WO2020155903A1 - 太阳能海水淡化装置以及海水淡化方法 - Google Patents

太阳能海水淡化装置以及海水淡化方法 Download PDF

Info

Publication number
WO2020155903A1
WO2020155903A1 PCT/CN2019/126212 CN2019126212W WO2020155903A1 WO 2020155903 A1 WO2020155903 A1 WO 2020155903A1 CN 2019126212 W CN2019126212 W CN 2019126212W WO 2020155903 A1 WO2020155903 A1 WO 2020155903A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
solar heat
seawater desalination
desalination device
heat collecting
Prior art date
Application number
PCT/CN2019/126212
Other languages
English (en)
French (fr)
Inventor
张潇源
李伦纳德
程文浩
黄霞
刘瑞峰
Original Assignee
清华大学
北京民天水源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910105041.XA external-priority patent/CN110240214B/zh
Priority claimed from CN201910105066.XA external-priority patent/CN110240211B/zh
Priority claimed from CN201920184605.9U external-priority patent/CN209797531U/zh
Priority claimed from CN201920184603.XU external-priority patent/CN210340383U/zh
Priority claimed from CN201910779480.9A external-priority patent/CN110498465B/zh
Priority claimed from CN201921378640.0U external-priority patent/CN212334641U/zh
Application filed by 清华大学, 北京民天水源科技有限公司 filed Critical 清华大学
Publication of WO2020155903A1 publication Critical patent/WO2020155903A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Definitions

  • This application relates to the field of water treatment, in particular, to a solar seawater desalination device and a seawater desalination method.
  • Seawater desalination is the use of seawater desalination to produce fresh water.
  • the above methods generally have disadvantages such as high energy consumption and low efficiency, large and complex equipment, high cost, and a large amount of pollutants.
  • Solar seawater desalination is a new technology with great development potential. This method uses solar energy to obtain fresh water from seawater by evaporation through photothermal conversion.
  • This method uses free and inexhaustible solar energy resources. , Can reduce the energy consumption and cost of seawater desalination to a certain extent.
  • the use of solar thermal technology to convert solar energy into thermal energy can promote the evaporation and condensation of water bodies, that is, to obtain distilled water purification.
  • the solar thermal technology can also achieve high salt water purification and sewage purification, etc., reducing sewage Processing costs.
  • this application proposes a seawater desalination device.
  • the seawater desalination device can use solar energy for seawater desalination, or can use solar energy for high-salt water purification and sewage purification.
  • the seawater desalination device includes: a semi-ellipsoidal solar heat collection cover, the bottom of the inner wall of the solar heat collection cover has a fresh water collection tank, and the fresh water collection tank is at the bottom of the solar heat collection cover An evaporation plane is defined, a fresh water outlet is provided in the fresh water collection tank, and the fresh water outlet is connected to the fresh water storage unit, wherein the length of the b axis of the solar heat collecting cover is greater than the a axis, and the b axis Perpendicular to the evaporation plane; and a cooling unit, the cooling unit being arranged outside the solar heat collecting cover and configured to cool the outer surface of the solar heat collecting cover.
  • the seawater desalination device can be directly placed on the water surface (such as the sea surface) for use, has a simple structure, low cost, and convenient use.
  • the cooling unit can promote the condensation of water vapor in the solar heat collection hood on the inner wall of the solar heat collection hood.
  • the solar heat collecting cover with this shape is beneficial for the water vapor to be fully condensed along the arc-shaped inner wall of the solar heat collecting cover, the solar energy utilization rate of the device is high, the seawater desalination efficiency or the water purification efficiency is high.
  • the length ratio of the b-axis and the a-axis of the solar heat collecting cover is (6:5) to (2:1). Therefore, when the length ratio of the b-axis to the a-axis of the solar heat collecting cover is in this range, it can better promote the full condensation of water vapor along the inner wall of the solar heat collecting cover, and further improve the performance of the seawater desalination device. Desalination efficiency.
  • the inner wall of the solar heat collecting cover is provided with a light-absorbing coating. Therefore, the light-absorbing coating can better absorb the heat energy in solar energy, and further improve the utilization rate of solar energy.
  • the light-absorbing coating includes at least one of a unidirectional light-transmitting material and an infrared reflective material.
  • the unidirectional light-transmitting material can make light enter the solar heat collection cover from the outside, but the light cannot be transmitted out of the solar heat collection cover, thereby reducing the loss of solar energy entering the solar heat collection cover
  • the infrared reflective material can confine the infrared light of the sunlight incident to the inside of the solar heat collection cover inside the solar heat collection cover, so that the heat in the infrared light can be better utilized.
  • the light-absorbing coating can increase the proportion of heat energy used for seawater evaporation, and further improve the utilization rate of solar energy.
  • the material forming the solar heat collecting cover includes polycarbonate, polyethylene, polyvinyl chloride, polyurethane, polymethyl methacrylate, polyterephthalic acid and its derivatives, and glass. one. Therefore, the solar heat collection cover has a better heat collection effect, can reduce heat loss, and can further improve the solar energy utilization rate of the solar heat collection cover.
  • the fresh water collection tank and the solar heat collection cover are integrally formed, and the fresh water collection tank is annular.
  • the structure and preparation process of the solar heat collecting hood are further simplified, and the annular fresh water collecting tank can better collect the fresh water condensed from the inner wall of the solar heat collecting hood, which further improves the desalination device Use performance.
  • the cooling unit includes: a spray head, the spray head is arranged on the top of the solar heat collector; and a pump, the pump is used to suck a certain depth of sea water and The seawater is supplied to the shower head. Therefore, when the seawater desalination device is directly placed on the sea surface for use, the pump can suck a certain depth of lower temperature seawater, and supply it to the sprinkler head, so as to perform treatment on the outer surface of the solar heat collecting cover. Cooling and cooling, therefore, the cooling unit can use the existing low-temperature seawater to cool the solar heat collecting hood, which further simplifies the structure of the seawater desalination device and saves seawater desalination costs.
  • the seawater desalination device further includes: an isolation heating layer, the isolation heating layer is located inside the solar heat collecting hood and arranged at the evaporation plane, the isolation heating layer includes a substrate The interior of the substrate has pores, the isolation heating layer is configured to be in contact with the water surface, and seawater can be absorbed into the interior of the isolation heating layer through the pores, and the substrate is at least far away from the substrate.
  • One side of the water surface has a light-to-heat conversion material.
  • the insulating heating layer can absorb part of the seawater into its interior, and the heat collected by the solar heat collecting cover and the light-to-heat conversion material can heat and evaporate the seawater absorbed into the insulating heating layer, with high heating and evaporation efficiency.
  • the matrix includes at least one of porous materials, aerogels, carbon materials, and organic fibers; and the photothermal conversion materials include metal nanoparticles, carbon materials, plasmon materials, and semiconductor materials. At least one. Therefore, on the one hand, the materials for forming the insulating heating layer have a wide range of sources and are relatively inexpensive, which can reduce the cost of seawater desalination; on the other hand, the substrate can better absorb seawater into its interior, avoiding solar heat collection The cover and the photothermal conversion material heat the entire water body, causing the problems of low heating evaporation efficiency and serious heat loss; the photothermal conversion material has high solar energy utilization rate, can generate high temperature around it, and promote the water inside the isolation heating layer Evaporation further improves the utilization rate of solar energy and improves the efficiency of seawater desalination or water purification.
  • the insulating heating layer includes a light-to-heat conversion part and an insulating part, wherein the inside of the insulating part has a through hole, the insulating part is in contact with the water surface, and the seawater When absorbed into the through hole, the light-to-heat conversion part is in contact with the heat insulation part, and at least the opening of the through hole on the side of the heat insulation part away from the water surface can be heated.
  • the heat insulation part can better absorb water into its interior, and the light-to-heat conversion part can at least heat and evaporate the water at the opening of the through hole (that is, where the heat-insulation part and the light-to-heat conversion part are in contact),
  • the utilization rate of solar energy is further improved, and the efficiency of desalination or water purification is improved.
  • the light-to-heat conversion part and the heat insulation part are stacked.
  • the solar energy utilization rate is further improved, and the seawater desalination efficiency or water purification efficiency is improved.
  • the heat-insulating portion is cup-shaped, the bottom of the cup-shaped heat-insulating portion is in contact with the water surface, and the light-to-heat conversion portion is provided on the cup-shaped all The interior of the insulation.
  • the light-to-heat conversion part can fully heat and evaporate the water at the through hole opening of the heat insulation part that is in contact with the light-to-heat conversion part, which further improves the solar energy utilization rate and improves the efficiency of seawater desalination or water purification.
  • the heat insulation part includes a capillary tube, the bottom of the capillary tube is in contact with the water surface, and the light-to-heat conversion part is provided on the top of the capillary tube.
  • the light-to-heat conversion part can heat and evaporate the water absorbed by the capillary to the top of the capillary, which further improves the utilization rate of solar energy and improves the efficiency of seawater desalination or water purification.
  • the heat insulation part and the light-to-heat conversion part form a box-shaped structure, wherein the light-to-heat conversion part forms the top surface of the box-shaped structure, and the heat insulation part forms the The four side surfaces of the box-shaped structure, or the four side surfaces and the bottom surface forming the box-shaped structure. Therefore, the heat insulation part can better absorb water into its interior, and the water inside the heat insulation part can flow to contact with the light-to-heat conversion part, and the light-to-heat conversion part can heat the water to further improve The utilization rate of solar energy is improved, and the efficiency of seawater desalination or water purification is improved.
  • the material forming the light-to-heat conversion part includes at least one of metal nanoparticles, carbon materials, plasmon materials, and semiconductor materials; the material forming the heat insulation part includes porous materials, gas At least one of glue, carbon material, and organic fiber.
  • the materials for forming the insulating heating layer have a wide range of sources and relatively low prices, which can reduce the cost of seawater desalination or water purification, and can increase the utilization rate of solar energy and improve the efficiency of seawater desalination or water purification.
  • the substrate is formed of wood, and along the direction in which the fibers in the wood extend, the upper part of the wood is carbonized, and the pores of the carbonized wood are filled with metal nanoparticles . Therefore, the wood is cheap and easy to obtain, and there are many natural pores between the fibers in the wood, which can fully absorb water.
  • the metal nanoparticles in the pores can generate high temperature around it after absorbing solar energy, which is beneficial to the water in the pores. Heated evaporation further improves solar energy utilization and water evaporation efficiency.
  • the seawater desalination device further includes a light-concentrating member configured to focus the sunlight irradiated to the solar heat-collecting cover. Therefore, the light concentrating member can focus the sunlight irradiated to the solar heat collecting cover, improve the utilization rate of solar energy, and can better promote the heat evaporation of water at the evaporation plane.
  • the condensing element includes at least one of a convex lens, a Fresnel lens, and a plano-convex lens.
  • the concentrator can better converge the sunlight, improve the utilization rate of sunlight, and further increase the temperature inside the solar heat collecting cover, promote the evaporation of water at the evaporation plane, and improve the desalination efficiency of the device. Water purification efficiency.
  • the light concentrating member is arranged outside the solar heat collecting cover, and can focus sunlight into the solar heat collecting cover.
  • the utilization rate of sunlight can be further improved, and the efficiency of seawater desalination or water purification efficiency can be improved.
  • the light concentrating member is arranged inside the solar heat collecting cover, and can focus the sunlight irradiated to the solar heat collecting cover to the evaporation plane. Therefore, the light concentrating member can focus the sunlight to the evaporation plane, which can further promote the evaporation of water at the evaporation plane, and improve the efficiency of seawater desalination or water purification.
  • the light concentrating member is arranged and fixed on the inner surface of the solar heat collecting cover.
  • the concentrator can be easily fixed inside the solar heat collection cover, and the concentrator fixed inside the solar heat collection cover can better focus the sunlight irradiated inside the solar heat collection cover to the evaporation At the flat surface, further promote the evaporation of water at the evaporation flat surface, and improve the efficiency of seawater desalination or water purification.
  • the seawater desalination device includes a plurality of the light-concentrating elements, and the plurality of the light-concentrating elements are distributed on the inner surface of the solar heat collecting cover at intervals.
  • the evaporation of water at the evaporation plane can be further promoted, and the efficiency of seawater desalination or water purification can be improved.
  • the seawater desalination device further includes: a heating unit configured to heat the evaporation plane.
  • the heating unit can heat the water at the corresponding location of the evaporation plane to further promote the evaporation of seawater and improve the efficiency of seawater desalination or water purification.
  • the heating unit includes: a solar heating plate configured to heat water in a water tank, the water tank having a water tank water inlet and a water outlet; and a heating pipe, so
  • the heating tube is configured to heat the evaporation plane, the heating tube has a hot water inlet and a cold water outlet, the hot water inlet is connected to the water tank outlet, and the cold water outlet is connected to the water outlet.
  • the water inlet of the water tank is connected. Therefore, solar energy can be used to heat the water in the water tank, and the heated hot water can be supplied to the heating pipe to heat the water at the water-air interface (such as the sea surface at the evaporation plane), and promote the water at the evaporation plane.
  • the water at the air interface evaporates, and the water in the heating tube can be supplied to the return tank for cyclic heating after being cooled, thereby further saving energy, reducing seawater desalination costs or reducing water purification costs.
  • the heating tube is spiral, and the color of the outer surface of the heating tube is black. Therefore, the spiral heating tube can better heat the water at the evaporation plane, and the heating tube with a black outer surface can further improve the heating efficiency.
  • the seawater desalination device further includes: a plurality of support frames for supporting the solar heat collecting cover, and the plurality of support frames can be opened and closed. Therefore, the support frame can better support the solar heat collection cover and maintain the shape of the solar heat collection cover, and the multiple support frames can drive the solar heat collection cover to fold, which further facilitates the use of the seawater desalination device.
  • the seawater desalination device further includes: a stabilizing anchor connected to at least one of the top of the solar heat collecting cover and the bottom of the fresh water collecting tank.
  • the stabilizer anchor can fix the solar heat collecting cover at a certain position on the water surface, prevent the solar heat collecting cover from being blown over by wind and waves, etc., improve the structural stability of the solar heat collecting cover, and further improve the seawater The performance of the desalination device.
  • the seawater desalination device further includes: a stabilizing plate, the stabilizing plate is fixed on the inner wall of the solar heat collecting cover through a fixing plate, the stabilizing plate is perpendicular to the evaporation plane and has a partial Extend into the body of water below the evaporation plane.
  • the use of the stabilizing plate and the fixing plate can better fix the solar heat collection cover on the water surface, prevent the solar heat collection cover from being blown over by wind and waves, and improve the structure and use stability of the solar heat collection cover The performance of the seawater desalination device is further improved.
  • the material forming the stabilizing plate includes at least one of plastic, stainless steel, and aluminum alloy. Therefore, the above-mentioned materials are lighter in weight and have better corrosion resistance, which further improves the performance of the seawater desalination device.
  • the seawater desalination device further includes: an anti-wave board, the anti-wave board is arranged inside the solar heat collecting cover and can float on the water surface, the anti-wave board includes a plurality of interconnected and spaced apart The anti-wave board, a plurality of the anti-wave board are arranged perpendicular to the evaporation plane.
  • multiple anti-wave sub-boards can offset the water waves inside the solar heat collection cover, prevent the solar heat collection cover from being overturned by wind and waves (especially wind waves entering the solar heat collection cover), and further improve the solar heat collection cover
  • the stability of the seawater desalination device further improves the performance of the seawater desalination device.
  • the material forming the anti-proliferation board includes at least one of plastic, stainless steel, and aluminum alloy. Therefore, the above-mentioned materials are lighter in weight and have better corrosion resistance, which further improves the performance of the seawater desalination device.
  • the height of the anti-prodigal child board is 5 cm-50 cm. Therefore, when the height of the anti-wave board is in the above range, it has a better effect of offsetting wind and waves, and further improves the usability of the seawater desalination device.
  • the seawater desalination device further includes: at least one fan arranged above the evaporation plane to use the air inside the solar heat collecting hood to form an air flow circulation. Therefore, after the fan forms an airflow circulation inside the solar heat collection hood, it can accelerate the movement of water vapor to the top of the solar heat collection hood and condense along the inner wall of the solar heat collection hood, speeding up the evaporation and condensation of water vapor, and further Improve the desalination efficiency.
  • the seawater desalination device further includes: 4 said fans, the 4 said fans are arranged symmetrically to each other and are arranged around the center of the evaporation plane inside the solar heat collecting cover.
  • 4 fans can form water vapor microcirculation inside the solar heat collecting hood, which is beneficial to the movement of water vapor to the top of the solar heat collecting hood and condenses along the inner wall of the solar heat collecting hood, which further improves the desalination efficiency or Water purification efficiency.
  • the fan may be fixed to the central pole of the stabilizer anchor.
  • the fan can be easily fixed.
  • this application proposes a method for seawater desalination using any one of the aforementioned seawater desalination devices.
  • the method includes: placing a semi-ellipsoidal solar heat collecting cover on the water surface, the b axis of the solar heat collecting cover is perpendicular to the water surface; using the heat collected by the solar heat collecting cover Heat the water at the evaporation plane of the solar heat collection cover and evaporate it; use a cooling unit to cool the outer surface of the solar heat collection cover; the evaporated water vapor collects heat along the solar energy
  • the arc-shaped inner wall of the hood is condensed, and the condensed fresh water flows into the fresh water collection tank provided at the bottom. Therefore, the method can easily perform seawater desalination or sewage purification, etc., and has high solar energy utilization rate, high seawater desalination efficiency, and high water purification efficiency.
  • the seawater desalination device further includes a heating unit
  • the method further includes heating the water in the water tank by a solar heating plate, and the heated hot water is supplied from the water outlet of the water tank to the setting below the evaporation plane After the hot water in the heating tube is cooled, it is supplied back to the water tank water inlet of the water tank through the cold water outlet of the heating tube. Therefore, the heating unit can further heat the seawater at the water-air interface corresponding to the evaporation plane, further promote the evaporation of the seawater, and improve the efficiency of seawater desalination or water purification.
  • the method further includes: pumping seawater to a certain depth by a water pump and supplying the seawater to a spray head arranged on the top of the solar heat collecting hood.
  • the cooling unit can use the existing low-temperature seawater to cool the solar heat collection hood, and can promote the condensation of water vapor in the solar heat collection hood on the inner wall of the solar heat collection hood, thereby further improving the efficiency of seawater desalination
  • the structure of the seawater desalination device is further simplified, saving seawater desalination costs or saving water purification costs.
  • Figure 1 shows a schematic structural diagram of a seawater desalination device according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of the structure of an existing ellipsoid
  • Figure 3 shows a partial structural schematic diagram of a seawater desalination device according to an embodiment of the present application
  • Figure 4 shows a schematic structural diagram of a seawater desalination device according to another embodiment of the present application.
  • FIG. 5 shows a schematic cross-sectional structure diagram of an insulating heating layer according to an embodiment of the present application
  • Fig. 6 shows a top view of an insulating heating layer according to an embodiment of the present application
  • FIG. 7 shows a schematic cross-sectional structure diagram of an insulating heating layer according to another embodiment of the present application.
  • Fig. 8 shows a schematic cross-sectional structure diagram of an insulating heating layer according to another embodiment of the present application.
  • Fig. 9 shows a schematic structural diagram of an insulating heating layer according to an embodiment of the present application.
  • Fig. 10 shows a schematic cross-sectional structure diagram of an insulating heating layer according to another embodiment of the present application.
  • FIG. 11 shows a schematic cross-sectional structure diagram of an insulating heating layer according to another embodiment of the present application.
  • FIG. 12 shows a schematic cross-sectional structure diagram of an insulating heating layer according to another embodiment of the present application.
  • Fig. 13 shows a schematic structural diagram of a seawater desalination device according to another embodiment of the present application.
  • Fig. 14 shows a partial structural diagram of a seawater desalination device according to an embodiment of the present application
  • Fig. 15 shows a partial structural diagram of a seawater desalination device according to another embodiment of the present application.
  • Figure 16 shows a schematic structural diagram of a seawater desalination device according to another embodiment of the present application.
  • Fig. 17 shows a schematic structural diagram of a seawater desalination device according to another embodiment of the present application.
  • FIG. 18 shows a partial structural diagram of a seawater desalination device according to another embodiment of the present application.
  • FIG. 19 shows a partial structural diagram of a seawater desalination device according to another embodiment of the present application.
  • Fig. 20 shows a partial structural diagram of a seawater desalination device according to another embodiment of the present application.
  • FIG. 21 shows a partial structural schematic diagram of a seawater desalination device according to another embodiment of the present application.
  • Fig. 22 shows a partial structural schematic diagram of a seawater desalination device according to another embodiment of the present application.
  • FIG. 23 shows a partial structural diagram of a seawater desalination device according to another embodiment of the present application.
  • FIG. 24 shows a graph of test results of seawater desalination efficiency of seawater desalination devices according to some embodiments of the present application.
  • 1000 seawater desalination device; 100: solar heat collector cover; 110: evaporation plane; 120: fresh water collection tank; 130: fresh water outlet; 140: inner wall; 200: fresh water storage unit; 300: heating unit; 310: solar heating panel 320: water tank; 330: heating pipe; 400: cooling unit; 410: sprinkler head; 420: water pump; 510: stabilizer anchor; 520: positioning rope; 610: stabilizer plate; 620: fixed plate; 700: isolated heating Layer; 710: substrate; 720: tunnel; 730: light-to-heat conversion material; 10: heat insulation part; 11: through hole; 12: capillary tube; 20: light-to-heat conversion part; 800: concentrating part; 900: anti-wave board; 910: Anti-prodigal child board; 920: connecting rope; 600: support frame; 2000: ellipsoid.
  • the seawater desalination device 1000 includes: a semi-ellipsoidal solar heat collecting cover 100, a fresh water storage unit 200, and a cooling unit 400, wherein the bottom of the inner wall 140 of the solar heat collecting cover 100 has Fresh water collection tank 120 (refer to the "top” and “bottom” directions shown in the figure).
  • the fresh water collection tank 120 defines an evaporation plane at the bottom of the solar heat collecting cover 100 (refer to the "bottom” direction shown in the figure) 110.
  • a fresh water outlet 130 is provided in the fresh water collection tank 120, and the fresh water outlet 130 is connected to the fresh water storage unit 200, and the length of the b axis of the solar heat collecting cover 100 is greater than the a axis, and the b axis is perpendicular to the evaporation plane 110 . Therefore, the seawater desalination device 1000 can be directly placed on the water surface (such as the sea surface) for use, wherein the bottom of the solar heat collecting cover 100 is in contact with the water surface, and the solar heat collecting cover 100 can better collect solar energy and utilize the solar energy.
  • the heat energy of the evaporating plane 110 heats the water corresponding to the evaporation plane 110
  • the cooling unit 400 can promote the condensation of water vapor in the solar heat collecting hood 100, and the solar heat collecting hood 100 with this shape facilitates the water vapor to collect heat along the solar energy
  • the arc-shaped inner wall 140 of the cover 100 is fully condensed, and the fresh water collection tank 120 can easily collect the condensed fresh water (refer to the figure shown in FIG. 1, the water vapor can be condensed along the direction of m 1 and m 2 in the figure, and Flow to the fresh water collection tank 120 at the bottom). Therefore, the seawater desalination device 1000 has a simple structure, low cost, convenient use, high solar energy utilization rate, high water purification efficiency, and high seawater desalination efficiency.
  • the ellipsoid 2000 includes equatorial radii a and a'(along the x-axis and y-axis, respectively), and a polar radius b (along the z-axis), and the equatorial radius a
  • the plane where and a'are located is the equatorial plane, where b>a and b>a', that is, the ellipsoid is a long sphere.
  • the "semi-ellipsoidal shape" refers to a figure obtained by cutting the ellipsoid 2000 along the equatorial plane or a plane parallel to the equatorial plane, wherein, according to the embodiment of the present application, the "solar heat collecting cover The b-axis, a-axis, and a'-axis "are the polar radius b and the equatorial radius a and a'of the ellipsoid 2000.
  • the evaporation plane according to the embodiment of the present application is a plane parallel to the equatorial plane of the ellipsoid 2000 .
  • the semi-ellipsoidal solar heat collection cover 100 is a figure formed by cutting the ellipsoid 2000 along the equatorial plane.
  • the solar heat collection cover 100 shown in FIG. A schematic diagram of the cross-sectional structure of the solar heat collecting cover along the vertex B and the line AA'.
  • the solar heat collecting cover 100 adopts the cross-sectional structural diagram instead of the entire solar heat collecting cover.
  • the current seawater desalination device using solar energy has a relatively complicated configuration design and cannot efficiently utilize the absorbed solar energy, resulting in high manufacturing and operating costs.
  • the seawater desalination device of the embodiment of the present application by designing a semi-ellipsoidal solar heat collecting cover, the solar heat collecting cover can be directly placed on the water surface (such as the sea surface), and the heat collecting cover is used to collect solar energy.
  • the heat energy in the evaporating plane heats the water corresponding to the evaporation plane, promotes its evaporation, and promotes the condensation of the water vapor inside the solar heat collecting cover through the cooling unit, and the b-axis of the semi-ellipsoidal solar heat collecting cover is longer than a
  • the shaft is conducive to the full condensation of water vapor along the arc-shaped inner wall of the solar heat collection cover, and the condensed fresh water can flow into the fresh water collection tank arranged at the bottom edge of the solar heat collection cover to prevent the condensed fresh water from flowing into the fresh water Before being collected in the tank, it drops to the sea surface on the inner wall of the solar heat collecting cover.
  • the b-axis is larger than the a-axis, which is beneficial for the water vapor to be fully condensed along the arc-shaped inner wall of the solar heat collecting cover, and the condensed fresh water can better flow to the setting In the fresh water collection tank at the bottom edge of the solar heat collecting cover. Therefore, the solar heat collecting cover according to the embodiment of the present application has a simple structure, is convenient to use, and has a low cost, and can better promote water evaporation and condensation at the evaporation plane, and can improve solar energy utilization and seawater desalination efficiency.
  • the specific size and shape of the solar heat collecting cover 100 are not particularly limited, as long as it is a semi-ellipsoid, and its b axis is greater than the a axis and greater than the a'axis.
  • the "semi-ellipsoid” is not limited to one-half of the ellipsoid, it can also be one-third of the ellipsoid, as long as the "semi-ellipsoid” is along the equatorial plane of the ellipsoid or parallel It can be obtained by cutting on the plane of the equatorial plane. According to an embodiment of the present application, referring to FIG.
  • the bottom surface of the semi-ellipsoidal solar heat collecting cover 100 (refer to the "bottom" direction shown in the figure) can be circular or elliptical, when the bottom surface is When it is circular, that is, the equatorial radius a and a'are equal in size, and both are smaller than the polar radius b; when the bottom surface is elliptical, that is, the equatorial radius a and a'are not equal in size, but both are smaller than the polar radius b.
  • the length ratio between the polar radius b and the equatorial radius (a or a') of the solar heat collecting cover 100 may be (6: 5) ⁇ (2:1), specifically, it can be 5:4, it can be 4:3, it can be 3:2, etc. Therefore, when the length ratio of the b-axis to the a-axis of the solar heat collecting hood 100 is in this range, water vapor can condense rapidly on the top of the solar heat collecting hood, and the condensed fresh water can flow along the inner wall to the bottom.
  • the seawater desalination efficiency of the seawater desalination device 1000 is further improved.
  • the b-axis of the solar heat collecting cover is less than or equal to the a-axis, it is not conducive to the evaporation and condensation of water, and it is not conducive to the condensed water flowing to the fresh water collection tank at the bottom, the solar energy utilization rate is low, and the seawater The desalination efficiency is low.
  • the ratio of the b-axis to the a-axis of the solar heat collection cover is too large, for example, greater than 2 to 1, the solar heat collection cover is greatly affected by sea waves and wind loads when used outdoors, resulting in the solar heat collection The stability of the cover is poor, and the actual use effect is not good. Therefore, when the length ratio of the b-axis to the a-axis of the solar heat collection hood is in the above range, it is favorable for a large amount of water vapor to condense on the top of the solar heat collection hood, and the condensed fresh water can better flow along the inner wall to the bottom. In the fresh water collection tank, and the solar heat collecting cover has good stability under wave and wind load conditions, it is beneficial to the direct use of the seawater desalination device on the outdoor sea.
  • the bottom of the inner wall of the solar heat collection hood is provided with a fresh water collection tank.
  • the specific shape and arrangement of the fresh water collection tank are not particularly limited, as long as it can collect the fresh water flowing to the bottom along the inner wall of the solar heat collection cover. can.
  • the fresh water collection tank 120 may be annular, that is, the fresh water collection tank 120 may be a circular groove surrounding the bottom edge of the inner wall of the solar heat collecting cover 100. Therefore, the annular fresh water collection tank 120 can better collect the fresh water condensed from various parts of the inner wall of the solar heat collecting cover 100, which further improves the usability of the seawater desalination device 1000.
  • the fresh water collection tank 120 and the solar heat collection cover 100 may be integrally formed, that is, the fresh water collection tank 120 may be formed by bending the edge of the bottom of the solar heat collection cover 100 inwardly. Therefore, the fresh water collection tank 120 can be simply formed, which further simplifies the structure and preparation process of the seawater desalination device 1000.
  • the bottom of the fresh water collection tank 120 may be arc-shaped. Therefore, the arc-shaped bottom is beneficial for the solar heat collecting cover 100 to float on the water surface and can prevent the solar heat collecting cover 100 from being Turning, etc., improves the stability of the solar heat collection cover; specifically, the side wall of the fresh water collection tank 120 (refer to the EF shown in FIG.
  • the fresh water collecting tank 120 defines an evaporation plane 110 at the bottom of the solar heat collecting cover 100.
  • the evaporation plane 110 may also be circular.
  • the side wall EF of the fresh water collection tank 120 can be longer, that is, the bottom edge of the solar heat collecting cover 100 can be bent upward and longer, thereby avoiding the capacity of the fresh water collection tank 120 from being too small , Fresh water overflows from the edge EF.
  • the seawater desalination device 1000 may further include a fresh water collection pump (not shown in the figure), the fresh water collection pump is arranged between the fresh water outlet 130 and the fresh water storage unit 200, and the fresh water collection tank 120 The fresh water in the water is sucked into the fresh water storage unit 200.
  • the material for forming the solar heat collecting cover 100 is not particularly limited. Specifically, it may include infrared reflective materials, such as polycarbonate, polyethylene, polyvinyl chloride, polyurethane, and polymethyl. At least one of methyl acrylate, polyterephthalic acid and its derivatives, and glass.
  • the infrared reflective material can confine the infrared light of the sunlight incident inside the solar heat collection cover to the inside of the solar heat collection cover, so that the heat in the infrared light can be better utilized.
  • the solar heat collecting cover has a better heat collection effect, can better collect the incident sunlight, use the thermal energy contained in the solar energy to heat the water at the evaporation plane, and the solar energy formed by the above materials
  • the heat collection cover can reduce heat loss and can further improve the solar energy utilization rate of the solar heat collection cover.
  • the above-mentioned materials are relatively inexpensive and easily available, and are relatively light, so the seawater desalination device is convenient to use and can further reduce the cost of seawater desalination.
  • the inner wall 140 of the solar heat collecting cover 100 can be provided with a light-absorbing coating, which can better absorb solar energy, so the solar heat collecting cover 100 can better use the heat energy in the solar energy to carry out seawater. Desalination further improves the utilization rate of solar energy.
  • the light-absorbing coating includes at least one of a one-way light-transmitting material and an infrared reflective material.
  • the solar heat collecting cover 100 may also be formed of materials with unidirectional light transmission performance or infrared reflection performance.
  • the solar heat collecting cover 100 may be made of Infrared reflective polyethylene, polycarbonate and other materials are formed.
  • the inner wall of the solar heat collecting cover 100 does not need to be provided with a light-absorbing coating, or when the solar heat collecting cover 100 is unidirectionally transparent
  • the light-absorbing coating may be formed of an infrared reflective material; when the solar heat collecting cover 100 is formed of an infrared reflective material, the light-absorbing coating may be formed of a unidirectional light-transmitting material.
  • the one-way light-transmitting material can allow light to enter the solar heat-collecting cover from the outside, but the light cannot be transmitted from the solar heat-collecting cover, so the light-absorbing coating formed by the one-way light-transmitting material can be reduced
  • the loss of solar energy injected into the solar heat collecting cover improves the utilization rate of solar energy; specifically, the infrared reflective material can better confine the infrared light of the sunlight incident inside the solar heat collecting cover to the solar heat collecting Inside the cover, the heat in the infrared light can be better utilized. Therefore, the above-mentioned light-absorbing coating can increase the proportion of heat energy used for seawater evaporation and further improve the utilization rate of solar energy.
  • the cooling unit 400 is disposed outside the solar heat collecting cover 100 and can cool the outer surface of the solar heat collecting cover 100.
  • the cooling unit 400 can promote the condensation of the water vapor in the solar heat collecting cover 100 on the inner wall 140 of the solar heat collecting cover 100, which further improves the efficiency of seawater desalination.
  • the cooling unit 400 may include a spray head 410 and a water pump 420.
  • the spray head 410 is arranged on the top of the solar heat collecting cover 110, and the water pump 420 is used to suck a certain depth of Sea water and the sea water are supplied to the shower head 410.
  • the water pump 420 can suck a certain depth of lower temperature seawater and supply it to the shower head 410 (see Figure 3 for the direction of seawater supply In the g 1 and g 2 directions), the lower temperature seawater cools the outer surface of the solar heat collecting cover 100 (the lower temperature seawater can follow the directions of n 1 and n 2 shown in FIG. 3 Direction flow). Due to the large specific heat capacity of seawater, the temperature of the seawater at a certain depth is lower, which can be used to cool the solar heat collecting hood 100, and the pump 420 only needs to suck the seawater at a shallower position to meet the cooling demand. Therefore, the pump does not need to consume too much energy.
  • the cooling unit can use the existing low-temperature seawater to cool the solar heat collecting cover 100, which further simplifies the structure of the seawater desalination device 1000, saves seawater desalination costs, and can improve the effect of water vapor condensation, and further Improve the efficiency of seawater desalination.
  • the seawater desalination device 1000 may further include: an isolation heating layer 700, the isolation heating layer 700 is arranged inside the solar heat collecting cover 100 and is arranged at the evaporation plane 110.
  • the insulating heating layer 700 includes a base 710 with a hole 720 inside the base 710.
  • the insulating heating layer 700 can be in contact with the water surface (refer to the dotted line pq shown in FIG. 4 and FIG. 5) and can pass through the hole.
  • 720 absorbs water into the interior of the insulating heating layer 700, and the substrate 700 has a photothermal conversion material 730 at least on the side of the substrate 700 away from the water surface.
  • the insulating heating layer 700 can absorb the water at the water surface pq into the interior of the insulating heating layer 700, the solar heat collecting cover 100 can better collect solar energy, and the light-to-heat conversion material 730 can better absorb solar energy and High temperature is generated around it, and the heat collected by the solar heat collecting cover 100 and the heat generated by the light-to-heat conversion material 730 can heat and evaporate the water absorbed into the insulating heating layer 700, with high heating and evaporation efficiency and high solar energy utilization;
  • the insulating heating layer 700 can separate the solar heat collecting cover 100 and the photothermal conversion material 730 from the entire water surface, avoiding the solar heat collecting cover 100 and the photothermal conversion material 730 from heating the entire water
  • the solar heat collecting cover 100 and the light-to-heat conversion material 730 can only heat the insulating and heating layer.
  • the water inside the layer 700 is heated, and the water evaporation efficiency is high, which further improves the solar energy utilization rate and water purification efficiency (for example, seawater desalination efficiency).
  • the materials for forming the insulating heating layer 700 have a wide range of sources and relatively low prices, which can reduce the cost of seawater desalination or water purification.
  • the insulating heating layer 700 is located inside the solar heat collecting cover 100 and is arranged at the evaporation plane 110 of the solar heat collecting cover 100.
  • the size, shape, and number of the insulating heating layer 700 are not particularly limited, as long as it is located at the evaporation plane 110 and can be in contact with the water surface pq.
  • the evaporation plane 110 may be circular. Therefore, referring to FIG. 6, the top view of the insulating heating layer 700 may also be circular, and the diameter of the insulating heating layer 700 (refer to FIG. 6 The diameter T) shown can be the same as the diameter of the evaporation plane 110.
  • the insulating heating layer 700 can absorb as much water as possible, which improves the water purification efficiency (for example, the seawater desalination efficiency) of the seawater desalination device.
  • the diameter of the circular insulating heating layer 700 may also be smaller than the diameter of the evaporation plane 110.
  • the top view of the insulating heating layer 700 may also be square, for example, it may be square.
  • the insulating heating layer 700 may also include multiple sub-isolating heating layers.
  • the substrate of the insulating heating layer 700 includes wood
  • the wood can be prepared along its growth direction as the structure of the insulating heating layer in this application ( That is, the sub-isolation heating layer), and then a plurality of sub-isolation heating layers can be placed on the water surface corresponding to the evaporation plane 110 of the solar heat collecting cover 100 to form an isolation heating layer 700, and the formed isolation heating layer 700 can cover the evaporation plane Most of the water surface at 110, therefore, the isolation heating layer 700 absorbs more water, which can improve the water purification efficiency (for example, the seawater desalination efficiency) of the seawater desalination device.
  • the water purification efficiency for example, the seawater desalination efficiency
  • the insulating heating layer 700 includes a base 710, and the inside of the base 710 has a channel 720.
  • the insulating heating layer When 700 is in contact with the water surface, the water at the water surface pq can enter the interior of the insulating heating layer 700 along the direction from "bottom" to "top” as shown in the figure.
  • the substrate 710 has a light-to-heat conversion material 730. The material 730 is arranged at least on the side of the substrate 710 away from the water surface pq.
  • the light-to-heat conversion material 730 can absorb solar energy and generate a localized high temperature around it to promote the evaporation of the surrounding water.
  • the light-to-heat conversion material 730 may be arranged in the channel 720, thereby facilitating the heat generated by the light-to-heat conversion material 730 to heat the water in the channel 720, promoting the evaporation of the water in the channel 720, and avoiding the light.
  • the heat conversion material and the heat collected by the solar heat collector heat the entire water body, causing problems of low heating evaporation efficiency and serious heat loss. Therefore, the insulating heating layer 700 improves the water evaporation efficiency.
  • the material forming the base 710 is not particularly limited, as long as it has pores inside which can absorb water.
  • the material forming the matrix 710 may include at least one of porous materials, aerogels, carbon materials, and organic fibers.
  • it may be a polymer porous material, natural wood, etc.
  • the above-mentioned materials have a wide range of sources and are relatively inexpensive. Can reduce the cost of water purification (such as seawater desalination).
  • the material forming the base 710 may include wood. The wood has natural pores along the direction in which the fibers extend, and the wood itself has light absorption properties (ie, light-to-heat conversion properties) after carbonization. Therefore, the wood forms the base 710. When the price is low, and the water absorption performance is good.
  • the specific type of the photothermal conversion material is not particularly limited, as long as it has photothermal conversion performance and can better absorb solar energy and generate thermal energy.
  • the photothermal conversion material may include at least one of metal nanoparticles, carbon materials, plasmon materials, and semiconductor materials, for example, metals such as Ag, Au, Pt, Fe, Cu, Mn, Al, or their composites.
  • Nanoparticles, such as nano silver, nano gold, etc.; can be carbon fiber, graphite, graphene, carbon nanotube, etc.
  • the above-mentioned materials have a wide range of sources and relatively low prices, which can reduce the cost of water purification (such as seawater desalination); and, the solar energy utilization rate of the photothermal conversion material is high, and high temperatures can be generated around it to promote the isolation heating layer
  • the internal water evaporates, further improving solar energy utilization and water purification efficiency (such as seawater desalination efficiency).
  • metal nanoparticles such as nano silver, can be deposited in the natural pores of wood, and thus, the insulating heating layer 700 can be simply formed.
  • the insulating heating layer 700 may include a light-to-heat conversion part 20 and a heat insulation part 10, the heat insulation part 10 has a through hole 11 inside, and the heat insulation part 10 is in contact with the water surface pq, Water can be absorbed into the through hole 11, the light-to-heat conversion part 20 is in contact with the heat insulation part 10, and at least the opening of the through hole 11 on the side of the heat insulation part 10 away from the water surface pq can be heated.
  • the heat-insulating portion 10 can better absorb water into its interior, and the light-to-heat conversion portion 20 can at least face the opening of the through hole 11 (that is, the interface where the heat-insulating portion 10 and the light-to-heat conversion portion 20 contact Place) water is heated and evaporated, which further improves solar energy utilization and water purification efficiency (such as seawater desalination efficiency).
  • the material forming the photothermal conversion portion 20 may include at least one of metal nanoparticles, carbon materials, plasmon materials, and semiconductor materials;
  • the material of the heat portion 10 (refer to the aforementioned material forming the matrix) may include at least one of porous polymer materials, aerogels, carbon materials, and organic fibers. Therefore, the materials for forming the insulating heating layer have a wide range of sources and are relatively inexpensive, which can reduce the cost of water purification (such as seawater desalination), and can improve solar energy utilization and water purification efficiency (such as seawater desalination efficiency).
  • the specific shapes and materials of the heat-insulating part 10 and the light-to-heat conversion part 20 are not particularly limited, as long as the heat-insulating part 10 can absorb water well, and the entire body of water and the light-to-heat conversion part 20 Apart from that, the light-to-heat conversion part 20 can heat the water inside the heat insulation part 10 that is in contact with it.
  • the heat insulation part 10 and the light-to-heat conversion part 20 may be arranged in a layered manner, and the light-to-heat conversion part 20 may be arranged on the top of the heat insulation part 10 (refer to the “top” shown in the figure. "direction).
  • the heat insulation part 10 may be wood, porous organic polymer material, aerogel, etc.
  • the light-to-heat conversion part 20 may be metal nanoparticles, or carbon materials, such as carbon black, carbon fiber, graphite, etc. Graphene etc.
  • the light-to-heat conversion part 20 formed of carbon fiber may be bonded to the top of the heat insulating part formed of porous organic polymer material, so as to form a laminated insulating heating part 700. Therefore, the heat insulation portion 10 can better absorb water, and can separate the light-to-heat conversion portion 20 from the entire water body, avoiding the light-to-heat conversion portion 20 and the solar heat collecting cover (not shown in the figure) from affecting the entire water body.
  • the light-to-heat conversion portion 20 has good light absorption performance, that is, it can make full use of solar energy to generate heat, and then can heat the interface between the light-to-heat conversion portion 20 and the heat insulation portion 10, that is, the through hole
  • the water at the top opening of 11 is heated to promote its evaporation, which further improves solar energy utilization and water purification efficiency (such as seawater desalination efficiency).
  • the heat-insulating portion 10 may be cup-shaped.
  • the bottom of the cup-shaped heat-insulating portion 10 (refer to the "bottom” direction shown in the figure) is in contact with the water surface pq.
  • the heat conversion part 20 is provided inside the heat insulation part 10.
  • the cup-shaped heat insulation part 10 can better absorb water, and can wrap the light-to-heat conversion part 20, separate the light-to-heat conversion part 20 from the entire water body, and avoid the light-to-heat conversion part 20 and the solar heat collecting cover (Not shown in the figure) heat the entire body of water; the light-to-heat conversion part 20 can use solar energy to generate heat, and then can heat the interface where the light-to-heat conversion part 20 and the heat insulation part 10 are in contact, that is, the The water at the top opening of the through hole 11A at the bottom of the cup is heated to promote its evaporation, which further improves solar energy utilization and water purification efficiency (for example, seawater desalination efficiency).
  • water purification efficiency for example, seawater desalination efficiency
  • the specific shape of the cup-shaped heat insulation portion 10 is not particularly limited. For example, it may be hemispherical, hemi-ellipsoidal, conical, or cylindrical.
  • the "cup bottom" of the heat-insulating part of the above-mentioned shape is the apex of the heat-insulating part of hemispherical, hemi-ellipsoid and conical shape, or a circular bottom surface of the heat-insulating part of cylindrical shape.
  • the heat insulation part 10 may include a capillary 12, the bottom of the capillary 12 (refer to the "bottom” direction shown in the figure) is in contact with the water surface pq, and the top of the capillary 12 is provided with light and heat. ⁇ 10 ⁇ Transformation unit 10. Therefore, the capillary tube 12 can better absorb water, and the light-to-heat conversion part 10 can heat and evaporate the water absorbed by the capillary tube 12 to the top of the capillary tube 12, thereby further improving solar energy utilization and water purification efficiency (such as seawater desalination efficiency). ).
  • the number of capillary tubes 12 is not particularly limited, and may be one or more; specifically, the light-to-heat conversion part 20 may further include a stage (not shown in the figure), and the stage is set on the capillary 12 At the top of the photo-thermal conversion material, such as carbon material, can be placed on the stage, and the stage has an opening communicating with the capillary 12, and the water absorbed by the capillary 12 can flow to the stage through the opening And contact with the photothermal conversion material on the stage, and then the photothermal conversion material can heat the water to promote its evaporation.
  • the photo-thermal conversion material such as carbon material
  • the heat insulation part 10 and the light-to-heat conversion part 20 may form a box-shaped structure, wherein the light-to-heat conversion part 20 forms the top surface of the box-shaped structure (refer to the figure (Shown in the "top" direction), the heat insulation portion 10 forms the four sides of the box-shaped structure (refer to FIG. 10, and FIG. 10 is a cross-sectional view), or form the box-shaped structure
  • the four sides and bottom surface (refer to Figure 11, and Figure 11 is a cross-sectional view). Therefore, the heat insulation part 10 can better absorb water into its interior, and the heat insulation part 10 can separate the light-to-heat conversion part 20 from the entire water body.
  • the heat insulation part 10 After the water absorbed in the through hole 11 flows to the top of the through hole 11, it can flow out of the through hole 11, and then can be in contact with the light-to-heat conversion part 20. Therefore, the light-to-heat conversion part 20 can heat and evaporate it, Further improve water evaporation efficiency. Specifically, referring to FIG. 11, after the water absorbed in the through holes 11B in the four sides of the heat insulating portion 10 flows to the top of the through holes 11B, it can flow out of the through holes 11B, and then can interact with the light-to-heat conversion portion 20.
  • the light-to-heat conversion part 20 can heat and evaporate it; the through holes 11A in the bottom surface of the heat insulation part 10 can communicate with the through holes 11B in the four side faces, so that the heat insulation part 10
  • the water absorbed by the through holes 11A in the bottom surface can also flow to the top of the through holes 11B through the through holes 11B in the four side surfaces, and then flow out of the through holes 11B, and then can contact the light-to-heat conversion part 20. Therefore, the light-to-heat conversion part 20 can heat and evaporate it.
  • the base 710 is formed of wood, and one end of the wood is carbonized along the direction in which the fibers in the wood extend (ie the "top and bottom” direction shown in the figure) (refer to The “top” end shown in the figure), the pores 720 of the carbonized wood are filled with metal nanoparticles (that is, the photothermal conversion material 730), that is, the upper part of the substrate 710 formed by the wood is carbonized
  • the part and the metal nanoparticles in it together form the light-to-heat conversion part 20, the uncarbonized part of the lower part of the wood forms the heat-insulating part 10, and the light-to-heat conversion part 20 and the heat-insulating part 10 are "stacked".
  • the wood is cheap and easy to obtain, and there are many natural pores 720 between the fibers in the wood, which can fully absorb water, the carbonized wood itself has a certain light absorption effect, and the metal nanoparticles in the pores 720 ( That is, the light-to-heat conversion material 730) can generate high temperature around it after absorbing solar energy, which further promotes the thermal evaporation of water in the channel, and further improves the solar energy utilization rate and water evaporation efficiency.
  • the insulating heating layer can also be of various bionic structures, such as trees, mushrooms, and the like.
  • the seawater desalination device 1000 may further include: a light concentrating member 800 (refer to the light concentrating members 800a and 800b shown in FIG. 13), and the light concentrating member 800 may irradiate the solar energy
  • the sunlight of the cover 100 is focused. Therefore, when the seawater desalination device 1000 is directly placed on the water surface (for example, the sea surface), the light concentrating member 800 (refer to the light concentrating members 800A and 800B shown in FIG. 13) can irradiate the solar heat collecting cover 100.
  • the sunlight is focused to improve the utilization rate of solar energy, which can better promote the evaporation of the water at the evaporation plane 100.
  • the specific type and installation position of the light concentrating member 800 are not particularly limited, as long as the sunlight irradiated to the solar heat collecting cover 100 can be focused.
  • the condensing member 800 may include at least one of a convex lens, a Fresnel lens, and a plano-convex lens. Therefore, the concentrating element 800 can better converge the sunlight, improve the utilization rate of sunlight, and further increase the temperature inside the solar heat collecting cover 100, promote the evaporation of water at the evaporation plane 110, and improve the seawater desalination device 1000 desalination efficiency.
  • the size and number of the light concentrating members 800 are not particularly limited, and for example, a plurality of light concentrating members 800 may be included (refer to the two light concentrating members 800A and 800B shown in FIG. 13).
  • the sunlight focused by the condensing member 800 can be concentrated to the evaporation plane 110, which can better promote the evaporation of water at the evaporation plane 110, and can also be converged above or below the evaporation plane 110, for example, can be concentrated
  • To a certain position above or below the evaporation plane can also better promote the evaporation of water at the evaporation plane 110 (ie, the evaporation plane 110 and below), and improve the efficiency of seawater desalination.
  • the light concentrating member 800 may be disposed outside the solar heat collecting cover 100 and may focus sunlight into the solar heat collecting cover 100.
  • the sunlight irradiated to the solar heat collecting cover 100 can be condensed after being focused by the light collecting member 800A, so that the intensity of the light irradiated to the solar heat collecting cover 100 can be enhanced.
  • a large amount of heat can be generated, the utilization rate of sunlight is improved, and the heat inside the solar heat collecting cover 100 is increased, which is conducive to the evaporation of water at the evaporation plane 110, and can further improve the efficiency of seawater desalination.
  • the light concentrator 800 can be arranged inside the solar heat collection cover 100, and can focus the sunlight irradiated to the solar heat collection cover 100 to the evaporation plane 110 .
  • the condensing member 800 can focus sunlight to the evaporation plane 110, which can further promote the evaporation of water at the evaporation plane 110, and further improve the efficiency of seawater desalination.
  • the number and arrangement of the light concentrating members 800 arranged inside the solar heat collecting cover 100 are not particularly limited.
  • the light collecting members 800A, 800B, and 800C can be separately arranged in the solar heat collecting cover 100. Inside, the light irradiated inside the solar heat collecting cover 100 can be focused and concentrated to the evaporation plane 110 to promote the evaporation of the water at the evaporation plane 110.
  • the light concentrating member 800 can also be arranged and fixed on the inner surface of the solar heat collecting cover 100, that is, the light concentrating member 800 can be integrated on the solar heat collecting cover 100, so that it can be easily integrated
  • the light-concentrating member 800 is fixed inside the solar heat-collecting cover 100, and the light-concentrating member 800 can better condense the sunlight irradiated to the solar heat-collecting cover 100, and can better irradiate the solar heat-collecting cover 100.
  • the sunlight is focused to the evaporation plane 110, which further promotes the evaporation of water at the evaporation plane 110 and improves the efficiency of seawater desalination.
  • the seawater desalination device 1000 includes a plurality of light concentrating members 800, and the plurality of light concentrating members 800 may be distributed on the inner surface of the solar heat collecting cover 100 at intervals.
  • the plurality of light concentrating members 800 can sufficiently converge the light irradiated to the solar heat collecting cover 100, which can further promote the evaporation of water at the evaporation plane 110 and improve the efficiency of seawater desalination.
  • the seawater desalination device may include the aforementioned isolation heating layer 700 and the aforementioned light-concentrating member 800 at the same time, thereby further improving water evaporation efficiency and seawater desalination efficiency.
  • the seawater desalination device 1000 may further include: a plurality of support frames 600 for supporting the solar heat collecting cover 100, and the plurality of support frames 600 can be opened and closed.
  • a plurality of support frames 600 may be arranged on the inner wall of the solar heat collecting cover 100; specifically, when the solar heat collecting cover formed of polycarbonate, polyethylene, polymethyl methacrylate, etc. is flexible, The support frame 600 can better support and fix the solar heat collection cover 100, maintain the semi-ellipsoidal shape of the solar heat collection cover 100, and the plurality of support frames 600 can drive the solar heat collection cover 100 to be folded, and further It is convenient to transport and use the seawater desalination device.
  • the plurality of support frames 600 may be an umbrella frame structure, thereby further facilitating the folding and use of the solar heat collecting cover 100.
  • the plurality of support frames 600 may be formed of rigid materials, for example, may be formed of stainless steel pipes.
  • a plurality of support frames 600 can be evenly distributed inside the solar heat collection cover 100, thereby, the solar heat collection cover 100 can be better supported.
  • the seawater desalination device further includes a heating unit 300 that can heat the evaporation plane 110.
  • the straight line pq shown in FIG. 18 is the water surface (for example, the sea surface), and the solar heat collecting cover 100 is placed above the water surface.
  • the fresh water collecting tank 120 defines an evaporation plane at the bottom of the solar heat collecting cover 100 110.
  • the solar heat collecting cover 100 When the solar heat collecting cover 100 is placed on the water surface, the solar heat collecting cover 100 defines an evaporation area on the water surface (that is, the water surface area corresponding to the evaporation plane 110), and the heating unit 300 can heat the evaporation plane 110 That is, the heating unit 300 can heat the water corresponding to the evaporation plane 110. Therefore, the heat energy collected by the solar heat collecting cover 100 can better promote the evaporation of water at the interface of the evaporation area (ie, the corresponding position of the evaporation plane), avoid heating a large area of water, and improve heating efficiency. In addition, the heating unit 300 can be placed at a certain distance below the water surface.
  • the heating unit 300 can heat the water at the water-air interface of the water surface area (ie, the evaporation area) corresponding to the evaporation area 110 to further promote the water.
  • the seawater at the air interface evaporates, improving the efficiency of seawater desalination.
  • the heating unit 300 may be disposed inside the solar heat collecting hood 100 and located on the side of the isolation heating layer 700 close to the water surface. Specifically, the straight line pq shown in FIG.
  • the heating layer 700 can absorb water into its interior through the holes 720, so the heat collected by the solar heat collecting cover 100 and the heat generated by the light-to-heat conversion material 730 can better promote the evaporation of water inside the insulating heating layer 700
  • the heating unit 300 can be placed at a certain distance below the insulating heating layer 700, so that the heating unit 300 can heat the water surface area corresponding to the insulating heating layer 700 and the water inside the insulating heating layer 700 to further promote
  • the water inside the insulating heating layer 700 evaporates, further improving water purification efficiency (for example, seawater desalination efficiency).
  • the specific type of the heating unit 300 is not particularly limited.
  • the heating unit 300 may be an electric heating pipe, or a hot water pipe.
  • the heating unit 300 may include: a solar heating plate 310, a water tank 320, and a heating tube 330.
  • the heating tube 330 may heat the evaporation plane 110.
  • the heating tube 330 may Set below the water surface corresponding to the evaporation plane 110, the solar heating plate 310 can heat the water in the water tank 320.
  • the water tank 320 has a water tank outlet 10 and a water tank inlet 20, and the heating pipe 330 has a hot water inlet 30 and a cold water outlet 40.
  • the hot water inlet 30 is connected to the water tank outlet 10, and the cold water outlet 40 is connected to the water tank inlet 20.
  • the solar heating plate 310 can heat the water in the water tank 320, and the heated hot water can be supplied to the heating pipe 330 through the water outlet 10 of the water tank along the direction indicated by the arrows f1 and f2 in the figure.
  • the water corresponding to the evaporation plane 110 can be heated to promote the evaporation of the water corresponding to the evaporation plane 110, and the water in the heating pipe 330 can also be supplied to the return tank 320 through the cold water outlet 40 for cyclic heating (refer to the figure).
  • the solar heating plate 310 can use free solar energy to provide hot water for the heating pipe 330, and the water in the water tank 320 can also directly use the existing As a result, energy can be further saved and the cost of desalination can be reduced.
  • the temperature of the hot water in the water tank and the heating pipe can be controlled and adjusted to better heat the seawater and promote its evaporation.
  • the temperature of the seawater at the heated evaporation plane can be Less than 60°C.
  • the specific type of the heating tube 330 is not particularly limited.
  • the heating tube 330 may be spiral.
  • the spiral heating tube 330 has a better heat transfer effect and can better prevent evaporation.
  • the water at the plane 110 is heated.
  • the color of the outer surface of the heating tube 330 is black. Therefore, the heating tube 330 with a black outer surface can reduce heat loss, so that the hot water in the heating tube 330 can be heated for a longer period of time, which further improves the utilization rate of solar energy.
  • the seawater desalination device can further stabilize an anchor 510, which is used to fix the solar heat collecting cover 100 at a specific position on the water surface.
  • the stabilization anchor 510 can be connected to the top of the solar heat collection cover 100 through a positioning rope 520 (refer to FIG. 21, the stability anchor 510 extends from the top B of the solar heat collection cover 100 to the water surface through a positioning rope 520). pq below); the stability anchor 510 can also be connected to the bottom of the fresh water collection tank 120 (not shown in the figure).
  • the stabilizer anchor 510 can fix the solar heat collecting cover 100 at a certain position on the water surface, prevent the solar heat collecting cover 100 from being blown over by wind and waves, etc., and improve the structure and use stability of the solar heat collecting cover 100 , Further improve the performance of the seawater desalination device.
  • the seawater desalination device may further include a stabilizing plate 610 and a fixing plate 620.
  • the stabilizing plate 610 is fixed on the inner wall of the solar heat collecting cover 100 through the fixing plate 620, and the stabilizing plate 610 is perpendicular to the evaporation Part of the plane 110 can extend into the water below the evaporation plane 110 (ie, the horizontal plane pq).
  • the stabilizing plate 610 is fixed on the inner wall of the solar heat collecting cover 100 through the fixing plate 620, and the stabilizing plate 610 is perpendicular to the evaporation Part of the plane 110 can extend into the water below the evaporation plane 110 (ie, the horizontal plane pq).
  • the stabilizing plate 610 can extend from the inside of the solar heat collecting cover 100 in a direction perpendicular to the evaporation plane 110 (that is, perpendicular to the water surface pq) to below the water surface pq, and the fixing plate 620 can It is fixed between the side walls of the opposite fresh water collection tank 120, and the stabilizing plate 610 can be vertically and cross-fixed with the fixing plate 620, thus, the fixed connection between the stabilizing plate 610 and the solar heat collecting cover 100 can be easily realized.
  • the 610 not only can better fix the solar heat collection cover 100 on the water surface, but also has the function of resisting wind and waves, and can prevent the solar heat collection cover 100 from being blown over by wind and waves, etc., and improve the structure and use stability of the solar heat collection cover 100 The performance of the seawater desalination device is further improved.
  • the material forming the stabilizing plate 610 is not particularly limited, and specifically, it may include at least one of plastic, stainless steel, and aluminum alloy. Therefore, the above-mentioned materials are lighter in weight and have better corrosion resistance, which further improves the performance of the seawater desalination device.
  • the seawater desalination device further includes an anti-wave board 900.
  • the anti-wave board 900 is arranged inside the solar heat collecting cover 100.
  • the anti-wave board 900 includes a plurality of interconnected and spaced anti-wave sub-boards 910.
  • a plurality of anti-wave sub-boards 910 are arranged perpendicular to the evaporation plane 110 (that is, perpendicular to the water surface pq), and can float on the water surface.
  • FIG. 23 the seawater desalination device.
  • a plurality of anti-wave sub-boards 910 are connected by a connecting rope 920, and the plurality of anti-wave sub-boards 910 are perpendicular to the evaporation plane 110 (that is, perpendicular to the water surface pq), and extend to the water surface pq.
  • the multiple anti-wave sub-boards 910 can offset the water waves inside the solar heat collection cover 100, prevent the solar heat collection cover 100 from being overturned by wind and waves (especially the wind and waves entering the solar heat collection cover 100), and further improve the The stability of the solar heat collecting cover 100 further improves the performance of the seawater desalination device.
  • the height of the anti-prodigal board 910 may be 5 cm-50 cm, specifically, the height of the anti-prodigal board 910 may be 10-30 cm, may be 15 cm, may be 20 cm, may be 25 cm, etc. Therefore, when the height of the anti-wave daughter board 910 is in the above range, it has a better effect of canceling wind and waves, further improving the stability of the solar heat collecting cover 100, and further improving the performance of the seawater desalination device.
  • the material forming the anti-proliferation board 910 is not particularly limited. Specifically, it may include at least one of plastic, stainless steel, and aluminum alloy, for example, it may include plastic foam. Float well on the water. Therefore, the above-mentioned materials are lighter in weight and have better corrosion resistance, which further improves the performance of the seawater desalination device.
  • the seawater desalination device may further include a fan, which is arranged above the evaporation plane, so as to use the air inside the solar heat collecting hood to form an airflow circulation. Therefore, after the fan forms an airflow circulation inside the solar heat collection hood, it can accelerate the movement of water vapor to the top of the solar heat collection hood and condense along the inner wall of the solar heat collection hood, speeding up the evaporation and condensation of water vapor, and further Improve the desalination efficiency.
  • a fan which is arranged above the evaporation plane, so as to use the air inside the solar heat collecting hood to form an airflow circulation. Therefore, after the fan forms an airflow circulation inside the solar heat collection hood, it can accelerate the movement of water vapor to the top of the solar heat collection hood and condense along the inner wall of the solar heat collection hood, speeding up the evaporation and condensation of water vapor, and further Improve the desalination efficiency.
  • the specific type of the fan is not particularly limited, as long as it can form a water-gas circulation inside the solar heat collecting cover, for example, it can be an axial fan, a fan, etc.
  • the number of fans is not particularly limited, for example, it may include at least one fan, and it may be 2, 3, 4, etc.
  • the seawater desalination device includes 4 fans, the 4 fans may be arranged symmetrically to each other and arranged around the center of the evaporation plane inside the solar heat collecting cover.
  • the previous stabilizing anchor can be connected to the solar heat collecting hood through a positioning rope, or connected to the solar heat collecting hood through a rod (ie, the center rod), and extend below the water surface.
  • the fan of the application embodiment can be fixed on the central pole of the stabilizer anchor. Thus, the fan can be easily fixed.
  • the seawater desalination device may further include a maintenance unit.
  • the unit can be set in the solar heat collecting hood to monitor the working conditions inside the solar heat collecting hood, and can be used for specific equipment maintenance, etc.
  • the overhaul unit can include an overhaul door, an overhaul channel, and an overhaul platform.
  • the overhaul door can be set On the side wall of the solar heat collecting cover, the inspection channel and the inspection platform can extend from the inspection door to the inside of the solar heat collecting cover.
  • the maintenance channel may be an annular channel fixed inside the solar heat collecting cover.
  • the size of the access door is not particularly limited.
  • the size of the access door can be suitable for the access of maintenance personnel for inspection and equipment maintenance.
  • the number of inspection doors is not particularly limited.
  • the inspection doors can not only be used as access channels for maintenance personnel, but also can be used as vents to help provide the interior of the solar heat collector. Heat dissipation and cooling, etc., to facilitate the safe entry of maintenance personnel, and to prevent the internal temperature of the solar heat collecting cover from being too high, causing safety accidents such as explosion.
  • two inspection doors can be arranged oppositely, for example, one can be used as an entrance for maintenance personnel, and the other can be used as an exit for maintenance personnel.
  • the two maintenance doors arranged oppositely not only facilitate the work of maintenance personnel, but also have two maintenance doors. When opened at the same time, it has a better ventilation effect, which helps to cool down the inside of the solar heat collecting cover faster.
  • the inspection door may be arranged on the inner wall of the solar heat collecting cover close to the fresh water collection tank, and the inspection channel may be arranged above the fresh water collection tank.
  • the solar heat collecting hood may further include an exhaust unit.
  • the exhaust unit may include an exhaust port and a fan. Yes, the exhaust port can be arranged on the top of the solar heat collecting cover, and the fan can be arranged at the exhaust port. Therefore, by rotating the fan, the solar heat collecting cover can be better radiated and cooled to avoid the The temperature inside the solar heat collector is too high, causing accidents such as explosion.
  • the seawater desalination device may further include an explosion-proof lamp, and the explosion-proof lamp may be arranged inside the solar heat collecting cover, so that the solar heat collecting cover The internal environment is monitored in real time to avoid safety accidents.
  • a semi-ellipsoidal solar heat collecting cover is designed, and the polar radius of the solar heat collecting cover is larger than the equatorial radius (that is, the length of the b-axis is greater than the a-axis),
  • the seawater desalination device can be directly placed on the water surface (for example, the sea surface) for use.
  • the seawater desalination device has a simple structure, low cost, convenient use, high solar energy utilization, and high seawater desalination efficiency.
  • this application proposes a method for seawater desalination using any one of the aforementioned seawater desalination devices.
  • the method includes: placing a semi-ellipsoidal solar heat collecting cover on the water surface, and the b axis of the solar heat collecting cover is perpendicular to the water surface; The water at the corresponding evaporation plane is heated and evaporates; the cooling unit is used to cool the outer surface of the solar heat collector; the evaporated water vapor is condensed along the arc-shaped inner wall of the solar heat collector, and the condensed fresh water It flows into the fresh water collection tank arranged at the bottom of the inner wall of the solar heat collecting cover. Therefore, this method can easily desalinate seawater and has high solar energy utilization.
  • the seawater desalination device further includes a heating unit
  • the method may further include: the solar heating plate heats the water in the water tank, and the heated hot water is supplied from the water outlet of the water tank to the heating set below the evaporation plane The hot water inlet of the pipe; after the hot water in the heating pipe is cooled, it is supplied to the water tank inlet of the return tank through the cold water outlet of the heating pipe. Therefore, the heating unit and the solar heat collecting hood can heat the seawater at the evaporation plane, further promote the evaporation of the seawater, and improve the efficiency of seawater desalination.
  • the temperature of the heating pipe and the hot water in the water tank can be controlled and adjusted, so as to better heat the seawater and promote its evaporation.
  • the temperature of the seawater at the heated evaporation plane It can be less than 60°C.
  • the method may further include: pumping seawater at a certain depth by a water pump, and supplying seawater with a lower temperature at a certain depth to a spray head arranged on the top of the solar heat collector.
  • the cooling unit can use the existing low-temperature seawater to cool the solar heat collection hood, and can promote the condensation of water vapor in the solar heat collection hood on the inner wall of the solar heat collection hood, thereby further improving the efficiency of seawater desalination
  • the structure of the seawater desalination device is further simplified, and the seawater desalination cost is saved.
  • Example 1 Fabrication of seawater desalination device with semi-ellipsoidal solar heat collecting cover
  • the structure of the solar heat collecting cover can refer to Figures 1, 3, 17 and 21-23.
  • the semi-ellipsoidal solar heat collecting cover 100 is formed of polyethylene film, and the equatorial plane of the solar heat collecting cover 100 is Circular, the length ratio of the b-axis to the a-axis (that is, the length ratio between the polar radius and the equatorial radius) of the solar heat collecting cover is 3:2.
  • the inner wall of the solar heat collecting cover 100 is provided with a plurality of stainless steel tube support frames 600 (refer to FIG. 17, the structure is similar to an umbrella frame and can be folded), and the inner wall 140 of the solar heat collecting cover 100 is provided with a unidirectional light-transmitting coating Layer and infrared reflective paint.
  • the turning point of the bottom of the solar heat collecting cover 100 is perpendicular to the sea surface to form a fresh water collection tank 120.
  • the bottom of the fresh water collection tank 120 has a fresh water outlet 130, and the fresh water outlet 130 is connected to an external fresh water storage unit 200.
  • the seawater desalination device further includes a spray head 410 which is arranged on the top of the solar heat collecting hood 100 and communicates with seawater through a pump 420.
  • the seawater desalination device further includes a plurality of stabilizing anchors 510.
  • one stabilizing anchor 510 extends from point B on the top of the solar heat collection cover 100 down to the seawater, and the other four stabilizing anchors ( Figure (Not shown in) respectively extending from the bottom of the fresh water collection tank 120 into the sea water, the entire device is fixed at a specific position on the water surface by a stabilizer 510, and is stabilized by the stabilizer plate 610, and the wave or surge resistance is reduced by the anti-wave plate 900 The impact of system fresh water.
  • Example 2 Fabrication of a seawater desalination device with a semi-ellipsoidal solar heat collecting hood and a heating unit
  • the other structure is the same as in Embodiment 1, the difference is that a heating tube is added below the evaporation plane 110, and the heating tube is connected to the external water tank and the solar panel.
  • a schematic diagram of the device is shown in Figure 20.
  • Example 3 Fabrication of a seawater desalination device with a semi-ellipsoidal solar heat collecting cover and an insulating heating layer
  • the structure of the solar heat collection cover can refer to Figures 3, 4, 17 and 21-23.
  • the semi-ellipsoidal solar heat collection cover 100 is formed of polyethylene film, and the equatorial plane of the solar heat collection cover 100 is Circular, the length ratio of the b-axis to the a-axis (that is, the length ratio between the polar radius and the equatorial radius) of the solar heat collecting cover is 3:2.
  • the inner wall of the solar heat collecting cover 100 is provided with 16 stainless steel tube support frames 600 (refer to FIG. 17, the structure is similar to the umbrella frame and can be folded), and the inner wall 140 of the solar heat collecting cover 100 is provided with a unidirectional light-transmitting coating Layer and infrared reflective paint.
  • the turning point of the bottom of the solar heat collecting cover 100 is perpendicular to the sea surface to form a fresh water collection tank 120.
  • the bottom of the fresh water collection tank 120 has a fresh water outlet 130, and the fresh water outlet 130 is connected to an external fresh water storage unit 200.
  • the evaporation plane 110 defined by the fresh water collecting tank 120 at the bottom of the solar heat collecting cover 100 is circular.
  • the structure of the insulating heating layer can refer to Fig. 12, the basswood is cut into a rectangular block along its growth direction, wherein the thickness direction is perpendicular to the growth direction. After the cut basswood is boiled in deionized water for 30 minutes, it is dried in an oven at 80°C for later use. Heat the flat iron block in the muffle furnace to 500°C and keep it at a constant temperature. After opening the furnace door, press one side of the dried wood block on the iron block, carbonize for 10 seconds and take it out, close the furnace door, and wait for the furnace temperature After the temperature is restored to 500°C, the carbonized surface is repeated three times to obtain a carbonized-uncarbonized double-layered wood.
  • the seawater desalination device further includes a spray head 410 which is arranged on the top of the solar heat collecting hood 100 and communicates with seawater through a pump 420.
  • the seawater desalination device further includes a plurality of stabilizing anchors 510.
  • one stabilizing anchor 510 extends from point B on the top of the solar heat collection cover 100 down to the seawater
  • the other four stabilizing anchors ( Figure (Not shown in) respectively extending from the bottom of the fresh water collection tank 120 to the sea water
  • the entire device is fixed at a specific position on the water surface by a stabilizing anchor 510, and is stabilized by a stabilizer plate 610, and a wave-resistant plate 800 is used to reduce the impact of waves or surges. The impact of system fresh water.
  • Example 4 Fabrication of a seawater desalination device with a semi-ellipsoidal solar heat collecting cover and a light-concentrating element
  • the structure of the solar heat collection cover can refer to Figure 3, Figure 13, Figure 17 and Figure 21-23, the semi-ellipsoidal solar heat collection cover 100 is formed of polyethylene film, the equatorial plane of the solar heat collection cover 100 is Circular, the length ratio of the b-axis to the a-axis (that is, the length ratio between the polar radius and the equatorial radius) of the solar heat collecting cover is 3:2.
  • the inner wall of the solar heat collecting cover 100 is provided with a plurality of stainless steel tube support frames 600 (refer to FIG. 17, the structure is similar to an umbrella frame and can be folded), and the inner wall 140 of the solar heat collecting cover 100 is provided with a unidirectional light-transmitting coating Layer and infrared reflective paint.
  • the turning point of the bottom of the solar heat collecting cover 100 is perpendicular to the sea surface to form a fresh water collection tank 120.
  • the bottom of the fresh water collection tank 120 has a fresh water outlet 130, and the fresh water outlet 130 is connected to an external fresh water storage unit 200.
  • the seawater desalination device further includes a spray head 410 which is arranged on the top of the solar heat collecting hood 100 and communicates with seawater through a pump 420.
  • the outside of the solar heat collecting cover 100 is provided with a plano-convex lens (that is, the light-concentrating element 800). Referring to FIGS.
  • the seawater desalination device further includes a plurality of stabilizer anchors 510, specifically, a stabilizer anchor 510
  • the top point B of the solar heat collecting cover 100 extends downward into the seawater, and the other four stabilizers (not shown in the figure) extend from the bottom of the freshwater collection tank 120 into the seawater, and the entire device is fixed in the seawater by the stabilizer 510
  • the specific position on the water surface is kept stable by the stabilizing board 610, and the anti-wave board 900 is used to reduce the impact of waves or surges on the fresh water of the system.
  • Example 5 Production of a seawater desalination device with a semi-ellipsoidal solar heat collecting cover, a light concentrator and an insulating heating layer
  • the other structure is the same as that of Embodiment 4, except that, referring to FIG. 16, an isolation heating layer 700 is provided at the evaporation plane 110.
  • the substrate 710 of the insulating heating layer 700 is made of ceramic material, and the pores 720 have a carbon black/activated carbon photothermal conversion material 730.
  • Example 6 Fabrication of seawater desalination device with semi-ellipsoidal solar heat collecting cover and photothermal conversion material
  • Example 5 Other manufacturing methods are the same as in Example 5, except that the seawater desalination device does not include a light-concentrating member.
  • Example 7 Fabrication of a seawater desalination device with a semi-ellipsoidal solar heat collecting cover and a photothermal conversion material
  • Example 4 Other manufacturing methods are the same as in Example 4, except that the seawater desalination device does not include a light-concentrating member, and the seawater desalination device has a carbon black/activated carbon photothermal conversion material placed on the evaporation plane 110.
  • Comparative Example 1 Fabrication of a seawater desalination device with a hemispherical solar collector cover
  • Example 2 Other manufacturing methods are the same as in Example 1, except that the structure of the solar heat collecting cover is hemispherical.
  • Example 1 and Comparative Example 1 near the same sea surface for desalination and real-time monitoring of fresh water collection in the fresh water collection tank
  • the amount of fresh water After a period of time, after the water produced by the desalination device is stable (that is, when the quality of fresh water increases per minute is a certain value), test: measure the total amount of fresh water produced by each desalination device within a certain period of time, and convert it to The quality of fresh water produced per square meter per hour (g/(m 2 h)) is the water production rate, which is the desalination efficiency.
  • the natural evaporation on the water surface is 60g/(m 2 h).
  • the seawater desalination efficiency of the seawater desalination device with a semi-ellipsoidal solar collector cover in Example 1 is 180g/(m 2 h), while the seawater desalination efficiency in Comparative Example 1
  • the seawater desalination efficiency of a seawater desalination device with a hemispherical solar heat collecting hood is 140g/(m 2 h). Therefore, compared with the seawater desalination device with the hemispherical solar heat collecting cover, the seawater desalination device with the semi-ellipsoidal solar heat collecting cover according to the embodiments of the present application has higher seawater desalination efficiency and higher solar energy utilization. rate.
  • the seawater desalination efficiency of the seawater desalination device with the semi-ellipsoidal solar heat collecting cover and the heating unit is 300g/(m 2 h), therefore, the heating unit and the semi-ellipsoidal solar heat collecting
  • the hood can jointly heat the water at the water-air interface in the evaporation area, further promote the evaporation of the seawater at the water-air interface, and improve the efficiency of seawater desalination.
  • Example 3 Comparing the test results of Example 1 and Example 3, it can be seen that the seawater desalination device with a semi-ellipsoidal solar heat collecting cover and an insulating heating layer in Example 3 has a water production rate that is higher than that of the semi-ellipsoidal solar collector in Example 1.
  • the water production rate of the seawater desalination device of the heat cover is 25%-40% higher.
  • the natural evaporation of the measured water surface is 60 ⁇ 300g/(m 2 h), for example, it can be 60g/(m 2 h).
  • the isolation heating layer in Example 3 is placed on the water surface, and the isolation heating layer is measured The amount of evaporation on the water surface is 500-600 g/(m 2 h), for example, 510 g/(m 2 h). It can be seen from the above test results that the water evaporation rate corresponding to the solar heat collecting cover with the insulating heating layer according to the embodiment of the present application is much higher than the natural evaporation on the water surface.
  • the test results show that the seawater desalination efficiency of the seawater desalination device with a semi-ellipsoidal solar heat collecting cover and a light-concentrating element in Example 4 is higher than that of the seawater desalination device without a light-concentrating element in Example 1, which proves that the application is
  • the light concentrator can increase the utilization rate of solar energy, thereby increasing the desalination efficiency.
  • the water evaporation rate test was performed on the seawater desalination devices in Example 5, Example 6, and Example 7, that is, the water evaporation rate at the evaporation plane of the seawater desalination device was tested, and the evaporation rate per unit area per unit time was measured.
  • the quality of water vapor that is, the evaporation rate (g/(m 2 h)).
  • the test results show that the evaporation rate of the seawater desalination device with the semi-ellipsoidal solar heat collecting cover and the photothermal conversion material in Example 7 is 500-700 g/(m 2 h), and the semi-ellipsoidal solar heat collecting in Example 6
  • the evaporation rate of the seawater desalination device with the cover and the insulating heating layer (the insulating heating layer has the light-to-heat conversion material) is 1000 ⁇ 1300g/(m 2 h), and the embodiment 5 has a semi-ellipsoidal solar heat collecting cover and concentrating light.
  • the evaporation rate of the seawater desalination device with the insulating heating layer is 2000 ⁇ 2500g/(m 2 h).
  • Example 6 By comparing the test data of Example 5 and Example 6, it can be seen that the light-concentrating member in the seawater desalination device of the present application can increase the water evaporation rate, thereby increasing the solar energy utilization rate, and thus the seawater desalination efficiency; and, through the comparison example
  • the test data of Example 6 and Example 7 show that the water evaporation rate corresponding to the solar heat collecting cover with the insulating heating layer in this application is higher than that of the solar heat collecting cover without the insulating heating layer.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

提出了一种海水淡化装置,包括:半椭球形的太阳能集热罩,所述太阳能集热罩的内壁底部具有淡水收集槽,所述淡水收集槽在所述太阳能集热罩的底部限定出蒸发平面,所述淡水收集槽中设置有淡水出水口,所述淡水出水口与淡水储存单元相连,其中,所述太阳能集热罩的b轴的长度大于a轴,且所述b轴垂直于所述蒸发平面;以及冷却单元,所述冷却单元设置在所述太阳能集热罩的外部,且被配置为对所述太阳能集热罩的外表面进行冷却。

Description

太阳能海水淡化装置以及海水淡化方法
优先权信息
本申请请求2019年02月01日向中国国家知识产权局提交的、专利申请号为201910105041.X的专利申请的优先权和权益,2019年02月01日向中国国家知识产权局提交的、专利申请号为201910105066.X的专利申请的优先权和权益,以及2019年08月22日向中国国家知识产权局提交的、专利申请号为201910779480.9的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及水处理领域,具体地,涉及太阳能海水淡化装置以及海水淡化方法。
背景技术
水是生命的起源,人类生存生活都离不开水。然而当今世界,人类面临着严峻的淡水资源短缺问题。海水淡化可以增加淡水总量,能够较好地利用水资源。海水淡化即利用海水脱盐产生淡水,海水淡化的方法有很多种,例如传统的冷冻法、蒸馏法、反渗透法、吸附法等。上述方法普遍存在能耗高且效率低、设备庞大复杂、成本高昂、并且会生成大量污染物等缺点。太阳能海水淡化是一种新兴且发展潜力巨大的技术该技术,该方法利用太阳能资源,通过光热转化,能够从海水中通过蒸发的方式获得淡水,该方法利用免费且取之不尽的太阳能资源,能够在一定程度上降低海水淡化的能耗和成本。并且,利用太阳能光热技术将太阳能转化为热能,该热能可以促进水体的蒸发和冷凝,即可以获得蒸馏净水,该太阳能光热技术也可实现高盐水的净化以及污水净化等,降低了污水处理成本。
申请内容
在本申请的一个方面,本申请提出了一种海水淡化装置。该海水淡化装置可以利用太阳能进行海水淡化,或者可以利用太阳能进行高盐水的净化和污水净化等。根据本申请的实施例,该海水淡化装置包括:半椭球形的太阳能集热罩,所述太阳能集热罩的内壁底部具有淡水收集槽,所述淡水收集槽在所述太阳能集热罩的底部限定出蒸发平面,所述淡水收集槽中设置有淡水出水口,所述淡水出水口与淡水储存单元相连,其中,所述太阳能集热罩的b轴的长度大于a轴,且所述b轴垂直于所述蒸发平面;以及冷却单元,所述冷却单元设置在所述太阳能集热罩的外部,且被配置为对所述太阳能集热罩的外表面进行冷却。由此,该海水淡化装置可以直接放置在水面(例如海面)上使用,结构简单,成本低廉,使用方便,该冷却单元可以促进太阳能集热罩内的水蒸气在该太阳能集热罩的内壁冷凝, 且具有该形状的太阳能集热罩有利于水蒸气沿着该太阳能集热罩的弧形内壁充分冷凝,该装置的太阳能利用率高,海水淡化效率高或净水效率高。
根据本申请的实施例,所述太阳能集热罩的所述b轴和所述a轴的长度比为(6:5)~(2:1)。由此,当该太阳能集热罩的b轴和a轴的长度比在该范围时,可以较好地促进水蒸气沿着该太阳能集热罩的内壁充分冷凝,进一步提高了该海水淡化装置的海水淡化效率。
根据本申请的实施例,所述太阳能集热罩的内壁设置有吸光涂层。由此,该吸光涂层可以较好地吸收太阳能中的热能,进一步提高了太阳能的利用率。
根据本申请的实施例,所述吸光涂层包括单向透光材料以及红外反射材料的至少之一。由此,该单向透光材料可使光线从外部射入该太阳能集热罩内,而光线不能从太阳能集热罩内透射出去,从而可以降低射入该太阳能集热罩内部的太阳能的损耗;该红外反射材料可将入射至太阳能集热罩内部的太阳光中的红外光局限在太阳能集热罩内部,从而可以更好地利用红外光中的热量。由此,该吸光涂层可以提高用于海水蒸发的热能占比,进一步提高了太阳能的利用率。
根据本申请的实施例,形成所述太阳能集热罩的材料包括聚碳酸酯、聚乙烯、聚氯乙烯、聚氨酯、聚甲基丙烯酸甲酯、聚对苯二甲酸及其衍生物、玻璃的至少之一。由此,该太阳能集热罩具有较好的集热作用,可以减小热量损耗,可进一步提高太阳能集热罩的太阳能利用率。
根据本申请的实施例,所述淡水收集槽与所述太阳能集热罩是一体成型的,所述淡水收集槽为环形的。由此,进一步简化了该太阳能集热罩的结构以及制备工艺,并且,该环形的淡水收集槽可以较好地收集从太阳能集热罩内壁各处冷凝的淡水,进一步提高了该海水淡化装置的使用性能。
根据本申请的实施例,所述冷却单元包括:喷淋头,所述喷淋头设置在所述太阳能集热罩的顶部;以及抽水泵,所述抽水泵用于抽吸一定深度的海水并将所述海水供给至所述喷淋头。由此,当该海水淡化装置直接放置在海面上使用时,该抽水泵可以抽吸一定深度的温度较低的海水,并将其供给至喷淋头,对该太阳能集热罩的外表面进行冷却降温,因此,该冷却单元可以利用已有的温度较低的海水对太阳能集热罩进行冷却,进一步简化了该海水淡化装置的结构,节约海水淡化成本。
根据本申请的实施例,所述海水淡化装置进一步包括:隔离加热层,所述隔离加热层位于所述太阳能集热罩的内部,且设置在所述蒸发平面处,所述隔离加热层包括基体,所述基体的内部具有孔道,所述隔离加热层被配置为可与水面接触,且可通过所述孔道将海水吸收至所述隔离加热层的内部,所述基体中至少在所述基体远离所述水面的一侧,具有光热转化材料。由此,该隔离加热层可将部分海水吸收至其内部,该太阳能集热罩收集的 热量以及该光热转化材料可以对吸收至该隔离加热层内部的海水进行加热蒸发,加热蒸发效率高。
根据本申请的实施例,所述基体包括多孔材料、气凝胶、碳材料、有机纤维的至少之一;所述光热转化材料包括金属纳米粒子、碳材料、等离子激元材料以及半导体材料的至少之一。由此,一方面,形成该隔离加热层的材料来源广泛,且价格较为低廉,可降低海水淡化的成本;另一方面,该基体可以较好地将海水吸收至其内部,避免了太阳能集热罩以及光热转化材料对整个水体进行加热,造成加热蒸发效率低且热量损耗严重的问题;该光热转化材料的太阳能利用率高,可以在其周围产生高温,促进该隔离加热层内部的水蒸发,进一步提高了太阳能利用率,提高了海水淡化效率或净水效率。
根据本申请的实施例,所述隔离加热层包括光热转化部以及隔热部,其中,所述隔热部的内部具有通孔,所述隔热部和所述水面接触,且可将海水吸收至所述通孔中,所述光热转换部与所述隔热部相接触,且至少可对所述隔热部远离所述水面一侧的所述通孔的开口处进行加热。由此,该隔热部可以较好地将水吸收至其内部,该光热转化部可至少对通孔开口处(即隔热部和光热转化部相接触处)的水进行加热蒸发,进一步提高了太阳能利用率,提高了海水淡化效率或净水效率。
根据本申请的实施例,所述光热转化部以及所述隔热部层叠设置。由此,进一步提高了太阳能利用率,提高了海水淡化效率或净水效率。
根据本申请的实施例,所述隔热部为杯状的,所述杯状的所述隔热部的杯底和所述水面接触,所述光热转化部设置在所述杯状的所述隔热部的内部。由此,该光热转化部可以充分地对与其接触的隔热部的通孔开口处的水进行加热蒸发,进一步提高了太阳能利用率,提高了海水淡化效率或净水效率。
根据本申请的实施例,所述隔热部包括毛细管,所述毛细管的底部和所述水面接触,所述毛细管的顶部设置有所述光热转化部。由此,该光热转化部可以对该毛细管吸收至毛细管顶部的水进行加热蒸发,进一步提高了太阳能利用率,提高了海水淡化效率或净水效率。
根据本申请的实施例,所述隔热部以及所述光热转化部组成盒形结构,其中,所述光热转化部形成所述盒形结构的顶面,所述隔热部形成所述盒形结构的四个侧面,或者形成所述盒形结构的所述的四个侧面以及底面。由此,该隔热部可以较好地将水吸收至其内部,并且该隔热部内部的水可以流至和光热转化部接触,进而光热转化部可对该水进行加热,进一步提高了太阳能利用率,提高了海水淡化效率或净水效率。
根据本申请的实施例,形成所述光热转化部的材料包括金属纳米粒子、碳材料、等离子激元材料以及半导体材料的至少之一;形成所述隔热部的材料包括多孔材料、气凝胶、 碳材料、有机纤维的至少之一。由此,形成该隔离加热层的材料来源广泛,且价格较为低廉,可降低海水淡化的成本或净水成本,并且可以提高太阳能利用率,提高了海水淡化效率或净水效率。
根据本申请的实施例,所述基体是由木材形成的,沿着所述木材中纤维延伸的方向,所述木材的上部被碳化,被碳化的所述木材的孔道中,填充有金属纳米粒子。由此,该木材廉价易得,且该木材中的纤维之间具有很多天然孔道,可以充分地吸水,该孔道中的金属纳米粒子吸收太阳能之后可在其周围产生高温,有利于孔道中的水受热蒸发,进一步提高了太阳能利用率以及水蒸发效率。
根据本申请的实施例,所述海水淡化装置进一步包括:聚光件,所述聚光件被配置为可对照射至所述太阳能集热罩的太阳光进行聚焦。由此,该聚光件可以对照射至太阳能集热罩的太阳光进行聚焦,提高太阳能利用率,可以较好地促进蒸发平面处的水受热蒸发。
根据本申请的实施例,所述聚光件包括凸透镜、菲涅尔透镜以及平凸透镜的至少之一。由此,该聚光件可以较好地对太阳光进行汇聚,提高太阳光利用率,进而可以提高太阳能集热罩内部的温度,促进蒸发平面处的水蒸发,提高该装置的海水淡化效率或净水效率。
根据本申请的实施例,所述聚光件设置在所述太阳能集热罩的外部,且可将太阳光聚焦至所述太阳能集热罩中。由此,可以进一步提高太阳光利用率,提高海水淡化效率或净水效率。
根据本申请的实施例,所述聚光件设置在所述太阳能集热罩的内部,且可将照射至所述太阳能集热罩的太阳光聚焦至所述蒸发平面处。由此,该聚光件可将太阳光聚焦至蒸发平面处,可以进一步促进蒸发平面处的水蒸发,提高海水淡化效率或净水效率。
根据本申请的实施例,所述聚光件设置并固定在所述太阳能集热罩的内表面上。由此,可以简便地将聚光件固定在太阳能集热罩的内部,并且,固定在太阳能集热罩内部的聚光件可以较好地将照射至太阳能集热罩内部的太阳光聚焦至蒸发平面处,进一步促进蒸发平面处的水蒸发,提高海水淡化效率或净水效率。
根据本申请的实施例,所海水淡化装置包括多个所述聚光件,多个所述聚光件间隔分布在所述太阳能集热罩的内表面上。由此,可以进一步促进蒸发平面处的水蒸发,提高海水淡化效率或净水效率。
根据本申请的实施例,该海水淡化装置进一步包括:加热单元,所述加热单元被配置为可对所述蒸发平面进行加热。由此,该加热单元可以对该蒸发平面对应处的水进行加热,进一步促进海水蒸发,提高了海水淡化效率或净水效率。
根据本申请的实施例,所述加热单元包括:太阳能加热板,所述太阳能加热板被配置为可对水箱内的水加热,所述水箱具有水箱进水口以及水箱出水口;以及加热管,所述加 热管被配置为可对所述蒸发平面进行加热,所述加热管具有热水进水口以及冷水出水口,所述热水进水口和所述水箱出水口相连,所述冷水出水口和所述水箱进水口相连。由此,可以利用太阳能对水箱中的水进行加热,加热后的热水可供给至加热管中对水气界面处的水(如蒸发平面处的海面)进行加热,促进该蒸发平面处的水气界面的水蒸发,并且加热管中的水冷却后还可以供给回水箱进行循环加热,由此,可以进一步节约能源,降低海水淡化成本或降低净水成本。
根据本申请的实施例,所述加热管是螺旋形的,所述加热管的外表面的颜色为黑色。由此,该螺旋形的加热管能够较好地对蒸发平面处的水进行加热,并且,外表面为黑色的加热管可以进一步提高加热效率。
根据本申请的实施例,该海水淡化装置进一步包括:用于支撑所述太阳能集热罩的多个支撑架,所述多个支撑架可开合。由此,该支撑架可以较好地支撑太阳能集热罩,维持太阳能集热罩的形状,并且,该多个支撑架可带动该太阳能集热罩收合,进一步方便该海水淡化装置的使用。
根据本申请的实施例,该海水淡化装置进一步包括:稳定锚,所述稳定锚和所述太阳能集热罩的顶部和所述淡水收集槽的底部的至少之一相连接。由此,该稳定锚可将该太阳能集热罩固定在水面的一定位置处,防止该太阳能集热罩被风浪吹翻等,提高了该太阳能集热罩的结构稳定性,进一步提高了该海水淡化装置的使用性能。
根据本申请的实施例,该海水淡化装置进一步包括:稳定板,所述稳定板通过固定板固定在所述太阳能集热罩的内壁上,所述稳定板垂直于所述蒸发平面并有部分可延伸至所述蒸发平面下方水体中。由此,利用该稳定板和固定板,可以较好地将该太阳能集热罩固定在水面上,防止该太阳能集热罩被风浪吹翻等,提高了该太阳能集热罩的结构以及使用稳定性,进一步提高了该海水淡化装置的使用性能。
根据本申请的实施例,形成所述稳定板的材料包括塑料、不锈钢以及铝合金的至少之一。由此,上述材料质量较轻,且具有较好的抗腐蚀性,进一步提高了该海水淡化装置的使用性能。
根据本申请的实施例,该海水淡化装置进一步包括:抗浪板,所述抗浪板设置在所述太阳能集热罩的内部且可漂浮与水面上,所述抗浪板包括多个互相连接且间隔设置的抗浪子板,多个所述抗浪子板垂直于所述蒸发平面设置。由此,多个抗浪子板可以抵消太阳能集热罩内部的水浪,防止该太阳能集热罩被风浪(尤其是进入太阳能集热罩内部的风浪)掀翻,进一步提高了该太阳能集热罩的稳定性,进一步提高了该海水淡化装置的使用性能。
根据本申请的实施例,形成所述抗浪子板的材料包括塑料、不锈钢以及铝合金的至少之一。由此,上述材料质量较轻,且具有较好的抗腐蚀性,进一步提高了该海水淡化装置 的使用性能。
根据本申请的实施例,所述抗浪子板的高度为5cm-50cm。由此,抗浪子板的高度在上述范围时,具有较好的抵消风浪的作用,进一步提高了该海水淡化装置的使用性能。
根据本申请的实施例,该海水淡化装置进一步包括:至少一个风机,所述风机设置于所述蒸发平面的上方,以利用所述太阳能集热罩内部的空气形成气流循环。由此,该风机在太阳能集热罩内部形成气流循环后,可加快水蒸气向太阳能集热罩的顶部运动,并沿着太阳能集热罩的内壁冷凝,加快了水蒸气的蒸发和冷凝,进一步提高了海水淡化效率。
根据本申请的实施例,该海水淡化装置进一步包括:4个所述风机,4个所述风机彼此对称设置,且围绕所述太阳能集热罩内部的所述蒸发平面的中心设置。由此,4个风机可以在太阳能集热罩内部形成水气微循环,有利于水蒸气向太阳能集热罩的顶部运动,并沿着太阳能集热罩的内壁冷凝,进一步提高了海水淡化效率或净水效率。
根据本申请的实施例,所述风机可固定于稳定锚的中心杆。由此,可以简便地将风机固定。
在本申请的另一方面,本申请提出了一种利用前面任一项所述的海水淡化装置进行海水淡化的方法。根据本申请的实施例,该方法包括:将半椭球形的太阳能集热罩放置在水面上,所述太阳能集热罩的b轴垂直于所述水面;利用所述太阳能集热罩收集的热量对所述太阳能集热罩的蒸发平面对应处的水进行加热,并使其蒸发;利用冷却单元对所述太阳能集热罩的外表面进行冷却;蒸发后的水蒸气沿着所述太阳能集热罩的弧形内壁冷凝,冷凝后的淡水流至设置在所述底部的淡水收集槽中。由此,该方法可以简便地进行海水淡化或进行污水净化等,太阳能利用率高,且海水淡化效率高,净水效率高。
根据本申请的实施例,所述海水淡化装置进一步包括加热单元,所述方法进一步包括太阳能加热板对水箱内的水加热,加热后的热水从水箱出水口供给至设置在所述蒸发平面下方的加热管的热水进水口中;所述加热管中的所述热水冷却之后,通过所述加热管的冷水出水口供给回所述水箱的水箱进水口。由此,该加热单元可以进一步对蒸发平面对应处的水气界面处的海水进行加热,进一步促进海水蒸发,提高了海水淡化效率或净水效率。
根据本申请的实施例,所述方法进一步包括:抽水泵抽吸一定深度的海水并将所述海水供给至设置在所述太阳能集热罩的顶部的喷淋头。由此,该冷却单元可以利用已有的温度较低的海水对太阳能集热罩进行冷却,可以促进太阳能集热罩内的水蒸气在该太阳能集热罩的内壁冷凝,进一步提高了海水淡化效率,并且,进一步简化了该海水淡化装置的结构,节约海水淡化成本或节约净水成本。
附图说明
图1显示了根据本申请一个实施例的海水淡化装置的结构示意图;
图2显示了现有的椭球的结构示意图;
图3显示了根据本申请一个实施例的海水淡化装置的部分结构示意图;
图4显示了根据本申请另一个实施例的海水淡化装置的结构示意图;
图5显示了根据本申请一个实施例的隔离加热层的剖面结构示意图;
图6显示了根据本申请一个实施例的隔离加热层的俯视图;
图7显示了根据本申请另一个实施例的隔离加热层的剖面结构示意图;
图8显示了根据本申请另一个实施例的隔离加热层的剖面结构示意图;
图9显示了根据本申请一个实施例的隔离加热层的结构示意图;
图10显示了根据本申请又一个实施例的隔离加热层的剖面结构示意图;
图11显示了根据本申请又一个实施例的隔离加热层的剖面结构示意图;
图12显示了根据本申请又一个实施例的隔离加热层的剖面结构示意图;
图13显示了根据本申请又一个实施例的海水淡化装置的结构示意图;
图14显示了根据本申请一个实施例的海水淡化装置的部分结构示意图;
图15显示了根据本申请另一个实施例的海水淡化装置的部分结构示意图;
图16显示了根据本申请又一个实施例的海水淡化装置的结构示意图;
图17显示了根据本申请又一个实施例的海水淡化装置的结构示意图;
图18显示了根据本申请又一个实施例的海水淡化装置的部分结构示意图;
图19显示了根据本申请又一个实施例的海水淡化装置的部分结构示意图;
图20显示了根据本申请又一个实施例的海水淡化装置的部分结构示意图;
图21显示了根据本申请又一个实施例的海水淡化装置的部分结构示意图;
图22显示了根据本申请又一个实施例的海水淡化装置的部分结构示意图;
图23显示了根据本申请又一个实施例的海水淡化装置的部分结构示意图;以及
图24显示了根据本申请一些实施例的海水淡化装置的海水淡化效率测试结果图。
附图标记:
1000:海水淡化装置;100:太阳能集热罩;110:蒸发平面;120:淡水收集槽;130:淡水出水口;140:内壁;200:淡水储存单元;300:加热单元;310:太阳能加热板;320:水箱;330:加热管;400:冷却单元;410:喷淋头;420:抽水泵;510:稳定锚;520:定位绳;610:稳定板;620:固定板;700:隔离加热层;710:基体;720:孔道;730:光热转化材料;10:隔热部;11:通孔;12:毛细管;20:光热转化部;800:聚光件;900:抗浪板;910:抗浪子板;920:连接绳;600:支撑架;2000:椭球。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
在本申请的一个方面,本申请提出了一种海水淡化装置。根据本申请的实施例,参考图1,该海水淡化装置1000包括:半椭球形的太阳能集热罩100、淡水储存单元200以及冷却单元400,其中,太阳能集热罩100的内壁140的底部具有淡水收集槽120(参考图中所示出的“顶”、“底”方向),淡水收集槽120在太阳能集热罩100的底部(参考图中示出的“底”方向)限定出蒸发平面110,淡水收集槽120中设置有淡水出水口130,淡水出水口130与淡水储存单元200相连,并且,该太阳能集热罩100的b轴的长度大于a轴,且b轴垂直于蒸发平面110。由此,该海水淡化装置1000可以直接放置在水面(例如海面)上使用,其中,太阳能集热罩100的底部和水面接触,该太阳能集热罩100能够较好地收集太阳能,并利用太阳能中的热能对蒸发平面110对应处的水进行加热,该冷却单元400可以促进太阳能集热罩100内的水蒸气冷凝,且具有该形状的太阳能集热罩100有利于水蒸气沿着该太阳能集热罩100的弧形内壁140充分冷凝,该淡水收集槽120可以简便地收集冷凝后的淡水(参考图1中所示出的,水蒸气可以沿着图中的m 1、m 2方向冷凝,并且流至底部的淡水收集槽120中)。由此,该海水淡化装置1000结构简单,成本低廉,使用方便,且太阳能利用率高,净水效率高,海水淡化效率高。
需要说明的是,参考图2所示出的椭球结构,该椭球2000包括赤道半径a和a’(分别沿x轴以及y轴),以及极半径b(沿z轴),赤道半径a和a’所在的平面即为赤道平面,其中,b>a,且b>a’,即该椭球为长球面。根据本申请实施例的“半椭球形”是指将该椭球2000沿着赤道平面或者平行于该赤道平面的平面进行切割而得到的图形,其中,根据本申请实施例的“太阳能集热罩的b轴、a轴以及a’轴”即为该椭球2000的极半径b以及赤道半径a和a’,根据本申请实施例的蒸发平面即为平行于该椭球2000的赤道平面的平面。根据本申请实施例的半椭球形的太阳能集热罩100为将该椭球2000沿赤道平面进行切割后形成的图形,图1中所示出的太阳能集热罩100,为将该半椭球形的太阳能集热罩沿着过顶点B以及直线AA’的剖面结构示意图。并且,需要说明的是,为了便于理解,本申请的所有附图中,太阳能集热罩100均采用该剖面结构示意图代替整个太阳能集热罩。
为了便于理解,下面首先对根据本申请实施例的海水淡化装置能够实现上述有益效果的原理进行简单说明:
如前所述,目前利用太阳能的海水淡化装置,其构型设计较为复杂,且不能对吸收的太阳能进行高效利用,制造以及运行成本高。而根据本申请实施例的海水淡化装置,通过设计一种半椭球形的太阳能集热罩,该太阳能集热罩可直接放置在水面(例如海面)上,并利用集热罩收集太阳能,利用太阳能中的热能对蒸发平面对应处的水进行加热,促进其蒸发,并通过冷却单元促进该太阳能集热罩内部的水蒸气冷凝,并且,该半椭球形太阳能集热罩的b轴的长度大于a轴,有利于水蒸气沿着该太阳能集热罩的弧形内壁充分冷凝,并且冷凝后的淡水可流至设置在该太阳能集热罩底部边缘的淡水收集槽中,避免冷凝的淡水在流入淡水收集槽内之前,在太阳能集热罩的内壁滴落至海面。并且,申请人通过大量实验发现,当太阳能集热罩的b轴小于或等于a轴时,太阳能集热罩底部与顶端的温差较小,不利于水蒸气冷凝,热损耗较大,太阳能利用率低;而且,冷凝后的水滴附着于太阳能集热罩的内壁上后,由于太阳能集热罩的内壁坡度太小(内壁坡度即内壁相对于水面的倾斜程度),不利于水滴沿着太阳能集热罩的内壁流到底部的淡水收集槽内,部分淡化后水滴直接滴落回原水体,从而降低了海水淡化效率。因此,根据本申请实施例的太阳能集热罩,其b轴大于a轴,有利于水蒸气沿着该太阳能集热罩的弧形内壁充分冷凝,并且冷凝后的淡水可较好地流至设置在该太阳能集热罩底部边缘的淡水收集槽中。由此,根据本申请实施例的太阳能集热罩结构简单,使用方便,成本较低,且可以较好地促进蒸发平面处的水蒸发和冷凝,可以提高太阳能利用率以及海水淡化效率。
根据本申请的实施例,该太阳能集热罩100的具体大小以及形状不受特别限制,只要其为半椭球形,并且其b轴大于a轴,且大于a’轴即可。如前所述,“半椭球形”并不局限于椭球的二分之一,也可以为椭球的三分之一,只要该“半椭球形”是沿着椭球的赤道平面或者平行于该赤道平面的平面进行切割而得到的即可。根据本申请的实施例,参考图1,该半椭球形的太阳能集热罩100的底面(参考图中所示出的“底”方向)可以为圆形也可以为椭圆形,当该底面为圆形时,即赤道半径a和a’大小相等,且均小于极半径b;当该底面为椭圆形时,即赤道半径a和a’大小不相等,但均小于极半径b。
根据本申请的实施例,太阳能集热罩100的极半径b和赤道半径(a或a’)的长度比(即该太阳能集热罩的b轴和a轴的长度比)可以为(6:5)~(2:1),具体的,可以为5:4,可以为4:3,可以为3:2等。由此,当该太阳能集热罩100的b轴和a轴的长度比在该范围时,水蒸气能在太阳能集热罩顶部大量迅速凝结,并且冷凝后的淡水可以沿着该内壁流至底部的淡水收集槽中,进一步提高了该海水淡化装置1000的海水淡化效率。如前所述,当太阳能集热罩的b轴小于或等于a轴时,不利于水的蒸发和冷凝,并且不利于冷凝后的水 流至底部的淡水收集槽,太阳能利用率较低,且海水淡化效率较低。具体的,当太阳能集热罩的b轴和a轴的比值过大时,例如大于2比1时,该太阳能集热罩在户外使用时受海浪及风载等影响大,造成该太阳能集热罩的稳定性较差,实际使用效果不佳。因此,该太阳能集热罩的b轴和a轴的长度比在上述范围中时,有利于水蒸气在太阳能集热罩顶部大量凝结,并且冷凝后的淡水可较好地沿着内壁流到底部的淡水收集槽内,并且该太阳能集热罩在波浪和风载条件下稳定性较好,有利于该海水淡化装置在户外海面上直接使用。
根据本申请的实施例,太阳能集热罩的内壁底部设置有淡水收集槽,淡水收集槽的具体形状和设置方式不受特别限制,只要能收集沿太阳能集热罩的内壁流至底部的淡水即可。具体的,淡水收集槽120可以为环形的,即淡水收集槽120可以为环绕该太阳能集热罩100的内壁底部边缘一周的环形槽。由此,该环形的淡水收集槽120可以较好地收集从太阳能集热罩100内壁各处冷凝的淡水,进一步提高了该海水淡化装置1000的使用性能。
具体的,参考图1,淡水收集槽120与太阳能集热罩100可以是一体成型的,即淡水收集槽120可以是通过将太阳能集热罩100的底部的边缘向内弯折而形成的,由此,可以简便地形成淡水收集槽120,进一步简化了该海水淡化装置1000的结构以及制备工艺。具体的,参考图1,淡水收集槽120的底部可以是圆弧形的,由此,圆弧形底部有利于该太阳能集热罩100漂浮在水面上,且可以防止该太阳能集热罩100侧翻等,提高了该太阳能集热罩的使用稳定性;具体的,淡水收集槽120的侧壁(参考图1中所示出的EF)可以为直线型的,由此,该直线型的侧壁具有抵抗风浪的效果,可防止蒸发平面处的海水溅入淡水收集槽内部,进一步提高了该海水淡化装置的使用性能。根据本申请的实施例,参考图1,淡水收集槽120在该太阳能集热罩100的底部限定出蒸发平面110,该淡水收集槽120为环形槽时,蒸发平面110也可以为圆形。
根据本申请的实施例,该淡水收集槽120的侧壁EF可以较长,即该太阳能集热罩100的底部边缘可以向上弯折较长,由此,可以避免淡水收集槽120的容量过小,淡水从该边缘EF处溢出。根据本申请的实施例,该海水淡化装置1000可以进一步包括淡水收集泵(图中未示出),该淡水收集泵设置在淡水出水口130和淡水储存单元200之间,可将淡水收集槽120中的淡水抽吸至淡水存储单元200中。
根据本申请的实施例,形成太阳能集热罩100的材料不受特别限制,具体的,可以包括红外反射型材料,例如具体可以为聚碳酸酯、聚乙烯、聚氯乙烯、聚氨酯、聚甲基丙烯酸甲酯、聚对苯二甲酸及其衍生物、玻璃的至少之一。该红外反射型材料可将入射至太阳能集热罩内部的太阳光中的红外光局限在太阳能集热罩内部,从而可以更好地利用红外光中的热量。由此,该太阳能集热罩具有较好的集热作用,可以较好地收集将入射的太阳光,利用太阳能中蕴含的热能,对蒸发平面处的水进行加热,并且由上述材料形成的太阳能集 热罩可以减小热量损耗,可进一步提高太阳能集热罩的太阳能利用率。并且,上述材料比较廉价易得,且较为轻便,因而该海水淡化装置使用方便,且可进一步降低海水淡化的成本。
根据本申请的实施例,太阳能集热罩100的内壁140可以设置吸光涂层,该吸光涂层可以较好地吸收太阳能,因而该太阳集热罩100能较好地利用太阳能中的热能进行海水淡化,进一步提高了太阳能的利用率。根据本申请的实施例,该吸光涂层包括可以单向透光材料以及红外反射材料的至少之一。需要说明的是,根据本申请实施例的太阳能集热罩100本身也可以是由具有单向透光性能或者红外反射性能的材料形成的,如前所述,太阳能集热罩100可以是由具有红外反射性能的聚乙烯、聚碳酸酯等材料形成的,因此,在该情况下,该太阳能集热罩100的内壁无需再设置吸光涂层,或者,当太阳能集热罩100是由单向透光材料形成时,该吸光涂层可以是由红外反射材料形成的;当太阳能集热罩100是由红外反射材料形成时,该吸光涂层可以是单向透光材料由形成的。由此,该单向透光材料可使光线从外部射入该太阳能集热罩内,而光线不能从太阳能集热罩内透射出去,因此该单向透光材料形成的吸光涂层可以减小射入该太阳能集热罩内部的太阳能的损耗,提高太阳能的利用率;具体的,该红外反射材料可以较好地将入射至太阳能集热罩内部的太阳光中的红外光局限在太阳能集热罩内部,从而可以更好地利用红外光中的热量,由此,上述吸光涂层可以提高用于海水蒸发的热能占比,进一步提高了太阳能的利用率。
根据本申请的实施例,参考图1,冷却单元400设置在太阳能集热罩100的外部,且可对太阳能集热罩100的外表面进行冷却。由此,该冷却单元400可以促进太阳能集热罩100内的水蒸气在该太阳能集热罩100的内壁140冷凝,进一步提高了海水淡化效率。
根据本申请的具体实施例,参考图3,冷却单元400可以包括喷淋头410以及抽水泵420,喷淋头410设置在太阳能集热罩110的顶部,抽水泵420用于抽吸一定深度的海水并将海水供给至喷淋头410。由此,当该海水淡化装置1000直接放置在海面上使用时,该抽水泵420可以抽吸一定深度的温度较低的海水,并将其供给至喷淋头410(海水供给的方向参考图3中的g 1、g 2方向),温度较低的海水对该太阳能集热罩100的外表面进行冷却降温(温度较低的海水可以沿着图3中所示出的n 1和n 2的方向流动)。由于海水比热容较大,因此,一定深度处的海水的温度较低,能够用于冷却太阳能集热罩100,并且,抽水泵420只需抽吸较浅位置处的海水,即可满足冷却需求,因此,抽水泵无需耗费过多的能量。因此,该冷却单元可以利用已有的温度较低的海水对太阳能集热罩100进行冷却,进一步简化了该海水淡化装置1000的结构,节约海水淡化成本,并且可以提高水蒸气冷凝的效果,进一步提高海水淡化效率。
根据本申请的实施例,参考图4,海水淡化装置1000可以进一步包括:隔离加热层700, 隔离加热层700设置在太阳能集热罩100的内部,且设置在蒸发平面110处。具体的,参考图5,隔离加热层700包括基体710,基体710的内部具有孔道720,隔离加热层700可与水面(参考图4以及图5中示出的虚线pq)接触,且可通过孔道720将水吸收至隔离加热层700的内部,基体700中至少在基体700远离水面的一侧具有光热转化材料730。由此,该海水淡化装置1000直接放置在水面(例如海面)上使用时,太阳能集热罩100的底部以及隔离加热层700的底部(参考图中示出的“底”方向)和水面pq接触,该隔离加热层700可将水面pq处的水吸收至该隔离加热层700的内部,该太阳能集热罩100能够较好地收集太阳能,该光热转化材料730可以较好地吸收太阳能并在其周围产生高温,该太阳能集热罩100收集的热量以及该光热转化材料730产生的热量可以对吸收至该隔离加热层700内部的水进行加热蒸发,加热蒸发效率高,太阳能利用率高;也即是说,该隔离加热层700可以将太阳能集热罩100以及光热转化材料730和整个水面隔开,避免了太阳能集热罩100以及光热转化材料730对整个水体进行加热,造成加热蒸发效率低且热量损耗严重的问题,并且,该隔离加热层700可以将水吸收至其内部的孔道720中,因而,太阳能集热罩100以及光热转化材料730可以仅对吸收至该隔离加热层700内部的水进行加热,水蒸发效率高,进一步提高了太阳能利用率以及净水效率(例如海水淡化效率)。并且,形成该隔离加热层700的材料来源广泛,且价格较为低廉,可降低海水淡化的成本或净水成本。
根据本申请的实施例,参考图4,隔离加热层700位于太阳能集热罩100的内部,且设置在太阳能集热罩100的蒸发平面110处。根据本申请的实施例,隔离加热层700的大小、形状以及数目不受特别限制,只要其位于蒸发平面110处且可以和水面pq接触即可。具体的,如前所述,蒸发平面110可以为圆形的,因此,参考图6,隔离加热层700的俯视图也可以是圆形的,并且,该隔离加热层700的直径(参考图6中所示出的直径T)可以和蒸发平面110的直径相同。由此,该隔离加热层700可以尽可能多地吸收水,提高了该海水淡化装置的净水效率(例如海水淡化效率)。具体的,该圆形的隔离加热层700的直径还可以小于蒸发平面110的直径。具体的,该隔离加热层700的俯视图也可以是方形的,例如可以是正方形的。具体的,该隔离加热层700也可以包括多个子隔离加热层,例如,当该隔离加热层700的基体包括木材时,可以将木材延其生长方向制备为本申请中的隔离加热层的结构(即子隔离加热层),然后可以将多个子隔离加热层放置在太阳能集热罩100的蒸发平面110对应处的水面上,以便形成隔离加热层700,且形成的隔离加热层700可以覆盖蒸发平面110处的绝大部分水面,因此,该隔离加热层700吸水较多,可提高该海水淡化装置的净水效率(例如海水淡化效率)。
根据本申请的实施例,参考图5以及图6(图5可以为沿图6中GG’方向的截面图),隔离加热层700包括基体710,基体710的内部具有孔道720,该隔离加热层700和水面接 触时,水面pq处的水可以沿着图中所示的从“底”到“顶”的方向进入隔离加热层700的内部,基体710中具有光热转化材料730,光热转化材料730至少设置在基体710远离水面pq的一侧,该光热转化材料730可以吸收太阳能,并在其周围产生局域的高温,促进其周围的水受热蒸发。具体的,光热转化材料730可以设置在孔道720中,由此,有利于光热转化材料730产生的热量对孔道720中的水进行加热,促进孔道720中的水受热蒸发,避免了该光热转化材料以及太阳能集热罩收集的热量对整个水体进行加热,造成加热蒸发效率低以及热量损耗严重的问题,因而,该隔离加热层700提高了水蒸发效率。
根据本申请的实施例,形成基体710的材料不受特别限制,只要其内部具有孔道,该孔道可以吸收水即可。具体的,形成基体710的材料可以包括多孔材料、气凝胶、碳材料、有机纤维的至少之一,例如,可以为高分子多孔材料、天然木材等,上述材料来源广泛,且价格较为低廉,可降低净水(例如海水淡化)的成本。具体的,形成基体710的材料可以包括木材,木材沿着其纤维延伸的方向,具有天然的孔道,并且木材碳化后本身还具有吸光性能(即光热转化性能),因此,由木材形成基体710时,价格低廉,并且吸水性能良好。
根据本申请的实施例,光热转化材料的具体类型不受特别限制,只要其具有光热转化性能,可以较好地吸收太阳能并产生热能即可。具体的,光热转化材料可以包括金属纳米粒子、碳材料、等离子激元材料以及半导体材料的至少之一,例如可以为Ag,Au,Pt,Fe,Cu,Mn,Al等金属或其复合物的纳米颗粒,例如纳米银、纳米金等;可以为碳纤维、石墨、石墨烯、碳纳米管等。由此,上述材料来源广泛,且价格较为低廉,可降低净水(例如海水淡化)的成本;并且,该光热转化材料的太阳能利用率高,可以在其周围产生高温,促进该隔离加热层内部的水蒸发,进一步提高了太阳能利用率以及净水效率(例如海水淡化效率)。根据本申请的具体实施例,可以将金属纳米粒子例如纳米银沉积在木材的天然孔道中,由此,可以简便地形成隔离加热层700。
根据本申请的实施例,参考图7-11,隔离加热层700可以包括光热转化部20以及隔热部10,隔热部10的内部具有通孔11,隔热部10和水面pq接触,且可将水吸收至通孔11中,光热转化部20与隔热部10相接触,且至少可对隔热部10远离水面pq一侧的通孔11的开口处进行加热。由此,该隔热部10可以较好地将水吸收至其内部,该光热转化部20可至少对通孔11开口处(即隔热部10和光热转化部20相接触处的界面处)的水进行加热蒸发,进一步提高了太阳能利用率以及净水效率(例如海水淡化效率)。
根据本申请的实施例,形成光热转化部20的材料(可参考前面所述的光热转化材料)可以包括金属纳米粒子、碳材料、等离子激元材料以及半导体材料的至少之一;形成隔热部10的材料(可参考前面所述的形成基体的材料)可以包括多孔高分子材料、气凝胶、碳 材料、有机纤维的至少之一。由此,形成该隔离加热层的材料来源广泛,且价格较为低廉,可降低净水(例如海水淡化)的成本,并且可以提高太阳能利用率以及净水效率(例如海水淡化效率)。
根据本申请的实施例,隔热部10以及光热转化部20的具体形状、材料等不受特别限制,只要该隔热部10可以较好地吸水,并将整个水体和光热转化部20隔开,该光热转化部20可以对与其接触的隔热部10内部的水进行加热即可。
根据本申请的具体实施例,参考图7,隔热部10和光热转化部20可以层叠设置,光热转化部20可以设置在隔热部10的顶部(参考图中所示出的“顶”方向)。具体的,该隔热部10可以为木材、可以为多孔有机高分子材料、气凝胶等,该光热转化部20可以为金属纳米粒子,可以为碳材料,例如炭黑、碳纤维、石墨、石墨烯等。例如,可以将碳纤维形成的光热转化部20粘接在多孔有机高分子材料形成的隔热部的顶部,以便形成层叠设置的隔离加热部700。由此,该隔热部10可以较好地吸收水,并且可以将光热转化部20和整个水体隔开,避免光热转化部20以及太阳能集热罩(图中未示出)对整个水体加热;该光热转化部20具有良好的吸光性能,即可以充分地利用太阳能产生热能,进而可以对该光热转化部20和隔热部10相接触的界面处进行加热,即可以对通孔11的顶部开口处的水进行加热,促进其蒸发,进一步提高了太阳能利用率以及净水效率(例如海水淡化效率)。
根据本申请的具体实施例,参考图8,隔热部10可以为杯状的,杯状的隔热部10的杯底(参考图中示出的“底”方向)和水面pq接触,光热转化部20设置在隔热部10的内部。由此,该杯状的隔热部10可以较好地吸收水,并且可以包裹光热转化部20,将光热转化部20和整个水体隔开,避免光热转化部20以及太阳能集热罩(图中未示出)对整个水体加热;该光热转化部20可以利用太阳能产生热能,进而可以对该光热转化部20和隔热部10相接触的界面处进行加热,即可以对该杯底的通孔11A的顶部开口处的水进行加热,促进其蒸发,进一步提高了太阳能利用率以及净水效率(例如海水淡化效率)。具体的,该杯状的隔热部10的杯壁中的通孔11B内吸收的水流至通孔11B的顶部之后,可以从该通孔11B中流出,进而可以和光热转化部20相接触,因此,光热转化部20可以对其进行加热蒸发,进一步提高水蒸发效率。根据本申请的实施例,该杯状的隔热部10的具体形状不受特别限制,例如可以为半球形的,可以为半椭球形的,可以为圆锥形的,也可以为圆柱形的。需要说明的是,上述形状的隔热部的“杯底”即为半球形的、半椭球形以及圆锥形的隔热部的顶点,或者为圆柱形的隔热部的一个圆形底面。
根据本申请的具体实施例,参考图9,隔热部10可以包括毛细管12,毛细管12的底部(参考图中示出的“底”方向)和水面pq接触,毛细管12的顶部设置有光热转化部10。由此,该毛细管12可以较好地吸收水,该光热转化部10可以对该毛细管12吸收至毛细管 12顶部的水进行加热蒸发,进一步提高了太阳能利用率以及净水效率(例如海水淡化效率)。具体的,毛细管12的数目不受特别限制,可以为一个,可以为多个;具体的,光热转化部20可以进一步包括载物台(图中未示出),载物台设置在毛细管12的顶部,光热转化材料,例如碳材料可以放置在该载物台上,并且,该载物台具有和毛细管12联通的开孔,毛细管12吸收的水可以通过该开孔流至载物台上,并和载物台上的光热转化材料接触,进而光热转化材料可以对该水进行加热,促进其蒸发。
根据本申请的实施例,参考图10以及图11,隔热部10以及光热转化部20可以组成盒形结构,其中,光热转化部20形成该盒形结构的顶面(参考图中所示出的“顶”方向),隔热部10形成该盒形结构的四个侧面(参考图10所示出的,且图10所示出的为截面图),或者形成该盒形结构的的四个侧面以及底面(参考图11所示出的,且图11所示出的为截面图)。由此,该隔热部10可以较好地将水吸收至其内部,并且该隔热部10可以将光热转化部20和整个水体隔开,具体的,参考图10,该隔热部10的通孔11内吸收的水流至通孔11的顶部之后,可以从该通孔11中流出,进而可以和光热转化部20相接触,因此,光热转化部20可以对其进行加热蒸发,进一步提高水蒸发效率。具体的,参考图11,该隔热部10的四个侧面中的通孔11B内吸收的水流至通孔11B的顶部之后,可以从该通孔11B中流出,进而可以和光热转化部20相接触,因此,光热转化部20可以对其进行加热蒸发;该隔热部10的底面中的通孔11A可以和四个侧面中的通孔11B相连通,因此,该隔热部10的底面中的通孔11A吸收的水,也可以通过四个侧面中的通孔11B流至通孔11B的顶部之后,可以从该通孔11B中流出,进而可以和光热转化部20相接触,因此,光热转化部20可以对其进行加热蒸发。
根据本申请的具体实施例,参考图12,基体710是由木材形成的,沿着木材中纤维延伸的方向(即图中所示出的“顶底”方向),木材的一端被碳化(参考图中所示出的“顶”端),被碳化的木材的孔道720中,填充有金属纳米粒子(即光热转化材料730),也即是说,木材形成的基体710的上部被碳化的部分以及其中的金属纳米粒子,共同形成了光热转化部20,木材的下部未被碳化的部分形成了隔热部10,并且,该光热转化部20和隔热部10“层叠”设置。由此,该木材廉价易得,且该木材中的纤维之间具有很多天然孔道720,可以充分地吸水,该碳化后的木材本身具有一定的吸光效果,并且该孔道720中的金属纳米粒子(即光热转化材料730)吸收太阳能之后可在其周围产生高温,进一步促进孔道中的水受热蒸发,进一步提高了太阳能利用率以及水蒸发效率。
根据本申请的实施例,隔离加热层还可以为各种仿生结构的,例如树、蘑菇等。
根据本申请的实施例,参考图13,海水淡化装置1000可以进一步包括:聚光件800(参考图13中示出的聚光件800a和800b),聚光件800可对照射至太阳能集热罩100的太阳光 进行聚焦。由此,该海水淡化装置1000直接放置在水面(例如海面)上使用时,该聚光件800(参考图13中所示出的聚光件800A和800B)可以对照射至太阳能集热罩100的太阳光进行聚焦,提高太阳能利用率,可以较好地促进蒸发平面100处的水受热蒸发。
根据本申请的实施例,参考图13,聚光件800的具体类型以及设置位置不受特别限制,只要能对照射至太阳能集热罩100的太阳光进行聚焦即可。具体的,聚光件800可以包括凸透镜、菲涅尔透镜以及平凸透镜的至少之一。由此,该聚光件800可以较好地对太阳光进行汇聚,提高太阳光利用率,进而可以提高太阳能集热罩100内部的温度,促进蒸发平面110处的水蒸发,提高该海水淡化装置1000的海水淡化效率。具体的,聚光件800的大小和数目不受特别限制,例如可以包括多个聚光件800(参考图13中所示出的两个聚光件800A和800B)。具体的,经过聚光件800聚焦的太阳光,可以汇聚至蒸发平面110处,从而可以较好地促进蒸发平面110处的水蒸发,也可以汇聚至蒸发平面110的上方或下方,例如可以汇聚至蒸发平面上方或下方一定位置,也可以较好地促进蒸发平面110处(即蒸发平面110及其下方)的水蒸发,提高海水淡化效率。
根据本申请的一些实施例,参考图13,聚光件800可以设置在太阳能集热罩100的外部,且可将太阳光聚焦至太阳能集热罩100中。例如参考图13中所示出的,照射至太阳能集热罩100的太阳光经过聚光件800A的聚焦之后,可以汇聚,从而可以增强照射至太阳能集热罩100的光线强度,在该聚焦处可以产生大量的热,提高了太阳光利用率,并且增加了太阳能集热罩100内部的热量,有利于蒸发平面110处的水受热蒸发,可以进一步提高海水淡化效率。
根据本申请的另一些实施例,参考图14以及图15,聚光件800可以设置在太阳能集热罩100的内部,且可将照射至太阳能集热罩100的太阳光聚焦至蒸发平面110处。由此,该聚光件800可将太阳光聚焦至蒸发平面110处,可以进一步促进蒸发平面110处的水蒸发,进一步提高海水淡化效率。具体的,设置在太阳能集热罩100内部的聚光件800的数目和设置方式不受特别限制,例如,参考图14,聚光件800A、800B和800C可以单独设置在太阳能集热罩100的内部,并且可以对照射至太阳能集热罩100内部的光线进行聚焦,将其汇聚至蒸发平面110处,促进蒸发平面110处的水受热蒸发。
根据本申请的具体实施例,聚光件800也可以设置并固定在太阳能集热罩100的内表面上,即聚光件800可以集成在太阳能集热罩100上,由此,可以简便地将聚光件800固定在太阳能集热罩100的内部,该聚光件800可以较好地对照射至太阳能集热罩100的太阳光进行汇聚,可以较好地将照射至太阳能集热罩100内部的太阳光聚焦至蒸发平面110处,进一步促进蒸发平面110处的水蒸发,提高海水淡化效率。
根据本申请的实施例,参考图15,海水淡化装置1000包括多个聚光件800,多个聚光 件800可以间隔分布在太阳能集热罩100的内表面上。由此,多个聚光件800可以充分地对照射至太阳能集热罩100的光线进行汇聚,可以进一步促进蒸发平面110处的水蒸发,提高海水淡化效率。
根据本申请的实施例,参考图16,海水淡化装置可以同时包括前面所述的隔离加热层700和前面所述的聚光件800,由此,可以进一步提高水蒸发效率和海水淡化效率。
根据本申请的实施例,参考图17,该海水淡化装置1000可以进一步包括:用于支撑所述太阳能集热罩100的多个支撑架600,多个支撑架600可开合。具体的,多个支撑架600可以设置在太阳能集热罩100的内壁上;具体的,当由聚碳酸酯、聚乙烯、聚甲基丙烯酸甲酯等形成的太阳能集热罩是柔性的时,该支撑架600可以较好地支撑和固定太阳能集热罩100,维持太阳能集热罩100的半椭球形的形状,并且,该多个支撑架600可带动该太阳能集热罩100收合,进一步方便该海水淡化装置的运输和使用等。具体的,多个支撑架600可以为伞骨架结构,由此进一步方便该太阳能集热罩100的收合和使用。具体的,多个支撑架600可以是由刚性材料形成的,例如可以是由不锈钢管形成的。具体的,多个支撑架600可以在该太阳能集热罩100的内部均匀分布,由此,可以较好地支撑太阳能集热罩100。
根据本申请的实施例,参考图18,该海水淡化装置进一步包括加热单元300,该加热单元300可对蒸发平面110进行加热。具体的,图18中所示出的直线pq为水面(例如海面),太阳能集热罩100放置在水面上方,如前所述,淡水收集槽120在太阳能集热罩100的底部限定出蒸发平面110,当该太阳能集热罩100放置在水面上时,该太阳能集热罩100在水面上限定出一块蒸发区域(即蒸发平面110对应的水面区域),加热单元300可对蒸发平面110进行加热,即加热单元300可对蒸发平面110对应处的水进行加热。因而,该太阳能集热罩100收集的热能可以较好地促进该蒸发区域界面处(即蒸发平面对应处)的水蒸发,避免加热大面积的水体,可提升加热效率。并且,加热单元300可以放置在水面下方一定距离处,由此,该加热单元300可以对该蒸发区域110对应的水面区域(即蒸发区域)的水气界面处的水进行加热,进一步促进该水气界面处的海水蒸发,提高了海水淡化效率。
具体的,参考图19,当海水淡化装置1000包括隔离加热层700时,加热单元300可以设置在太阳能集热罩100的内部,且位于隔离加热层700靠近水面的一侧。具体的,图13中所示出的直线pq为水面(例如海面),太阳能集热罩100放置在水面上方,隔离加热层700设置在该蒸发平面110处,且设置在水面pq的上方,隔离加热层700可通过孔道720将水吸收至其内部,,因而,该太阳能集热罩100收集的热能以及该光热转化材料730产生的热量可以较好地促进该隔离加热层700内部的水蒸发,并且,加热单元300可以放置在隔离加热层700下方一定距离处,由此,该加热单元300可以对该隔离加热层700对应的水面区域以及该隔离加热层700内部的水进行加热,进一步促进该隔离加热层700内部的 水蒸发,进一步提高了净水效率(例如海水淡化效率)。
根据本申请的实施例,加热单元300的具体类型不受特别限制,例如,加热单元300可以为电加热管,也可以为热水管等。
根据本申请的具体实施例,参考图20,加热单元300可以包括:太阳能加热板310、水箱320以及加热管330,其中,加热管330可对蒸发平面110进行加热,具体的,加热管330可以设置在蒸发平面110对应处的水面下方,太阳能加热板310可对水箱320内的水加热,水箱320具有水箱出水口10以及水箱进水口20,加热管330具有热水进水口30以及冷水出水口40,热水进水口30和水箱出水口10相连,冷水出水口40和水箱进水口20相连。由此,太阳能加热板310可对水箱320内的水加热,加热后的热水可通过水箱出水口10沿图中箭头f1以及f2所示出的方向,供给至加热管330中,该热水可以对该蒸发平面110对应处的水进行加热,促进该蒸发平面110对应处的水蒸发,并且加热管330中的水冷却后还可以通过冷水出水口40供给回水箱320进行循环加热(参考图中箭头e 1以及e 2所示出的方向),由此,该太阳能加热板310可以利用免费的太阳能位为加热管330提供热水,并且,该水箱320中的水也可以直接利用已有的海水,由此,可以进一步节约能源,降低海水淡化成本。根据本申请的实施例,可以对水箱以及加热管内的热水的温度进行控制和调节,以便较好地对海水进行加热,促进其蒸发,具体的,加热后的蒸发平面处的海水的温度可以小于60℃。根据本申请的实施例,加热管330的具体类型不受特别限制,例如加热管330可以是螺旋形的,由此,该螺旋形的加热管330热传递效果较好,能够较好地对蒸发平面110处的水进行加热。具体的,加热管330的外表面的颜色为黑色。由此,该外表面为黑色的加热管330可以降低热量损耗,令加热管330内的热水可以加热较长时间,进一步提高太阳能利用率。
根据本申请的实施例,参考图21,该海水淡化装置可以进一步稳定锚510,稳定锚510用于将太阳能集热罩100固定在水面上的特定位置处。具体的,稳定锚510可以通过定位绳520和太阳能集热罩100的顶部相连接(参考图21中所示出的,稳定锚510通过定位绳520从太阳能集热罩100的顶部B延伸至水面pq下方);稳定锚510也可以和淡水收集槽120的底部相连接(图中未示出)。由此,该稳定锚510可将该太阳能集热罩100固定在水面的一定位置处,防止该太阳能集热罩100被风浪吹翻等,提高了该太阳能集热罩100的结构以及使用稳定性,进一步提高了该海水淡化装置的使用性能。
根据本申请的实施例,参考图22,该海水淡化装置可以进一步包括稳定板610以及固定板620,稳定板610通过固定板620固定在太阳能集热罩100的内壁上,稳定板610垂直于蒸发平面110并有部分可延伸至蒸发平面110(即水平面pq)下方的水体中。具体的,如图22所示出的,稳定板610可从太阳能集热罩100的内部沿着垂直于蒸发平面110(即垂 直于水面pq)的方向延伸至水面pq的下方,固定板620可以固定在相对的淡水收集槽120的侧壁之间,并且稳定板610可以和固定板620垂直交叉固定,由此,可以简便地实现稳定板610和太阳能集热罩100的固定连接,该稳定板610不仅可以较好地将太阳能集热罩100固定在水面上,而且具有抵抗风浪的作用,可以防止太阳能集热罩100被风浪吹翻等,提高了该太阳能集热罩100的结构以及使用稳定性,进一步提高了该海水淡化装置的使用性能。
根据本申请的实施例,形成稳定板610的材料不受特别限制,具体的,可以包括塑料、不锈钢以及铝合金的至少之一。由此,上述材料质量较轻,且具有较好的抗腐蚀性,进一步提高了该海水淡化装置的使用性能。
根据本申请的实施例,参考图23,该海水淡化装置进一步包括抗浪板900,抗浪板900设置在太阳能集热罩100的内部,抗浪板900包括多个互相连接且间隔设置的抗浪子板910,多个抗浪子板910垂直于蒸发平面110(即垂直于水面pq)设置,且可漂浮在水面上。具体的,参考图23所示出的,多个抗浪子板910之间通过连接绳920相连,多个抗浪子板910和蒸发平面110垂直(即和水面pq垂直),并且延伸至水面pq的下方。由此,多个抗浪子板910可以抵消太阳能集热罩100内部的水浪,防止该太阳能集热罩100被风浪(尤其是进入太阳能集热罩100内部的风浪)掀翻,进一步提高了该太阳能集热罩100的稳定性,进一步提高了该海水淡化装置的使用性能。根据本申请的实施例,抗浪子板910的高度可以为5cm-50cm,具体的,抗浪子板910的高度可以为10-30cm,可以为15cm,可以为20cm,可以为25cm等。由此,抗浪子板910的高度在上述范围时,具有较好的抵消风浪的作用,进一步提高了该太阳能集热罩100的使用稳定性,进一步提高了该海水淡化装置的使用性能。
根据本申请的实施例,形成抗浪子板910的材料不受特别限制,具体的,可以包括塑料、不锈钢以及铝合金的至少之一,例如可以包括塑料泡沫,该材料形成的抗浪子板可以较好地漂浮在水面上。由此,上述材料质量较轻,且具有较好的抗腐蚀性,进一步提高了该海水淡化装置的使用性能。
根据本申请的实施例,该海水淡化装置可以进一步包括风机,风机设置于蒸发平面的上方,以利用该太阳能集热罩内部的空气形成气流循环。由此,该风机在太阳能集热罩内部形成气流循环后,可加快水蒸气向太阳能集热罩的顶部运动,并沿着太阳能集热罩的内壁冷凝,加快了水蒸气的蒸发和冷凝,进一步提高了海水淡化效率。
根据本申请的实施例,风机的具体类型不受特别限制,只要能在太阳能集热罩的内部形成水气循环即可,例如,可以为轴流风机,可以为风扇等。根据本申请的实施例,风机的数目不受特别限制,例如可以包括至少1个风机,可以为2个,3个,4个等。具体的, 该海水淡化装置包括4个风机时,4个风机可以彼此对称设置,且围绕太阳能集热罩内部的蒸发平面的中心设置。由此,4个轴流风机可以在太阳能集热罩内部形成水气微循环,加快了水蒸气向太阳能集热罩的顶部运动,并沿着太阳能集热罩的内壁冷凝,加快了水蒸气的蒸发和冷凝,进一步提高了海水淡化效率。具体的,在该海水淡化装置中加入风机后,海水淡化效率可以有显著的提升,例如海水淡化效率可以提升10%左右。根据本申请的实施例,前面的稳定锚除了可以通过定位绳将其和太阳能集热罩连接,也可以通过杆体(即中心杆)和太阳能集热罩连接,并延伸至水面下方,而根据本申请实施例的风机可以固定在稳定锚的中心杆上。由此,可以简便地将风机固定。
根据本申请的实施例,当该太阳能集热罩的尺寸较大时,例如该太阳能集热罩的底面直径为数十米甚至上百米时,该海水淡化装置可以进一步包括检修单元,该检修单元可以设置在该太阳能集热罩中,以便监控该太阳能集热罩内部的工作状况,并且可用于设备维护等具体的,该检修单元可以包括检修门、检修通道以及检修平台,检修门可以设置在该太阳能集热罩的侧壁上,检修通道以及检修平台可以从该检修门延伸至该太阳能集热罩的内部。例如,检修通道可以为固定在该太阳能集热罩内部的环形通道。具体的,检修门的大小不受特别限制,例如检修门的大小可以适于检修人员进入,以便进行检查以及设备维护等。具体的,检修门的数目不受特别限制,例如可以为一个,也可以为两个,检修门不仅可以作为检修人员的出入通道,还可以作为换气口,有助于给太阳能集热罩内部散热降温等,以便检修人员的安全进入,并且可以避免太阳能集热罩内部温度过高等,造成爆炸等安全事故。更具体的,两个检修门可以相对设置,例如一个可以作为检修人员入口,另一个可以作为检修人员出口,由此,相对设置的两个检修门不仅便于检修人员工作,并且两个检修门在同时打开时,具有较好的换气效果,有助于较快地给太阳能集热罩内部降温等。具体的,检修门可以设置在太阳能集热罩的靠近淡水收集槽的内壁上,检修通道可以设置在淡水收集槽的上方。
根据本申请的实施例,除了前面所述的检修门可以作为换气口之外,该太阳能集热罩可以进一步包括排气单元,具体的,该排气单元可以包括排气口和风扇,具体的,该排气口可以设置在太阳能集热罩的顶部,风扇可以设置在该排气口处,由此,通过该风扇转动,可以较好地给该太阳能集热罩散热降温等,避免该太阳能集热罩内部的温度过高,发生爆炸等事故。
根据本申请的实施例,为了进一步提高该太阳能集热罩的使用安全性,该海水淡化装置可以进一步包括防爆灯,防爆灯可以设置在该太阳能集热罩的内部,以便对该太阳能集热罩内部的环境进行实时监测,避免发生安全事故等。
综上可知,根据本申请实施例的海水淡化装置,通过设计一种半椭球形的太阳能集热 罩,并且该太阳能集热罩的极半径大于赤道半径(即b轴的长度大于a轴),该海水淡化装置可以直接放置在水面(例如海面)上使用,该海水淡化装置结构简单,成本低廉,使用方便,且太阳能利用率高,海水淡化效率高。
在本申请的另一方面,本申请提出了一种利用前面任一项所述的海水淡化装置进行海水淡化的方法。根据本申请的实施例,该方法包括:将半椭球形的太阳能集热罩放置在水面上,该太阳能集热罩的b轴垂直于水面;利用太阳能集热罩收集的热量对太阳能集热罩的蒸发平面对应处的水进行加热,并使其蒸发;利用冷却单元对太阳能集热罩的外表面进行冷却;蒸发后的水蒸气沿着太阳能集热罩的弧形内壁冷凝,冷凝后的淡水流至设置在太阳能集热罩的内壁底部的淡水收集槽中。由此,该方法可以简便地进行海水淡化,太阳能利用率高。
根据本申请的实施例,该海水淡化装置进一步包括加热单元,该方法可以进一步包括:太阳能加热板对水箱内的水加热,加热后的热水从水箱出水口供给至设置在蒸发平面下方的加热管的热水进水口中;加热管中的热水冷却之后,通过加热管的冷水出水口供给回水箱的水箱进水口。由此,该加热单元可以和太阳能集热罩一起对蒸发平面处的海水进行加热,进一步促进海水蒸发,提高了海水淡化效率。根据本申请的实施例,可以对加热管以及水箱内的热水的温度进行控制和调节,以便较好地对海水进行加热,促进其蒸发,具体的,加热后的蒸发平面处的海水的温度可以小于60℃。
根据本申请的实施例,该方法可以进一步包括:抽水泵抽吸一定深度的海水,并将一定深度处温度较低的海水供给至设置在太阳能集热罩的顶部的喷淋头。由此,该冷却单元可以利用已有的温度较低的海水对太阳能集热罩进行冷却,可以促进太阳能集热罩内的水蒸气在该太阳能集热罩的内壁冷凝,进一步提高了海水淡化效率,并且,进一步简化了该海水淡化装置的结构,节约海水淡化成本。
下面将结合实施例对本申请的方案进行解释。本领域技术人员将会理解,下面的实施例仅用于说明本申请,而不应视为限定本申请的范围。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市面购买获得的常规产品。
实施例1:具有半椭球形太阳能集热罩的海水淡化装置的制作
太阳能集热罩的结构可以参考附图1、图3、图17以及图21-23,该半椭球形太阳能集热罩100是由聚乙烯膜形成的,该太阳能集热罩100的赤道平面为圆形,该太阳能集热罩的b轴和a轴的长度比(即极半径和赤道半径的长度比)为3:2。该太阳能集热罩100的内壁设置有多根不锈钢管支撑架600(参考图17,结构类似于伞骨架,可收合),该太阳能集热罩100的内壁140上设置有单向透光涂层和红外反射涂料形成的涂层。该太阳能集热罩 100的底部的回折处垂直于海面,形成淡水收集槽120,该淡水收集槽120的底部具有淡水出水口130,该淡水出水口130和外部的淡水储存单元200相连。参考图3,该海水淡化装置进一步包括设置在太阳能集热罩100顶部的通过抽水泵420与海水联通的喷淋头410。参考图21-23,该海水淡化装置进一步包括多个稳定锚510,具体的,一个稳定锚510从该太阳能集热罩100的顶部B点向下延伸至海水中,另外4个稳定锚(图中未示出)分别从该淡水收集槽120的底部延伸至海水中,整个装置通过稳定锚510固定在水面的特定位置,并通过稳定板610保持稳定,以及通过抗浪板900减少浪或涌对系统淡水产生的影响。
实施例2:具有半椭球形太阳能集热罩和加热单元的海水淡化装置的制作
其他结构同实施例1,不同的是,在蒸发平面110的下方增加一个加热管,该加热管与外部的水箱以及太阳能晶板相连。该装置的示意图如图20所示。
实施例3:具有半椭球形太阳能集热罩以及隔离加热层的海水淡化装置的制作
太阳能集热罩的结构可以参考附图3、图4、图17以及图21-23,该半椭球形太阳能集热罩100是由聚乙烯膜形成的,该太阳能集热罩100的赤道平面为圆形,该太阳能集热罩的b轴和a轴的长度比(即极半径和赤道半径的长度比)为3:2。该太阳能集热罩100的内壁设置有16根不锈钢管支撑架600(参考图17,结构类似于伞骨架,可收合),该太阳能集热罩100的内壁140上设置有单向透光涂层和红外反射涂料形成的涂层。该太阳能集热罩100的底部的回折处垂直于海面,形成淡水收集槽120,该淡水收集槽120的底部具有淡水出水口130,该淡水出水口130和外部的淡水储存单元200相连。淡水收集槽120在太阳能集热罩100的底部限定出的蒸发平面110为圆形。
隔离加热层的结构可以参考附图12,将椴木沿其生长方向剪裁为长方体的木块,其中厚度方向垂直于生长方向。将剪裁好的椴木于去离子水中煮沸30分钟后,在80℃烘箱中干燥待用。将表面平整的铁块在马弗炉中加热到500℃并保持恒温,打开炉门后,将干燥后的木块其中一面按压于铁块上,碳化10s后取出,关上炉门,待炉温恢复到500℃之后,就已碳化的面,重复以上碳化过程3次,便获得碳化-未碳化双层木材。将上述碳化-未碳化双层木块在二氯化锡溶液中浸泡,最后取硝酸银标准溶液,缓慢滴加于上述溶液中,并在室温、超声作用下反应10分钟,使得纳米银颗粒充分沉积。最后将沉积纳米银颗粒的木块取出,于80℃烘箱中干燥12小时,便制备成纳米银修饰的具有碳化-未碳化双层结构的子隔离加热层。最后,由多块子隔离加热层水平拼接成隔离加热层。
将上述制备好的隔离加热层放置在水面上,然后将前面所述的太阳能集热罩放置在水面上,且隔离加热层位于太阳能集热罩的内部,即位于太阳能集热罩的蒸发平面处。参考图3,该海水淡化装置进一步包括设置在太阳能集热罩100顶部的通过抽水泵420与海水联通的喷淋头410。参考图21-23,该海水淡化装置进一步包括多个稳定锚510,具体的,一个稳 定锚510从该太阳能集热罩100的顶部B点向下延伸至海水中,另外4个稳定锚(图中未示出)分别从该淡水收集槽120的底部延伸至海水中,整个装置通过稳定锚510固定在水面的特定位置,并通过稳定板610保持稳定,以及通过抗浪板800减少浪或涌对系统淡水产生的影响。
实施例4:具有半椭球形太阳能集热罩和聚光件的海水淡化装置的制作
太阳能集热罩的结构可以参考附图3、图13、图17以及图21-23,该半椭球形太阳能集热罩100是由聚乙烯膜形成的,该太阳能集热罩100的赤道平面为圆形,该太阳能集热罩的b轴和a轴的长度比(即极半径和赤道半径的长度比)为3:2。该太阳能集热罩100的内壁设置有多根不锈钢管支撑架600(参考图17,结构类似于伞骨架,可收合),该太阳能集热罩100的内壁140上设置有单向透光涂层和红外反射涂料形成的涂层。该太阳能集热罩100的底部的回折处垂直于海面,形成淡水收集槽120,该淡水收集槽120的底部具有淡水出水口130,该淡水出水口130和外部的淡水储存单元200相连。参考图3,该海水淡化装置进一步包括设置在太阳能集热罩100顶部的通过抽水泵420与海水联通的喷淋头410。参考图13,太阳能集热罩100的外部设置有平凸透镜(即聚光件800),参考图21-23,该海水淡化装置进一步包括多个稳定锚510,具体的,一个稳定锚510从该太阳能集热罩100的顶部B点向下延伸至海水中,另外4个稳定锚(图中未示出)分别从该淡水收集槽120的底部延伸至海水中,整个装置通过稳定锚510固定在水面的特定位置,并通过稳定板610保持稳定,以及通过抗浪板900减少浪或涌对系统淡水产生的影响。
实施例5:具有半椭球形太阳能集热罩、聚光件和隔离加热层的海水淡化装置的制作
其他结构同实施例4,不同的是,参考图16,在蒸发平面110处设置隔离加热层700。隔离加热层700的结构参考图5,隔离加热层700的基体710为陶瓷材料,孔道720中具有炭黑/活性炭光热转化材料730。
实施例6:具有半椭球形太阳能集热罩和光热转化材料的海水淡化装置的制作
其他制作方式同实施例5,不同的是该海水淡化装置不包括聚光件。
实施例7:具有半椭球形太阳能集热罩和光热转化材料的海水淡化装置的制作
其他制作方式同实施例4,不同的是该海水淡化装置不包括聚光件,且该海水淡化装置在蒸发平面110处放置了炭黑/活性炭光热转化材料。
对比例1:具有半球形太阳能集热罩的海水淡化装置的制作
其他制作方式同实施例1,不同的是该太阳能集热罩的结构为半球形。
海水淡化性能测试(1)
选择天气晴朗的某天下午(气温28~30℃),同时将实施例1中以及对比例1中的海水淡化装置置于同一海面的临近位置,进行海水淡化,并实时监测淡水收集槽中收集的淡水 的量。经过一段时间,海水淡化装置产水稳定之后(即淡水每分钟增加的质量为一定值时),进行测试:测量一定时间内,各海水淡化装置产生的淡水的总量,并将其换算为每小时每平方米产生的淡水的质量(g/(m 2h)),即产水率,即海水淡化效率。同时,测得水面的自然蒸发量为60g/(m 2h)。
测试结果参考图24,从图24中可以看出,实施例1中的具有半椭球形太阳能集热罩的海水淡化装置的海水淡化效率为180g/(m 2h),而对比例1中的具有半球形太阳能集热罩的海水淡化装置的海水淡化效率为140g/(m 2h)。因此,相比于具有半球形的太阳能集热罩的海水淡化装置,根据本申请实施例的具有半椭球形太阳能集热罩的海水淡化装置具有较高的海水淡化效率,具有较高的太阳能利用率。
并且,从图24中可以看出,具有半椭球形太阳能集热罩和加热单元的海水淡化装置的海水淡化效率为300g/(m 2h),因此,加热单元和半椭球形的太阳能集热罩可以共同对该蒸发区域的水气界面处的水进行加热,进一步促进该水气界面处的海水蒸发,提高了海水淡化效率。
海水淡化性能测试(2)
选择天气晴朗的一天下午(气温28~30℃),将实施例1和实施例3中的海水淡化装置置于同一海面的临近位置,进行海水淡化,并实时监测淡水收集槽中收集的淡水的量。经过一段时间,海水淡化装置产水稳定之后(即淡水每分钟增加的质量为一定值时),进行测试:测量一定时间内,各海水淡化装置产生的淡水的总量,并将其换算为每小时每平方米产生的淡水的质量,即产水率,即海水淡化效率。对比实施例1和实施例3的测试结果可知,实施例3中的具有半椭球形太阳能集热罩以及隔离加热层的海水淡化装置,其产水量比实施例1中的只有半椭球形太阳能集热罩的海水淡化装置的产水率高25%-40%。
并且,测得水面的自然蒸发量为60~300g/(m 2h),例如可以为60g/(m 2h),将实施例3中的隔离加热层放置在水面上,测得隔离加热层处的水面蒸发量为500~600g/(m 2h),例如为510g/(m 2h)。由上述测试结果可知,根据本申请实施例的具有隔离加热层的太阳能集热罩对应的水蒸发率远高于水面的自然蒸发量。
海水淡化性能测试(3)
选择天气晴朗的某天下午(气温28~30℃),同时将实施例1和实施例4中的海水淡化装置置于同一海面的临近位置,进行海水淡化,并实时监测淡水收集槽中收集的淡水的量。经过一段时间,海水淡化装置产水稳定之后(即淡水每分钟增加的质量为一定值时),进行测试:测量一定时间内,各海水淡化装置产生的淡水的总量,并将其换算为每小时每平方米产生的淡水的质量(g/(m 2h)),即产水率,即海水淡化效率。测试结果表明,实施例4中的具有半椭球形太阳能集热罩和聚光件的海水淡化装置的海水淡化效率高于实施例1中的 没有聚光件的海水淡化装置,证明了本申请中的聚光件可以提高太阳能利用率,进而提高海水淡化效率。
蒸发速率测试
对实施例5、实施例6和实施例7中的海水淡化装置进行水蒸发速率测试,即对海水淡化装置的蒸发平面处的水蒸发速率进行测试,测得单位时间内单位面积上蒸发出来的水汽的质量,即蒸发速率(g/(m 2h))。测试结果表明,实施例7中具有半椭球形太阳能集热罩和光热转化材料的海水淡化装置的蒸发速率为500~700g/(m 2h),实施例6中具有半椭球形太阳能集热罩和隔离加热层(隔离加热层中具有光热转化材料)的海水淡化装置的蒸发速率为1000~1300g/(m 2h),而实施例5中具有半椭球形太阳能集热罩、聚光件和隔离加热层的海水淡化装置的蒸发速率为2000~2500g/(m 2h)。通过对比实施例5和实施例6的测试数据可知,本申请的海水淡化装置中的聚光件可以提高水蒸发速率,进而可以提高太阳能利用率,进而提高海水淡化效率;并且,通过对比实施例6和实施例7的测试数据可知,本申请中具有隔离加热层的太阳能集热罩对应的水蒸发率高于不含隔离加热层的太阳能集热罩。
以上详细描述了本申请的实施方式,但是,本申请并不限于此。在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本申请所公开的内容,均属于本申请的保护范围。
在本申请的描述中,需要理解的是,术语“上”、“下”、“外”、“内”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (38)

  1. 一种海水淡化装置,包括:
    半椭球形的太阳能集热罩,所述太阳能集热罩的内壁底部具有淡水收集槽,所述淡水收集槽在所述太阳能集热罩的底部限定出蒸发平面,所述淡水收集槽中设置有淡水出水口,所述淡水出水口与淡水储存单元相连,其中,所述太阳能集热罩的b轴的长度大于a轴,且所述b轴垂直于所述蒸发平面;
    以及冷却单元,所述冷却单元设置在所述太阳能集热罩的外部,且被配置为对所述太阳能集热罩的外表面进行冷却。
  2. 根据权利要求1所述的海水淡化装置,所述太阳能集热罩的所述b轴和所述a轴的长度比为(6:5)~(2:1)。
  3. 根据权利要求1或2所述的海水淡化装置,所述太阳能集热罩的内壁设置有吸光涂层。
  4. 根据权利要求3所述的海水淡化装置,所述吸光涂层包括单向透光材料以及红外反射材料的至少之一。
  5. 根据权利要求1-4任一项所述的海水淡化装置,形成所述太阳能集热罩的材料包括聚碳酸酯、聚乙烯、聚氯乙烯、聚氨酯、聚甲基丙烯酸甲酯、聚对苯二甲酸及其衍生物、玻璃的至少之一。
  6. 根据权利要求1-5任一项所述的海水淡化装置,所述淡水收集槽与所述太阳能集热罩是一体成型的,所述淡水收集槽为环形的。
  7. 根据权利要求1-6任一项所述的海水淡化装置,所述冷却单元包括:
    喷淋头,所述喷淋头设置在所述太阳能集热罩的顶部;以及
    抽水泵,所述抽水泵用于抽吸一定深度的海水并将所述海水供给至所述喷淋头。
  8. 根据权利要求1-7任一项所述的海水淡化装置,进一步包括:
    隔离加热层,所述隔离加热层位于所述太阳能集热罩的内部,且设置在所述蒸发平面处,所述隔离加热层包括基体,所述基体的内部具有孔道,所述隔离加热层被配置为可与水面接触,且可通过所述孔道将海水吸收至所述隔离加热层的内部,所述基体中至少在所述基体远离所述水面的一侧,具有光热转化材料。
  9. 根据权利要求8所述的海水淡化装置,所述基体包括多孔材料、气凝胶、碳材料、有机纤维的至少之一;
    所述光热转化材料包括金属纳米粒子、碳材料、等离子激元材料以及半导体材料的至 少之一。
  10. 根据权利要求8或9所述的海水淡化装置,所述隔离加热层包括光热转化部以及隔热部,其中,所述隔热部的内部具有通孔,所述隔热部和所述水面接触,且可将海水吸收至所述通孔中,所述光热转换部与所述隔热部相接触,且至少可对所述隔热部远离所述水面一侧的所述通孔的开口处进行加热。
  11. 根据权利要求10所述的海水淡化装置,所述光热转化部以及所述隔热部层叠设置。
  12. 根据权利要求10所述的海水淡化装置,所述隔热部为杯状的,所述杯状的所述隔热部的杯底和所述水面接触,所述光热转化部设置在所述杯状的所述隔热部的内部。
  13. 根据权利要求10所述的海水淡化装置,所述隔热部包括毛细管,所述毛细管的底部和所述水面接触,所述毛细管的顶部设置有所述光热转化部。
  14. 根据权利要求10所述的海水淡化装置,所述隔热部以及所述光热转化部组成盒形结构,其中,所述光热转化部形成所述盒形结构的顶面,所述隔热部形成所述盒形结构的四个侧面,或者形成所述盒形结构的所述四个侧面以及底面。
  15. 根据权利要求10-14任一项所述的海水淡化装置,形成所述光热转化部的材料包括金属纳米粒子、碳材料、等离子激元材料以及半导体材料的至少之一;
    形成所述隔热部的材料包括多孔材料、气凝胶、碳材料、有机纤维的至少之一。
  16. 根据权利要求8所述的海水淡化装置,所述基体是由木材形成的,沿着所述木材中纤维延伸的方向,所述木材的一端被碳化,被碳化的所述木材的孔道中,填充有金属纳米粒子。
  17. 根据权利要求1-16任一项所述的海水淡化装置,进一步包括:聚光件,所述聚光件被配置为可对照射至所述太阳能集热罩的太阳光进行聚焦。
  18. 根据权利要求17所述的海水淡化装置,所述聚光件包括凸透镜、菲涅尔透镜以及平凸透镜的至少之一。
  19. 根据权利要求17或18所述的海水淡化装置,所述聚光件设置在所述太阳能集热罩的外部,且可将太阳光聚焦至所述太阳能集热罩中。
  20. 根据权利要求17或18所述的海水淡化装置,所述聚光件设置在所述太阳能集热罩的内部,且可将照射至所述太阳能集热罩的太阳光聚焦至所述蒸发平面处。
  21. 根据权利要求17或18所述的海水淡化装置,所述聚光件设置并固定在所述太阳能集热罩的内表面上。
  22. 根据权利要求21所述的海水淡化装置,所述海水淡化装置包括多个所述聚光件,多个所述聚光件间隔分布在所述太阳能集热罩的内表面上。
  23. 根据权利要求1-22所述的海水淡化装置,进一步包括:
    加热单元,所述加热单元被配置为可对所述蒸发平面进行加热。
  24. 根据权利要求23所述的海水淡化装置,所述加热单元包括:
    太阳能加热板,所述太阳能加热板被配置为可对水箱内的水加热,所述水箱具有水箱进水口以及水箱出水口;以及
    加热管,所述加热管被配置为可对所述蒸发平面进行加热,所述加热管具有热水进水口以及冷水出水口,所述热水进水口和所述水箱出水口相连,所述冷水出水口和所述水箱进水口相连。
  25. 根据权利要求24所述的海水淡化装置,所述加热管是螺旋形的,所述加热管的外表面的颜色为黑色。
  26. 根据权利要求1-25任一项所述的海水淡化装置,进一步包括:
    用于支撑所述太阳能集热罩的多个支撑架,所述多个支撑架可开合。
  27. 根据权利要求1-26任一项所述的海水淡化装置,进一步包括:
    稳定锚,所述稳定锚和所述太阳能集热罩的顶部以及所述淡水收集槽的底部的至少之一相连接。
  28. 根据权利要求1-27任一项所述的海水淡化装置,进一步包括:稳定板,所述稳定板通过固定板固定在所述太阳能集热罩的内壁上,所述稳定板垂直于所述蒸发平面并有部分可延伸至所述蒸发平面下方水体中。
  29. 根据权利要求28所述的海水淡化装置,形成所述稳定板的材料包括塑料、不锈钢以及铝合金的至少之一。
  30. 根据权利要求1-29任一项所述的海水淡化装置,进一步包括:抗浪板,所述抗浪板设置在所述太阳能集热罩的内部且可漂浮于水面上,所述抗浪板包括多个互相连接且间隔设置的抗浪子板,多个所述抗浪子板垂直于所述蒸发平面设置。
  31. 根据权利要求30所述的海水淡化装置,形成所述抗浪子板的材料包括塑料、不锈钢以及铝合金的至少之一。
  32. 根据权利要求30或31所述的海水淡化装置,所述抗浪子板的高度为5cm-50cm。
  33. 根据权利要求1-32任一项所述的海水淡化装置,进一步包括:
    至少一个风机,所述风机设置于所述蒸发平面的上方,以利用所述太阳能集热罩内部的空气形成气流循环。
  34. 根据权利要求33所述的海水淡化装置,包括4个所述风机,4个所述风机彼此对称设置,且围绕所述太阳能集热罩内部的所述蒸发平面的中心设置。
  35. 根据权利要求33所述的海水淡化装置,所述风机可固定于稳定锚的中心杆。
  36. 一种利用权利要求1-35任一项所述的海水淡化装置进行海水淡化的方法,包括:
    将半椭球形的太阳能集热罩放置在水面上,所述太阳能集热罩的b轴垂直于所述水面;
    利用所述太阳能集热罩收集的热量对所述太阳能集热罩的蒸发平面对应处的水进行加热,并使其蒸发;
    利用冷却单元对所述太阳能集热罩的外表面进行冷却;
    蒸发后的水蒸气沿着所述太阳能集热罩的弧形内壁冷凝,冷凝后的淡水流至设置在所述太阳能集热罩的内壁底部的淡水收集槽中。
  37. 根据权利要求36所述的方法,所述海水淡化装置进一步包括加热单元,所述方法进一步包括:
    太阳能加热板对水箱内的水加热,加热后的热水从水箱出水口供给至设置在所述蒸发平面下方的加热管的热水进水口中;
    所述加热管中的所述热水冷却之后,通过所述加热管的冷水出水口供给回所述水箱的水箱进水口。
  38. 根据权利要求36或37所述的方法,所述方法进一步包括:
    抽水泵抽吸一定深度的海水并将所述海水供给至设置在所述太阳能集热罩的顶部的淋头。
PCT/CN2019/126212 2019-02-01 2019-12-18 太阳能海水淡化装置以及海水淡化方法 WO2020155903A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201910105041.XA CN110240214B (zh) 2019-02-01 2019-02-01 太阳能海水淡化装置以及海水淡化方法
CN201910105066.XA CN110240211B (zh) 2019-02-01 2019-02-01 太阳能光热转化净水装置以及净水方法
CN201910105041.X 2019-02-01
CN201910105066.X 2019-02-01
CN201920184605.9 2019-02-01
CN201920184603.X 2019-02-01
CN201920184605.9U CN209797531U (zh) 2019-02-01 2019-02-01 太阳能海水淡化装置
CN201920184603.XU CN210340383U (zh) 2019-02-01 2019-02-01 太阳能光热转化净水装置
CN201910779480.9 2019-08-22
CN201910779480.9A CN110498465B (zh) 2019-08-22 2019-08-22 聚光海水淡化装置以及海水淡化方法
CN201921378640.0 2019-08-22
CN201921378640.0U CN212334641U (zh) 2019-08-22 2019-08-22 聚光海水淡化装置

Publications (1)

Publication Number Publication Date
WO2020155903A1 true WO2020155903A1 (zh) 2020-08-06

Family

ID=71841868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126212 WO2020155903A1 (zh) 2019-02-01 2019-12-18 太阳能海水淡化装置以及海水淡化方法

Country Status (1)

Country Link
WO (1) WO2020155903A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538550A (zh) * 2020-11-19 2022-05-27 山东大学 一种抽真空装置的太阳能海水淡化装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1712862A (zh) * 2004-06-25 2005-12-28 刘淑平 封闭式太阳能
CN201358174Y (zh) * 2009-02-26 2009-12-09 杨德云 一种多功能太阳能海水淡化器
KR20130095399A (ko) * 2012-02-20 2013-08-28 박용희 태양열을 이용한 해수 담수화 장치
CN107986368A (zh) * 2018-01-12 2018-05-04 内蒙古工业大学 基于碟式聚光的太阳能风能互补驱动多效含盐水淡化装置
CN208022731U (zh) * 2017-12-25 2018-10-30 钟多琳 一种基于太阳能的海水淡化装置
CN110240214A (zh) * 2019-02-01 2019-09-17 清华大学 太阳能海水淡化装置以及海水淡化方法
CN110240211A (zh) * 2019-02-01 2019-09-17 清华大学 太阳能光热转化净水装置以及净水方法
CN110498465A (zh) * 2019-08-22 2019-11-26 清华大学 聚光海水淡化装置以及海水淡化方法
CN209797531U (zh) * 2019-02-01 2019-12-17 清华大学 太阳能海水淡化装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1712862A (zh) * 2004-06-25 2005-12-28 刘淑平 封闭式太阳能
CN201358174Y (zh) * 2009-02-26 2009-12-09 杨德云 一种多功能太阳能海水淡化器
KR20130095399A (ko) * 2012-02-20 2013-08-28 박용희 태양열을 이용한 해수 담수화 장치
CN208022731U (zh) * 2017-12-25 2018-10-30 钟多琳 一种基于太阳能的海水淡化装置
CN107986368A (zh) * 2018-01-12 2018-05-04 内蒙古工业大学 基于碟式聚光的太阳能风能互补驱动多效含盐水淡化装置
CN110240214A (zh) * 2019-02-01 2019-09-17 清华大学 太阳能海水淡化装置以及海水淡化方法
CN110240211A (zh) * 2019-02-01 2019-09-17 清华大学 太阳能光热转化净水装置以及净水方法
CN209797531U (zh) * 2019-02-01 2019-12-17 清华大学 太阳能海水淡化装置
CN110498465A (zh) * 2019-08-22 2019-11-26 清华大学 聚光海水淡化装置以及海水淡化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538550A (zh) * 2020-11-19 2022-05-27 山东大学 一种抽真空装置的太阳能海水淡化装置
CN114538550B (zh) * 2020-11-19 2023-11-10 山东大学 一种抽真空装置的太阳能海水淡化装置

Similar Documents

Publication Publication Date Title
CN110240211B (zh) 太阳能光热转化净水装置以及净水方法
CN110498465B (zh) 聚光海水淡化装置以及海水淡化方法
Farooq et al. Emerging radiative materials and prospective applications of radiative sky cooling-A review
Wang et al. Water Skin Effect and Arched Double‐Sided Evaporation for Boosting All‐Weather High Salinity Desalination
Li et al. Interfacial solar steam/vapor generation for heating and cooling
Kabeel et al. Solar still with condenser–A detailed review
Wei et al. Water activation in solar‐powered vapor generation
Liu et al. Recent advances in the development of radiative sky cooling inspired from solar thermal harvesting
CN101561194B (zh) 太阳能集热器
US20100018205A1 (en) Solar power generator
CN212198580U (zh) 用于太阳能光热蒸发海水淡化的阶梯型蒸馏器
CN108925309B (zh) 一种农业大棚自给水系统
CN112978834A (zh) 一种水面漂浮式冷凝器太阳能海水淡化装置
CN111547802A (zh) 一种用于太阳能光热蒸发海水淡化的多级梯型蒸馏器及方法
CN111533198A (zh) 一种用于太阳能光热蒸发海水淡化的阶梯型蒸馏器及方法
TW200935002A (en) Method and system of heat capture for HVAC
Ghazy et al. Cooling technologies for enhancing photovoltaic–thermal (PVT) performance: a state of the art
WO2023020449A1 (zh) 一种基于分波段的逆向差别光路光热复用装置
CN113896269A (zh) 一种基于界面蒸发的高效太阳能海水淡化装置
WO2020155903A1 (zh) 太阳能海水淡化装置以及海水淡化方法
Shan et al. Improving solar water harvesting via airflow restructuring using 3D vapor generator
CN209797531U (zh) 太阳能海水淡化装置
CN212292886U (zh) 用于太阳能光热蒸发海水淡化的多级梯型蒸馏器
CN110240214B (zh) 太阳能海水淡化装置以及海水淡化方法
CN212334641U (zh) 聚光海水淡化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912881

Country of ref document: EP

Kind code of ref document: A1