WO2020156047A1 - 基于超声原理的手持式动植物组织消融仪 - Google Patents

基于超声原理的手持式动植物组织消融仪 Download PDF

Info

Publication number
WO2020156047A1
WO2020156047A1 PCT/CN2020/070558 CN2020070558W WO2020156047A1 WO 2020156047 A1 WO2020156047 A1 WO 2020156047A1 CN 2020070558 W CN2020070558 W CN 2020070558W WO 2020156047 A1 WO2020156047 A1 WO 2020156047A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
voltage
output
main control
pwm signal
Prior art date
Application number
PCT/CN2020/070558
Other languages
English (en)
French (fr)
Inventor
赵仲玖
赵伟
廖东升
邱坤
Original Assignee
成都导胜生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都导胜生物技术有限公司 filed Critical 成都导胜生物技术有限公司
Priority to SG11202108323WA priority Critical patent/SG11202108323WA/en
Priority to JP2020572961A priority patent/JP7136495B2/ja
Priority to US17/426,647 priority patent/US20220112481A1/en
Priority to EP20749727.2A priority patent/EP3904498B1/en
Priority to KR1020217023156A priority patent/KR20210107774A/ko
Publication of WO2020156047A1 publication Critical patent/WO2020156047A1/zh
Priority to AU2021104742A priority patent/AU2021104742A4/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/06Hydrolysis; Cell lysis; Extraction of intracellular or cell wall material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0261Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken from a transducer or electrode connected to the driving transducer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/08Means for treating work or cutting member to facilitate cutting
    • B26D7/086Means for treating work or cutting member to facilitate cutting by vibrating, e.g. ultrasonically
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/145Extraction; Separation; Purification by extraction or solubilisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/42Apparatus for the treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/76Medical, dental
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising

Definitions

  • the invention belongs to the technical field of RNA, DNA or protein extraction, and specifically relates to a handheld animal and plant tissue ablation instrument based on the principle of ultrasound.
  • Ultrasonic vibrator is also called ultrasonic vibrator.
  • the ultrasonic vibrator realizes the mutual conversion between electrical energy and mechanical energy (acoustic vibration) by the piezoelectric effect of piezoelectric ceramics, and is a device that is amplified by the front and rear radiation covers with matching acoustic impedance.
  • the ultrasonic vibrator is an ultrasonic vibration system composed of an ultrasonic transducer and an ultrasonic horn.
  • Ultrasonic transducer is a device that can convert high-frequency electrical energy into mechanical energy.
  • Ultrasonic horn is a passive device that does not produce vibration itself, but only changes the vibration amplitude input by the ultrasonic transducer and then transmits it. The impedance transformation.
  • Ultrasonic transducers can produce regular vibrations under appropriate electric field excitation, and their amplitude is generally about 10 ⁇ m. Such amplitude is not enough to directly complete the welding and processing procedures. Therefore, the transducer is connected with a reasonably designed ultrasonic horn, and the amplitude of the ultrasonic wave can be changed in a large range. As long as the material strength is sufficient, the amplitude can exceed 100 ⁇ m.
  • the ultrasonic horn performs longitudinal expansion and contraction vibration, the movement directions of the mass points on the left and right sides of a certain cross section in the middle are just opposite, which is equivalent to the existence of a relatively static nodal plane. This nodal surface is called a node, which is also the best fixed point of the vibrator. Deviation from the fixed point of this node will reduce the working efficiency of the vibrator, commonly known as leaky wave
  • ultrasonic vibrators are: ultrasonic cleaners, ultrasonic atomizers, B-ultrasound probes, etc.
  • the existing ultrasonic vibrators have the problems of inconvenient structural installation and inconvenience of the finished structure after installation.
  • the purpose of the present invention is to provide a handheld animal and plant tissue ablation instrument based on the principle of ultrasound.
  • a handheld animal and plant tissue ablation instrument based on the principle of ultrasound including a housing with a control board and a driving board inside, and an ultrasonic vibrator fixedly connected to the front end of the housing;
  • the ultrasonic vibrator includes an ultrasonic transducer and an horn that is fixedly connected to the front end of the ultrasonic transducer and transmits the vibration input by the ultrasonic transducer after changing the amplitude;
  • the control board is provided with a power supply, a DCDC conversion unit, a main control unit, a DCDC power adjustment unit, and a sampling unit;
  • the drive board is provided with a driving unit, a transformer unit, and a resonance unit;
  • the power supply passes through the DCDC conversion unit After converting the voltage with the DCDC power adjustment unit, it is used by the animal and plant tissue ablation instrument;
  • the main control unit outputs the first PWM signal to control the DCDC power adjustment unit to output adjustable voltage, and collects the sampling of the output loop voltage and current of the transformer unit Unit feedback, output two second PWM signals with complementary duty cycles to the drive unit and undergo transformation by the transformation unit, and then adjust the resonance point to the resonance of the ultrasonic vibrator through the resonance unit provided in the output loop of the transformation unit Point, so that the ultrasonic vibrator located in the output loop of the transformer unit works in resonance;
  • the shell is a hand-held shell, and the shell includes a first section and a second section that are at an obtuse angle to each other, and the end of the first section away from the second section is the front end of the housing.
  • the front end of the housing is provided with a connecting hole for fixedly connecting the ultrasonic vibrator, and the inner wall of the connecting hole is provided with more than one first slot, correspondingly, the ultrasonic vibrator is provided with the first slot The first step of matching.
  • the above-mentioned ultrasonic vibrator is installed at the front end of the housing by a snap-in method, so that the ultrasonic vibrator is installed stably, and maintenance and disassembly are convenient.
  • both sides of the first step are further provided with a first locking block and a second locking block respectively, and the first locking block and the second locking block clamp the first step to the first locking slot Inside.
  • the first clamping block and the second clamping block assist in clamping the ultrasonic vibrator, and further make the installation of the ultrasonic vibrator stable.
  • the first card slot is an annular card slot
  • the first step is an annular step
  • the first card block and the second card block are both ring card blocks
  • the first card block and the second card block All are sleeved on the outer wall of the ultrasonic vibrator.
  • the front end of the first step of the ultrasonic vibrator is also sleeved with a first fixed cover, and the rear end of the first fixed cover is clamped in the first slot.
  • the extension of the first fixing cover fixes the middle and rear ends of the ultrasonic vibrator, on the one hand, it increases the installation stability of the ultrasonic vibrator and makes the ultrasonic vibrator effective, and on the other hand, it also increases the life of the ultrasonic vibrator.
  • the outer shell includes an upper shell and a lower shell that are clamped to each other.
  • the front ends of the upper and lower shells are also sleeved with a second fixed cover, and the inner wall of the second fixed cover is provided with There is a second step, and the front outer walls of the upper casing and the lower casing are also provided with a second clamping slot matching the second step.
  • the installation method of the upper shell and the lower shell facilitates the installation, maintenance and disassembly of the shell, and also further strengthens the ultrasonic vibrator.
  • a hook is provided on the outer wall of the housing. It is convenient to install the present invention.
  • the power of the animal and plant tissue ablation instrument is 0.5-1000 W, and the ultrasonic frequency is 20-200 kHz.
  • the DCDC power adjustment unit includes: a switch control signal receiving circuit that connects the switch control signal receiving end to the main control unit to receive the switch control signal;
  • the first PWM signal receiving end is connected to the first PWM signal receiving circuit that the main control unit receives the first PWM signal
  • the power is converted into a fourth DCDC conversion unit for adjustable voltage output through the switch control signal and the first PWM signal sent by the main control unit.
  • the fourth DCDC conversion unit includes: a fourth voltage input filter, a fourth voltage conversion chip U1, and a fourth voltage output filter that sequentially process the power supply voltage
  • the fourth voltage input filter includes
  • the upper tube drive signal reference point pin SW of the fourth voltage conversion chip U1 is connected to the adjustable voltage output terminal through the energy storage inductor L1, and the voltage divider resistors R32 and R47 are connected in series to the adjustable voltage output terminal for voltage sampling input
  • the upper tube drive signal reference point pin SW of the fourth voltage conversion chip U1 is also connected with a freewheeling diode D2, and the enable pin EN is also connected with a resistor R33.
  • the timing/external clock pin RT/CLK is also connected with a frequency divider resistor R85, and the frequency compensation pin COMP is also connected with capacitors C51, C49 and resistor R46 for regulating the loop and stabilizing voltage output.
  • the capacitor C49 is connected in series with The capacitor C51 and the resistor R46 are connected in parallel, and the fourth voltage output filter includes a filter capacitor connected to the adjustable voltage output terminal;
  • the switch control signal receiving circuit includes: resistors R104 and R105 connected in series between the converted voltage and the switch control signal receiving end, the emitter is connected to the converted voltage, the base is connected to the node between the resistors R104 and R105, and the collector is connected to the fourth The transistor Q12 of the enable pin EN of the voltage conversion chip U1, when the switch control signal is L, the transistor Q12 is turned on, and the fourth voltage conversion chip U1 is turned on;
  • the first PWM signal receiving circuit includes: RC filtering and a first voltage follower U3B that sequentially process the first PWM signal, the first PWM signal received by the first PWM signal receiving end is filtered by the RC filter and then input to the first voltage follower
  • the non-inverting input terminal of U3B and the output terminal of the first voltage follower U3B are connected to the node between the voltage dividing resistors R32 and R47 through the voltage dividing resistor R54.
  • the driving unit includes a first driving unit and a second driving unit.
  • the second PWM signal receiving terminal N of the first driving unit receives the first second PWM signal sent by the main control unit.
  • the output terminal of a driving unit is connected to the end of the same name of the primary coil of the transformer unit, the second PWM signal receiving terminal P of the second driving unit receives the second second PWM signal sent by the main control unit, and the output of the second driving unit
  • the terminal is connected to the synonymous terminal of the primary coil of the transformer unit, and the first driving MOS transistor Q6 is controlled to turn on/off through the first second PWM signal received by the second PWM signal receiving terminal N, and the second PWM signal receiving terminal
  • the second second PWM signal received by P controls the second driving MOS transistor Q2 to turn off/on.
  • the voltage transformation unit is a push-pull transformer, and the adjustable voltage output end of the DCDC power adjustment unit is connected to the synonymous end of the first coil and the same name end of the second coil of the primary side of the push-pull transformer;
  • the first driving unit includes resistors R10 and R14 connected in series between the ground and the second PWM signal receiving terminal N, the gate is connected to the node between the resistors R10 and R14, the source is grounded, and the drain is the output of the first driving unit Terminal and connected to the first driving MOS transistor Q6 of the same name terminal of the first coil of the primary side of the push-pull transformer;
  • the second driving unit includes resistors R5 and R13 connected in series between the ground and the second PWM signal receiving terminal P, the gate is connected to the node between the resistors R5 and R13, the source is grounded, and the drain is the output of the second driving unit
  • the second driving MOS transistor Q2 of the alias end of the second coil of the primary side of the push-pull transformer is connected in parallel.
  • the resonant unit is LC series resonance
  • the LC series resonance includes an inductor T1 and a capacitor C1 connected in series in the output loop of the transformer unit.
  • the sampling unit includes a voltage sampling unit that collects the output loop voltage of the transformation unit and a current sampling unit that collects the output loop current of the transformation unit.
  • the output terminal of the transformation unit The loop is equipped with multiple sampling resistors connected in series; the voltage signal is collected through the voltage sampling terminal connected to the node between the multiple sampling resistors, then sent to the voltage sampling unit for filtering and amplification, and then sent to the main control unit for resonance adjustment; The current signal is collected at the current sampling end of the output loop of the transformer unit and sent to the current sampling unit for filtering and amplification, and then sent to the main control unit for resonance adjustment.
  • the main control unit includes a main control chip U2 and a main control chip peripheral circuit.
  • the main control chip U2 outputs a first PWM signal to control the DCDC power adjustment unit to output an adjustable voltage, and collects and transforms the unit The output loop voltage and current sampling unit feedback to output two second PWM signals with complementary duty cycles to the driving unit.
  • the main control unit further includes an auxiliary chip U1 and auxiliary chip peripheral circuits.
  • the main control chip U2 of the main control unit collects feedback from the sampling unit of the output loop voltage and current of the transformer unit. Send instructions to the auxiliary chip U1.
  • the auxiliary chip U1 receives the instruction from the main control chip U2 and outputs two second PWM signals with complementary duty cycles to the drive unit. At the same time, the two second PWM signals with complementary duty cycles are also fed back to Main control chip U2.
  • the two second PWM signals with complementary duty cycles are further amplified by the first signal amplifier output circuit and the second signal amplifier output circuit, respectively, and then sent to the driving unit.
  • the animal and plant tissue ablation instrument also includes a display unit, buttons, a charging interface, a memory, a USB interface unit or/and a touch unit connected to the main control chip U2.
  • the main control chip U2 When the main control chip U2 is connected with When the button and the display unit are pressed, the display screen of the button and the display unit is arranged on the surface of the second section of the housing. Easy to view.
  • the present invention solves the problems of expensive equipment for rapid extraction of RNA, DNA or protein in existing biological tissues, complicated extraction operation process, high operating conditions, waste, time-consuming, and large workload.
  • the ablation apparatus of the present invention is adopted , Use the first PWM signal to control the adjustable voltage output of the DCDC power adjustment unit to make the output power adjustable from 0.5 to 1000W, and use the feedback of the sampling unit that collects the output loop voltage and current of the transformer unit to output two duty cycles
  • the complementary second PWM signal is sent to the driving unit to make the resonant ultrasonic frequency adjustable from 20-200KHz, and adjust the resonance point to the resonance point of the ultrasonic vibrator to make the ultrasonic vibrator work in a resonant state, with the largest output energy and the strongest amplitude, using low hertz
  • the ultrasonic method achieves the purpose of quickly and simply ablating the tissue block into a tissue homogenate, which is convenient for subsequent extraction of tissue RNA, DNA or protein, and is cheap.
  • the present invention solves the problems of the inconvenient structural installation of the existing ultrasonic vibrator and the inconvenient handling of the finished product structure after installation.
  • the handheld housing of the present invention includes a first section and a second section that are at an obtuse angle to each other. On the surface of the second section of the housing, the end of the first section away from the second section is the front end of the housing.
  • the ultrasonic vibrator is convenient to install, and the finished structure after installation is convenient to hold.
  • the ultrasonic vibrator of the present invention is installed at the front end of the housing by clamping, and is assisted by the first clamping block, the second clamping block, the first fixing cover and the second fixing cover, so that the ultrasonic vibrator is stable in installation and convenient for maintenance and removal. , Good effect and long life.
  • Fig. 1 is a schematic diagram of the structure of an embodiment of the present invention.
  • Figure 2 is a schematic diagram of an exploded structure of an embodiment of the present invention.
  • Fig. 3 is a schematic cross-sectional structure diagram of an embodiment of the present invention.
  • Fig. 4 is a partial enlarged view of Fig. 3.
  • Fig. 5 is a system block diagram of an embodiment of the present invention.
  • Fig. 6 is a circuit principle diagram of the power supply, DCDC conversion unit and DCDC power adjustment unit of the control board of the embodiment of the present invention.
  • Fig. 7 is a circuit diagram of the main control unit of the control board of the embodiment of the present invention.
  • Fig. 8 is a circuit principle diagram of the sampling unit, the display unit and the auxiliary chip of the control board of the embodiment of the present invention.
  • Fig. 9 is a circuit diagram of the interface of the control board of the embodiment of the present invention.
  • Fig. 10 is a circuit principle diagram of the driving unit, the transformer unit, and the resonance unit of the driving board of the present invention.
  • Figure 11 is a diagram of the cell suspension of the present invention.
  • Fig. 12 is a diagram of tissue homogenate obtained by processing with an existing tissue homogenizer.
  • a handheld animal and plant tissue ablation instrument based on the principle of ultrasound includes a housing 1 with a control board 4 and a driving board 5, and an ultrasonic vibrator fixedly connected to the front end of the housing;
  • the ultrasonic vibrator includes an ultrasonic transducer
  • the horn 2 and the horn 3 which is fixedly connected to the front end of the ultrasonic transducer 2 and transmits the vibration input by the ultrasonic transducer after changing the amplitude;
  • the control board 4 is electrically connected with the driving board 5, and the driving board 5 is connected with the ultrasonic transducer 2 Electrical connection, the control board 4 is connected with the button 6, the display screen 7 and the charging interface;
  • the shell 1 is a hand-held shell, and the shell 1 includes the first section and the second section at an obtuse angle to each other.
  • the button 6 and the display screen 7 are located on the On the surface of the second section of the shell, the end of the first section away from the second section is the front end of the shell.
  • Corresponding key through holes and display through holes are provided on the surface of the second section of the housing, the control board 4 is arranged in the second section of the housing, and the driving board 5 is arranged in the first section of the housing.
  • the front end of the housing is provided with a connecting hole for fixedly connecting the ultrasonic vibrator, and the inner wall of the connecting hole is provided with more than one first locking groove 103.
  • the ultrasonic vibrator is provided with a first step 801 matching the first locking groove 103.
  • the first step 801 is provided on the horn 3, and there are three first card slots 103.
  • the first step 801 is inserted into the first card slot 103 located in the middle.
  • a first clamping block 802 and a second clamping block 803 are respectively provided, and the first clamping block 802 and the second clamping block 803 clamp the first step 801 in the first clamping slot 103.
  • the first card slot 103 is a ring card slot
  • the first step 801 is a ring step
  • the first card block 802 and the second card block 803 are both ring card blocks
  • the first card block 802 and the second card block 803 are both sleeved in the ultrasonic
  • the second clamping block 803 also extends through the first clamping slot 103 at the rear end.
  • the front end of the first step of the horn 3 is also sleeved with a first fixed cover 804, and the rear end of the first fixed cover 804 is clamped in the first slot 103 at the front end.
  • the housing includes an upper housing 101 and a lower housing 102 that are clamped to each other.
  • the front ends of the upper housing 101 and the lower housing 102 are also sleeved with a second fixed cover 805, the inner wall of the second fixed cover 805 is provided with two second steps 806, and the front outer walls of the upper housing 101 and the lower housing 102 are also provided with There is a second card slot 807 matching the second step 806 at the rear end.
  • the second step 806 at the front end wraps the front end of the housing, and further extends to the first slot 103 at the front end to clamp the rear end of the first fixing cover 804.
  • control board 4 and the drive board 5 are fixed in the housing 1 by screws.
  • the driving board 5 is also provided with a protective shell, and the surface of the display screen 7 is also pasted with a tempered glass film.
  • a hook 9 is provided on the outer wall of the housing.
  • the horn and ultrasonic transducer are existing products, and their internal structure is a relatively mature technology, so I won’t repeat them here.
  • the aforementioned front and rear ends are relative positions, not absolute positions.
  • control board is equipped with a power supply, a DCDC conversion unit, a main control unit, a DCDC power adjustment unit and a sampling unit, and the drive board is equipped with a driving unit, a transformer unit and a resonance unit.
  • the power supply is used by the DCDC conversion unit and the DCDC power adjustment unit to convert the voltage to the animal and plant tissue ablation instrument; the main control unit outputs the first PWM signal to control the DCDC power adjustment unit to output an adjustable voltage, and collects the output terminal of the transformer unit Feedback from the sampling unit of loop voltage and current, output two second PWM signals with complementary duty cycles to the drive unit and undergo voltage transformation by the transformer unit, and then adjust the resonance through the resonance unit provided in the output loop of the transformer unit Point to the resonance point of the ultrasonic vibrator, so that the ultrasonic vibrator arranged in the output loop of the transformer unit works in a resonance state.
  • the animal and plant tissue ablation instrument is further elaborated.
  • the power supply is a DC24V power supply
  • the DCDC conversion unit includes a first DCDC conversion unit, a second DCDC conversion unit, and a third DCDC conversion unit.
  • the first DCDC conversion unit includes TVS protection, first voltage input filtering, first voltage conversion chip, and first voltage output filtering.
  • the 24V DC power supply sequentially passes through TVS protection, first voltage input filtering, first voltage conversion chip and first The voltage output is filtered and converted into 12V output voltage, which is supplied to the main control unit and drive unit.
  • the DC24V power supply passes through the protective diode TVS1 in turn for TVS protection, through three capacitors C59, C60 and C57 connected in parallel to the DC24V power supply terminal for voltage input filtering, and then passes through the voltage divider connected in series to the DC24V power supply terminal
  • the resistors R48 and R51 perform voltage sampling and input the enable pin EN of the first voltage conversion chip U6, the model of the first voltage conversion chip U6 is TPS54340, and the upper tube drive signal reference point pin SW of the first voltage conversion chip U6 is stored
  • the inductance L2 is connected to the 12V output voltage terminal, and the voltage divider resistors R88 and R89 connected in series to the 12V output voltage terminal are used for voltage sampling and input to the reference voltage pin FB of the first voltage conversion chip U6, through the capacitor C72 connected to the 12V output voltage terminal.
  • the upper tube drive signal reference point pin SW of the first voltage conversion chip U6 is also connected with a freewheeling diode D4, the enable pin EN is also connected with a soft start capacitor C79, resistor timing/external clock pin RT /CLK is also connected with a frequency divider resistor R50, and the frequency compensation pin COMP is also connected with capacitors C61, C62 and a resistor R52 for regulating the loop and stabilizing voltage output.
  • the capacitor C62 is connected in parallel with the capacitor C61 and the resistor R52 in series.
  • the second DCDC conversion unit includes a second voltage input filter, a second voltage conversion chip, and a second voltage output filter.
  • the 12V input voltage is sequentially converted to 1.8V through the second voltage input filter, the second voltage conversion chip and the second voltage output filter.
  • the output voltage is supplied to the main control unit.
  • the 12V input voltage passes through two capacitors C84 and C85 connected in parallel to the 12V input voltage terminal for voltage input filtering.
  • the model of the second voltage conversion chip U9 is TLV62130ARGTR, and the second voltage conversion chip U9
  • the MOS tube drive signal reference point pin SW is connected to the 1.8V output voltage terminal through the energy storage inductor L3, and the voltage divider resistors R90 and R91 connected in series to the 1.8V output voltage terminal are used for voltage sampling and input to the reference voltage of the second voltage conversion chip U9
  • the pin FB is filtered by capacitors C80 and C83 connected in parallel to the 1.8V output voltage terminal.
  • the internal power supply pin PVIN of the second voltage conversion chip U9, the internal control circuit power supply pin AVIN, and the enable pin EN are also connected At the 12V input voltage terminal, the soft start/tracking pin SS/TR is also connected with a soft start capacitor C86, the adjustment output pin DEF and the frequency configuration pin FSW are both grounded, and the output voltage acquisition pin VOS is connected to the 1.8V output voltage terminal.
  • the third DCDC conversion unit includes a third voltage input filter, a third voltage conversion chip, and a third voltage output filter.
  • the 12V input voltage is sequentially converted to 3.3V through the third voltage input filter, the third voltage conversion chip and the third voltage output filter.
  • the output voltage is supplied to the main control unit and sampling unit.
  • the circuit principle of the third DCDC conversion unit is elaborated in detail: the 12V input voltage passes through two capacitors C89 and C90 connected in parallel to the 12V input voltage terminal for voltage input filtering.
  • the third voltage conversion chip U10 is modeled as TLV62130ARGTR, and the third voltage conversion chip U10
  • the MOS tube drive signal reference point pin SW is connected to the 3.3V output voltage terminal through the energy storage inductor L4, and the voltage divider resistors R92 and R94 connected in series to the 3.3V output voltage terminal are used for voltage sampling and input to the reference voltage of the third voltage conversion chip U10
  • the pin FB filters the voltage output through capacitors C87 and C88 connected in parallel to the 3.3V output voltage terminal.
  • the internal power supply pin PVIN of the third voltage conversion chip U10 and the internal control circuit power supply pin AVIN are also connected to the 12V input voltage terminal.
  • the voltage divider resistors R93 and R102 connected in series with the 12V input voltage terminal perform voltage sampling and input to the enable pin EN of the third voltage conversion chip U10.
  • the enable pin EN of the third voltage conversion chip U10 is also connected to the second voltage conversion chip U9 When the second DCDC conversion unit does not work normally, the third DCDC conversion unit stops working.
  • the soft-start/tracking pin SS/TR is also connected with a soft-start capacitor C91 to adjust the output pin. DEF and the frequency configuration pin FSW are both grounded, and the output voltage acquisition pin VOS is connected to the 3.3V output voltage terminal.
  • the DCDC power adjustment unit includes a switch control signal receiving circuit, a first PWM signal receiving circuit, and a fourth DCDC conversion unit.
  • the fourth DCDC conversion unit includes a fourth voltage input filter, a fourth voltage conversion chip, and a fourth voltage output filter.
  • the DCDC conversion unit converts the DC24V power supply into a 0-24V adjustable voltage output through the switch control signal and the first PWM signal sent by the main control unit.
  • the circuit principle of the fourth DCDC conversion unit The DC24V power supply sequentially passes through three capacitors C6, C7 and C41 connected in parallel to the DC24V power supply terminal for voltage input filtering.
  • the fourth voltage conversion chip U1 is modeled as TPS54340, and the fourth voltage conversion chip U1
  • the tube drive signal reference point pin SW is connected to the adjustable voltage output terminal through the energy storage inductor L1, and the voltage divider resistors R32 and R47 connected in series to the adjustable voltage output terminal perform voltage sampling and input to the reference voltage pin of the fourth voltage conversion chip U1 FB, through the capacitors C14, C40, C42, C54, C55, and C56 connected in parallel to the adjustable voltage output terminal to filter the adjustable voltage output.
  • the upper tube drive signal reference point pin SW of the fourth voltage conversion chip U1 is also connected with freewheeling Diode D2
  • enable pin EN is also connected to resistor R33
  • resistor timing/external clock pin RT/CLK is also connected to frequency divider resistor R85
  • frequency compensation pin COMP is also connected to adjust loop and stabilize voltage output
  • the switch control signal receiving end is connected to the main control unit to receive the switch control signal
  • the resistors R104 and R105 are connected in series between the 3.3V voltage and the switch control signal receiving end
  • the emitter of the transistor Q12 is connected to 3.3V
  • the voltage and base are connected to the node between resistors R104 and R105 and the collector is connected to the enable pin EN of the fourth voltage conversion chip U1.
  • the switch control signal is L
  • the transistor Q12 is turned on and the fourth voltage conversion chip U1 is turned on jobs.
  • the circuit principle of the first PWM signal receiving circuit the first PWM signal received by the first PWM signal receiving terminal is filtered by RC filtering and then input to the non-inverting input terminal of the first voltage follower U3B, and the output terminal of the first voltage follower U3B It is connected to the node between the voltage dividing resistors R32 and R47 through the voltage dividing resistor R54, wherein the resistor R45, the capacitor C63, the resistor R40 and the capacitor C52 form an RC filter, and then input to the non-inverting input of the first voltage follower U3B through the resistor R36 A capacitor C50 is also connected to the non-inverting input terminal of the first voltage follower U3B.
  • the animal and plant tissue ablation instrument also includes an output voltage sampling unit for collecting the adjustable voltage of the DCDC power adjustment unit, and the collected adjustable voltage is sent to the main control unit through the second voltage follower U3A.
  • the voltage divider resistors R55 and R60 connected in series at the adjustable voltage output terminal are used for voltage sampling and filtered through RC filtering, and then input to the non-inverting input terminal of the second voltage follower U3A, and the second voltage follows
  • the positive voltage terminal of the U3A is connected to the 3.3V voltage
  • the output terminal of the second voltage follower U3A is connected to the main control unit.
  • the resistor R59 and the capacitor C39 form an RC filter
  • the 3.3V voltage is also connected to a capacitor C44.
  • the second voltage follower A capacitor C43 is also connected to the output of U3A.
  • the driving unit includes a first driving unit and a second driving unit, wherein the first driving unit includes a first driving MOS transistor Q6, and the second driving unit includes a second driving MOS transistor Q2.
  • the second PWM signal receiving terminal N of the first driving unit receives the first second PWM signal sent by the main control unit.
  • the output terminal of the first driving unit is connected to the end of the same name of the primary coil of the transformer unit.
  • the second PWM signal receiving terminal P receives the second second PWM signal sent by the main control unit, and the output terminal of the second driving unit is connected to the synonymous terminal of the primary coil of the transformer unit, and is received through the second PWM signal receiving terminal N
  • the first second PWM signal controls the first driving MOS transistor Q6 to turn on/off
  • the second second PWM signal received by the second PWM signal receiving terminal P controls the second driving MOS transistor Q2 to turn off/on.
  • the transformation unit is a push-pull transformer
  • the adjustable voltage output end of the DCDC power adjustment unit is connected to the primary side of the push-pull transformer.
  • the synonymous end of the first coil and the same name of the second coil The resistors R10 and R14 are connected in series between the ground and the second PWM signal receiving terminal N.
  • the gate of the first driving MOS transistor Q6 is connected to the node between the resistors R10 and R14, the source is grounded, and the drain is the first driving unit.
  • the output terminal is also connected to the end of the same name of the first coil of the primary side of the push-pull transformer; resistors R5 and R13 are connected in series between the ground and the second PWM signal receiving terminal P, and the gate of the second driving MOS transistor Q2 is connected to one of the resistors R5 and R13
  • the source is grounded, and the drain is the output end of the second driving unit and is connected to the synonymous end of the second coil of the primary side of the push-pull transformer.
  • the first driving MOS transistor Q6 When the first second PWM signal received by the second PWM signal receiving terminal N is H and the second PWM signal received by the second PWM signal receiving terminal P is L, the first driving MOS transistor Q6 is controlled to be turned on, The second driving MOS tube Q2 is turned off, the input loop of the first coil of the primary side is connected and the input current direction is from the synonymous end of the first coil of the primary side to the same name end, the input loop of the second coil of the primary side is turned off, and the secondary side The output current direction of the output loop of the coil is from the same name end to the different name end of the secondary coil.
  • the first driving MOS transistor Q6 is controlled to be turned off, and the first The second drive MOS tube Q2 is turned on, the input loop of the second coil of the primary side is connected and the input current direction is from the same name end of the second coil of the primary side to the different name end, the input loop of the first coil of the primary side is cut off, and the secondary side
  • the output current direction of the output loop of the coil is from the different-named end of the secondary coil to the same-named end.
  • the input DC voltage is converted into an AC waveform with a frequency of 30KHz and a voltage of hundreds of volts, which provides conditions for the subsequent resonant unit.
  • the resonant unit is arranged in the output loop of the push-pull transformer.
  • the resonant unit is LC series resonance and includes an inductor T1 and a capacitor C1 connected in series in the output loop of the push-pull transformer.
  • the inductor T1 uses EFD20.
  • the ultrasonic transducer is arranged in the output loop of the push-pull transformer.
  • the ultrasonic transducer is connected through the interface J2.
  • the sampling unit collects the output loop voltage and current of the push-pull transformer.
  • the sampling unit includes a voltage sampling unit and a current sampling unit.
  • the voltage sampling unit collects the output loop voltage of the push-pull transformer.
  • the output loop of the push-pull transformer is equipped with series sampling resistors R1, R2, R3, R4 and R15.
  • the voltage sampling terminal is connected to the node between the resistors R4 and R15, and
  • the collected voltage signal is sent to the voltage sampling unit for filtering and amplification, and then sent to the main control unit for resonance adjustment.
  • the collected voltage signal is filtered through RC filtering in turn, and then filtered by the capacitor C67, then input to the non-inverting input terminal of the first operational amplifier U7B, and the inverting input terminal and output of the first operational amplifier U7B
  • the negative feedback resistor R63 is connected between the terminals, the output terminal of the first operational amplifier U7B is filtered by RC filtering, and then input to the non-inverting input terminal of the first comparator U8A through the resistor R72, which is connected in series between the 3.3V voltage and the ground
  • the voltage divider resistors R77 and R76 conduct voltage sampling and input to the inverting input terminal of the first comparator U8A.
  • the output terminal of the first comparator U8A is connected to the main control unit through a resistor R71, and the resistor R72 is connected to the non-inverting input terminal of the first comparator U8A.
  • the other end is also connected to the main control unit through a resistor R70, where resistor R61 and capacitor C65 form an RC filter to filter the collected voltage signal, and resistor R62 and capacitor C66 form an RC filter to filter the signal output from the output terminal of the first operational amplifier U7B.
  • the inverting input terminal of the first operational amplifier U7B is also connected in series with a resistor R64 and a capacitor C70, and the non-inverting input terminal of the first operational amplifier U7B is also connected with a DC 3.3V voltage, which passes through the voltage divider resistors R56 and R58. After dividing the voltage with R57, a divided voltage is generated and input to the non-inverting input terminal of the first operational amplifier U7B. The divided voltage is also filtered by a capacitor C64.
  • resistor R58 is connected to the non-inverting input terminal of the first operational amplifier U7B and the other end is connected to the resistor R56 ,
  • the resistor R56 is connected to the 3.3V voltage, one end of the resistor R57 is connected to the node between the resistors R56 and R58 and the other end is grounded.
  • the positive voltage terminal of the first comparator U8A is connected to the 3.3V voltage.
  • the 3.3V voltage passes through the parallel capacitor C76 and C77 filtering.
  • the current sampling unit collects the output loop current of the push-pull transformer, and the current sampling terminal is connected in series with the output loop of the push-pull transformer, and sends the collected current signal to the current sampling unit for filtering, amplification, and then to the main control unit for resonance adjust.
  • the circuit principle of the current sampling unit is elaborated in detail: the collected current signal is filtered through RC filtering in turn, and then blocked by the capacitor C75, and then input to the non-inverting input terminal of the second operational amplifier U7A, and the inverting input terminal and output of the second operational amplifier U7A
  • the negative feedback resistor R73 is connected between the terminals, the output terminal of the second operational amplifier U7A is filtered by RC filtering, and then input to the non-inverting input terminal of the second comparator U8B through the resistor R81, which is connected in series between the 3.3V voltage and the ground
  • the voltage divider resistors R82 and R83 are input to the inverting input terminal of the second comparator U8B for voltage sampling.
  • the output terminal of the second comparator U8B is connected to the main control unit through a resistor R80, and the resistor R81 is connected to the non-inverting input terminal of the second comparator U8B.
  • the other end is also connected to the main control unit through a resistor R79, where resistor R65 and capacitor C68 form an RC filter to filter the collected current signal, and resistor R69 and capacitor C69 form an RC filter to filter the signal output from the output terminal of the second operational amplifier U7A.
  • the inverting input terminal of the second operational amplifier U7A is also connected in series with a resistor R74 and a capacitor C78, and the non-inverting input terminal of the second operational amplifier U7A is also connected with a DC 3.3V voltage, which passes through the voltage divider resistors R78 and R66. , R67 and R68 are divided to generate a divided voltage and input to the non-inverting input of the second operational amplifier U7A. The divided voltage is filtered by a capacitor C71.
  • One end of the resistor R68 is connected to the non-inverting input of the second operational amplifier U7A and the other is connected in series.
  • the main control unit outputs the first PWM signal to control the DCDC power adjustment unit to output an adjustable voltage, and through the feedback of the sampling unit that collects the output loop voltage and current of the transformer unit, outputs two second PWM signals with complementary duty cycles To the first driving MOS tube Q6 and the second driving MOS tube Q2 of the driving unit.
  • the main control unit includes a main control chip U2 and a main control chip peripheral circuit.
  • the model of the main control chip U2 is N32905U1DN, adopts an ARM9 core, and has a main frequency of 200MHz.
  • the main control chip peripheral circuit includes system clock, reset, etc.
  • N32905U1DNN3290x integrates JPEG codec, CMOS sensor interface, 32-channel SPU (sound processing unit), ADC, DAC, which can meet various application requirements while saving BOM cost.
  • the maximum resolution of N32905U1DNN3290x is XVGA(1,024x768)@TFT LCD panel.
  • the 2D BitBLT accelerator accelerates graphics calculations, smooths rendering, and offloads the CPU to save power.
  • N32905U1DNN3290x specially adopts 1Mbitx16 3.3V SDRAM design.
  • N32905U1DNN3290x specially adopts 4Mbitx16 1.8V DDR SDRAM design.
  • a 16Mbitx16 1.8V DDR2SDRAM is stacked inside the N32905U1DNN3290x to ensure higher performance and minimize system design work such as EMI and noise coupling.
  • the above technical solutions have been fully disclosed and can be implemented.
  • the present invention solves the problems of expensive equipment for rapid extraction of RNA, DNA or protein in existing biological tissues, cumbersome extraction procedures, high operating conditions, waste, time-consuming, and heavy workload.
  • the problem is that with the ablation instrument of the present invention, the first PWM signal is used to control the DCDC power adjustment unit to output an adjustable voltage, so that the output power is adjustable from 0.5 to 1000W, and the sampling unit that collects the output loop voltage and current of the transformer unit is used.
  • the main control unit of the present invention also includes an auxiliary chip U1 and an auxiliary chip peripheral circuit, and the model of the auxiliary chip U1 is STM32F031G4U6.
  • the main control chip U2 of the main control unit sends instructions to the auxiliary chip U1 by collecting feedback from the sampling unit of the output loop voltage and current of the transformer unit.
  • the auxiliary chip U1 receives the instructions from the main control chip U2 and outputs two channels with a frequency of 30KHz.
  • the second PWM signal with complementary duty cycle is sent to the first driving MOS transistor Q6 and the second driving MOS transistor Q2 of the driving unit.
  • the two channels of frequency are 30KHz
  • the second PWM signal with complementary duty cycle is also fed back to the main control Chip U2.
  • the signals output from the output terminal of the first comparator U8A and the output terminal of the second comparator U8B are sent to the auxiliary chip U1.
  • the two second PWM signals with a frequency of 30KHz and a complementary duty cycle are amplified by the first signal amplifier output circuit and the second signal amplifier output circuit respectively, and then sent to the first driving MOS transistor Q6 and the second driving MOS of the driving unit.
  • the second PWM signal is input to the base of the first amplifying transistor Q5 through the series voltage divider resistors R49 and R53 for amplification, and the collector of the first amplifying transistor Q5 is connected to 12V through the resistor R34 Voltage, the emitter of the first amplifying transistor Q5 is grounded, the collector of the first amplifying transistor Q5 is connected to the bases of the first output transistor Q2 and the second output transistor Q4, the first output transistor Q2 is a P-type transistor, and the second output The transistor Q4 is an N-type transistor.
  • the collector of the first output transistor Q2 is connected to a 12V voltage.
  • the amplified first second PWM signal is connected from the emitter of the first output transistor Q2 to the emitter of the second output transistor Q4.
  • the second PWM signal is input to the base of the second amplifying transistor Q8 through the series voltage divider resistors R86 and R87 for amplification, and the collector of the second amplifying transistor Q8 is connected to 12V through the resistor R84 Voltage, the emitter of the second amplifying transistor Q8 is grounded, the collector of the second amplifying transistor Q8 is connected to the bases of the third output transistor Q6 and the fourth output transistor Q7, the third output transistor Q6 is a P-type transistor, and the fourth output Transistor Q7 is an N-type transistor, the collector of the third output transistor Q6 is connected to a 12V voltage, and the amplified second PWM signal is connected from the emitter of the third output transistor Q6 to the emitter of the fourth output transistor Q7.
  • the third output transistor Q6 When the second PWM signal input is H, the third output transistor Q6 is turned on, and the fourth output transistor Q7 is turned off; when the second PWM signal input is L, the third output transistor Q6 is turned off, and the fourth output transistor Q7 is turned on, Thus, the amplified square wave second channel second PWM signal is output.
  • the display 7 is an LCD display.
  • the LCD display is connected to the display chip J8 to form a display unit.
  • the display chip J8 is connected to the main control chip U2.
  • the model of the display chip J8 is FPC050.
  • the display chip J8 is connected to 3.3V voltage.
  • the main control chip U2 The signal LCD_BL is amplified by the MOS tube Q1 and sent to the display chip J8.
  • Button 6 is connected to the main control chip U2.
  • This embodiment includes four buttons, namely the first button, the second button, the third button, and the fourth button.
  • the first button is the left button
  • the second button is the right button
  • the third button is the right button.
  • the button is the middle button
  • the fourth button is the OK button.
  • the first button includes a pull-up resistor R4 and a pull-down resistor R11
  • the pull-up resistor R4 is connected to a 3.3V voltage
  • the node between the pull-up resistor R4 and the pull-down resistor R11 is connected to one end of the button S2, and the other end of the button S2 is grounded and pulled down
  • the other end of the resistor R11 is connected to the main control chip U2.
  • the pull-down resistor R11 When the button S2 is pressed, the pull-down resistor R11 is only 1K, and the first button outputs a low level. When the button S2 is released, the output is pulled up by the pull-up resistor R4 and the pull-down resistor R11. The first button outputs a high level; the second button includes a pull-up resistor R6 and a pull-down resistor R19.
  • the pull-up resistor R6 is connected to a 3.3V voltage.
  • the node between the pull-up resistor R6 and the pull-down resistor R19 is connected to one end of the button S3, and the button S3
  • the other end of the pull-down resistor R19 is connected to the main control chip U2.
  • the second button When the button S3 is pressed, the second button outputs a low level.
  • the third button includes a pull-up resistor R8 and a pull-down resistor R20.
  • the pull-up resistor R8 is connected to a 3.3V voltage.
  • the node between the pull-up resistor R8 and the pull-down resistor R20 is connected to one end of the button S4, and the button S4
  • the other end of the pull-down resistor R20 is connected to the main control chip U2.
  • the third button outputs a high level;
  • the fourth button includes a pull-up resistor R10 and a pull-down resistor R26.
  • the pull-up resistor R10 is connected to a 3.3V voltage.
  • the node between the pull-up resistor R10 and the pull-down resistor R26 is connected to one end of the button S5, and the button S5
  • the other end of the pull-down resistor R26 is connected to the main control chip U2.
  • the main control chip U2 is also connected to a memory, and the memory uses an SPI-FLASH device to store parameters, including resonance parameters, setting parameters, and so on.
  • the main control chip U2 is also connected with a USB interface unit.
  • the USB interface unit includes a USB chip ESD1 connected to the main control chip U2 and an interface J7 connected to the USB chip ESD1.
  • the model of the USB chip ESD1 is USBLC6, and the model of the interface J7 is SIP254.
  • the main control chip U2 is also connected to a touch unit, which includes voltage divider resistors R99 and R101 connected in series between the 3.3V voltage and ground, a resistor R100 connected to the node between the resistors R99 and R101, and one of the base connection resistors R99 and R101.
  • Transistor Q10 at the node between the transistor Q10 and the 3.3V voltage is connected in series with voltage divider resistors R98 and R96.
  • the node between the voltage divider resistors R98 and R96 is connected to the gate of the MOS transistor Q9 and the source of the MOS transistor Q9.
  • the drain of the MOS tube Q9 is connected to the touch interface J1, the touch interface J1 is connected to the main control chip U2, the touch interface J1 is connected to the touch panel, and the power enable signal TP_PWEN sent by the main control chip U2 to the triode through the resistor R100
  • the base of Q10 when the power enable signal TP_PWEN is H, the transistor Q10 is turned on, and the MOS transistor Q9 is turned on.
  • the main control chip U2 is also connected with an external interface J4.
  • the main control chip U2 is also connected with a buzzer.
  • This embodiment introduces a method for quickly extracting RNA, DNA or protein from a handheld animal and plant tissue ablation instrument based on the principle of ultrasound, including steps: A. preparing cell suspension; B. extracting RNA, DNA or protein; step A includes After the tissue sample is mixed with the solution, a handheld animal and plant tissue ablation instrument based on the ultrasonic principle is used for ultrasonic ablation to obtain a cell suspension.
  • the low-hertz ultrasound method is used to quickly and easily ablate the tissue block into a cell suspension, which facilitates the subsequent extraction of tissue RNA, DNA or protein, and can be extracted from the tissue with only a small amount of tissue
  • RNA, DNA or protein, especially RNA and protein is simple to operate, saves extraction time, and greatly shortens the time from tissue block to cell suspension; all operations can be completed by only one person, which greatly reduces manpower and material resources. Improve work efficiency.
  • the conditions for selecting ultrasound ablation are that the power is 0.5-1000W and the ultrasound frequency is 20-200kHz.
  • step A is RNA extract, protein extract, DNA extract, physiological saline or buffer.
  • RNA extraction solution in order to facilitate the processing of subsequent procedures, different solutions can be selected for different subsequent procedures, thereby reducing the operation steps and saving extraction time; when the subsequent extraction of RNA, DNA or protein is required, select RNA accordingly
  • the extraction solution, DNA extraction solution, and protein extraction solution can greatly reduce the extraction time while ensuring the extraction effect.
  • physiological saline or buffer can be used when the cell suspension is obtained by ultrasonic ablation.
  • step B when the solution in step A is an RNA extraction solution, a protein extraction solution or a DNA extraction solution, step B includes extracting RNA, protein or DNA according to the conventional operation method of RNA extraction solution, protein extraction solution or DNA extraction solution. A step of.
  • RNA extraction solution protein extraction solution or DNA extraction solution as a solution to obtain cell suspension by ultrasonic ablation, in the subsequent specific RNA, DNA or protein extraction steps
  • the RNA extraction solution and DNA extraction solution used can be used Or the operating instructions of the reagents corresponding to the protein extraction liquid phase for subsequent extraction operations, and other conventional extraction methods suitable for extraction can also be used.
  • step B when the solution in step A is physiological saline or buffer, step B includes mixing the cell suspension with the extracted amount of RNA extract, protein extract, or DNA extract, and then extract RNA according to conventional operations. , Protein or DNA steps.
  • the extracted amount of RNA extract, DNA extract or protein extract can be added to the cell suspension for subsequent extraction Operation, similarly, the subsequent extraction operation can refer to the operation manual of the reagent in the corresponding RNA extraction solution, DNA extraction solution or protein extraction solution for subsequent extraction operations, or use other conventional extraction methods suitable for extraction. operating.
  • the extraction amount is the amount capable of extracting RNA, DNA or protein in the cell suspension.
  • the ratio of the tissue sample to the solution in step A is 10 mg-100 mg: 100-1000 ⁇ L.
  • the ratio of the tissue sample to the solution is 10 mg to 100 mg: 100 to 1000 ⁇ L.
  • the buffer is PBS buffer.
  • the buffer is a PBS buffer.
  • the definition of the cell suspension of the present invention after complete ablation, the number of single cells accounts for more than 95% of the total number of single cells and cell clusters.
  • Example 2 The cell suspension obtained in Example 2 is shown in FIG. 11, and the tissue homogenate obtained by using a traditional tissue homogenizer is shown in FIG. 12. Comparing FIG. 11 and FIG. 12, it can be seen that the method for rapidly extracting RNA, DNA or protein of the present invention obtains a cell suspension after processing biological tissues, while a large number of cells are present in the tissue homogenate obtained by the existing tissue homogenizer. Obviously, the method of rapidly extracting RNA, DNA or protein using the instrument of the present invention has the advantages of faster processing speed and thorough single-cell formation compared with traditional tissue processing methods.
  • the present invention is not limited to the above-mentioned alternative embodiments.
  • anyone can derive other products in various forms under the enlightenment of the present invention, but regardless of any changes in its shape or structure, all that fall into the scope of the claims of the present invention The technical solutions within the scope fall within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Forests & Forestry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Surgical Instruments (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Electrotherapy Devices (AREA)

Abstract

基于超声原理的手持式动植物组织消融仪,包括:内部设有控制板和驱动板的外壳,以及固定连接在外壳前端的超声振子;超声振子包括超声换能器以及固定连接于超声换能器前端且将超声波换能器输入的振动改变振幅后传递出去的变幅杆;控制板上设有电源、DCDC转换单元、主控单元、DCDC功率调节单元和采样单元;驱动板上设有驱动单元、变压单元和谐振单元;外壳为手持式外壳,外壳包括相互呈钝角的第一段和第二段,第一段远离第二段的一端为外壳前端。

Description

基于超声原理的手持式动植物组织消融仪 技术领域
本发明属于RNA、DNA或蛋白质提取技术领域,具体涉及基于超声原理的手持式动植物组织消融仪。
背景技术
超声波振子又称超声波振动子,超声波振子由压电陶瓷的压电效应实现电能与机械能(声波振动)的相互转换,并通过声阻抗匹配的前后辐射盖块进行放大的器件。超声波振子是由超声波换能器和超声波变幅杆组成超声波振动系统。超声波换能器是一种能把高频电能转化为机械能的装置,超声波变幅杆是一个无源器件,本身不产生振动,只是将超声波换能器输入的振动改变振幅后再传递出去,完成了阻抗变换。超声波换能器在合适的电场激励下能产生有规律的振动,其振幅一般在10μm左右,这样的振幅要直接完成焊接和加工工序是不够的。因此换能器链接合理设计的超声波变幅杆,超声波的振幅可以在很大的范围内变化,只要材料强度足够,振幅可以超过100μm。超声波变幅杆在做纵向伸缩振动时,其中间的某横截面左右两边的质点运动方向刚好相反,相当于存在一个相对静止的节面。这个节面叫做节点,这里也是振动子的最佳固定点,偏离这个节点固定就会降低振动子的工作效率,俗称漏波
超声波振子常见应用是:超声波清洗器、超声雾化器、B超探头等,而现有的超声振子存在结构安装不便和安装后的成品结构手持不便的问题。
从上述内容得知,现有的组织中快速提取RNA、DNA或蛋白质的方法中还没有相关的超声波振子的应用,针对组织中快速提取RNA、DNA或蛋白质,美国Thermo公司出品的一款组织破碎机的原理:利用磁珠在电磁场中的不规则高速运动将组织研磨成组织匀浆,但机器昂贵,且仅可将组织匀浆成较小组织团块;美国的PR0*PR0200手持、台式两用均质器和Bioprep-24生物样品均质器高通量生物样品均质仪器,同样存在机器昂贵,且仅可将组织匀浆成较小组织团块。
发明内容
为了解决现有技术存在的上述问题,本发明目的在于提供基于超声原理的手持式动植物组织消融仪。
本发明所采用的技术方案为:
基于超声原理的手持式动植物组织消融仪,包括内部设有控制板和驱动板的外壳,以及固定连接在外壳前端的超声振子;
所述超声振子包括超声换能器和固定连接于超声换能器前端且将超声波换能器输入的振动改变振幅后传递出去的变幅杆;
所述控制板上设有电源、DCDC转换单元、主控单元、DCDC功率调节单元和采样单元;所述驱动板上设有驱动单元、变压单元和谐振单元;所述电源,通过DCDC转换单元和DCDC功率调节单元转换电压后给动植物组织消融仪使用;主控单元,输出第一PWM信号控制 DCDC功率调节单元输出可调电压,并通过采集变压单元的输出端回路电压和电流的采样单元的反馈,输出两路占空比互补的第二PWM信号至驱动单元并经过变压单元变压,然后通过设于变压单元的输出端回路中的谐振单元调节谐振点到超声振子的共振点,使得设于变压单元的输出端回路中的超声振子工作在谐振状态;
所述外壳为手持式外壳,外壳包括相互呈钝角的第一段和第二段,第一段远离第二段的一端为外壳前端。
在上述技术方案的基础上,所述外壳前端设有用于固定连接超声振子的连接孔,所述连接孔的内壁设有一个以上第一卡槽,相应地,超声振子设有与第一卡槽匹配的第一台阶。
上述超声振子通过卡嵌的方式安装于外壳前端,使超声振子安装稳固,并且维护、拆卸方便。
在上述技术方案的基础上,所述第一台阶的两侧还分别设有第一卡块和第二卡块,第一卡块和第二卡块将第一台阶卡紧于第一卡槽内。
第一卡块和第二卡块协助将超声振子卡紧,进一步使超声振子安装稳固。
在上述技术方案的基础上,所述第一卡槽为环形卡槽,第一台阶为环形台阶,第一卡块和第二卡块均为环形卡块,第一卡块和第二卡块均套于超声振子的外壁。
在上述技术方案的基础上,所述超声振子设置第一台阶的前端还套接有第一固定罩,第一固定罩的后端卡紧于第一卡槽内。
第一固定罩延伸将超声振子的中后端固定起来,一方面增加了超声振子安装稳固性,使超声振子效果好,另一方面还增加了超声振子的寿命。
在上述技术方案的基础上,所述外壳包括相互卡接的上壳体和下壳体,所述上壳体和下壳体的前端还套接有第二固定罩,第二固定罩内壁设有第二台阶,上壳体和下壳体的前端外壁还设有与第二台阶匹配的第二卡槽。
上壳体和下壳体的安装方式使外壳方便安装、维护、拆卸,同时也进一步地加固了超声振子。
在上述技术方案的基础上,所述外壳的外壁上设有挂钩。方便安放本发明。
在上述技术方案的基础上,所述动植物组织消融仪的功率为0.5~1000W,超声频率为20~200kHz。
在上述技术方案的基础上,所述DCDC功率调节单元包括:开关控制信号接收端连接主控单元接收开关控制信号的开关控制信号接收电路;
第一PWM信号接收端连接主控单元接收第一PWM信号的第一PWM信号接收电路;
通过主控单元发送的开关控制信号和第一PWM信号将电源转换为可调电压输出的第四DCDC转换单元。
在上述技术方案的基础上,所述第四DCDC转换单元包括:依次处理电源电压的第四电压输入滤波、第四电压转换芯片U1和第四电压输出滤波,第四电压输入滤波包括连接在电源端的滤波电容,第四电压转换芯片U1的上管驱动信号参考点管脚SW通过储能电感L1连接到可调电压输出端,串联在可调电压输出端的分压电阻R32和R47进行电压采样输入到第四电压转换芯片U1的参考电压管脚FB,第四电压转换芯片U1的上管驱动信号参考点管脚SW还连接有续流二极管D2,使能管脚EN还连接有电阻R33,电阻器时序/外部时钟管脚RT/ CLK还连接有频率分压电阻R85,频率补偿管脚COMP还连接有用于调节环路、稳定电压输出的电容C51、C49和电阻R46,其中,电容C49与串联的电容C51和电阻R46并联,第四电压输出滤波包括连接在可调电压输出端的滤波电容;
开关控制信号接收电路包括:串联于转换后电压与开关控制信号接收端之间的电阻R104和R105,发射极连接转换后电压、基极连接电阻R104和R105之间的节点且集电极连接第四电压转换芯片U1的使能管脚EN的三极管Q12,当开关控制信号为L时,三极管Q12导通,第四电压转换芯片U1开启工作;
第一PWM信号接收电路包括:依次处理第一PWM信号的RC滤波和第一电压跟随器U3B,第一PWM信号接收端接收的第一PWM信号通过RC滤波进行滤波后输入到第一电压跟随器U3B的同相输入端,第一电压跟随器U3B的输出端通过分压电阻R54连接到分压电阻R32和R47之间的节点。
在上述技术方案的基础上,所述驱动单元包括第一驱动单元和第二驱动单元,第一驱动单元的第二PWM信号接收端N接收主控单元发送的第一路第二PWM信号,第一驱动单元的输出端连接变压单元的原边线圈的同名端,第二驱动单元的第二PWM信号接收端P接收主控单元发送的第二路第二PWM信号,第二驱动单元的输出端连接变压单元的原边线圈的异名端,通过第二PWM信号接收端N接收的第一路第二PWM信号控制第一驱动MOS管Q6导通/截止,通过第二PWM信号接收端P接收的第二路第二PWM信号控制第二驱动MOS管Q2截止/导通。
在上述技术方案的基础上,所述变压单元为推挽变压器,DCDC功率调节单元的可调电压输出端连接推挽变压器的原边第一线圈的异名端和第二线圈的同名端;
所述第一驱动单元包括串联于地与第二PWM信号接收端N之间的电阻R10和R14,栅极连接电阻R10和R14之间的节点、源极接地且漏极为第一驱动单元的输出端并连接推挽变压器的原边第一线圈的同名端的第一驱动MOS管Q6;
所述第二驱动单元包括串联于地与第二PWM信号接收端P之间的电阻R5和R13,栅极连接电阻R5和R13之间的节点、源极接地且漏极为第二驱动单元的输出端并连接推挽变压器的原边第二线圈的异名端的第二驱动MOS管Q2。
在上述技术方案的基础上,所述谐振单元为LC串联谐振,LC串联谐振包括串联于变压单元的输出端回路中的电感T1和电容C1。
在上述技术方案的基础上,所述采样单元包括采集变压单元的输出端回路电压的电压采样单元和采集变压单元的输出端回路电流的电流采样单元,相应地,变压单元的输出端回路设有多个串联的采样电阻;通过连接在多个采样电阻之间节点的电压采样端采集电压信号然后发送至电压采样单元进行滤波和放大,然后发送至主控单元做谐振调节;通过串联在变压单元的输出端回路的电流采样端采集电流信号发送至电流采样单元进行滤波和放大,然后发送至主控单元做谐振调节。
在上述技术方案的基础上,所述主控单元包括主控芯片U2和主控芯片外围电路,主控芯片U2输出第一PWM信号控制DCDC功率调节单元输出可调电压,并通过采集变压单元的输出端回路电压和电流的采样单元的反馈,输出两路占空比互补的第二PWM信号至驱动单元。
在上述技术方案的基础上,所述主控单元还包括辅助芯片U1和辅助芯片外围电 路,主控单元的主控芯片U2通过采集变压单元的输出端回路电压和电流的采样单元的反馈,向辅助芯片U1发送指令,辅助芯片U1接收主控芯片U2的指令,输出两路占空比互补的第二PWM信号至驱动单元,同时,两路占空比互补的第二PWM信号还反馈至主控芯片U2。
在上述技术方案的基础上,所述两路占空比互补的第二PWM信号还分别通过第一信号放大输出电路和第二信号放大输出电路进行放大后发送至驱动单元。
在上述技术方案的基础上,所述动植物组织消融仪还包括与主控芯片U2连接的显示单元、按键、充电接口、存储器、USB接口单元或/和触摸单元,当主控芯片U2连接有按键和显示单元时,按键和显示单元的显示屏设于第二段外壳的表面。方便查看。
本发明的有益效果为:
1、本发明解决了现有生物组织中快速提取RNA、DNA或蛋白质的设备价格昂贵的且提取操作过程繁琐、操作条件高、浪费、耗时、工作量大的问题,采用本发明的消融仪,利用第一PWM信号控制DCDC功率调节单元可调电压输出,使输出功率在0.5~1000W可调,利用采集变压单元的输出端回路电压和电流的采样单元的反馈,输出两路占空比互补的第二PWM信号至驱动单元,使谐振超声频率为20-200KHz可调,调节谐振点到超声振子的共振点,使得超声振子工作在谐振状态,输出能量最大、振幅最强,利用低赫兹超声的方法,达到快速、简便地将组织块消融成组织匀浆的目的,方便后续进行组织RNA、DNA或蛋白质的提取,同时价格低廉。
2、本发明解决了现有的超声振子存在结构安装不便和安装后的成品结构手持不便的问题,本发明的手持式外壳包括相互呈钝角的第一段和第二段,按键和显示屏设于第二段外壳的表面,第一段远离第二段的一端为外壳前端,超声振子安装方便,且安装后的成品结构手持方便。
3、本发明超声振子通过卡嵌的方式安装于外壳前端,通过第一卡块、第二卡块、第一固定罩和第二固定罩协助固定,使超声振子安装稳固,并且维护、拆卸方便,效果好、寿命长。
附图说明
图1是本发明-实施例的结构示意图。
图2是本发明-实施例的爆炸结构示意图。
图3是本发明-实施例的剖视结构示意图。
图4是图3的局部放大图。
图5是本发明-实施例的系统框图。
图6是本发明-实施例控制板的电源、DCDC转换单元和DCDC功率调节单元的电路原理图。
图7是本发明-实施例控制板的主控单元的电路原理图。
图8是本发明-实施例控制板的采样单元、显示单元和辅助芯片的电路原理图。
图9是本发明-实施例控制板的接口的电路原理图。
图10是本发明-实施例驱动板的驱动单元、变压单元和谐振单元的电路原理图。
图11为本发明的细胞悬液图。
图12为通过现有组织匀浆器处理得到的组织匀浆图。
图中:1-外壳;101-上壳体;102-下壳体;103-第一卡槽;2-超声换能器;3-变幅杆;4-控制板;5-驱动板;6-按键;7-显示屏;801-第一台阶;802-第一卡块;803-第二卡块;804-第一固定罩;805-第二固定罩;806-第二台阶;807-第二卡槽;9-挂钩。
具体实施方式
下面结合附图及具体实施例对本发明作进一步阐述。
实施例1:
如图1-10所示,基于超声原理的手持式动植物组织消融仪,包括设有控制板4和驱动板5的外壳1,以及固定连接在外壳前端的超声振子;超声振子包括超声换能器2和固定连接于超声换能器2前端且将超声波换能器输入的振动改变振幅后传递出去的变幅杆3;控制板4与驱动板5电连接,驱动板5与超声换能器2电连接,控制板4连接有按键6、显示屏7和充电接口;外壳1为手持式外壳,外壳1包括相互呈钝角的第一段和第二段,按键6和显示屏7设于第二段外壳的表面,第一段远离第二段的一端为外壳前端。
第二段外壳表面设有相应的按键通孔和显示屏通孔,控制板4设于第二段外壳内,驱动板5设于第一段外壳内。
外壳前端设有用于固定连接超声振子的连接孔,连接孔的内壁设有一个以上第一卡槽103,相应地,超声振子设有与第一卡槽103匹配的第一台阶801。
本实施例中,第一台阶801设于变幅杆3上,第一卡槽103为三个,第一台阶801卡嵌于位于中部的第一卡槽103内,第一台阶801的两侧还分别设有第一卡块802和第二卡块803,第一卡块802和第二卡块803将第一台阶801卡紧于第一卡槽103内。第一卡槽103为环形卡槽,第一台阶801为环形台阶,第一卡块802和第二卡块803均为环形卡块,第一卡块802和第二卡块803均套于超声振子的外壁,第二卡块803还延伸过位于后端的第一卡槽103。
本实施例中,变幅杆3设置第一台阶的前端还套接有第一固定罩804,第一固定罩804的后端卡紧于位于前端的第一卡槽103内。
本实施例中,外壳包括相互卡接的上壳体101和下壳体102。上壳体101和下壳体102的前端还套接有第二固定罩805,第二固定罩805内壁设有两个第二台阶806,上壳体101和下壳体102的前端外壁还设有与位于后端的第二台阶806匹配的第二卡槽807。位于前端的第二台阶806将外壳的前端包裹在内,并进一步地延伸至位于前端的第一卡槽103将第一固定罩804的后端卡紧。
本实施例中,控制板4和驱动板5通过螺钉固定于外壳1内。驱动板5还设有保护壳,显示屏7表面还贴有钢化玻璃膜。
本实施例中,外壳的外壁上设有挂钩9。
说明:变幅杆和超声换能器为现有产品,其内部结构是较成熟的技术,在此不再赘述。上述前端、后端均为相对位置,并非绝对位置。
如图4-9所示,控制板上设有电源、DCDC转换单元、主控单元、DCDC功率调节单元和采样单元,驱动板设有驱动单元、变压单元和谐振单元。
电源,通过DCDC转换单元和DCDC功率调节单元转换电压后给动植物组织消融仪使用;主控单元,输出第一PWM信号控制DCDC功率调节单元输出可调电压,并通过采集变压单元的输出端回路电压和电流的采样单元的反馈,输出两路占空比互补的第二PWM信号至驱 动单元并经过变压单元变压,然后通过设于变压单元的输出端回路中的谐振单元调节谐振点到超声振子的共振点,使得设于变压单元的输出端回路中的超声振子工作在谐振状态。
对动植物组织消融仪做进一步的阐述。
电源为DC24V电源,DCDC转换单元包括第一DCDC转换单元、第二DCDC转换单元和第三DCDC转换单元。
其中,第一DCDC转换单元包括TVS保护、第一电压输入滤波、第一电压转换芯片和第一电压输出滤波,DC24V电源依次通过TVS保护、第一电压输入滤波、第一电压转换芯片和第一电压输出滤波转换为12V输出电压,供给主控单元和驱动单元使用。
详细阐述第一DCDC转换单元的电路原理:DC24V电源依次经过保护二极管TVS1进行TVS保护,经过三个并联在DC24V电源端的电容C59、C60和C57进行电压输入滤波,然后经过串联在DC24V电源端的分压电阻R48和R51进行电压采样输入第一电压转换芯片U6的使能管脚EN,第一电压转换芯片U6的型号为TPS54340,第一电压转换芯片U6的上管驱动信号参考点管脚SW通过储能电感L2连接到12V输出电压端,串联在12V输出电压端的分压电阻R88和R89进行电压采样输入到第一电压转换芯片U6的参考电压管脚FB,经过连接在12V输出电压端的电容C72对电压输出滤波,第一电压转换芯片U6的上管驱动信号参考点管脚SW还连接有续流二极管D4,使能管脚EN还连接有软启动电容C79,电阻器时序/外部时钟管脚RT/CLK还连接有频率分压电阻R50,频率补偿管脚COMP还连接有用于调节环路、稳定电压输出的电容C61、C62和电阻R52,其中,电容C62与串联的电容C61和电阻R52并联。
第二DCDC转换单元包括第二电压输入滤波、第二电压转换芯片和第二电压输出滤波,12V输入电压依次通过第二电压输入滤波、第二电压转换芯片和第二电压输出滤波转换为1.8V输出电压,供给主控单元使用。
详细阐述第二DCDC转换单元的电路原理:12V输入电压依次经过两个并联在12V输入电压端的电容C84和C85进行电压输入滤波,第二电压转换芯片U9的型号为TLV62130ARGTR,第二电压转换芯片U9的MOS管驱动信号参考点管脚SW通过储能电感L3连接到1.8V输出电压端,串联在1.8V输出电压端的分压电阻R90和R91进行电压采样输入到第二电压转换芯片U9的参考电压管脚FB,经过并联在1.8V输出电压端的电容C80和C83对电压输出滤波,第二电压转换芯片U9的内部功率电源管脚PVIN、内部控制电路供电管脚AVIN、使能管脚EN还连接12V输入电压端,软启动/跟踪管脚SS/TR还连接有软启动电容C86,调节输出管脚DEF和频率配置管脚FSW均接地,输出电压采集管脚VOS与1.8V输出电压端连接。
第三DCDC转换单元包括第三电压输入滤波、第三电压转换芯片和第三电压输出滤波,12V输入电压依次通过第三电压输入滤波、第三电压转换芯片和第三电压输出滤波转换为3.3V输出电压,供给主控单元和采样单元使用。
详细阐述第三DCDC转换单元的电路原理:12V输入电压依次经过两个并联在12V输入电压端的电容C89和C90进行电压输入滤波,第三电压转换芯片U10的型号为TLV62130ARGTR,第三电压转换芯片U10的MOS管驱动信号参考点管脚SW通过储能电感L4连接到3.3V输出电压端,串联在3.3V输出电压端的分压电阻R92和R94进行电压采样输入到第三电压转换芯片U10的参考电压管脚FB,经过并联在3.3V输出电压端的电容C87和C88对电压输出滤波,第三电压转换芯片U10的内部功率电源管脚PVIN和内部控制电路供电管脚AVIN还连接12V输入电压端,经过串联在12V输入电压端的分压电阻R93和R102进行电压采 样输入第三电压转换芯片U10的使能管脚EN,第三电压转换芯片U10的使能管脚EN还连接到第二电压转换芯片U9的输出正常指示信号管脚PG,当第二DCDC转换单元不正常工作时,第三DCDC转换单元则停止工作,软启动/跟踪管脚SS/TR还连接有软启动电容C91,调节输出管脚DEF和频率配置管脚FSW均接地,输出电压采集管脚VOS与3.3V输出电压端连接。
DCDC功率调节单元包括开关控制信号接收电路、第一PWM信号接收电路和第四DCDC转换单元,第四DCDC转换单元包括第四电压输入滤波、第四电压转换芯片和第四电压输出滤波,第四DCDC转换单元通过主控单元发送的开关控制信号和第一PWM信号将DC24V电源转换为0-24V可调电压输出。
详细阐述DCDC功率调节单元的电路原理:
第四DCDC转换单元的电路原理:DC24V电源依次经过三个并联在DC24V电源端的电容C6、C7和C41进行电压输入滤波,第四电压转换芯片U1的型号为TPS54340,第四电压转换芯片U1的上管驱动信号参考点管脚SW通过储能电感L1连接到可调电压输出端,串联在可调电压输出端的分压电阻R32和R47进行电压采样输入到第四电压转换芯片U1的参考电压管脚FB,经过并联在可调电压输出端的电容C14、C40、C42、C54、C55和C56对可调电压输出滤波,第四电压转换芯片U1的上管驱动信号参考点管脚SW还连接有续流二极管D2,使能管脚EN还连接有电阻R33,电阻器时序/外部时钟管脚RT/CLK还连接有频率分压电阻R85,频率补偿管脚COMP还连接有用于调节环路、稳定电压输出的电容C51、C49和电阻R46,其中,电容C49与串联的电容C51和电阻R46并联。
开关控制信号接收电路的电路原理:开关控制信号接收端连接主控单元接收开关控制信号,电阻R104和R105串联于3.3V电压与开关控制信号接收端之间,三极管Q12的发射极连接的3.3V电压、基极连接电阻R104和R105之间的节点且集电极连接第四电压转换芯片U1的使能管脚EN,当开关控制信号为L时,三极管Q12导通,第四电压转换芯片U1开启工作。
第一PWM信号接收电路的电路原理:第一PWM信号接收端接收的第一PWM信号通过RC滤波进行滤波后输入到第一电压跟随器U3B的同相输入端,第一电压跟随器U3B的输出端通过分压电阻R54连接到分压电阻R32和R47之间的节点,其中,电阻R45、电容C63、电阻R40和电容C52组成RC滤波,然后通过电阻R36输入到第一电压跟随器U3B的同相输入端,第一电压跟随器U3B的同相输入端还连接有电容C50。
动植物组织消融仪还包括用于采集DCDC功率调节单元的可调电压的输出电压采样单元,采集的可调电压通过第二电压跟随器U3A发送至主控单元。
详细阐述输出电压采样单元的电路原理:串联在可调电压输出端的分压电阻R55和R60进行电压采样并通过RC滤波进行滤波后输入到第二电压跟随器U3A的同相输入端,第二电压跟随器U3A的正极电压端连接3.3V电压,第二电压跟随器U3A的输出端连接主控单元,其中,电阻R59和电容C39组成RC滤波,3.3V电压还连接有电容C44,第二电压跟随器U3A的输出端还连接有电容C43。
驱动单元包括第一驱动单元和第二驱动单元,其中,第一驱动单元包括第一驱动MOS管Q6,第二驱动单元包括第二驱动MOS管Q2。第一驱动单元的第二PWM信号接收端N接收主控单元发送的第一路第二PWM信号,第一驱动单元的输出端连接变压单元的原边线圈的同名端,第二驱动单元的第二PWM信号接收端P接收主控单元发送的第二路第二PWM信号,第二驱动单元的输出端连接变压单元的原边线圈的异名端,通过第二PWM信号接收端N接收的 第一路第二PWM信号控制第一驱动MOS管Q6导通/截止,通过第二PWM信号接收端P接收的第二路第二PWM信号控制第二驱动MOS管Q2截止/导通。
详细阐述驱动单元和变压单元的电路原理:变压单元为推挽变压器,DCDC功率调节单元的可调电压输出端连接推挽变压器的原边第一线圈的异名端和第二线圈的同名端,电阻R10和R14串联于地与第二PWM信号接收端N之间,第一驱动MOS管Q6的栅极连接电阻R10和R14之间的节点,源极接地,漏极为第一驱动单元的输出端并连接推挽变压器的原边第一线圈的同名端;电阻R5和R13串联于地与第二PWM信号接收端P之间,第二驱动MOS管Q2的栅极连接电阻R5和R13之间的节点,源极接地,漏极为第二驱动单元的输出端并连接推挽变压器的原边第二线圈的异名端。
当第二PWM信号接收端N接收的第一路第二PWM信号为H且第二PWM信号接收端P接收的第二路第二PWM信号为L时,控制第一驱动MOS管Q6导通,第二驱动MOS管Q2截止,原边第一线圈的输入端回路接通并且输入电流方向为原边第一线圈的异名端至同名端,原边第二线圈的输入端回路截止,副边线圈的输出端回路的输出电流方向为副边线圈的同名端至异名端。
当第二PWM信号接收端N接收的第一路第二PWM信号为L且第二PWM信号接收端P接收的第二路第二PWM信号为H时,控制第一驱动MOS管Q6截止,第二驱动MOS管Q2导通,原边第二线圈的输入端回路接通并且输入电流方向为原边第二线圈的同名端至异名端,原边第一线圈的输入端回路截止,副边线圈的输出端回路的输出电流方向为副边线圈的异名端至同名端,将输入的直流电压转换成频率30KHz、电压上百伏特的交流波形,为后级谐振单元提供条件。
谐振单元设于推挽变压器的输出端回路中,谐振单元为LC串联谐振,包括串联于推挽变压器的输出端回路中的电感T1和电容C1。电感T1采用EFD20。
超声换能器设于推挽变压器的输出端回路中,本实施例中,通过接口J2连接超声换能器。
采样单元采集推挽变压器的输出端回路电压和电流,采样单元包括电压采样单元和电流采样单元。
电压采样单元采集推挽变压器的输出端回路电压,推挽变压器的输出端回路设有串联的采样电阻R1、R2、R3、R4和R15,电压采样端连接在电阻R4和R15之间节点,并将采集的电压信号发送至电压采样单元进行滤波、放大,然后发送至主控单元做谐振调节。
详细阐述电压采样单元的电路原理:采集的电压信号依次通过RC滤波进行滤波、电容C67进行隔直后输入到第一运放U7B的同相输入端,第一运放U7B的反相输入端与输出端之间连接负反馈电阻R63,第一运放U7B的输出端通过RC滤波进行滤波后,然后通过电阻R72输入到第一比较器U8A的同相输入端,串联于3.3V电压与地之间的分压电阻R77和R76进行电压采样输入到第一比较器U8A的反相输入端,第一比较器U8A的输出端通过电阻R71连接主控单元,电阻R72连接第一比较器U8A的同相输入端的另一端还通过电阻R70连接主控单元,其中,电阻R61和电容C65组成RC滤波对采集的电压信号进行滤波,电阻R62和电容C66组成RC滤波对第一运放U7B的输出端输出的信号进行滤波,第一运放U7B的反相输入端还串联有电阻R64和电容C70,第一运放U7B的同相输入端还连接有直流3.3V电压,该直流3.3V电压通过分压电阻R56、R58和R57分压后产生分压输入到第一运放U7B的同相输入端,分压还 通过电容C64滤波,其中,电阻R58的一端连接第一运放U7B的同相输入端且另一端连接电阻R56,电阻R56连接3.3V电压,电阻R57的一端连接电阻R56和R58之间的节点且另一端接地,第一比较器U8A的正极电压端连接3.3V电压,该3.3V电压通过并联的电容C76和C77滤波。
电流采样单元采集推挽变压器的输出端回路电流,电流采样端串联在推挽变压器的输出端回路,并将采集的电流信号发送至电流采样单元进行滤波、放大,然后发送至主控单元做谐振调节。
详细阐述电流采样单元的电路原理:采集的电流信号依次通过RC滤波进行滤波、电容C75进行隔直后输入到第二运放U7A的同相输入端,第二运放U7A的反相输入端与输出端之间连接负反馈电阻R73,第二运放U7A的输出端通过RC滤波进行滤波后,然后通过电阻R81输入到第二比较器U8B的同相输入端,串联于3.3V电压与地之间的分压电阻R82和R83进行电压采样输入到第二比较器U8B的反相输入端,第二比较器U8B的输出端通过电阻R80连接主控单元,电阻R81连接第二比较器U8B的同相输入端的另一端还通过电阻R79连接主控单元,其中,电阻R65和电容C68组成RC滤波对采集的电流信号进行滤波,电阻R69和电容C69组成RC滤波对第二运放U7A的输出端输出的信号进行滤波,第二运放U7A的反相输入端还串联有电阻R74和电容C78,第二运放U7A的同相输入端还连接有直流3.3V电压,该直流3.3V电压通过分压电阻R78、R66、R67和R68分压后产生分压输入到第二运放U7A的同相输入端,分压通过电容C71滤波,其中,电阻R68的一端连接第二运放U7A的同相输入端且另一端连接串联于3.3V电压端的电阻R78和R66,电阻R67的一端连接电阻R66和R68之间的节点且另一端接地,第二比较器U8B的正极电压端通过电阻R78连接3.3V电压,该3.3V电压通过并联的电容C73和C74滤波。
主控单元,输出第一PWM信号控制DCDC功率调节单元输出可调电压,并通过采集变压单元的输出端回路电压和电流的采样单元的反馈,输出两路占空比互补的第二PWM信号至驱动单元的第一驱动MOS管Q6和第二驱动MOS管Q2。
主控单元包括主控芯片U2和主控芯片外围电路,其中,主控芯片U2的型号为N32905U1DN,采用ARM9内核,主频200MHz,主控芯片外围电路包括系统时钟、复位等。
N32905U1DNN3290x基于ARM926EJ-S CPU内核,集成了JPEG编解码器,CMOS传感器接口,32通道SPU(声音处理单元),ADC,DAC,可满足各种应用需求,同时节省BOM成本。ARM926@200MHz,同步DRAM,2D BitBLT加速器,CMOS图像传感器接口,LCD面板接口。N32905U1DNN3290x最大分辨率为XVGA(1,024x768)@TFT LCD面板。2D BitBLT加速器加速图形计算,使渲染平滑,卸载CPU,以节省功耗。
为了满足整体系统BOM成本的不同要求,不同尺寸的DRAM与N3290x主SoC堆叠成一个封装,即多芯片封装(MCP)。N32905U1DNN3290x特别采用1Mbitx16 3.3V SDRAM设计。N32905U1DNN3290x特别采用4Mbitx16 1.8V DDR SDRAM设计。一个16Mbitx16 1.8V DDR2SDRAM堆叠在N32905U1DNN3290x内部,以确保更高的性能并最大限度地减少系统设计工作,如EMI和噪声耦合。通过采用双层PCB以及消除阻尼电阻,EMI防护组件等,可以降低总BOM成本。
以上技术方案已经充分公开并可实施,本发明解决了现有生物组织中快速提取RNA、DNA或蛋白质的设备价格昂贵的且提取操作过程繁琐、操作条件高、浪费、耗时、工作量大的问题,采用本发明的消融仪,利用第一PWM信号控制DCDC功率调节单元输出可调电压, 使输出功率在0.5~1000W可调,利用采集变压单元的输出端回路电压和电流的采样单元的反馈,输出两路占空比互补的第二PWM信号至驱动单元,使谐振超声频率为20-200KHz可调,调节谐振点到超声振子的共振点,使得超声振子工作在谐振状态,输出能量最大、振幅最强,利用低赫兹超声的方法,达到快速、简便地将组织块消融成组织匀浆的目的,方便后续进行组织RNA、DNA或蛋白质的提取。
在具体应用时,本发明的主控单元还包括辅助芯片U1和辅助芯片外围电路,辅助芯片U1的型号为STM32F031G4U6。
STM32F031G4U6的特征是:内核:
Figure PCTCN2020070558-appb-000001
32位
Figure PCTCN2020070558-appb-000002
CPU,频率高达48MHz;存储:16至32KB的闪存,带有硬件奇偶校验的4KB SRAM;CRC计算单元;重置和电源管理数字和I/O电源:2.0至3.6V,模拟电源:VDDA=从VDD到3.6V,上电/掉电复位(POR/PDR),可编程电压检测器(PVD),低功耗模式:睡眠,停止和支持,用于RTC和备份寄存器的VBAT电源;时钟管理:4至32MHz晶体振荡器,用于带校准的RTC的32kHz振荡器,具有x6PLL选项的内部8MHz RC,内部40kHz RC振荡器;最多39个快速I/O,所有可映射到外部中断向量,最多26个I/O,具有5V容限;5通道DMA控制器;1×12位,1.0μsADC(最多10个通道),转换范围:0至3.6V,将模拟电源从2.4分离到3.6V;最多9个计时器,1x16位7通道高级控制定时器,用于6通道PWM输出,具有死区时间,发电和紧急停止,1x32位和1x16位定时器,最多4个IC/OC,可用于IR控制解码,1x16位定时器,带2个IC/OC,1个OCN,死区时间和紧急停止,1x16位定时器,带IC/OC和OCN,死区时间,紧急停止和用于IR控制的调制器门,具有1个IC/OC的1x16位定时器,独立和系统看门狗定时器,SysTick定时器:24位向下计数器;日历RTC,具有警报和定期唤醒功能从停止/待机;通信接口1个I2C接口,支持快速模式加(1Mbit/s),20mA电流吸收,SMBus/PMBus,从Stop唤醒模式,1x USART支持主同步,SPI和调制解调器控制,ISO7816接口,LIN,IrDA功能,自动波特率速率检测和唤醒功能,1x SPI(18Mbit/s),4至16可编程位帧,带I2S接口;串行线调试(SWD);96位唯一ID;扩展温度范围:-40至+105℃;所有包装
Figure PCTCN2020070558-appb-000003
2。
主控单元的主控芯片U2通过采集变压单元的输出端回路电压和电流的采样单元的反馈,向辅助芯片U1发送指令,辅助芯片U1接收主控芯片U2的指令,输出两路频率为30KHz,占空比互补的第二PWM信号至驱动单元的第一驱动MOS管Q6和第二驱动MOS管Q2,同时,两路频率为30KHz,占空比互补的第二PWM信号还反馈至主控芯片U2。同时,第一比较器U8A的输出端和第二比较器U8B的输出端输出的信号发送至辅助芯片U1。
两路频率为30KHz,占空比互补的第二PWM信号还分别通过第一信号放大输出电路和第二信号放大输出电路进行放大后发送至驱动单元的第一驱动MOS管Q6和第二驱动MOS管Q2。
详细阐述第一信号放大输出电路的电路原理:第二PWM信号通过串联的分压电阻R49和R53输入第一放大三极管Q5的基极进行放大,第一放大三极管Q5的集电极通过电阻R34连接12V电压,第一放大三极管Q5的发射极接地,第一放大三极管Q5的集电极与第一输出三极管Q2和第二输出三极管Q4的基极连接,第一输出三极管Q2为P型三极管,第二输出三极管Q4为N型三极管,第一输出三极管Q2的集电极连接12V电压,放大后的第一路第二PWM信号从第一输出三极管Q2的发射极与第二输出三极管Q4的发射极连接节点处输出至第一驱动MOS管Q6的第二PWM信号接收端N。
当第二PWM信号输入为H时,第一输出三极管Q2导通,第二输出三极管Q4截止;当第 二PWM信号输入为L时,第一输出三极管Q2截止,第二输出三极管Q4导通,由此输出放大后的方波第一路第二PWM信号。
详细阐述第二信号放大输出电路的电路原理:第二PWM信号通过串联的分压电阻R86和R87输入第二放大三极管Q8的基极进行放大,第二放大三极管Q8的集电极通过电阻R84连接12V电压,第二放大三极管Q8的发射极接地,第二放大三极管Q8的集电极与第三输出三极管Q6和第四输出三极管Q7的基极连接,第三输出三极管Q6为P型三极管,第四输出三极管Q7为N型三极管,第三输出三极管Q6的集电极连接12V电压,放大后的第二路第二PWM信号从第三输出三极管Q6的发射极与第四输出三极管Q7的发射极连接节点处输出至第二驱动MOS管Q2的第二PWM信号接收端P。
当第二PWM信号输入为H时,第三输出三极管Q6导通,第四输出三极管Q7截止;当第二PWM信号输入为L时,第三输出三极管Q6截止,第四输出三极管Q7导通,由此输出放大后的方波第二路第二PWM信号。
显示屏7为LCD显示屏,LCD显示屏连接显示芯片J8组成显示单元,显示芯片J8连接主控芯片U2,该显示芯片J8的型号为FPC050,显示芯片J8连接3.3V电压,主控芯片U2的信号LCD_BL通过MOS管Q1放大后发送至显示芯片J8。
按键6连接主控芯片U2,本实施例包括四个按键,分别为第一按键、第二按键、第三按键和第四按键,第一按键为左按键,第二按键为右按键,第三按键为中按键,第四按键为OK按键。其中,第一按键包括上拉电阻R4和下拉电阻R11,上拉电阻R4连接3.3V电压,上拉电阻R4和下拉电阻R11之间的节点连接按键S2的一端,按键S2的另一端接地,下拉电阻R11的另一端连接主控芯片U2,当按下按键S2,下拉电阻R11只有1K,第一按键输出低电平,当松开按键S2,输出被上拉电阻R4和下拉电阻R11上拉,第一按键输出高电平;第二按键包括上拉电阻R6和下拉电阻R19,上拉电阻R6连接3.3V电压,上拉电阻R6和下拉电阻R19之间的节点连接按键S3的一端,按键S3的另一端接地,下拉电阻R19的另一端连接主控芯片U2,当按下按键S3,第二按键输出低电平,当松开按键S3,输出被上拉电阻R6和下拉电阻R19上拉,第二按键输出高电平;第三按键包括上拉电阻R8和下拉电阻R20,上拉电阻R8连接3.3V电压,上拉电阻R8和下拉电阻R20之间的节点连接按键S4的一端,按键S4的另一端接地,下拉电阻R20的另一端连接主控芯片U2,当按下按键S4,第三按键输出低电平,当松开按键S4,输出被上拉电阻R8和下拉电阻R20上拉,第三按键输出高电平;第四按键包括上拉电阻R10和下拉电阻R26,上拉电阻R10连接3.3V电压,上拉电阻R10和下拉电阻R26之间的节点连接按键S5的一端,按键S5的另一端接地,下拉电阻R26的另一端连接主控芯片U2,当按下按键S5,第四按键输出低电平,当松开按键S5,输出被上拉电阻R10和下拉电阻R26上拉,第四按键输出高电平。
主控芯片U2还连接有存储器,存储器采用SPI-FLASH器件,用于存储参数,包括谐振参数、设置参数等。
主控芯片U2还连接有USB接口单元,USB接口单元包括与主控芯片U2连接的USB芯片ESD1和与USB芯片ESD1连接的接口J7,USB芯片ESD1的型号为USBLC6,接口J7的型号为SIP254。
主控芯片U2还连接有触摸单元,触摸单元包括串联在3.3V电压与地之间的分压电阻R99和R101,连接电阻R99和R101之间节点的电阻R100以及基极连接电阻R99和R101之间 节点的三极管Q10,三极管Q10的集电极与3.3V电压之间串联有分压电阻R98和R96,分压电阻R98和R96之间的节点连接MOS管Q9的栅极,MOS管Q9的源极连接3.3V电压,MOS管Q9的漏极连接触摸接口J1,触摸接口J1与主控芯片U2连接,触摸接口J1连接有触摸板,主控芯片U2发送的电源使能信号TP_PWEN通过电阻R100至三极管Q10的基极,当电源使能信号TP_PWEN为H时,三极管Q10导通,MOS管Q9导通。
主控芯片U2还连接有外部接口J4。主控芯片U2还连接有蜂鸣器。
实施例2:
本实施例介绍一种基于超声原理的手持式动植物组织消融仪的快速提取RNA、DNA或蛋白质的方法,包括步骤:A、制备细胞悬液;B、提取RNA、DNA或蛋白质;步骤A包括将组织样品与溶液混合后,利用基于超声原理的手持式动植物组织消融仪进行超声消融,得到细胞悬液的步骤。
利用低赫兹超声的方法,达到快速、简便地将组织块消融成细胞悬液的目的,进而方便后续进行组织RNA、DNA或蛋白质的提取,仅需要使用很少的组织就能达到从组织中提取RNA、DNA或蛋白质,尤其是RNA和蛋白质的目的,同时操作简单,节省提取时间,大大缩短了从组织块到细胞悬液的时间;全部操作仅需一人就能完成,大大缩减了人力物力,提升了工作效率。
为了使组织达到最佳的匀浆效果,选择超声消融的条件为功率为0.5~1000W,超声频率为20~200kHz。
步骤A的溶液为RNA提取液、蛋白质提取液、DNA提取液、生理盐水或缓冲液。
在超声消融过程中,为了便于后续流程的处理,可以针对不同的后续流程选择不同的溶液,从而缩减操作步骤,节省提取时间;当后续需要进行RNA、DNA或蛋白质的提取时,相应的选择RNA提取液、DNA提取液、蛋白质提取液可在保证提取效果的前提下,极大的缩减提取时间。从一般的角度来讲,本发明在通过超声消融得到细胞悬液时,可以采用生理盐水或缓冲液。
一种实施方式,当步骤A的溶液为RNA提取液、蛋白质提取液或DNA提取液时,步骤B包括按照RNA提取液、蛋白质提取液或DNA提取液的常规操作方式分别提取RNA、蛋白质或DNA的步骤。
当使用RNA提取液、蛋白质提取液或DNA提取液作为溶液通过超声消融得到细胞悬液时,在后续的具体的RNA、DNA或蛋白质提取步骤中,可以采用与使用的RNA提取液、DNA提取液或蛋白质提取液相对应的试剂的操作说明书进行后续的提取操作,也可以采用现有的其它常规的适合提取的提取方式操作。
另一种实施方式,当步骤A的溶液为生理盐水或缓冲液时,步骤B包括将细胞悬液与提取量的RNA提取液、蛋白质提取液或DNA提取液混合后分别按照常规操作方式提取RNA、蛋白质或DNA的步骤。
当使用生理盐水或缓冲液作为溶液时,在后续的具体的RNA、DNA或蛋白质提取步骤中,可以在细胞悬液中加入提取量的RNA提取液、DNA提取液或蛋白质提取液进行后续的提取操作,同样地,后续的提取操作可以参考相应的RNA提取液、DNA提取液或蛋白质提取液中的试剂的操作说明书进行后续的提取操作,也可以采用现有的其它常规的适合提取的提取方式操作。所述提取量为能够将细胞悬液中的RNA、DNA或蛋白质提取出的量为准。
步骤A的组织样品与溶液的比例为10mg~100mg:100~1000μL。
为了更便于后续的提取流程,增强提取效果,优选地,组织样品与溶液的比例为10mg~100mg:100~1000μL。
当溶液为缓冲液时,缓冲液为PBS缓冲液。
当溶液使用缓冲液时,优选地,所述缓冲液为PBS缓冲液。
本发明的细胞悬液定义:完全消融后,单细胞的个数占单细胞和细胞团总数大于95%的悬液。
对比例
实施例2得到的细胞悬液如图11所示,采用传统的组织匀浆器得到的组织匀浆液如图12所示。对比图11和图12可知,利用本发明快速提取RNA、DNA或蛋白质的方法处理生物组织后得到了细胞悬液,而采用现有的通过组织匀浆器得到的组织匀浆中存在大量的细胞团块,显然,利用本发明仪快速提取RNA、DNA或蛋白质的方法相比较传统的组织处理方式具有处理速度快,单细胞化彻底的优势。
本发明不局限于上述可选实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是落入本发明权利要求界定范围内的技术方案,均落在本发明的保护范围之内。

Claims (18)

  1. 基于超声原理的手持式动植物组织消融仪,其特征在于:包括内部设有控制板(4)和驱动板(5)的外壳(1),以及固定连接在外壳前端的超声振子;
    所述超声振子包括超声换能器(2)和固定连接于超声换能器前端且将超声波换能器输入的振动改变振幅后传递出去的变幅杆(3);
    所述控制板上设有电源、DCDC转换单元、主控单元、DCDC功率调节单元和采样单元;所述驱动板上设有驱动单元、变压单元和谐振单元;所述电源,通过DCDC转换单元和DCDC功率调节单元转换电压后给动植物组织消融仪使用;主控单元,输出第一PWM信号控制DCDC功率调节单元输出可调电压,并通过采集变压单元的输出端回路电压和电流的采样单元的反馈,输出两路占空比互补的第二PWM信号至驱动单元并经过变压单元变压,然后通过设于变压单元的输出端回路中的谐振单元调节谐振点到超声振子的共振点,使得设于变压单元的输出端回路中的超声振子工作在谐振状态;
    所述外壳为手持式外壳,外壳包括相互呈钝角的第一段和第二段,第一段远离第二段的一端为外壳前端。
  2. 根据权利要求1所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述外壳前端设有用于固定连接超声振子的连接孔,所述连接孔的内壁设有一个以上第一卡槽(103),相应地,超声振子设有与第一卡槽匹配的第一台阶(801)。
  3. 根据权利要求2所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述第一台阶的两侧还分别设有第一卡块(802)和第二卡块(803),第一卡块和第二卡块将第一台阶卡紧于第一卡槽内。
  4. 根据权利要求3所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述第一卡槽为环形卡槽,第一台阶为环形台阶,第一卡块和第二卡块均为环形卡块,第一卡块和第二卡块均套于超声振子的外壁。
  5. 根据权利要求2所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述超声振子设置第一台阶的前端还套接有第一固定罩(804),第一固定罩的后端卡紧于第一卡槽内。
  6. 根据权利要求1所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述外壳包括相互卡接的上壳体(101)和下壳体(102);
    所述上壳体和下壳体的前端还套接有第二固定罩(805),第二固定罩内壁设有第二台阶(806),上壳体和下壳体的前端外壁还设有与第二台阶匹配的第二卡槽(807)。
  7. 根据权利要求1所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述外壳的外壁上设有挂钩(9)。
  8. 根据权利要求1所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述动植物组织消融仪的功率为50~1000W,超声频率为20~200kHz。
  9. 根据权利要求1所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述DCDC功率调节单元包括:开关控制信号接收端连接主控单元接收开关控制信号的开关控制信号接收电路;
    第一PWM信号接收端连接主控单元接收第一PWM信号的第一PWM信号接收电路;
    通过主控单元发送的开关控制信号和第一PWM信号将电源转换为可调电压输出的第四DCDC转换单元。
  10. 根据权利要求9所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述第四DCDC转换单元包括:依次处理电源电压的第四电压输入滤波、第四电压转换芯片U1和第四电压输出滤波,第四电压输入滤波包括连接在电源端的滤波电容,第四电压转换芯片U1的上管驱动信号参考点管脚SW通过储能电感L1连接到可调电压输出端,串联在可调电压输出端的分压电阻R32和R47进行电压采样输入到第四电压转换芯片U1的参考电压管脚FB,第四电压转换芯片U1的上管驱动信号参考点管脚SW还连接有续流二极管D2,使能管脚EN还连接有电阻R33,电阻器时序/外部时钟管脚RT/CLK还连接有频率分压电阻R85,频率补偿管脚COMP还连接有用于调节环路、稳定电压输出的电容C51、C49和电阻R46,其中,电容C49与串联的电容C51和电阻R46并联,第四电压输出滤波包括连接在可调电压输出端的滤波电容;
    开关控制信号接收电路包括:串联于转换后电压与开关控制信号接收端之间的电阻R104和R105,发射极连接转换后电压、基极连接电阻R104和R105之间的节点且集电极连接第四电压转换芯片U1的使能管脚EN的三极管Q12,当开关控制信号为L时,三极管Q12导通,第四电压转换芯片U1开启工作;
    第一PWM信号接收电路包括:依次处理第一PWM信号的RC滤波和第一电压跟随器U3B,第一PWM信号接收端接收的第一PWM信号通过RC滤波进行滤波后输入到第一电压跟随器U3B的同相输入端,第一电压跟随器U3B的输出端通过分压电阻R54连接到分压电阻R32和R47之间的节点。
  11. 根据权利要求1所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述驱动单元包括第一驱动单元和第二驱动单元,第一驱动单元的第二PWM信号接收端N接收主控单元发送的第一路第二PWM信号,第一驱动单元的输出端连接变压单元的原边线圈的同名端,第二驱动单元的第二PWM信号接收端P接收主控单元发送的第二路第二PWM信号,第二驱动单元的输出端连接变压单元的原边线圈的异名端,通过第二PWM信号接收端N接收的第一路第二PWM信号控制第一驱动MOS管Q6导通/截止,通过第二PWM信号接收端P接收的第二路第二PWM信号控制第二驱动MOS管Q2截止/导通。
  12. 根据权利要求11所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述变压单元为推挽变压器,DCDC功率调节单元的可调电压输出端连接推挽变压器的原边第一线圈的异名端和第二线圈的同名端;
    所述第一驱动单元包括串联于地与第二PWM信号接收端N之间的电阻R10和R14,栅极连接电阻R10和R14之间的节点、源极接地且漏极为第一驱动单元的输出端并连接推挽变压器的原边第一线圈的同名端的第一驱动MOS管Q6;
    所述第二驱动单元包括串联于地与第二PWM信号接收端P之间的电阻R5和R13,栅极连接电阻R5和R13之间的节点、源极接地且漏极为第二驱动单元的输出端并连接推挽变压器的原边第二线圈的异名端的第二驱动MOS管Q2。
  13. 根据权利要求1所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述谐振单元为LC串联谐振,LC串联谐振包括串联于变压单元的输出端回路中的电感T1和电容C1。
  14. 根据权利要求1所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述采样单元包括采集变压单元的输出端回路电压的电压采样单元和采集变压单元的输出 端回路电流的电流采样单元,相应地,变压单元的输出端回路设有多个串联的采样电阻;通过连接在多个采样电阻之间节点的电压采样端采集电压信号然后发送至电压采样单元进行滤波和放大,然后发送至主控单元做谐振调节;通过串联在变压单元的输出端回路的电流采样端采集电流信号发送至电流采样单元进行滤波和放大,然后发送至主控单元做谐振调节。
  15. 根据权利要求1所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述主控单元包括主控芯片U2和主控芯片外围电路,主控芯片U2输出第一PWM信号控制DCDC功率调节单元输出可调电压,并通过采集变压单元的输出端回路电压和电流的采样单元的反馈,输出两路占空比互补的第二PWM信号至驱动单元。
  16. 根据权利要求15所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述主控单元还包括辅助芯片U1和辅助芯片外围电路,主控单元的主控芯片U2通过采集变压单元的输出端回路电压和电流的采样单元的反馈,向辅助芯片U1发送指令,辅助芯片U1接收主控芯片U2的指令,输出两路占空比互补的第二PWM信号至驱动单元,同时,两路占空比互补的第二PWM信号还反馈至主控芯片U2。
  17. 根据权利要求15所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述两路占空比互补的第二PWM信号还分别通过第一信号放大输出电路和第二信号放大输出电路进行放大后发送至驱动单元。
  18. 根据权利要求15所述的基于超声原理的手持式动植物组织消融仪,其特征在于:所述动植物组织消融仪还包括与主控芯片U2连接的显示单元、按键、充电接口、存储器、USB接口单元或/和触摸单元,当主控芯片U2连接有按键和显示单元时,按键和显示单元的显示屏设于第二段外壳的表面。
PCT/CN2020/070558 2019-02-01 2020-01-07 基于超声原理的手持式动植物组织消融仪 WO2020156047A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11202108323WA SG11202108323WA (en) 2019-02-01 2020-01-07 Ultrasound-based handheld animal and plant tissue ablation instrument
JP2020572961A JP7136495B2 (ja) 2019-02-01 2020-01-07 超音波原理に基づく手持ち式動植物組織アブレーション装置
US17/426,647 US20220112481A1 (en) 2019-02-01 2020-01-07 Ultrasound-based handheld animal and plant tissue ablation instrument
EP20749727.2A EP3904498B1 (en) 2019-02-01 2020-01-07 Handheld animal and plant tissue ablatograph based on the principle of ultrasound
KR1020217023156A KR20210107774A (ko) 2019-02-01 2020-01-07 초음파 원리에 기초한 핸드헬드 타입 동식물 조직 절제 기구
AU2021104742A AU2021104742A4 (en) 2019-02-01 2021-07-30 Ultrasound-based handheld animal and plant tissue ablation instrument

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910102427.5A CN109652312B (zh) 2019-02-01 2019-02-01 基于超声原理的手持式动植物组织消融仪
CN201910102427.5 2019-02-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2021104742A Division AU2021104742A4 (en) 2019-02-01 2021-07-30 Ultrasound-based handheld animal and plant tissue ablation instrument

Publications (1)

Publication Number Publication Date
WO2020156047A1 true WO2020156047A1 (zh) 2020-08-06

Family

ID=66122584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070558 WO2020156047A1 (zh) 2019-02-01 2020-01-07 基于超声原理的手持式动植物组织消融仪

Country Status (7)

Country Link
US (1) US20220112481A1 (zh)
EP (1) EP3904498B1 (zh)
JP (1) JP7136495B2 (zh)
KR (1) KR20210107774A (zh)
CN (1) CN109652312B (zh)
SG (1) SG11202108323WA (zh)
WO (1) WO2020156047A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508414A (zh) * 2021-06-22 2022-12-23 湖南乐准智芯生物科技有限公司 一种超声混匀效果确认方法与系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109652312B (zh) * 2019-02-01 2024-05-24 成都导胜生物技术有限公司 基于超声原理的手持式动植物组织消融仪
CN110141780B (zh) * 2019-06-19 2024-03-15 广州华飞迪通医疗科技有限公司 一种具有超声波导入功能的营养液注射装置及注射方法
CN111235090A (zh) * 2020-01-21 2020-06-05 成都导胜生物技术有限公司 松解保护剂及其制备高存活率单细胞悬液的方法及其应用
US11573795B1 (en) * 2021-08-02 2023-02-07 Nvidia Corporation Using a vector processor to configure a direct memory access system for feature tracking operations in a system on a chip

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094103A1 (en) * 2001-02-15 2002-11-28 Omnisonics Medical Technologies, Inc. Ultrasonic device for tissue ablation and sheath for use therewith
US20040073209A1 (en) * 2002-02-28 2004-04-15 Misonix, Incorporated Ultrasonic medical treatment device for RF cauterization and related method
CN101658838A (zh) * 2009-09-17 2010-03-03 东莞市长江超声波机有限公司 超声波发生器
CN106139426A (zh) * 2015-04-16 2016-11-23 金相植 具有液体冷却系统的超声波手术用手持件以及装置
CN107920850A (zh) * 2015-07-23 2018-04-17 奥林巴斯株式会社 超声波处置器具和超声波处置组件
CN109652312A (zh) * 2019-02-01 2019-04-19 成都导胜生物技术有限公司 基于超声原理的手持式动植物组织消融仪
CN109694826A (zh) * 2019-02-01 2019-04-30 成都导胜生物技术有限公司 基于超声原理的动植物组织消融仪的手持式机械结构
CN209508290U (zh) * 2019-02-01 2019-10-18 成都导胜生物技术有限公司 基于超声原理的动植物组织消融仪的手持式机械结构
CN209584276U (zh) * 2019-02-01 2019-11-05 成都导胜生物技术有限公司 基于超声原理的手持式动植物组织消融仪

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103252314B (zh) * 2013-05-13 2015-09-16 河海大学常州校区 超声电源的动态匹配装置及其方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094103A1 (en) * 2001-02-15 2002-11-28 Omnisonics Medical Technologies, Inc. Ultrasonic device for tissue ablation and sheath for use therewith
US20040073209A1 (en) * 2002-02-28 2004-04-15 Misonix, Incorporated Ultrasonic medical treatment device for RF cauterization and related method
CN101658838A (zh) * 2009-09-17 2010-03-03 东莞市长江超声波机有限公司 超声波发生器
CN106139426A (zh) * 2015-04-16 2016-11-23 金相植 具有液体冷却系统的超声波手术用手持件以及装置
CN107920850A (zh) * 2015-07-23 2018-04-17 奥林巴斯株式会社 超声波处置器具和超声波处置组件
CN109652312A (zh) * 2019-02-01 2019-04-19 成都导胜生物技术有限公司 基于超声原理的手持式动植物组织消融仪
CN109694826A (zh) * 2019-02-01 2019-04-30 成都导胜生物技术有限公司 基于超声原理的动植物组织消融仪的手持式机械结构
CN209508290U (zh) * 2019-02-01 2019-10-18 成都导胜生物技术有限公司 基于超声原理的动植物组织消融仪的手持式机械结构
CN209584276U (zh) * 2019-02-01 2019-11-05 成都导胜生物技术有限公司 基于超声原理的手持式动植物组织消融仪

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUO, HAIYAN: "The Application of MPU on the Energy Converter of the Piezoelectric Ceramic Ultrasonic Waves", JOURNAL OF ZHANGZHOU TEACHERS COLLEGE (NATURAL SCIENCE EDITION), vol. 16, no. 1, 28 February 2003 (2003-02-28), CN, pages 58 - 61, XP009522481, ISSN: 2095-7122, DOI: 10.16007/j.cnki.issn2095-7122.2003.01.013 *
PENG HUANRONG , HUANG YONG-FENG: "Control Frequency-Tracking of Ultrasonic Transducer with Single-Chip Microcomputer", CHINA MEASUREMENT & TESTING TECHNOLOGY, vol. 34, no. 4, 31 July 2008 (2008-07-31), pages 106 - 108, XP009522479, ISSN: 1674-5124 *
See also references of EP3904498A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508414A (zh) * 2021-06-22 2022-12-23 湖南乐准智芯生物科技有限公司 一种超声混匀效果确认方法与系统

Also Published As

Publication number Publication date
CN109652312B (zh) 2024-05-24
JP7136495B2 (ja) 2022-09-13
CN109652312A (zh) 2019-04-19
EP3904498A4 (en) 2022-02-23
EP3904498B1 (en) 2022-12-21
US20220112481A1 (en) 2022-04-14
KR20210107774A (ko) 2021-09-01
EP3904498A1 (en) 2021-11-03
JP2021531741A (ja) 2021-11-25
SG11202108323WA (en) 2021-08-30

Similar Documents

Publication Publication Date Title
WO2020156047A1 (zh) 基于超声原理的手持式动植物组织消融仪
CN103252314B (zh) 超声电源的动态匹配装置及其方法
CN209508290U (zh) 基于超声原理的动植物组织消融仪的手持式机械结构
US8222794B2 (en) Ultrasonic atomization circuit and an atomization device using the same
CN109694826B (zh) 基于超声原理的动植物组织消融仪的手持式机械结构
JP2006510918A5 (zh)
CN109652313B (zh) 基于超声原理的动植物组织消融仪
CN209584276U (zh) 基于超声原理的手持式动植物组织消融仪
CN112731829A (zh) 一种医用超声波电源的动态匹配网络及其匹配方法
AU2021104742A4 (en) Ultrasound-based handheld animal and plant tissue ablation instrument
CN202004661U (zh) 一种稀土超磁致伸缩换能器驱动电源
CN109609501B (zh) 利用基于超声原理的动植物组织消融仪快速提取rna、dna或蛋白质的方法
CN206178108U (zh) 一种可利用噪声发电的液晶显示仪表
CN113114200A (zh) 一种具有功率监测的半桥谐振超声驱动电路
CN206151484U (zh) 内出血快速检查仪
CN215750817U (zh) 一种超声波焊接发生系统及焊接设备
CN213336458U (zh) 一种谐振频率检测系统
CN109499992B (zh) 超声波谐振频率匹配装置
CN210019417U (zh) 颈部动脉血流速度筛查仪
CN113288344A (zh) 一种医用便携式超声波手术刀、控制系统及使用方法
Huang et al. Design of power supply for ultrasonic vibration cutting
CN111529971A (zh) 一种基于stm32g474的超声治疗仪
CN209502196U (zh) 超声换能器的采样电路
CN116371808A (zh) 一种超声波清洗发生器超声频率匹配系统及方法
CN209516947U (zh) 带有dcdc功率调节且驱动超声换能器的驱动输出电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572961

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217023156

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020749727

Country of ref document: EP

Effective date: 20210727