WO2020156130A1 - 一种多通道 led 模拟 cie 标准照明体的方法和照明系统 - Google Patents

一种多通道 led 模拟 cie 标准照明体的方法和照明系统 Download PDF

Info

Publication number
WO2020156130A1
WO2020156130A1 PCT/CN2020/071762 CN2020071762W WO2020156130A1 WO 2020156130 A1 WO2020156130 A1 WO 2020156130A1 CN 2020071762 W CN2020071762 W CN 2020071762W WO 2020156130 A1 WO2020156130 A1 WO 2020156130A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
wavelength
light source
color temperature
cie standard
Prior art date
Application number
PCT/CN2020/071762
Other languages
English (en)
French (fr)
Inventor
靳鹏
Original Assignee
靳鹏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 靳鹏 filed Critical 靳鹏
Priority to EP20749416.2A priority Critical patent/EP3919877B1/en
Priority to AU2020213494A priority patent/AU2020213494B2/en
Priority to JP2021545290A priority patent/JP7303975B2/ja
Publication of WO2020156130A1 publication Critical patent/WO2020156130A1/zh
Priority to US17/382,234 priority patent/US11388794B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/24Controlling the colour of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/28Controlling the colour of the light using temperature feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3574Emulating the electrical or functional characteristics of incandescent lamps
    • H05B45/3577Emulating the dimming characteristics, brightness or colour temperature of incandescent lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry

Definitions

  • the invention belongs to the field of light sources for colorimetry, and particularly relates to a method and a lighting system for simulating a CIE standard illuminating body with a multi-channel LED.
  • the standard illuminators in the field of colorimetry included A, B, C, D, and E. Due to the inconvenient use of B and C illuminator light source filters, they do not include ultraviolet spectrum energy, and have been included in the current abolition status of historical recommendations in the 2004 International Commission on Illumination (CIE) 015 technical report manual for the third update.
  • the E illuminator is an equal energy white light, which belongs to an artificially recognized consistent white point reference and is not used in the field of colorimetric lighting.
  • the A illuminator has an approximately smooth and continuous spectral energy distribution with a color temperature of 2856K.
  • CIE has such a spectral distribution in many light sources, such as a tungsten filament lamp that meets the 2856K color temperature of the A illuminator, which is recommended as a standard light source by CIE.
  • Commonly used high CRI LEDs need methods to simulate if they need to meet the A lighting body standard.
  • D illuminator There is also the most widely used D illuminator.
  • CIE has not yet given a recommended light source, so it is an important issue for analog illuminators in the industry.
  • High-quality CIE standard illuminator light sources, especially D illuminator light sources are often required in the field of colorimetry such as subjective color evaluation, color measurement, photography, and advanced image acquisition and analysis.
  • the illuminator D required in these fields has long been realized by three technologies: A light source plus color filters, standard fluorescent tube light source, multi-channel based on spectrum Control the LED mixed light source.
  • the light source formed by the light source and the color filter has good performance indicators, its energy consumption, life span and cost problems caused by the combination of these two problems have caused it to be only applied to some instruments, such as colorimetric light boxes. , Spectrophotometer measurement and other links, the industry with a large application volume has no choice but to use the standard fluorescent tube light source with poor light source performance but low energy consumption cost. Excellent performance based on multi-channel spectrum control led Hybrid light sources are even less likely to be widely used due to their higher cost.
  • the traditional standard fluorescent tube has a short life. If you want to meet the standards in these fields, the life of the traditional standard fluorescent tube is often only 2000-2500 hours in these fields and has to be replaced.
  • metamerism index usually can only reach CD level, that is, C level with visible light metamerism index ⁇ 1.0, D level with ultraviolet metamerism index ⁇ 1.5, high-end products of individual manufacturers have the same color
  • the heterospectral index can barely reach the CC level, while the BC level is recommended in ISO3664, and the CD level is defined as the lowest index that is not recommended but can be used.
  • the color rendering index of the traditional standard fluorescent tube spectrum is low, the general color rendering index Ra>90%, the special color rendering index Ri>80, the color rendering index is an important index, which can be seen from its calculation formula 100-4.6 ⁇ E
  • the index is directly related to the color difference between the observed object under the light source and the standard light source. If the saturated color represented by the color rendering index of 80 is converted into the color difference, it is about 4.35. This color difference is unacceptable in these fields but has to be accepted.
  • the more important defect is that it is a fluorescent lamp, which has a short life and a large amount. Because it contains mercury, it is a hazardous waste. Currently, there is no relevant organization for recycling in China. Such hazards are not mentioned in the green printing certification of the huge printing industry. Every year, a large number of standard light source lamps are discarded without treatment, causing environmental pollution.
  • the Minamata Convention on Mercury which entered into force on August 16, 2017, mentioned that “from 2021, China will phase out the production and use of mercury-containing batteries and fluorescent lamp products required by the Minamata Convention on Mercury. By 2032 It is necessary to shut down the mining of all primary mercury mines.” At present, the general lighting field has basically been replaced by LEDs.
  • High CRI LEDs have good color rendering performance and equivalent, and the lifetime cost is much lower than standard light source lamps, but people still cannot find a suitable method to make high CRI LEDs widely used In these fields related to colorimetry.
  • High CRI LEDs are superior to traditional standard fluorescent tubes in terms of color rendering index, environmental protection, energy consumption, life, stability and full life cost, but their chromaticity coordinates and color temperature deviate from D illuminators, and most high CRI LEDs are visible light
  • the metamerism index can only reach the d level of ⁇ 1.5, because it does not contain the ultraviolet spectrum energy, the ultraviolet light metamerism index>2.
  • LEDs are point-shaped light sources, which are often easy to form dazzling light after being arranged.
  • the prior art discloses some multi-channel LED hybrid technologies, which can partially meet the standard light source requirements in these fields, such as the prior art represented by US8592748B2, 2016100298255 and 201810812579.X.
  • the US8592748B2 patent filed by the patentee for the standard light source industry giant justNormlicht discloses 5 monochromatic LEDs of different wavelengths and 2 white light LED channels of different color temperatures to achieve 2700k-10000k adjustable temperature standard illuminator light source by spectral curve fitting , Especially the simulation of D illuminator.
  • the monochromatic LED has many wavelengths and small wavelength range, it is just suitable for the infinite approximation of the spectral curve of the standard illuminator D whose spectral curve is not smooth, so that when there is no LED technology, people use the filter method to simulate the A light source to have a good effect.
  • the D light source and the filters used are not among the technical methods considered by the LED multi-channel technology. From the realization of the first patented 5+2 channel in 2009, to the 14-channel realization of the ultimate performance in 2016, and then to 2018 the so-called n-2 is essentially a 7+2 LED hybrid, without exception, the reverse spectrum
  • the dense arrangement is used to fill in the missing wavelengths and the spectrum of each fill wavelength to infinitely approach the spectrum of the standard illuminator.
  • the multi-channel LED hybrid technology disclosed in the above three patents cannot be widely used in these colorimetric-related fields due to high cost.
  • the reason for the high cost is that these three patents are based on spectral calculation and spectral infinite approximation.
  • the method of this method requires spectrochromatic instruments or sensors for calibration. Since standard illuminators, especially D, contain ultraviolet light energy, this part of the energy will cause anti-glare and uniform light lens yellowing, resulting in a life of 50,000 For hourly light sources, if the light source is always stable at high-quality technical indicators, the data collection of these instruments or sensors is required for feedback.
  • UV chip LEDs that can meet the requirements of Part D of the CIE standard illuminating body, but the life span is too short, the color temperature is fixed, the price is too high, and the manufacturer does not consider the deviation caused by the anti-glare lens and cannot be widely used.
  • the present invention provides a method and a lighting system for simulating a CIE standard illuminator with a multi-channel LED.
  • One of the technical solutions of the present invention provides a method for simulating a CIE standard illuminating body with a multi-channel LED.
  • the method includes the following steps:
  • the color temperature adjustment control channel According to the CIE standard lighting body color temperature simulation range and color temperature adjustment direction to be simulated, select LED as the color temperature adjustment control channel.
  • the light source and filter form the color temperature adjustment control channel;
  • the chromaticity coordinates adjust the brightness of the main light source control channel, the wavelength supplementary control channel, and the color temperature adjustment control channel to make the mixed chromaticity coordinates reach the chromaticity coordinates of the CIE standard illuminator to be simulated.
  • the method includes the following steps:
  • the chromaticity coordinate correction filter is placed above the main light source to form the main light source control channel;
  • n types by the relative radiance of the standard illuminating body wavelength of the n wavelength LEDs in the standard illuminating body and the radiance of each wavelength of the n wavelength LEDs in the wavelength coverage of the wavelength supplementary control channel of the CIE standard illuminator.
  • the number of LEDs of each wavelength in the wavelength LED, and the corresponding number of n wavelength LEDs form a wavelength supplementary control channel;
  • the color temperature adjustment control channel According to the CIE standard lighting body color temperature simulation range and color temperature adjustment direction to be simulated, select LED as the color temperature adjustment control channel.
  • the light source and filter form the color temperature adjustment control channel;
  • chromaticity coordinates measured by chromaticity adjust the brightness of the main light source control channel, wavelength supplementary control channel, and color temperature adjustment control channel that reach the maximum illuminance so that the mixed chromaticity coordinates can reach the chromaticity coordinates of the CIE standard illuminator that needs to be simulated .
  • the LEDs of the main light source control channel, the wavelength supplementary control channel and the color temperature adjustment control channel to form a group closely arranged by distance, and copy these groups to achieve The maximum illuminance required.
  • the method further includes the following steps:
  • the method further includes the following steps:
  • Microcomputer processor and chromaticity measurement form a closed-loop feedback system.
  • Another technical solution of the present invention provides a multi-channel LED lighting system simulating a standard lighting body, the lighting system includes:
  • a high display index LED is selected as the main light source control channel according to the color temperature adjustment direction;
  • select LED as the color temperature adjustment control channel composed of the light source and filter of the color temperature adjustment channel;
  • a chromaticity measuring device that measures the chromaticity coordinates of a simulated CIE standard lighting source
  • chromaticity coordinates adjust the brightness of the main light source control channel, wavelength supplementary control channel, and color temperature adjustment control channel so that the mixed chromaticity coordinates can reach the desired simulated CIE standard lighting chromaticity coordinates.
  • the lighting system includes:
  • a kind of high display index LED selected according to the color temperature adjustment direction is used as the main light source and placed above the main light source and less than or equal to 1 main light source containing color materials to control the chromaticity coordinates of the channel
  • the main light source control channel composed of the correct deviation filter
  • the main light source's LED spectral wavelength coverage selects n wavelength LEDs to supplement the required simulated CIE standard illuminator's spectral wavelength coverage as the wavelength supplementary control channel
  • the light source is determined by the relative radiance of the standard illuminating body wavelength of the n-wavelength LEDs in the standard illuminating body and the radiance of each wavelength LED in the n-wavelength LEDs in the wavelength supplementary control channel in the spectrum wavelength coverage of the CIE standard illuminating body to be simulated
  • the number of LEDs of each wavelength in the n-wavelength LEDs will supplement the control channel of the wavelength composed of the corresponding number of n-wavelength LEDs;
  • select LED as the color temperature adjustment control channel composed of the light source and filter of the color temperature adjustment channel;
  • a chromaticity measuring device that measures the chromaticity coordinates of a simulated CIE standard lighting source
  • chromaticity coordinates adjust the brightness of the main light source control channel, wavelength supplementary control channel, and color temperature adjustment control channel so that the mixed chromaticity coordinates can reach the desired simulated CIE standard lighting chromaticity coordinates.
  • the lighting system further includes:
  • wavelength supplementary control channel and color temperature adjustment control channel Used to arrange the LEDs of the main light source control channel, wavelength supplementary control channel and color temperature adjustment control channel according to the vertical distance to the LED and the recommended arrangement distance ratio to form a group closely arranged by distance, copy these groups to achieve the required maximum Anti-glare homogenizing lens for illuminance.
  • the lighting system further includes:
  • the lighting system further includes:
  • the behavior sensing sensor used to detect the occurrence of different events and transmit them to the microcomputer controller; the microcomputer controller is also used to form a closed-loop feedback system with the chromaticity measuring device, and the microcomputer controller is also used to receive data transmitted by the behavior sensing sensor Event, and control the adjustment of color temperature and illuminance corresponding to different events.
  • the invention provides a method and lighting system for simulating CIE standard illuminators with multi-channel LEDs.
  • the method provided by the invention has the following beneficial effects:
  • the present invention reduces LED control channels through grouping optimization, and uses filters, a technology abandoned by multi-channel LEDs, which greatly reduces the number of control channels and enables the control of the light source of multi-channel LED analog standard illuminators through a single Chromaticity control is not a qualitative change of chromaticity control that must be converted by spectroscopic spectrum conversion.
  • a pure chromaticity technology with low analytical performance surpasses or reaches the light source performance achieved by the higher analytical performance of the spectroscopic chromaticity technology in the process of multi-channel LED simulating CIE standard lighting.
  • the calibration adjustment and closed-loop feedback control method of this method is based on the chromaticity method instead of the spectrochromaticity method
  • the feedback system when simulating the light source of the illuminator can use the colorimeter instead of the spectrophotometer or spectroradiance Instruments and other instruments that use spectroscopy technology greatly reduce the cost of multi-channel analog standard light sources.
  • the price of a spectrochromatic sensor is more than 15 times that of a non-spectrochromatic sensor, that is, the cost is reduced by 15 times.
  • the technical indicators implemented by the present invention using a low-level method surpass or reach the technical indicators implemented by the high-level method.
  • the method provided by the present invention achieves a reduction in energy consumption. Since LEDs need constant current circuit power supply, constant current needs to be realized by technologies such as series resistors or constant current drive chips. These energy consumption cannot be converted from electricity to light. The control channel will have too much such loss. Since the control channel of the present invention has fewer control channels, the present invention can reduce energy consumption.
  • any grouping will bring the possibility of not conforming to its principle, and the method provided by the present invention adopts pre-grouping optimization and only needs a small number of control channels to control at the same time , A large reduction in channels means further cost reductions. And its performance index is also higher than the existing technology.
  • the method provided by the present invention has a low failure rate. Every time a control channel is added, the probability of failure will be greatly increased, thereby affecting long-term stability. Due to the few control channels in the present invention, the failure rate is significantly reduced.
  • the method provided by the present invention overcomes the technical prejudice that the multi-channel LED simulation standard illuminator only relies on the infinite approximation of the spectral curve, and provides a new idea for those skilled in the multi-channel LED field.
  • Fig. 1 is a flowchart of a method for simulating a CIE standard luminaire with a multi-channel LED in some embodiments of the present invention
  • FIG. 2 is a flowchart of a method for simulating a CIE standard illuminating body with a multi-channel LED in other embodiments of the present invention
  • FIG. 3 is a flowchart of a method for simulating a CIE standard illuminating body with a multi-channel LED in some other embodiments of the present invention
  • FIG. 4 is a structural block diagram of a multi-channel LED lighting system simulating CIE standard illuminating body in other embodiments of the present invention.
  • Fig. 5 is a structural block diagram of a lighting system of a multi-channel LED simulating CIE standard lighting body in other embodiments of the present invention.
  • some embodiments of the present invention provide a method for simulating a CIE standard illuminating body with a multi-channel LED.
  • the method includes the following steps:
  • chromaticity coordinates adjust the brightness of the main light source control channel, wavelength supplementary control channel, and color temperature adjustment control channel so that the mixed chromaticity coordinates can reach the chromaticity coordinates of the CIE standard illuminating body to be simulated.
  • the method for simulating CIE standard illuminator with multi-channel LED relies on chromaticity measuring device instead of spectrum collection device to control multi-channel LED dimming, and when the chromaticity coordinates reach the standard, the color rendering index, color temperature, homochromaticity The spectrum index reached the standard at the same time.
  • the present invention provides the formation of the preset color temperature change track of the LED multi-channel mixed light passing through the filter method to solve the problem of the yellowing of the LED lens affecting the light source. After the equivalent displacement of the multi-channel LED based on this method, it can also be applied to other lighting fields that do not require ultraviolet energy.
  • FIG. 2 As shown in Figure 2, other embodiments of the present invention provide a method for multi-channel LEDs to simulate CIE standard illuminators.
  • the method adjusts three preset channel LEDs based on chromaticity coordinates to realize the CIE standard of multi-color temperature and multi-brightness on-demand adjustment.
  • Illumination body light source the method includes the following steps:
  • S10 Choose a high-resolution LED as the main light source according to the color temperature adjustment direction within the desired simulated CIE standard lighting color temperature range;
  • the CIE standard illuminating body that needs to be simulated is the standard illuminating body D
  • the color temperature adjustment coverage range is between 5000K-10000K
  • the lighting environment requirements meet the lighting environment requirements of ISO3664 and ISO3668.
  • the D50 specified by ISO3664 choose close to 5000K high display index LED, the average value of the color rendering index R1-14 of the high rendering index LED is greater than 90.
  • this implementation selects about 4800K high rendering index LED with the average value of color rendering index R1-14 greater than 95 as the main light source control channel.
  • Light source It can also be realized by using ordinary white LEDs with rgb color mixing to adjust the color rendering index of ordinary white LEDs to form a high rendering index LED.
  • the purpose is to form a channel with a color rendering index greater than 90%;
  • S20 Less than or equal to 1 type of main light source control channel containing color materials.
  • the chromaticity coordinate correction filter is placed above the main light source to form the main light source control channel;
  • the chromaticity coordinate reference of the LED close to 5000K is the intersection of the blackbody locus and the isotherm.
  • the chromaticity coordinate of the D light source relative to the daylight curve is located in the green direction of the intersection.
  • this application uses the main light source Equipped with a correction filter. When the chromaticity coordinates of the selected main light source control channel do not deviate too much from the standard light source to be simulated, the correction filter is not required;
  • step S30 The LED spectral wavelength coverage of the main light source selected in step S10 is compared with the spectral wavelength coverage of the CIE standard illuminator to be simulated, and n wavelengths are selected to supplement the spectral wavelength coverage of the CIE standard illuminator to be simulated.
  • LED as a wavelength supplementary control channel light source;
  • the LED main light source has no corresponding energy in the 380nm-420nm range, so choose 380 -420nm as a supplement, because there is no wavelength coverage that can reach 380-420nm, the wavelength coverage is divided into 380nm, 400nm, and 420nm respectively to supplement, that is, three kinds of LEDs with luminous wavelengths are selected as the light source of the wavelength supplementary control channel; It should be noted that if the 420nm wavelength LED is placed in the equivalent displacement of the main light source control channel, a light source with independent control of ultraviolet energy can be produced. This light source is suitable for some prohibited ultraviolet energy or ultraviolet A light source environment with individually adjustable energy, such as an artwork observation environment.
  • the number of LEDs of each wavelength required for this supplement can be calculated, and all these numbers of LEDs Form a wavelength supplementary control channel.
  • S50 Select LED as the color temperature adjustment control channel according to the CIE standard lighting body color temperature simulation range and color temperature adjustment direction to be simulated.
  • the light source and filter form the color temperature adjustment control channel;
  • the light emitted by the wavelength supplement control channel and the light of the color temperature adjustment control channel will form two trajectories.
  • the wavelength supplement control channel forms an adjustment trajectory that tends to be vertical on the CIE chromaticity diagram
  • the color temperature adjustment control channel forms It is an adjustment trajectory that is close to the color temperature change curve.
  • the chromaticity coordinates of the two color temperatures in the standard lighting body to be simulated are connected into a line in the CIE1976 chromaticity diagram through the principle of color mixing.
  • a wavelength formed with the outermost periphery of the chromaticity diagram will appear on the extension line near the rising direction of the color temperature.
  • Value cross point, the wavelength represented by the cross point is the wavelength of the light source of the color temperature adjustment control channel, which is 480nm.
  • the wavelength can be formed by a transparent body of a 450nm LED and a mixed color material.
  • the mixed color material can be pigments, dyes, phosphors, quantum dots and other substances that can absorb part of the spectrum and emit light at this wavelength, preferably phosphors.
  • the mixed color material can be curable or form a transparent object that wraps or sandwiches the color material, such as transparent epoxy resin, silicone resin, glass, ceramics, etc.
  • a transparent two-component epoxy resin is mixed with phosphors, and the mixing ratio is preferably 19:1. Since epoxy resin absorbs part of the spectrum, after the mixing ratio is determined in the present invention, accurate ratio correction is made according to the ratio plus or minus 1% accuracy, and phosphors of other nm wavelengths can also be added. The purpose is to rely on LEDs and phosphors to construct a The chromaticity coordinate trajectory within the color temperature adjustment range, and supplement other nm wavelength energy during the adjustment process.
  • S60 Adjust the brightness of the main light source control channel, wavelength supplementary control channel, and color temperature adjustment control channel according to the chromaticity coordinates measured by chromaticity, so that the mixed chromaticity coordinates can reach the chromaticity coordinates of the CIE standard illuminator to be simulated.
  • chromaticity coordinates based on the chromaticity coordinates and measuring the chromaticity coordinates of the required simulated standard illuminator light source; lighting the LEDs in the three control channels, based on the main light source control channel, using chromaticity to measure or analyze chromaticity Measure the chromaticity coordinates.
  • the intersection formed on the CIE chromaticity diagram and the chromaticity coordinates of the required simulated standard illuminating body are approximated to complete the multi-color temperature and multi-illuminance of the required illuminating body. simulation.
  • T represents the color temperature of the main light source.
  • FIG. 3 other embodiments of the present invention provide a method for simulating CIE standard illuminators with multi-channel LEDs.
  • the method adjusts three preset channel LEDs based on chromaticity coordinates to realize the CIE standard of multi-color temperature and multi-brightness on-demand adjustment.
  • Illumination body light source the method includes the following steps:
  • S1 Choose a kind of high display index LED as the main light source according to the adjustment direction of the color temperature within the color temperature range of the CIE standard lighting body to be simulated;
  • S2 Less than or equal to 1 type of main light source control channel containing color materials.
  • the chromaticity coordinate correction filter is placed above the main light source to form the main light source control channel;
  • step S3 Compare the LED spectral wavelength coverage of the main light source selected in step S1 with the spectral wavelength coverage of the CIE standard illuminator to be simulated, and select n wavelengths to supplement the spectral wavelength coverage of the CIE standard illuminator to be simulated LED, as a wavelength supplementary control channel light source;
  • S4 Determine the relative radiance of the standard illuminating body wavelength of the n-wavelength LEDs in the standard illuminating body and the radiance of the n-wavelength LEDs in the n-wavelength LEDs in the wavelength supplementary control channel in the spectral wavelength coverage of the CIE standard illuminator.
  • the number of LEDs of each wavelength in n-wavelength LEDs, and the corresponding number of n-wavelength LEDs form a wavelength supplementary control channel;
  • the LED Since the LED is a point-shaped light source, it will produce dazzling when used directly.
  • the present invention uses an anti-dazzling uniform light lens to avoid dazzling and make the light uniform effect better.
  • the color temperature to A light source that is, the color temperature can be adjusted within the range of 2700K-10000K.
  • the present invention provides a multi-channel LED lighting system that simulates CIE standard lighting, the lighting system includes:
  • a high display index LED is selected as the main light source control channel according to the color temperature adjustment direction;
  • select LED as the color temperature adjustment control channel composed of the light source and filter of the color temperature adjustment channel;
  • a chromaticity measuring device that measures the chromaticity coordinates of a simulated CIE standard lighting source
  • chromaticity coordinates adjust the brightness of the main light source control channel, wavelength supplementary control channel, and color temperature adjustment control channel so that the mixed chromaticity coordinates can reach the desired simulated CIE standard lighting chromaticity coordinates.
  • the chromaticity measuring device is used to periodically collect the chromaticity coordinates of the required simulated CIE standard illuminating body and transmit it to the microcomputer controller, and the microcomputer controller responds to the received feedback information of the chromaticity measuring device.
  • the chromaticity sensor can be used to collect the current chromaticity coordinates of the current lighting and transmit them to the microcomputer controller.
  • the microcomputer controller judges that if it is qualified, it will continue the current lighting. If it is not qualified, the main light source control channel, wavelength supplementary control channel, The color temperature adjustment control channel is adjusted to make it qualified.
  • the present invention provides a multi-channel LED illuminating system that simulates CIE standard illuminators.
  • the illuminating system is based on chromaticity coordinate adjustment to preset three or more channels of LEDs to achieve multi-color temperature and multi-illuminance on demand Adjusted CIE standard lighting body light source lighting system, the lighting system includes:
  • a kind of high display index LED selected according to the color temperature adjustment direction is used as the main light source and placed above the main light source and less than or equal to 1 main light source containing color materials to control the chromaticity coordinates of the channel
  • the main light source control channel composed of the correct deviation filter
  • the main light source's LED spectral wavelength coverage selects n wavelength LEDs to supplement the required simulated CIE standard illuminator's spectral wavelength coverage as the wavelength supplementary control channel
  • the light source is determined by the relative radiance of the standard illuminating body wavelength of the n-wavelength LEDs in the standard illuminating body and the radiance of each wavelength LED in the n-wavelength LEDs in the wavelength supplementary control channel in the spectrum wavelength coverage of the CIE standard illuminating body to be simulated
  • the number of LEDs of each wavelength in the n-wavelength LEDs will supplement the control channel of the wavelength composed of the corresponding number of n-wavelength LEDs;
  • select LED as the color temperature adjustment control channel composed of the light source and filter of the color temperature adjustment channel;
  • a chromaticity measuring device that measures the chromaticity coordinates of a simulated CIE standard lighting source
  • chromaticity coordinates adjust the brightness of the main light source control channel, wavelength supplementary control channel, and color temperature adjustment control channel so that the mixed chromaticity coordinates can reach the desired simulated CIE standard lighting chromaticity coordinates.
  • the lighting system of the multi-channel LED simulating standard illuminating body provided by the present invention can simulate the CIE standard illuminating body with high performance.
  • the present invention provides a multi-channel LED illuminating system that simulates CIE standard illuminators.
  • the illuminating system is realized by adjusting presets greater than or equal to three channel LEDs based on chromaticity coordinates.
  • the CIE standard illuminator light source lighting system with multi-color temperature and multi-illuminance adjusted on demand, the lighting system includes:
  • a kind of high display index LED selected according to the color temperature adjustment direction is used as the main light source and placed above the main light source and less than or equal to 1 main light source containing color materials to control the chromaticity coordinates of the channel
  • the main light source control channel composed of the correct deviation filter
  • the main light source's LED spectral wavelength coverage selects n wavelength LEDs to supplement the required simulated CIE standard illuminator's spectral wavelength coverage as the wavelength supplementary control channel
  • the light source is determined by the relative radiance of the standard illuminating body wavelength of the n-wavelength LEDs in the standard illuminating body and the radiance of each wavelength LED in the n-wavelength LEDs in the wavelength supplementary control channel in the spectrum wavelength coverage of the CIE standard illuminating body to be simulated
  • the number of LEDs of each wavelength in the n-wavelength LEDs will supplement the control channel of the wavelength composed of the corresponding number of n-wavelength LEDs;
  • select LED as the color temperature adjustment control channel composed of the light source of the color temperature adjustment channel and the filter containing the color material
  • a chromaticity measuring device that measures the chromaticity coordinates of a simulated CIE standard lighting source
  • the microcomputer control is also used to form a closed-loop feedback system with the chromaticity measuring device, and the microcomputer controller is also used to receive events transmitted by the behavior sensing sensor, and control the adjustment of color temperature and illuminance corresponding to different events;
  • a behavioral sensor used to detect the occurrence of different events and transmit them to the microcomputer controller.
  • the behavior sensing sensor is used to determine what kind of lighting such as color temperature, brightness, and lighting time is required for the user's behavior, and transmit it to the microcomputer controller, which is controlled by the microcomputer controller.
  • the behavior sensing sensor receives the behavior and transmits it to the microcomputer controller.
  • the microcomputer controller controls three channels to make the lighting reach the predetermined behavior and action settings.
  • the lighting system of the multi-channel LED simulating standard illuminating body provided by the present invention can simulate the CIE standard illuminating body with high performance.

Abstract

本发明提供一种多通道LED模拟CIE标准照明体的方法和照明系统,该方法依据色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体的色品坐标;该方法通过分组优化减少LED控制通道,并使用滤镜这种被多通道LED摒弃的技术,形成了大幅度降低控制通道数量并使多通道LED模拟标准照明体的光源的控制可以通过单一色度控制而非必须通过分光光谱转换的色度控制的质的转变。使一种分析性能低的纯色度技术在多通道LED模拟CIE标准照明体过程中超越了或达到了分析性能更高的分光类色度技术达到的光源性能。

Description

一种多通道LED模拟CIE标准照明体的方法和照明系统 技术领域
本发明属于色度学用光源领域,特别涉及一种多通道LED模拟CIE标准照明体的方法和照明系统。
背景技术
最初色度学领域标准照明体包括A、B、C、D、E五种。由于B、C照明体光源滤镜使用不便,不包含紫外光谱能量,已于第三次更新的2004年国际照明委员会(CIE)015技术报告手册中列入历史建议现行废除状态。E照明体是等能白光,属于人为认定的一个一致的白点参考,没有应用于色度学用照明领域。A照明体是色温2856K近似平滑连续的光谱能量分布,其在许多光源都具备此类光谱分布,如被CIE推荐为标准光源的符合A照明体的2856K色温的钨丝灯。常用高显指LED如需达到A照明体标准则需要方法进行模拟。还有应用最为广泛的D照明体,CIE至今都没有给出建议光源,因此是业内模拟照明体的重要课题。在色彩主观评价、色彩测量、摄影、高级图像采集分析等色度学领域往往需要高质量的CIE标准照明体光源,尤其是D照明体光源。由于CIE至今没有给出适合D照明体的光源建议,长期以来这些领域所需的照明体D低依赖三种技术实现,A光源加滤色器形成的光源、标准日光灯管光源、多通道基于光谱控制LED混合光源。
由于 A 光源加滤色器形成的光源即便有着很好的性能指标,但其能耗问题、寿命问题以及这两个问题结合产生的成本问题,导致了其只能应用于一些仪器上,如比色灯箱、分光光度仪测量等环节,应用量极大的工业出于无奈则使用光源性能较差但能耗成本低的标准日光灯管光源。性能出色的基于多通道光谱控制 LED 混合光源由于其成本更高则更不具备广泛应用的可能。
随着高显指 LED 这种廉价节能技术在多种照明领域的大规模应用,这些色度学视觉应用领域的人们渴望用此类 LED 技术逐渐替代传统的有着如下弊端的标准日光灯管光源:
1.传统标准日光灯管色温固定无法调节,这些领域往往需要多种色温标准光源进行参考,如色度学相关印刷领域的色彩主观评测环节的iso3664国际标准规定使用的D50照明体,而我国相关标准更注重实际效果,推荐了D50与D65两个照明体。
2.传统标准日光灯管在不同厂商间的产品色品坐标偏差过大,以至于一些相关的iso国际标准把光源色品坐标u'v’容差定到了0.005的过大范围,导致不同厂商甚至批次间光源下比色时色差明显。
3.传统标准日光灯管寿命短,如果想达到这些领域的标准,传统标准日光灯管的寿命往往在这些领域里只能使用2000-2500小时就不得不更换。
4.由于传统标准日光灯管亮度无法调节造成的能耗问题,比如色彩评价环节中印刷生产的应用下,标准观测环境ISO3664:2009中明确规定了两种照度的环境,一种为2000lux的高照度用于严格评测条件P1,另一种为500lux照度的印刷品实际评测条件P2,ISO3664:2009的4.3.1中明确指出“经验表明,P1的高照度水平会在图像的阶调复制和颜色方面给人错误的感觉,而这些图像最终要在低照度水平的情况下被消费者应用。在很高的照度下能够让人非常乐于接受的图像在常规的照度水平时不见得让人满意。”在实际印刷的整个过程中大约只有10%-20%的时间需要P1条件的照明,其余的80%-90%时间本应使用P2条件辅助P1条件让工作者可以同时兼顾印刷品实际效果的同时节约这部分能源,但是这在传统标准日光灯管下是无法实现的。
5.传统标准日光灯管光谱等级差,同色异谱指数通常只能达到CD级别,即可见光同色异谱指数<1.0的C级别,紫外同色异谱指数<1.5的D级别,个别厂商的高端产品同色异谱指数勉强可以达到CC级,而ISO3664中推荐使用BC等级,CD等级被定义为不推荐但可以使用的最低指标。
6.传统标准日光灯管光谱的显色指数低,一般显色指数Ra>90%、特殊显色指数Ri>80,显色指数是个重要的指数,从其计算公式100-4.6ΔE可以看出这个指数直接与被观测物体在该光源下与标准光源下的色差大小,如果80的显色指数所代表的饱和色转换成色差就是4.35左右,这个色差是这些领域无法接受但又不得不接受的。
7.在色度学应用领域传统标准日光灯管下看到的颜色与仪器测量值不匹配,经常会出现不一致的情况,明明测量的正确但视觉上却是错误的。
8.传统标准日光灯管光谱无法校正,灯管是360度发光需要使用束光反射镜,为了减少灰尘对光的影响通常照明装置上还会有一层透光板,而反射镜和透光板都会进一步影响到本来性能就不高的光源质量,这种影响需要校正才能改善。
标准光源灯管除了技术上性能上的缺点外更为重要的缺陷则是其属于荧光灯,寿命短用量大,由于其含汞,所以属危险废弃物,目前国内也没有回收的相关组织,应用量巨大的印刷业的绿色印刷认证中也没有提及此类危害,每年有大量的标准光源灯管被未经处理的废弃,造成了环境污染。于2017年8月16日生效的《关于汞的水俣公约》提到“从2021年起,中国将淘汰《关于汞的水俣公约》要求的含汞电池、荧光灯产品的生产和使用。到2032年,要关停所有原生汞矿的开采。”目前普通照明领域基本已经被LED替代,唯有本发明涉及领域的专业照明无法被替代或替代需要付出高额的成本,如果想替代则必须通过行政强制,而这些成本对于相关工业应用是不愿承受的。因此迫于环保问题人们渴望一个环保的、与标准光源灯管使用成本更接近或更低的产品去替代标准光源灯管。
虽然标准光源灯管有着这些弊端,高显指LED具有很好的显色性能且等效,全寿命成本远低于标准光源灯管,但人们依然无法找到合适的方法使高显指LED广泛应用于这些色度学相关领域。高显指LED在显色指数、环保、能耗、寿命、稳定性及全寿命成本上都优于传统标准日光灯管,但其色品坐标、色温偏离D照明体,而且多数高显指LED可见光同色异谱指数只能达到<1.5的d级,由于其不包含紫外光谱能量所以其紫外光同色异谱指数>2。LED属于点状光源,经排列后往往容易形成炫目光,通常需要用透镜匀光后才可以用于视觉照明,而透镜会影响LED本来的技术性能。综合分析就是这些因素阻碍了这种高性能低能耗低成本的光源在这些专业领域的应用,相关技术领域人员至今未能将高显指LED在此类领域应用。
为了增加高显指LED的应用范围,现有技术公开了一些多通道LED混合技术,其可以部分达到这些领域的标准光源要求,如:以US8592748B2、2016100298255及201810812579.X为代表的现有技术。其中,专利权人为标准光源业界巨头justNormlicht申请的US8592748B2专利中公开了5个不同波长单色LED与2个不同色温白光LED通道依靠光谱曲线拟合实现2700k-10000k可调色温的标准照明体光源,尤其是D照明体的模拟。随后2016年有着CIE颜色与视觉部(Colour and Vision)主席为首席科学家的常州千明公司申请的2016100298255专利中公开了使用14个不同波长的LED芯片依靠光谱曲线多点逼近目标光谱实现了2700k-10000k可调色温的标准照明体光源,该专利将多通道LED模拟标准照明体性能推向了极致,尤其是D照明体光源性能。最后在2018年民营公司浙江智彩申请的201810812579.X专利中通过7个单色LED配合两个白光LED,类似于US8592748B2号专利的5+2通道的变形,把简单的光谱混合过程写成了一堆公式后混合了一个标准照明体D65光源。从多通道LED模拟标准照明体的历史过程中可以看出,一个多通道LED模拟CIE标准照明体只依赖光谱曲线无限逼近方法的偏见。这个偏见是因为色品坐标、色温、显色指数、同色异谱指数等等,所有的人们用于性能描述的参数都是从光谱中转换得出的,即相同的光谱具有100%相同的色品坐标、色温、显色指数、同色异谱指数等技术参数,通过这些参数逆向调整则不能使所有参数同时达到相对高的技术指标,例如基于RGBW四通道模拟出的白光,该技术通过色度控制模拟出的白光性能就无法达到CIE标准照明体的光源性能。由于单色LED波长多、波长范围小的特性恰好适合光谱曲线不平滑的标准照明体D的光谱曲线的无限逼近,以至于在没有LED技术时人们通过滤镜方式把A光源模拟成效果很好的D光源,所用到的滤镜都不在LED多通道技术考虑的技术方法之列。从2009年的第一个专利的5+2通道的实现,到2016年的14通道实现性能极致,再到2018年所谓n-2实质是7+2种LED混合,无一例外的倒向光谱密集排列用于补齐缺失波长与各补齐波长光谱向标准照明体光谱无限逼近来实现。这三个专利所代表的业界巨头、业内专家、业内普通技术员从2009年开始至今都不曾考虑多通道LED实现标准照明体光源的其他可能如类似滤镜或激发透镜参与多通道LED模拟标准照明体,或由于不符合光谱至上的原则曾经考虑过但经过无数试验都无法实现,亦或是加入后并未产生技术或产生了相反的效果进而放弃使用这类方法参与多通道LED模拟标准照明体。
此外,上述三个专利中公开的多通道LED混合技术都因成本高居不下而无法在这些色度学相关领域广泛使用,造成高成本的原因是这三个专利都是基于光谱计算与光谱无限逼近的方法,而该方法的校正需要分光色度类仪器或传感器,由于标准照明体尤其是D含有紫外光能量而这部分能量会导致防炫目及匀光用透镜黄变进而导致一个寿命达5万小时的光源如需要光源一直稳定在高品质技术指标的情况下则需要这些仪器或传感器的数据采集进行反馈。
还有些紫光芯片的LED可以达到CIE标准照明体D部分要求,但寿命过短、色温固定、价格过高且厂商没有考虑因防炫目透镜造成的偏差而无法广泛应用。
技术问题
为了解决现有技术中存在的问题,本发明提供一种多通道LED模拟CIE标准照明体的方法和照明系统。
本发明其中一个技术方案提供一种多通道LED模拟CIE标准照明体的方法,该方法包括如下步骤:
在所需模拟的CIE标准照明体色温范围内按照色温调整方向选择一种高显指LED作为主光源组成主光源控制通道;
通过选择的主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED,组成波长补充控制通道,n≥1;
根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整控制通道的光源与滤镜组成色温调整控制通道;
依据色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体的色品坐标。
技术解决方案
进一步改进的方案中,所述方法包括如下步骤:
在所需模拟的CIE标准照明体色温范围内按照色温调整方向选择一种高显指LED作为主光源;
小于等于1种含有色料的主光源控制通道色品坐标纠偏滤镜置于主光源上方组成主光源控制通道;
通过选择的主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED,作为波长补充控制通道光源;
通过所需模拟的CIE标准照明体光谱波长覆盖范围中波长补充控制通道的n种波长LED所在标准照明体内波长的相对辐射度与n种波长LED中每种波长LED所在波长的辐射度确定n种波长LED中每种波长LED的数量,将相应数量的n种波长LED组成波长补充控制通道;
根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整控制通道的光源与滤镜组成色温调整控制通道;
依据色度测量的色品坐标,调整达到最大照度的主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体的色品坐标。
进一步改进的方案中,依据色度测量的色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体的色品坐标步骤之前还进行如下步骤:
按照防炫目匀光透镜与LED垂直距离及排列距离建议比排列主光源控制通道、波长补充控制通道和色温调整控制通道的LED使其形成一个按距离紧密排列的组,复制这些组,使之达到所需最大照度。
进一步改进的方案中,所述方法还包括如下步骤:
增加关键点色温的第二主光源控制通道。
进一步改进的方案中,所述方法还包括如下步骤:
微电脑处理器与色度测量形成闭环反馈系统。
本发明另一个技术方案提供一种多通道LED模拟标准照明体的照明系统,该照明系统包括:
根据所需模拟的CIE标准照明体色温范围内按照色温调整方向选择的一种高显指LED作为主光源的主光源控制通道;
根据主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED组成的波长补充控制通道;
根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整通道的光源与滤镜组成的色温调整控制通道;
测量模拟CIE标准照明体光源色品坐标的色度测量装置;
依据色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体色品坐标的微电脑控制器。
进一步改进的方案中,所述照明系统包括:
由根据所需模拟的CIE标准照明体色温范围内按照色温调整方向选择的一种高显指LED作为主光源和置于主光源上方且小于等于1种含有色料的主光源控制通道色品坐标的纠偏滤镜组成的主光源控制通道;
根据主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED作为波长补充控制通道光源,通过所需模拟的CIE标准照明体光谱波长覆盖范围中波长补充控制通道的n种波长LED所在标准照明体内波长的相对辐射度与n种波长LED中每种波长LED所在波长的辐射度确定n种波长LED中每种波长LED的数量,将相应数量的n种波长LED组成的波长补充控制通道;
根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整通道的光源与滤镜组成的色温调整控制通道;
测量模拟CIE标准照明体光源色品坐标的色度测量装置;
依据色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体色品坐标的微电脑控制器。
进一步改进的方案中,所述照明系统还包括:
用于根据与LED垂直距离及排列距离建议比排列主光源控制通道、波长补充控制通道和色温调整控制通道的LED使其形成一个按距离紧密排列的组,复制这些组,使之达到所需最大照度的防炫目匀光透镜。
进一步改进的方案中,所述照明系统还包括:
增加关键点色温的第二主光源控制通道。
进一步改进的方案中,所述照明系统还包括:
用于检测不同事件的发生并传输给微电脑控制器的行为感知传感器;所述微电脑控制器还用于与色度测量装置形成闭环反馈系统,所述微电脑控制器还用于接收行为感知传感器传输的事件,并控制不同事件对应的色温照度的调整。
有益效果
本发明提供的一种多通道LED模拟CIE标准照明体的方法和照明系统本发明提供的方法具有如下有益效果:
1.本发明通过分组优化减少LED控制通道,并使用滤镜这种被多通道LED摒弃的技术,形成了大幅度降低控制通道数量并使多通道LED模拟标准照明体的光源的控制可以通过单一色度控制而非必须通过分光光谱转换的色度控制的质的转变。使一种分析性能低的纯色度技术在多通道LED模拟CIE标准照明体过程中超越了或达到了分析性能更高的分光类色度技术达到的光源性能。
2.由于本方法在校正调整与闭环反馈控制方法是基于色度方法而非分光色度方法,因此可以使模拟照明体光源时的反馈系统使用色度仪而不是分光色度仪或分光辐射度仪等采用分光技术的仪器,进而大幅度降低了多通道类模拟标准光源的成本,基本上一个分光色度的传感器价格是非分光色度传感器的15倍以上,即成本降低15倍。
3.本发明使用一种低等级的方法实施的技术指标超越了或达到了高等级方法实施的技术指标。
4.本发明提供的方法实现了能耗的降低,由于LED需要恒流电路供电,恒流需要串联电阻或使用恒流驱动芯片等技术才能实现,这些能耗无法由电转为光,过多的控制通道会有过多的此类损耗,由于本发明控制通道少,因此本发明可降低能耗。
5.由于传统LED模拟基于光谱函数控制相应过多通道则无法进行分组控制,任何的分组都会带来不符合其原理的可能,而本发明提供的方法采用预先分组优化只需少量控制通道同时控制,大量减少通道的同时意味着进一步成本的降低。并且其性能指标也高于现有技术。
6.本发明提供的方法故障率低,每增加一个控制通道则出现故障的概率就会大幅度提高,进而影响长期稳定性,本发明由于控制通道少,所述故障率明显降低。
7.本发明提供的方法克服了多通道LED模拟标准照明体只依赖光谱曲线无限逼近的技术偏见,为多通道LED领域技术人员提供了新的思路。
8.随着一个比传统产品价格更低廉性能更强大的节能产品被广泛使用必将推进相关行业标准容差的缩小,进而推动整个色度学应用领域里各工业的发展。
9.有益于环保,可以在相关领域内淘汰含汞日光灯。
附图说明
图1为本发明其中一些实施例中一种多通道LED模拟CIE标准照明体的方法的流程图;
图2为本发明另一些实施例中一种多通道LED模拟CIE标准照明体的方法的流程图;
图3为本发明另一些实施例中一种多通道LED模拟CIE标准照明体的方法的流程图;
图4为本发明另一些实施例中一种多通道LED模拟CIE标准照明体的照明系统的结构框图;
图5为本发明另一些实施例中一种多通道LED模拟CIE标准照明体的照明系统的结构框图。
附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。
本发明的最佳实施方式
如图1所示,本发明一些实施例提供一种多通道LED模拟CIE标准照明体的方法,该方法包括如下步骤:
(1)在所需模拟的CIE标准照明体色温范围内按照色温调整方向选择一种高显指LED作为主光源组成主光源控制通道;
(2)通过选择的主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED,组成波长补充控制通道,n≥1;
(3)根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整控制通道的光源与滤镜组成色温调整控制通道;
(4)依据色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体的色品坐标。
本发明提供的一种多通道LED模拟CIE标准照明体的方法形成的依靠色度测量装置而非光谱类采集装置控制多通道LED调光,在色品坐标达标时显色指数、色温、同色异谱指数同时达标。并且本发明提供了LED多通道混光通过滤镜方法预设色温变化轨迹的形成解决了LED透镜黄变对光源影响的问题。基于该方法的多通道LED的等效位移后还可以将其应用于其他不需要紫外能量的照明领域。
如图2所示,本发明另一些实施例提供一种多通道LED模拟CIE标准照明体的方法,该方法基于色品坐标调整三个预设通道LED实现多色温多亮度按需调整的CIE标准照明体光源,该方法包括如下步骤:
S10:在所需模拟的CIE标准照明体色温范围内按照色温调整方向选择一种高显指LED作为主光源;
其中,所需模拟的CIE标准照明体为标准照明体D,色温调整覆盖范围5000K-10000K之间,照明环境要求达到ISO3664、ISO3668的照明环境要求,依据ISO3664规定的D50,选择接近5000K高显指LED,该高显指LED显色指数R1-14的均值大于90,为了提高性能指标,本实施选择显色指数R1-14的均值大于95的4800K左右高显指LED作为主光源控制通道的主光源;还可以使用普通的白光LED配合rgb混色调整普通白光LED的显色指数来形成的高显指LED来实现,总之该目的为形成一个显色指数大于90%的通道;
S20:小于等于1种含有色料的主光源控制通道色品坐标纠偏滤镜置于主光源上方组成主光源控制通道;
接近5000K高显指LED的色品坐标基准为黑体轨迹与等温线的交叉点,而相对日光曲线的D光源色品坐标则位于该交叉点偏绿方向,为了提高模拟性能,本申请在主光源上配置了纠偏滤镜。当所选主光源控制通道色品坐标与所需模拟的标准光源无过多偏离时则无需该纠偏滤镜;
S30:通过步骤S10选择的主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED,作为波长补充控制通道光源;
在一些优选的实施例中,通过对比主光源的LED光谱波长覆盖范围与所需模拟的标准照明体D的光谱波长覆盖范围,发现该LED主光源在380nm-420nm段没有相应能量,因此选择380-420nm作为补充,由于没有波长覆盖范围能达到380-420nm,则将波长覆盖范围分为380nm、400nm、420nm分别补充,即选出了3种发光波长的LED作为波长补充控制通道的光源;此外,需要说明的是,如果把420nm波长的LED置于主光源控制通道内的这种等效位移,则可以生产一种紫外部分能量单独控制的光源,这种光源适合于一些禁止紫外能量或紫外能量单独可调的光源环境,如艺术品观测环境等。
S40:通过所需模拟的CIE标准照明体光谱波长覆盖范围中波长补充控制通道的n种波长LED所在标准照明体内波长的相对辐射度与n种波长LED中每种波长LED所在波长的辐射度确定n种波长LED中每种波长LED的数量,将相应数量的n种波长LED组成波长补充控制通道;
其中,通过n种波长LED的每一种单颗LED的辐射度映射到标准照明体D50的光谱辐射度曲线,可以计算出这种补充所需的每种波长的LED数量,所有这些数量的LED组成一个波长补充控制通道。
S50:根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整控制通道的光源与滤镜组成色温调整控制通道;
其中,波长补充控制通道发出的光与色温调整控制通道的光将形成两条轨迹线,波长补充控制通道形成的是位于CIE色品图上趋向于垂直的调整轨迹线,色温调整控制通道形成的是接近色温变化曲线的调整轨迹线。
通过混色原理在CIE1976色品图将所需模拟的标准照明体内两个色温的色品坐标连成线,在连线靠近色温上升方向延长线上将会出现一个与色品图最外围形成的波长数值交叉点,该交叉点所代表的波长就是色温调整控制通道光源的波长,即为480nm。该波长可以通过450nmLED与混合色料的透明体形成,该混合色料可以是颜料、染料、荧光粉、量子点等可以吸收部分光谱后发出该波长光的物质,优选为荧光粉。因为荧光粉不仅可以吸收部分光谱,在吸收后还会被激发出光,且具有比颜料、染料更节能等效果。混合色料可以是可固化或形成对色料进行包裹、夹层的透明物体,如透明环氧树脂、硅胶树脂、玻璃、陶瓷等。本发明使用透明双组份环氧树脂与荧光粉混合,混合比例优选19:1。由于环氧树脂会吸收部分光谱,本发明确定混合比例后,按照该比例正负1%精度做精确比例修正,还可添加其他nm波长的荧光粉,目的在于依靠LED与荧光粉构建出一个可以在色温调整范围内的色品坐标轨迹线,并在调整过程中补充其他nm波长能量。
S60:依据色度测量的色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体的色品坐标。
其中,以依据色品坐标为依据并测量所需模拟标准照明体光源的色品坐标;将三个控制通道内的LED点亮,以主光源控制通道为基础,用色度测量或分析色度测量色品坐标,通过调整色温调整控制通道与波长补充控制通道在CIE色品图上形成的交叉点与所需模拟标准照明体的色品坐标逼近即完成了所需照明体的多色温多照度模拟。
通过上述方法模拟的标准照明体的性能见表1。
表1模拟的标准照明体性能
Figure 707775dest_path_image002
其中,T表示主光源色温。
如图3所示,本发明另一些实施例提供一种多通道LED模拟CIE标准照明体的方法,该方法基于色品坐标调整三个预设通道LED实现多色温多亮度按需调整的CIE标准照明体光源,该方法包括如下步骤:
S1:在所需模拟的CIE标准照明体色温范围内按照色温调整方向选择一种高显指LED作为主光源;
S2:小于等于1种含有色料的主光源控制通道色品坐标纠偏滤镜置于主光源上方组成主光源控制通道;
S3:通过步骤S1选择的主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED,作为波长补充控制通道光源;
S4:通过所需模拟的CIE标准照明体光谱波长覆盖范围中波长补充控制通道的n种波长LED所在标准照明体内波长的相对辐射度与n种波长LED中每种波长LED所在波长的辐射度确定n种波长LED中每种波长LED的数量,将相应数量的n种波长LED组成波长补充控制通道;
S5:根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整控制通道的光源与含有色料的滤镜组成色温调整控制通道;
S6:按照防炫目匀光透镜与LED垂直距离及排列距离建议比排列主光源控制通道、波长补充控制通道和色温调整控制通道的LED使其形成一个按距离紧密排列的组,复制这些组,使之达到所需最大照度;
S7:依据色度测量的色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体的色品坐标;
S8:增加关键点色温的第二主光源控制通道;
S9:微电脑处理器与色度测量形成闭环反馈系统。
由于LED属于点状光源,直接使用会产生炫目,本发明使用防炫目匀光透镜来避免炫目的同时使匀光效果更好。为了进一步提高模拟性能,还可以在相应色温处增加一个第二主光源通道,使用该通道与波长补充控制通道、色温调整控制通道形成新的局部三通道整体四通道。将色温扩大范围至A光源,即色温范围2700K-10000K内可调,则可以通过添加2700k的高显指LED为第二主光源控制通道配合波长补充控制通道、色温调整控制通道形成的局部三通道整体四通道控制。通过形成闭环反馈系统以此校准色品坐标以确保长期使用造成的偏差。
如图4所示,在一些优选的实施例中,本发明提供了一种多通道LED模拟CIE标准照明体的照明系统,该照明系统包括:
根据所需模拟的CIE标准照明体色温范围内按照色温调整方向选择的一种高显指LED作为主光源的主光源控制通道;
根据主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED组成的波长补充控制通道;
根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整通道的光源与滤镜组成的色温调整控制通道;
测量模拟CIE标准照明体光源色品坐标的色度测量装置;
依据色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体色品坐标的微电脑控制器。
色度测量装置用于定期采集所需模拟的CIE标准照明体的色品坐标传并输给微电脑控制器,微电脑控制器对接收到的色度测量装置反馈信息作出程序响应。例如,使用过程中可以定期用色度传感器采集当前照明色品坐标并传输给微电脑控制器,微电脑控制器判断如果合格则继续当前照明,如果不合格则对主光源控制通道、波长补充控制通道、色温调整控制通道进行调整使之合格。
在一些优选的实施例中,本发明提供了一种多通道LED模拟CIE标准照明体的照明系统,该照明系统为基于色品坐标调整预设置大于等于三个通道LED实现多色温多照度按需调整的CIE标准照明体光源照明系统,该照明系统包括:
由根据所需模拟的CIE标准照明体色温范围内按照色温调整方向选择的一种高显指LED作为主光源和置于主光源上方且小于等于1种含有色料的主光源控制通道色品坐标的纠偏滤镜组成的主光源控制通道;
根据主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED作为波长补充控制通道光源,通过所需模拟的CIE标准照明体光谱波长覆盖范围中波长补充控制通道的n种波长LED所在标准照明体内波长的相对辐射度与n种波长LED中每种波长LED所在波长的辐射度确定n种波长LED中每种波长LED的数量,将相应数量的n种波长LED组成的波长补充控制通道;
根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整通道的光源与滤镜组成的色温调整控制通道;
测量模拟CIE标准照明体光源色品坐标的色度测量装置;
依据色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体色品坐标的微电脑控制器。
本发明提供的多通道LED模拟标准照明体的照明系统可以高性能地模拟CIE标准照明体。
如图5所示,在一些优选的实施例中,本发明提供了一种多通道LED模拟CIE标准照明体的照明系统,该照明系统为基于色品坐标调整预设置大于等于三个通道LED实现多色温多照度按需调整的CIE标准照明体光源照明系统,该照明系统包括:
由根据所需模拟的CIE标准照明体色温范围内按照色温调整方向选择的一种高显指LED作为主光源和置于主光源上方且小于等于1种含有色料的主光源控制通道色品坐标的纠偏滤镜组成的主光源控制通道;
根据主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED作为波长补充控制通道光源,通过所需模拟的CIE标准照明体光谱波长覆盖范围中波长补充控制通道的n种波长LED所在标准照明体内波长的相对辐射度与n种波长LED中每种波长LED所在波长的辐射度确定n种波长LED中每种波长LED的数量,将相应数量的n种波长LED组成的波长补充控制通道;
根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整通道的光源与含有色料的滤镜组成的色温调整控制通道;
用于根据与LED垂直距离及排列距离建议比排列主光源控制通道、波长补充控制通道和色温调整控制通道的LED使其形成一个按距离紧密排列的组,复制这些组,使之达到所需最大照度的防炫目匀光透镜;
测量模拟CIE标准照明体光源色品坐标的色度测量装置;
依据色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体色品坐标的微电脑控制器;所述微电脑控制器还用于与色度测量装置形成闭环反馈系统,所述微电脑控制器还用于接收行为感知传感器传输的事件,并控制不同事件对应的色温照度的调整;
增加关键点色温的第二主光源控制通道;
用于检测不同事件的发生并传输给微电脑控制器的行为感知传感器。
其中,行为感知传感器用于判断用户的行为需要怎样的照明如色温、亮度、照明时间,并传输给微电脑控制器,微电脑控制器进行控制。当用户将被观测物置于某个行为感知传感器可被响应的区域内,该行为感知传感器接收到行为动作后传递给微电脑控制器,微电脑控制器控制三个通道使照明达到既定行为动作的设置。
本发明提供的多通道LED模拟标准照明体的照明系统可以高性能地模拟CIE标准照明体。
本发明的实施方式
在此处键入本发明的实施方式描述段落。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (1)

  1. 一种多通道LED模拟CIE标准照明体的方法,其特征在于,所述方法包括如下步骤:
    在所需模拟的CIE标准照明体色温范围内按照色温调整方向选择一种高显指LED作为主光源组成主光源控制通道;
    通过选择的主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED,组成波长补充控制通道,n≥1;
    根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整控制通道的光源与滤镜组成色温调整控制通道;
    依据色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体的色品坐标。
    2.如权利要求1所述的多通道LED模拟CIE标准照明体的方法,其特征在于,所述方法包括如下步骤:
    在所需模拟的CIE标准照明体色温范围内按照色温调整方向选择一种高显指LED作为主光源;
    小于等于1种含有色料的主光源控制通道色品坐标纠偏滤镜置于主光源上方组成主光源控制通道;
    通过选择的主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED,作为波长补充控制通道光源;
    通过所需模拟的CIE标准照明体光谱波长覆盖范围中波长补充控制通道的n种波长LED所在标准照明体内波长的相对辐射度与n种波长LED中每种波长LED所在波长的辐射度确定n种波长LED中每种波长LED的数量,将相应数量的n种波长LED组成波长补充控制通道;
    根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整控制通道的光源与滤镜组成色温调整控制通道;
    依据色度测量的色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体的色品坐标。
    3.如权利要求2所述的多通道LED模拟CIE标准照明体的方法,其特征在于,依据色度测量的色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体的色品坐标步骤之前还进行如下步骤:
    按照防炫目匀光透镜与LED垂直距离及排列距离建议比排列主光源控制通道、波长补充控制通道和色温调整控制通道的LED使其形成一个按距离紧密排列的组,复制这些组,使之达到所需最大照度。
    4.如权利要求3所述的多通道LED模拟CIE标准照明体的方法,其特征在于,所述方法还包括如下步骤:
    增加关键点色温的第二主光源控制通道。
    5.如权利要求4所述的多通道LED模拟CIE标准照明体的方法,其特征在于,所述方法还包括如下步骤:
    微电脑处理器与色度测量形成闭环反馈系统。
    6.一种多通道LED模拟CIE标准照明体的照明系统,其特征在于,所述照明系统包括:
    根据所需模拟的CIE标准照明体色温范围内按照色温调整方向选择的一种高显指LED作为主光源的主光源控制通道;
    根据主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED组成的波长补充控制通道;
    根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整通道的光源与滤镜组成的色温调整控制通道;
    测量模拟CIE标准照明体光源色品坐标的色度测量装置;
    依据色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体色品坐标的微电脑控制器。
    7.如权利要求6所述的多通道LED模拟CIE标准照明体的照明系统,其特征在于,所述照明系统包括:
    由根据所需模拟的CIE标准照明体色温范围内按照色温调整方向选择的一种高显指LED作为主光源和置于主光源上方且小于等于1种含有色料的主光源控制通道色品坐标的纠偏滤镜组成的主光源控制通道;
    根据主光源的LED光谱波长覆盖范围与所需模拟的CIE标准照明体光谱波长覆盖范围对比,选择用于补充所需模拟的CIE标准照明体光谱波长覆盖范围的n种波长LED作为波长补充控制通道光源,通过所需模拟的CIE标准照明体光谱波长覆盖范围中波长补充控制通道的n种波长LED所在标准照明体内波长的相对辐射度与n种波长LED中每种波长LED所在波长的辐射度确定n种波长LED中每种波长LED的数量,将相应数量的n种波长LED组成的波长补充控制通道;
    根据所需模拟的CIE标准照明体色温模拟范围及色温调整方向选择LED作为色温调整通道的光源与滤镜组成的色温调整控制通道;
    测量模拟CIE标准照明体光源色品坐标的色度测量装置;
    依据色品坐标,调整主光源控制通道、波长补充控制通道、色温调整控制通道的亮度使混合后的色品坐标达到所需模拟的CIE标准照明体色品坐标的微电脑控制器。
    8.如权利要求7所述的多通道LED模拟CIE标准照明体的照明系统,其特征在于,所述照明系统还包括:
    用于根据与LED垂直距离及排列距离建议比排列主光源控制通道、波长补充控制通道和色温调整控制通道的LED使其形成一个按距离紧密排列的组,复制这些组,使之达到所需最大照度的防炫目匀光透镜。
    9.如权利要求8所述的多通道LED模拟CIE标准照明体的照明系统,其特征在于,所述照明系统还包括:
    增加关键点色温的第二主光源控制通道。
    10.如权利要求9所述的多通道LED模拟CIE标准照明体的照明系统,其特征在于,所述照明系统还包括:
    用于检测不同事件的发生并传输给微电脑控制器的行为感知传感器;所述微电脑控制器还用于与色度测量装置形成闭环反馈系统,所述微电脑控制器还用于接收行为感知传感器传输的事件,并控制不同事件对应的色温照度的调整。
PCT/CN2020/071762 2019-02-01 2020-01-13 一种多通道 led 模拟 cie 标准照明体的方法和照明系统 WO2020156130A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20749416.2A EP3919877B1 (en) 2019-02-01 2020-01-13 Method for simulating cie standard illuminant using multi-channel leds and illumination system
AU2020213494A AU2020213494B2 (en) 2019-02-01 2020-01-13 Method for simulating CIE standard illuminant using multi-channel LEDs and illumination system
JP2021545290A JP7303975B2 (ja) 2019-02-01 2020-01-13 マルチチャネルledに基づいてcie標準照明体をシミュレーションするための方法及び照明システム
US17/382,234 US11388794B2 (en) 2019-02-01 2021-07-21 Method and illumination system for simulating CIE standard illuminant with multi-channel LED

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910102793 2019-02-01
CN201910102793.0 2019-02-01
CN202010010559.8 2020-01-06
CN202010010559.8A CN111050444B (zh) 2019-02-01 2020-01-06 一种多通道led模拟cie标准照明体的方法和照明系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/382,234 Continuation US11388794B2 (en) 2019-02-01 2021-07-21 Method and illumination system for simulating CIE standard illuminant with multi-channel LED

Publications (1)

Publication Number Publication Date
WO2020156130A1 true WO2020156130A1 (zh) 2020-08-06

Family

ID=70243825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071762 WO2020156130A1 (zh) 2019-02-01 2020-01-13 一种多通道 led 模拟 cie 标准照明体的方法和照明系统

Country Status (6)

Country Link
US (1) US11388794B2 (zh)
EP (1) EP3919877B1 (zh)
JP (1) JP7303975B2 (zh)
CN (1) CN111050444B (zh)
AU (1) AU2020213494B2 (zh)
WO (1) WO2020156130A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114222395A (zh) * 2021-12-26 2022-03-22 睿迪安特光电科技(无锡)有限公司 一种光源系统、光谱的控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111654941B (zh) * 2020-06-23 2022-04-26 滨州学院 一种飞机客舱模拟日光照明的方法及系统
TWI737444B (zh) * 2020-08-12 2021-08-21 和欣光通科技股份有限公司 具有生理調光的照明裝置及其調光方法
CN112153786A (zh) * 2020-09-09 2020-12-29 中山和欣灯饰有限公司 具有生理调光的照明装置及其调光方法
CN112362306A (zh) * 2020-09-30 2021-02-12 深圳天祥质量技术服务有限公司 一种脉冲光源光生物安全检测方法及装置
CN113418605A (zh) * 2021-07-16 2021-09-21 绍兴市越城区飞龙数码制作室 一种对色用标准光源及其校准方法
CN115052387B (zh) * 2022-08-12 2022-11-01 杭州罗莱迪思科技股份有限公司 黑体轨迹及等温线调色控制方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893168A (zh) * 2009-05-22 2010-11-24 杨凯任 白光发光二极管封装单元和照明装置及其制造方法
CN102543989A (zh) * 2012-03-19 2012-07-04 深圳市聚飞光电股份有限公司 一种led装置
US8592748B2 (en) 2009-09-10 2013-11-26 Just Normlicht Gmbh Vertrieb + Produktion Method and arrangement for simulation of high-quality daylight spectra
CN105517246A (zh) * 2016-01-15 2016-04-20 常州千明智能照明科技有限公司 基于多通道led的对色灯箱
CN105651386A (zh) * 2016-03-04 2016-06-08 温州佳易仪器有限公司 一种利用标准光源对色观察箱进行颜色测试的方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2644991B2 (ja) * 1985-09-20 1997-08-25 株式会社東芝 内視鏡装置
JPH03202978A (ja) * 1989-12-29 1991-09-04 Toppan Printing Co Ltd 網点ハーフトーン画像のxyz値に関する色再現予測方法
US20060237636A1 (en) * 2003-06-23 2006-10-26 Advanced Optical Technologies, Llc Integrating chamber LED lighting with pulse amplitude modulation to set color and/or intensity of output
US7378784B1 (en) * 2005-05-13 2008-05-27 Yan Liu Optical filter for CIE daylight simulator
JP5005712B2 (ja) 2009-02-03 2012-08-22 三菱電機株式会社 発光装置
US8933644B2 (en) * 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
CN101697654B (zh) * 2009-10-30 2013-02-27 中山大学 多光色组成led光源的相关色温及显色指数自校准电路
US8517550B2 (en) * 2010-02-15 2013-08-27 Abl Ip Holding Llc Phosphor-centric control of color of light
US10098197B2 (en) * 2011-06-03 2018-10-09 Cree, Inc. Lighting devices with individually compensating multi-color clusters
US8928249B2 (en) * 2011-08-25 2015-01-06 Abl Ip Holding Llc Reducing lumen variability over a range of color temperatures of an output of tunable-white LED lighting devices
JP2014063651A (ja) 2012-09-21 2014-04-10 Toshiba Corp 照明装置および照明用レンズ
JP6384704B2 (ja) 2013-03-28 2018-09-05 パナソニックIpマネジメント株式会社 照明装置
CN104236854A (zh) * 2013-06-17 2014-12-24 展晶科技(深圳)有限公司 发光二极管光源阵列模拟系统及模拟方法
CN104093247B (zh) * 2014-07-04 2016-05-11 复旦大学 一种全色域多通道混色方法
CN104748848B (zh) * 2015-04-13 2017-04-12 杭州远方光电信息股份有限公司 一种基于led的智能对色灯箱
CN105392232A (zh) * 2015-12-14 2016-03-09 江苏林洋照明科技有限公司 Led多通道混色智能灯泡、智能照明系统及多通道混色方法
CN105605487A (zh) * 2016-03-04 2016-05-25 温州佳易仪器有限公司 一种对色标准光源箱
CN105588639B (zh) * 2016-03-04 2018-03-23 温州佳易仪器有限公司 一种标准光源对色观察箱
JP6835344B2 (ja) 2016-04-06 2021-02-24 インテックス株式会社 高演色光源装置
CN106448541B (zh) * 2016-11-21 2019-10-22 Oppo广东移动通信有限公司 控制方法及控制装置
KR102230459B1 (ko) 2017-09-06 2021-03-23 지엘비텍 주식회사 D50, d65 고연색성 표준 led 발광 모듈 및 조명 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893168A (zh) * 2009-05-22 2010-11-24 杨凯任 白光发光二极管封装单元和照明装置及其制造方法
US8592748B2 (en) 2009-09-10 2013-11-26 Just Normlicht Gmbh Vertrieb + Produktion Method and arrangement for simulation of high-quality daylight spectra
CN102543989A (zh) * 2012-03-19 2012-07-04 深圳市聚飞光电股份有限公司 一种led装置
CN105517246A (zh) * 2016-01-15 2016-04-20 常州千明智能照明科技有限公司 基于多通道led的对色灯箱
CN105651386A (zh) * 2016-03-04 2016-06-08 温州佳易仪器有限公司 一种利用标准光源对色观察箱进行颜色测试的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919877A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114222395A (zh) * 2021-12-26 2022-03-22 睿迪安特光电科技(无锡)有限公司 一种光源系统、光谱的控制方法

Also Published As

Publication number Publication date
US11388794B2 (en) 2022-07-12
EP3919877B1 (en) 2024-03-20
AU2020213494A1 (en) 2021-08-12
EP3919877A4 (en) 2022-10-12
US20210352785A1 (en) 2021-11-11
JP7303975B2 (ja) 2023-07-06
AU2020213494B2 (en) 2023-07-06
CN111050444A (zh) 2020-04-21
JP2022518865A (ja) 2022-03-16
CN111050444B (zh) 2021-04-09
EP3919877A1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2020156130A1 (zh) 一种多通道 led 模拟 cie 标准照明体的方法和照明系统
CN101697654B (zh) 多光色组成led光源的相关色温及显色指数自校准电路
US8592748B2 (en) Method and arrangement for simulation of high-quality daylight spectra
CN103402292B (zh) 一种光度色度参数稳定的动态光源设计方法
CN104540263B (zh) 一种模拟日光变化的方法及装置
CN106817811A (zh) 基于pwm四基色led实现全色域范围配光的方法
WO2020088687A1 (zh) 一种彩色灯自动实现最大亮度配色方法、调色方法和系统
CN106162981A (zh) 基于三基色led的混光方法
CN109819546A (zh) 一种宽色域调光混光方法及氛围灯
CN108495406A (zh) 混合光源色温调节方法、系统、存储介质及人机交互终端
CN104748848B (zh) 一种基于led的智能对色灯箱
CN102196633B (zh) 一种色光灯具色彩校正方法
CN105163419B (zh) 高色饱和度白光led照明系统及其混色设计方法
CN105430790A (zh) 一种用于led光源的混光方法及线性照明灯具
US20130134901A1 (en) Driving apparatus for light emitting diode and control method thereof
CN109862659A (zh) 色温调节方法及灯具
CN104373838A (zh) 一种led光源模组及led灯具
CN112203383A (zh) 一种多光谱led的调光方法
JP2017098522A (ja) Led発光装置の製造方法及びその発光装置
CN104300045B (zh) 一种基于多个白光光源混出日光的方法
CN105101516A (zh) 灯具调节方法和装置
CN103079305B (zh) Led照明装置及其灯光调节方法
WO2024021927A1 (zh) 一种基于rgbwcla七色合一的led全光谱色彩管理系统
CN110708797B (zh) 一种用于三色led光源的精确调光方法及系统
CN210928076U (zh) Led标准光源对色装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545290

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020213494

Country of ref document: AU

Date of ref document: 20200113

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020749416

Country of ref document: EP

Effective date: 20210901