanato-2,2-dimethylpentane
  • An isocyanate is more preferably selected from the group consisting of 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate and 4,4'-diphenylmethane diisocyanate used. It is more preferred to use 2,4-tolylene diisocyanate and 7 or 2,6-tolylene diisocyanate. 2,4-Toluene diisocyanate is particularly preferably used.
  • the proportion of the isocyanates with aromatically bound isocyanate groups mentioned in the preceding section in the total amount of the isocyanate component Al is at least 80% by weight, preferably at least 90% by weight and more preferably at least 95% by weight.
  • the isocyanate-reactive component A2 used to construct the prepolymer A preferably contains at least one polyol. Mixtures of different polyols can also be present.
  • the isocyanate-reactive component A2 preferably consists of at least 80% by weight, more preferably at least 90% by weight and most preferably at least 95% by weight of at least one polyol selected from the group consisting of polytetrahydroxyfurans, propylene oxide-based polyethers and ethylene oxide-based Polyethers and polycarbonate diols liquid at 23 ° C.
  • the proportion of compounds with isocyanate-reactive groups which are not hydroxyl groups in the total amount of isocyanate-reactive component A2 is preferably at most 20% by weight, more preferably at most 10% by weight and most preferably at most 5% by weight.
  • the isocyanate-reactive component A2 preferably consists of at least 80% by weight, more preferably at least 90% by weight and most preferably at least 95% by weight of polytetrahydroxyfurans. These are preferably difunctional saturated polyether polyols which are obtained by polymerizing tetrahydrofuran. Polytetrahydroxyfurans which can be used according to the invention preferably have a number average molecular weight in the range from 250 to 2500 g / mol.
  • the isocyanate-reactive component A2 can be introduced and then the polyisocyanate component Al can be added or the reverse procedure can also be used.
  • the reaction is preferably carried out at temperatures in a range from 23 to 120 ° C., or preferably in a range from 50 to 100 ° C.
  • the temperature control can be varied in this range before and after the addition of the individual components Al and A2.
  • the implementation can be carried out with the addition of common solvents or in bulk, but preferably in bulk. To set a required processing viscosity, solvents can be added in small amounts after the reaction.
  • the conversion to the at least one prepolymer A can take place without a catalyst, but also in the presence of catalysts which accelerate the formation of the urethanes from isocyanates and polyol components.
  • customary catalysts known from polyurethane chemistry can be used to accelerate the reaction.
  • Examples include tert. Amines such as B. triethylamine, tributylamine, dimethylbenzylamine, diethylbenzylamine, pyridine, methylpyridine, dicyclohexylmethylamine, dimethylcyclohexylamine, N, N, N ', N'-tetramethyldiaminodiethyl ether, bis (dimethylaminopropyl) urea, N-methyl or N-ethylmorpholine N-cocomorpholine, N-cyclohexylmorpholine, N, N, N ', N' -Tetra methylethylenediamine, N, N, N ', N'-tetramethyl-1,3-butanediamine, N, N, N', N '-Tetramethyl-l, 6-hexanediamine, pentamethyldiethylenetriamine, N-methylpipe
  • B triethanolamine, triisopropanolamine, N-methyl- and N-ethyl-diethanolamine, dimethylaminoethanol, 2- (N, N-dimethylaminoethoxy) ethanol, N, N ', N "-Tris- (dialkylaminoalkyl) hexahydrotriazines, for example N, N ', N "-Tris- (dimethylaminopropyl) -s-hexahydrotriazine and / or bis (dimethylaminoethyl) ether; Metal salts such as e.g. B.
  • iron (II) chloride iron (III) chloride, bismuth (III) - bismuth (III ) -2-ethylhexanoate, bismuth (III) octoate, bismuth (III) neodecanoate, zinc chloride, zinc 2-ethylcaproate, tin (II) octoate, tin (II) ethylcaproate, tin (II) palmitate, dibutyltin (IV) dilaurate (DBTL), dibutyltin (IV) dichloride or lead octoate; Amidines such as B.
  • Tetraalkylammonium hydroxides such as. B. tetramethylammonium hydroxide
  • Alkali hydroxides such as. As sodium hydroxide and alkali alcoholates, such as. B. sodium methylate and potassium isopropylate, and alkali metal salts of long-chain fatty acids with 10 to 20 carbon atoms and optionally pendant OH groups.
  • Preferred catalysts to be used are tertiary amines, bismuth and tin compounds of the type mentioned.
  • the catalysts mentioned by way of example can be used individually or in the form of any mixtures with one another in the preparation of the coating composition according to the invention and are preferably in amounts of from 0.01 to 5.0% by weight, preferably 0.1 to 2% by weight, calculated as the total amount of catalysts used, based on the total amount of the starting compounds used, for use.
  • catalyst B alkali metal or alkaline earth metal salts of aliphatic, cycloaliphatic or aromatic mono- and polycarboxylic acids with 2 to 20 C atoms, such as those e.g. are described in EP-A 0 100 129 or DE-A 3 219 608. Potassium or sodium salts are preferred.
  • the carboxylic acids are preferably linear or branched alkane carboxylic acids with up to 10 carbon atoms, e.g. Acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, pelargonic acid, capric acid and undecylic acid. Potassium acetate is very particularly preferred.
  • Said alkali or alkaline earth metal salts are preferably used in combination with complexing agents.
  • Preferred complexing agents are crown ethers, diethylene glycol and polyethylene glycols with a number average molecular weight of 200 to 800 g / mol.
  • a preferred crown ether is 18-crown-6.
  • Mixtures of the aforementioned complexing agents can also be used, particularly preferably a mixture of diethylene glycol and 18-crown-6. The latter mixture is particularly preferably combined with potassium acetate.
  • R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5 alkyl, unbranched C5 alkyl, branched C6 alkyl, unbranched C6 alkyl, branched C7 alkyl and unbranched C7 alkyl;
  • A is selected from the group consisting of 0, S and NR 3 , wherein R 3 is selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl and isobutyl; and
  • B is selected independently of A from the group consisting of OH, SH NHR 4 and NH, where R 4 is selected from the group consisting of methyl, ethyl and propyl
  • A is NR 3 , where R 3 is selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl and isobutyl.
  • R 3 is preferably methyl or ethyl.
  • R 3 is particularly preferably methyl.
  • B is OH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - alkyl, unbranched C6 alkyl, branched C7 alkyl and unbranched C7 alkyl.
  • R 1 and R 2 are preferably independently of one another methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • B SH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5 alkyl, unbranched C5 alkyl, branched C6 - alkyl, unbranched C6 alkyl, branched C7 alkyl and unbranched C7 alkyl.
  • R 1 and R 2 are preferably independently of one another methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • BN HR 4 and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 alkyl, unbranched C6 alkyl, branched C7 alkyl and unbranched C7 alkyl.
  • R 1 and R 2 are preferably independently of one another methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • R4 is selected from the group consisting of methyl, ethyl and propyl.
  • R 4 is preferably methyl or ethyl.
  • R 4 is particularly preferably methyl.
  • BNH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6- Alkyl, straight-chain C6-alkyl, branched C7-alkyl and straight-chain C7-alkyl.
  • R 1 and R 2 are preferably independently of one another methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • A is oxygen
  • B is OH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - Alkyl, straight-chain C6-alkyl, branched C7-alkyl and straight-chain C7-alkyl.
  • R 1 and R 2 are preferably independently of one another methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • B SH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5 alkyl, unbranched C5 alkyl, branched C6 - alkyl, unbranched C6 alkyl, branched C7 alkyl and unbranched C7 alkyl.
  • R 1 and R 2 are preferably independently of one another methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • BN HR 4 and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 alkyl, unbranched C6 alkyl, branched C7 alkyl and unbranched C7 alkyl.
  • R 1 and R 2 are preferably independently of one another methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • R 4 is selected from the group consisting of methyl, ethyl and propyl.
  • R 4 is preferably methyl or ethyl.
  • R 4 is particularly preferably methyl.
  • BNH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6- Alkyl, straight-chain C6-alkyl, branched C7-alkyl and straight-chain C7-alkyl.
  • R 1 and R 2 are preferably independently of one another methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • A is sulfur
  • B is OH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - alkyl, unbranched C6 alkyl, branched C7 alkyl and unbranched C7 alkyl.
  • R 1 and R 2 are preferably independently of one another methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • B SH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5 alkyl, unbranched C5 alkyl, branched C6 - alkyl, unbranched C6 alkyl, branched C7 alkyl and unbranched C7 alkyl.
  • Prefers R 1 and R 2 are independently methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • BN HR 4 and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 alkyl, unbranched C6 alkyl, branched C7 alkyl and unbranched C7 alkyl.
  • R 1 and R 2 are preferably independently of one another methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • R 4 is selected from the group consisting of methyl, ethyl and propyl.
  • R 4 is preferably methyl or ethyl.
  • R 4 is particularly preferably methyl.
  • BNH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6- Alkyl, straight-chain C6-alkyl, branched C7-alkyl and straight-chain C7-alkyl.
  • R 1 and R 2 are preferably independently of one another methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • Adducts of a compound of the formula (I) and a compound with at least one isocyanate group are also suitable.
  • adduct means urethane, thiourethane and urea adducts of a compound of the formula (I) with a compound having at least one isocyanate group.
  • a urethane adduct is particularly preferred.
  • the adducts according to the invention result from an isocyanate having the functional group B of the compound defined in formula (I) reacts, when B is a flydroxyl group, a urethane adduct is formed, when B is a thiol group, a thiourethane adduct is formed, and when B is NH or N HR 4 , a urea adduct is formed.
  • the coating compositions according to the invention can contain additives C.
  • the proportion by weight of additives C in the coating compositions according to the invention is preferably 0.1% by weight to 20% by weight, more preferably 0.1% by weight to 15% by weight, even more preferably 1% by weight to 10% by weight, based on the total weight of components A, B and C.
  • Suitable additives C are pigments, UV stabilizers, antioxidants, fillers, blowing agents, matting agents, grip aids, anti-foaming agents, light stabilizers, plasticizers and flow control agents.
  • flame retardants D can also be added for certain applications.
  • the flame retardants can also be used in an amount of 0.1 wt% to 20 wt%, more preferably 0.1 wt% to 15 wt%, still more preferably 1 wt% to 10 wt%. -% are added.
  • the proportions of flame retardants D relate to the total weight of components A, B, C and D. This means that, in addition to the additives C mentioned above, significant proportions of flame retardants can be used.
  • the present invention relates to the use of the coating composition according to the invention as defined above in this application for coating a substrate, in particular a fiber or a fabric.
  • the coating compositions according to the invention can be applied with the usual application or coating devices, for example a doctor blade, e.g. B. a doctor blade, with rollers or other devices on the substrate. Printing or spraying is also possible. Application is preferably by doctor blade. The application can be done on one or both sides. The application can take place directly or via a transfer coating, preferably via transfer coating.
  • a doctor blade e.g. B. a doctor blade
  • Printing or spraying is also possible.
  • Application is preferably by doctor blade.
  • the application can be done on one or both sides.
  • the application can take place directly or via a transfer coating, preferably via transfer coating.
  • amounts of 100 to 1000 g / m 2 are preferably applied to the substrate.
  • Suitable substrates are preferably textile materials, sheet substrates made of metal, glass, ceramic, concrete, natural stone, leather, natural fibers, and plastics, in particular PVC, polyolefins and polyurethane. Said carrier materials can exist as three-dimensional structures.
  • the substrate is particularly preferably a textile material or leather, very particularly preferably a textile material.
  • the substrate is a textile material or leather, particularly preferably a textile material
  • Textile materials within the meaning of the present invention are, for example, fabrics, knitted fabrics, bound and unbound nonwovens.
  • the textile materials can be constructed from synthetic, natural fibers and / or mixtures thereof. Basically, textiles made of any fibers are suitable for the method according to the invention.
  • the substrates can be treated or refined in all customary ways, preferably by coating or gluing the fibers to one another or to substrates.
  • the coated textile substrates can be surface-treated before, during or after the application of the coating compositions according to the invention, e.g. B. by pre-coating, grinding, velours, roughing and / or tumbling.
  • a multilayer structure is often used in textile coating.
  • the coating then preferably consists of at least two layers, which are generally also referred to as lines.
  • the top layer facing the air is referred to as the top coat.
  • the lowermost side facing the substrate, which connects the top coat or other layers of the multilayer structure to the textile, is also referred to as the adhesive coat.
  • One or more layers, which are generally referred to as intermediate lines, can be applied in between.
  • the processes according to the invention can be used to produce top coats, intermediate coats and also adhesive coats in conjunction with textile materials.
  • the process for producing intermediate strokes is very particularly suitable.
  • the intermediate lines can be in compact or foamed form. Blowing agents can be used to produce foamed intermediate layers. Suitable blowing agents for this purpose are known from the prior art.
  • thick layers can be produced with only one or very few lines.
  • the coating composition applied to the substrate is cured at a suitable temperature. These are temperatures between 70 ° C and 300 ° C, preferably between 80 ° C and 280 ° C, more preferably between 100 ° C and 280 ° C. Insofar as the substrate to be coated is sensitive to heat, predetermined temperature upper limits must be observed during curing due to the stability of the substrate, so that the aforementioned upper temperature limits cannot be used with every substrate.
  • the coating composition can cure quickly.
  • the curing is preferably carried out in a period between 5 minutes and 30 minutes, more preferably between 10 minutes and 15 minutes.
  • curing temperatures in the range between 100 ° C. and 280 ° C. are preferably used.
  • curing is considered complete when at least 90% of the isocyanate groups present in the coating composition according to the invention have been used up when applied to the substrate.
  • the amount of residual isocyanate groups is preferably measured by means of ATR spectroscopy using the peak maximum of the isocyanate absorption peak against the starting composition A normalized against the CH vibrations at 2700 to 3100 cm 1 .
  • the coating composition according to the invention is cured predominantly by crosslinking the isocyanate groups of the prepolymer with one another.
  • Uretdione, isocyanurate, iminooxadiazinedione and / or oxadiazinetrione structures are preferably formed here.
  • Coating composition when applied to the substrate isocyanate groups react to isocyanurate groups.
  • the present invention relates to a method for producing a coating comprising the steps a) applying the coating composition according to the invention to a substrate; and b) curing the coating composition at a temperature between 70 ° C and 300 ° C.
  • the invention also relates to a coated substrate obtainable by the process according to the invention.
  • the invention also relates to composite structures containing the cured coating composition according to the invention and at least one substrate.
  • the coating compositions according to the invention or the layers or bonds produced from them are preferably suitable for coating or producing substrates selected from the group consisting of outer clothing, synthetic leather articles, such as shoes, furniture covering materials, automotive interior materials and sporting goods. This list is only to be understood as an example and not as a limitation.
  • the coatings produced according to the invention have advantageous mechanical properties. Therefore, the use of the coating compositions according to the invention for the production of elastic coatings or elastic films on substrates is also the subject of the invention.
  • the coatings obtainable from the coating composition according to the invention are characterized by advantageous mechanical properties.
  • the elongation at break of the coating is preferably at least 300%, more preferably at least 500%.
  • the breaking stress of the coating is preferably between 7 mPa and 10 mPa.
  • the 100% modulus is preferably between 1 mPa and 2 mPa.
  • the NCO contents were determined titrimetrically in accordance with DIN EN ISO 11909.
  • the number average molecular weight Mn was determined by gel permeation chromatography (GPC) in tetrahydrofuran at 23 ° C.
  • GPC gel permeation chromatography
  • the procedure was according to DIN 55672-1: "Gel permeation chromatography, part 1 - tetrahydrofuran as eluent" (SECurity GPC system from PSS Polymer Service, flow rate 1.0 ml / min; columns: 2xPSS SDV linear M, 8x300 mm, 5 pm ; RID detector). Polystyrene samples of known molar mass were used for calibration. The calculation of the number average molecular weight was carried out using software. Baseline points and evaluation limits were defined in accordance with DIN 55672 Part 1.
  • Polyol 3 Desmophen C XP 2716, linear aliphatic polycarbonate diol with terminal OH groups with a molecular weight of about 650 g / mol
  • Polyol 4 Desmophen 2060 BD, linear propylene ether glycol with a molecular weight of about 2000 g / mol
  • Polyisocyanate 1 pure 2,4-tolylene diisocyanate (Desmodur T 100, Covestro AG, Germany)
  • Polyisocyanate 2 Desmodur 44 M, monomeric diphenylmethane-4,4'-diisocyanate 2-ethylhexanol: Brenntag GmbH, Germany
  • 1,4-butanediol Acros Organics, Geel, Belgium
  • 1,2-butanediol, 2,3-butanediol Sigma Aldrich, Germany
  • l-methoxy-2-propyl acetate (MPA) anhydrous Azelis GmbH
  • Vulkanox BHT Sigma Aldrich, Germany
  • Triphenylphosphine Sigma Aldrich, Germany
  • the mixtures of PolyTHF used were stirred at a pressure of 10 mbar at 100 ° C. for 1 hour in order to remove excess water from the mixture. The material was then cooled to 50 ° C. If 2-ethylhexanol, 1,4-butanediol or mixtures of these two products were still used in the synthesis, these materials and the two stabilizers Vulkanox BHT and triphenylyphosphine were added to the polyTHF mixture at 50 ° C. with stirring and for 10 minutes at 50 ° C stirred. At 50 ° C the required amount of Desmodur T 100 was added within about 1 minute. An exothermic reaction was observed with a temperature rise to about 80 ° C. The reaction mixture was further stirred for about 2 hours until the mixture had cooled back to 50 ° C. The calculated NCO content was reached after this time.
  • Example 1 (example according to the invention)
  • Example 2 (example according to the invention)
  • Example 5 (example according to the invention)
  • NCO content of the end product 3.2%
  • Viscosity of the end product 87400 mPas polymer content of the end product 90% number average molecular weight M n according to GPC: 2617 g / mol
  • NCO content of the end product 3.9% viscosity of the end product 166000 mPas polymer content of the end product: 100% number average molecular weight M n according to GPC: 1701 g / mol
  • NCO content of the end product 3.0% viscosity of the end product 40,000 mPas polymer content of the end product: 90% Number average molecular weight M n according to GPC: 3196 g / mol
  • Example 11 (example according to the invention)
  • Example 12 (example according to the invention)
  • Example 13 (example according to the invention)
  • Example 14 (example according to the invention)
  • Example 15 (example according to the invention)
  • the wet film layer was dried in a forced air oven under the following conditions:
  • the freshly doctored coating was placed in a convection oven preheated to 90 ° C.
  • the temperature controller of the oven was immediately set to 130 ° C so that the temperature heats up to 130 ° C within 10 minutes.
  • the coating was stored for a further 5 minutes at this temperature in the drying cabinet.
  • the coatings were then stored at ambient temperature for at least three days before the modules and elongation at break were determined.
  • the results show that elastic films can be obtained by cross-linking by trimerization.
  • the curing temperature and curing time are comparable to those used for blocked isocyanate systems or for 2k PUR systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Textile Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die vorliegende Erfindung betrifft lösemittelarme Beschichtungszusammensetzung, die unter Ausbildung von Isocyanuratgruppen vernetzt werden können. Diese sind besonders gut für die Beschichtung von Textilien geeignet.

Description

Isocvanatterminierte Präpolvmere für Textilbeschichtungen
Die vorliegende Erfindung betrifft lösemittelarme Beschichtungszusammensetzungen, die unter Ausbildung von Isocyanuratgruppen vernetzt werden können. Diese sind besonders gut für die Beschichtung von Textilien geeignet.
Lösemittelfreie oder -arme Beschichtungszusammensetzungen für Textilien basierend auf NCO- Präpolymeren sind allgemein bekannt und beispielsweise in der DE 2 902 090 Al beschrieben. Die Beschichtungssysteme umfassen dabei 2 Bestandteile, ein Ketoxim-blockiertes Polyisocyanat und eine Verbindung, die zwei Aminogruppen aufweist, welche bei Temperaturen oberhalb von 120 °C miteinander reagieren. Bei diesen Temperaturen werden die Ketoximgruppen abgespalten und die NCO-Gruppen freigesetzt und stehen zur Reaktion mit der Aminkomponente zur Verfügung. Die beschriebenen Systeme weisen weiterhin eine gute Lagerstabilität bei Umgebungstemperaturen auf. Aus den Beschichtungszusammensetzungen können elastische Filme erhalten werden, die eine akzeptable mechanische Stabilität aufweisen. Bei der Filmbildung werden jedoch immer Ketoxime, wie Butanonoxim, freigesetzt. Nachtteilig an diesen Systemen ist ferner, dass stets Reste des Blockierungsmittels in der resultierenden Beschichtung Zurückbleiben und einen unangenehmen Geruch des Produktes verursachen. Des Weiteren wird bei Butanonoxim vermutet, dass es sich um eine gesundheitsgefährdende Substanz handeln könnte. Aktuell werden zu diesem Stoff Evaluierungen durchgeführt, um die Toxikologie des Stoffes zu bewerten. Je nach Ergebnis dieser Studien könnte es bei der Verwendung dieses Produktes in einigen Bereichen zu Veränderungen kommen, entweder durch die Verpflichtung zu zusätzlichen Kontrollmaßnahmen oder zum Wunsch nach Substitution dieses Produktes.
Ein grundsätzliches Problem bei Systemen mit blockierten Isocyanaten ist das Freisetzen solcher Blockierungsmittel während des Flärtungsprozesses. Jedes Blockierungsmittel kann nach Härtung in Resten in der Beschichtung Zurückbleiben. Weiterhin wird ein Teil des Blockierungsmittels in die Abluft freigesetzt. Niedermolekulare Blockierungsmittel tragen alle ein gewisses toxisches Potential, was bei Kontakt dieser beschichteten Textilien mit dem Endanwender zu gesundheitlichen Gefährdungen führen könnte. Darüber hinaus benötigt man für den Herstellungsprozess noch eine spezielle Abluftbehandlung.
Daher besteht stets der Bedarf nach alternativen, lösemittelarmen Beschichtungszusammensetzungen, die bei Umgebungstemperatur lagerstabil sind und bei ihrer Vernetzung bzw. Ausreaktion und Filmbildung keine Blockierungsmittel wie Ketoxime oder andere Verbindungen freisetzen. Auch sollte die Aushärtung dieser Beschichtungszusammensetzungen bei erhöhter Temperatur innerhalb weniger Minuten zu klebfreien Filmen erfolgen. Darüber hinaus sollten die erhaltenen Beschichtungen die vorteilhaften Eigenschaften der im Stand der Technik bekannten Systeme aufweisen. Solche blockierungsmittelfreien Systeme können auf Basis von zweikomponentigen Polyurethansystemen aufgebaut werden. Diese Systeme bestehen aus einer Isocyanat- und einer Polyolkomponente, die üblicherweise mit Hilfe von Katalysatoren bei hohen Temperaturen zu elastischen Filmen ausgehärtet werden können.
Diese Systeme, bei denen auf die Abspaltung von Blockierungsmitteln verzichtet werden kann, sind im Stand der Technik bekannt. Beispiele solcher Systeme sind in DE-A 196 32 925, WO 2003/002627 und der noch nicht offengelegten europäischen Patentanmeldung 18196743.1 beschrieben.
Bei der Verwendung von zweikomponentigen Polyurethansystemen besteht das grundsätzliche Problem, dass die Mengenanteile von zwei reaktiven Komponenten exakt aufeinander abgestimmt werden müssen, damit das gewünschte stöchiometrische Verhältnis von NCO- und OH-Gruppen erreicht wird und der gebildete Film die optimale Qualität erhält. Weiterhin müssen zwei Komponenten mit üblicherweise hoher Viskosität miteinander homogen vermischt werden, was oft nicht gelingt und ebenfalls Probleme bei der Produktqualität nach sich ziehen kann.
Daher ist es wünschenswert, ein einkomponentiges System verwenden zu können, das nach Zugabe eines Katalysators bzw. nach Erwärmen direkt zu einem elastischen Film aushärtet.
Aufgabe der vorliegenden Erfindung war es daher, zur Textilbeschichtung geeignete, lösemittelarme und blockierungsmittelfreie einkomponentige Beschichtungszusammensetzungen bereitzustellen, die bei Umgebungstemperatur lagerstabil sind und im Beschichtungsverfahren bei Temperaturen von über 100 °C schnell zu klebfreien Filmen aushärten. Zudem sollen die aus entsprechenden Beschichtungszusammensetzungen erhaltenen Filme gute elastische und mechanische Eigenschaften aufweisen.
Es sind Vernetzungsreaktionen bekannt, bei denen in Abwesenheit von isocyanatreaktiven Gruppen Isocyanatgruppen mit anderen Isocyanatgruppen reagieren. Hierbei entstehen beispielsweise Isocyanurat-, Uretdion- oder Biuretgruppen. Solche Reaktionen wurden bereits erfolgreich zum Aufbau von Kunstoffen im Allgemeinen (WO 2016/170059) und Beschichtungen im Besonderen (WO 2018/073303) eingesetzt.
Es wurde nun gefunden, dass die Vernetzung eines isocyanatterminierten Präpolymers unter Ausbildung von Isocyanuratgruppen zu stabilen und flexiblen Beschichtungen führt. Da für diese Reaktion keine zweite Komponente mit isocyanatreaktiven Gruppen erforderlich ist, bestehen die Beschichtungszusammensetzungen aus einer Komponente, so dass es nicht erforderlich ist, ein stöchiometrisches Verhältnis von zwei unterschiedlichen Reaktionspartnern genau einzuhalten. Deswegen betrifft die vorliegende Erfindung in einer ersten Ausführungsform eine Beschichtungszusammensetzung mit einem molaren Verhältnis von Isocyanatgruppen zu isocyanatreaktiven Gruppen von wenigstens 3 : 1 enthaltend a) zu wenigstens 70 % bezogen auf das Gesamtgewicht der
Beschichtungszusammensetzung wenigstens ein isocyanatterminiertes Präpolymer A, welches durch einen NCO-Gehalt von 2 Gew.-% bis 4 Gew.-% gekennzeichnet ist; b) wenigstens einen Trimerisierungskatalysator B; und c) einen Lösemittelanteil von höchstens 5 Gew.-% bezogen auf das Gesamtgewicht der Beschichtungszusammensetzung.
Die erfindungsgemäße Beschichtungszusammensetzung enthält die Komponenten A und B. Optional kann auch wenigstens ein Additiv C enthalten sein. Der Anteil des wenigstens einen Präpolymers A bezogen auf die Gesamtmenge der Komponente A, B und C beträgt wenigstens 70 Gew.-%, bevorzugt wenigstens 80 Gew.-% und stärker bevorzugt wenigstens 90 Gew.-%.
Die erfindungsgemäße Beschichtungszusammensetzung ist dadurch gekennzeichnet, dass sie einen geringen Gehalt an organischen Lösungsmitteln hat. Dieser liegt bezogen auf die Gesamtmasse der erfindungsgemäßen Beschichtungszusammensetzung bei höchstens 5,0 Gew.-%, bevorzugt bei höchstens 1,0 Gew.-% und stärker bevorzugt bei höchstens 0,5 Gew.-%.
Das molare Verhältnis von Isocyanatgruppen zu isocyanatreaktiven Gruppen in der erfindungsgemäßen Beschichtungszusammensetzung liegt bei wenigstens 3 : 1, bevorzugt bei wenigstens 5 : 1 und stärker bevorzugt bei wenigstens 10 : 1.„Isocyanatreaktive Gruppen" im Sinne der vorliegenden Patentanmeldung sind Hydroxyl-, Amino- und Thiolgruppen.
Die Anwesenheit wenigstens eines isocyanatterminierten Präpolymers A wie im nachfolgenden Abschnitt definiert ist erfindungswesentlich. Grundsätzlich kann die erfindungsgemäße Beschichtungszusammensetzung auch weitere Verbindungen mit freien Isocyanatgruppen enthalten, beispielsweise monomere oder oligomere Polyisocyanate. Allerdings verschlechtern diese die mechanischen Eigenschaften der Beschichtung, so dass der Gewichtsanteil solcher Verbindungen auf höchstens 5 Gew.-%, bevorzugt höchstens 2 Gew.-% bezogen auf das Gewicht der Komponente A beschränkt ist. Isocyanatterminiertes Präpolymer A
Komponente A der erfindungsgemäßen Beschichtungszusammensetzung ist ein isocyanatterminiertes Präpolymer oder ein Gemisch von wenigstens zwei isocyanatterminierten Präpolymeren. Derartige Präpolymere werden durch Reaktion einer Isocyanatkomponente Al und einer isocyanatreaktiven Komponente A2 hergestellt. Der Begriff„Isocyanatkomponente" bezeichnet die Gesamtheit aller Verbindungen mit Isocyanatgruppen im Reaktionsgemisch, das zur Herstellung des Präpolymers A eingesetzt wird. Der Begriff „isocyanatreaktive Komponente" bezeichnet die Gesamtheit aller Verbindungen mit isocyanatreaktiven Gruppen im Reaktionsgemisch, das zur Herstellung des Präpolymers A eingesetzt wird. Bevorzugt enthält die isocyanatreaktive Komponente A2 wenigstens ein Polyol. Beide Komponenten müssen eine durchschnittliche Funktionalität von wenigstens 1,5 aufweisen. Bei der Reaktion beider Komponenten muss ein molares Verhältnis von Isocyanatgruppen zu isocyanatreaktiven Gruppen von 2,2 : 1 bis 1,4 : 1 eingehalten werden.
Bevorzugt weist das isocyanatterminierte Präpolymer A eine durchschnittliche Isocyanatfunktionalität von wenigstens 1,8 Isocyanatgruppen pro Molekül auf. Stärker bevorzugt weist es eine durchschnittliche Isocyanatfunktionalität zwischen 1,8 und 2,2 Isocyanatgruppen pro Molekül auf. Besonders ist die durchschnittliche Isocyanatfunktionalität pro Molekül 2,0. Ist die durchschnittliche Isocyanatfunktionalität zu gering, dann härten die mit ihr hergestellten Beschichtungen nicht mehr vollständig aus und bleiben klebrig. Bei zu hohen Isocyanatfunktionalitäten werden die Beschichtungen spröde.
Der Isocyanatgehalt des Präpolymers A liegt zwischen 1,5 Gew.-% und 5,0 Gew.-%, bevorzugt zwischen 1,5 Gew.-% und 4,5 Gew.-%, stärker bevorzugt zwischen 1,8 Gew.-% und 4,5 Gew.-%. Liegt der Isocyanatgehalt unterhalb dieses Bereichs, so härten die Beschichtungen nicht mehr vollständig aus und bleiben klebrig. Bei zu hohen Isocyanatgehalten werden die Beschichtungen spröde.
Erfindungsgemäß einsetzbare isocyanatterminierte Präpolymere A weisen ein zahlenmittleres Molekulargewicht bestimmt durch Gelpermeationschromatographie in Tetrahydrofuran bei 23°C gemäß DIN 55672-1:2016-03 zwischen 1.500 g/Mol und 6.500 g/Mol auf, bevorzugt zwischen 1.700 g/Mol und 5.500 g/Mol und stärker bevorzugt zwischen 2.500 g/Mol und 4.500 g/Mol. Präpolymere A mit höheren Molekulargewichten weisen im Regelfall eine zu hohe Viskosität auf. Liegt das Molekulargewicht unterhalb der genannten Untergrenzen, weisen die mit der Beschichtungszusammensetzung hergestellten Beschichtungen keine hinreichende Flexibilität auf.
Isocyanatkomponente Al
Als Bestandteile der Isocyanatkomponente Al zum Aufbau der erfindungsgemäß einsetzbaren Präpolymere A sind grundsätzlich monomere und oligomere Isocyanate geeignet. Hierbei kann es sich um Isocyanate mit aromatisch gebundenen Isocyanatgruppen, um solche mit araliphatisch gebundenen Isocyanatgruppen, um solche mit cycloaliphatisch gebundenen Isocyanatgruppen oder um solche mit aliphatisch gebundenen Isocyanatgruppen handeln.
Bei einem Isocyanat mit araliphatisch gebundenen Isocyanatgruppen sind alle Isocyanatgruppen an Methylenreste gebunden, der ihrerseits an einen aromatischen Ring gebunden sind.
Erfindungsgemäß besonders geeignete Polyisocyanate mit araliphatisch gebundenen Isocyanatgruppen sind 1,3- und l^-Bis-fiso-cyanatomethylJbenzol (Xylylendiisocyanat; XDI), 1,3- und l,4-Bis(l-isocyanato-l-methyhethyl)-benzol (TMXDI) und Bis(4-(l-isocyanato-l-methylethyl)phenyl)- carbonat.
Bei einem Isocyanat mit cycloaliphatisch gebundenen Isocyanatgruppen sind alle Isocyanatgruppen an Kohlenstoffatome gebunden, die Teil eines geschlossenen Rings aus Kohlenstoffatomen sind. Dieser Ring kann an einer oder mehreren Stellen ungesättigt sein, solange er durch das Vorliegen von Doppelbindungen keinen aromatischen Charakter erhält.
Erfindungsgemäß besonders geeignete Polyisocyanate mit cycloaliphatisch gebundenen Isocyanatgruppen sind 1,3- und 1,4-Diisocyanatocyclohexan, l,4-Diisocyanato-3,3,5- trimethylcyclohexan, l,3-Diisocyanato-2-methylcyclohexan, l,3-Diisocyanato-4-methylcyclohexan, 1- lsocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan, Isophorondiisocyanat; (IPDI), 1- lsocyanato-l-methyl-4(3)-isocyanatomethylcyclohexan, 2,4'- und 4,4'-
Diisocyanatodicyclohexylmethan(H12MDI), 1,3-und l,4-Bis(isocyanatomethyl)cyclohexan, Bis- (isocyanatomethyl)-norbornan (NBDI), 4,4'-Diisocyanato-3,3'-dimethyldicyclohexylmethan, 4,4'- Diisocyanato-3,3',5,5'-tetramethyl-dicyclohexylmethan, 4,4'-Diisocyanato-l,l'-bi(cyclohexyl), 4,4'- Diisocyanato-3,3'-dimethyl-l,l'-bi(cyclohexyl), 4,4'-Diisocyanato-2,2',5,5'-tetra-methyl-l,l'- bi(cyclohexyl), 1,8-Diisocyanato-p-menthan, 1,3-Diisocyanato-adamantan und l,3-Dimethyl-5,7- diisocyanatoadamantan .
Bei einem Isocyanat mit aliphatisch gebundenen Isocyanatgruppen sind alle Isocyanatgruppen an ein Kohlenstoffatom gebunden, das Teil einer offenen Kohlenstoffkette ist. Diese kann an einer oder mehreren Stellen ungesättigt sein. Die aliphatisch gebundene Isocyanatgruppe oder - im Fall von Polyisocyanaten - die aliphatisch gebundenen Isocyanatgruppen sind vorzugsweise an den terminalen Kohlenstoffatomen der Kohlenstoffkette gebunden.
Erfindungsgemäß besonders geeignete Polyisocyanate mit aliphatisch gebundenen Isocyanatgruppen sind 1,4-Diisocyanatobutan (BDI), 1,5-Diisocyanatopentan (PDI), 1,6-Diisocyanatohexan (HDI), 2- Methyl-l,5-diisocyanatopentan, l,5-Diisocyanato-2,2-dimethylpentan, 2,2,4- bzw. 2,4,4-Trimethyl- 1,6-diisocyanatohexan und 1,10-Diisocyanatodecan. Bevorzugt werden aber Isocyanate mit aromatisch gebundenen Isocyanatgruppen eingesetzt, da mit diesen die größte Elastizität der Beschichtung erreicht wird. Stärker bevorzugt wird ein Isocyanat ausgewählt aus der Gruppe bestehend aus 2,4-Toluylendiiscyanat, 2,6-Toluylendiisocyanat, 2,2'- Diphenylmethan-diisocyanat, 2,4'-Diphenylmethan-di isocyanat und 4,4'-Diphenylmethan-diisocyanat eingesetzt. Stärker bevorzugt wird 2,4-Toluylendiiscyanat und 7 oder 2,6-Toluylendiisocyanat eingesetzt. Besonders bevorzugt wird 2,4-Toluylendiiscyanat eingesetzt.
Der Anteil der im vorangehenden Abschnitt genannten Isocyanate mit aromatisch gebundenen Isocyanatgruppen an der Gesamtmenge der Isocyanatkomponente Al beträgt wenigstens 80 Gew.- %, bevorzugt wenigstens 90 Gew.-% und stärker bevorzugt wenigstens 95 Gew.-%.
Isocyanatreaktive Komponente A2
Die zum Aufbau des Präpolymers A verwendete isocyanatreaktive Komponente A2 enthält vorzugsweise wenigstens ein Polyol. Es können auch Gemische verschiedener Polyole enthalten sein.
Die isocyanatreaktive Komponente A2 besteht bevorzugt zu wenigstens 80 Gew.-%, stärker bevorzugt zu wenigstens 90 Gew.-% und am stärksten bevorzugt zu wenigstens 95 Gew.-% aus wenigstens einem Polyol ausgewählt aus der Gruppe bestehend aus Polytetrahydroxyfuranen, propylenoxidbasierten Polyethern, ethylenoxidbasierten Polyethern und bei 23° C flüssigen Polycarbonatdiolen.
Der Anteil von Verbindungen mit isocyanatreaktiven Gruppen, die keine Hydroxylgruppen sind, an der Gesamtmenge der isocyanatreaktive Komponente A2 liegt bevorzugt bei höchstens 20 Gew.-%, stärker bevorzugt bei höchstens 10 Gew.-% und am stärksten bevorzugt höchstens 5 Gew.-%.
Bevorzugt besteht die isocyanatreaktive Komponente A2 zu wenigstens 80 Gew.-%, stärker bevorzugt zu wenigstens 90 Gew.-% und am stärksten bevorzugt zu wenigstens 95 Gew.-% aus Polytetrahydroxyfuranen. Hierbei handelt es sich bevorzugt um difunktionelle gesättigte Polyetherpolyole, die durch Polymerisierung von Tetrahydrofuran erhalten werden. Erfindungsgemäß einsetzbare Polytetrahydroxyfurane haben bevorzugt ein zahlenmittleres Molekulargewicht im Bereich von 250 bis 2.500 g/mol.
Bei der Herstellung des Prepolymers kann die isocyanatreaktive Komponente A2 vorgelegt und anschließend die Polyisocyanatkomponente Al zugegeben werden oder auch in umgekehrter Reihenfolge verfahren werden.
Die Umsetzung erfolgt bevorzugt bei Temperaturen in einem Bereich von 23 und 120 °C, oder bevorzugt in einem Bereich von 50 bis 100 °C. Die Temperaturführung kann dabei vor und nach der Zugabe der einzelnen Komponenten Al und A2 in diesem Bereich variiert werden. Die Umsetzung kann unter Zugabe von gängigen Lösemitteln oder in Substanz, bevorzugt aber in Substanz, durchgeführt werden. Zur Einstellung einer benötigten bestimmten Verarbeitungsviskosität kann nach erfolgter Reaktion noch Lösungsmittel in geringen Mengen zugegeben werden.
Die Umsetzung zu dem mindestens einen Präpolymer A kann ohne Katalysator, aber auch in Gegenwart von Katalysatoren erfolgen, die die Bildung der Urethane aus Isocyanaten und Polyolkomponenten beschleunigen.
Zur Reaktionsbeschleunigung können beispielsweise übliche aus der Polyurethanchemie bekannte Katalysatoren zum Einsatz kommen. Beispielhaft seien hier genannt tert. Amine, wie z. B. Tri- ethylamin, Tributylamin, Dimethylbenzylamin, Diethylbenzylamin, Pyridin, Methylpyridin, Dicyclohexylmethylamin, Dimethylcyclohexylamin, N,N,N',N'-Tetramethyldiaminodiethylether, Bis- (dimethylaminopropyl)-harnstoff, N-Methyl- bzw. N-Ethylmorpholin, N-Cocomorpholin, N-Cyclo- hexylmorpholin, N, N, N ', N '-Tetra methylethylendia min, N,N,N',N'-Tetramethy-l,3-butandiamin, N,N,N',N'-Tetramethyl-l,6-hexandiamin, Pentamethyldiethylentriamin, N-Methylpiperidin, N-Di- methylaminoethylpiperidin, N,N'-Dimethylpiperazin, N-Methyl-N'-dimethylaminopiperazin, 1,8-Di- azabicyclo(5.4.0)undecen-7 (DBU), 1,2-Dimethylimidazol, 2-Methylimidazol, N,N-Dimethylimidazol-ß- phenylethylamin, l,4-Diazabicyclo-(2,2,2)-octan, Bis-(N,N-dimethylaminoethyl)adipat; Alka nolaminverbindungen, wie z. B. Triethanolamin, Triisopropanolamin, N-Methyl- und N-Ethyl- diethanolamin, Dimethylaminoethanol, 2-(N,N-Dimethylaminoethoxy)ethanol, N,N',N"-Tris-(dialkyl- aminoalkyl)hexahydrotriazine, z.B. N,N',N"-Tris-(dimethylaminopropyl)-s-hexahydrotriazin und/oder Bis(dimethylaminoethyl)ether; Metallsalze, wie z. B. anorganische und/oder organische Verbindungen des Eisens, Bleis, Wismuths, Zinks, und/oder Zinns in üblichen Oxidationsstufen des Metalls, beispielsweise Eisen(ll)-chlorid, Eisen(lll)-chlorid, Wismut(lll)- Wismut(lll)-2-ethylhexanoat, Wismut(lll)-octoat, Wismut(lll)-neodecanoat, Zinkchlorid, Zink-2-ethylcaproat, Zinn(ll)-octoat, Zinn(ll)-ethylcaproat, Zinn(ll)-palmitat, Dibutylzinn(IV)-dilaurat (DBTL), Dibutylzinn(IV)-dichlorid oder Bleioctoat; Amidine, wie z. B. 2,3-Dimethyl-3,4,5,6-tetrahydropyrimidin; Tetraalkylammoniumhydroxide, wie z. B. Tetramethylammoniumhydroxid; Alkalihydroxide, wie z. B. Natriumhydroxid und Alkalialkoholate, wie z. B. Natriummethylat und Kaliumisopropylat, sowie Alkalisalze von langkettigen Fettsäuren mit 10 bis 20 C-Atomen und gegebenenfalls seitenständigen OH-Gruppen.
Bevorzugte einzusetzende Katalysatoren sind tertiäre Amine, Bismuth- und Zinnverbindungen der genannten Art.
Die beispielhaft genannten Katalysatoren können bei der Herstellung der erfindungsgemäßen Beschichtungszusammensetzung einzeln oder in Form beliebiger Mischungen untereinander eingesetzt werden und kommen dabei gegebenenfalls in Mengen von 0,01 bis 5,0 Gew.-%, bevorzugt 0,1 bis 2 Gew.-%, berechnet als Gesamtmenge an eingesetzten Katalysatoren bezogen auf die Gesamtmenge der verwendeten Ausgangsverbindungen, zum Einsatz.
Trimerisierungskatalysator B
Als Katalysator B besonders geeignet sind Alkali- oder Erdalkalimetallsalze von aliphatischen, cycloaliphatischen oder aromatischen Mono- und Polycarbonsäuren mit 2 bis 20 C-Atomen, wie sie z.B. in EP-A 0 100 129 oder DE-A 3 219 608 beschrieben sind. Bevorzugt sind Kalium- oder Natriumsalze. Die Carbonsäuren sind bevorzugt lineare oder verzweigte Alkancarbonsäuren mit bis zu 10 C-Atomen, wie z.B. Essigsäure, Propionsäure, Buttersäure, Valeriansäure, Capronsäure, Heptansäure, Caprylsäure, Pelargonsäure, Caprinsäure und Undecylsäure. Ganz besonders bevorzugt ist Kaliumacetat.
Besagte Alkali- oder Erdalkalimetallsalze werden vorzugsweise in Kombination mit Komplexbildern verwendet. Bevorzugte Komplexbildner sind Kronenether, Diethylenglykol und Polyethylenglykole mit einem zahlenmittleren Molekularwicht von 200 bis 800 g/mol. Ein bevorzugter Kronenether ist 18-Krone-6. Es sind auch Mischungen der vorgenannten Komplexbildner einsetzbar, besonders bevorzugt eine Mischung aus Diethylenglykol und 18-Krone-6. Letztere Mischung wird ganz besonders bevorzugt mit Kaliumacetat kombiniert.
Weiterhin sind Verbindungen gemäß der unten stehenden Formel (I) besonders gut als Katalysatoren B geeignet.
Figure imgf000009_0001
Wobei R1 und R2 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6-Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl;
A ausgewählt ist aus der Gruppe bestehend aus 0, S und NR3, wobei R3 ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl und Isobutyl; und
B unabhängig von A ausgewählt ist aus der Gruppe bestehend aus OH, SH NHR4 und NH , wobei R4 ausgewählt ist aus der Gruppe bestehend aus Methy, Ethyl und Propyl In einer bevorzugten Ausführungsform ist A NR3, wobei R3 ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl und Isobutyl. Bevorzugt ist R3 Methyl oder Ethyl. Besonders bevorzugt ist R3 Methyl.
In einer ersten Variante dieser Ausführungsform ist B OH und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl.
In einer zweiten Variante dieser Ausführungsform ist B SH und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl.
In einer dritten Variante dieser Ausführungsform ist B N HR4 und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In dieser Variante ist R4 ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl und Propyl. Bevorzugt ist R4 Methyl oder Ethyl. Besonders bevorzugt ist R4 Methyl.
In einer vierten Variante dieser Ausführungsform ist B N H und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl.
In einer weiteren bevorzugten Ausführungsform ist A Sauerstoff.
In einer ersten Variante dieser Ausführungsform ist B OH und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl.
In einer zweiten Variante dieser Ausführungsform ist B SH und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl.
In einer dritten Variante dieser Ausführungsform ist B N HR4 und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In dieser Variante ist R4 ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl und Propyl. Bevorzugt ist R4 Methyl oder Ethyl. Besonders bevorzugt ist R4 Methyl.
In einer vierten Variante dieser Ausführungsform ist B N H und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl.
In noch einer weiteren bevorzugten Ausführungsform ist A Schwefel.
In einer ersten Variante dieser Ausführungsform ist B OH und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl.
In einer zweiten Variante dieser Ausführungsform ist B SH und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl.
In einer dritten Variante dieser Ausführungsform ist B N HR4 und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In dieser Variante ist R4 ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl und Propyl. Bevorzugt ist R4 Methyl oder Ethyl. Besonders bevorzugt ist R4 Methyl.
In einer vierten Variante dieser Ausführungsform ist B N H und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl.
Weiterhin geeignet sind Addukte einer Verbindung gemäß Formel (I) und einer Verbindung mit wenigstens einer Isocyanatgruppe.
Unter dem Oberbegriff „Addukt" werden Urethan-, Thiourethan- und Harnstoffaddukte einer Verbindung gemäß Formel (I) mit einer Verbindung mit wenigstens einer Isocyanatgruppe verstanden. Besonders bevorzugt ist ein Urethanaddukt. Die erfindungsgemäßen Addukte entstehen dadurch, dass ein Isocyanat mit der funktionellen Gruppe B der in Formel (I) definierten Verbindung reagiert. Wenn B eine Flydroxylgruppe ist, so entsteht ein Urethanaddukt. Wenn B eine Thiolgruppe ist, entsteht ein Thiourethanaddukt. Und wenn B NH oder N HR4 ist, entsteht ein Harnstoffaddukt.
Additive C
Die erfindungsgemäßen Beschichtungszusammensetzungen können Additive C enthalten. Vorzugsweise beträgt der Gewichtsanteil der Additive C in den erfindungsgemäßen Beschichtungszusammensetzungen 0,1 Gew.-% bis 20 Gew.-%, stärker bevorzugt 0,1 Gew.-% bis 15 Gew.-%, noch stärker bevorzugt 1 Gew.-% bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten A, B und C.
Geeignete Additive C sind Pigmente, UV-Stabilisatoren, Antioxidantien, Füllstoffe, Treibmittel, Mattierungsmittel, Griffhilfsmittel, Schaumverhinderer, Lichtschutzmittel, Weichmacher und Verlaufshilfsmittel. Über die genannten Additive C hinaus können für bestimmte Anwendungen noch Flammschutzmittel D zugegeben werden. Die Flammschutzmittel können ebenfalls in einer Menge von 0,1 Gew.-% bis 20 Gew.-%, stärker bevorzugt 0,1 Gew.-% bis 15 Gew.-%, noch stärker bevorzugt 1 Gew.-% bis 10 Gew.- % zugegeben werden. Die Mengenanteile der Flammschutzmittel D beziehen sich auf das Gesamtgewicht der Komponenten A, B, C und D. Dies bedeutet, dass zusätzlich zu den oben genannten Additiven C noch erhebliche Mengenanteile an Flammschutzmitteln eingesetzt werden können.
Verwendung
In einer weiteren Ausführungsform betrifft die vorliegende Erfindung die Verwendung der erfindungsgemäßen Beschichtungszusammensetzung wie oben in dieser Anmeldung definierte zur Beschichtung eines Substrats, insbesondere einer Faser oder eines Gewebes.
Die erfindungsgemäßen Beschichtungszusammensetzungen können mit den üblichen Auftragungs- bzw. Beschichtungseinrichtungen, beispielsweise einem Rakel, z. B. einem Streichrakel, mit Walzen oder anderen Geräten auf das Substrat aufgetragen werden. Auch Drucken oder Sprühen ist möglich. Bevorzugt erfolgt die Auftragung durch Rakeln. Die Auftragung kann ein- oder beidseitig erfolgen. Der Auftrag kann direkt oder über eine Transferbeschichtung, bevorzugt über Transferbeschichtung erfolgen.
Bevorzugt werden bei den erfindungsgemäßen Verfahren Mengen von 100 bis 1000 g/m2 auf das Substrat aufgetragen.
Als Substrate eignen sich bevorzugt textile Materialien, Flächensubstrate aus Metall, Glas, Keramik, Beton, Naturstein, Leder, Naturfasern, und Kunststoffe, insbesondere PVC, Polyolefine und Polyurethan. Besagte Trägermaterialien können als dreidimensionale Gebilde vorliegen. Besonders bevorzugt handelt es sich bei dem Substrat um ein textiles Material oder Leder, ganz besonders bevorzugt um ein textiles Material.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das Substrat ein textiles Material oder Leder, besonders bevorzugt ein textiles Material
Unter textilen Materialien im Sinne der vorliegenden Erfindung sind beispielsweise Gewebe, Ge wirke, gebundene und ungebundene Vliese zu verstehen. Die textilen Materialien können aus synthetischen, natürlichen Fasern und/oder deren Mischungen aufgebaut sein. Grundsätzlich sind Textilien aus beliebigen Fasern für die erfindungsgemäßen Verfahren geeignet. Durch die erfindungsgemäßen Beschichtungszusammensetzungen können die Substrate in allen üblichen Arten behandelt bzw. veredelt werden, vorzugsweise durch Beschichten oder Verkleben der Fasern untereinander bzw. von Substraten miteinander. Die beschichteten textilen Substrate können vor, während oder nach der Applikation der erfindungsgemäßen Beschichtungszusammensetzungen oberflächenbehandelt werden, z. B. durch Vorbeschichten, Schleifen, Velourisieren, Rauhen und/oder Tumblen.
In der Textilbeschichtung wird häufig ein Mehrschichtaufbau angewendet. Die Beschichtung besteht dann bevorzugt aus mindestens zwei Schichten, die man im Allgemeinen auch als Striche bezeichnet. Die oberste, der Luft zugewandte Schicht wird dabei als Deckstrich bezeichnet. Die unterste, dem Substrat zugewandte Seite, welche den Deckstrich oder weitere Schichten des Mehrschichtaufbaus mit dem Textil verbindet, wird auch als Haftstrich bezeichnet. Dazwischen können eine oder mehrere Schichten aufgebracht werden, welche im Allgemeinen als Zwischenstriche bezeichnet werden.
Durch die erfindungsgemäßen Verfahren können in Verbindung mit textilen Materialien Deckstriche, Zwischenstriche und auch Haftstriche hergestellt werden. Ganz besonders geeignet ist das Verfahren zur Herstellung von Zwischenstrichen. Die Zwischenstriche können dabei in kompakter oder geschäumter Form sein. Zur Herstellung geschäumter Zwischenstriche können Treibmittel zum Einsatz kommen. Dafür geeignete Treibmittel sind aus dem Stand der Technik bekannt.
Besonders vorteilhaft an den erfindungsgemäßen Beschichtungszusammensetzungen ist insbesondere auch, dass mit diesen dicke Schichten mit nur einem oder sehr wenigen Strichen hergestellt werden können.
Die auf das Substrat aufgetragene Beschichtungszusammensetzung wird bei einer geeigneten Temperatur ausgehärtet. Dies sind Temperaturen zwischen 70 °C und 300 °C, bevorzugt zwischen 80 °C und 280 °C, stärker bevorzugt zwischen 100 °C und 280 °C. Soweit das zu beschichtende Substrat hitzeempfindlich ist, müssen bei der Aushärtung durch die Stabilität des Substrates vorgegebene Temperaturobergrenzen eingehalten werden, so dass die vorgenannten Temperaturobergrenzen nicht bei jedem Substrat genutzt werden können.
Wenn die Aushärtung bei den oben genannten Temperaturen erfolgt, ist eine schnelle Härtung der Beschichtungszusammensetzung möglich. Die Härtung erfolgt vorzugsweise in einem Zeitraum zwischen 5 Minuten und 30 Minuten, stärker bevorzugt zwischen 10 Minuten und 15 Minuten. Zur Einhaltung der vorgenannten Zeiträume werden vorzugsweise Härtungstemperaturen im Bereich zwischen 100 °C und 280 °C eingesetzt. Erfindungsgemäß wird die Härtung als abgeschlossen betrachtet, wenn wenigstens 90 % der in der erfindungsgemäßen Beschichtungszusammensetzung beim Aufträgen auf das Substrat vorhandenen Isocyanatgruppen verbraucht sind. Die Messung der Menge an Rest Isocyanatgruppen erfolgt bevorzugt mittels ATR Spektroskopie anhand des Peakmaximums des Isocyanatabsorptionspeaks gegen die Ausgangszusammensetzung A normiert gegen die CH-Schwingungen bei 2700 - 3100 cm 1. Die Härtung der erfindungsgemäßen Beschichtungszusammensetzung erfolgt erfindungsgemäß vorwiegend durch die Vernetzung der Isocyanatgruppen des Präpolymers untereinander. Hierbei entstehen bevorzugt Uretdion-, Isocyanurat-, Iminooxadiazindion- und/oder Oxadiazintrionstrukturen.
Es ist besonders bevorzugt, dass wenigstens 50 % der in der erfindungsgemäßen
Beschichtungszusammensetzung beim Aufträgen auf das Substrat vorhandenen Isocyanatgruppen zu Isocyanuratgruppen reagieren.
Verfahren
Weiterhin betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer Beschichtung enthaltend die Schritte a) Aufträgen der erfindungsgemäßen Beschichtungszusammensetzung auf ein Substrat; und b) Aushärten der Beschichtungszusammensetzung bei einer Temperatur zwischen 70 °C und 300 °C.
Alle weiter oben gegebenen Definitionen, insbesondere betreffend geeignete Substrate, gelten auch für diese Ausführungsform.
Ebenfalls Gegenstand der Erfindung ist ein beschichtetes Substrat erhältlich nach dem erfindungsgemäßen Verfahren.
Ebenfalls Gegenstand der Erfindung sind Verbundstrukturen, enthaltend die gehärtete erfindungsgemäße Beschichtungszusammensetzung und mindestens ein Substrat.
Aufgrund der hervorragenden anwendungstechnischen Eigenschaften eignen sich die erfindungs gemäßen Beschichtungszusammensetzungen bzw. die aus ihnen erzeugten Schichten oder Verklebungen bevorzugt zur Beschichtung bzw. Herstellung von Substraten ausgewählt aus der Gruppe bestehend aus Oberbekleidung, Kunstlederartikeln, wie Schuhen, Möbelbezugsmaterialien, Automobil-Innenausstattungsmaterialien und Sportartikeln. Diese Aufzählung ist lediglich beispielhaft und nicht etwa limitierend zu verstehen.
Die erfindungsgemäß hergestellten Beschichtungen weisen vorteilhafte mechanische Eigenschaften auf. Deswegen ist die Verwendung der erfindungsgemäßen Beschichtungszusammensetzungen zur Herstellung von elastischen Beschichtungen oder elastischen Filmen auf Substraten ebenfalls Gegenstand der Erfindung.
Die aus der erfindungsgemäßen Beschichtungszusammensetzung erhältlichen Beschichtungen sind durch vorteilhafte mechanische Eigenschaften gekennzeichnet. Die Bruchdehnung der Beschichtung liegt vorzugsweise bei wenigstens 300 %, stärker bevorzugt wenigstens 500 %.
Die Bruchspannung der Beschichtung liegt vorzugsweise zwischen 7 mPa und 10 mPa.
Der 100-%-Modul liegt vorzugsweise zwischen 1 mPa und 2 mPa.
Die nachfolgenden Ausführungsbeispiele dienen nur dazu, die Erfindung zu illustrieren. Sie sollen den Schutzbereich der Patentansprüche in keiner Weise beschränken.
Beispiele
Methoden
Alle Prozentangaben beziehen sich, soweit nicht anders angegeben, auf das Gewicht.
Die Bestimmung der NCO-Gehalte erfolgte titrimetrisch nach DIN EN ISO 11909.
Sämtliche Viskositätsmessungen erfolgten mit einem Physica MCR 51 Rheometer der Fa. Anton Paar GmbH (DE) nach DIN EN ISO 3219.
Die Messungen der 100%-Module, der Bruchspannung und der Bruchdehnung erfolgten nach DIN 53504.
Das zahlenmittlere Molekulargewicht Mn wurde bestimmt durch Gelpermeationschromatographie (GPC) in Tetrahydrofuran bei 23 °C. Es wurde dabei vorgegangen nach DIN 55672-1: "Gelpermeationschromatographie, Teil 1 - Tetrahydrofuran als Elutionsmittel" (SECurity GPC-System von PSS Polymer Service, Flussrate 1,0 ml/min; Säulen: 2xPSS SDV linear M, 8x300 mm, 5 pm; RID- Detektor). Dabei wurden Polystyrolproben bekannter Molmasse zur Kalibrierung verwendet. Die Berechnung des zahlenmittleren Molekulargewichts erfolgte softwaregestützt. Basislinienpunkte und Auswertegrenzen wurden entsprechend der DIN 55672 Teil 1 festgelegt.
Beschreibung der Rohmaterialien
Polyol 1: Polytetrahydrofuran 250 (PolyTHF 250), Polyether mit zahlenmittlerem Molgewicht Mn = 250 g/mol, BASF SE, Deutschland
Polyol 2: Polytetrahydrofuran 1000 (PolyTHF 1000), Polyether mit zahlenmittlerem Molgewicht Mn = 1000 g/mol, BASF SE, Deutschland
Polyol 3: Desmophen C XP 2716, lineares aliphatisches Polycarbonatdiol mit endständigen OH- Gruppen mit einem Molgewicht von etwa 650 g/mol
Polyol 4: Desmophen 2060 BD, lineares Propylenetherglykol mit einem Molgewicht von etwa 2000 g/mol
Polyisocyanat 1: Reines 2,4-Toluylendiisocyanat (Desmodur T 100, Covestro AG, Deutschland)
Polyisocyanat 2: Desmodur 44 M, monomeres Diphenylmethan-4,4'-diisocyanat 2-Ethylhexanol: Brenntag GmbH, Deutschland
1,4-Butandiol: Acros Organics, Geel, Belgien 1,2-Butandiol, 2,3-Butandiol: Sigma Aldrich, Deutschland l-Methoxy-2-propylacetat (MPA) wasserfrei: Azelis Deutschland GmbH Vulkanox BHT: Sigma Aldrich, Deutschland Triphenylphosphin: Sigma Aldrich, Deutschland
Als Trennpapier wurde für die Laborversuche das polymerbeschichtete Papier Y05200 der Firma Felix Schoeller, Deutschland, verwendet.
Allgemeine Synthesevorschrift für die Herstellung vom NCO-Prepolymer 1 (ohne Dünschichtdestillation)
Die verwendeten Mischungen an PolyTHF wurden bei einem Druck von 10 mbar 1 h bei 100 °C gerührt, um überschüssiges Wasser aus der Mischung zu entfernen. Das Material wurde daraufhin auf 50 °C abgekühlt. Wenn noch 2-Ethylhexanol, 1,4-Butandiol oder Mischungen dieser beiden Produkte in der Synthese verwendet wurden, wurden diese Materialien sowie die beiden Stabilisatoren Vulkanox BHT und Triphenylyphosphin der PolyTHF-Mischung bei 50 °C unter Rühren zugegeben und 10 Minuten bei 50 °C nachgerührt. Bei 50 °C wurde die benötigte Menge an Desmodur T 100 innerhalb von etwa 1 Minute zugegeben. Man beobachtete eine exotherme Reaktion mit einem Temperaturanstieg auf etwa 80 °C. Das Reaktionsgemisch wurde für etwa 2 Stunden weitergerührt, bis sich die Mischung wieder auf 50 °C abgekühlt hatte. Der errechnete NCO- Gehalt wurde nach dieser Zeit erreicht.
Gemäß dem oben genannten Herstellungsverfahren wurden die folgenden Beispielverbindungen hergestellt.
Beispiel 1 (erfindungsgemäßes Beispiel)
PolyTHF 1000 285,0 g
PolyTHF 2000 177,0 g
2-Ethylhexanol 25,3 g
1,4-Butandiol 6,3 g
Triphenylphosphin 0,4 g
Vulkanox BHT 0,4 g
Desmodur T 100 156,7 g
NCO-Gehalt des Endproduktes 4,5 %
Viskosität des Endproduktes 27100 mPas
Polymergehalt des Endproduktes: 100 %
Zahlenmittleres Molgewicht Mn gemäß GPC: 1778 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 5913 g/mol
Beispiel 2 (erfindungsgemäßes Beispiel)
PolyTHF 250 26,8 g
PolyTHF 2000 500,0 g
Triphenylphosphin 0,25 g
Vulkanox BHT 0,25 g
Desmodur T 100 105,7 g
NCO-Gehalt des Endproduktes 3,2 %
Viskosität des Endproduktes 31400 mPas
Polymergehalt des Endproduktes: 100 %
Zahlenmittleres Molgewicht Mn gemäß GPC: 2560 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 7831 g/mol Beispiel 3 (erfindungsgemäßes Beispiel)
PolyTHF 250 21,5 g
PolyTHF 2000 500,0 g
1,4-Butandiol 1,93 g
Triphenylphosphin 0,25 g
Vulkanox BFIT 0,25 g
Desmodur T 100 105,8 g
NCO-Gehalt des Endproduktes 3,2 %
Viskosität des Endproduktes 37300 mPas
Polymergehalt des Endproduktes: 100 %
Zahlenmittleres Molgewicht Mn gemäß GPC: 2739 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 8211 g/mol
Beispiel 4 (erfindungsgemäßes Beispiel)
PolyTHF 250 16,0 g
PolyTHF 2000 500,0 g
1,4-Butandiol 3,88 g
Triphenylphosphin 0,25 g
Vulkanox BHT 0,25 g
Desmodur T 100 105,8 g
NCO-Gehalt des Endproduktes 3,2 %
Viskosität des Endproduktes 27000 mPas
Polymergehalt des Endproduktes: 100 %
Zahlenmittleres Molgewicht Mn gemäß GPC: 2604 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 7896 g/mol
Beispiel 5 (erfindungsgemäßes Beispiel)
PolyTHF 250 21,4 g
PolyTHF 2000 500,0 g
Triphenylphosphin 0,25 g
Vulkanox BHT 0,25 g Desmodur T 100 99,4 g
NCO-Gehalt des Endproduktes 3,2 %
Viskosität des Endproduktes 42600 mPas
Polymergehalt des Endproduktes: 100 %
Zahlenmittleres Molgewicht Mn gemäß GPC: 2818 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 8211 g/mol
Beispiel 6 (erfindungsgemäßes Beispiel)
PolyTHF 250 26,8 g
PolyTHF 2000 500,0 g
Triphenylphosphin 0,25 g
Vulkanox BFIT 0,25 g
Desmodur T 100 99,3 g l-Methoxy-2-propylacetat (MPA): 33,0 g
NCO-Gehalt des Endproduktes 2,2 %
Viskosität des Endproduktes 44500 mPas
Polymergehalt des Endproduktes: 95 %
Zahlenmittleres Molgewicht Mn gemäß GPC: 3282 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 10743 g/mol
Beispiel 7 (erfindungsgemäßes Beispiel)
PolyTHF 250 21,5 g
PolyTHF 2000 500,0 g
1,4-Butandiol 1,93 g
Triphenylphosphin 0,25 g
Vulkanox BHT 0,25 g
Desmodur 44 M 151,8 g l-Methoxy-2-propylacetat (MPA): 75,0 g
NCO-Gehalt des Endproduktes 3,2 % Viskosität des Endproduktes 87400 mPas Polymergehalt des Endproduktes: 90 % Zahlenmittleres Molgewicht Mn gemäß GPC: 2617 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 10749 g/mol
Beispiel 8 (erfindungsgemäßes Beispiel)
PolyTHF 1000 285,0 g
PolyTHF 2000 177,0 g
1,4-Butandiol 6,3 g
2-Ethylhexanol 25,3 g
Triphenylphosphin 0,4 g
Vulkanox BFIT 0,4 g
Desmodur 44 M 223,8 g
NCO-Gehalt des Endproduktes 3,9 % Viskosität des Endproduktes 166000 mPas Polymergehalt des Endproduktes: 100 % Zahlenmittleres Molgewicht Mn gemäß GPC: 1701 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 7986 g/mol
Beispiel 9 (erfindungsgemäßes Beispiel)
PolyTHF 1000 85,8 g
PolyTHF 2000 500,0 g
1,4-Butandiol 1,93 g
Triphenylphosphin 0,25 g
Vulkanox BHT 0,25 g
Desmodur T 100 105,8 g l-Methoxy-2-propylacetat (MPA): 77,0 g
NCO-Gehalt des Endproduktes 3,0 % Viskosität des Endproduktes 40000 mPas Polymergehalt des Endproduktes: 90 % Zahlenmittleres Molgewicht Mn gemäß GPC: 3196 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 9292 g/mol
Beispiel 10 (erfindungsgemäßes Beispiel)
PolyTHF 1000 107,2 g
PolyTHF 2000 500,0 g
Triphenylphosphin 0,25 g
Vulkanox BFIT 0,25 g
Desmodur T 100 93,3 g
NCO-Gehalt des Endproduktes 2,1 %
Viskosität des Endproduktes 48000 mPas
Polymergehalt des Endproduktes: 100 %
Zahlenmittleres Molgewicht Mn gemäß GPC: 4516 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 14130 g/mol
Beispiel 11 (erfindungsgemäßes Beispiel)
PolyTHF 1000 107,2 g
PolyTHF 2000 500,0 g
1,4-Butandiol 1,93 g
Triphenylphosphin 0,25 g
Vulkanox BHT 0,25 g
Desmodur T 100 93,3 g
NCO-Gehalt des Endproduktes 2,0 %
Viskosität des Endproduktes 137000 mPas
Polymergehalt des Endproduktes: 100 %
Zahlenmittleres Molgewicht Mn gemäß GPC: 4836 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 15474 g/mol
Beispiel 12 (erfindungsgemäßes Beispiel)
Desmophen C XP 2716 32,6 g PolyTHF 2000 400,0 g
Triphenylphosphin 0,25 g
Vulkanox BHT 0,25 g
Desmodur T 100 74,0 g
NCO-Gehalt des Endproduktes 2,8 %
Viskosität des Endproduktes 33500 mPas
Polymergehalt des Endproduktes: 100 %
Zahlenmittleres Molgewicht Mn gemäß GPC: 3146 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 9087 g/mol
Beispiel 13 (erfindungsgemäßes Beispiel)
Desmophen C XP 2716 32,6 g
PolyTHF 2000 400,0 g
1,4-Butandiol 1,93 g
Triphenylphosphin 0,25 g
Vulkanox BHT 0,25 g
Desmodur T 100 72,3 g
NCO-Gehalt des Endproduktes 2,9 %
Viskosität des Endproduktes 43700 mPas
Polymergehalt des Endproduktes: 100 %
Zahlenmittleres Molgewicht Mn gemäß GPC: 3515 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 11355 g/mol
Beispiel 14 (erfindungsgemäßes Beispiel)
Desmophen C XP 2716 32,6 g
PolyTHF 2000 400,0 g
1,2-Butandiol 1,93 g
Triphenylphosphin 0,25 g
Vulkanox BHT 0,25 g
Desmodur T 100 72,3 g NCO-Gehalt des Endproduktes 2,9 %
Viskosität des Endproduktes 32700 mPas
Polymergehalt des Endproduktes: 100 %
Beispiel 15 (erfindungsgemäßes Beispiel)
Desmophen C XP 2716 32,6 g
PolyTHF 2000 400,0 g
2,3-Butandiol 1,93 g
Triphenylphosphin 0,25 g
Vulkanox BHT 0,25 g
Desmodur T 100 72,3 g
NCO-Gehalt des Endproduktes 2,8 %
Viskosität des Endproduktes 56000 mPas
Polymergehalt des Endproduktes: 100 %
Beispiel 16 (Vergleichsbeispiel)
PolyTHF 250 26,8 g
PolyTHF 2000 500,0 g
Triphenylphosphin 0,25 g
Vulkanox BHT 0,25 g
Desmodur T 100 124,4 g
NCO-Gehalt des Endproduktes 4,5 %
Viskosität des Endproduktes 18600 mPas
Polymergehalt des Endproduktes: 100 %
Zahlenmittleres Molgewicht Mn gemäß GPC: 1910 g/mol
Gewichtsmittleres Molgewicht Mw gemäß GPC: 6829 g/mol
Herstellung des Kaliumacetat-Katalysators:
In 3,115 g Diethylenglykol wurden bei Raumtemperatur nacheinander 0,177 g Kaliumacetat und 0,475 g Kronenether 18-Krone-6 eingetragen und bei Raumtemperatur gelöst, bis eine homogene flüssige Formulierung entstand. Herstellung von Filmen: Allgemeine Vorschrift
50 g eines NCO- Prepolymers aus Tabelle 1 wurden mit 0,1 g des Kaliumacetatkatalysators versetzt und bei Raumtemperatur 1-2 min homogen verrührt. Es wird eine Nassfilmschicht von 500 pm auf Trennpapier gerakelt.
Die Nassfilmschicht wurde im Umluftofen unter folgenden Bedingungen getrocknet:
Die frisch gerakelte Beschichtung wurde in einen auf 90 °C vorgeheizten Umluftofen gelegt. Der Temperaturregler des Ofens wurde sofort auf 130 °C eingestellt, so dass sich die Temperatur innerhalb von 10 Minuten auf 130 °C aufheizt. Nach Erreichen einer Temperatur von 130 °C wurde die Beschichtung weitere 5 Minuten bei dieser Temperatur im Trockenschrank gelagert. Die Beschichtungen wurden dann mindestens drei Tage bei Umgebungstemperatur gelagert, bevor Module und Bruchdehnung bestimmt wurden.
Die Ergebnisse der Zugprüfungen sind in der folgenden Tabelle zusammengestellt.
Figure imgf000026_0001
Die Ergebnisse verdeutlichen, dass mit der Vernetzung durch Trimerisierung elastische Filme erhalten werden können. Die Härtungstemperatur und Härtungszeit sind denen vergleichbar, die für blockierte Isocyanatsysteme oder für 2k PUR-Systeme verwendet werden.

Claims

Patentansprüche
1. Beschichtungszusammensetzung mit einem molaren Verhältnis von Isocyanatgruppen zu isocyanatreaktiven Gruppen von wenigstens 3 : 1 enthaltend a) zu wenigstens 70 % bezogen auf das Gesamtgewicht der
Beschichtungszusammensetzung wenigstens ein isocyanatterminiertes Präpolymer A, welches durch einen NCO-Gehalt von 2 Gew.-% bis 4 Gew.-% gekennzeichnet ist;
b) wenigstens einen Trimerisierungskatalysator B; und
c) einen Lösemittelanteil von höchstens 5 Gew.-% bezogen auf das Gesamtgewicht der Beschichtungszusammensetzung.
2. Die Beschichtungszusammensetzung gemäß Anspruch 1, dadurch gekennzeichnet, dass das isocyanatterminerte Präpolymer A difunktionell ist.
3. Die Beschichtungszusammensetzung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das isocyanatterminerte Präpolymer ein zahlenmittleres Molekulargewicht zwischen 1.500 g/mol und 6.500 g/mol aufweist.
4. Die Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Isocyanatkomponente Al des isocyanatterminierten Präpolymers A zu wenigstens 80 Gew.-% aus aromatischen Isocyanaten besteht.
5. Die Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das die isocyanatreaktive Komponente A2 des isocyanatterminierten Präpolymers A zu wenigstens 80 Gew.-% aus wenigstens einem Polyol ausgewählt aus der Gruppe bestehend aus Polytetrahydroxyfuranen, propylenoxidbasierten Polyethern, ethylenoxidbasierten Polyethern und bei 23° C flüssigen Polycarbonatdiolen besteht.
6. Verwendung der Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 5 zur Beschichtung eines Substrates.
7. Substrat beschichtet mit der Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 5.
8. Das Substrat nach Anspruch 7, dadurch gekennzeichnet, dass die Bruchdehnung der Beschichtung wenigstens 300 % beträgt.
9. Das Substrat nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Beschichtung eine Bruchspannung zwischen 7 MPa und 10 MPa aufweist.
10. Das Substrat nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Beschichtung ein 100%-Modul zwischen 1 M Pa und 2 MPa aufweist.
11. Das Substrat nach einem der Ansprüche 7 bis 10, wobei das Substrat eine Faser oder ein Gewebe ist.
12. Verfahren zur Herstellung einer Beschichtung enthaltend die Schritte a) Aufträgen der Beschichtungszusammensetzung gemäß eines der Ansprüche 1 bis 5 auf ein Substrat; und b) Aushärten der Beschichtungszusammensetzung bei einer Temperatur zwischen 70 °C und 300 °C.
13. Das Verfahren nach Anspruch 12, wo bei das Substrat eine Faser oder ein Gewebe ist.
PCT/EP2020/051716 2019-01-29 2020-01-24 Isocyanatterminierte präpolymere für textilbeschichtungen WO2020156937A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19154332.1 2019-01-29
EP19154332 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020156937A1 true WO2020156937A1 (de) 2020-08-06

Family

ID=65243454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/051716 WO2020156937A1 (de) 2019-01-29 2020-01-24 Isocyanatterminierte präpolymere für textilbeschichtungen

Country Status (1)

Country Link
WO (1) WO2020156937A1 (de)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2902090A1 (de) 1979-01-19 1980-07-24 Bayer Ag Hitzehaertbare beschichtungsmassen und verfahren zur beschichtung von substraten
DE3219608A1 (de) 1982-03-19 1983-09-29 Nippon Polyurethane Industry Corp., Tokyo Isocyanuriertes hexamethylendiisocyanat, verfahren zu seiner herstellung und diese verbindung enthaltende massen
EP0100129A1 (de) 1982-07-29 1984-02-08 Dsm Resins B.V. Verfahren zur Herstellung eines Diisocyanat-Oligomers
US4487928A (en) * 1981-01-08 1984-12-11 Bayer Aktiengesellschaft Process for the preparation of polyisocyanates containing isocyanurate groups, and the use of the products of the process as isocyanate component in the production of polyurethanes
EP0380178A2 (de) * 1989-01-27 1990-08-01 HENKEL S.p.A. Verwendung vernetzbarer Heissschmelzkleberzusammensetzungen
EP0643086A1 (de) * 1993-09-13 1995-03-15 Air Products And Chemicals, Inc. Aromatische Polyisocyanuratharze sowie deren Verfahren
DE19632925A1 (de) 1996-08-16 1998-02-19 Bayer Ag Reaktionsfähige Massen mit hoher Topfzeit
WO2003002627A1 (de) 2001-06-29 2003-01-09 Bayer Aktiengesellschaft Hitzehärtbare zwei-komponenten-beschichtungssysteme
WO2016170059A1 (en) 2015-04-21 2016-10-27 Covestro Deutschland Ag Polyisocyanurate polymers and process for the production of polyisocyanurate polymers
WO2018073303A1 (de) 2016-10-18 2018-04-26 Covestro Deutschland Ag Harte beschichtungen mit hoher chemischer und mechanischer beständigkeit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2902090A1 (de) 1979-01-19 1980-07-24 Bayer Ag Hitzehaertbare beschichtungsmassen und verfahren zur beschichtung von substraten
US4487928A (en) * 1981-01-08 1984-12-11 Bayer Aktiengesellschaft Process for the preparation of polyisocyanates containing isocyanurate groups, and the use of the products of the process as isocyanate component in the production of polyurethanes
DE3219608A1 (de) 1982-03-19 1983-09-29 Nippon Polyurethane Industry Corp., Tokyo Isocyanuriertes hexamethylendiisocyanat, verfahren zu seiner herstellung und diese verbindung enthaltende massen
EP0100129A1 (de) 1982-07-29 1984-02-08 Dsm Resins B.V. Verfahren zur Herstellung eines Diisocyanat-Oligomers
EP0380178A2 (de) * 1989-01-27 1990-08-01 HENKEL S.p.A. Verwendung vernetzbarer Heissschmelzkleberzusammensetzungen
EP0643086A1 (de) * 1993-09-13 1995-03-15 Air Products And Chemicals, Inc. Aromatische Polyisocyanuratharze sowie deren Verfahren
DE19632925A1 (de) 1996-08-16 1998-02-19 Bayer Ag Reaktionsfähige Massen mit hoher Topfzeit
WO2003002627A1 (de) 2001-06-29 2003-01-09 Bayer Aktiengesellschaft Hitzehärtbare zwei-komponenten-beschichtungssysteme
WO2016170059A1 (en) 2015-04-21 2016-10-27 Covestro Deutschland Ag Polyisocyanurate polymers and process for the production of polyisocyanurate polymers
WO2018073303A1 (de) 2016-10-18 2018-04-26 Covestro Deutschland Ag Harte beschichtungen mit hoher chemischer und mechanischer beständigkeit

Similar Documents

Publication Publication Date Title
EP2143746B1 (de) Polyurethanharnstoff-Lösungen
EP1856193B1 (de) Polyurethanharnstoff-lösungen
EP3280775B1 (de) Verfahren zum verkleben von substraten mit klebstoffen
DE10013186A1 (de) Polyisocyanate
WO2017182108A1 (de) Hydrophil modifizierter polyisocyanuratkunststoff und verfahren zu dessen herstellung
EP1521788A1 (de) Uretdiongruppen enthaltende polyadditionsprodukte
DE20122890U1 (de) Hochfunktionelle Polyisocyanate
DE2248382C2 (de) Polyurethan-Elastomere, deren Herstellung und Verwendung
EP2209838B1 (de) Polysiloxanmodifizierte polyisocyanate
EP2448988A1 (de) Zusammensetzungen auf der basis von diisocyanaten aus nachwachsenden rohstoffen
WO2011000586A1 (de) Verwendung von isocyanaten auf der basis von nachwachsenden rohstoffen
EP3271432B1 (de) Polyisocyanatzusammensetzung auf basis von 1,5-pentamethylendiisocyanat
DE102014209183A1 (de) Reaktive Zusammensetzung aus einer Uretdiongruppen haltigen Dispersion und Polyaminen
DE102006056956A1 (de) Verbundgebilde mit einer Polyurethanschicht, Verfahren zu deren Hersellung und Verwendung
WO2020064631A1 (de) Lösemittelarme beschichtungssysteme für textilien
EP3568423A1 (de) Lösemittelarme beschichtungssysteme für textilien
EP2804883B1 (de) Kompakte, lichtechte polyurethanformteile
DE19903710A1 (de) Uretdiongruppen und freie Isocyanatgruppen aufweisende Pulverlackvernetzer
WO2020156937A1 (de) Isocyanatterminierte präpolymere für textilbeschichtungen
EP1277876A2 (de) Verwendung spezieller Härter in 2-Komponenten PU-Systemen zum Beschichten flexibler Substrate
EP1122273B1 (de) Lagerstabile Polyisocyanate
WO2020152107A1 (de) Kompositwerkstoffe basierend auf urethan- und isocyanuratpolymeren mit dualer härtung
EP1122272A2 (de) Lagerstabile Polyisocyanate
EP1276785B1 (de) Polyurethan-beschichtungen auf basis uretdion- und/oder oxadiazintrion-gruppen enthaltender polyisocyanate
DE19943034A1 (de) Uretdiongruppen und freie Isocyanatgruppen aufweisende Pulverlackvernetzer hoher Funktionalität

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20701471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20701471

Country of ref document: EP

Kind code of ref document: A1