WO2020156477A1 - 一种定子绕组、定子和电机 - Google Patents

一种定子绕组、定子和电机 Download PDF

Info

Publication number
WO2020156477A1
WO2020156477A1 PCT/CN2020/073949 CN2020073949W WO2020156477A1 WO 2020156477 A1 WO2020156477 A1 WO 2020156477A1 CN 2020073949 W CN2020073949 W CN 2020073949W WO 2020156477 A1 WO2020156477 A1 WO 2020156477A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
winding
coils
stator winding
flat wire
Prior art date
Application number
PCT/CN2020/073949
Other languages
English (en)
French (fr)
Inventor
梁洪波
郭莉
Original Assignee
上海磁雷革传动系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海磁雷革传动系统有限公司 filed Critical 上海磁雷革传动系统有限公司
Priority to EP20749211.7A priority Critical patent/EP3920380A4/en
Priority to US17/427,580 priority patent/US20220123617A1/en
Publication of WO2020156477A1 publication Critical patent/WO2020156477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/182Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to stators axially facing the rotor, i.e. with axial or conical air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0435Wound windings
    • H02K15/0442Loop windings
    • H02K15/045Form wound coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/02Windings characterised by the conductor material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the utility model relates to the technical field of motor structure, in particular to a stator winding, a stator and a motor.
  • the drive motor as the core component of electric vehicles, is often required to have a higher torque/power density, a wider speed range, a larger overload capacity, etc., which proposes more for the electromagnetic design of the vehicle drive motor higher requirement.
  • the existing drive motors mostly use scattered wires as the stator windings.
  • the stator winding adopts round wire scattered-embedded winding with a lower slot full rate and higher winding consumption, which often reduces the power density and high efficiency area of the motor.
  • more and more motor manufacturers have begun to adopt flat wire windings. Compared with round wires, the utilization rate of flat wires is higher, and the flat wire windings can obtain greater motor power density.
  • the problem solved by the utility model is to improve the production efficiency of manufacturing the stator winding, reduce the production cost of the stator winding, and ensure the quality of the stator winding.
  • the present invention provides a stator winding, the stator winding is made of a flat wire wound, a part of the one flat wire is used to wind to form at least two spaced coils, the The winding directions of the coils are consistent and located on the same side of the flat wire.
  • the coils on the stator winding are distributed at equal intervals, and the coils distributed at the intervals are identical coils.
  • the other part of the one flat wire is used to connect adjacent coils, and the flat wire connecting the adjacent coils has a single-layer structure.
  • the single-layer flat wire is located On the same line.
  • the other part of the one flat wire is used to connect adjacent coils, the flat wire connecting the adjacent coils has a single-layer structure, and in the second state, the single-layer flat wire is located On the same circumference.
  • the number of coils arranged at intervals on one stator winding is five.
  • the number of layers of each coil is 14 layers.
  • the flat wire is a flat copper wire
  • the cross-section of the flat copper wire has a thickness of 1 mm and a width of 6 mm.
  • the utility model also provides a stator, including a stator iron core, the stator iron core has a ring structure, the stator iron core is uniformly provided with bosses along the circumferential direction, and there are clamps between adjacent bosses. Slot; The card slot is used to accommodate the stator winding, and the stator winding is any one of the aforementioned stator windings.
  • the number of the stator windings located on the stator core is three, the coil located at one end of the stator winding has an outlet end, and the stator windings are connected through the outlet end.
  • the utility model also provides a motor including any one of the above-mentioned stators.
  • the solution of the utility model realizes the technical solution that the stator winding is integrally formed by using a flat wire to be wound into a stator winding with multiple coils.
  • the technical solution provided by using the utility model includes at least the following technical effects:
  • stator winding Since the stator winding is integrally formed, the coils on the stator winding share a flat wire, so there is no connection point between the coils, which greatly improves the quality of the stator winding (avoid the stator winding caused by poor quality at the connection point). The quality of the winding is poor).
  • connection can be a welding connection method or a cold pressure connection method.
  • the cold pressure connection method may also include a relative connection cold pressing method, a side-by-side connection cold pressing method, etc., which is not done here. Specific restrictions.
  • Figure 1 is a schematic diagram of a single coil provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a state where the stator windings are linearly distributed according to an embodiment of the present invention
  • FIG. 3 is a schematic top plan view of a stator winding provided in an embodiment of the present invention in a circumferentially distributed state;
  • FIG. 4 is a top perspective schematic view of a stator winding provided in an embodiment of the present invention in a circumferentially distributed state;
  • FIG. 5 is a bottom perspective schematic diagram of a stator winding provided in an embodiment of the present invention in a circumferentially distributed state
  • Fig. 6 is a schematic plan view of a three-phase stator winding in a circumferentially distributed state provided by an embodiment of the present invention
  • Fig. 7 is a top perspective view of a three-phase stator winding in a circumferentially distributed state provided by an embodiment of the present invention
  • Figure 8 is a schematic plan view of a three-phase stator winding in a circumferentially distributed state provided by an embodiment of the present invention
  • Figure 9 is an exploded perspective view of a three-phase stator provided by an embodiment of the present invention.
  • Figure 10 is a top perspective schematic view of a three-phase stator provided by an embodiment of the present invention.
  • Stator winding 10. Flat wire; 11. Coil; 12. Winding start end; 13. Winding end end; 14. First coil; 15, Second coil; 16, Third coil; 17, Fourth Coil; 18. The fifth coil;
  • Stator 20, stator core; 21, boss; 22, card slot; 23, A-phase winding; 24, B-phase winding; 25, C-phase winding.
  • the first embodiment of the present invention provides a stator winding 1, the stator winding 1 is wound by a flat wire 10, a part of the flat wire 10 is used for winding At least two spaced coils 11 are formed, the winding directions of the coils 11 are the same, and the coils 11 are located on the same side of the flat wire 10.
  • the coils 11 can be the first coil 14, the second coil 15, the third coil 16, the fourth coil 17, and the fifth coil 18, and the first coil 14, the second coil 15, the third coil 16, the fourth coil 17 And the fifth coil 18 shares a flat wire, which is located on the same side of the flat wire. In FIG. 2, all the coils on the stator winding are located on the upper side of the flat wire.
  • the stator winding provided by the utility model is used in the stator.
  • the stator is the stationary part of the motor, and its main function is to generate a rotating magnetic field.
  • the stator is composed of a stator core and a stator winding wound on the stator core.
  • the stator core has a ring structure, the stator core is uniformly provided with bosses along the circumferential direction, and there are stator slots between adjacent bosses.
  • the stator slots are used to accommodate the stator winding, and the stator winding is composed of multiple coils. .
  • a stator winding 1 provided by the present invention is formed by winding a flat wire 10, and a part of a flat wire 10 is used for winding at least two coils 11 arranged at intervals. . That is to say, different from the traditional stator winding which is formed by connecting multiple individual coils, that is, a flat wire is wound to form multiple individual coils, and then multiple individual coils are connected as needed, such as welding connection, to form a Stator winding with multiple coils.
  • the different coils 11 on the stator winding 1 provided by the present invention share a flat wire 10.
  • sharing a flat wire 10 means that the stator winding 1 is an integral structure, that is, the stator winding 1 is originally composed of the same It is formed by a single flat wire 10, so there is no connection point between the coil and the coil forming the stator winding 1.
  • the connection point is a welding point. In other embodiments, the connection point is not limited.
  • the stator winding provided by the utility model is integrally formed, and the coils on the stator winding share a flat wire to realize the continuous forming of the stator winding.
  • the stator winding made by the integral molding technology of the present invention has no quality problems caused by poor connection between the coils. , The quality of the stator winding is guaranteed, and the consistency of the quality of the stator winding is improved; at the same time, the production process of the stator winding is reduced, the production efficiency of the stator winding is improved, and the labor intensity is reduced.
  • the winding directions of the multiple coils 11 wound by one flat wire 10 are the same.
  • the function of a flat wire is divided into two parts, one part is used to wind the coil, and the other part is used to connect adjacent coils.
  • the winding direction includes both the winding direction of the flat wire 10 forming the coil 11 and the extending direction of the flat wire 10 connecting adjacent coils 11.
  • the winding direction of the coil 11 refers to the entire winding process of winding the flat wire to form a coil consistent with the preset shape and contour with a certain preset shape as a standard. Including the winding angle, radian, winding length and other parameters in the process of winding the flat wire 10 to form the coil 11, the winding direction of the coil 11 determines the size and shape of the coil 11 wound by the part of the flat wire.
  • the winding directions of the multiple coils wound by a flat wire are the same.
  • the multiple coils on the stator winding are coils of the same size and shape.
  • one end of the flat wire 10 is defined as the winding start end 12, and the other end is the winding end end 13, and the winding start end of the flat wire 10
  • a number of coils 11 are wound in sequence at intervals, and it can be defined that the coil wound at the first time is the first coil 14, and the coil wound at the second time is the second coil 15.
  • the coil wound at the third time is the third coil 16
  • the coil wound at the fourth time is the fourth coil 17,
  • the coil wound at the fifth time is the fifth coil 18.
  • the coil wound at the Nth time is the Nth coil
  • the first coil 14, the second coil 15, the third coil 16, the fourth coil 17, the fifth coil 18 and the Nth coil are exactly the same size and shape.
  • the coil of, where one, two...N can represent the time sequence, where N is a positive integer greater than or equal to 1.
  • winding end end 13 and the winding start end 12 are relative concepts, which can be interchanged in different embodiments, and there is no limitation here.
  • the number of layers of each coil is not limited, and the number of layers of each coil is defined as n layers, and n is a positive integer greater than or equal to 1.
  • n 30 layers, and those skilled in the art can select a suitable value of n according to specific applications.
  • the function of the multilayer coil is to enhance the magnetic field.
  • the number of the coils is at least two.
  • all the coils on the same flat wire are coils with exactly the same structure and shape, and the coils on the stator winding are arranged at intervals, and multiple coils share a flat wire.
  • a plurality of coils are wound in a clockwise direction, and a plurality of coils are formed on a flat wire at intervals.
  • the winding start end of the flat wire and the winding end end of the flat wire are respectively located on the side of the first coil and the Nth coil away from the adjacent coil.
  • the flat wire 10 is wound to form 5 coils arranged at intervals, and the winding direction of each coil is counterclockwise (X direction in Figure 2).
  • the winding direction of each coil is counterclockwise (X direction in Figure 2).
  • five coils are formed at intervals by winding the flat wire, and the winding direction of each coil is clockwise.
  • a part of the one flat wire 10 is used to wind a plurality of first coils 14, second coils 15, third coils 16, fourth coils 17, and fifth coils 18 distributed at intervals.
  • the flat wire 10 The other part is used to connect adjacent coils.
  • the flat wires 10 connecting adjacent coils have a single-layer structure. In the first state, the single-layer flat wires 10 are on the same straight line. More specifically, the stator winding 1 extends in a straight line.
  • the flat wires 10 connecting adjacent coils are located on the same straight line.
  • being on the same straight line means that the flat wires 10 used to connect the coils are substantially fully extended, that is, the flat wires 10 connecting adjacent coils are on the same straight line.
  • the single-layer flat wires connecting adjacent coils are not located on the same straight line, but at this time, the flat wires that are not on the same straight line should be fully extended to realize the single-layer flat wires connecting the coils.
  • the wires are on the same straight line, and the lengths of the flat wires used to connect adjacent coils are equal.
  • a part of the one flat wire 10 is used to wind a plurality of spaced coils, namely the first coil 14, the second coil 15, the third coil 16, and the fourth coil 17. , The fifth coil 18.
  • the other part of the one flat wire 10 is used to connect adjacent coils.
  • the flat wire 10 connecting the adjacent coils has a single-layer structure. In the second state, the single-layer flat wire 10 is located at the same Circumferential surface. More specifically, the stator winding 1 has a circumferential structure, that is, the flat wires 10 connecting adjacent coils are located on the same circumferential surface, and the coils 11 located on the stator winding are also located on the same circumferential surface.
  • the linear stator windings can be wound twice to form a circumferentially distributed stator winding.
  • the circumferentially shaped stator windings can also be extended into a linearly distributed stator winding. There is no restriction here. That is, the forms of the stator winding in the second state and the stator winding in the first state can be interchanged.
  • the coils on the stator winding are distributed at equal intervals, and the coils distributed at intervals are identical coils.
  • being identical includes the same size, the same shape, and the same number of layers of each coil.
  • the stator winding is wound by a flat wire, and the length of the flat wire should meet at least the following two conditions: 1. Part of the length of a flat wire can be used to wind to form at least two coils arranged at intervals ; 2. The other part of the one flat wire is used to connect adjacent coils.
  • a part of the length of the one flat wire can be used for winding to form at least two coils.
  • the number of layers of the coil is not limited.
  • the coil is a single-layer coil, and in another embodiment, the coil is a multilayer coil.
  • the number of the coils is at least two.
  • the two coils with a multilayer structure are coils with exactly the same structural shape, and the coils on the stator winding are arranged at intervals, and multiple coils share a flat wire.
  • the other part of the one flat wire is used to connect adjacent coils.
  • the other part of the one flat wire is used to connect adjacent coils, and the flat wire used to connect the adjacent coils is a single layer structure.
  • the different coils are arranged at equal intervals, that is, the length of the flat wires used to connect the different coils is the same.
  • the number of coils 11 arranged at intervals on one stator winding is five.
  • the number of coils 11 spaced apart on the stator winding is not limited, as long as it has the structural characteristics of the stator winding described above, it falls within the protection scope of the present invention.
  • the flat wire is a wire formed by providing an insulating coating film on the outer surface of a conductive metal wire such as copper, and its cross-section is rectangular. More specifically, the cross-section of the flat wire has a size of 1 mm ⁇ 6 mm, that is, the cross-section of the flat wire has a thickness of 1 mm and a width of 6 mm.
  • the flat wire is wound and stacked in a certain shape to form 5 coils with 14 layers.
  • the structural shape and parameters of the flat wire are not limited, as long as the flat wire with this characteristic can be used to form the stator winding.
  • the second embodiment of the present invention also provides a stator 2.
  • the stator 2 includes a stator iron core 20.
  • the stator iron core 20 has an annular structure.
  • the stator iron core 20 is uniformly provided with bosses 21 along the circumferential direction, and there are clamping slots 23 between adjacent bosses 21. ;
  • the card slot 23 is used to accommodate the stator winding, the stator winding includes the stator winding described in any one of the above-mentioned first embodiment.
  • the coil is the basic unit that constitutes the stator winding, and the stator winding is the arrangement and connection of the coils according to a certain rule.
  • the number of stator windings on the stator core is the number of phases of the stator, that is, there are M sets of stator windings on the stator core, then this stator is an M-phase stator, where M can be any of 2, 3, 4, and 5. .
  • the utility model does not limit the number of stator windings in the stator, and the specific number of stator windings can be selected according to actual needs.
  • the two-phase windings are identical stator windings.
  • the coils on the two windings are wound with a flat wire to form a coil with the same winding direction.
  • the coil in the first phase winding is wound around the flat wire to form the coil.
  • the winding direction is counterclockwise, then the corresponding The winding direction of the coil in the second phase winding around the flat wire to form the coil is also counterclockwise.
  • the winding direction of the coil in the first phase winding around the flat wire to form the coil is clockwise along the extending direction from the winding start end to the winding end end of the flat wire,
  • the winding direction of the coil in the second phase winding around the flat wire to form the coil is also clockwise.
  • the coils on the stator windings are arranged in the slots 23 on the stator core 20 in sequence, and the coils of each phase winding occupy half of the slots 23 on the stator core 20 at this time;
  • the coils of the two-phase windings can also be arranged crosswise.
  • the number of coils 11 on the stator core 20 should be a multiple of 3, and specifically can be a number that can be divided by 3 from 3 to 60.
  • the windings in this embodiment include A-phase windings 23, B-phase windings 24, and C-phase windings 25.
  • Each phase winding has the same number of coils 11, all of which are 5, and each of the windings is integrally formed, that is, each phase The coils in the winding all share a flat wire 10.
  • connection point is a welding point.
  • connection point may be a riveting point, a threaded connection point, etc.
  • the A-phase winding 23 is formed by arranging the coils 11 of the A-phase winding 23 at one time
  • the B-phase winding 24 is formed by arranging the coils 11 of the B-phase winding 24 at one time
  • the C-phase winding 25 is formed by the coils of the C-phase winding 25. 11 are arranged in sequence.
  • the coils of the stator winding can be connected in star connection (Y connection for short), delta connection ( ⁇ connection for short), or other connection forms, as long as the stator winding is reliable Just connect to form a reliable and effective three-phase stator winding.
  • the coil at one end of the stator winding has an outlet end, and the stator windings are connected through the outlet end.
  • the outlet end can be the winding end end or the winding start end of the stator winding.
  • the method of installing the coil into the motor stator includes the following steps:
  • the method for installing a coil into a stator of a motor includes the following steps:
  • Winding The flat wire is wound into a single coil according to certain rules
  • Wire embedding placing the formed single coil in the stator core in a certain order
  • Test Test whether the connected coil is connected.
  • the method for installing the coil into the stator of the motor includes the following steps:
  • Winding Use a flat wire to wind according to a certain rule into a stator winding with at least two coils distributed at intervals;
  • Wire embedding Place each stator winding in the stator core in a certain order
  • Connection Connect the windings on the stator core according to certain rules
  • Test Test whether the connected coil is connected.
  • stator winding provided by the present utility model realizes the use of a flat wire to wind
  • the process of making a stator winding completely eliminates the need to connect different individual coils to form a stator winding in the prior art, which greatly improves the existing process and greatly improves the production efficiency of the stator winding .
  • the stator winding structure provided by the utility model can also be used in electromagnetic technology fields such as inductors and transformers.
  • the motor provided by the present invention can also be used in vehicles.
  • the motor and other structures and operations of the vehicle according to the embodiments of the present invention are understandable and easy to implement for those skilled in the art, and therefore will not be described in detail.
  • the present invention realizes the technical solution of using a flat wire to form a continuous stator winding, and the stator winding is sequentially arranged with at least two coils arranged at intervals. All the coils in the stator winding provided by the utility model share a flat wire, which is different from the traditional technical scheme that requires welding or other connection methods between the coils and the coils.
  • This technical solution has at least the following technical effects:
  • stator winding is integrally formed, and all the coils on the stator winding share a flat wire, which reduces the production cost of the stator winding and improves the production efficiency of the stator winding;
  • stator winding is integrally formed, all the coils share a flat wire, and there is no connection point between the coils, which improves the consistency of the stator winding product quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

本实用新型涉及电机结构技术领域,具体地涉及一种定子绕组、定子和电机。定子绕组由一根扁平导线绕制而成,一根扁平导线的一部分用于缠绕形成至少两个间隔设置的线圈,线圈的绕制方向一致并位于扁平导线的同一侧。采用上述的方案,实现了定子绕组一体成型,位于定子绕组上的线圈共用一根扁平导线的技术效果。相比于现有技术中将单个线圈进行连接形成定子绕组的技术方案,本实用新型一体成型的技术方案第一方面避免了现有技术中存在的连接难度,大幅提高了定子绕组的生产效率;第二方面避免了定子绕组上不必要的连接点,提高了定子绕组的质量;第三方面减少了定子绕组的生产工序降低了其生产成本以及人工劳动强度。

Description

一种定子绕组、定子和电机 技术领域
本实用新型涉及电机结构技术领域,具体地,涉及一种定子绕组、定子和电机。
背景技术
随着环境污染的日益恶化和新能源产业的蓬勃发展,电动汽车以其低排量、高效率、低成本的优势逐渐取代传统燃油车,在乘用车、商用车领域得到了广泛的推广。其中,驱动电机作为电动汽车的核心部件,常常要求其具有较高的转矩/功率密度、较宽的调速范围、较大的过载能力等,给车用驱动电机的电磁设计提出了更多更高的要求。
而现有驱动电机多采用散线作为定子绕组。以定子绕组为例说明,定子绕组采用圆线散嵌绕组槽满率较低、绕线耗量较高,常常使电机的功率密度和高效区减小。而随着绕线技术的发展,越来越多的电机厂家开始采用扁线绕组,相比于圆线而言,扁线利用率高,扁线绕组可以得到更大的电机功率密度。
然而,目前市面上的扁线电机定子多采用扁线单个成型,然后将单个成型的扁线线圈插入定子槽中,最后通过焊接的方式实现扁线绕组间的相互连接,从而形成完整的定子绕组。
现有技术中通过焊接多个线圈形成定子绕组的方式至少具有如下的弊端:
(1)增加了焊接成本,提升生产加工成本;
(2)并且焊接时由于操作工活动空间小,增加了人工强度,同时也极大地降低了生产效率;
(3)接头焊接困难,用时多,劳动强度大,易造成线圈之间连接的可靠性差,连接过程复杂,且容易产生假焊,焊接质量得不到保证;
(4)焊接完成后不容易清理机座内的焊接垃圾;
(5)焊接时定子内先要垫好防火用石棉(既繁琐又不利于操作者健康)。
实用新型内容
本实用新型解决的问题是提高制造定子绕组的生产效率,降低定子绕组的生产成本,并且保证定子绕组的质量。
为了解决上述问题,本实用新型提供一种定子绕组,所述定子绕组由一根扁平导线绕制而成,所述一根扁平导线的一部分用于缠绕形成至少两个间隔设置的线圈,所述线圈的绕制方向一致并位于所述扁平导线的同一侧。
可选地,所述定子绕组上的所述线圈为等间隔分布,并且间隔分布的所述线圈为完全相同的线圈。
可选地,所述一根扁平导线的另一部分用于连接相邻的线圈,连接相邻所述线圈的所述扁平导线为单层结构,在第一状态下,单层所述扁平导线位于同一直线上。
可选地,所述一根扁平导线的另一部分用于连接相邻的线圈,连接相邻所述线圈的所述扁平导线为单层结构,在第二状态下,单层所述扁平导线位于同一圆周面上。
可选地,一个所述定子绕组上间隔设置的线圈的数量为5个。
可选地,每个所述线圈的层数为14层。
可选地,所述扁平导线的为扁铜导线,所述扁铜导线截面的厚度为1mm、宽度为6mm。
本实用新型还提供了一种定子,包括定子铁芯,所述定子铁芯为环形结构,所述定子铁芯沿着圆周方向均匀设有凸台,相邻所述凸台之间设有卡槽;所述卡槽用于容纳定子绕组,所述定子绕组为上述任一所述的定子绕组。
可选地,位于所述定子铁芯上的所述定子绕组的数量为三个,位于所述定子绕组一端的所述线圈上具有出线端,所述定子绕组之间通过所述出线端连接。
本实用新型还提供了一种电机,所述电机包括上述任一所述的一种定子。
如上,本实用新型实施例相对于现有技术存在以下优点:
本实用新型的方案,通过使用一根扁平导线绕制而成具有多个线圈的定子绕组,实现了定子绕组一体成型的技术方案。通过使用本实用新型提供的技术方案至少包括以下技术效果:
(1)避免了现有技术中通过连接不同线圈形成定子绕组的过程,降低了定子绕组的生产成本;
(2)避免了现有技术中通过连接不同线圈形成定子绕组的过程,避免了连接难度,提高了定子绕组生产效率;
(3)避免了现有技术中通过连接不同线圈形成定子绕组的过程,减少了人工连接线圈操作,降低工人劳动强度。
(3)由于定子绕组一体成型,定子绕组上的线圈共用一根扁平导线,故而线圈之间不存在连接点,极大地提高了定子绕组的质量(避免了由于连接点处的质量不佳造成定子 绕组的质量不佳)。
在此,需要说明的是,“连接”可为焊接的连接方式或者冷压连接方式,具体地,冷压连接方式还可包括相对连接冷压方法、并排连接冷压方法等,在此不做具体限制。
为让本实用新型的上述内容能更明显易懂,下文特举优选实施例并结合附图详细说明。
附图说明
图1是本实用新型实施例提供的单个线圈示意图;
图2是本实用新型实施例提供的一种定子绕组呈直线分布状态下的示意图;
图3是本实用新型实施例提供的一种定子绕组呈圆周分布状态下的俯视平面示意图;
图4是本实用新型实施例提供的一种定子绕组呈圆周分布状态下的俯视立体示意图;
图5是本实用新型实施例提供的一种定子绕组呈圆周分布状态下的底视立体示意图;
图6是本实用新型实施例提供的一种三相定子绕组呈圆周分布状态下的俯视平面示意
图;
图7是本实用新型实施例提供的一种三相定子绕组呈圆周分布状态下的俯视立体示意
图一;
图8是本实用新型实施例提供的一种三相定子绕组呈圆周分布状态下的俯视平面示意
图二;
图9是本实用新型实施例提供的一种三相定子的爆炸立体示意图;
图10是本实用新型实施例提供的一种三相定子的俯视立体示意图。
其中,上述附图包括以下附图标记:
1、定子绕组;10、扁平导线;11、线圈;12、绕制起始端;13、绕制终点端;14、第一线圈;15、第二线圈;16、第三线圈;17、第四线圈;18、第五线圈;
2、定子;20、定子铁芯;21、凸台;22、卡槽;23、A相绕组;24、B相绕组;25、C相绕组。
具体实施方式
以下由特定的具体实施例说明本实用新型的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本实用新型的其他优点及功效。虽然本实用新型的描述将结合较佳实施例一起介绍,但这并不代表此实用新型的特征仅限于该实施方式。恰恰相反,结合实施方式作实用新型介绍的目的是为了覆盖基于本实用新型的权利要求而有可能延伸出 的其它选择或改造。为了提供对本实用新型的深度了解,以下描述中将包含许多具体的细节。本实用新型也可以不使用这些细节实施。此外,为了避免混乱或模糊本实用新型的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本实用新型中的实施例及实施例中的特征可以相互组合。
为使本实用新型的目的、技术方案和优点更加清楚,下面将结合附图对本实用新型的实施方式作进一步地详细描述。
参考图1至图5,本实用新型的第一实施方式提供一种定子绕组1,所述定子绕组1由一根扁平导线10绕制而成,所述一根扁平导线10的一部分用于缠绕形成至少两个间隔设置线圈11,所述线圈11的绕制方向一致,并且所述线圈11位于所述扁平导线10的同一侧。
线圈11可分别为第一线圈14、第二线圈15、第三线圈16、第四线圈17以及第五线圈18,并且第一线圈14、第二线圈15、第三线圈16、第四线圈17以及第五线圈18共用一根扁平导线,位于所述扁平导线的同一侧,在图2中,定子绕组上的所有线圈位于扁平导线的上侧。
本实用新型提供的定子绕组用于定子中,定子是电机静止不动的部分,其主要作用是产生旋转磁场。定子由定子铁芯以及缠绕在定子铁芯上的定子绕组组成。其中,定子铁芯为环形结构,所述定子铁芯沿着圆周方向均匀设有凸台,相邻凸台之间设有定子槽,定子槽用于容纳定子绕组,定子绕组由多个线圈组成。
参考图1至图2,本实用新型提供的一种定子绕组1由一根扁平导线10绕制而成,并且一根扁平导线10的一部分用于绕制而成至少两个间隔设置的线圈11。也就是说,不同于传统的定子绕组由多个单独的线圈连接而成,即先缠绕扁平导线形成多个单独的线圈,然后根据需要将多个单独的线圈进行连接,比如焊接连接,形成包含多个线圈的定子绕组。本实用新型提供的定子绕组1上的不同线圈11共用一根扁平导线10,在此共用一根所述扁平导线10是指所述定子绕组1为一体成型结构,即定子绕组1本就由同一根扁平导线10而成,故而组成定子绕组1的线圈与线圈之间不存在连接点,在一实施例中,该连接点为焊接点,在其他实施例中,对该连接点不作限制。
本实用新型提供的定子绕组一体成型,定子绕组上的线圈共用一根扁平导线实现了定子绕组的连续成型。相比于现有技术中需要将不同的线圈进行连接形成定子绕组的技术方案,本实用新型通过一体成型技术手段制作而成的定子绕组不存在由于线圈之间的连接不佳带来的质量问题,使得定子绕组的质量得到保证,提高了定子绕组质量的一致性;同时 也减少了定子绕组的生产工序,提高了定子绕组的生产效率,降低了人工劳动强度。
由一根扁平导线10绕制而成的多个线圈11的绕制方向一致。将该一根扁平导线的作用分为两部分,其中一部分用于绕制而成线圈,另一部分用于连接相邻的线圈。那么对该扁平导线10来说,绕制方向既包括扁平导线10形成线圈11的绕制方向,又包括连接相邻线圈11之间的扁平导线10的延伸方向。其中线圈11的绕制方向是指,以某一预设形状为标准,绕制该扁平导线使其形成与该预设形状轮廓一致的线圈的整个绕制过程。包括绕制该扁平导线10形成该线圈11过程中的绕制角度、弧度、绕制长度等参数,线圈11的绕制方向决定了该部分扁平导线绕制而成的线圈11的大小以及形状。
由一根扁平导线绕制而成的多个线圈的绕制方向一致,在一实施例中,该定子绕组上的多个线圈为大小、形状完全相同的线圈。
参考图1至图5,在本实用新型提供的其中一个实施例中,定义扁平导线10的一端为绕制起始端12,另一端为绕制终点端13,以扁平导线10的绕制起始端12开始,依次绕制而成多个间隔设置的线圈11,并且可定义在第一时间绕制而成的线圈为第一线圈14,在第二时间绕制而成的线圈为第二线圈15,在第三时间绕制而成的线圈为第三线圈16,在第四时间绕制而成的线圈为第四线圈17,在第五时间绕制而成的线圈为第五线圈18,在第N时间绕制而成的线圈为第N线圈,并且,第一线圈14、第二线圈15、第三线圈16、第四线圈17、第五线圈18与第N线圈为大小和形状完全相同的线圈,在此一、二…..N可表示时间顺序,其中,N为大于等于1的正整数。
在其他实施例中,也可以从绕制终点端13一端开始绕制,依次绕制该扁平导线10形成多个间隔分布的线圈11,直到到达该扁平导线10的绕制起始端12,绕制结束。也就是说,在本实用新型中绕制终点端13和绕制起始端12为相对概念,在不同的实施方式中可以互换,在此不作限制。
对定子绕组上的每个线圈来说,对每个线圈绕制的层数不作限制,定义每个线圈的层数为n层,n为大于等于1的正整数。当n=1时,该线圈为单层线圈。当n≥1时,该线圈为多层线圈。参考图4以及图5,在本实用新型提供的一实施例中,n=14,并且沿所述绕制起始端12至绕制终点端13的延伸方向,通过绕制所述扁平导线10形成5个间隔分布的线圈11,并且每个线圈11的绕制方向为逆时针(参考图2中的X方向)。在其他实施例中,沿所述扁平导线10的绕制起点端12至绕制终点端13的延伸方向,通过绕制所述扁平导线10形成5个线圈11,并且每个线圈11的绕制方向的顺时针。
需要说明的是,在其他实施例中,n=30层,本领域技术人员可根据具体的应用选择合 适的n的数值大小,多层线圈的作用是增强磁场。并且,所述线圈的数量至少为两个,优选地,位于同一扁平导线上的所有线圈为结构形状完全相同的线圈,并且定子绕组上的线圈为间隔设置,多个线圈共用一根扁平导线。
参考图1以及图2,在一实施例中,从该扁平导线10的绕制起始端12开始,对于绕制而成线圈11的部分扁平导线10来说,按照逆时针方向(图2中X方向)绕制而成多个线圈11,在一根扁平导线10上形成多个间隔分布的按照逆时针方向绕制而成的线圈11,此时扁平导线10的绕制起始端12以及扁平导线10的绕制终点端13分别位于第一线圈14以及第五线圈18的靠近相邻线圈的一侧,即靠近第二线圈15以及第四线圈17的一侧;在另一实施例中,从该扁平导线的绕制起始端12开始,对于绕制而成线圈的部分扁平导线来说,按照顺时针方向绕制而成多个线圈,在一根扁平导线上形成多个间隔分布的按照顺时针方向绕制而成的线圈,此时扁平导线的绕制起始端以及扁平导线的绕制终点端分别位于第一线圈以及第N线圈的远离相邻线圈的一侧。
继续参考图2,沿所述绕制起始端12至绕制终点端13的延伸方向,通过绕制所述扁平导线10形成5个间隔设置的线圈,并且每个线圈的绕制方向为逆时针(图2中X方向)。在其他实施例中,沿所述扁平导线绕制起始端至绕制终点端的延伸方向,通过绕制所述扁平导线形成5个间隔设置的线圈,并且每个线圈的绕制方向的顺时针。
所述一根扁平导线10的一部分用于绕制而成多个间隔分布的第一线圈14、第二线圈15、第三线圈16、第四线圈17以及第五线圈18,所述扁平导线10的另一部分用于连接相邻线圈。参考图2,在一个实施例中,连接相邻所述线圈的所述扁平导线10为单层结构,在第一状态下,单层扁平导线10位于同一直线上。更为具体地,所述定子绕组1呈直线延伸,在一实施例中,连接相邻所述线圈的扁平导线10位于同一直线上。在此位于同一直线是指用以连接线圈之间的扁平导线10为基本完全延伸状态,即连接相邻所述线圈的扁平导线10位于同一直线上。
在另外的实施例中,连接相邻线圈的单层扁平导线不位于同一直线上,但是此时应保正将不位于同一直线上的扁平导线完全延展之后,可实现连接所述线圈的单层扁平导线位于同一直线上,并且,用于连接相邻线圈的扁平导线的长度相等。
参考图3至图5,所述一根扁平导线10的一部分用于绕制而成多个间隔分布的线圈,分别为第一线圈14、第二线圈15、第三线圈16、第四线圈17、第五线圈18。所述一根扁平导线10的另一部分用于连接相邻的线圈,连接相邻所述线圈的所述扁平导线10为单层结构,在第二状态下,所述单层扁平导线10位于同一圆周面上。更为具体地,所述定子 绕组1为圆周结构,即连接相邻所述线圈的扁平导线10位于同一圆周面上,位于定子绕组上的线圈11也位于同一圆周面上。
在具体实施中,可将呈直线型的定子绕组进行二次绕制形成呈圆周形态分布的定子绕组,相反地,也可将呈圆周面形态的定子绕组延展为呈直线型分布的定子绕组,在此不作限制。即处于第二状态下的定子绕组与处于第一状态下的定子绕组的形态可互相转换。
所述定子绕组上的所述线圈为等间隔分布,并且间隔分布的所述线圈为完全相同的线圈。在此,完全相同包括线圈的大小相同、形状相同、每个线圈绕制的层数也相同等。
所述定子绕组由一根扁平导线绕制而成,所述一根扁平导线的长度应符合至少以下两个条件:1.一根扁平导线的一部分长度可用于缠绕形成至少两个间隔设置的线圈;2.所述一根扁平导线的另一部分用于连接相邻线圈。
对于条件1:所述一根扁平导线的一部分长度可用于缠绕形成至少两个线圈。在此,对线圈的层数不作限制,在一实施例中,该线圈为单层线圈,在另一实施例中,该线圈为多层线圈。所述线圈的数量至少为两个,优选地,该两个具有多层结构的线圈为结构形状完全相同的线圈,并且定子绕组上的线圈为间隔设置,多个线圈共用一根扁平导线。
对于条件2:所述一根扁平导线的另一部分用于连接相邻线圈。在一实施例中,当所述定子绕组上的线圈的数量为2个时,所述一根扁平导线的另一部分用于连接相邻线圈,并且用于连接相邻线圈的扁平导线为单层结构。在另一实施例中,当所述定子绕组上的线圈的数量大于2时,所述不同线圈为等间隔设置,也就是说用于连接不同线圈之间的扁平导线长度相同。
参考图1至图5,一个所述定子绕组上间隔设置的线圈11的数量为5个。在其它实施例中,对定子绕组上间隔设置的线圈11的数量不作限制,只要具有上述所述的定子绕组的结构特性,皆属于本实用新型保护的范围。
需要说明的是,在本实用新型提供的一个实施例中,扁平导线是在铜等导电性良好的金属线材的外表面上设置绝缘涂层膜而成的线材,其截面为矩形形状。更为具体地所述扁平导线截面的尺寸为1mm×6mm,即扁平导线截面的厚度为1mm、宽度为6mm,扁平导线按照一定的形状依次缠绕叠加形成5个具有14层的线圈。在其他实施例中,对扁平导线的结构形状以及参数不作限制,只要利用该特性的扁平导线可形成定子绕组皆可。
参考图6至图10,本实用新型的第二实施方式中还提供了一种定子2。该定子2包括定子铁芯20,所述定子铁芯20为环形结构,所述定子铁芯20沿着圆周方向均匀设有凸台21,相邻所述凸台21之间设有卡槽23;所述卡槽23用于容纳定子绕组,所述定子绕组包 括上述第一实施方式中任一实施例中所述的定子绕组。
需要说明的是,线圈是构成定子绕组的基本单元,定子绕组就是线圈按一定规律的排列和联结。定子铁芯上定子绕组的数量也就是定子的相数,即定子铁芯上有M组定子绕组,那么这个定子就是M相定子,其中,M可以为2、3、4、5中的任一个。本实用新型对定子中定子绕组的数量不作限定,定子绕组的具体数量可以根据实际需要选择。
在一实施例中,该定子铁芯上的定子绕组数量为两个,即M=2为两相绕组。并且该两相绕组为完全相同的定子绕组。其中该所述两个绕组上的线圈缠绕扁平导线绕制而成线圈的缠绕方向一致。换言之,沿所述扁平导线绕制起始端至绕制终点端延伸的方向,第一相绕组中的线圈缠绕所述扁平导线以形成所述线圈的绕制方向为逆时针,则与之对应的,第二相绕组中的线圈缠绕所述扁平导线以形成所述线圈的绕制方向也为逆时针。在另一实施例中,沿所述扁平导线绕制起始端至绕制终点端延伸的方向,第一相绕组中的线圈缠绕所述扁平导线以形成所述线圈的绕制方向为顺时针,则与之对应的,第二相绕组中的线圈的缠绕所述扁平导线以形成所述线圈的绕制方向也为顺时针。
并且,在两相绕组的情况下,定子绕组上的线圈依次排布于定子铁芯20上的卡槽23中,此时每相绕组的线圈各占定子铁芯20上卡槽23的一半;另外,也可以两相绕组的线圈交叉设置,在此对定子绕组之间的排布方式不作具体的限制,只要排布定子绕组之后的定子能够实现定子的具体功能皆可。
参考图8至图9,所述定子铁芯20上的定子绕组的数量为三个,即M=3为三相绕组。定子铁芯20上线圈11的数量应为3的倍数,具体可以为3~60中任意一个能够整除3的数。本实施例的线圈11共有15个。本实施例中的绕组包括A相绕组23、B相绕组24和C相绕组25,各相绕组具有相同数量的线圈11,皆为5个,并且每个所述绕组为一体成型,即每相绕组中的线圈都是共用一根扁平导线10,更为具体地,在每相绕组中,单个线圈上以及线圈与线圈之间不存在连接点,在一实施例中,该连接点为焊接点,在其他的实施例中,该连接点可为铆接点、螺纹连接点等。具体的,A相绕组23由A相绕组23的线圈11一次排布而成,B相绕组24由B相绕组24的线圈11一次排布而成,C相绕组25由C相绕组25的线圈11依次排布而成。
在三相绕组的情况下,定子绕组的线圈之间可以采用星形接法(简称Y联接),也可以采用三角形接法(简称Δ联接),或者其他的连接形式,只要能够保证定子绕组可靠连接形成可靠有效的三相定子绕组即可。
参考图5,位于定子绕组一端的线圈上具有出线端,定子绕组之间通过出线端连接。 在此该出线端可为定子绕组上的绕制终点端或者绕制起始端。
在实际生产中,将线圈安装至电机定子中的方法包括以下步骤:
在现有技术中,实现将线圈安装至电机定子中的方法包括以下步骤:
绕线:把扁平导线按照一定的规则绕制成单个线圈;
嵌线:是把成型好的单个线圈按照一定的顺序放置于定子铁芯中;
连接:将定子铁芯上的所有的单个线圈连接起来;
测试:测试连接后的线圈是否联通。
通过本实用新型提供的一种定子,实现将线圈安装至电机定子中的方法包括以下步骤:
绕线:利用一根扁平导线按照一定的规则绕制成至少具有两个间隔分布的线圈的定子绕组;
嵌线:将每个定子绕组按照一定的顺序放置于定子铁芯中;
连接:将定子铁芯上的绕组按照一定的规则连接起来;
测试:测试连接后的线圈是否连通。
对照现有技术中的将线圈安装至电机定子中的方法与本实用新型提供的将线圈安装至电机定子中的方法,可知,通过本实用新型提供的定子绕组,实现了利用一根扁平导线绕制成一个定子绕组的工艺,完全摆脱了现有技术中需将不同的单个线圈进行连接进而制成定子绕组的技术手段,极大的改善了现有工艺,大幅度提高了定子绕组的生产效率。
本实用新型提供的一种定子绕组结构,也可用于电感、变压器等电磁技术领域。
本实用新型提供的电机,还可用于车辆,根据本实用新型实施例的电机以及车辆的其他结构和操作对于本领域技术人员而言都是可以理解并且容易实现的,因此不再详细描述。
通过上述技术方案,本实用新型实现了利用一根扁平导线形成定子连续绕组的技术方案,并且所述定子绕组上依次排布有至少两个间隔设置的线圈。本实用新型提供的定子绕组中的所有线圈共用一根扁平导线,不同于传统技术方案中线圈与线圈之间需要进行焊接或者其他的连接方式。本技术方案至少具有如下的技术效果:
(1)定子绕组一体成型,定子绕组上的所有线圈共用一根扁平导线,降低了定子绕组的生产成本,提高了定子绕组的生产效率;
(2)减少了定子绕组生产过程中不必要的工序(连接不同的线圈),提高了定子绕组的生产效率,降低了人工劳动强度;
(3)定子绕组一体成型,所有的线圈共用一根扁平导线,线圈之间不存在连接点,使得定子绕组产品质量的一致性得到提高。
综上所述,本实用新型提供的上述实施例仅例示性说明本实用新型的原理及其功效,而非用于限制本实用新型。任何熟悉此技术的人士皆可在不违背本实用新型的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本实用新型所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本实用新型的权利要求所涵盖。

Claims (10)

  1. 一种定子绕组,其特征在于,所述定子绕组由一根扁平导线绕制而成,所述一根扁平导线的一部分用于缠绕形成至少两个间隔设置的线圈,所述线圈的绕制方向一致并位于所述扁平导线的同一侧。
  2. 如权利要求1所述的定子绕组,其特征在于,所述定子绕组上的所述线圈为等间隔分布,并且等间隔分布的所述线圈为完全相同的线圈。
  3. 如权利要求1所述的定子绕组,其特征在于,所述一根扁平导线的另一部分用于连接相邻的线圈,连接相邻所述线圈的所述扁平导线为单层结构,在第一状态下,单层所述扁平导线位于同一直线上。
  4. 如权利要求1所述的定子绕组,其特征在于,所述一根扁平导线的另一部分用于连接相邻的线圈,连接相邻所述线圈的所述扁平导线为单层结构,在第二状态下,单层所述扁平导线位于同一圆周面上。
  5. 如权利要求1-4任一所述的定子绕组,其特征在于,一个所述定子绕组上间隔设置的线圈的数量为5个。
  6. 如权利要求5所述的定子绕组,其特征在于,每个所述线圈的层数为14层。
  7. 如权利要求1所述的定子绕组,其特征在于,所述扁平导线为扁铜导线,所述扁铜导线截面的厚度为1mm、宽度为6mm。
  8. 一种定子,包括定子铁芯,所述定子铁芯为环形结构,所述定子铁芯沿着圆周方向均匀设有凸台,相邻所述凸台之间设有卡槽;所述卡槽用于容纳定子绕组,其特征在于,所述定子绕组如上述权利要求1-7任一所述的定子绕组。
  9. 如权利要求8所述的定子,其特征在于,位于所述定子铁芯上的所述定子绕组的数量为三个,位于所述定子绕组一端的所述线圈上具有出线端,所述定子绕组之间通过所述出线端连接。
  10. 一种电机,其特征在于,包括如权利要求8-9任一所述的一种定子。
PCT/CN2020/073949 2019-02-01 2020-01-23 一种定子绕组、定子和电机 WO2020156477A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20749211.7A EP3920380A4 (en) 2019-02-01 2020-01-23 STATOR, STATOR AND MOTOR WINDING
US17/427,580 US20220123617A1 (en) 2019-02-01 2020-01-23 Stator Winding, Stator and Motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920180831.X 2019-02-01
CN201920180831.XU CN209329821U (zh) 2019-02-01 2019-02-01 一种定子绕组、定子和电机

Publications (1)

Publication Number Publication Date
WO2020156477A1 true WO2020156477A1 (zh) 2020-08-06

Family

ID=67732170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073949 WO2020156477A1 (zh) 2019-02-01 2020-01-23 一种定子绕组、定子和电机

Country Status (4)

Country Link
US (1) US20220123617A1 (zh)
EP (1) EP3920380A4 (zh)
CN (1) CN209329821U (zh)
WO (1) WO2020156477A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209329821U (zh) * 2019-02-01 2019-08-30 上海磁雷革传动系统有限公司 一种定子绕组、定子和电机
CN113113977B (zh) * 2020-01-10 2022-10-04 浙江盘毂动力科技有限公司 一种轴向磁场电机的绕组结构及绕制方法
CN211629956U (zh) * 2020-02-25 2020-10-02 上海磁雷革传动系统有限公司 一种线圈、定子及电机
DE102022206234B3 (de) 2022-06-22 2023-09-07 Vitesco Technologies GmbH Stator für eine Axialflussmaschine, Axialflussmaschine und Kraftfahrzeug mit Axialflussmaschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237086A (ja) * 2004-02-18 2005-09-02 Sumitomo Electric Ind Ltd アキシャルモータ及びその製造方法
CN105900315A (zh) * 2014-01-10 2016-08-24 日立汽车系统株式会社 轴向间隙型马达
CN208445376U (zh) * 2018-07-23 2019-01-29 上海适达动力科技股份有限公司 轴向磁场电机及其定子绕组结构
CN208445375U (zh) * 2018-06-08 2019-01-29 核心驱动科技(金华)有限公司 轴向磁场电机及其相绕组结构
CN209329821U (zh) * 2019-02-01 2019-08-30 上海磁雷革传动系统有限公司 一种定子绕组、定子和电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102474168B (zh) * 2009-09-30 2014-05-07 丰田自动车株式会社 用于笼状分布卷绕线圈的扁平导线的成形方法以及成形装置
JP2013118750A (ja) * 2011-12-02 2013-06-13 Hitachi Ltd アキシャルギャップ型回転電機及びその製造方法
JP2018166353A (ja) * 2017-03-28 2018-10-25 Ntn株式会社 電動モータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237086A (ja) * 2004-02-18 2005-09-02 Sumitomo Electric Ind Ltd アキシャルモータ及びその製造方法
CN105900315A (zh) * 2014-01-10 2016-08-24 日立汽车系统株式会社 轴向间隙型马达
CN208445375U (zh) * 2018-06-08 2019-01-29 核心驱动科技(金华)有限公司 轴向磁场电机及其相绕组结构
CN208445376U (zh) * 2018-07-23 2019-01-29 上海适达动力科技股份有限公司 轴向磁场电机及其定子绕组结构
CN209329821U (zh) * 2019-02-01 2019-08-30 上海磁雷革传动系统有限公司 一种定子绕组、定子和电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3920380A4 *

Also Published As

Publication number Publication date
CN209329821U (zh) 2019-08-30
EP3920380A4 (en) 2022-10-19
EP3920380A1 (en) 2021-12-08
US20220123617A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
WO2020156477A1 (zh) 一种定子绕组、定子和电机
WO2021169448A1 (zh) 一种线圈、定子及电机
CN109327094A (zh) 一种72槽6层以上扁铜线叠绕组结构以及应用该绕组结构的新能源汽车
CN111342576A (zh) 一种新型扁线电机的定子
CN103503091A (zh) 连续的换位导线
KR20160112959A (ko) 전기 기기용 권선
CN109767892A (zh) 扼流圈
CN208986716U (zh) 扁线电机电枢连接件
CN110011449B (zh) 一种极薄盘式绕组
CN211266604U (zh) 一种电机定子及电机
WO2020088148A1 (zh) 一种线圈连接件及线圈组件
CN106357033B (zh) 一种励磁线圈、励磁线圈结构及电机
CN105048660A (zh) 一种拼接式的电机定子
CN204012966U (zh) 用于压缩机的电机定子和压缩机
CN206742993U (zh) 电机及其定子绝缘组件
CN209358318U (zh) 一种72槽6层以上扁铜线叠绕组结构以及应用该绕组结构的新能源汽车
CN205544647U (zh) 定子冲片、定子铁芯及电机
CN202334054U (zh) 用于高比功率电机的成型半元件式绕组结构
CN204681186U (zh) 一种新型无刷双馈电机
CN109861427A (zh) 一种高功率密度盘式电机绕组结构及其折弯制备方法
CN219227294U (zh) 分段绕线式集中绕组的一体式定子结构
CN211958877U (zh) 旋转电机的定子结构、旋转电机和新能源汽车
CN201557279U (zh) 一种电磁炉中的多层励磁线圈盘
CN213635646U (zh) 一种多段圆弧切圆式变压器绕组线圈结构及干式变压器
CN202058489U (zh) 12根竖向排列组合导线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020749211

Country of ref document: EP

Effective date: 20210901