WO2020156074A1 - 节能信号检测方法、资源确定方法及相关设备 - Google Patents

节能信号检测方法、资源确定方法及相关设备 Download PDF

Info

Publication number
WO2020156074A1
WO2020156074A1 PCT/CN2020/070911 CN2020070911W WO2020156074A1 WO 2020156074 A1 WO2020156074 A1 WO 2020156074A1 CN 2020070911 W CN2020070911 W CN 2020070911W WO 2020156074 A1 WO2020156074 A1 WO 2020156074A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
time interval
saving signal
energy
bwp
Prior art date
Application number
PCT/CN2020/070911
Other languages
English (en)
French (fr)
Inventor
姜大洁
沈晓冬
潘学明
任千尧
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20749248.9A priority Critical patent/EP3920575A4/en
Publication of WO2020156074A1 publication Critical patent/WO2020156074A1/zh
Priority to US17/389,417 priority patent/US20210360621A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to an energy-saving signal detection method, a resource determination method, and related equipment.
  • DRX Discontinuous Reception
  • RRC Radio Resource Control
  • RRC_IDLE radio resource control
  • RRC deactivated i.e. RRC_INACTIVE
  • the concept of energy-saving signals is proposed. Specifically, when the energy saving signal indicates that the UE detects the PDCCH at the time of paging opportunity (Paging Occasion, PO) or the PDCCH of the duration of the DRX cycle (ie OnDuration), then the UE detects the PDCCH; if the energy saving signal does not instruct the UE to detect the PDCCH at the time of PO If the PDCCH is the OnDuration PDCCH of the DRX cycle, the UE does not detect the PDCCH.
  • Paging Occasion, PO Paging Occasion, PO
  • PDCCH of the duration of the DRX cycle ie OnDuration
  • the embodiments of the present disclosure provide an energy-saving signal detection method, a resource determination method, and related equipment to provide a way of applying energy-saving signals.
  • embodiments of the present disclosure provide an energy-saving signal detection method, which is applied to a terminal device, and the method includes:
  • embodiments of the present disclosure also provide an energy-saving signal detection method, which is applied to a network side device, and the method includes:
  • the threshold of the measurement quantity related to the channel condition is sent to the terminal device.
  • the embodiments of the present disclosure also provide a method for determining a resource, which is applied to a terminal device, and the method includes:
  • the target time interval determine the time domain resource of the target signal
  • the target time interval includes at least one of a first time interval, a second time interval, and a third time interval; wherein, the first time interval is the interval between the energy saving signal and the PDCCH associated with the energy saving signal Time interval, the second time interval is the time interval between the energy saving signal and the first signal, and the third time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal,
  • the first signal is a signal used for downlink synchronization or radio resource management RRM measurement or beam management, and the target signal includes at least one of the energy saving signal and the first signal.
  • the embodiments of the present disclosure also provide a method for determining a resource, which is applied to a network side device, and the method includes:
  • the target time interval includes at least one of a first time interval, a second time interval, and a third time interval; wherein, the first time interval is the interval between the energy saving signal and the PDCCH associated with the energy saving signal Time interval, the second time interval is the time interval between the energy saving signal and the first signal, and the third time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal,
  • the first signal is a sequence signal used for downlink synchronization or radio resource management RRM measurement or beam management.
  • the embodiments of the present disclosure also provide a terminal device.
  • the terminal equipment includes:
  • the determining module is used to determine whether to detect the energy-saving signal according to the measured quantity related to the measured channel condition.
  • the embodiments of the present disclosure also provide a network side device.
  • the network side equipment includes:
  • the threshold of the measurement quantity related to the channel condition is sent to the terminal device.
  • the embodiments of the present disclosure also provide a terminal device.
  • the terminal equipment includes:
  • the determining module is used to determine the time domain resource of the target signal according to the target time interval
  • the target time interval includes at least one of a first time interval, a second time interval, and a third time interval; wherein, the first time interval is the interval between the energy saving signal and the PDCCH associated with the energy saving signal Time interval, the second time interval is the time interval between the energy saving signal and the first signal, and the third time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal,
  • the first signal is a signal used for downlink synchronization or radio resource management RRM measurement or beam management, and the target signal includes at least one of the energy saving signal and the first signal.
  • the embodiments of the present disclosure also provide a network side device.
  • the network side equipment includes:
  • the sending module is used to send the target time interval to the terminal device
  • the target time interval includes at least one of a first time interval, a second time interval, and a third time interval; wherein, the first time interval is the interval between the energy saving signal and the PDCCH associated with the energy saving signal Time interval, the second time interval is the time interval between the energy saving signal and the first signal, and the third time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal,
  • the first signal is a sequence signal used for downlink synchronization or radio resource management RRM measurement or beam management.
  • the embodiments of the present disclosure also provide a terminal device, including a processor, a memory, and a computer program stored on the memory and running on the processor, the computer program being executed by the processor When realizing the steps of the energy-saving signal detection method provided in the first aspect above.
  • the embodiments of the present disclosure also provide a network-side device, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor, and the computer program is executed by the processor. When executed, the steps of the energy-saving signal detection method provided in the second aspect are realized.
  • the embodiments of the present disclosure also provide a terminal device, including a processor, a memory, and a computer program stored on the memory and running on the processor, and the computer program is executed by the processor.
  • the steps of the method for determining the resources provided by the third aspect are realized during execution.
  • the embodiments of the present disclosure also provide a network-side device, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor, and the computer program is processed by the processor.
  • a network-side device including a processor, a memory, and a computer program stored on the memory and capable of running on the processor, and the computer program is processed by the processor.
  • the embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the energy-saving signal provided in the first aspect is realized
  • the steps of the detection method either implement the steps of the energy-saving signal detection method provided by the second aspect, or the resource determination method provided by the third aspect, or the resource determination method provided by the fourth aspect.
  • a method for detecting the energy-saving signal is standardized, which not only saves the power consumption of the terminal device, but also improves the reliability of communication.
  • FIG. 1 is a schematic diagram of a DRX cycle provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a wake-up signal time flow before connected discontinuous reception (CDRX) OnDuration provided by an embodiment of the present disclosure
  • FIG. 3 is a structural diagram of a network system applicable to the embodiments of the present disclosure.
  • FIG. 4 is a flowchart of a method for detecting energy-saving signals provided by an embodiment of the present disclosure
  • FIG. 5 is a flowchart of an energy-saving signal detection method provided by another embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a method for determining a resource provided by an embodiment of the present disclosure
  • FIG. 7 is a flowchart of a method for determining a resource provided by another embodiment of the present disclosure.
  • Figure 8 is a structural diagram of a terminal device provided by an embodiment of the present disclosure.
  • FIG. 9 is a structural diagram of a network side device provided by an embodiment of the present disclosure.
  • FIG. 10 is a structural diagram of a terminal device provided by another embodiment of the present disclosure.
  • FIG. 11 is a structural diagram of a network side device provided by another embodiment of the present disclosure.
  • FIG. 12 is a structural diagram of a terminal device provided by another embodiment of the present disclosure.
  • FIG. 13 is a structural diagram of a network side device provided by another embodiment of the present disclosure.
  • FIG. 14 is a structural diagram of a terminal device provided by another embodiment of the present disclosure.
  • FIG. 15 is a structural diagram of a network side device provided by another embodiment of the present disclosure.
  • New Radio supports power-saving parameters related to User Equipment (UE) (also called terminal equipment), for example, the size of the Bandwidth Part (BWP) , The number of multiple-input multiple-output (MIMO) layers, the number of simultaneously activated downlink component carriers, etc.
  • UE User Equipment
  • BWP Bandwidth Part
  • MIMO multiple-input multiple-output
  • different values of the above-mentioned power saving related parameters may lead to different power consumption of the terminal device.
  • DRX Discontinuous Reception
  • RRC Radio Resource Control
  • RRC_IDLE that is, RRC_IDLE
  • RRC deactivated that is, RRC_INACTIVE
  • the User Equipment (UE) also called terminal equipment
  • the paging signal sent by the base station is detected at the time, where the process of detecting the paging signal can be as follows:
  • P-RNTI Paging Radio Network Temporary Identifier
  • PDSCH Physical Downlink Control Channel
  • the UE in the RRC_IDLE state periodically detects the paging signal, and the probability of receiving the paging signal belonging to the UE is relatively low. Since the power consumption of detecting PDCCH and PDSCH each time is large, it is not conducive to power saving of the terminal.
  • the basic mechanism of DRX is to configure a DRX cycle (that is, DRX Cycle) for the UE in the RRC_CONNECTED state.
  • the DRX cycle is composed of duration (i.e. OnDuration) and DRX opportunity (i.e. Opportunity for DRX).
  • OnDuration time the UE monitors and receives the PDCCH (i.e. activation period); within the DRX opportunity (i.e. Opportunity for DRX) time , The UE does not receive the data of the downlink channel to save power consumption (ie, sleep period).
  • the DRX start offset (ie drxStartOffset) specifies the start subframe of the DRX cycle
  • the long DRX-Cycle (ie longDRX-Cycle) specifies how many subframes a long DRX cycle (ie long DRX Cycle) occupies.
  • the duration timer (that is, OnDurationTimer) specifies the number of consecutive subframes (that is, the number of subframes during which the active period lasts) that the PDCCH needs to be monitored from the start subframe of the DRX cycle.
  • a UE when a UE is scheduled to receive or transmit data in a certain subframe, it is likely to continue to be scheduled in the next few subframes. If you have to wait until the next DRX cycle to receive or transmit these data, it will Will bring additional delay. In order to reduce this kind of delay, after the UE is scheduled, it will remain in the active period, that is, it will continue to monitor the PDCCH during the configured active period.
  • the implementation mechanism is: whenever the UE is scheduled to transmit data for the first time, it will start (or restart) a DRX inactivity timer (that is, drx-InactivityTimer), and the UE will remain in the active state until the DRX inactivity timer expires. .
  • the DRX inactivation timer specifies the number of consecutive subframes that are continuously in the active state after the UE successfully decodes a PDCCH indicating the initial transmission of uplink (UL) or downlink (Down Link, DL) user data. That is, the DRX inactivation timer is restarted every time the UE has initial transmission data to be scheduled.
  • wake-up signal Wake-Up Signal
  • sleep signal the wake-up signal and sleep The signals can be collectively referred to as energy-saving signals (ie Power Saving Signal).
  • the base station may transmit an energy-saving signal to the UE, and the UE detects the energy-saving signal at a corresponding time.
  • the UE detects the PDCCH; if the energy saving signal does not instruct the UE to detect the PDCCH at the time of PO, the UE does not detect the PDCCH.
  • the detection of the wake-up signal is less complicated and more power-saving than the blind detection of the paging (ie Paging) signal or the PDCCH.
  • the base station transmits an energy-saving signal to the UE, and the UE detects the energy-saving signal at the corresponding time.
  • the UE detects the PDCCH; if the energy saving signal does not instruct the UE to detect the PDCCH of OnDuration, the UE does not detect the PDCCH.
  • the detection of the wake-up signal is less complicated and more power-saving than the blind detection of the paging (ie Paging) signal or the PDCCH.
  • the above-mentioned energy-saving signal may be a signal transmitted through the PDCCH, or a sequence-based signal, for example, a Channel State Information Reference Signal (CSI-RS), or an on-off keying ( On-Off Keying, OOK) signal.
  • CSI-RS Channel State Information Reference Signal
  • OOK On-Off Keying
  • Figure 3 is a structural diagram of a network system applicable to the embodiments of the present disclosure. As shown in Figure 3, it includes a terminal device 11 and a network side device 12.
  • the terminal device 11 may be a mobile phone or a tablet computer ( User-side devices such as Tablet Personal Computer, Laptop Computer, Personal Digital Assistant (PDA), Mobile Internet Device (MID) or Wearable Device (Wearable Device), etc. It is noted that the specific type of the terminal device 11 is not limited in the embodiment of the present disclosure.
  • the network side device 12 may be a base station, such as a macro station, an LTE evolutional Node B (eNB), a 5G NR base station (Node B, NB), a next generation Node B (gNB), etc.; on the network side
  • the device 12 may also be a small station, such as a low power node (LPN), pico base station (pico), femto base station (femto), etc., or the network side device 12 may be an access point (Access Point, AP); the base station may also be a network node composed of a central unit (Central Unit, CU) and multiple transmission reception points (TRP) managed and controlled by it.
  • LPN low power node
  • pico pico
  • femto femto
  • AP access point
  • the base station may also be a network node composed of a central unit (Central Unit, CU) and multiple transmission reception points (TRP) managed and controlled by it.
  • Central Unit, CU central unit
  • the terminal device 11 may determine whether to detect the energy-saving signal according to the measured channel condition-related measurement variables, where the aforementioned channel condition-related measurement variables may include, but are not limited to, at least one of the following: reference signal received power (Reference Signal Received Power, RSRP), RSRP change-related measurements, Reference Signal Received Quality (RSRQ), RSRQ change-related measurements, Signal-to-Noise and Interference Ratio, SINR), SINR change related measurement quantity, mobility (ie Mobility) parameter.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal-to-Noise and Interference Ratio
  • SINR Signal-to-Noise and Interference Ratio
  • the above-mentioned RSRP change related measurement can be the variance or standard deviation of RSRP obtained by multiple measurements, for example, the variance or standard deviation of all RSRP measured in a period of time; or the RSRP value obtained by the current measurement and The difference or ratio of the RSRP value obtained from the previous measurement.
  • the above-mentioned RSRQ change related measurement can be the variance or standard deviation of RSRQ obtained by multiple measurements, for example, the variance or standard deviation of all RSRQ measured in a period of time; or the value of RSRQ obtained by current measurement The difference or ratio with the RSRP value obtained in the previous measurement.
  • the above-mentioned SINR change related measurement quantity may be the variance or standard deviation of the SINR obtained by multiple measurements, for example, the variance or standard deviation of all SINRs measured in a period of time; or the current measured SINR value and the previous one The difference or ratio of the measured SINR values.
  • the aforementioned mobility-related measurement quantity may be an index used to measure the mobility of the terminal device 11. For example, it may be the number of cells where the terminal device 11 resides within the first preset time, or the terminal device within the second preset time. The number of beams camped on, or the moving rate of the terminal device 11, or the Doppler frequency offset of the terminal device, or the transmission configuration indicator (Transmission Configuration Indicator, TCI) of the terminal device 11 within the third preset time State (ie State) number, etc.
  • TCI Transmission Configuration Indicator
  • the above-mentioned first preset time, second preset time, and third preset time can all be set reasonably according to actual needs, which is not limited in this embodiment.
  • the energy-saving signal may be a signal transmitted through the PDCCH; it may also be a sequence-based signal, where the sequence-based signal may be a CSI-RS, a primary synchronization signal (PSS), and a secondary synchronization signal (Secondary Synchronization Signal). , SSS), tracking reference signal (Tracking Reference Signal, TRS), or demodulation reference signal (Demodulation Reference Signal, DMRS), etc.
  • the terminal device 11 may detect the energy-saving signal when the measured channel condition-related measurement quantity meets the threshold; when the measured channel condition-related measurement quantity does not meet the threshold, it is not required to detect the energy-saving signal At this time, the PDCCH associated with the energy saving signal can be detected.
  • the PDCCH associated with the energy saving signal may include a PDCCH carrying paging information, or a PDCCH located in OnDuration of the DRX cycle.
  • the PDCCH associated with the energy saving signal may be a PDCCH carrying paging information
  • the energy saving signal may be a PDCCH located in OnDuration of the DRX cycle.
  • the aforementioned threshold corresponds to a measurement quantity related to channel conditions.
  • the above-mentioned channel condition-related measurement quantity includes RSRP
  • the above-mentioned threshold may include the RSRP threshold
  • the above-mentioned channel condition-related measurement quantity includes RSRQ
  • the above-mentioned threshold may include the RSRQ threshold
  • the above threshold may include the RSRP threshold and the RSRQ threshold. It should be noted that the foregoing threshold may be predefined by a protocol or configured by the network side device 12.
  • the terminal device 11 may determine the time domain resource of the target signal according to the target time interval, where the target time interval may include at least one of the first time interval, the second time interval, and the third time interval. one.
  • the first time interval may be the time interval between the energy-saving signal and the PDCCH associated with the energy-saving signal
  • the second time interval may be the time interval between the energy-saving signal and the first signal
  • the third time The interval may be a time interval between the PDCCH associated with the energy saving signal and the first signal.
  • the foregoing first signal may be a signal used for downlink synchronization or radio resource management (Radio Resource Management, RRM) measurement or beam management.
  • RRM Radio Resource Management
  • the terminal device 11 before the terminal device 11 detects the energy-saving signal, it can perform synchronization or RRM measurement or beam management according to CSI-RS or TRS, etc., to receive the energy-saving signal.
  • the aforementioned target signal includes at least one of the energy saving signal and the first signal.
  • the above-mentioned target time interval may be predefined by the protocol or configured by the network side device 12.
  • the terminal device 11 may determine the time domain resource of the target signal according to the target time interval before detecting the energy-saving signal.
  • the terminal device 11 may first inform the network side device 12 of the foregoing terminal device capability information, where the capability information includes the fourth time interval and the fifth time interval. At least one of the interval and the sixth time interval.
  • the fourth time interval may be the time interval between the energy-saving signal and the PDCCH associated with the energy-saving signal
  • the fifth time interval may be the time interval between the energy-saving signal and the first signal
  • the foregoing sixth time interval may be a time interval between the PDCCH associated with the energy saving signal and the first signal.
  • the network side device 12 After the network side device 12 receives the capability information of the terminal device reported by the terminal device 11, it may configure the aforementioned target time interval based on the capability information of the terminal device.
  • the embodiments of the present disclosure standardize an energy-saving signal detection method or a method of configuring energy-saving signal resources, which can not only save power consumption of terminal equipment, but also improve the reliability of communication.
  • FIG. 4 is a flowchart of the energy-saving signal detection method provided by an embodiment of the present disclosure. As shown in FIG. 4, it includes the following steps:
  • Step 401 Determine whether to detect an energy-saving signal according to the measured quantity related to the measured channel condition.
  • the energy-saving signal may be a signal transmitted through the PDCCH, or a sequence-based signal, where the sequence-based signal may be CSI-RS, PSS, SSS, TRS, or DMRS.
  • the measurement quantities related to the aforementioned channel conditions can be set reasonably according to actual needs.
  • the aforementioned measurement quantities related to channel conditions may include but are not limited to at least one of the following:
  • the above-mentioned RSRP change related measurement can be the variance or standard deviation of RSRP obtained by multiple measurements, for example, the variance or standard deviation of all RSRP measured in a period of time; or the RSRP value obtained by the current measurement and The difference or ratio of the RSRP value obtained from the previous measurement.
  • the above-mentioned RSRQ change related measurement can be the variance or standard deviation of RSRQ obtained by multiple measurements, for example, the variance or standard deviation of all RSRQ measured in a period of time; or the value of RSRQ obtained by current measurement The difference or ratio with the RSRP value obtained in the previous measurement.
  • the above-mentioned SINR change related measurement quantity may be the variance or standard deviation of the SINR obtained by multiple measurements, for example, the variance or standard deviation of all SINRs measured in a period of time; or the current measured SINR value and the previous one The difference or ratio of the measured SINR values.
  • the aforementioned mobility-related measurement quantity may be an index used to measure the mobility of the terminal device.
  • the mobility-related measurement quantities may include but are not limited to at least one of the following:
  • the transmission configuration of the terminal device in the third preset time indicates the number of TCI states.
  • first preset time the above-mentioned first preset time, second preset time, and third preset time can all be set reasonably according to actual needs, which is not limited in this embodiment.
  • the energy-saving signal can be detected when the measured channel condition-related measurement indicator signal condition is good to save the power consumption of the terminal equipment, and the measured channel condition-related measurement indicator signal condition is poor In the case of, it is not required to detect energy-saving signals to improve the reliability of communication.
  • the energy-saving signal detection method provided by the embodiments of the present disclosure determines whether to detect the energy-saving signal according to the measured measurement related to the channel condition, and standardizes an energy-saving signal detection method, which can not only save power consumption of terminal equipment, but also improve communication Reliability.
  • the determining whether to detect the energy-saving signal according to the measured measurement related to the channel condition may include at least one of the following:
  • the energy saving signal is not required to be detected
  • the first physical downlink control channel PDCCH is detected, where the first PDCCH is the PDCCH associated with the energy saving signal.
  • the above-mentioned threshold corresponds to the measurement quantity related to the channel condition.
  • the above-mentioned threshold may include the RSRP threshold; if the above-mentioned channel condition-related measurement quantity includes RSRQ, the above-mentioned threshold may include the RSRQ threshold; if the above-mentioned channel condition-related measurement quantity Including RSRP and RSRQ, the above threshold may include the RSRP threshold and the RSRQ threshold.
  • the foregoing threshold may be predefined by a protocol or configured by a network side device.
  • the channel conditions are good.
  • energy-saving signals can be detected to save power consumption of the terminal equipment. For example, when the measured RSRP is greater than or If it is equal to the first threshold, the energy-saving signal can be detected; if the measured quantity related to the channel condition does not meet the threshold, the channel condition is not good. At this time, the energy-saving signal detection is not required, but the energy-saving signal can be detected
  • the associated PDCCH is used to improve the stability of communication. For example, when the measured RSRP is less than the first threshold, detection of the energy-saving signal may not be required, but the PDCCH associated with the energy-saving signal can be detected.
  • the PDCCH associated with the energy saving signal may include a PDCCH carrying paging information, or a PDCCH located in OnDuration of the DRX cycle.
  • the PDCCH associated with the energy saving signal may be a PDCCH carrying paging information
  • the energy saving signal may be a PDCCH located in OnDuration of the DRX cycle.
  • the measured quantity related to the channel condition obtained by the measurement satisfying the threshold may include at least one of the following:
  • the measured RSRP is greater than or equal to the first threshold
  • the measured RSRQ is greater than or equal to the second threshold
  • the measured mobility-related measurement quantity meets the third threshold
  • the measured RSRP change related measurement quantity meets the fourth threshold
  • the measured RSRQ change related measurement quantity meets the fifth threshold
  • the measured SINR is greater than or equal to the sixth threshold
  • the measured SINR change related measurement quantity meets the seventh threshold.
  • first threshold, second threshold, third threshold, fourth threshold, fifth threshold, sixth threshold, and seventh threshold may all be predefined by the protocol or configured by the network side. This is not limited.
  • the mobility-related measurement quantity obtained by the above measurement that satisfies the third threshold may include but is not limited to: the number of cells in which the terminal device resides within the first preset time is less than or equal to the third threshold; or the second preset The number of beams on which the terminal device resides within the time is less than or equal to the third threshold; or the movement rate of the terminal device is less than or equal to the third threshold; or the Doppler frequency deviation of the terminal device is less than or equal to the third threshold. Threshold; or the number of TCI states of the terminal device within the third preset time is less than or equal to the third threshold, etc.
  • the measurement related to the RSRP change obtained by the above measurement satisfies the fourth threshold, and may include, but is not limited to, that the variance of the measured RSRP is less than or equal to the fourth threshold.
  • the RSRQ change related measurement quantity obtained by the above measurement satisfies the fifth threshold, and may include, but is not limited to, that the variance of the measured RSRQ is less than or equal to the fifth threshold.
  • the measurement related to the SINR change obtained by the above measurement satisfies the seventh threshold, and may include, but is not limited to, that the variance of the measured SINR is less than or equal to the seventh threshold.
  • FIG. 5 is a flowchart of the energy-saving signal detection method provided by an embodiment of the present disclosure. As shown in FIG. 5, it includes the following steps:
  • Step 501 Send thresholds of measurement quantities related to channel conditions to terminal equipment.
  • the above-mentioned threshold corresponds to the measurement quantity related to the channel condition.
  • the above-mentioned threshold may include the RSRP threshold; if the above-mentioned channel condition-related measurement quantity includes RSRQ, the above-mentioned threshold may include the RSRQ threshold; if the above-mentioned channel condition-related measurement If the quantity includes RSRP and RSRQ, the above threshold may include the RSRP threshold and the RSRQ threshold.
  • the terminal device can determine whether to detect the energy-saving signal based on the threshold of the measurement related to the channel condition by sending the threshold of the measurement related to the channel condition to the terminal device.
  • the channel condition-related measurement variables may include, but are not limited to, at least one of the following: reference signal received power RSRP, RSRP change-related measurement variables, reference signal received quality RSRQ, RSRQ change-related measurement variables, signal and interference plus Noise ratio SINR, SINR change related measurement quantity, mobility related measurement quantity.
  • the above-mentioned RSRP change related measurement can be the variance or standard deviation of RSRP obtained by multiple measurements, for example, the variance or standard deviation of all RSRP measured in a period of time; or the RSRP value obtained by the current measurement and The difference or ratio of the RSRP value obtained from the previous measurement.
  • the above-mentioned RSRQ change related measurement can be the variance or standard deviation of RSRQ obtained by multiple measurements, for example, the variance or standard deviation of all RSRQ measured in a period of time; or the value of RSRQ obtained by current measurement The difference or ratio with the RSRP value obtained in the previous measurement.
  • the above-mentioned SINR change related measurement quantity may be the variance or standard deviation of the SINR obtained by multiple measurements, for example, the variance or standard deviation of all SINRs measured in a period of time; or the current measured SINR value and the previous one The difference or ratio of the measured SINR values.
  • the aforementioned mobility-related measurement quantity may be an index used to measure the mobility of the terminal device.
  • the mobility-related measurement quantities may include but are not limited to at least one of the following:
  • the transmission configuration of the terminal device in the third preset time indicates the number of TCI states.
  • first preset time the above-mentioned first preset time, second preset time, and third preset time can all be set reasonably according to actual needs, which is not limited in this embodiment.
  • the UE may determine whether to detect the energy-saving signal according to at least one of the channel condition-related measurement variables obtained from the most recent or recent measurements, for example, at least one of the RSRP of the serving cell, the RSRQ of the serving cell, and the mobility-related measurement variables.
  • the channel condition-related measurement variables obtained from the most recent or recent measurements, for example, at least one of the RSRP of the serving cell, the RSRQ of the serving cell, and the mobility-related measurement variables.
  • the energy saving signal is detected
  • the UE can detect the PDCCH.
  • the above-mentioned not requiring detection of the energy-saving signal may mean that the UE can detect the energy-saving signal or not.
  • the above-mentioned PDCCH may be a paging (ie Paging) PDCCH for the RRC_IDLE or RRC_INACTIVE state, and may be the PDCCH of OnDuration of the DRX cycle for the RRC_CONNECTED state, the same below, and will not be repeated.
  • the foregoing first threshold may be pre-defined by the protocol or configured on the network side, which is not limited in this embodiment.
  • the energy saving signal is detected
  • the UE can detect the PDCCH.
  • the foregoing second threshold may be pre-defined by the protocol or configured on the network side, which is not limited in this embodiment.
  • the energy saving signal is detected
  • the UE can detect the PDCCH.
  • the energy-saving signal can be detected when the mobility-related measurement quantity M measured last or multiple times in history meets the third threshold Z, otherwise the energy-saving signal is not required to be detected.
  • the foregoing third threshold may be predefined by the protocol or configured on the network side, which is not limited in this embodiment.
  • the upper mobility related measurement quantity can include one of the following:
  • the number of TCI states (that is, State) of the UE in a period of time is not limited.
  • the energy-saving signal is detected; otherwise, it is not required to detect the energy-saving signal.
  • the energy saving signal is detected; otherwise, the energy saving signal is not required to be detected.
  • the energy saving signal is detected
  • the UE can detect the PDCCH.
  • the energy-saving signal can be detected when the RSRP of the last or historical multiple measurements is greater than or equal to the first threshold X and RSRQ is greater than or equal to the second threshold Y, otherwise it is not required to detect the energy-saving signal .
  • the energy saving signal is detected
  • the UE can detect the PDCCH.
  • the energy-saving signal can be detected when the RSRP measured last time or multiple times in history is greater than or equal to the first threshold X and the mobility-related measurement quantity M meets the third threshold Z. Otherwise, it is not required Detect energy saving signal.
  • the above-mentioned mobility-related measurement quantities may include one of the following:
  • the number of TCI states (that is, State) of the UE in a period of time is not limited.
  • the energy-saving signal is detected; otherwise, the energy-saving signal is not required to be detected.
  • the energy-saving signal is detected; otherwise, the energy-saving signal is not required to be detected.
  • the energy-saving signal is detected
  • the UE can detect the PDCCH.
  • the above-mentioned RSRP change related measurement quantity may be the RSRP variance or standard deviation of multiple historical measurements, or the difference or ratio between the currently measured RSRP and the previous measured RSRP.
  • the above-mentioned RSRQ change-related measurement quantity may be the RSRQ variance or standard deviation of multiple historical measurements, or the difference or ratio between the currently measured RSRQ and the previous measured RSRQ.
  • the energy-saving signal may be detected when the RSRP variance N of multiple historical measurements is less than or equal to the fourth threshold P, otherwise the energy-saving signal is not required to be detected.
  • both the foregoing fourth threshold and fifth threshold may be predefined by the protocol, or may be configured on the network side, which is not limited in this embodiment.
  • the energy-saving signal detection method provided by the embodiments of the present disclosure regulates the UE's related behaviors for detecting energy-saving signals, can detect energy-saving signals when channel conditions are good, can save terminal power consumption, and does not require detection of energy-saving signals when channel conditions are bad. Instead, it directly detects the PDCCH to ensure reliability.
  • FIG. 6 is a flowchart of a method for determining a resource provided by an embodiment of the present disclosure. As shown in FIG. 6, it includes the following steps:
  • Step 601 Determine the time domain resource of the target signal according to the target time interval.
  • the target time interval includes at least one of a first time interval, a second time interval, and a third time interval; wherein, the first time interval is the interval between the energy saving signal and the PDCCH associated with the energy saving signal Time interval, the second time interval is the time interval between the energy saving signal and the first signal, and the third time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal,
  • the first signal is a signal used for downlink synchronization or radio resource management RRM measurement or beam management, and the target signal includes at least one of the energy saving signal and the first signal.
  • the energy-saving signal may be a signal transmitted through the PDCCH; it may also be a sequence-based signal, where the sequence-based signal may be CSI-RS, PSS, SSS, TRS, or DMRS.
  • the PDCCH associated with the energy saving signal may include the PDCCH carrying paging information, or the PDCCH located in OnDuration of the DRX cycle.
  • the PDCCH associated with the energy saving signal may be a PDCCH carrying paging information
  • the energy saving signal may be a PDCCH located in OnDuration of the DRX cycle.
  • the foregoing first signal may be a signal used for downlink synchronization or RRM measurement or beam management, for example, CSI-RS, PSS, SSS, TRS, or DMRS.
  • CSI-RS downlink synchronization or RRM measurement or beam management
  • PSS PSS
  • SSS SSS
  • TRS TRS
  • DMRS DMRS
  • the aforementioned target signal may include at least one of an energy-saving signal and a first signal.
  • the time-domain resources of the energy-saving signal and/or the first signal may be determined, so as to facilitate subsequent reception of the energy-saving signal.
  • first time interval, second time interval, and third time interval may include one or at least two time intervals, which is not limited in this embodiment.
  • the resource determination method provided by the embodiment of the present disclosure determines the time domain resource of the target signal according to the target time interval, and regulates a method for determining resources related to energy-saving signal detection to facilitate subsequent reception of energy-saving signals.
  • the target time interval may be predefined by the protocol, or may be configured for the network side device.
  • the method may further include:
  • the capability information includes at least one of a fourth time interval, a fifth time interval, and a sixth time interval; wherein, the fourth time interval is between the power saving signal and the PDCCH associated with the power saving signal
  • the fifth time interval is the time interval between the energy saving signal and the first signal
  • the sixth time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal time interval.
  • the terminal device reports the capability information of the terminal device to the network side device, so that the network side device can configure the target time interval for the terminal device based on the foregoing capability information. That is, the target time interval may be configured by the network side device based on the capability information of the terminal device.
  • the fourth time interval, the fifth time interval, and the sixth time interval may correspond to the first time interval, the second time interval, and the third time interval, respectively.
  • the network side device may configure the first time interval for the terminal device based on the fourth time interval, where the first time interval may be greater than or equal to the fourth time interval ;
  • the network side device may configure the second time interval for the terminal device based on the fifth time interval, where the second time interval may be greater than or equal to the fifth time interval;
  • the network side device may configure a third time interval for the terminal device based on the sixth time interval, where the third time interval may be greater than or equal to the sixth time interval.
  • the fourth time interval, the fifth time interval, and the sixth time interval may include one or at least two time intervals, which is not limited in this embodiment.
  • the first time interval or the fourth time interval includes at least two different time intervals
  • the two different time intervals correspond to the first situation and the second situation, respectively, where the first situation is the bandwidth part (BandWidth Part, BWP) where the energy saving signal is located and the PDCCH associated with the energy saving signal
  • BWP BandWidth Part
  • the BWP is different, and the second case is that the BWP where the energy-saving signal is located is the same as the BWP where the PDCCH associated with the energy-saving signal is located.
  • the difference between the BWP where the energy-saving signal is located and the BWP where the PDCCH associated with the energy-saving signal is located may include the center frequency and resource block (Resource Block) of the BWP where the energy-saving signal is located and the BWP where the PDCCH associated with the energy-saving signal is located.
  • Resource Block Resource Block
  • RB resource block
  • the center frequency of the BWP where the energy-saving signal is located is different from the center frequency of the BWP where the PDCCH associated with the energy-saving signal is located.
  • the BWP where the BWP is located is the same as the BWP where the PDCCH associated with the energy-saving signal is located. It may be that the center frequency of the BWP where the energy-saving signal is located is the same as the center frequency of the BWP where the PDCCH is associated with the energy-saving signal.
  • the RB of the BWP where the energy-saving signal is located is different from the RB of the BWP where the PDCCH associated with the energy-saving signal is located.
  • the same BWP where the PDCCH associated with the energy saving signal is located may be that the RB of the BWP where the foregoing energy saving signal is located is the same as the RB of the BWP where the PDCCH associated with the energy saving signal is located.
  • the center frequency of the BWP where the energy-saving signal is located is different from the center frequency of the BWP where the PDCCH associated with the energy-saving signal is located, and the energy-saving signal is located.
  • the RB of the BWP is different from the RB of the BWP where the PDCCH associated with the energy-saving signal is located, and the BWP where the energy-saving signal is located is the same as the BWP where the PDCCH associated with the energy-saving signal is located.
  • At least one of the center frequency of the BWP where the PDCCH associated with the energy saving signal is located, and the RB of the BWP where the energy saving signal is located and the RB of the BWP where the PDCCH associated with the energy saving signal is located are different.
  • the second time interval or the fifth time interval includes at least two different time intervals
  • the two different time intervals correspond to the third situation and the fourth situation, respectively, where the third situation is that the BWP where the energy-saving signal is located is different from the BWP where the first signal is located, and the fourth The situation is that the BWP where the energy saving signal is located is the same as the BWP where the first signal is located.
  • the difference between the BWP where the energy-saving signal is located and the BWP where the first signal is located may include that the BWP where the energy-saving signal is located and the BWP where the first signal is located are different in at least one of the central frequency and RB.
  • the BWP where the energy-saving signal is located is different from the BWP where the first signal is located
  • the center frequency of the BWP where the energy-saving signal is located is different from the center frequency of the BWP where the first signal is located
  • the BWP where the energy-saving signal is located is different from the BWP where the first signal is located.
  • the same BWP where the PDCCH associated with the energy saving signal is located may be that the center frequency of the BWP where the energy saving signal is located is the same as the center frequency of the BWP where the first signal is located.
  • the BWP where the energy-saving signal is located is different from the BWP where the first signal is located, the RB of the BWP where the energy-saving signal is located is different from the RB of the BWP where the first signal is located, then the BWP where the energy-saving signal is located and the PDCCH associated with the energy-saving signal are located.
  • the same BWP may be that the RB of the BWP where the energy saving signal is located is the same as the RB of the BWP where the first signal is located.
  • the center frequency of the BWP where the energy-saving signal is located is different from the center frequency of the BWP where the first signal is located, and the RB and the first signal of the BWP where the energy-saving signal is located are different.
  • the RB of the BWP where a signal is located is different, the BWP where the energy-saving signal is located and the BWP where the PDCCH associated with the energy-saving signal is located are the same, which may be the center frequency of the BWP where the energy-saving signal is located and the center frequency of the BWP where the first signal is located.
  • at least one of the RB of the BWP where the energy saving signal is located is different from the RB of the BWP where the first signal is located.
  • the third time interval or the sixth time interval includes at least two different time intervals
  • the two different time intervals correspond to the fifth case and the sixth case, respectively, where the fifth case is that the BWP where the PDCCH associated with the energy saving signal is located is different from the BWP where the first signal is located, so
  • the sixth situation is that the BWP where the PDCCH associated with the energy saving signal is located is the same as the BWP where the first signal is located.
  • the difference between the BWP where the first signal is located and the BWP where the PDCCH associated with the energy-saving signal is located may include at least one of the central frequency and RB of the BWP where the BWP where the first signal is located and the PDCCH associated with the energy-saving signal. different.
  • the center frequency of the BWP where the first signal is located is different from the center frequency of the BWP where the PDCCH associated with the energy-saving signal is located.
  • the BWP where a signal is located is the same as the BWP where the PDCCH associated with the energy-saving signal is located. It may be that the center frequency of the BWP where the first signal is located is the same as the center frequency of the BWP where the PDCCH associated with the energy-saving signal is located.
  • the RB of the BWP where the first signal is located is different from the BWP where the PDCCH associated with the energy-saving signal.
  • the same BWP where the PDCCH associated with the signal is located may be that the RB of the BWP where the first signal is located is the same as the RB of the BWP where the PDCCH associated with the energy-saving signal is located.
  • the center frequency of the BWP where the first signal is located is different from the center frequency of the BWP where the PDCCH associated with the energy-saving signal is located, and the first signal is The RB of the BWP where the BWP is located is different from the RB of the BWP where the PDCCH associated with the energy-saving signal is located, and the BWP where the BWP where the first signal is located is the same as the BWP where the PDCCH associated with the energy-saving signal is located.
  • At least one of the center frequency of the BWP where the PDCCH associated with the signal is located, and the RB of the BWP where the first signal is located and the RB of the BWP where the PDCCH associated with the energy-saving signal is located are different.
  • the energy saving signal is a signal transmitted through the PDCCH or a sequence-based signal.
  • downlink synchronization or RRM measurement or beam can be performed according to the first signal (for example, CSI-RS or TRS, etc.) management.
  • the energy-saving signal and the first signal may be the same signal, for example, while performing downlink synchronization or RRM measurement or beam management according to a certain CSI-RS or TRS, etc., Receive energy-saving signals from the CSI-RS or TRS; the energy-saving signal and the first signal may also be different signals, for example, downlink synchronization or RRM measurement or beam management is performed through the first CSI-RS, and the second CSI-RS is used.
  • RS transmits energy-saving signals.
  • the energy saving signal is a sequence-based signal
  • the energy saving signal and the first signal are different signals.
  • energy saving signals can be received from the CSI-RS or TRS, etc. at the same time.
  • the sequence-based signal may include but is not limited to the following: channel state information reference signal CSI-RS, primary synchronization signal PSS, secondary synchronization signal SSS, tracking reference signal TRS, and demodulation reference signal DMRS.
  • CSI-RS channel state information reference signal
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • TRS tracking reference signal
  • DMRS demodulation reference signal
  • FIG. 7 is a flowchart of a resource determination method provided by an embodiment of the present disclosure. As shown in FIG. 7, it includes the following steps:
  • Step 701 Send the target time interval to the terminal device.
  • the target time interval includes at least one of a first time interval, a second time interval, and a third time interval; wherein, the first time interval is the interval between the energy saving signal and the PDCCH associated with the energy saving signal Time interval, the second time interval is the time interval between the energy saving signal and the first signal, and the third time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal,
  • the first signal is a sequence signal used for downlink synchronization or radio resource management RRM measurement or beam management.
  • the energy-saving signal may be a signal transmitted through the PDCCH; it may also be a sequence-based signal, where the sequence-based signal may be CSI-RS, PSS, SSS, TRS, or DMRS.
  • the PDCCH associated with the energy saving signal may include the PDCCH carrying paging information, or the PDCCH located in OnDuration of the DRX cycle.
  • the PDCCH associated with the energy saving signal may be a PDCCH carrying paging information
  • the energy saving signal may be a PDCCH located in OnDuration of the DRX cycle.
  • the foregoing first signal may be a signal used for downlink synchronization or RRM measurement or beam management, for example, CSI-RS, PSS, SSS, TRS, or DMRS.
  • CSI-RS downlink synchronization or RRM measurement or beam management
  • PSS PSS
  • SSS SSS
  • TRS TRS
  • DMRS DMRS
  • first time interval, second time interval, and third time interval may all include one or at least two time intervals, which is not limited in this embodiment.
  • the resource determination method provided by the embodiment of the present disclosure sends a target time interval to a terminal device, so that the terminal device can determine at least one of the time domain resource of the energy saving signal and the time domain resource of the first signal based on the target time interval, so as to facilitate The terminal device receives the energy saving signal.
  • the method may further include:
  • the capability information includes at least one of a fourth time interval, a fifth time interval, and a sixth time interval; wherein, the fourth time interval is between the power saving signal and the PDCCH associated with the power saving signal
  • the fifth time interval is the time interval between the energy saving signal and the first signal
  • the sixth time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal time interval.
  • the terminal device by receiving the capability information of the terminal device, the terminal device can be configured with a target time interval based on the foregoing capability information, that is, the target time interval may be the network-side device based on the capability information of the terminal device Configured.
  • the fourth time interval, the fifth time interval, and the sixth time interval may correspond to the first time interval, the second time interval, and the third time interval, respectively.
  • the network side device may configure the first time interval for the terminal device based on the fourth time interval, where the first time interval may be greater than or equal to the fourth time interval ;
  • the network side device may configure the second time interval for the terminal device based on the fifth time interval, where the second time interval may be greater than or equal to the fifth time interval;
  • the network side device may configure a third time interval for the terminal device based on the sixth time interval, where the third time interval may be greater than or equal to the sixth time interval.
  • fourth time interval, fifth time interval, and sixth time interval may all include one or at least two time intervals, which is not limited in this embodiment.
  • the network side device by receiving the capability information of the terminal device, it is convenient for the network side device to more accurately configure the target time interval for the terminal device.
  • the first time interval or the fourth time interval includes at least two different time intervals
  • the two different time intervals correspond to the first case and the second case respectively, where the first case is that the bandwidth part BWP where the energy saving signal is located is different from the BWP where the PDCCH associated with the energy saving signal is located,
  • the second situation is that the BWP where the energy saving signal is located is the same as the BWP where the PDCCH associated with the energy saving signal is located.
  • the difference between the BWP where the energy-saving signal is located and the BWP where the PDCCH associated with the energy-saving signal is located may include at least one of the center frequency and RB of the BWP where the energy-saving signal is located and the PDCCH associated with the energy-saving signal. different.
  • the second time interval or the fifth time interval includes at least two different time intervals
  • the two different time intervals correspond to the third situation and the fourth situation, respectively, where the third situation is that the BWP where the energy-saving signal is located is different from the BWP where the first signal is located, and the fourth The situation is that the BWP where the energy saving signal is located is the same as the BWP where the first signal is located.
  • the difference between the BWP where the energy-saving signal is located and the BWP where the first signal is located may include that the BWP where the energy-saving signal is located and the BWP where the first signal is located are different in at least one of the central frequency and RB.
  • the third time interval or the sixth time interval includes at least two different time intervals
  • the two different time intervals correspond to the fifth situation and the sixth situation, respectively, where the fifth situation is that the BWP where the PDCCH associated with the energy saving signal is located is different from the BWP where the first signal is located, so The sixth situation is that the BWP where the PDCCH associated with the energy saving signal is located is the same as the BWP where the first signal is located.
  • the difference between the BWP where the first signal is located and the BWP where the PDCCH associated with the energy-saving signal is located may include at least one of the center frequency and RB of the BWP where the BWP where the first signal is located and the PDCCH associated with the energy-saving signal. different.
  • the energy saving signal is a signal transmitted through the PDCCH or a sequence-based signal.
  • the energy saving signal is a sequence-based signal
  • the energy saving signal and the first signal are different signals.
  • the sequence-based signal may include but is not limited to the following: channel state information reference signal CSI-RS, primary synchronization signal PSS, secondary synchronization signal SSS, tracking reference signal TRS, and demodulation reference signal DMRS.
  • CSI-RS channel state information reference signal
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • TRS tracking reference signal
  • DMRS demodulation reference signal
  • the energy-saving signal may be a signal based on PDCCH transmission or a sequence-based signal (for example, CSI-RS or TRS, etc.).
  • CSI-RS for example, CSI-RS or TRS, etc.
  • the terminal device before the terminal device detects the energy-saving signal, it can perform reception preparations such as synchronization or RRM measurement or beam management according to CSI-RS or TRS to receive the energy-saving signal. Specifically, it can include the following three situations:
  • Case 1 In the case where the energy-saving signal is transmitted based on the PDCCH, before the UE detects the energy-saving signal, it can perform synchronization or RRM measurement or beam management according to CSI-RS or TRS.
  • Case 2 In the case where the energy-saving signal is a sequence-based signal (for example, CSI-RS or TRS, etc.), the UE can perform processing based on a signal different from the energy-saving signal (for example, CSI-RS or TRS, etc.) before detecting the energy-saving signal Synchronization or RRM measurement or beam management.
  • the energy-saving signal is a sequence-based signal (for example, CSI-RS or TRS, etc.)
  • the UE can perform processing based on a signal different from the energy-saving signal (for example, CSI-RS or TRS, etc.) before detecting the energy-saving signal Synchronization or RRM measurement or beam management.
  • Case 3 In the case that the energy-saving signal is a sequence-based signal (for example, CSI-RS or TRS, etc.), the UE can also use the same signal as the energy-saving signal (for example, CSI-RS or TRS, etc.) before detecting the energy-saving signal Perform synchronization or RRM measurements or beam management.
  • the energy-saving signal is a sequence-based signal (for example, CSI-RS or TRS, etc.)
  • the UE can also use the same signal as the energy-saving signal (for example, CSI-RS or TRS, etc.) before detecting the energy-saving signal Perform synchronization or RRM measurements or beam management.
  • the resource determination method provided by the embodiment of the present disclosure may include the following steps:
  • the UE may report a fourth time interval between the energy saving signal and the PDCCH associated with the energy saving signal to the base station, where the fourth time interval is used to indicate the UE capability;
  • the UE may report the fifth time interval between the energy-saving signal and the CSI-RS used for downlink synchronization or RRM measurement or beam management to the base station, where the fifth time interval is used to indicate the UE capability;
  • the UE may report to the base station the sixth time interval between the PDCCH associated with the energy-saving signal and the CSI-RS used for downlink synchronization or RRM measurement or beam management, where the sixth time interval is used to indicate UE capabilities.
  • Step a2 The base station may configure the first time interval between the energy-saving signal and the PDCCH associated with the energy-saving signal according to the capabilities reported by the UE, where the first interval is greater than or equal to the fourth time interval reported by the UE;
  • the base station may configure the second time interval between the energy-saving signal and the CSI-RS used for downlink synchronization or RRM measurement or beam management according to the capabilities reported by the UE, where the second interval is greater than or equal to the fifth time interval reported by the UE;
  • the base station can configure the second time interval between the PDCCH associated with the energy saving signal and the CSI-RS used for downlink synchronization or RRM measurement or beam management according to the capabilities reported by the UE, and the second interval is greater than or equal to the fifth time interval reported by the UE.
  • Step a3 The UE determines the time domain resource of the energy-saving signal and the CSI used for downlink synchronization or RRM measurement or beam management according to at least one of the first time interval, the second time interval interval, and the third time interval configured by the base station. RS time domain resources.
  • the fourth time interval between the energy-saving signal reported by the UE to the base station and the PDCCH associated with the energy-saving signal may include multiple time intervals, for example, if the BWP where the energy-saving signal is located and the PDCCH associated with the energy-saving signal is located The center frequency of BWP is different, and the UE reports time interval A; if the two center frequencies are the same, the UE reports time interval B.
  • the fifth time interval between the energy-saving signal reported by the UE to the base station and the CSI-RS used for downlink synchronization or RRM measurement or beam management may also include multiple time intervals. For example, if the BWP of the energy-saving signal and the CSI-RS used for downlink synchronization, The center frequency of the BWP of the CSI-RS for synchronization or RRM measurement or beam management is different, and the UE reports the time interval C; if the center frequency of the two is the same, the UE reports the time interval D.
  • the sixth time interval between the PDCCH associated with the energy-saving signal reported by the UE to the base station and the CSI-RS used for downlink synchronization or RRM measurement or beam management may also include multiple time intervals, for example, if the PDCCH associated with the energy-saving signal
  • the center frequency of the BWP is different from the BWP of the CSI-RS used for downlink synchronization or RRM measurement or beam management.
  • the UE reports the time interval E; if the two center frequencies are the same, the UE reports the time interval F.
  • the above-mentioned first time interval may also be predefined by the protocol.
  • a default time interval is defined for the same or different BWP corresponding to the BWP where the energy saving signal is located and the PDCCH associated with the energy saving signal.
  • the second time interval may also be predefined by the protocol. For example, a default time interval is defined for the same or different BWP where the energy-saving signal is located and the BWP where the CSI-RS used for downlink synchronization or RRM measurement or beam management is located.
  • the foregoing third time interval may also be predefined by the protocol.
  • the BWP where the PDCCH associated with the energy-saving signal is located is the same or different from the BWP where the CSI-RS used for downlink synchronization or RRM measurement or beam management is located.
  • a default time is defined respectively. interval.
  • FIG. 8 is a structural diagram of a terminal device provided by an embodiment of the present disclosure. As shown in FIG. 8, the terminal device 800 includes:
  • the determining module 801 is configured to determine whether to detect the energy-saving signal according to the measured quantity related to the channel condition obtained by the measurement.
  • the channel condition-related measurement variables include at least one of the following: reference signal received power RSRP, RSRP change-related measurement variables, reference signal received quality RSRQ, RSRQ change-related measurement variables, signal-to-interference plus noise ratio SINR, SINR change related measurement quantity, mobility related measurement quantity.
  • the mobility-related measurement quantity includes at least one of the following:
  • the transmission configuration of the terminal device in the third preset time indicates the number of TCI states.
  • the determining module is specifically used for at least one of the following:
  • the energy saving signal is not required to be detected
  • the first physical downlink control channel PDCCH is detected, where the first PDCCH is the PDCCH associated with the energy saving signal.
  • the measured quantity related to the channel condition obtained by measurement satisfies the threshold including at least one of the following:
  • the measured RSRP is greater than or equal to the first threshold
  • the measured RSRQ is greater than or equal to the second threshold
  • the measured mobility-related measurement quantity meets the third threshold
  • the measured RSRP change related measurement quantity meets the fourth threshold
  • the measured RSRQ change related measurement quantity meets the fifth threshold
  • the measured SINR is greater than or equal to the sixth threshold
  • the measured SINR change related measurement quantity meets the seventh threshold.
  • the threshold is configured on the network side or predefined by the protocol.
  • the terminal device 800 provided in the embodiment of the present disclosure can implement the various processes implemented by the terminal device in the embodiment of the energy-saving signal detection method. In order to avoid repetition, details are not described herein again.
  • the determining module 801 is configured to determine whether to detect the energy-saving signal according to the measured quantity related to the channel condition obtained by the measurement.
  • a detection method for energy-saving signals is standardized, which can not only save power consumption of terminal equipment, but also improve the reliability of communication.
  • the network side device 900 includes:
  • the sending module 900 is configured to send the threshold of the measurement quantity related to the channel condition to the terminal device.
  • the channel condition-related measurement variables include at least one of the following: reference signal received power RSRP, RSRP change-related measurement variables, reference signal received quality RSRQ, RSRQ change-related measurement variables, signal-to-interference plus noise ratio SINR, SINR change related measurement quantity, mobility related measurement quantity.
  • the mobility-related measurement quantity includes at least one of the following:
  • the transmission configuration of the terminal device in the third preset time indicates the number of TCI states.
  • the network-side device 900 provided by the embodiment of the present disclosure can implement the various processes implemented by the network-side device in the embodiment of the energy-saving signal detection method described above. To avoid repetition, details are not described herein again.
  • the network side device 900 and the sending module 900 of the embodiment of the present disclosure are configured to send the channel condition-related measurement threshold to the terminal device, so that the terminal device can determine whether to detect the energy-saving signal based on the channel condition-related measurement threshold.
  • FIG. 10 is a structural diagram of a terminal device provided by another embodiment of the present disclosure. As shown in FIG. 10, the terminal device 1000 includes:
  • the determining module 1001 is configured to determine the time domain resource of the target signal according to the target time interval;
  • the target time interval includes at least one of a first time interval, a second time interval, and a third time interval; wherein, the first time interval is the interval between the energy saving signal and the PDCCH associated with the energy saving signal Time interval, the second time interval is the time interval between the energy saving signal and the first signal, and the third time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal,
  • the first signal is a signal used for downlink synchronization or radio resource management RRM measurement or beam management, and the target signal includes at least one of the energy saving signal and the first signal.
  • the target time interval is predefined by the protocol or configured for the network side device.
  • the terminal device further includes:
  • a sending module configured to send the capability information of the terminal device to the network side device before determining the time domain resource of the target signal according to the target time interval;
  • the capability information includes at least one of a fourth time interval, a fifth time interval, and a sixth time interval; wherein, the fourth time interval is between the power saving signal and the PDCCH associated with the power saving signal
  • the fifth time interval is the time interval between the energy saving signal and the first signal
  • the sixth time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal time interval.
  • the target time interval is configured by the network side device based on the capability information of the terminal device.
  • the first time interval or the fourth time interval includes at least two different time intervals
  • the two different time intervals correspond to the first case and the second case respectively, where the first case is that the bandwidth part BWP where the energy saving signal is located is different from the BWP where the PDCCH associated with the energy saving signal is located.
  • the second situation is that the BWP where the energy saving signal is located is the same as the BWP where the PDCCH associated with the energy saving signal is located.
  • the second time interval or the fifth time interval includes at least two different time intervals
  • the two different time intervals correspond to the third situation and the fourth situation, respectively, where the third situation is that the BWP where the energy-saving signal is located is different from the BWP where the first signal is located, and the fourth The situation is that the BWP where the energy saving signal is located is the same as the BWP where the first signal is located.
  • the third time interval or the sixth time interval includes at least two different time intervals
  • the two different time intervals correspond to the fifth situation and the sixth situation, respectively, where the fifth situation is that the BWP where the PDCCH associated with the energy saving signal is located is different from the BWP where the first signal is located, so The sixth situation is that the BWP where the PDCCH associated with the energy saving signal is located is the same as the BWP where the first signal is located.
  • the energy saving signal is a signal transmitted through the PDCCH or a sequence-based signal.
  • the energy saving signal is a sequence-based signal
  • the energy saving signal and the first signal are different signals.
  • the sequence-based signal includes the following items: channel state information reference signal CSI-RS, primary synchronization signal PSS, secondary synchronization signal SSS, tracking reference signal TRS, and demodulation reference signal DMRS.
  • the terminal device 1000 provided in the embodiment of the present disclosure can implement the various processes implemented by the terminal device in the foregoing resource determination method embodiment. To avoid repetition, details are not described herein again.
  • the terminal device 1000 of the embodiment of the present disclosure is configured to determine the time domain resource of the target signal according to the target time interval; wherein the target time interval includes a first time interval, a second time interval, and a third time interval At least one of; wherein the first time interval is the time interval between the energy-saving signal and the PDCCH associated with the energy-saving signal, and the second time interval is the time between the energy-saving signal and the first signal
  • the third time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal, and the first signal is a signal used for downlink synchronization or radio resource management RRM measurement or beam management
  • the target signal includes at least one of the energy saving signal and the first signal.
  • a method for determining resources related to energy-saving signal detection is standardized to facilitate subsequent reception of energy-saving signals.
  • the network side device 1100 includes:
  • the sending module 1101 is used to send the target time interval to the terminal device
  • the target time interval includes at least one of a first time interval, a second time interval, and a third time interval; wherein, the first time interval is the interval between the energy saving signal and the PDCCH associated with the energy saving signal Time interval, the second time interval is the time interval between the energy saving signal and the first signal, and the third time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal,
  • the first signal is a sequence signal used for downlink synchronization or radio resource management RRM measurement or beam management.
  • the network side device further includes:
  • a receiving module configured to receive capability information of the terminal device from the terminal device
  • the capability information includes at least one of a fourth time interval, a fifth time interval, and a sixth time interval; wherein, the fourth time interval is between the power saving signal and the PDCCH associated with the power saving signal
  • the fifth time interval is the time interval between the energy saving signal and the first signal
  • the sixth time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal time interval.
  • the target time interval is determined according to the capability information of the terminal device.
  • the first time interval or the fourth time interval includes at least two different time intervals
  • the two different time intervals correspond to the first case and the second case respectively, where the first case is that the bandwidth part BWP where the energy saving signal is located is different from the BWP where the PDCCH associated with the energy saving signal is located,
  • the second situation is that the BWP where the energy saving signal is located is the same as the BWP where the PDCCH associated with the energy saving signal is located.
  • the second time interval or the fifth time interval includes at least two different time intervals
  • the two different time intervals correspond to the third case and the fourth case respectively, where the third case is that the BWP where the energy-saving signal is located is different from the BWP where the first signal is located, and the fourth The situation is that the BWP where the energy saving signal is located is the same as the BWP where the first signal is located.
  • the third time interval or the sixth time interval includes at least two different time intervals
  • the two different time intervals correspond to the fifth situation and the sixth situation, respectively, where the fifth situation is that the BWP where the PDCCH associated with the energy saving signal is located is different from the BWP where the first signal is located, so The sixth situation is that the BWP where the PDCCH associated with the energy saving signal is located is the same as the BWP where the first signal is located.
  • the energy saving signal is a signal transmitted through the PDCCH or a sequence-based signal.
  • the energy saving signal is a sequence-based signal
  • the energy saving signal and the first signal are different signals.
  • the sequence-based signal includes the following items: channel state information reference signal CSI-RS, primary synchronization signal PSS, secondary synchronization signal SSS, tracking reference signal TRS, and demodulation reference signal DMRS.
  • the network-side device 1100 provided in the embodiment of the present disclosure can implement the various processes implemented by the network-side device in the foregoing resource determination method embodiment. To avoid repetition, details are not described herein again.
  • the network side device 1100 in the embodiment of the present disclosure, the sending module 1101, is configured to send a target time interval to a terminal device; wherein the target time interval includes at least one of the first time interval, the second time interval, and the third time interval One; wherein the first time interval is the time interval between the energy-saving signal and the PDCCH associated with the energy-saving signal, the second time interval is the time interval between the energy-saving signal and the first signal, the The third time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal, and the first signal is a sequence signal used for downlink synchronization or radio resource management RRM measurement or beam management.
  • the terminal device can determine at least one of the time domain resource of the energy saving signal and the time domain resource of the first signal based on the target time interval, so that the terminal device can receive the energy saving signal.
  • Fig. 12 is a structural diagram of a terminal device provided by another embodiment of the present disclosure.
  • the terminal device 1200 includes but is not limited to: radio frequency unit 1201, network module 1202, audio output unit 1203, input unit 1204, sensor 1205, display unit 1206, user input unit 1207, interface unit 1208, memory 1209, processing 1210, and power supply 1211 and other components.
  • the structure of the terminal device shown in FIG. 12 does not constitute a limitation on the terminal device, and the terminal device may include more or less components than those shown in the figure, or a combination of certain components, or different components Layout.
  • terminal devices include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the processor 1210 is configured to determine whether to detect an energy-saving signal according to the channel condition-related measurement quantity obtained by measurement.
  • the embodiments of the present disclosure determine whether to detect the energy-saving signal according to the measured measurement related to the channel condition, and standardize an energy-saving signal detection method, which can not only save the power consumption of the terminal device, but also improve the reliability of communication.
  • the channel condition-related measurement variables include at least one of the following: reference signal received power RSRP, RSRP change-related measurement variables, reference signal received quality RSRQ, RSRQ change-related measurement variables, signal-to-interference plus noise ratio SINR, SINR change related measurement quantity, mobility related measurement quantity.
  • the mobility-related measurement quantity includes at least one of the following:
  • the transmission configuration of the terminal device in the third preset time indicates the number of TCI states.
  • processor 1210 is further configured to implement at least one of the following:
  • the energy saving signal is not required to be detected
  • the first physical downlink control channel PDCCH is detected, where the first PDCCH is the PDCCH associated with the energy saving signal.
  • the measured quantity related to the channel condition obtained by measurement satisfies the threshold including at least one of the following:
  • the measured RSRP is greater than or equal to the first threshold
  • the measured RSRQ is greater than or equal to the second threshold
  • the measured mobility-related measurement quantity meets the third threshold
  • the measured RSRP change related measurement quantity meets the fourth threshold
  • the measured RSRQ change related measurement quantity meets the fifth threshold
  • the measured SINR is greater than or equal to the sixth threshold
  • the measured SINR change related measurement quantity meets the seventh threshold.
  • the threshold is configured on the network side or predefined by the protocol.
  • the radio frequency unit 1201 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 1210; Uplink data is sent to the base station.
  • the radio frequency unit 1201 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 1201 can also communicate with the network and other devices through a wireless communication system.
  • Terminal equipment provided by the network module 1202 for users of wireless broadband Internet access, such as to help users send and receive email, browse the web and access streaming media and so on.
  • the audio output unit 1203 can convert the audio data received by the radio frequency unit 1201 or the network module 1202 or stored in the memory 1209 into audio signals and output them as sounds. Moreover, the audio output unit 1203 may also provide audio output related to a specific function performed by the terminal device 1200 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 1203 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1204 is used to receive audio or video signals.
  • the input unit 1204 may include a graphics processing unit (GPU) 12041 and a microphone 12042, and the graphics processor 12041 is configured to respond to still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 1206.
  • the image frame processed by the graphics processor 12041 may be stored in the memory 1209 (or other storage medium) or sent via the radio frequency unit 1201 or the network module 1202.
  • the microphone 12042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 1201 for output in the case of a telephone call mode.
  • the terminal device 1200 further includes at least one sensor 1205, such as an optical sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 12061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 12061 and the display panel 12061 when the terminal device 1200 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of the terminal device (such as horizontal and vertical screen switching, related games , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 1205 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 1206 is used to display information input by the user or information provided to the user.
  • the display unit 1206 may include a display panel 12061, and the display panel 12061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 1207 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal device.
  • the user input unit 1207 includes a touch panel 12071 and other input devices 12072.
  • the touch panel 12071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on or near the touch panel 12071. operating).
  • the touch panel 12071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it
  • the processor 1210 receives and executes the command sent by the processor 1210.
  • the touch panel 12071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 1207 may also include other input devices 12072.
  • other input devices 12072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 12071 can cover the display panel 12061.
  • the touch panel 12071 detects a touch operation on or near it, it transmits it to the processor 1210 to determine the type of the touch event, and then the processor 1210 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 12061.
  • the touch panel 12071 and the display panel 12061 are used as two independent components to implement the input and output functions of the terminal device, in some embodiments, the touch panel 12071 and the display panel 12061 can be integrated
  • the implementation of the input and output functions of the terminal device is not specifically limited here.
  • the interface unit 1208 is an interface for connecting an external device and the terminal device 1200.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (input/output, I/O) port, video I/O port, headphone port, etc.
  • the interface unit 1208 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal device 1200 or may be used to connect to the terminal device 1200 and an external device. Transfer data between devices.
  • the memory 1209 can be used to store software programs and various data.
  • the memory 1209 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 1209 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1210 is the control center of the terminal device. It uses various interfaces and lines to connect the various parts of the entire terminal device. It runs or executes the software programs and/or modules stored in the memory 1209, and calls the data stored in the memory 1209. , Perform various functions of terminal equipment and process data, so as to monitor the terminal equipment as a whole.
  • the processor 1210 may include one or more processing units; optionally, the processor 1210 may integrate an application processor and a modem processor.
  • the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1210.
  • the terminal device 1200 may also include a power source 1211 (such as a battery) for supplying power to various components.
  • a power source 1211 such as a battery
  • the power source 1211 may be logically connected to the processor 1210 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • terminal device 1200 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present disclosure further provides a terminal device, including a processor 1210, a memory 1209, a computer program stored in the memory 1209 and running on the processor 1210, and the computer program is executed by the processor 1210
  • a terminal device including a processor 1210, a memory 1209, a computer program stored in the memory 1209 and running on the processor 1210, and the computer program is executed by the processor 1210
  • the network side device 1300 includes: a processor 1301, a memory 1302, a bus interface 1303, and a transceiver 1304, where the processor 1301, the memory 1302, and the transceiver 1304 are all connected to the bus interface 1303.
  • the network side device 1300 further includes: a computer program stored in the memory 1302 and capable of running on the processor 1301.
  • the transceiver 1304 is configured to send the threshold of the measurement quantity related to the channel condition to the terminal device.
  • the channel condition-related measurement variables include at least one of the following: reference signal received power RSRP, RSRP change-related measurement variables, reference signal received quality RSRQ, RSRQ change-related measurement variables, signal-to-interference plus noise ratio SINR, SINR change related measurement quantity, mobility related measurement quantity.
  • the mobility-related measurement quantity includes at least one of the following:
  • the transmission configuration of the terminal device in the third preset time indicates the number of TCI states.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the above-mentioned energy-saving signal detection method embodiment is realized, and the same Technical effects, in order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • FIG. 14 is a structural diagram of a terminal device provided by another embodiment of the present disclosure.
  • the terminal device 1400 includes: at least one processor 1401, memory 1402, at least one network interface 1404, and user interface 1403 .
  • the various components in the terminal 1400 are coupled together through the bus system 1405. It can be understood that the bus system 1405 is used to implement connection and communication between these components.
  • the bus system 1405 also includes a power bus, a control bus, and a status signal bus.
  • the memory 1402 stores the following elements, executable modules or data structures, or a subset of them, or an extended set of them: operating system 14021 and application programs 14022.
  • the operating system 14021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 14022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • the program for implementing the method of the embodiment of the present disclosure may be included in the application program 14022.
  • the terminal device 1400 further includes: a computer program stored in the memory 1402 and running on the processor 1401, specifically, it may be a computer program in the application program 14022, and the computer program is executed by the processor 1401 When implementing the following steps:
  • the target time interval determine the time domain resource of the target signal
  • the target time interval includes at least one of a first time interval, a second time interval, and a third time interval; wherein, the first time interval is the interval between the energy saving signal and the PDCCH associated with the energy saving signal Time interval, the second time interval is the time interval between the energy saving signal and the first signal, and the third time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal,
  • the first signal is a signal used for downlink synchronization or radio resource management RRM measurement or beam management, and the target signal includes at least one of the energy saving signal and the first signal.
  • the target time interval is predefined by the protocol or configured for the network side device.
  • the computer program when executed by the processor 1401, it is also used to:
  • the capability information includes at least one of a fourth time interval, a fifth time interval, and a sixth time interval; wherein, the fourth time interval is between the power saving signal and the PDCCH associated with the power saving signal
  • the fifth time interval is the time interval between the energy saving signal and the first signal
  • the sixth time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal time interval.
  • the target time interval is configured by the network side device based on the capability information of the terminal device.
  • the first time interval or the fourth time interval includes at least two different time intervals
  • the two different time intervals correspond to the first case and the second case respectively, where the first case is that the bandwidth part BWP where the energy saving signal is located is different from the BWP where the PDCCH associated with the energy saving signal is located,
  • the second situation is that the BWP where the energy saving signal is located is the same as the BWP where the PDCCH associated with the energy saving signal is located.
  • the second time interval or the fifth time interval includes at least two different time intervals
  • the two different time intervals correspond to the third situation and the fourth situation, respectively, where the third situation is that the BWP where the energy-saving signal is located is different from the BWP where the first signal is located, and the fourth The situation is that the BWP where the energy saving signal is located is the same as the BWP where the first signal is located.
  • the third time interval or the sixth time interval includes at least two different time intervals
  • the two different time intervals correspond to the fifth situation and the sixth situation, respectively, where the fifth situation is that the BWP where the PDCCH associated with the energy saving signal is located is different from the BWP where the first signal is located, so The sixth situation is that the BWP where the PDCCH associated with the energy saving signal is located is the same as the BWP where the first signal is located.
  • the energy saving signal is a signal transmitted through the PDCCH or a sequence-based signal.
  • the energy saving signal is a sequence-based signal
  • the energy saving signal and the first signal are different signals.
  • the sequence-based signal includes the following items: channel state information reference signal CSI-RS, primary synchronization signal PSS, secondary synchronization signal SSS, tracking reference signal TRS, and demodulation reference signal DMRS.
  • FIG. 15 is a structural diagram of a network side device according to another embodiment of the present disclosure.
  • the network side device 1500 includes: a processor 1501, a memory 1502, a bus interface 1503 and a transceiver 1504, where the processor 1501, the memory 1502 and the transceiver 1504 are all connected to the bus interface 1503.
  • the network side device 1500 further includes: a computer program stored in the memory 1502 and running on the processor 1501.
  • the transceiver 1504 is used to:
  • the target time interval includes at least one of a first time interval, a second time interval, and a third time interval; wherein, the first time interval is the interval between the energy saving signal and the PDCCH associated with the energy saving signal Time interval, the second time interval is the time interval between the energy saving signal and the first signal, and the third time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal,
  • the first signal is a sequence signal used for downlink synchronization or radio resource management RRM measurement or beam management.
  • the transceiver 1504 is also used for:
  • the capability information includes at least one of a fourth time interval, a fifth time interval, and a sixth time interval; wherein, the fourth time interval is between the power saving signal and the PDCCH associated with the power saving signal
  • the fifth time interval is the time interval between the energy saving signal and the first signal
  • the sixth time interval is the time interval between the PDCCH associated with the energy saving signal and the first signal time interval.
  • the target time interval is determined according to the capability information of the terminal device.
  • the first time interval or the fourth time interval includes at least two different time intervals
  • the two different time intervals correspond to the first case and the second case respectively, where the first case is that the bandwidth part BWP where the energy saving signal is located is different from the BWP where the PDCCH associated with the energy saving signal is located,
  • the second situation is that the BWP where the energy saving signal is located is the same as the BWP where the PDCCH associated with the energy saving signal is located.
  • the second time interval or the fifth time interval includes at least two different time intervals
  • the two different time intervals correspond to the third situation and the fourth situation, respectively, where the third situation is that the BWP where the energy-saving signal is located is different from the BWP where the first signal is located, and the fourth The situation is that the BWP where the energy saving signal is located is the same as the BWP where the first signal is located.
  • the third time interval or the sixth time interval includes at least two different time intervals
  • the two different time intervals correspond to the fifth situation and the sixth situation, respectively, where the fifth situation is that the BWP where the PDCCH associated with the energy saving signal is located is different from the BWP where the first signal is located, so The sixth situation is that the BWP where the PDCCH associated with the energy saving signal is located is the same as the BWP where the first signal is located.
  • the energy saving signal is a signal transmitted through the PDCCH or a sequence-based signal.
  • the energy saving signal is a sequence-based signal
  • the energy saving signal and the first signal are different signals.
  • the sequence-based signal includes the following items: channel state information reference signal CSI-RS, primary synchronization signal PSS, secondary synchronization signal SSS, tracking reference signal TRS, and demodulation reference signal DMRS.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the foregoing resource determination method embodiment is realized, and the same technology can be achieved The effect, in order to avoid repetition, will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or the part that contributes to the related technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or a part that contributes to the related technology.
  • the computer software product is stored in a storage medium and includes several instructions to make a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer readable storage medium. When executed, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • modules, units, and sub-units can be implemented in one or more application specific integrated circuits (ASIC), digital signal processors (Digital Signal Processor, DSP), and digital signal processing equipment (DSP Device, DSPD). ), Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, used to implement Other electronic units or combinations of the functions described above.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processor
  • DSP Device digital signal processing equipment
  • FPGA Field-Programmable Gate Array
  • general-purpose processors controllers, microcontrollers, microprocessors, used to implement Other electronic units or combinations of the functions described above.
  • the technology described in the embodiments of the present disclosure can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种节能信号检测方法、资源确定方法及相关设备,该节能信号检测方法包括:根据测量得到的信道条件相关的测量量,确定是否检测节能信号。

Description

节能信号检测方法、资源确定方法及相关设备
相关申请的交叉引用
本申请主张在2019年2月2日在中国提交的中国专利申请号No.201910108019.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种节能信号检测方法、资源确定方法及相关设备。
背景技术
相关技术中,为了节省用户设备(User,Equipment,UE)(也可称为终端设备)盲检测寻呼信号或是盲检测物理下行控制信道(Physical Downlink Control Channel,PDCCH)等的功耗,提出了非连续接收(Discontinuous Reception,DRX)机制,其中,上述DRX可以包括无线资源控制(Radio Resource Control,RRC)空闲(即RRC_IDLE)状态或是RRC去激活(即RRC_INACTIVE)状态的DRX和RRC连接(即RRC_CONNECTED)状态的DRX。
为了进一步节省检测寻呼信号或是盲检测PDCCH的功耗,又提出了节能信号的概念。具体的,在节能信号指示UE检测寻呼机会(Paging Occasion,PO)时刻的PDCCH或是DRX周期的持续时间(即OnDuration)的PDCCH,那么UE检测该PDCCH;如果节能信号没有指示UE检测PO时刻的PDCCH或是DRX周期的OnDuration的PDCCH,那么UE不检测该PDCCH。
然而,相关技术中,对如何应用节能信号(例如,如何检测节能信号或是如何确定用于节能信号检测的相关资源等),并没有相关的解决方案。
发明内容
本公开实施例提供一种节能信号检测方法、资源确定方法及相关设备,以提供一种应用节能信号的方式。
第一方面,本公开实施例提供了一种节能信号检测方法,应用于终端设备,该方法包括:
根据测量得到的信道条件相关的测量量,确定是否检测节能信号。
第二方面,本公开实施例还提供了一种节能信号检测方法,应用于网络侧设备,该方法包括:
向终端设备发送信道条件相关的测量量的门限。
第三方面,本公开实施例还提供了一种资源确定方法,应用于终端设备,该方法包括:
根据目标时间间隔,确定目标信号的时域资源;
其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的信号,所述目标信号包括所述节能信号和所述第一信号中的至少之一。
第四方面,本公开实施例还提供了一种资源确定方法,应用于网络侧设备,该方法包括:
向终端设备发送目标时间间隔;
其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的序列信号。
第五方面,本公开实施例还提供一种终端设备。该终端设备包括:
确定模块,用于根据测量得到的信道条件相关的测量量,确定是否检测节能信号。
第六方面,本公开实施例还提供一种网络侧设备。该网络侧设备包括:
向终端设备发送信道条件相关的测量量的门限。
第七方面,本公开实施例还提供一种终端设备。该终端设备包括:
确定模块,用于根据目标时间间隔,确定目标信号的时域资源;
其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的信号,所述目标信号包括所述节能信号和所述第一信号中的至少之一。
第八方面,本公开实施例还提供一种网络侧设备。该网络侧设备包括:
发送模块,用于向终端设备发送目标时间间隔;
其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的序列信号。
第九方面,本公开实施例还提供一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第一方面提供的节能信号检测方法的步骤。
第十方面,本公开实施例还提供一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第二方面提供的节能信号检测方法的步骤。
第十一方面,本公开实施例还提供一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第三方面提供的资源确定方法的步骤。
第十二方面,本公开实施例还提供一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算 机程序被所述处理器执行时实现上述第四方面提供的资源确定方法的步骤。
第十三方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面提供的节能信号检测方法的步骤,或者实现上述第二方面提供的节能信号检测方法的步骤,或者实现上述第三方面提供的资源确定方法的步骤,或者实现上述第四方面提供的资源确定方法的步骤。
本公开实施例中,通过根据测量得到的信道条件相关的测量量,确定是否检测节能信号,规范了一种检测节能信号的方式,不仅可以节省终端设备功耗,还可以提高通信的可靠性。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的DRX周期的示意图;
图2是本公开实施例提供的在连接态DRX(connected discontinuous reception,CDRX)OnDuration之前唤醒信号时间流的示意图;
图3是本公开实施例可应用的一种网络系统的结构图;
图4是本公开实施例提供的节能信号检测方法的流程图;
图5是本公开又一实施例提供的节能信号检测方法的流程图;
图6是本公开实施例提供的资源确定方法的流程图;
图7是本公开又一实施例提供的资源确定方法的流程图;
图8是本公开实施例提供的终端设备的结构图;
图9是本公开实施例提供的网络侧设备的结构图;
图10是本公开又一实施例提供的终端设备的结构图;
图11是本公开又一实施例提供的网络侧设备的结构图;
图12是本公开又一实施例提供的终端设备的结构图;
图13是本公开又一实施例提供的网络侧设备的结构图;
图14是本公开又一实施例提供的终端设备的结构图;
图15是本公开又一实施例提供的网络侧设备的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。
为了便于描述,以下将本公开实施例涉及的一些内容进行说明:
在移动通信系统中,例如,新无线(New Radio,NR)支持与用户设备(User Equipment,UE)(也可称为终端设备)省电相关参数,例如,带宽部分(Bandwidth Part,BWP)大小,多输入多输出(Multiple-Input Multiple-Output,MIMO)层数,同时激活的下行分量载波的数量等。其中,上述省电相关参数的不同取值可以导致终端设备不同的电量消耗。
一、无线资源控制(Radio Resource Control,RRC)空闲(即RRC_IDLE)状态或是RRC去激活(即RRC_INACTIVE)状态的非连续接收(Discontinuous Reception,DRX):
在长期演进(Long Term Evolution,LTE)或第五代(5th-Generation,5G) 通信系统中,处于RRC_IDLE状态下的用户设备(User Equipment,UE)(也可称为终端设备)需要在预配置的时间上检测基站发送的寻呼信号,其中,检测寻呼信号的过程可以如下:
盲检测寻呼无线网络临时标识(Paging Radio Network Temporary Identifier,P-RNTI)对应的物理下行控制信道(Physical Downlink Control Channel,PDCCH),如果没有检测到该PDCCH,则结束本次检测;如果检测到该PDCCH存在,则进一步检测该PDCCH指示的物理下行共享信道(Physical Downlink Shared Channel,PDSCH),如果检测出的PDSCH不是本UE的寻呼信号,则结束检测;否则,检测出的PDSCH是本用户的寻呼信号。
在RRC_IDLE状态下的UE定期检测寻呼信号,而接收到属于本UE的寻呼信号的概率是比较低的。由于每次检测PDCCH和PDSCH的功耗较大,不利于终端省电。
二、RRC连接(即RRC_CONNECTED)状态的DRX:
DRX的基本机制是为处于RRC_CONNECTED态的UE配置一个DRX周期(即DRX Cycle)。DRX周期由持续时间(即OnDuration)和DRX机会(即Opportunity for DRX)组成,其中,在OnDuration的时间内,UE监听并接收PDCCH(即激活期);在DRX机会(即Opportunity for DRX)时间内,UE不接收下行信道的数据以节省功耗(即休眠期)。
例如,参见图1,在时域上,时间被划分成一个个连续的DRX周期。其中,DRX起始偏移(即drxStartOffset)指定DRX周期的起始子帧,长DRX-Cycle(即longDRX-Cycle)指定了一个长DRX周期(即long DRX Cycle)占多少个子帧,这两个参数都是由长DRX周期起始偏移(即longDRX-CycleStartOffset)字段确定的。持续时间定时器(即OnDurationTimer)指定了从DRX周期的起始子帧算起,需要监听PDCCH的连续子帧数(即激活期持续的子帧数)。
在大多数情况下,当一个UE在某个子帧被调度并接收或发送数据后,很可能在接下来的几个子帧内继续被调度,如果要等到下一个DRX周期再来接收或发送这些数据将会带来额外的延迟。为了降低这类延迟,UE在被调度后,会持续位于激活期,即会在配置的激活期内持续监听PDCCH。其实现机 制是:每当UE被调度以初传数据时,就会启动(或重启)一个DRX非激活定时器(即drx-InactivityTimer),UE将一直位于激活态直到该DRX非激活定时器超时。DRX非激活定时器指定了当UE成功解码一个指示初传的上行链接(Up Link,UL)或下行链路(Down Link,DL)用户数据的PDCCH后,持续位于激活态的连续子帧数。也即每当UE有初传数据被调度,该DRX非激活定时器就重启一次。
具体的,为了在上述两种DRX下进一步节省盲检测寻呼(即Paging)信号或PDCCH的功耗,提出了唤醒信号(Wake-Up Signal,WUS)和睡眠信号,其中,上述唤醒信号和睡眠信号可统称为节能信号(即Power Saving Signal)。
三、RRC_IDLE或者RRC_INACTIVE状态的节能信号:
在空闲(即Idle)状态每一个寻呼(即Paging)周期,在寻呼机会(Paging Occasion,PO)之前,基站可以传输一个节能信号给UE,UE在相应时刻检测该节能信号。
具体的,如果该节能信号指示UE检测PO时刻的PDCCH,那么UE检测所述PDCCH;如果该节能信号没有指示UE检测PO时刻的PDCCH,那么UE不检测所述PDCCH。
需要说明的是,检测唤醒信号相比盲检测寻呼(即Paging)信号或PDCCH,复杂度更低且更为省电。
四、RRC_连接态的节能信号:
如图2所示,在RRC_连接态每一个CDRX周期,在OnDuration之前,或者在OnDuration中的开始时刻,基站传输一个节能信号给UE,UE在相应时刻检测该节能信号。
具体的,如果该节能信号指示UE检测OnDuration的PDCCH,那么UE检测所述PDCCH;如果该节能信号没有指示UE检测OnDuration的PDCCH,那么UE不检测所述PDCCH。
需要说明的是,检测唤醒信号相比盲检测寻呼(即Paging)信号或PDCCH,复杂度更低且更为省电。
需要说明的是,上述节能信号可以是通过PDCCH传输的信号,也可以是基于序列的信号,例如,信道状态信息参考信号(Channel State Information  Reference Signal,CSI-RS),或者是启闭键控(On-Off Keying,OOK)信号。
参见图3,图3是本公开实施例可应用的一种网络系统的结构图,如图3所示,包括终端设备11和网络侧设备12,其中,终端设备11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等用户侧设备,需要说明的是,在本公开实施例中并不限定终端设备11的具体类型。网络侧设备12可以是基站,例如:宏站、LTE演进型基站(evolutional Node B,eNB)、5G NR基站(Node B,NB)、下一代基站(next generation Node B,gNB)等;网络侧设备12也可以是小站,如低功率节点(Low Power Node,LPN)、微微基站(pico)、毫微微基站(femto)等小站,或者网络侧设备12可以是接入点(Access Point,AP);基站也可以是中央单元(Central Unit,CU)与其管理和控制的多个发送接收点(transmission reception point,TRP)共同组成的网络节点。需要说明的是,在本公开实施例中并不限定网络侧设备12的具体类型。
在一实施方式中,终端设备11可以根据测量得到的信道条件相关的测量量,确定是否检测节能信号,其中,上述信道条件相关的测量量可以包括但不限于如下至少一项:参考信号接收功率(Reference Signal Received Power,RSRP),RSRP变化相关测量量,参考信号接收质量(Reference Signal Received Quality,RSRQ),RSRQ变化相关测量量,信号与干扰加噪声比(Signal-to-Noise and Interference Ratio,SINR),SINR变化相关测量量,移动性(即Mobility)参数。
需要说明的是,上述RSRP变化相关测量量、RSRQ变化相关测量量和SINR变化相关测量量均可以根据实际需求进行合理设置。
例如,上述RSRP变化相关测量量可以是多次测量得到的RSRP的方差或是标准差,例如,一段时间内测量到的所有RSRP的方差或是标准差;或是当前测量得到的RSRP的值与前一次测量得到的RSRP的值的差值或是比值等。同样的,上述RSRQ变化相关测量量可以是多次测量得到的RSRQ的方差或是标准差,例如,一段时间内测量到的所有RSRQ的方差或是标准差; 或是当前测量得到的RSRQ的值与前一次测量得到的RSRP的值的差值或是比值等。上述SINR变化相关测量量可以是多次测量得到的SINR的方差或是标准差,例如,一段时间内测量到的所有SINR的方差或是标准差;或是当前测量得到的SINR的值与前一次测量得到的SINR的值的差值或是比值等。
上述移动性相关测量量可以是用于衡量终端设备11移动性的指标,例如,可以是第一预设时间内终端设备11驻留的小区数,或是第二预设时间内所述终端设备驻留的波束数,或是终端设备11的移动速率,或是所述终端设备的多普勒频偏,或是第三预设时间内终端设备11的传输配置指示(Transmission Configuration Indicator,TCI)状态(即State)数等。其中,上述第一预设时间、第二预设时间和第三预设时间均可以根据实际需求进行合理设置,本实施例对此不做限定。
上述节能信号可以是通过PDCCH传输的信号;也可以是基于序列的信号,其中,上述基于序列的信号可以是CSI-RS、主同步信号(Primary Synchronisation Signal,PSS)、辅同步信号(Secondary Synchronisation Signal,SSS)、跟踪参考信号(Tracking Reference Signal,TRS)或解调参考信号(Demodulation Reference Signal,DMRS)等。
可选的,终端设备11可以在测量得到的信道条件相关的测量量满足门限的情况下,检测节能信号;在测量得到的信道条件相关的测量量不满足门限的情况下,不要求检测节能信号,此时,可以检测节能信号关联的PDCCH。
需要说明的是,上述不要求检测节能信号可以是指终端设备可以检测节能信号,也可以不检测节能信号。上述节能信号关联的PDCCH可以包括承载寻呼信息的PDCCH,或是位于DRX周期的OnDuration的PDCCH。例如,对于RRC_IDLE或是RRC_INACTIVE态,上述节能信号关联的PDCCH可以是承载寻呼信息的PDCCH,对于RRC_CONNECTED态,上述节能信号可以是位于DRX周期的OnDuration的PDCCH。
具体的,上述门限与信道条件相关的测量量对应。例如,若上述信道条件相关的测量量包括RSRP,则上述门限可以包括RSRP的门限;若上述信道条件相关的测量量包括RSRQ,则上述门限可以包括RSRQ的门限;若上述上述信道条件相关的测量量包括RSRP和RSRQ,则上述门限可以包括RSRP 的门限和RSRQ的门限。需要说明的是,上述门限可以是协议预定义,也可以是网络侧设备12配置的。
在另一实施方式中,终端设备11可以根据目标时间间隔,确定目标信号的时域资源,其中,所述目标时间间隔可以包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一。
其中,上述第一时间间隔可以为节能信号和所述节能信号关联的PDCCH之间的时间间隔,上述第二时间间隔可以为所述节能信号和第一信号之间的时间间隔,上述第三时间间隔可以为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔。
上述第一信号可以为用于下行同步或者无线资源管理(Radio Resource Management,RRM)测量或者波束管理的信号。实际应用中,在终端设备11检测节能信号之前,可以根据CSI-RS或TRS等进行同步或RRM测量或波束管理等接收准备工作,以接收节能信号。
上述目标信号包括所述节能信号和所述第一信号中的至少之一。
上述目标时间间隔可以是协议预定义,也可以是网络侧设备12配置的。
具体的,终端设备11可以在检测节能信号之前,可以根据目标时间间隔,确定目标信号的时域资源。
可选的,在目标时间间隔通过网络侧设备12配置的情况下,终端设备11可以先向网络侧设备12上述终端设备的能力信息,其中,所述能力信息包括第四时间间隔、第五时间间隔和第六时间间隔中的至少一项。
其中,上述第四时间间隔可以为所述节能信号和所述节能信号关联的PDCCH之间的时间间隔,上述第五时间间隔可以为所述节能信号和所述第一信号之间的时间间隔,上述第六时间间隔可以为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔。
网络侧设备12接收终端设备11上报的终端设备的能力信息之后,可以基于终端设备的能力信息配置上述目标时间间隔。
本公开实施例规范了一种节能信号的检测方式或是一种配置节能信号资源的方式,不仅可以节省终端设备耗电,还可以提高通信的可靠性。
本公开实施例提供一种节能信号检测方法,应用于终端设备。参见图4, 图4是本公开实施例提供的节能信号检测方法的流程图,如图4所示,包括以下步骤:
步骤401、根据测量得到的信道条件相关的测量量,确定是否检测节能信号。
本实施例中,上述节能信号可以是通过PDCCH传输的信号,也可以是基于序列的信号,其中,上述基于序列的信号可以是CSI-RS、PSS、SSS、TRS或DMRS等。上述信道条件相关的测量量可以根据实际需求进行合理设置。
可选的,上述信道条件相关的测量量可以包括但不限于如下至少一项:
参考信号接收功率RSRP,RSRP变化相关测量量,参考信号接收质量RSRQ,RSRQ变化相关测量量,信号与干扰加噪声比SINR,SINR变化相关测量量,移动性相关测量量。
需要说明的是,上述RSRP变化相关测量量、RSRQ变化相关测量量和SINR变化相关测量量均可以根据实际需求进行合理设置。
例如,上述RSRP变化相关测量量可以是多次测量得到的RSRP的方差或是标准差,例如,一段时间内测量到的所有RSRP的方差或是标准差;或是当前测量得到的RSRP的值与前一次测量得到的RSRP的值的差值或是比值等。同样的,上述RSRQ变化相关测量量可以是多次测量得到的RSRQ的方差或是标准差,例如,一段时间内测量到的所有RSRQ的方差或是标准差;或是当前测量得到的RSRQ的值与前一次测量得到的RSRP的值的差值或是比值等。上述SINR变化相关测量量可以是多次测量得到的SINR的方差或是标准差,例如,一段时间内测量到的所有SINR的方差或是标准差;或是当前测量得到的SINR的值与前一次测量得到的SINR的值的差值或是比值等。
上述移动性相关测量量可以是用于衡量终端设备移动性的指标。
可选的,所述移动性相关测量量可以包括但不限于如下至少一项:
第一预设时间内所述终端设备驻留的小区数;
第二预设时间内所述终端设备驻留的波束数;
所述终端设备的移动速率;
所述终端设备的多普勒频偏;
第三预设时间内所述终端设备的传输配置指示TCI状态数。
本实施例中,上述第一预设时间、第二预设时间和第三预设时间均可以根据实际需求进行合理设置,本实施例对此不做限定。
实际应用中,可以在测量得到的信道条件相关的测量量指示信号条件较好的情况下,检测节能信号,以节省终端设备耗电,在测量得到的信道条件相关的测量量指示信号条件较差的情况下,不要求检测节能信号,以提高通信的可靠性。
本公开实施例提供的节能信号检测方法,根据测量得到的信道条件相关的测量量,确定是否检测节能信号,规范了一种节能信号的检测方式,不仅可以节省终端设备耗电,还可以提高通信的可靠性。
可选的,所述根据测量得到的信道条件相关的测量量,确定是否检测节能信号,可以包括如下至少之一:
在所述测量得到的信道条件相关的测量量满足门限的情况下,检测节能信号;
在所述测量得到的信道条件相关的测量量不满足门限的情况下,不要求检测节能信号;
在所述测量得到的信道条件相关的测量量不满足门限的情况下,检测第一物理下行控制信道PDCCH,其中,所述第一PDCCH为所述节能信号关联的PDCCH。
本实施例中,上述门限与信道条件相关的测量量对应。例如,若上述信道条件相关的测量量包括RSRP,则上述门限可以包括RSRP的门限;若上述信道条件相关的测量量包括RSRQ,则上述门限可以包括RSRQ的门限;若上述信道条件相关的测量量包括RSRP和RSRQ,则上述门限可以包括RSRP的门限和RSRQ的门限。
可选的,上述门限可以是协议预定义,也可以是网络侧设备配置的。
实际应用中,在测量得到的信道条件相关的测量量满足门限的情况下,说明信道条件较好,此时可以检测节能信号,以节省终端设备的耗电,例如,在测量得到的RSRP大于或等于第一门限的情况下,可以检测节能信号;在测量得到的信道条件相关的测量量不满足门限的情况下,说明信道条件不好, 此时可以不要求检测节能信号,但是可以检测节能信号关联的PDCCH,以提高通信的稳定性,例如,在测量得到的RSRP小于第一门限的情况下,可以不要求检测节能信号,但是可以检测节能信号关联的PDCCH。
需要说明的是,上述不要求检测节能信号可以是指终端设备可以检测节能信号,也可以不检测节能信号。上述节能信号关联的PDCCH可以包括承载寻呼信息的PDCCH,或是位于DRX周期的OnDuration的PDCCH。例如,对于RRC_IDLE或是RRC_INACTIVE态,上述节能信号关联的PDCCH可以是承载寻呼信息的PDCCH,对于RRC_CONNECTED态,上述节能信号可以是位于DRX周期的OnDuration的PDCCH。
可选的,所述测量得到的信道条件相关的测量量满足门限可以包括如下至少之一:
测量得到的RSRP大于或等于第一门限;
测量得到的RSRQ大于或等于第二门限;
测量得到的移动性相关测量量满足第三门限;
测量得到的RSRP变化相关测量量满足第四门限;
测量得到的RSRQ变化相关测量量满足第五门限;
测量得到的SINR大于或等于第六门限;
测量得到的SINR变化相关测量量满足第七门限。
本实施例中,上述第一门限、第二门限、第三门限、第四门限、第五门限、第六门限和第七门限均可以是协议预定义或是由网络侧配置,本实施例对此不做限定。
可选的,上述测量得到的移动性相关测量量满足第三门限可以包括但不限于:第一预设时间内所述终端设备驻留的小区数小于或等于第三门限;或者第二预设时间内所述终端设备驻留的波束数小于或等于第三门限;或者所述终端设备的移动速率小于或等于第三门限;或者所述终端设备的多普勒频偏小于或等于第三门限;或者第三预设时间内所述终端设备的TCI状态数小于或等于第三门限等。
上述测量得到的RSRP变化相关测量量满足第四门限,可以包括但不限于测量得到的RSRP的方差小于或等于第四门限。
上述测量得到的RSRQ变化相关测量量满足第五门限,可以包括但不限于测量得到的RSRQ的方差小于或等于第五门限。
上述测量得到的SINR变化相关测量量满足第七门限,可以包括但不限于测量得到的SINR的方差小于或等于第七门限。
本公开实施例提供一种节能信号检测方法,应用于网络侧设备。参见图5,图5是本公开实施例提供的节能信号检测方法的流程图,如图5所示,包括以下步骤:
步骤501、向终端设备发送信道条件相关的测量量的门限。
本实施例中,上述门限与信道条件相关的测量量对应。例如,若上述信道条件相关的测量量包括RSRP,则上述门限可以包括RSRP的门限;若上述信道条件相关的测量量包括RSRQ,则上述门限可以包括RSRQ的门限;若上述上述信道条件相关的测量量包括RSRP和RSRQ,则上述门限可以包括RSRP的门限和RSRQ的门限。
本公开实施例提供的节能信号检测方法,通过向终端设备发送信道条件相关的测量量的门限,从而终端设备可以基于信道条件相关的测量量的门限确定是否检测节能信号。
可选的,所述信道条件相关的测量量可以包括但不限于如下至少一项:参考信号接收功率RSRP,RSRP变化相关测量量,参考信号接收质量RSRQ,RSRQ变化相关测量量,信号与干扰加噪声比SINR,SINR变化相关测量量,移动性相关测量量。
需要说明的是,上述RSRP变化相关测量量、RSRQ变化相关测量量和SINR变化相关测量量均可以根据实际需求进行合理设置。
例如,上述RSRP变化相关测量量可以是多次测量得到的RSRP的方差或是标准差,例如,一段时间内测量到的所有RSRP的方差或是标准差;或是当前测量得到的RSRP的值与前一次测量得到的RSRP的值的差值或是比值等。同样的,上述RSRQ变化相关测量量可以是多次测量得到的RSRQ的方差或是标准差,例如,一段时间内测量到的所有RSRQ的方差或是标准差;或是当前测量得到的RSRQ的值与前一次测量得到的RSRP的值的差值或是比值等。上述SINR变化相关测量量可以是多次测量得到的SINR的方差或是 标准差,例如,一段时间内测量到的所有SINR的方差或是标准差;或是当前测量得到的SINR的值与前一次测量得到的SINR的值的差值或是比值等。
上述移动性相关测量量可以是用于衡量终端设备移动性的指标。
可选的,所述移动性相关测量量可以包括但不限于如下至少一项:
第一预设时间内所述终端设备驻留的小区数;
第二预设时间内所述终端设备驻留的波束数;
所述终端设备的移动速率;
所述终端设备的多普勒频偏;
第三预设时间内所述终端设备的传输配置指示TCI状态数。
本实施例中,上述第一预设时间、第二预设时间和第三预设时间均可以根据实际需求进行合理设置,本实施例对此不做限定。
以下结合示例对本公开实施例提供的节能信号检测方法进行说明:
UE可以根据最近一次或者最近几次测量得到的信道条件相关的测量量,例如,服务小区的RSRP、服务小区的RSRQ和移动性相关测量量等中的至少一项,来确定是否检测节能信号。具体可以如下:
示例一:
如果测量得到的层1(即L1)或层3(即L3)RSRP满足第一门限,则检测节能信号;
否则(即测量得到的L1或L3RSRP不满足第一门限),不要求检测节能信号;此时,UE可以检测PDCCH。
例如,可以如表1所示,可以在上次或者历史多次测量的RSRP大于或是等于第一门限X(例如,X=-80dB)的情况下,检测节能信号,否则不要求检测节能信号。
表1
上次或者历史多次测量的RSRP(dB) UE行为
RSRP>=X 检测节能信号
RSRP<X 不要求检测节能信号
需要说明的是,上述不要求检测节能信号可以是指UE可以检测节能信号,也可以不检测节能信号。上述PDCCH,对于RRC_IDLE或是RRC_INACTIVE态可以是寻呼(即Paging)PDCCH,对于RRC_CONNECTED 态,可以是DRX周期的OnDuration的PDCCH,下同,不再赘述。
上述第一门限可以是协议预定义,也可以是网络侧配置,本实施例对此不做限定。
示例二:
如果测量得到的RSRQ满足第二门限,则检测节能信号;
否则(即测量得到的RSRQ不满足门限),不要求检测节能信号;此时,UE可以检测PDCCH。
例如,可以如表2所示,可以在上次或者历史多次测量的RSRQ大于或是等于第二门限Y(例如,Y=-6dB)的情况下,检测节能信号,否则不要求检测节能信号。
表2
上次或者历史多次测量的RSRQ(dB) UE行为
RSRQ>=Y 检测节能信号
RSRQ<Y 不要求检测节能信号
需要说明的是,上述第二门限可以是协议预定义,也可以是网络侧配置,本实施例对此不做限定。
示例三:
如果测量得到的移动性(即Mobility)相关测量量满足第三门限,则检测节能信号;
否则(即测量得到的移动性相关测量量不满足第三门限),不要求检测节能信号;此时,UE可以检测PDCCH。
例如,可以如表3所示,可以在上次或者历史多次测量的移动性相关测量量M满足第三门限Z的情况下,检测节能信号,否则不要求检测节能信号。
表3
移动性相关测量量M UE行为
M满足Z 检测节能信号
M不满足Z 不要求检测节能信号
需要说明的是,上述第三门限可以是协议预定义,也可以是网络侧配置,本实施例对此不做限定。
其中,上移动性相关测量量可以包括如下之一:
一段时间内UE驻留的小区数;
一段时间内UE驻留的波束(即Beam)数;
估算的UE移动速率;
估算的多普勒频域;
一段时间内UE的TCI状态(即State)的个数。
例如,一段时间内UE驻留的小区数小于第三门限,则检测节能信号;否则,不要求检测节能信号。或者,一段时间内UE驻留的小区变化次数小于第三门限,则检测节能信号;否则,不要求检测节能信号。
示例四:
如果测量得到的L1或L3RSRP满足第一门限而且测量得到的L1或L3RSRQ满足第二门限,则检测节能信号;
否则(即RSRP和RSRQ不同时满足门限),不要求检测节能信号;此时,UE可以检测PDCCH。
例如,可以如表4所示,可以在上次或者历史多次测量的RSRP大于或等于第一门限X且RSRQ大于或等于第二门限Y的情况下,检测节能信号,否则不要求检测节能信号。
表4
Figure PCTCN2020070911-appb-000001
示例五:
如果测量得到的L1或L3RSRP满足第一门限且移动性相关测量量满足第三门限,则检测节能信号;
否则(即RSRP和移动性相关测量量不同时满足门限),不要求检测节能信号;此时,UE可以检测PDCCH。
例如,可以如表5所示,可以在上次或者历史多次测量的RSRP大于或等于第一门限X且移动性相关测量量M满足第三门限Z的情况下,检测节能信号,否则不要求检测节能信号。
表5
Figure PCTCN2020070911-appb-000002
Figure PCTCN2020070911-appb-000003
其中,上述移动性相关测量量可以包括如下之一:
一段时间内UE驻留的小区数;
一段时间内UE驻留的波束(即Beam)数;
估算的UE移动速率;
估算的多普勒频域;
一段时间内UE的TCI状态(即State)的个数。
例如,测量的RSRP大于或等于第一门限,且一段时间内UE驻留的小区数小于第三门限,则检测节能信号;否则,不要求检测节能信号。或者,测量的RSRP大于或等于第一门限,且一段时间内UE驻留的小区变化次数小于第三门限,则检测节能信号;否则,不要求检测节能信号。
示例六:
如果测量得到的RSRP变化相关测量量满足第四门限,或是测量得到的RSRP变化相关测量量RSRQ满足第五门限,则检测节能信号;
否则(即RSRP或RSRQ变化相关测量量不满足门限),不要求检测节能信号;此时,UE可以检测PDCCH。
需要说明的是,上述RSRP变化相关测量量可以历史多次测量的RSRP方差或是标准差,或是当前测量的RSRP和前一次测量的RSRP的差值或比值等。
上述RSRQ变化相关测量量可以历史多次测量的RSRQ方差或是标准差,或是当前测量的RSRQ和前一次测量的RSRQ的差值或比值等。
例如,可以如表6所示,可以在历史多次测量的RSRP方差N小于或等于第四门限P的情况下,检测节能信号,否则不要求检测节能信号。
表6
历史多次测量的RSRP方差N UE行为
N<=P 检测节能信号
N>P 不要求检测节能信号
需要说明的是,上述第四门限和第五门限均可以是协议预定义,也可以是网络侧配置,本实施例对此不做限定。
本公开实施例提供的节能信号检测方法,规范了UE检测节能信号的相 关行为,可以在信道条件好的情况检测节能信号,可以节省终端功耗,在信道条件不好时不要求检测节能信号,而是直接检测PDCCH,保证可靠性。
本公开实施例还提供一种资源确定方法,应用于终端设备。参见图6,图6是本公开实施例提供的资源确定方法的流程图,如图6所示,包括以下步骤:
步骤601、根据目标时间间隔,确定目标信号的时域资源;
其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的信号,所述目标信号包括所述节能信号和所述第一信号中的至少之一。
本实施例中,上述节能信号可以是通过PDCCH传输的信号;也可以是基于序列的信号,其中,上述基于序列的信号可以是CSI-RS、PSS、SSS、TRS或DMRS等。
上述节能信号关联的PDCCH可以包括承载寻呼信息的PDCCH,或是位于DRX周期的OnDuration的PDCCH等。例如,对于RRC_IDLE或是RRC_INACTIVE态,上述节能信号关联的PDCCH可以是承载寻呼信息的PDCCH,对于RRC_CONNECTED态,上述节能信号可以是位于DRX周期的OnDuration的PDCCH。
上述第一信号可以为用于下行同步或者RRM测量或者波束管理的信号,例如,CSI-RS、PSS、SSS、TRS或DMRS等。实际应用中,在终端设备检测节能信号之前,可以根据CSI-RS或TRS等进行同步或RRM测量或波束管理等接收准备工作,以便于接收节能信号。
上述目标信号可以包括节能信号和第一信号中的至少一项。实际应用中,可以在检测节能信号之前,确定节能信号和/或第一信号的时域资源,以便于后续接收节能信号。
需要说明的是,上述第一时间间隔、第二时间间隔和第三时间间隔均可 以包括一个或是至少两个时间间隔,本实施例对此不做限定。
本公开实施例提供的资源确定方法,根据目标时间间隔,确定目标信号的时域资源,规范了一种节能信号检测相关的资源的确定方式,以便于后续接收节能信号。
可选的,所述目标时间间隔可以为协议预定义,或是可以为网络侧设备配置。
可选的,所述根据目标时间间隔,确定目标信号的时域资源之前,所述方法还可以包括:
向网络侧设备发送所述终端设备的能力信息;
其中,所述能力信息包括第四时间间隔、第五时间间隔和第六时间间隔中的至少一项;其中,所述第四时间间隔为所述节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第五时间间隔为所述节能信号和所述第一信号之间的时间间隔,所述第六时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔。
本实施例中,通过终端设备向网络侧设备上报终端设备的能力信息,从而网络侧设备可以基于上述能力信息给终端设备配置目标时间间隔。也即,所述目标时间间隔可以为所述网络侧设备基于所述终端设备的能力信息配置的。
实际应用中,上述第四时间间隔、第五时间间隔和第六时间间隔可以分别与上述第一时间间隔、第二时间间隔和第三时间间隔对应。
例如,在终端设备向网络侧设备上报第四时间间隔的情况下,网络侧设备可以基于第四时间间隔为终端设备配置第一时间间隔,其中,第一时间间隔可以大于或等于第四时间间隔;在终端设备向网络侧设备上报第五时间间隔的情况下,网络侧设备可以基于第五时间间隔为终端设备配置第二时间间隔,其中,第二时间间隔可以大于或等于第五时间间隔;在终端设备向网络侧设备上报第六时间间隔的情况下,网络侧设备可以基于第六时间间隔为终端设备配置第三时间间隔,其中,第三时间间隔可以大于或等于第六时间间隔。
需要说明的是,上述第四时间间隔、第五时间间隔和第六时间间隔均可 以包括一个或是至少两个时间间隔,本实施例对此不做限定。
本实施例中通过向网络侧设备上报终端设备的能力信息,便于网络侧设备更为准确的为终端设备配置目标时间间隔。
可选的,所述第一时间间隔或所述第四时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第一情况和第二情况,其中,所述第一情况为所述节能信号所在的带宽部分(BandWidth Part,BWP)和所述节能信号关联的PDCCH所在的BWP不同,所述第二情况为所述节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同。
本实施例中,上述节能信号所在的BWP和该节能信号关联的PDCCH所在的BWP不同可以包括上述节能信号所在的BWP和该节能信号关联的PDCCH所在的BWP的中心频点和资源块(Resource Block,RB)中至少之一不同。
例如,若上述节能信号所在的BWP和该节能信号关联的PDCCH所在的BWP不同为上述节能信号所在的BWP的中心频点和该节能信号关联的PDCCH所在的BWP的中心频点不同,则节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同可以是上述节能信号所在的BWP的中心频点和该节能信号关联的PDCCH所在的BWP的中心频点相同。
若上述节能信号所在的BWP和该节能信号关联的PDCCH所在的BWP不同为上述节能信号所在的BWP的RB和该节能信号关联的PDCCH所在的BWP的RB不同,则节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同可以是上述节能信号所在的BWP的RB和该节能信号关联的PDCCH所在的BWP的RB相同。
若上述节能信号所在的BWP和该节能信号关联的PDCCH所在的BWP不同为上述节能信号所在的BWP的中心频点和该节能信号关联的PDCCH所在的BWP的中心频点不同,且上述节能信号所在的BWP的RB和该节能信号关联的PDCCH所在的BWP的RB不同,则节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同可以是上述节能信号所在的BWP的中心频点和该节能信号关联的PDCCH所在的BWP的中心频点,以及上述 节能信号所在的BWP的RB和该节能信号关联的PDCCH所在的BWP的RB中至少一项不相同。
可选的,所述第二时间间隔或所述第五时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第三情况和第四情况,其中,所述第三情况为所述节能信号所在的BWP和所述第一信号所在的BWP不同,所述第四情况为所述节能信号所在的BWP和所述第一信号所在的BWP相同。
本实施例中,上述节能信号所在的BWP和第一信号所在的BWP不同可以包括上述节能信号所在的BWP和第一信号所在的BWP的中心频点和RB中至少之一不同。
例如,若上述节能信号所在的BWP和第一信号所在的BWP不同为上述节能信号所在的BWP的中心频点和第一信号所在的BWP的中心频点不同,则节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同可以是上述节能信号所在的BWP的中心频点和第一信号所在的BWP的中心频点相同。
若上述节能信号所在的BWP和第一信号所在的BWP不同为上述节能信号所在的BWP的RB和第一信号所在的BWP的RB不同,则节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同可以是上述节能信号所在的BWP的RB和第一信号所在的BWP的RB相同。
若上述节能信号所在的BWP和第一信号所在的BWP不同为上述节能信号所在的BWP的中心频点和第一信号所在的BWP的中心频点不同,且上述节能信号所在的BWP的RB和第一信号所在的BWP的RB不同,则节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同可以是上述节能信号所在的BWP的中心频点和第一信号所在的BWP的中心频点,以及上述节能信号所在的BWP的RB和第一信号所在的BWP的RB中至少一项不相同。
可选的,所述第三时间间隔或所述第六时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第五情况和第六情况,其中, 所述第五情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP不同,所述第六情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP相同。
本实施例中,上述第一信号所在的BWP和节能信号关联的PDCCH所在的BWP不同可以包括上述第一信号所在的BWP和节能信号关联的PDCCH所在的BWP的中心频点和RB中至少之一不同。
例如,若上述第一信号所在的BWP和该节能信号关联的PDCCH所在的BWP不同为上述第一信号所在的BWP的中心频点和节能信号关联的PDCCH所在的BWP的中心频点不同,则第一信号所在的BWP和节能信号关联的PDCCH所在的BWP相同可以是上述第一信号所在的BWP的中心频点和节能信号关联的PDCCH所在的BWP的中心频点相同。
若上述第一信号所在的BWP和节能信号关联的PDCCH所在的BWP不同为上述第一信号所在的BWP的RB和节能信号关联的PDCCH所在的BWP的RB不同,则第一信号所在的BWP和节能信号关联的PDCCH所在的BWP相同可以是上述第一信号所在的BWP的RB和节能信号关联的PDCCH所在的BWP的RB相同。
若上述第一信号所在的BWP和节能信号关联的PDCCH所在的BWP不同为上述第一信号所在的BWP的中心频点和节能信号关联的PDCCH所在的BWP的中心频点不同,且上述第一信号所在的BWP的RB和节能信号关联的PDCCH所在的BWP的RB不同,则第一信号所在的BWP和节能信号关联的PDCCH所在的BWP相同可以是上述第一信号所在的BWP的中心频点和节能信号关联的PDCCH所在的BWP的中心频点,以及上述第一信号所在的BWP的RB和节能信号关联的PDCCH所在的BWP的RB中至少一项不相同。
可选的,所述节能信号为通过PDCCH传输的信号或是基于序列的信号。
本实施例中,在节能信号通过PDCCH传输的情况下,可以在终端设备检测基于PDCCH传输的节能信号之前,根据第一信号(例如,CSI-RS或TRS等)进行下行同步或者RRM测量或者波束管理。
在节能信号为基于序列的信号的情况下,上述节能信号与第一信号可以 是同一信号,例如,在根据某一CSI-RS或TRS等进行下行同步或者RRM测量或者波束管理的同时,同时可以从该CSI-RS或TRS等接收节能信号;上述节能信号与第一信号也可以是不同的信号,例如,通过第一CSI-RS进行下行同步或者RRM测量或者波束管理,并利用第二CSI-RS传输节能信号。
可选的,在所述节能信号为基于序列的信号的情况下,所述节能信号和所述第一信号是不同信号。
例如,在根据某一CSI-RS或TRS等进行下行同步或者RRM测量或者波束管理的同时,同时可以从该CSI-RS或TRS等接收节能信号。
可选的,所述基于序列的信号可以包括但不限于如下一项:信道状态信息参考信号CSI-RS,主同步信号PSS,辅同步信号SSS,跟踪参考信号TRS,解调参考信号DMRS。
本公开实施例还提供一种资源确定方法,应用于网络侧设备。参见图7,图7是本公开实施例提供的资源确定方法的流程图,如图7所示,包括以下步骤:
步骤701、向终端设备发送目标时间间隔;
其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的序列信号。
本实施例中,上述节能信号可以是通过PDCCH传输的信号;也可以是基于序列的信号,其中,上述基于序列的信号可以是CSI-RS、PSS、SSS、TRS或DMRS等。
上述节能信号关联的PDCCH可以包括承载寻呼信息的PDCCH,或是位于DRX周期的OnDuration的PDCCH等。例如,对于RRC_IDLE或是RRC_INACTIVE态,上述节能信号关联的PDCCH可以是承载寻呼信息的PDCCH,对于RRC_CONNECTED态,上述节能信号可以是位于DRX周期的OnDuration的PDCCH。
上述第一信号可以为用于下行同步或者RRM测量或者波束管理的信号,例如,CSI-RS、PSS、SSS、TRS或DMRS等。实际应用中,在终端设备检测节能信号之前,可以根据CSI-RS或TRS等进行同步或RRM测量或波束管理等接收准备工作,以便于接收节能信号。
需要说明的是,上述第一时间间隔、第二时间间隔和第三时间间隔均可以包括一个或是至少两个时间间隔,本实施例对此不做限定。
本公开实施例提供的资源确定方法,通过向终端设备发送目标时间间隔,从而终端设备可以基于目标时间间隔确定节能信号的时域资源和第一信号的时域资源中的至少之一,以便于终端设备接收节能信号。
可选的,所述方法还可以包括:
从所述终端设备接收所述终端设备的能力信息;
其中,所述能力信息包括第四时间间隔、第五时间间隔和第六时间间隔中的至少一项;其中,所述第四时间间隔为所述节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第五时间间隔为所述节能信号和所述第一信号之间的时间间隔,所述第六时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔。
本实施例中,通过接收终端设备的能力信息,从而可以基于上述能力信息给终端设备配置目标时间间隔,也即,所述目标时间间隔可以为所述网络侧设备基于所述终端设备的能力信息配置的。
实际应用中,上述第四时间间隔、第五时间间隔和第六时间间隔可以分别与上述第一时间间隔、第二时间间隔和第三时间间隔对应。
例如,在终端设备向网络侧设备上报第四时间间隔的情况下,网络侧设备可以基于第四时间间隔为终端设备配置第一时间间隔,其中,第一时间间隔可以大于或等于第四时间间隔;在终端设备向网络侧设备上报第五时间间隔的情况下,网络侧设备可以基于第五时间间隔为终端设备配置第二时间间隔,其中,第二时间间隔可以大于或等于第五时间间隔;在终端设备向网络侧设备上报第六时间间隔的情况下,网络侧设备可以基于第六时间间隔为终端设备配置第三时间间隔,其中,第三时间间隔可以大于或等于第六时间间隔。
需要说明的是,上述第四时间间隔、第五时间间隔和第六时间间隔均可以包括一个或是至少两个时间间隔,本实施例对此不做限定。
本实施例中通过接收终端设备的能力信息,便于网络侧设备更为准确的为终端设备配置目标时间间隔。
可选的,所述第一时间间隔或所述第四时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第一情况和第二情况,其中,所述第一情况为所述节能信号所在的带宽部分BWP和所述节能信号关联的PDCCH所在的BWP不同,所述第二情况为所述节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同。
本实施例中,上述节能信号所在的BWP和该节能信号关联的PDCCH所在的BWP不同可以包括上述节能信号所在的BWP和该节能信号关联的PDCCH所在的BWP的中心频点和RB中至少之一不同。
可选的,所述第二时间间隔或所述第五时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第三情况和第四情况,其中,所述第三情况为所述节能信号所在的BWP和所述第一信号所在的BWP不同,所述第四情况为所述节能信号所在的BWP和所述第一信号所在的BWP相同。
本实施例中,上述节能信号所在的BWP和第一信号所在的BWP不同可以包括上述节能信号所在的BWP和第一信号所在的BWP的中心频点和RB中至少之一不同。
可选的,所述第三时间间隔或所述第六时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第五情况和第六情况,其中,所述第五情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP不同,所述第六情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP相同。
本实施例中,上述第一信号所在的BWP和节能信号关联的PDCCH所在的BWP不同可以包括上述第一信号所在的BWP和节能信号关联的PDCCH 所在的BWP的中心频点和RB中至少之一不同。
可选的,所述节能信号为通过PDCCH传输的信号或是基于序列的信号。
可选的,在所述节能信号为基于序列的信号的情况下,所述节能信号和所述第一信号是不同信号。
可选的,所述基于序列的信号可以包括但不限于如下一项:信道状态信息参考信号CSI-RS,主同步信号PSS,辅同步信号SSS,跟踪参考信号TRS,解调参考信号DMRS。
以下结合示例对本公开实施例提供的资源确定方法进行说明:
本实施例中,节能信号可以是基于PDCCH传输的信号,也可以是基于序列的信号(例如,CSI-RS或TRS等)。实际应用中,在终端设备检测节能信号之前,可以根据CSI-RS或TRS等进行同步或RRM测量或波束管理等接收准备工作,以接收节能信号。具体可以包括如下三种情形:
情形一:在节能信号是基于PDCCH传输的情况下,UE检测节能信号之前,可以根据CSI-RS或TRS等进行同步或RRM测量或波束管理。
情形二:在节能信号是基于序列的信号(例如,CSI-RS或TRS等)的情况下,UE检测节能信号之前,可以根据与节能信号不同的信号(例如,CSI-RS或TRS等)进行同步或RRM测量或波束管理。
情形三:在节能信号是基于序列的信号(例如,CSI-RS或TRS等)的情况下,UE检测节能信号之前,还可以根据与节能信号相同的信号(例如,CSI-RS或TRS等)进行同步或RRM测量或波束管理。
具体的,本公开实施例提供资源确定方法可以包括如下步骤:
步骤a1、UE可以向基站上报节能信号和节能信号关联的PDCCH之间的第四时间间隔,其中,该第四时间间隔用于指示UE能力;
或者
UE可以向基站上报节能信号和用于下行同步或者RRM测量或者波束管理的CSI-RS之间的第五时间间隔,该第五时间间隔用于指示UE能力;
或者
UE可以向基站上报节能信号关联的PDCCH和用于下行同步或者RRM测量或者波束管理的CSI-RS之间的第六时间间隔,该第六时间间隔用于指示 UE能力。
步骤a2、基站可以根据UE上报的能力配置节能信号和节能信号关联的PDCCH之间的第一时间间隔,该第一间隔大于等于UE上报的第四时间间隔;
或者
基站可以根据UE上报的能力配置节能信号和用于下行同步或者RRM测量或者波束管理的CSI-RS之间的第二时间间隔,该第二间隔大于等于UE上报的第五时间间隔;
或者
基站可以根据UE上报的能力配置节能信号关联的PDCCH和用于下行同步或者RRM测量或者波束管理的CSI-RS之间的第二时间间隔,该第二间隔大于等于UE上报的第五时间间隔。
步骤a3、UE根据基站配置的第一时间间隔、第二时间间隔间隔和第三时间间隔中的至少之一,确定节能信号的时域资源以及用于下行同步或者RRM测量或者波束管理的CSI-RS的时域资源。
需要说明的是,对于UE向基站上报的节能信号和节能信号关联的PDCCH之间的第四时间间隔,可以包括多种时间间隔,例如,若节能信号所在的BWP和节能信号关联的PDCCH所在的BWP的中心频点不一样,UE上报时间间隔A;若二者中心频点一样,UE上报时间间隔B。
对于UE向基站上报的节能信号和用于下行同步或者RRM测量或者波束管理的CSI-RS之间的第五时间间隔,也可以包括多种时间间隔,例如,若节能信号的BWP和用于下行同步或者RRM测量或者波束管理的CSI-RS的BWP的中心频点不一样,UE上报时间间隔C;若二者中心频点一样,UE上报时间间隔D。
对于UE向基站上报的节能信号关联的PDCCH和用于下行同步或者RRM测量或者波束管理的CSI-RS之间的第六时间间隔,也可以包括多种时间间隔,例如,若节能信号关联的PDCCH的BWP和用于下行同步或者RRM测量或者波束管理的CSI-RS的BWP的中心频点不一样,UE上报时间间隔E;若二者中心频点一样,UE上报时间间隔F。
可选的,上述第一时间间隔也可以是协议预定义的,例如,对应节能信 号所在的BWP和节能信号关联的PDCCH所在的BWP相同和不同分别定义一个默认时间间隔。
上述第二时间间隔也可以是协议预定义的,例如,对应节能信号所在的BWP和用于下行同步或者RRM测量或者波束管理的CSI-RS所在的BWP相同和不同分别定义一个默认时间间隔。
上述第三时间间隔也可以是协议预定义的,例如,对应节能信号关联的PDCCH所在的BWP和用于下行同步或者RRM测量或者波束管理的CSI-RS所在的BWP相同和不同分别定义一个默认时间间隔。
参见图8,图8是本公开实施例提供的终端设备的结构图。如图8所示,终端设备800包括:
确定模块801,用于根据测量得到的信道条件相关的测量量,确定是否检测节能信号。
可选的,所述信道条件相关的测量量包括如下至少一项:参考信号接收功率RSRP,RSRP变化相关测量量,参考信号接收质量RSRQ,RSRQ变化相关测量量,信号与干扰加噪声比SINR,SINR变化相关测量量,移动性相关测量量。
可选的,所述移动性相关测量量包括如下至少一项:
第一预设时间内所述终端设备驻留的小区数;
第二预设时间内所述终端设备驻留的波束数;
所述终端设备的移动速率;
所述终端设备的多普勒频偏;
第三预设时间内所述终端设备的传输配置指示TCI状态数。
可选的,所述确定模块具体用于如下至少之一:
在所述测量得到的信道条件相关的测量量满足门限的情况下,检测节能信号;
在所述测量得到的信道条件相关的测量量不满足门限的情况下,不要求检测节能信号;
在所述测量得到的信道条件相关的测量量不满足门限的情况下,检测第一物理下行控制信道PDCCH,其中,所述第一PDCCH为所述节能信号关联 的PDCCH。
可选的,所述测量得到的信道条件相关的测量量满足门限包括如下至少之一:
测量得到的RSRP大于或等于第一门限;
测量得到的RSRQ大于或等于第二门限;
测量得到的移动性相关测量量满足第三门限;
测量得到的RSRP变化相关测量量满足第四门限;
测量得到的RSRQ变化相关测量量满足第五门限;
测量得到的SINR大于或等于第六门限;
测量得到的SINR变化相关测量量满足第七门限。
可选的,所述门限为网络侧配置,或是协议预定义。
本公开实施例提供的终端设备800能够实现上述节能信号检测方法实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的终端设备800,确定模块801,用于根据测量得到的信道条件相关的测量量,确定是否检测节能信号。规范了一种节能信号的检测方式,不仅可以节省终端设备耗电,还可以提高通信的可靠性。
参见图9,图9是本公开实施例提供的网络侧设备的结构图。如图9所示,网络侧设备900包括:
发送模块900,用于向终端设备发送信道条件相关的测量量的门限。
可选的,所述信道条件相关的测量量包括如下至少一项:参考信号接收功率RSRP,RSRP变化相关测量量,参考信号接收质量RSRQ,RSRQ变化相关测量量,信号与干扰加噪声比SINR,SINR变化相关测量量,移动性相关测量量。
可选的,所述移动性相关测量量包括如下至少一项:
第一预设时间内所述终端设备驻留的小区数;
第二预设时间内所述终端设备驻留的波束数;
所述终端设备的移动速率;
所述终端设备的多普勒频偏;
第三预设时间内所述终端设备的传输配置指示TCI状态数。
本公开实施例提供的网络侧设备900能够实现上述节能信号检测方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的网络侧设备900,发送模块900,用于向终端设备发送信道条件相关的测量量的门限,从而终端设备可以基于信道条件相关的测量量的门限确定是否检测节能信号。
参见图10,图10是本公开又一实施例提供的终端设备的结构图。如图10所示,终端设备1000包括:
确定模块1001,用于根据目标时间间隔,确定目标信号的时域资源;
其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的信号,所述目标信号包括所述节能信号和所述第一信号中的至少之一。
可选的,所述目标时间间隔为协议预定义,或是为网络侧设备配置。
可选的,所述终端设备还包括:
发送模块,用于所述根据目标时间间隔,确定目标信号的时域资源之前,向网络侧设备发送所述终端设备的能力信息;
其中,所述能力信息包括第四时间间隔、第五时间间隔和第六时间间隔中的至少一项;其中,所述第四时间间隔为所述节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第五时间间隔为所述节能信号和所述第一信号之间的时间间隔,所述第六时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔。
可选的,所述目标时间间隔为所述网络侧设备基于所述终端设备的能力信息配置的。
可选的,所述第一时间间隔或所述第四时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第一情况和第二情况,其中, 所述第一情况为所述节能信号所在的带宽部分BWP和所述节能信号关联的PDCCH所在的BWP不同,所述第二情况为所述节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同。
可选的,所述第二时间间隔或所述第五时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第三情况和第四情况,其中,所述第三情况为所述节能信号所在的BWP和所述第一信号所在的BWP不同,所述第四情况为所述节能信号所在的BWP和所述第一信号所在的BWP相同。
可选的,所述第三时间间隔或所述第六时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第五情况和第六情况,其中,所述第五情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP不同,所述第六情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP相同。
可选的,所述节能信号为通过PDCCH传输的信号或是基于序列的信号。
可选的,在所述节能信号为基于序列的信号的情况下,所述节能信号和所述第一信号是不同信号。
可选的,所述基于序列的信号包括如下一项:信道状态信息参考信号CSI-RS,主同步信号PSS,辅同步信号SSS,跟踪参考信号TRS,解调参考信号DMRS。
本公开实施例提供的终端设备1000能够实现上述资源确定方法实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的终端设备1000,确定模块1001,用于根据目标时间间隔,确定目标信号的时域资源;其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的信号,所述目标信号包 括所述节能信号和所述第一信号中的至少之一。规范了一种节能信号检测相关的资源的确定方式,以便于后续接收节能信号。
参见图11,图11是本公开又一实施例提供的网络侧设备的结构图。如图11所示,网络侧设备1100包括:
发送模块1101,用于向终端设备发送目标时间间隔;
其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的序列信号。
可选的,所述网络侧设备还包括:
接收模块,用于从所述终端设备接收所述终端设备的能力信息;
其中,所述能力信息包括第四时间间隔、第五时间间隔和第六时间间隔中的至少一项;其中,所述第四时间间隔为所述节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第五时间间隔为所述节能信号和所述第一信号之间的时间间隔,所述第六时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔。
可选的,所述目标时间间隔为根据所述终端设备的能力信息确定的。
可选的,所述第一时间间隔或所述第四时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第一情况和第二情况,其中,所述第一情况为所述节能信号所在的带宽部分BWP和所述节能信号关联的PDCCH所在的BWP不同,所述第二情况为所述节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同。
可选的,所述第二时间间隔或所述第五时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第三情况和第四情况,其中,所述第三情况为所述节能信号所在的BWP和所述第一信号所在的BWP不同, 所述第四情况为所述节能信号所在的BWP和所述第一信号所在的BWP相同。
可选的,所述第三时间间隔或所述第六时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第五情况和第六情况,其中,所述第五情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP不同,所述第六情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP相同。
可选的,所述节能信号为通过PDCCH传输的信号或是基于序列的信号。
可选的,在所述节能信号为基于序列的信号的情况下,所述节能信号和所述第一信号是不同信号。
可选的,所述基于序列的信号包括如下一项:信道状态信息参考信号CSI-RS,主同步信号PSS,辅同步信号SSS,跟踪参考信号TRS,解调参考信号DMRS。
本公开实施例提供的网络侧设备1100能够实现上述资源确定方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的网络侧设备1100,发送模块1101,用于向终端设备发送目标时间间隔;其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的序列信号。通过向终端设备发送目标时间间隔,从而终端设备可以基于目标时间间隔确定节能信号的时域资源和第一信号的时域资源中的至少之一,以便于终端设备接收节能信号。
图12是本公开又一实施例提供的种终端设备的结构图。参见图12,该终端设备1200包括但不限于:射频单元1201、网络模块1202、音频输出单元1203、输入单元1204、传感器1205、显示单元1206、用户输入单元1207、接口单元1208、存储器1209、处理器1210、以及电源1211等部件。本领域技术人员可以理解,图12中示出的终端设备结构并不构成对终端设备的限定, 终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端设备包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,所述处理器1210,用于根据测量得到的信道条件相关的测量量,确定是否检测节能信号。
本公开实施例根据测量得到的信道条件相关的测量量,确定是否检测节能信号,规范了一种节能信号的检测方式,不仅可以节省终端设备耗电,还可以提高通信的可靠性。
可选的,所述信道条件相关的测量量包括如下至少一项:参考信号接收功率RSRP,RSRP变化相关测量量,参考信号接收质量RSRQ,RSRQ变化相关测量量,信号与干扰加噪声比SINR,SINR变化相关测量量,移动性相关测量量。
可选的,所述移动性相关测量量包括如下至少一项:
第一预设时间内所述终端设备驻留的小区数;
第二预设时间内所述终端设备驻留的波束数;
所述终端设备的移动速率;
所述终端设备的多普勒频偏;
第三预设时间内所述终端设备的传输配置指示TCI状态数。
可选的,所述处理器1210还用于实现如下至少之一:
在所述测量得到的信道条件相关的测量量满足门限的情况下,检测节能信号;
在所述测量得到的信道条件相关的测量量不满足门限的情况下,不要求检测节能信号;
在所述测量得到的信道条件相关的测量量不满足门限的情况下,检测第一物理下行控制信道PDCCH,其中,所述第一PDCCH为所述节能信号关联的PDCCH。
可选的,所述测量得到的信道条件相关的测量量满足门限包括如下至少之一:
测量得到的RSRP大于或等于第一门限;
测量得到的RSRQ大于或等于第二门限;
测量得到的移动性相关测量量满足第三门限;
测量得到的RSRP变化相关测量量满足第四门限;
测量得到的RSRQ变化相关测量量满足第五门限;
测量得到的SINR大于或等于第六门限;
测量得到的SINR变化相关测量量满足第七门限。
可选的,所述门限为网络侧配置,或是协议预定义。
应理解的是,本公开实施例中,射频单元1201可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1210处理;另外,将上行的数据发送给基站。通常,射频单元1201包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元1201还可以通过无线通信系统与网络和其他设备通信。
终端设备通过网络模块1202为用户提供了无线的宽带互联网访问,如帮助用户收发 电子邮件、浏览网页和访问流式媒体等。
音频输出单元1203可以将射频单元1201或网络模块1202接收的或者在存储器1209中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1203还可以提供与终端设备1200执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1203包括扬声器、蜂鸣器以及受话器等。
输入单元1204用于接收音频或视频信号。输入单元1204可以包括图形处理器(Graphics Processing Unit,GPU)12041和麦克风12042,图形处理器12041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1206上。经图形处理器12041处理后的图像帧可以存储在存储器1209(或其它存储介质)中或者经由射频单元1201或网络模块1202进行发送。麦克风12042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元1201发送到移动通信基站的格式输出。
终端设备1200还包括至少一种传感器1205,比如光传感器、运动传感 器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板12061的亮度,接近传感器可在终端设备1200移动到耳边时,关闭显示面板12061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1205还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1206用于显示由用户输入的信息或提供给用户的信息。显示单元1206可包括显示面板12061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板12061。
用户输入单元1207可用于接收输入的数字或字符信息,以及产生与终端设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元1207包括触控面板12071以及其他输入设备12072。触控面板12071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板12071上或在触控面板12071附近的操作)。触控面板12071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1210,接收处理器1210发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板12071。除了触控面板12071,用户输入单元1207还可以包括其他输入设备12072。具体地,其他输入设备12072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板12071可覆盖在显示面板12061上,当触控面板12071检测到在其上或附近的触摸操作后,传送给处理器1210以确定触摸事件的类型,随后处理器1210根据触摸事件的类型在显示面板12061上提供相应的视 觉输出。虽然在图12中,触控面板12071与显示面板12061是作为两个独立的部件来实现终端设备的输入和输出功能,但是在某些实施例中,可以将触控面板12071与显示面板12061集成而实现终端设备的输入和输出功能,具体此处不做限定。
接口单元1208为外部装置与终端设备1200连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(input/output,I/O)端口、视频I/O端口、耳机端口等等。接口单元1208可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端设备1200内的一个或多个元件或者可以用于在终端设备1200和外部装置之间传输数据。
存储器1209可用于存储软件程序以及各种数据。存储器1209可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1209可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1210是终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器1209内的软件程序和/或模块,以及调用存储在存储器1209内的数据,执行终端设备的各种功能和处理数据,从而对终端设备进行整体监控。处理器1210可包括一个或多个处理单元;可选的,处理器1210可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1210中。
终端设备1200还可以包括给各个部件供电的电源1211(比如电池),可选的,电源1211可以通过电源管理系统与处理器1210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端设备1200包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端设备,包括处理器1210,存储器1209,存储在存储器1209上并可在所述处理器1210上运行的计算机程序,该计算机程序被处理器1210执行时实现上述节能信号检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图13,图13是本公开又一实施例提供的网络侧设备的结构图。如图13所示,网络侧设备1300包括:处理器1301、存储器1302、总线接口1303和收发机1304,其中,处理器1301、存储器1302和收发机1304均连接至总线接口1303。
其中,在本公开实施例中,网络侧设备1300还包括:存储在存储器1302上并可在处理器1301上运行的计算机程序。
在本公开实施例中,所述收发机1304用于:向终端设备发送信道条件相关的测量量的门限。
可选的,所述信道条件相关的测量量包括如下至少一项:参考信号接收功率RSRP,RSRP变化相关测量量,参考信号接收质量RSRQ,RSRQ变化相关测量量,信号与干扰加噪声比SINR,SINR变化相关测量量,移动性相关测量量。
可选的,所述移动性相关测量量包括如下至少一项:
第一预设时间内所述终端设备驻留的小区数;
第二预设时间内所述终端设备驻留的波束数;
所述终端设备的移动速率;
所述终端设备的多普勒频偏;
第三预设时间内所述终端设备的传输配置指示TCI状态数。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述节能信号检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
参见图14,图14是本公开又一实施例提供的终端设备的结构图,如图 14所示,终端设备1400包括:至少一个处理器1401、存储器1402、至少一个网络接口1404和用户接口1403。终端设备终端1400中的各个组件通过总线系统1405耦合在一起。可理解,总线系统1405用于实现这些组件之间的连接通信。总线系统1405除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
在一些实施方式中,存储器1402存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统14021和应用程序14022。
其中,操作系统14021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序14022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序14022中。
在本公开实施例中,终端设备1400还包括:存储在存储器1402上并可在处理器1401上运行的计算机程序,具体地,可以是应用程序14022中的计算机程序,计算机程序被处理器1401执行时实现如下步骤:
根据目标时间间隔,确定目标信号的时域资源;
其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的信号,所述目标信号包括所述节能信号和所述第一信号中的至少之一。
可选的,所述目标时间间隔为协议预定义,或是为网络侧设备配置。
可选的,所述计算机程序被处理器1401执行时还用于:
所述根据目标时间间隔,确定目标信号的时域资源之前,向网络侧设备发送所述终端设备的能力信息;
其中,所述能力信息包括第四时间间隔、第五时间间隔和第六时间间隔 中的至少一项;其中,所述第四时间间隔为所述节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第五时间间隔为所述节能信号和所述第一信号之间的时间间隔,所述第六时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔。
可选的,所述目标时间间隔为所述网络侧设备基于所述终端设备的能力信息配置的。
可选的,所述第一时间间隔或所述第四时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第一情况和第二情况,其中,所述第一情况为所述节能信号所在的带宽部分BWP和所述节能信号关联的PDCCH所在的BWP不同,所述第二情况为所述节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同。
可选的,所述第二时间间隔或所述第五时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第三情况和第四情况,其中,所述第三情况为所述节能信号所在的BWP和所述第一信号所在的BWP不同,所述第四情况为所述节能信号所在的BWP和所述第一信号所在的BWP相同。
可选的,所述第三时间间隔或所述第六时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第五情况和第六情况,其中,所述第五情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP不同,所述第六情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP相同。
可选的,所述节能信号为通过PDCCH传输的信号或是基于序列的信号。
可选的,在所述节能信号为基于序列的信号的情况下,所述节能信号和所述第一信号是不同信号。
可选的,所述基于序列的信号包括如下一项:信道状态信息参考信号CSI-RS,主同步信号PSS,辅同步信号SSS,跟踪参考信号TRS,解调参考信号DMRS。
参见图15,图15是本公开又一实施例提供的网络侧设备的结构图。如图15所示,网络侧设备1500包括:处理器1501、存储器1502、总线接口1503和收发机1504,其中,处理器1501、存储器1502和收发机1504均连接至总线接口1503。
其中,在本公开实施例中,网络侧设备1500还包括:存储在存储器1502上并可在处理器1501上运行的计算机程序。
在本公开实施例中,所述收发机1504用于:
向终端设备发送目标时间间隔;
其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的序列信号。
可选的,所述收发机1504还用于:
从所述终端设备接收所述终端设备的能力信息;
其中,所述能力信息包括第四时间间隔、第五时间间隔和第六时间间隔中的至少一项;其中,所述第四时间间隔为所述节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第五时间间隔为所述节能信号和所述第一信号之间的时间间隔,所述第六时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔。
可选的,所述目标时间间隔为根据所述终端设备的能力信息确定的。
可选的,所述第一时间间隔或所述第四时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第一情况和第二情况,其中,所述第一情况为所述节能信号所在的带宽部分BWP和所述节能信号关联的PDCCH所在的BWP不同,所述第二情况为所述节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同。
可选的,所述第二时间间隔或所述第五时间间隔至少包括两个不同的时 间间隔;
其中,所述两个不同的时间间隔分别对应第三情况和第四情况,其中,所述第三情况为所述节能信号所在的BWP和所述第一信号所在的BWP不同,所述第四情况为所述节能信号所在的BWP和所述第一信号所在的BWP相同。
可选的,所述第三时间间隔或所述第六时间间隔至少包括两个不同的时间间隔;
其中,所述两个不同的时间间隔分别对应第五情况和第六情况,其中,所述第五情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP不同,所述第六情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP相同。
可选的,所述节能信号为通过PDCCH传输的信号或是基于序列的信号。
可选的,在所述节能信号为基于序列的信号的情况下,所述节能信号和所述第一信号是不同信号。
可选的,所述基于序列的信号包括如下一项:信道状态信息参考信号CSI-RS,主同步信号PSS,辅同步信号SSS,跟踪参考信号TRS,解调参考信号DMRS。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用 时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (43)

  1. 一种节能信号检测方法,应用于终端设备,包括:
    根据测量得到的信道条件相关的测量量,确定是否检测节能信号。
  2. 根据权利要求1所述的方法,其中,所述信道条件相关的测量量包括如下至少一项:参考信号接收功率RSRP,RSRP变化相关测量量,参考信号接收质量RSRQ,RSRQ变化相关测量量,信号与干扰加噪声比SINR,SINR变化相关测量量,移动性相关测量量。
  3. 根据权利要求2所述的方法,其中,所述移动性相关测量量包括如下至少一项:
    第一预设时间内所述终端设备驻留的小区数;
    第二预设时间内所述终端设备驻留的波束数;
    所述终端设备的移动速率;
    所述终端设备的多普勒频偏;
    第三预设时间内所述终端设备的传输配置指示TCI状态数。
  4. 根据权利要求1所述的方法,其中,所述根据测量得到的信道条件相关的测量量,确定是否检测节能信号,包括如下至少之一:
    在所述测量得到的信道条件相关的测量量满足门限的情况下,检测节能信号;
    在所述测量得到的信道条件相关的测量量不满足门限的情况下,不要求检测节能信号;
    在所述测量得到的信道条件相关的测量量不满足门限的情况下,检测第一物理下行控制信道PDCCH,其中,第一PDCCH为所述节能信号关联的PDCCH。
  5. 根据权利要求4所述的方法,其中,所述测量得到的信道条件相关的测量量满足门限包括如下至少之一:
    测量得到的RSRP大于或等于第一门限;
    测量得到的RSRQ大于或等于第二门限;
    测量得到的移动性相关测量量满足第三门限;
    测量得到的RSRP变化相关测量量满足第四门限;
    测量得到的RSRQ变化相关测量量满足第五门限;
    测量得到的SINR大于或等于第六门限;
    测量得到的SINR变化相关测量量满足第七门限。
  6. 根据权利要求4所述的方法,其中,所述门限为网络侧配置,或是协议预定义。
  7. 一种节能信号检测方法,应用于网络侧设备,包括:
    向终端设备发送信道条件相关的测量量的门限。
  8. 根据权利要求7所述的方法,其中,所述信道条件相关的测量量包括如下至少一项:参考信号接收功率RSRP,RSRP变化相关测量量,参考信号接收质量RSRQ,RSRQ变化相关测量量,信号与干扰加噪声比SINR,SINR变化相关测量量,移动性相关测量量。
  9. 根据权利要求8所述的方法,其中,所述移动性相关测量量包括如下至少一项:
    第一预设时间内所述终端设备驻留的小区数;
    第二预设时间内所述终端设备驻留的波束数;
    所述终端设备的移动速率;
    所述终端设备的多普勒频偏;
    第三预设时间内所述终端设备的传输配置指示TCI状态数。
  10. 一种资源确定方法,应用于终端设备,包括:
    根据目标时间间隔,确定目标信号的时域资源;
    其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的物理下行控制信道PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的信号,所述目标信号包括所述节能信号和所述第一信号中的至少之一。
  11. 根据权利要求10所述的方法,其中,所述目标时间间隔为协议预定 义,或是为网络侧设备配置。
  12. 根据权利要求10所述的方法,其中,所述根据目标时间间隔,确定目标信号的时域资源之前,所述方法还包括:
    向网络侧设备发送所述终端设备的能力信息;
    其中,所述能力信息包括第四时间间隔、第五时间间隔和第六时间间隔中的至少一项;其中,所述第四时间间隔为所述节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第五时间间隔为所述节能信号和所述第一信号之间的时间间隔,所述第六时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔。
  13. 根据权利要求12所述的方法,其中,所述目标时间间隔为所述网络侧设备基于所述终端设备的能力信息配置的。
  14. 根据权利要求12所述的方法,其中,所述第一时间间隔或所述第四时间间隔至少包括两个不同的时间间隔;
    其中,所述两个不同的时间间隔分别对应第一情况和第二情况,其中,所述第一情况为所述节能信号所在的带宽部分BWP和所述节能信号关联的PDCCH所在的BWP不同,所述第二情况为所述节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同。
  15. 根据权利要求12所述的方法,其中,所述第二时间间隔或所述第五时间间隔至少包括两个不同的时间间隔;
    其中,所述两个不同的时间间隔分别对应第三情况和第四情况,其中,所述第三情况为所述节能信号所在的BWP和所述第一信号所在的BWP不同,所述第四情况为所述节能信号所在的BWP和所述第一信号所在的BWP相同。
  16. 根据权利要求12所述的方法,其中,所述第三时间间隔或所述第六时间间隔至少包括两个不同的时间间隔;
    其中,所述两个不同的时间间隔分别对应第五情况和第六情况,其中,所述第五情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP不同,所述第六情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP相同。
  17. 根据权利要求10所述的方法,其中,所述节能信号为通过PDCCH 传输的信号或是基于序列的信号。
  18. 根据权利要求17所述的方法,其中,在所述节能信号为基于序列的信号的情况下,所述节能信号和所述第一信号是不同信号。
  19. 根据权利要求17所述的方法,其中,所述基于序列的信号包括如下一项:信道状态信息参考信号CSI-RS,主同步信号PSS,辅同步信号SSS,跟踪参考信号TRS,解调参考信号DMRS。
  20. 一种资源确定方法,应用于网络侧设备,包括:
    向终端设备发送目标时间间隔;
    其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的物理下行控制信道PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的序列信号。
  21. 根据权利要求20所述的方法,还包括:
    从所述终端设备接收所述终端设备的能力信息;
    其中,所述能力信息包括第四时间间隔、第五时间间隔和第六时间间隔中的至少一项;其中,所述第四时间间隔为所述节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第五时间间隔为所述节能信号和所述第一信号之间的时间间隔,所述第六时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔。
  22. 根据权利要求21所述的方法,其中,所述目标时间间隔为根据所述终端设备的能力信息确定的。
  23. 根据权利要求21所述的方法,其中,所述第一时间间隔或所述第四时间间隔至少包括两个不同的时间间隔;
    其中,所述两个不同的时间间隔分别对应第一情况和第二情况,其中,所述第一情况为所述节能信号所在的带宽部分BWP和所述节能信号关联的PDCCH所在的BWP不同,所述第二情况为所述节能信号所在的BWP和所述节能信号关联的PDCCH所在的BWP相同。
  24. 根据权利要求21所述的方法,其中,所述第二时间间隔或所述第五时间间隔至少包括两个不同的时间间隔;
    其中,所述两个不同的时间间隔分别对应第三情况和第四情况,其中,所述第三情况为所述节能信号所在的BWP和所述第一信号所在的BWP不同,所述第四情况为所述节能信号所在的BWP和所述第一信号所在的BWP相同。
  25. 根据权利要求21所述的方法,其中,所述第三时间间隔或所述第六时间间隔至少包括两个不同的时间间隔;
    其中,所述两个不同的时间间隔分别对应第五情况和第六情况,其中,所述第五情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP不同,所述第六情况为所述节能信号关联的PDCCH所在的BWP和所述第一信号所在的BWP相同。
  26. 根据权利要求20所述的方法,其中,所述节能信号为通过PDCCH传输的信号或是基于序列的信号。
  27. 根据权利要求26所述的方法,其中,在所述节能信号为基于序列的信号的情况下,所述节能信号和所述第一信号是不同信号。
  28. 根据权利要求26所述的方法,其中,所述基于序列的信号包括如下一项:信道状态信息参考信号CSI-RS,主同步信号PSS,辅同步信号SSS,跟踪参考信号TRS,解调参考信号DMRS。
  29. 一种终端设备,包括:
    确定模块,用于根据测量得到的信道条件相关的测量量,确定是否检测节能信号。
  30. 根据权利要求29所述的终端设备,其中,所述信道条件相关的测量量包括如下至少一项:参考信号接收功率RSRP,RSRP变化相关测量量,参考信号接收质量RSRQ,RSRQ变化相关测量量,信号与干扰加噪声比SINR,SINR变化相关测量量,移动性相关测量量。
  31. 根据权利要求29所述的终端设备,其中,所述确定模块具体用于如下至少之一:
    在所述测量得到的信道条件相关的测量量满足门限的情况下,检测节能信号;
    在所述测量得到的信道条件相关的测量量不满足门限的情况下,不要求检测节能信号;
    在所述测量得到的信道条件相关的测量量不满足门限的情况下,检测第一物理下行控制信道PDCCH,其中,第一PDCCH为所述节能信号关联的PDCCH。
  32. 根据权利要求31所述的终端设备,其中,所述测量得到的信道条件相关的测量量满足门限包括如下至少之一:
    测量得到的RSRP大于或等于第一门限;
    测量得到的RSRQ大于或等于第二门限;
    测量得到的移动性相关测量量满足第三门限;
    测量得到的RSRP变化相关测量量满足第四门限;
    测量得到的RSRQ变化相关测量量满足第五门限;
    测量得到的SINR大于或等于第六门限;
    测量得到的SINR变化相关测量量满足第七门限。
  33. 一种网络侧设备,包括:
    发送模块,用于向终端设备发送信道条件相关的测量量的门限。
  34. 根据权利要求33所述的网络侧设备,其中,所述信道条件相关的测量量包括如下至少一项:参考信号接收功率RSRP,RSRP变化相关测量量,参考信号接收质量RSRQ,RSRQ变化相关测量量,信号与干扰加噪声比SINR,SINR变化相关测量量,移动性相关测量量。
  35. 一种终端设备,包括:
    确定模块,用于根据目标时间间隔,确定目标信号的时域资源;
    其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的物理下行控制信道PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的信号,所述目标信号包括所述节能信号和所述第一信号中的至少之一。
  36. 根据权利要求35所述的终端设备,还包括:
    发送模块,用于所述根据目标时间间隔,确定目标信号的时域资源之前,向网络侧设备发送所述终端设备的能力信息;
    其中,所述能力信息包括第四时间间隔、第五时间间隔和第六时间间隔中的至少一项;其中,所述第四时间间隔为所述节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第五时间间隔为所述节能信号和所述第一信号之间的时间间隔,所述第六时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔。
  37. 一种网络侧设备,包括:
    发送模块,用于向终端设备发送目标时间间隔;
    其中,所述目标时间间隔包括第一时间间隔、第二时间间隔和第三时间间隔中的至少之一;其中,所述第一时间间隔为节能信号和所述节能信号关联的物理下行控制信道PDCCH之间的时间间隔,所述第二时间间隔为所述节能信号和第一信号之间的时间间隔,所述第三时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔,所述第一信号为用于下行同步或者无线资源管理RRM测量或者波束管理的序列信号。
  38. 根据权利要求37所述的网络侧设备,还包括:
    接收模块,用于从所述终端设备接收所述终端设备的能力信息;
    其中,所述能力信息包括第四时间间隔、第五时间间隔和第六时间间隔中的至少一项;其中,所述第四时间间隔为所述节能信号和所述节能信号关联的PDCCH之间的时间间隔,所述第五时间间隔为所述节能信号和所述第一信号之间的时间间隔,所述第六时间间隔为所述节能信号关联的PDCCH和所述第一信号之间的时间间隔。
  39. 一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至6中任一项所述的节能信号检测方法的步骤。
  40. 一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求7至9中任一项所述的节能信号检测方法的步骤。
  41. 一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求10至19中任一项所述的资源确定方法的步骤。
  42. 一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求20至28中任一项所述的资源确定方法的步骤。
  43. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6中任一项所述的节能信号检测方法的步骤,或者实现如权利要求7至9中任一项所述的节能信号检测方法的步骤,或者实现如权利要求10至19中任一项所述的资源确定方法的步骤,或者实现如权利要求20至28中任一项所述的资源确定方法的步骤。
PCT/CN2020/070911 2019-02-02 2020-01-08 节能信号检测方法、资源确定方法及相关设备 WO2020156074A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20749248.9A EP3920575A4 (en) 2019-02-02 2020-01-08 ENERGY SAVING SIGNAL DETECTION METHOD, RESOURCE DETERMINATION METHOD AND RELATED DEVICE
US17/389,417 US20210360621A1 (en) 2019-02-02 2021-07-30 Power-saving signal detecting method, resource determining method and related devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910108019.0A CN111278027B (zh) 2019-02-02 2019-02-02 节能信号检测方法、资源确定方法及相关设备
CN201910108019.0 2019-02-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/389,417 Continuation US20210360621A1 (en) 2019-02-02 2021-07-30 Power-saving signal detecting method, resource determining method and related devices

Publications (1)

Publication Number Publication Date
WO2020156074A1 true WO2020156074A1 (zh) 2020-08-06

Family

ID=71001547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070911 WO2020156074A1 (zh) 2019-02-02 2020-01-08 节能信号检测方法、资源确定方法及相关设备

Country Status (4)

Country Link
US (1) US20210360621A1 (zh)
EP (1) EP3920575A4 (zh)
CN (1) CN111278027B (zh)
WO (1) WO2020156074A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11012106B2 (en) * 2016-09-23 2021-05-18 Qualcomm Incorporated Implementation of improved omni mode signal reception
CN111867015B (zh) * 2019-04-30 2023-11-17 华为技术有限公司 检测或发送下行控制信道的方法和装置
US20220159574A1 (en) * 2019-05-01 2022-05-19 Apple Inc. Control channel signaling for user equipment (ue) power saving
US11582796B2 (en) * 2020-05-15 2023-02-14 Qualcomm Incorporated Listen-before-talk (LBT) failure detection in dormant cell and outside discontinuous reception (DRX) active time
CN113939037A (zh) * 2020-07-13 2022-01-14 中国移动通信有限公司研究院 一种终端接入方法、终端及存储介质
EP4205433A4 (en) * 2020-10-16 2024-06-05 Zte Corp METHOD, APPARATUS AND COMPUTER PROGRAM PRODUCT FOR WIRELESS COMMUNICATION
CN117528669A (zh) * 2022-07-28 2024-02-06 维沃移动通信有限公司 接收方法、终端、网络侧设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370574A (zh) * 2017-10-30 2018-08-03 北京小米移动软件有限公司 随机接入方法及装置
US20180302889A1 (en) * 2017-04-12 2018-10-18 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in next generation wireless systems
WO2018204799A1 (en) * 2017-05-04 2018-11-08 Convida Wireless, Llc Wake up signals operation
WO2018201397A1 (zh) * 2017-05-04 2018-11-08 Oppo广东移动通信有限公司 无线通信方法和设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2500260A (en) * 2012-03-16 2013-09-18 Renesas Mobile Corp Comparing channel measurements for selecting discontinuous reception cycle lengths or intra-frequency neighbour cell measurement frequency
WO2018171476A1 (zh) * 2017-03-22 2018-09-27 华为技术有限公司 用于传输数据的方法和终端设备
KR102470439B1 (ko) * 2017-05-05 2022-11-25 소니그룹주식회사 단말 디바이스, 인프라스트럭처 장비, 무선 통신 시스템 및 방법들
CN109286968B (zh) * 2017-07-20 2020-07-28 维沃移动通信有限公司 一种盲检测参数获取方法、相关设备及系统
JP2021520700A (ja) * 2018-03-30 2021-08-19 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 信号伝送方法および機器
ES2921051T3 (es) * 2018-05-11 2022-08-17 Guangdong Oppo Mobile Telecommunications Corp Ltd Método de transmisión de señales, estación base y nodo de red
US11224088B2 (en) * 2018-07-02 2022-01-11 Qualcomm Incorporated Beam sweeping during an on-period of a DRX cycle
KR20210040074A (ko) * 2018-07-26 2021-04-12 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 신호를 전송하는 방법, 네트워크 기기 및 단말기
AU2019321640B2 (en) * 2018-08-17 2022-10-20 Interdigital Patent Holdings, Inc. Power saving signals in wireless communication
CN109314869B (zh) * 2018-08-24 2022-04-15 北京小米移动软件有限公司 非连续接收drx参数的配置方法及装置
US11729857B2 (en) * 2018-09-17 2023-08-15 Apple Inc. Systems, methods, and devices for signaling for power saving
US20220039009A1 (en) * 2018-09-27 2022-02-03 Mohamed Awadin Power saving mechanisms in nr

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180302889A1 (en) * 2017-04-12 2018-10-18 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in next generation wireless systems
WO2018204799A1 (en) * 2017-05-04 2018-11-08 Convida Wireless, Llc Wake up signals operation
WO2018201397A1 (zh) * 2017-05-04 2018-11-08 Oppo广东移动通信有限公司 无线通信方法和设备
CN108370574A (zh) * 2017-10-30 2018-08-03 北京小米移动软件有限公司 随机接入方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: ""DL Power Consumption Reduction for eMTC"", 3GPP TSG RAN WG1 MEETING #93 R1-1806684, 11 May 2018 (2018-05-11), XP051461909, DOI: 20200325122215 *
See also references of EP3920575A4 *

Also Published As

Publication number Publication date
CN111278027B (zh) 2021-11-30
EP3920575A1 (en) 2021-12-08
CN111278027A (zh) 2020-06-12
EP3920575A4 (en) 2022-03-23
US20210360621A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2020156074A1 (zh) 节能信号检测方法、资源确定方法及相关设备
KR102542288B1 (ko) 정보 리포팅 방법, 단말 및 네트워크 기기
WO2020156431A1 (zh) 非连续接收drx配置方法及终端
WO2021197378A1 (zh) 信号测量、测量间隔配置、测量上报方法、终端、网络设备及位置管理设备
WO2021185276A1 (zh) Srs的发送、配置及测量方法、定位方法及设备
KR102502462B1 (ko) 측정 방법, 단말 및 네트워크 측 기기
WO2020156433A1 (zh) 辅助信息上报方法和终端
WO2020253612A1 (zh) Pdcch监听方法和终端
WO2021078235A1 (zh) 测量处理方法、指示信息发送方法、终端和网络设备
CN110505638B (zh) 测量控制方法、终端和网络侧设备
WO2021129507A1 (zh) 唤醒信号配置方法、唤醒信号处理方法及相关设备
WO2021169939A1 (zh) Ps-pdcch配置方法、终端设备和网络侧设备
WO2019184858A1 (zh) 寻呼消息的监听方法、移动终端及服务器
CN111600692B (zh) 一种信道监听方法、信息传输方法、终端及网络设备
WO2021129504A1 (zh) Scell休眠指示处理方法、终端及网络设备
WO2021052420A1 (zh) 信道监听控制方法和终端
WO2021129508A1 (zh) 唤醒信号处理方法、唤醒信号配置方法及相关设备
WO2019223684A1 (zh) 测量上报方法、测量配置方法、终端和网络侧设备
WO2021115198A1 (zh) 测量方法和终端
WO2021057647A1 (zh) 节能信号接收方法、节能信号发送方法及相关设备
WO2021197192A1 (zh) 参考信号的确定方法及相关设备
WO2021213265A1 (zh) 节能模式切换方法、终端及网络侧设备
WO2021197123A1 (zh) 休眠行为处理方法、指示方法、终端及网络设备
CN112543082B (zh) 监听方法、发送方法、终端及网络侧设备
KR20220163988A (ko) 스케줄링 요청의 구성 방법, 단말 및 네트워크 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020749248

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020749248

Country of ref document: EP

Effective date: 20210902