WO2020155727A1 - 容量调节和喷气增焓一体式涡旋压缩机及其系统 - Google Patents

容量调节和喷气增焓一体式涡旋压缩机及其系统 Download PDF

Info

Publication number
WO2020155727A1
WO2020155727A1 PCT/CN2019/115566 CN2019115566W WO2020155727A1 WO 2020155727 A1 WO2020155727 A1 WO 2020155727A1 CN 2019115566 W CN2019115566 W CN 2019115566W WO 2020155727 A1 WO2020155727 A1 WO 2020155727A1
Authority
WO
WIPO (PCT)
Prior art keywords
longitudinal
scroll
scroll compressor
passage
compression chamber
Prior art date
Application number
PCT/CN2019/115566
Other languages
English (en)
French (fr)
Inventor
杨春
王蒙
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2020155727A1 publication Critical patent/WO2020155727A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber

Definitions

  • the present disclosure relates to a scroll compressor, and in particular, to a scroll compressor with both capacity adjustment and jet enthalpy increase and a climate control system including the scroll compressor.
  • Compressors are used in various industrial, commercial, and residential applications to circulate working fluids in climate control systems (eg, refrigeration systems, air conditioning systems, heat pump systems, cooling systems, etc.) to provide the required cooling and/or heating effect.
  • climate control systems eg, refrigeration systems, air conditioning systems, heat pump systems, cooling systems, etc.
  • a typical climate control system may include a fluid circuit having an outdoor heat exchanger, an indoor heat exchanger, an expansion device disposed between the indoor heat exchanger and the outdoor heat exchanger, and a working fluid (for example, (Refrigerant or carbon dioxide) compressor that circulates between the indoor heat exchanger and the outdoor heat exchanger.
  • a working fluid for example, (Refrigerant or carbon dioxide) compressor that circulates between the indoor heat exchanger and the outdoor heat exchanger.
  • the effective and reliable operation of the compressor is desired to ensure that the climate control system in which the compressor is installed can effectively and efficiently provide cooling and/or heating effects as required.
  • Capacity adjustment technology is an important direction for the development of refrigeration and heat pump systems, which can make the output capacity of the unit better adapt to the end load demand, reduce the start and stop of the unit, and improve the energy efficiency and comfort of the system.
  • Known compressors include various capacity adjustment mechanisms to change the operating capacity of the compressor.
  • the capacity adjustment mechanism can be used to operate the compressor under full load conditions or partial load conditions. The demand for full load changes or partial load changes depends on seasonal changes, occupants in the conditioned space, and/or refrigeration unit load requirements.
  • Jet Enthalpy Technology can significantly improve the cooling/heating capacity and system energy efficiency of the cooling/heating system under high pressure ratio conditions, reduce the compressor discharge temperature, and expand the operating range of the unit.
  • This technology has been widely used in low-temperature refrigeration and low-temperature heat pump systems.
  • An object of the present application is to provide an integrated scroll compressor with capacity adjustment and jet enthalpy enhancement with a more novel and simple structure.
  • Another object of the present application is to provide an integrated scroll compressor with capacity adjustment and jet enthalpy that can be manufactured at a lower cost.
  • Another object of the present application is to provide an integrated scroll compressor with higher reliability for capacity adjustment and jet enthalpy increase.
  • a scroll compressor which includes: a movable scroll member having a first end plate and a first spiral scroll The fixed scroll member, the fixed scroll member is located above the movable scroll member in the longitudinal direction of the scroll compressor and has a second end plate and a second spiral scroll, wherein the second spiral scroll and the first The spiral scroll forms a meshing joint to form a plurality of compression chambers between the movable scroll member and the fixed scroll member, and a longitudinal direction communicating with at least one of the plurality of compression chambers is provided at the second end plate.
  • the scroll compressor further includes: an injection channel capable of communicating with the at least one compression chamber via a longitudinal channel and allowing the injection fluid to be injected to the at least one compression chamber when communicating with the at least one compression chamber A compression chamber to increase the compressor capacity; a bypass passage that can communicate with the at least one compression chamber via a longitudinal passage and allows compressed fluid to pass from the at least one compression chamber in communication with the at least one compression chamber The at least one compression chamber leaks to reduce the compressor capacity; and a switching assembly, the switching assembly includes at least a movable part, the movable part is adapted to be controlled to be able to move between a first position and a second position, thereby selectively Ground allows the bypass passage to communicate with or disconnect from the at least one compression chamber.
  • the switching assembly further includes a control valve including: a first port connected to the suction pressure region of the scroll compressor, a second port connected to the discharge pressure region of the scroll compressor, and a communication To the third port of the movable member, wherein the third port is selectively connected to the first port or the second port to change the pressure applied to the movable member to allow the movement of the movable member.
  • a control valve including: a first port connected to the suction pressure region of the scroll compressor, a second port connected to the discharge pressure region of the scroll compressor, and a communication To the third port of the movable member, wherein the third port is selectively connected to the first port or the second port to change the pressure applied to the movable member to allow the movement of the movable member.
  • the longitudinal channel is a longitudinal through hole formed on the second end plate that communicates with one of the plurality of compression chambers, and the longitudinal through hole communicates the ends of the injection channel and the bypass channel with the compression chamber, And the movable part is arranged in the longitudinal through hole in a longitudinally slidable manner.
  • the movable component is in the form of a cylindrical valve body, and a passage allowing at least one of the injection channel and the bypass channel to communicate with the compression chamber is provided in the valve body.
  • valve body in the first position, allows the bypass passage to communicate with the compression chamber; in the second position, the valve body allows the injection passage to be completely communicated with the compression chamber but does not allow the bypass passage to communicate with the compression chamber.
  • the valve body in the first position, also allows the injection passage to at least partially communicate with the compression chamber.
  • the third port of the control valve may be connected to the top of the valve body, and the injection channel is located above the bypass channel in the longitudinal direction.
  • the bypass channel can communicate with the compression chamber through the bottom opening of the longitudinal through hole, and the injection channel communicates with the compression chamber through a passage in the valve body.
  • the cross-sectional area of the passage is smaller than the cross-sectional area of the bottom opening of the longitudinal through hole.
  • the cross-sectional area of the jet channel is smaller than the cross-sectional area of the bypass channel.
  • it further includes a spring, which is arranged between the valve body and the longitudinal through hole and biases the valve body toward the first position.
  • the longitudinal channel is a plurality of longitudinal holes formed on the second end plate, and the plurality of longitudinal holes connect the injection channel and the bypass channel with the compression chamber.
  • the movable member is provided outside the plurality of longitudinal holes. The movable member is configured to move away from and open the plurality of longitudinal holes when in the first position and to cover and close the plurality of longitudinal holes when in the second position.
  • the movable part may be a floating pressure plate disposed above the second end plate, and an intermediate cavity communicating with the third port is formed between the floating pressure plate and the second end plate.
  • the floating pressure plate can be adjusted according to the pressure in the intermediate cavity. It changes and floats up and down between the first position and the second position relative to the second end plate, thereby realizing the opening and closing of a plurality of longitudinal holes.
  • the floating pressure plate in the first position, abuts against the second end plate and closes the upper ports of the multiple longitudinal holes; in the second position, the floating pressure plate moves upward away from the second end plate and opens the upper ports of the multiple longitudinal holes .
  • the jet channel extends transversely from the outer peripheral surface of the second end plate in the second end plate, and extends to communicate with a part of the longitudinal holes.
  • the injection channel communicates with the corresponding compression cavity via the part of the longitudinal holes; in the second position, a gap is generated between the floating pressure plate and the second end plate, and the gap is used as The bypass passage communicates with the corresponding compression cavity via all or another part of the longitudinal holes.
  • the plurality of longitudinal holes includes a plurality of longitudinal holes arranged in an arc shape at equal intervals.
  • the number of the part of the longitudinal holes communicating with the jet passage among the plurality of longitudinal holes is less than half of the total number of the plurality of longitudinal holes.
  • the injection channel may be provided with a check valve that only allows the injection fluid to flow in the injection direction.
  • control valve is a two-position three-way solenoid valve.
  • a climate control system including the above-mentioned scroll compressor, and the climate control system further has an external injection path connected to the injection channel to provide the injection fluid to the injection channel, wherein the external A jet fluid generating device for generating jet fluid is provided on the jet path.
  • valve device for controlling the communication and disconnection of the external injection path may also be provided on the external injection path.
  • the valve device is an expansion valve with a controller.
  • Figure 1 is an external view of a scroll compressor.
  • Fig. 2 is a partial cross-sectional view of a scroll compressor showing a scroll assembly.
  • Fig. 3 is a perspective view of the scroll assembly according to the first embodiment of the present application.
  • Fig. 4a is a longitudinal sectional view showing a first state of the scroll assembly according to the first embodiment of the present application.
  • Fig. 4b is a longitudinal sectional view showing a second state of the scroll assembly according to the first embodiment of the present application.
  • Fig. 5a is a perspective view showing the valve body in the scroll assembly according to the first embodiment of the present application.
  • Fig. 5b is a longitudinal sectional view showing the valve body in the scroll assembly according to the first embodiment of the present application.
  • Fig. 6 is a cross-sectional view showing the scroll assembly according to the first embodiment of the present application.
  • Fig. 7a is a schematic diagram showing a first circulation mode of a system including the scroll compressor according to the first embodiment of the present application.
  • Fig. 7b is a schematic diagram showing a second circulation mode of the system including the scroll compressor according to the first embodiment of the present application.
  • Fig. 7c is a schematic diagram showing the third circulation mode of the system including the scroll compressor according to the first embodiment of the present application.
  • Fig. 7d is a schematic diagram showing the fourth circulation mode of the system including the scroll compressor according to the first embodiment of the present application.
  • Fig. 8 is a longitudinal cross-sectional view showing a modification of the scroll assembly according to the first embodiment of the present application.
  • Fig. 9 is a longitudinal sectional view showing a scroll assembly according to a second embodiment of the present application.
  • Fig. 10a is a cross-sectional view of the scroll assembly according to the second embodiment of the present application taken at the end plate of the self-defined scroll.
  • Fig. 10b is a cross-sectional view of the scroll assembly according to the second embodiment of the present application taken at the scroll portion of the self-defined scroll.
  • Fig. 11a is a longitudinal sectional view showing a first state of the scroll assembly according to the second embodiment of the present application.
  • Fig. 11b is a longitudinal sectional view showing a second state of the scroll assembly according to the second embodiment of the present application.
  • Fig. 12a is a schematic diagram showing a first circulation mode of a system including a scroll compressor according to a second embodiment of the present application.
  • Fig. 12b is a schematic diagram showing a second circulation mode of the system including the scroll compressor according to the second embodiment of the present application.
  • Fig. 12c is a schematic diagram showing a third circulation mode of the system including the scroll compressor according to the second embodiment of the present application.
  • Fig. 12d is a schematic diagram showing the fourth cycle mode of the system including the scroll compressor according to the second embodiment of the present application.
  • Fig. 13 is a cross-sectional view showing a modification of the scroll assembly according to the second embodiment of the present application.
  • the scroll compressor involved in the present disclosure has a capacity adjustment system to allow the capacity in the compressor to be increased or decreased as needed.
  • the capacity adjustment system uses an economic fluid injection (EVI) channel (hereinafter referred to as "injection channel”) to inject steam fluid into the compressor to increase the capacity and/or to reduce the leakage of compressed fluid from the compressor through a bypass channel. small capacity.
  • EVI economic fluid injection
  • injection channel injection channel
  • the location and area of the injection channel and the bypass channel in the compressor affect the amount of increase or decrease that can be achieved.
  • Fig. 1 shows an external view of a scroll compressor 1 that includes a sealed housing assembly that houses a compression mechanism.
  • the housing assembly provides a path to the compression mechanism through the inlet port 12, the outlet port 14, and a number of other ports.
  • the "multiple other ports” include the EVI port 16 connected to the injection channel inside the sealed housing assembly, which connects the injection channel inside the compressor with the external EVI pipeline (also referred to as the "external injection path") .
  • FIG. 2 shows a cross-sectional view of the upper part of the scroll compressor 1, in which the compression mechanism includes at least a fixed scroll 20 and a movable scroll 30.
  • the fixed scroll 20 includes an end plate 22 having a spiral blade or spiral wrap 24 on its lower surface.
  • the orbiting scroll 30 includes an end plate 32 having a spiral blade or spiral wrap 34 on its upper surface.
  • the scroll 24 of the fixed scroll 20 and the scroll 34 of the movable scroll 30 form a meshing engagement, thereby forming a series of compression chambers.
  • the two sets of spiral wraps cooperate with each other and surround the discharge port 18, that is, a discharge port (discharge cavity) 18 is provided at the center of the two sets of spiral wraps.
  • the orbiting scroll 30 orbits relative to the fixed scroll 20, and the scrolls of the two selectively seal the refrigerant in a series of chambers or compression chambers, the series of chambers or compression chambers facing the discharge port 18
  • the refrigerant is compressed, and the compressed high-pressure refrigerant is finally discharged from the compression mechanism (scroll assembly) from the discharge port 18.
  • the injection passage and the bypass passage communicate with the compression chamber via at least a part of the common longitudinal passage.
  • the longitudinal passage is formed in the scroll structure of the compressor, more specifically, may be formed in the end plate of the fixed scroll, and the lower port of the longitudinal passage will communicate with the compression chamber of the scroll structure.
  • the communication state of the injection channel, the bypass channel, the longitudinal channel, and the compression chamber can be easily switched through the switching action of the switching assembly installed in the scroll structure. Without the need for additional external pipelines and control components.
  • the ejection fluid and the bypass fluid both enter or exit by means of the longitudinal passage
  • the diameter or volume of the longitudinal passage for the ejection fluid will be smaller than that of the The diameter or volume of the bypass fluid.
  • Fig. 3 shows a perspective view of the scroll assembly 100 of the scroll compressor according to the first embodiment of the present application.
  • the pressures in a series of chambers or compression chambers formed by the movable scroll 130 and the fixed scroll 120 are different from each other.
  • a solenoid valve 140 and an EVI joint 158 are provided on the end plate 122 of the fixed scroll 120.
  • the solenoid valve 140 is a three-way solenoid valve, which includes: a first port connected to the suction pressure area of the scroll compressor; a second port connected to the discharge pressure area of the scroll compressor ; And a third port, the third port is connected to a movable component slidably installed inside the fixed scroll end plate 122.
  • the solenoid valve 140 can be controlled to enable the third port to be selectively connected to the first port or the second port to change the pressure applied to the movable part so as to allow the movable part to move in the fixed scroll end plate 122 slide.
  • the solenoid valve 140 and the movable part are used together as a switching assembly for switching the communication state of the injection channel, the bypass channel, the longitudinal channel, and the compression chamber.
  • FIGS. 4a and 4b are longitudinal cross-sectional views showing a first state and a second state of the scroll assembly 100 of the scroll compressor according to the first embodiment of the present application, respectively, showing the longitudinal passage and the movable part Specific forms.
  • the common longitudinal channel is implemented as a longitudinal through hole 126 that penetrates the end plate of the fixed scroll parallel to the central axis of the fixed scroll 120, and the movable component is slidably installed in the longitudinal through hole.
  • the end plate 122 of the fixed scroll 120 is also provided with two horizontal passages 150 and 160 extending from the outer peripheral surface of the end plate 122 to communicate with the longitudinal through hole 126 transversely to the central axis of the fixed scroll 120, of which, located above
  • the outer port of the injection channel 150 at the outer peripheral surface of the end plate 122 is connected to the EVI connector, and then communicates with the external EVI pipeline to allow the entry of external economic fluid, that is, the injection fluid; the outer port of the bypass channel 160 located below is directly Connect to the suction pressure zone of the compressor.
  • the cross-sectional area of the jet passage 150 is smaller than the cross-sectional area of the bypass passage 160.
  • the third port of the solenoid valve 140 is in communication with the first port and a low pressure (suction pressure) is introduced at the upper end of the valve body 170 via the pipeline 142.
  • a low pressure suction pressure
  • the pressure of the compressed gas in the compression chamber C is higher than the pressure at the upper end of the valve body 170, so the valve body is displaced upward and abuts against the cover plate 128 at the upper end of the longitudinal through hole 126, that is, the valve body 170 is in the first position.
  • the bypass passage 160 connects the bottom opening 127 surrounded by the flange at the lower end of the valve body 170 and the bottom end of the longitudinal through hole 126 to the compression chamber C, that is, the bypass passage is connected to the compression chamber C.
  • the compressed fluid in the compression chamber C will be allowed to leak outward from the compression chamber C via the bypass passage 160; at this time, the opening of the injection passage 150 on the valve body 170 side will be largely (incompletely) by the valve body Blocked, when the external EVI pipeline is connected, the jet channel 150 can still allow a small amount of jet fluid to enter the scroll assembly.
  • the third port of the solenoid valve 140 is connected to the second port, that is, high pressure (exhaust pressure) is introduced at the upper end of the valve body 170.
  • high pressure exhaust pressure
  • the compression chamber The pressure of the compressed gas in the valve body will be lower than the pressure at the upper end of the valve body, so the valve body 170 is displaced downward and abuts against the valve seat at the bottom end of the longitudinal through hole 126, that is, in the second position.
  • the valve body The bypass channel 160 will not be allowed to communicate with the compression chamber C, that is, the bypass channel is closed, so the compressed fluid in the compression chamber C is not allowed to leak from the compression chamber C through the bypass channel 160; at this time, the injection channel 150
  • the opening on the side of the valve body 170 will be fully opened and communicate with the passage inside the valve body 170, that is, the injection channel is in communication with the compression chamber C.
  • the valve body 170 includes a top cylinder 171, the cylinder 171 has a plurality of annular ribs that are sealed to the longitudinal through holes 126 on the outside, and the cylinder 171 has a longitudinal pipeline 176 on the inside.
  • the lower end of the longitudinal pipeline 176 is connected to Compression cavity C.
  • At least one aperture 174 is formed between two annular ribs 172 of the plurality of annular ribs of the valve body 170, and the aperture 174 penetrates the cylinder 171.
  • the at least one orifice 174 and the longitudinal pipeline 176 jointly constitute a passage inside the valve body 170.
  • the at least one orifice 174 will allow the injection passage 150 to communicate with the longitudinal pipeline 176 of the valve body 170 and thereby the compression chamber C.
  • the bottom end of the valve body 170 is adapted to be inserted into the bottom opening 127 of the longitudinal through hole 126, as shown in Figures 4a and 4b, by moving the bottom end of the valve body 170 in and out of the bottom opening 127, bypassing can be realized.
  • the passage 160 is blocked or opened.
  • a series of chambers or compression chambers formed by the orbiting scroll 130 and the fixed scroll 120 include two sets relative to the center axis of the scroll assembly (in other words , Around the discharge port) a substantially axially symmetric compression chamber, then one longitudinal through hole may be provided at the position of the end plate 122 of the fixed scroll 120 corresponding to the two symmetrical compression chambers, and the valve body may be configured accordingly , Injection channel and bypass channel.
  • the cross-sectional area of the passage of the movable component (especially the longitudinal pipe 176) is smaller than the cross-sectional area of the bottom opening 127 of the longitudinal through hole 126.
  • an elastic member such as a spring can be arranged between the valve body 170 and the longitudinal through hole 126 to bias the valve body 170 toward a certain position.
  • a spring can be arranged at the lower part of the valve body to make the solenoid valve When 140 is not working or the upper end of the valve body 170 is not conducted with a sufficiently high pressure, the valve body is biased to be in the first position.
  • a sealing member such as a sealing ring may be provided outside the cylinder 171 of the valve body 170 to further enhance the sealing effect between the valve body 170 and the longitudinal through hole 126.
  • the compression chamber C connected by the longitudinal through hole 126 is the compression chamber located at the outermost radially outermost compression chamber in a series of compression chambers.
  • this configuration is not restrictive. In different scroll settings and in different compressor designs, the designer can change the position of the compression chamber communicating with the longitudinal port.
  • the climate control system also has a first heat exchanger 2, a second heat exchanger 4, and an economizer 3 (that is, a device that generates jet fluid, which can also be called a jet fluid generator) ,
  • the first valve V1 (the first expansion valve, EXV1) and the second valve V2 (the second expansion valve, EXV2).
  • the discharge outlet 15 communicates with a line R1 leading to the first heat exchanger 2.
  • the first heat exchanger 2 in turn communicates with the economizer 3 and the first valve V1.
  • the first valve V1 is also provided with a controller that can control the opening and closing of the first valve V1: when the controller controls the first valve V1 to be closed, the fluid from the first heat exchanger 2 Will all flow through the economizer 3 and continue to flow through the second valve V2 to reach the second heat exchanger 4; when the controller controls the first valve V1 to open, the fluid from the first heat exchanger 2 One part will flow through the economizer 3 and continue to flow through the second valve V2 to reach the second heat exchanger 4, and the other part of the fluid will flow through the first valve V1 and the economizer 3, and then enter the outside communicating with the injection channel 150 EVI pipeline R2.
  • the second heat exchanger 4 communicates with the suction port 17 of the scroll compressor through a pipeline.
  • the controller in the first valve V1 can also be replaced with an on-off valve provided on the external EVI pipeline R2, which can control the on and off of the external EVI pipeline R2.
  • Fig. 7a schematically shows the first circulation mode of the fluid in the system according to the first embodiment.
  • the valve body 170 in the fixed scroll 120 under the control of the solenoid valve 140, the valve body 170 in the fixed scroll 120 is in the first position, the bypass passage 160 communicates with the compression chamber, and the injection passage 150 is largely blocked by the valve body 170
  • the controller on the external EVI pipeline R2 controls the first valve V1 to be closed, that is, the external EVI pipeline R2 is disconnected. In this way, no injected fluid is injected into the compression chamber C through the injection passage 150, and a part of the partially compressed (not fully compressed) fluid in the compression chamber C passes through the bypass before undergoing complete compression and reaching the discharge port.
  • the passage leaks to the suction pressure side of the compressor (as indicated by arrow D1). Therefore, in this mode, the climate control system will operate at a low capacity level below the full capacity, that is, under partial load.
  • the amount of reduction in compressor capacity will depend on the leakage amount of the partially compressed fluid, and the leakage amount of the partially compressed fluid will depend on the size and location of the bypass passage.
  • Fig. 7b schematically shows a second circulation mode of the fluid in the system according to the first embodiment.
  • the valve body 170 in the fixed scroll 120 under the control of the solenoid valve 140, the valve body 170 in the fixed scroll 120 is in the second position, the bypass passage 160 is blocked by the valve body and cannot communicate with the compression chamber, and the inner port of the injection passage 150 is completely Open and therefore communicate with the compression chamber, while the controller on the external EVI line R2 controls the first valve V1 to be in an open state, thereby connecting the external EVI line R2.
  • the climate control system will operate at a high capacity level higher than the full capacity.
  • the spray fluid may be a steam fluid, a liquid fluid, or a combined steam-liquid fluid (e.g., wet steam).
  • Fig. 7c schematically shows a third circulation mode of the fluid in the system according to the first embodiment.
  • the valve body 170 in the fixed scroll 120 under the control of the solenoid valve 140, the valve body 170 in the fixed scroll 120 is in the second position, the bypass passage 160 is blocked by the valve body 170 and cannot communicate with the compression chamber, and the inner port of the injection passage 150 is Fully open and therefore communicate with the compression chamber.
  • the difference from the second mode is that the controller on the external EVI pipeline R2 controls the first valve V1 to be closed, so the external EVI pipeline R2 is blocked.
  • the climate control system will operate at the full capacity level, that is, full load operation.
  • Fig. 7d schematically shows a fourth circulation mode of the fluid in the system according to the first embodiment.
  • the valve body 170 in the fixed scroll 120 under the control of the solenoid valve 140, the valve body 170 in the fixed scroll 120 is in the first position, the bypass passage 160 communicates with the compression chamber, and the injection passage 150 is largely blocked by the valve body 170 .
  • the controller on the external EVI pipeline R2 controls the first valve V1 to open, that is, the external EVI pipeline R2 is connected.
  • VRF unit The air conditioning system
  • the refrigerant fluid from the outdoor heat exchanger has a higher degree of subcooling, preventing the refrigerant fluid from reaching the main circuit expansion valve due to pressure drop
  • the appearance of bubbles causes unstable control of the expansion valve in the main circuit.
  • a one-way valve that only allows the injection fluid to flow in the injection direction may be provided in the injection passage 150.
  • the one-way valve 152 may be provided at the outer port of the injection channel 150.
  • the one-way valve 152 may be provided at a position of the injection passage 150 that is closer to the longitudinal through hole.
  • the meaning of “adjacent” can be understood as making the volume of the passage between the one-way valve 152 and the compression chamber C (also referred to as the clearance volume) as small as possible.
  • the check valve 152 is closed by the elastic force of its own elastic member. This greatly reduces the clearance volume of the compression chamber.
  • the clearance volume of the compression chamber only corresponds to the passage space between the compression chamber and the one-way valve 152. Since the clearance volume is greatly reduced, the efficiency of the compressor can be advantageously improved.
  • a one-way valve 152 composed of a valve plate, a spring, and a base
  • a valve plate composed of a valve plate, a spring, and a base
  • Fig. 9 shows a longitudinal sectional view of a scroll assembly 200 of a scroll compressor according to the second embodiment of the present application.
  • the series of chambers or compression chambers formed by the movable scroll and the fixed scroll 220 includes two sets of compression chambers that are substantially axially symmetrical with respect to the central axis of the scroll assembly (in other words, around the discharge port). , And the pressure in the two approximately axially symmetric compression chambers will be approximately the same.
  • a solenoid valve 240 and an EVI joint are provided on the end plate 222 of the fixed scroll 220.
  • the solenoid valve 240 is a three-way solenoid valve, which includes: a first port connected to the suction pressure area of the scroll compressor; a second port connected to the discharge pressure area of the scroll compressor And a third port, the third port is associated with the movable part in the end plate 222 of the fixed scroll 220.
  • the solenoid valve 240 and the movable part are used together as a switching component for switching the communication state of the injection passage, the bypass passage, the longitudinal passage, and the compression chamber.
  • the movable component is a floating pressure plate 210 arranged above the fixed scroll end plate 222 in a manner capable of floating up and down.
  • the floating pressure plate 210, the end plate 222 of the fixed scroll 220 and the intermediate piece 226 between the two are form-fitted to form at least one intermediate cavity A between the floating pressure plate 210 and the intermediate piece 226, and the solenoid valve
  • the third port of 240 is connected to the intermediate cavity A via a pipeline 242.
  • the solenoid valve can be controlled to enable the third port to selectively communicate with the first port or the second port to change the pressure in the intermediate cavity A and therefore the upward force exerted by the fluid in the intermediate cavity A on the floating plate 210 , Thereby allowing the floating pressure plate 210 to float up and down on the fixed scroll end plate 222.
  • FIGS. 10a and 10b are respectively a cross-sectional view of the scroll assembly according to the second embodiment of the present application taken at the end plate 222 and the scroll 224 of the self-defining scroll 220, which specifically show as a common
  • the two sets of longitudinal holes H1 and H2 of the longitudinal channel are formed on the fixed scroll end plate 222 to pass through the end plate 222 parallel to the central axis of the fixed scroll 220, and are substantially relative to the fixed scroll
  • the central axis of the spin 220 is symmetrical.
  • each group of holes is respectively connected to a first compression chamber C1 and a second compression chamber C2 that are substantially axially symmetric and have substantially the same pressure.
  • the fixed scroll end plate 222 also includes two transverse passages 250 extending transversely from the outer peripheral surface of the end plate 222, wherein the first transverse passage 250a and the second transverse passage 250b respectively extend to meet the first group of longitudinal holes H1 and H1 and A part of the longitudinal holes in the second group of longitudinal holes H2 are connected.
  • the first transverse passage 250a and the second transverse passage 250b together constitute an injection passage.
  • the first lateral passage 250 a and the second lateral passage 250 b have a common outer port at the outer peripheral surface of the end plate 222.
  • each group of perforations includes 6 perforations, and the first lateral passage 250a and the second lateral passage 250b are respectively connected with 2 to 3 perforations in each group of perforations.
  • the number of perforations is only an example, and the number of perforations in each group may be more or less.
  • the number of longitudinal perforations included in each of the first group of longitudinal perforations and the second group of longitudinal perforations is 6 to 10.
  • the number of holes connected by the first lateral passage 250a and the second lateral passage 250b can also be more or less.
  • the number of holes connected by the first and second lateral passages is less than half of the total number of holes, more preferably, one quarter to one third.
  • Figures 11a and 11b respectively take the structure on the side of the compression cavity C1 as an example to illustrate the first state and the second state of the scroll assembly according to the second embodiment of the present application.
  • the structure on the side of the compression cavity C2 is basically the same as that. Therefore, the illustration is omitted.
  • the third port of the solenoid valve 240 is connected to the second port, that is, high pressure (exhaust pressure) is introduced into the intermediate cavity A.
  • high pressure exhaust pressure
  • the floating pressure plate 210 The applied upward force overcomes the gravity of the floating pressure plate 210, and the floating pressure plate 210 is lifted.
  • the floating pressure plate 210 is in the second position.
  • a gap G is formed between the floating pressure plate 210 and the end plate 222 of the fixed scroll, and the upper ports of the holes are open.
  • the compression chamber will be guided to the jet channel, multiple holes and the gap G. Pass, where the gap G will be used as a bypass channel.
  • the external EVI pipeline R2 When the external EVI pipeline R2 is connected (that is, when the injection fluid is allowed to enter), the remaining holes in the series of longitudinal holes except the holes communicating with the injection channel will be used for the bypass of the fluid together with the gap G (bypass channel) , And when the external EVI pipeline R2 is cut off (that is, when the injection fluid is not allowed to enter), all the holes can be used to bypass the fluid with the gap G (bypass channel).
  • the third port of the solenoid valve 240 is connected to the first port, that is, low pressure (suction pressure) is introduced into the intermediate cavity A.
  • low pressure suction pressure
  • the floating pressure plate 210 is applied The upward force of is not enough to overcome the gravity of the floating pressure plate 210, so the floating pressure plate 210 will abut the end plate 222 of the fixed scroll 220, that is, in the second position.
  • the middle cavity A blocks the upper ports of all the holes, and there is no gap G between the end plate 222 and the floating pressure plate 210, that is, the bypass channel is closed.
  • the compression cavity can only pass through part of the holes and the first The first and second lateral passages communicate with each other, but cannot communicate with the bypass passage.
  • the series of chambers or compression chambers formed by the movable scroll 230 and the fixed scroll 220 are compression chambers with different pressures, they can also be Only one set of longitudinal holes is provided at the position of the end plate 222 of the fixed scroll 220 corresponding to one compression cavity, and accordingly, only one transverse channel can be provided as a jet channel.
  • FIGS. 12a to 12d there are shown several working modes of capacity adjustment of the climate control system including the scroll compressor of the second embodiment.
  • the capacity adjustment as in the first embodiment, at least four capacity levels of the climate control system can also be realized.
  • FIG 12a schematically shows the first circulation mode of the fluid in the system according to the second embodiment.
  • the floating plate 210 under the control of the solenoid valve 240, the floating plate 210 is in the second position, the bypass channel and the injection channel are both connected to the compression chamber, and the controller on the external EVI pipeline R2 controls the first valve V1 to close Status, that is, the external EVI pipeline R2 is disconnected.
  • the controller on the external EVI pipeline R2 controls the first valve V1 to close Status, that is, the external EVI pipeline R2 is disconnected.
  • no injected fluid is injected into the first and second compression chambers through the first and second transverse passages, and a part of the partially compressed (not sufficiently compressed) fluid in the compression chamber undergoes complete compression and reaches Before the discharge port, it leaks to the suction pressure side of the compressor through a series of longitudinal holes and gap G (as shown by arrow D1). Therefore, in this mode, the climate control system will operate at a low capacity level below the full capacity, that is, under partial load
  • Figure 12b schematically shows a second circulation mode of the fluid in the system according to the second embodiment.
  • the floating pressure plate 210 under the control of the solenoid valve 240, the floating pressure plate 210 is in the first position, and the upper ports of a series of longitudinal holes are all blocked by the floating pressure plate 210.
  • the first and second lateral passages as the injection channel pass through The hole connected with it is connected to the corresponding compression chamber, and at the same time, the controller on the external EVI pipeline R2 controls the first valve V1 to open, thereby connecting the external EVI pipeline R2.
  • FIG 12c schematically shows a third circulation mode of the fluid in the system according to the second embodiment.
  • the floating pressure plate 210 under the control of the solenoid valve 240, the floating pressure plate 210 is in the first position, and the upper ports of a series of longitudinal holes are all blocked by the floating pressure plate 210.
  • the controller on the external EVI pipeline R2 controls the first valve V1 to be closed, so the external EVI pipeline R2 is blocked.
  • the fluid discharged from the compressor from the discharge outlet 15 after passing through the first heat exchanger 2 will all flow through the economizer 3, the second valve V2 and the second heat exchanger 4, and then enter the compressor through the suction port 17.
  • the climate control system will operate at the full capacity level, that is, at full load.
  • Figure 12d schematically shows a fourth circulation mode of the fluid in the system according to the second embodiment.
  • the floating pressure plate 210 under the control of the solenoid valve 240, the floating pressure plate 210 is in the second position, and both the bypass passage and the injection passage are in communication with the compression chamber.
  • the controller on the external EVI pipeline R2 controls the first valve V1 to open, that is, the external EVI pipeline R2 is connected.
  • the ejected fluid will be ejected into the corresponding compression chamber (as indicated by the arrow D2) through the first and second transverse passages and the holes communicating with them, and at the same time, the corresponding compression chamber is partially compressed (not sufficiently compressed).
  • VRF units variable refrigerant flow multi-unit air conditioning systems
  • one-way valves that only allow the injection fluid to flow in the injection direction may be provided in the first and second transverse passages.
  • check valves 252 may be provided in the first and second lateral passages, respectively.
  • a single one-way valve can also be provided at the common outer port of the first and second transverse passages, or one-way valve can also be provided in the first and second transverse passages closer to a series of longitudinal holes Location. In this way, when no injection fluid with a sufficiently high pressure is injected into the first and second lateral passages from the outside, the one-way valve is closed by the elastic force of its own elastic element. This greatly reduces the clearance volume of the compression chamber, which can advantageously improve the efficiency of the compressor.
  • the first compression chamber and the second compression chamber are the second-stage compression chambers near the radially outer side of a series of compression chambers, but the configuration is not restrictive, and in different scroll settings and In different compressor designs, the designer can change the position of the compression chamber communicating with the longitudinal hole.
  • the first communication channel and the second communication channel may be in fluid communication with other compression chambers in the series of compression chambers.
  • more than two communicating passages can be provided to communicate with more compression chambers, thereby realizing a larger range of capacity modulation of the compressor.
  • the scroll compressor according to the embodiment of the present application enables the climate control system including the compressor to have a relatively simple structure.
  • the scroll compressor according to the embodiment of the present application does not require additional bypass interfaces and external bypass channels, so that the system’s pipes
  • the path is simple, and the number of channels in the compressor is also reduced, which greatly reduces the complexity of compressor design and manufacturing.
  • the passage formed in the end plate of the fixed scroll can be formed only by drilling, which can be completed by only a small amount of processing on the existing scroll part, without the need to redesign and cast the scroll part. Therefore, the design and manufacturing costs of scroll components are greatly saved.
  • the scroll EVI injection hole and the bypass share the same passage.
  • the area of the injection passage is preferably smaller to reduce the injection clearance, while the bypass The area of the passage is preferably larger to reduce the bypass loss.
  • the existing design usually directs the fluid in the compression chamber to the suction line of the compressor through the internal passage of the compressor and the additional connecting pipeline through the switching of the external control valve. There will be a large pressure drop after various control valves.
  • the scroll compressor according to the embodiment of the present application solves the above-mentioned problems.
  • the cross-sectional area of the injection channel according to the present application is smaller than that of the bypass channel; on the other hand, it reduces the external pipeline and The use of valve components, therefore, compared with the above-mentioned existing compressors, the embodiment of the present application significantly improves the comprehensive energy efficiency of the compressor and the system containing the compressor.
  • simplification of the structure and corresponding control logic also helps to improve the reliability of system operation, and avoids pipeline vibration and noise problems caused by complicated external connecting pipes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

一种涡旋压缩机包括:涡旋组件,该涡旋组件包括动涡旋(30,130,230)和定涡旋(20,120,220),在定涡旋的端板处设置有与多个压缩腔(C,C1,C2)中的至少一个压缩腔连通的纵向通道(126,H1,H2);喷射通道(150,250a,250b),该喷射通道能够经由纵向通道而与至少一个压缩腔连通并且允许喷射流体喷射至至少一个压缩腔中以增大压缩机容量;旁通通道(160,G),该旁通通道能够经由纵向通道而与至少一个压缩腔连通并且允许压缩流体从至少一个压缩腔泄漏以减小压缩机容量;以及切换组件,其至少包括可动部件(170,210),可动部件适于被控制成能够在第一位置与第二位置之间移动,从而选择性地允许旁通通道与至少一个压缩腔连通或断开。该涡旋压缩机具有更简单的构造、更低的成本和更高的可靠性。还提供了一种包括该涡旋压缩机的气候控制系统。

Description

容量调节和喷气增焓一体式涡旋压缩机及其系统
本申请要求于2019年1月30日提交中国专利局、申请号为201910091413.8、名称为“容量调节和喷气增焓一体式涡旋压缩机及其系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及涡旋压缩机,具体地,涉及一种兼具容量调节和喷气增焓的涡旋压缩机以及包括该涡旋压缩机的气候控制系统。
背景技术
本部分提供了与本公开有关的背景信息,该背景信息不一定为现有技术。
压缩机用于各种工业、商业和住宅应用中以使气候控制系统(例如,制冷系统、空调系统、热泵系统、冷却系统等)内的工作流体循环,从而提供所需的冷却和/或加热效果。典型的气候控制系统可以包括下述流体回路,所述流体回路具有室外热交换器、室内热交换器、设置在室内热交换器与室外热交换器之间的膨胀装置以及使工作流体(例如,制冷剂或二氧化碳)在室内热交换器与室外热交换器之间循环的压缩机。压缩机有效且可靠的操作是所期望的,以确保安装有该压缩机的气候控制系统能够根据需要有效且高效地提供冷却和/或加热效果。
容量调节技术是制冷及热泵系统发展的一个重要方向,可以使得机组输出能力更好适应末端负荷需求,减少机组开停机,提升系统能效和舒适性。已知有的压缩机包括多种容量调节机构以改变压缩机的操作容量。容量调节机构可以用于在满负载条件或部分负载条件下操作压缩机。满负载变化或部分负载变化的需求取决于季节变化、被调节空间中的占据者和/或制冷单元负载要求。
喷气增焓技术(EVI)可以显著提升制冷/制热系统在高压比工况下机组的制冷/制热量和系统能效,降低压缩机排气温度,拓展机组运行范围。该技术在低温冷冻、低温热泵等系统上得到了普遍应用。
如何将喷气增焓和容量调节整合在一起提升系统的综合能力是技术发展方向之一。主要有变频技术和喷气增焓的结合,机械式旁通技术和喷气增焓的结合,由于机械式旁通技术和喷气增焓组合的方案系统成本相对要低,因此更多地得到制造商的青睐。
然而,以更简单的构造、更低的成本和更高的可靠性实现机械式旁通技 术和喷气增焓技术(EVI)在压缩机中的有效结合并且提供更高的系统综合能效,仍是本领域技术人员一直以来所期望的。
发明内容
本部分提供了本公开的总体概述,并且并非是本公开的全部范围或本公开的所有特征的全面公开。
本申请的一个目的在于提供一种具有更新颖、更简单的构造的容量调节和喷气增焓一体式涡旋压缩机。
本申请的另一个目的在于提供一种能够以更低的成本制造的容量调节和喷气增焓一体式涡旋压缩机。
本申请的又一目的在于提供一种具有更高可靠性的容量调节和喷气增焓一体式涡旋压缩机。
为了实现上述目的中的一个或多个,根据本申请的一个方面,提供了一种涡旋压缩机,其包括:动涡旋构件,该动涡旋构件具有第一端板和第一螺旋涡卷;定涡旋构件,该定涡旋构件在涡旋压缩机的纵向方向上位于动涡旋构件上方并且具有第二端板和第二螺旋涡卷,其中,第二螺旋涡卷与第一螺旋涡卷形成啮合式接合以在动涡旋构件与定涡旋构件之间形成多个压缩腔,并且,在第二端板处设置有与多个压缩腔中的至少一个压缩腔连通的纵向通道,该涡旋压缩机还包括:喷射通道,该喷射通道能够经由纵向通道而与所述至少一个压缩腔连通并且在与所述至少一个压缩腔连通的情况下允许喷射流体喷射至所述至少一个压缩腔中以增大压缩机容量;旁通通道,该旁通通道能够经由纵向通道而与所述至少一个压缩腔连通并且在与所述至少一个压缩腔连通的情况下允许压缩流体从所述至少一个压缩腔泄漏以减小压缩机容量;以及切换组件,该切换组件至少包括可动部件,可动部件适于被控制成能够在第一位置与第二位置之间移动,从而选择性地允许旁通通道与所述至少一个压缩腔连通或断开。
根据本申请的实施方式,切换组件还包括控制阀,该控制阀包括:连通至涡旋压缩机的吸入压力区域的第一口、连通至涡旋压缩机的排出压力区域的第二口以及连通至可动部件的第三口,其中,第三口选择性地与第一口或第二口导通以改变对可动部件施加的压力从而允许可动部件的移动。其中,当第三口与第一口导通时,可动部件移动至第一位置;当第三口与第二口导通时,可动部件移动至第二位置。
在一种实施方式中,纵向通道为形成在第二端板上的连通多个压缩腔中的一个压缩腔的纵向通孔,纵向通孔将喷射通道和旁通通道的末端与压缩腔连通,并且可动部件以可纵向滑动的方式设置在纵向通孔中。
其中,可动部件呈柱状阀体的形式,且阀体内设置有允许喷射通道和旁通通道中的至少一者与压缩腔连通的通路。
其中,在第一位置中,阀体允许旁通通道与压缩腔连通;在第二位置中,阀体允许喷射通道与压缩腔完全连通而不允许旁通通道与压缩腔连通。
优选地,在第一位置中,阀体还允许喷射通道至少部分地与压缩腔连通。
控制阀的第三口可以连通至阀体的顶部,并且喷射通道在纵向方向上位于旁通通道的上方。
旁通通道可以经由纵向通孔的底部开口与压缩腔连通,喷射通道则经由阀体内的通路与压缩腔连通。
优选地,通路的横截面积小于纵向通孔的底部开口的横截面积。
进一步优选地,喷射通道的横截面积小于旁通通道的横截面积。
优选地,还包括弹簧,弹簧设置在阀体与纵向通孔之间并且将阀体朝向第一位置偏置。
作为另一种实施方式,纵向通道为形成在第二端板上的多个纵向孔眼,多个纵向孔眼将喷射通道和旁通通道与压缩腔连通。可动部件设置在多个纵向孔眼的外部。可动部件构造成构造成当处于第一位置时远离并打开多个纵向孔眼以及当处于第二位置时覆盖并关闭多个纵向孔眼。
在该情况下,可动部件可以是设置在第二端板上方的浮动压板,浮动压板与第二端板之间形成有与第三口连通的中间腔,浮动压板能够根据中间腔中压力的变化而相对于第二端板在第一位置与第二位置之间上下浮动,从而实现多个纵向孔眼的打开和关闭。
其中,在第一位置中,浮动压板抵靠第二端板并关闭多个纵向孔眼的上端口;在第二位置中,浮动压板向上移动离开第二端板并打开多个纵向孔眼的上端口。
在一个示例中,喷射通道在第二端板内从第二端板的外周面横向延伸,并且延伸成与多个纵向孔眼中的一部分纵向孔眼连通。
进一步地,在第一位置和第二位置中,喷射通道经由所述一部分纵向孔 眼与对应的压缩腔连通;在第二位置中,浮动压板与第二端板之间产生间隙,该间隙用作旁通通道并且经由多个纵向孔眼中的全部或另一部分纵向孔眼与对应的压缩腔连通。
可选地,多个纵向孔眼包括呈弧形等间距排列的若干纵向孔眼。
优选地,多个纵向孔眼中的与喷射通道连通的所述一部分纵向孔眼的数量小于所述多个纵向孔眼的总数量的二分之一。
作为本申请的实施方式的改进形式,喷射通道中可以设置有仅允许喷射流体沿喷射方向流动的单向阀。
优选地,控制阀为两位三通电磁阀。
根据本申请的另一方面,还提供了一种包括上述涡旋压缩机的气候控制系统,该气候控制系统还具有与喷射通道连接以向喷射通道提供喷射流体的外部喷射路径,其中,在外部喷射路径上设置有用于产生喷射流体的喷射流体发生装置。
进一步地,在外部喷射路径上还可以设置有用于控制外部喷射路径的连通和断开的阀装置。
优选地,该阀装置是带有控制器的膨胀阀。
通过本文提供的说明,其他的应用领域将变得显而易见。应该理解,本部分中描述的特定示例和实施方式仅处于说明目的而不是试图限制本公开的范围。
附图说明
本文中所描述的附图仅出于对所选实施方式而非所有可能的实施方案进行说明的目的,并且无意于限制本公开的范围。在全部附图中,相同的附图标记指示相同的部分。此外,并未刻意按实际尺寸等比例缩放绘制附图,为便于说明的目的,有些部分以放大比例示出。
图1是一种涡旋压缩机的外部视图。
图2是涡旋压缩机的示出涡旋组件的局部剖视图。
图3是根据本申请第一实施方式的涡旋组件的立体图。
图4a是示出了根据本申请第一实施方式的涡旋组件的第一状态的纵剖视图。
图4b是示出了根据本申请第一实施方式的涡旋组件的第二状态的纵剖视 图。
图5a是示出了根据本申请第一实施方式的涡旋组件中的阀体的立体图。
图5b是示出了根据本申请第一实施方式的涡旋组件中的阀体的纵剖视图。
图6是示出了根据本申请第一实施方式的涡旋组件的横剖视图。
图7a是示出了包括根据本申请第一实施方式的涡旋压缩机的系统的第一循环模式的示意图。
图7b是示出了包括根据本申请第一实施方式的涡旋压缩机的系统的第二循环模式的示意图。
图7c是示出了包括根据本申请第一实施方式的涡旋压缩机的系统的第三循环模式的示意图。
图7d是示出了包括根据本申请第一实施方式的涡旋压缩机的系统的第四循环模式的示意图。
图8是示出了根据本申请第一实施方式的涡旋组件的改进方案的纵剖视图。
图9是示出了根据本申请第二实施方式的涡旋组件的纵剖视图。
图10a是示出了自定涡旋的端板处截得的根据本申请第二实施方式的涡旋组件的横剖视图。
图10b是示出了自定涡旋的涡卷处截得的根据本申请第二实施方式的涡旋组件的横剖视图。
图11a是示出了根据本申请第二实施方式的涡旋组件的第一状态的纵剖视图。
图11b是示出了根据本申请第二实施方式的涡旋组件的第二状态的纵剖视图。
图12a是示出了包括根据本申请第二实施方式的涡旋压缩机的系统的第一循环模式的示意图。
图12b是示出了包括根据本申请第二实施方式的涡旋压缩机的系统的第二循环模式的示意图。
图12c是示出了包括根据本申请第二实施方式的涡旋压缩机的系统的第三循环模式的示意图。
图12d是示出了包括根据本申请第二实施方式的涡旋压缩机的系统的第 四循环模式的示意图。
图13是示出了根据本申请第二实施方式的涡旋组件的改进方案的横剖视图。
具体实施方式
现在将参照附图更全面地描述示例性实施方式。
提供示例性实施方式以使得本公开将是详尽的并且将向本领域技术人员更全面地传达范围。阐述了许多具体细节比如具体部件、装置和方法的示例,以提供对本公开的各实施方式的透彻理解。对本领域技术人员而言将清楚的是,不需要采用具体细节,示例性实施方式可以以许多不同的形式实施,并且也不应当理解为限制本公开的范围。在一些示例性实施方式中,不对公知的过程、公知的装置结构和公知的技术进行详细的描述。
本公开所涉及的涡旋压缩机具有容量调节系统以允许根据需要增大或减小压缩机中的容量。该容量调节系统利用经济流体喷射(EVI)通道(后文简称为“喷射通道”)将蒸汽流体喷射到压缩机中以增大容量并且/或者通过旁通通道使压缩流体从压缩机泄漏以减小容量。喷射通道和旁通通道在压缩机内的位置以及面积会影响可以实现的容量增大或减小的量。尽管容量调节系统在本文中被描述和图示为修改涡旋压缩机的容量,但是应当理解的是,容量调节系统的概念也可以应用于其他压缩机。例如,容量调节系统的概念还可以应用于螺杆压缩机。
图1示出了一种涡旋压缩机1的外部视图,该涡旋压缩机1包括容纳压缩机构的密封壳体组件。壳体组件通过进入端口12、排出端口14和多个其他端口提供连通至压缩机构的路径。其中,所述“多个其他口”中包括与密封壳体组件内部的喷射通道连接的EVI端口16,其将压缩机内部的喷射通道与外部EVI管线(又称为“外部喷射路径”)连通。
图2示出了涡旋压缩机1的上部部分的剖视图,其中,压缩机构至少包括定涡旋20和动涡旋30。定涡旋20包括端板22,该端板具有位于其下表面上的螺旋叶片或螺旋涡卷24。动涡旋30包括端板32,该端板32具有位于其上表面上的螺旋叶片或螺旋涡卷34。定涡旋20的涡卷24与动涡旋30的涡卷34形成啮合式接合,从而形成一系列的压缩腔。
两组螺旋涡卷相互配合并环绕排出口18,即,在两组螺旋涡卷的中央处 设置有排出口(排出腔)18。动涡旋30相对于定涡旋20绕动,并且两者的涡卷将制冷剂选择性地封堵在一系列腔室或压缩腔中,所述一系列腔室或压缩腔朝向排出口18压缩制冷剂,并且经过压缩的高压制冷剂最终从排出口18排出压缩机构(涡旋组件)。
特别地,在本公开所涉及的涡旋压缩机的容量调节系统中,喷射通道和旁通通道经由共同的纵向通道的至少一部分与压缩腔连通。该纵向通道形成在压缩机的涡旋结构中,更具体地,可以形成在定涡旋的端板中,并且纵向通道的下端口将连通至涡旋结构的压缩腔。与现有技术不同的是,根据本申请的实施方式,通过安装在涡旋结构中的切换组件的切换作用就能够容易地切换喷射通道和旁通通道与纵向通道、进而压缩腔的连通状态,而不需要借助额外的外部管路和控制元件。此外,尽管喷射流体和旁通流体均借助于该纵向通道进入或排出,但是在根据本申请的实施方式中,借助于切换组件,纵向通道的用于喷射流体的直径或体积将小于其用于旁通流体的直径或体积。
下面将借助于示例性实施方式来描述根据本申请的涡旋压缩机的容量调节系统的可能的方案。
图3示出了根据本申请的第一实施方式的涡旋压缩机的涡旋组件100的立体图。在该实施方式中,动涡旋130和定涡旋120所形成的一系列腔室或压缩腔内的压力各不相同。其中,在定涡旋120的端板122上设置有电磁阀140和EVI接头158。该电磁阀140为三通电磁阀,其包括:第一口,该第一口连通至涡旋压缩机的吸入压力区域;第二口,该第二口连通至涡旋压缩机的排出压力区域;以及第三口,该第三口连通至以可滑动的方式安装在定涡旋端板122内部的一个可动部件。其中,电磁阀140能够被控制成使第三口选择性地与第一口或第二口导通以改变对可动部件施加的压力从而允许该可动部件在定涡旋端板122中的滑动。其中,电磁阀140和可动部件共同用作切换喷射通道和旁通通道与纵向通道、进而压缩腔的连通状态的切换组件。
图4a和图4b分别是示出了根据本申请第一实施方式的涡旋压缩机的涡旋组件100的第一状态和第二状态的纵剖视图,其中示出了纵向通道和可动部件的具体形式。在该实施方式中,公共的纵向通道实施为平行于定涡旋120的中心轴线贯穿定涡旋的端板的纵向通孔126,该可动部件是以可滑动的方式安装在该纵向通孔126中的阀体170。在定涡旋120的端板122中还设置有横 向于定涡旋120的中心轴线从端板122的外周面延伸成与纵向通孔126连通的两条水平通道150和160,其中,位于上方的喷射通道150在端板122的外周面处的外端口与EVI接头连通,进而与外部EVI管线连通,以允许外部经济流体、即喷射流体的进入;位于下方的旁通通道160的外端口直接连通至压缩机的吸入压力区。特别地,喷射通道150的横截面积小于旁通通道160的横截面积。
在图4a所示的涡旋组件100的第一状态下,电磁阀140的第三口与第一口导通并且经由管路142在阀体170的上端引入低压(吸入压力),此时,压缩腔C中的压缩气体的压力高于阀体170上端的压力,因此阀体向上移位且抵靠在纵向通孔126上端的盖板128上,即阀体170处于第一位置。在此位置处,旁通通道160将通过阀体170下端与纵向通孔126底端的由凸缘围成的底部开口127与压缩腔C导通,即旁通通道与压缩腔C导通,这将允许压缩腔C中的压缩流体从该压缩腔C经由旁通通道160向外泄漏;此时,喷射通道150在阀体170侧的开口将在很大程度上(非完全地)被阀体阻塞,当外部EVI管线接通时,该喷射通道150仍可以允许少量的喷射流体进入到涡旋组件中。
在图4b所示的涡旋组件100的第二状态下,电磁阀140的第三口与第二口导通,即在阀体170的上端引入高压(排气压力),此时,压缩腔中的压缩气体的压力将低于阀体上端的压力,因此阀体170向下移位且抵靠在纵向通孔126底端的阀座上,即处于第二位置,在此位置处,阀体将不允许旁通通道160与压缩腔C导通,即旁通通道被关闭,因此不允许压缩腔C中的压缩流体从该压缩腔C经由旁通通道160向外泄漏;此时,喷射通道150在阀体170侧的开口将完全打开并与阀体170内部的通路连通,即,喷射通道与压缩腔C连通,当外部EVI管线接通时,足量的喷射流体可以经由该喷射通道150喷射到涡旋组件中。
图5a和5b分别示出了阀体170的立体图和纵剖视图。该阀体170包括有顶的筒体171,该筒体171外侧具有与纵向通孔126密封配合的多个环形肋,筒体171内侧具有纵向管路176,该纵向管路176的下端连通至压缩腔C。在阀体170的多个环形肋中的两个环形肋172之间形成有至少一个孔口174,该孔口穿透筒体171。该至少一个孔口174与纵向管路176共同构成阀体170内部的通路。当喷射通道150的内端口部分地或全部地位于该两个环形肋172 之间时,该至少一个孔口174将允许喷射通道150与阀体170的纵向管路176、进而压缩腔C相连通。阀体170的底端部适于插入到纵向通孔126的底部开口127中,如图4a和4b所示,通过阀体170的底端部在底部开口127中的移入和移出,能够实现旁通通道160的堵塞或通开。
尽管未具体描述或示出,本领域技术人员可以理解的是,如果动涡旋130和定涡旋120所形成的一系列腔室或压缩腔包括两组相对于涡旋组件的中心轴线(换言之,围绕排出口)大致轴向对称的压缩腔,那么也可以在定涡旋120的端板122的对应于两个对称的压缩腔的位置处各设置一个纵向通孔,并且相应地配置阀体、喷射通道和旁通通道。
优选地,可动部件的通路(特别是纵向管路176)的横截面积小于纵向通孔126的底部开口127的横截面积。
根据需要,可以在阀体170与纵向通孔126之间设置诸如弹簧之类的弹性件,以将阀体170朝向某一位置偏置,例如,可以在阀体下部设置弹簧,使得在电磁阀140不工作或阀体170上端未导通足够高的压力的情况下,阀体被偏置成处于第一位置。
作为另一优选方案,可以在阀体170的筒体171外侧设置密封圈等密封构件以进一步增强阀体170与纵向通孔126之间的密封效果。
在该实施方式中,如图6所示,纵向通孔126所连通的压缩腔C是一系列压缩腔中的位于径向最外侧的压缩腔。但该构造并非限制性的。在不同的涡旋设置中以及在不同的压缩机设计中,设计人员可以改变与纵向通口连通的压缩腔的位置。
现在参照图7a至图7d,其中示出了包括该第一实施方式的涡旋压缩机的气候控制系统的容量调节的若干工作方式。在容量调节期间,可以实现该气候控制系统的多个(例如,四个)容量水平。该气候控制系统除了包括该涡旋压缩机以外,还具有第一热交换器2、第二热交换器4、经济器3(即,产生喷射流体的装置,又可称为喷射流体发生装置)、第一阀V1(第一膨胀阀,EXV1)以及第二阀V2(第二膨胀阀,EXV2)。排出出口15与通向第一热交换器2的管线R1连通。第一热交换器2进而与经济器3和第一阀V1连通。第一阀V1中还设置有控制器,该控制器能够控制第一阀V1的开启和关闭:在控制器将第一阀V1控制成关闭状态的情况下,来自第一热交换器2的流体将全部 流经经济器3并继续流动通过第二阀V2而到达第二热交换器4;在控制器将第一阀V1控制成打开状态的情况下,来自第一热交换器2的流体的一部分将流经经济器3并继续流动通过第二阀V2而到达第二热交换器4,而流体的另一部分将流经第一阀V1和经济器3,进而进入与喷射通道150连通的外部EVI管线R2。第二热交换器4通过管线与涡旋压缩机的吸入口17连通。
替代性地,第一阀V1内的控制器也可以替换成设置在外部EVI管线R2上的开关阀,该开关阀能够控制外部EVI管线R2的接通和断开。
图7a示意性地示出了根据第一实施方式的该系统中的流体的第一循环模式。在该模式下,在电磁阀140的控制下,定涡旋120内的阀体170处于第一位置,旁通通道160与压缩室连通,而喷射通道150在很大程度上被阀体170阻塞,同时外部EVI管线R2上的控制器将第一阀V1控制成关闭状态,即外部EVI管线R2断开。这样,将没有喷射流体经由喷射通道150被喷射到压缩腔C中,压缩腔C中的部分压缩的(未经充分压缩的)流体中的一部分在经历完全压缩并到达排出口之前即通过旁通通道泄漏到压缩机的吸入压力侧(如箭头D1所示)。因此在该模式下,该气候控制系统将以低于全部容量的低容量水平操作,即在部分载荷下操作。特别地,压缩机容量的减小量将取决于部分压缩的流体的泄漏量,并且部分压缩的流体的泄漏量将取决于旁通通道的尺寸和位置。
图7b示意性地示出了根据第一实施方式的该系统中的流体的第二循环模式。在该模式下,在电磁阀140的控制下,定涡旋120内的阀体170处于第二位置,旁通通道160被阀体阻塞而不能与压缩室连通,喷射通道150的内端口则完全打开并因此与压缩室连通,同时外部EVI管线R2上的控制器将第一阀V1控制成打开状态由此接通外部EVI管线R2。这样,从排出出口15排出压缩机的流体在穿过第一热交换器2之后,会有一部分进入包括第一阀V1的外部EVI管线R2,另一部分则继续流经经济器3、第二阀V2以及第二热交换器4。流经外部EVI管线R2的所述一部分流体将形成为具有更高过冷度的喷射流体,该喷射流体进而经由喷射通道150进入到压缩腔C中(如箭头D2所示),而经过第二热交换器4的另一部分流体则仍经由吸入口17进入压缩机涡旋组件中。因此在该模式下,该气候控制系统将以高于全部容量的高容量水平操作。特别地,该喷射流体可以为蒸汽流体、液态流体或组合的蒸汽-液态流体(例 如,湿蒸汽)。
图7c示意性地示出了根据第一实施方式的系统中的流体的第三循环模式。在该模式下,在电磁阀140的控制下,定涡旋120内的阀体170处于第二位置,旁通通道160被阀体170阻塞而不能与压缩室连通,喷射通道150的内端口则完全打开并因此与压缩室连通。与第二模式不同的是,外部EVI管线R2上的控制器将第一阀V1控制成关闭状态,因此外部EVI管线R2被阻断。这样,从排出出口15排出压缩机的流体在穿过第一热交换器2之后,会全部流经经济器3、第二阀V2以及第二热交换器4,进而经由吸入口17进入压缩机涡旋组件中。此时,对于涡旋组件而言,既没有喷射流体的进入也不存在部分压缩流体的泄漏。在该模式下,该气候控制系统将以全部容量水平操作,即全载荷操作。
图7d示意性地示出了根据第一实施方式的该系统中的流体的第四循环模式。在该模式下,在电磁阀140的控制下,定涡旋120内的阀体170处于第一位置,旁通通道160与压缩室连通,而喷射通道150在很大程度上被阀体170阻塞。与第一循环模式不同的是,外部EVI管线R2上的控制器将第一阀V1控制成打开状态,即外部EVI管线R2接通。这样,会有少量喷射流体经由喷射通道150被喷射到压缩腔C中(如箭头D2所示),同时压缩腔C中的部分压缩的(未经充分压缩的)流体中的一部分也会通过旁通通道160泄漏到压缩机的吸入压力侧(如箭头D1所示)。因此在该模式下,该气候控制系统一方面允许部分压缩的流体的泄露,另一方面还允许少量喷射流体的进入,这对于带有长连管的系统——比如变制冷剂流量多联式空调系统(VRF机组)将是特别有利的,通过提供少量的喷射流体,使得室外换热器出来的制冷剂流体有较高过冷度,防止制冷剂流体在到达主回路膨胀阀前因为压降而出现气泡从而导致主回路膨胀阀的控制不稳定。
作为一种改进形式,可以在喷射通道150中设置仅允许喷射流体沿喷射方向流动的单向阀。如图8所示,该单向阀152可以设置在喷射通道150的外端口处。或者可以将单向阀152设置在喷射通道150的更邻近纵向通孔的位置处。此处,“邻近”的含义可以理解为使得单向阀152和压缩腔C之间的通道的体积(也被称为余隙容积)尽可能的小。以这样的方式,当没有压力足够高的喷射流体从外侧喷射到喷射通道150中时,单向阀152在其自身弹性元件 的弹性力的作用下关闭。由此大大减小了压缩腔的余隙容积。此时,压缩腔的余隙容积仅对应于该压缩腔与单向阀152之间的通道空间。由于余隙容积大幅度减小,可以有利地提高压缩机的效率。
尽管在图示的示例中,采用了由阀片、弹簧和底座构成的单向阀152,但是本领域技术人员应该理解,可以采用任何其他类型的仅允许流体单向流过的阀作为本实施方式中使用的单向阀。
图9示出了根据本申请的第二实施方式的涡旋压缩机的涡旋组件200的纵剖图。在该实施方式中,动涡旋和定涡旋220所形成的一系列腔室或压缩腔内包括两组相对于涡旋组件的中心轴线(换言之,围绕排出口)大致轴向对称的压缩腔,且两个大致轴向对称的压缩腔中的压力将大致相同。与前述实施方式类似,在定涡旋220的端板222上设置有电磁阀240和EVI接头(未示出)。该电磁阀240为三通电磁阀,其包括:第一口,该第一口连通至涡旋压缩机的吸入压力区域;第二口,该第二口连通至涡旋压缩机的排出压力区域;以及第三口,该第三口关联至定涡旋220的端板222中的可动部件。同样地,电磁阀240和可动部件共同用作切换喷射通道和旁通通道与纵向通道、进而压缩腔的连通状态的切换组件。
在该实施方式中,可动部件是以可上下浮动的方式布置在定涡旋端板222上方的浮动压板210。特别地,浮动压板210与定涡旋220的端板222以及介于两者之间的中间件226形状配合配合成在浮动压板210与中间件226之间形成有至少一个中间腔A,电磁阀240的第三口则经由管路242连通至该中间腔A。电磁阀能够被控制成使第三口选择性地与第一口或第二口导通以改变该中间腔A内的压力并因此改变中间腔A内的流体对浮动压板210施加的向上的力,从而允许浮动压板210在定涡旋端板222上的上下浮动。
图10a和图10b分别是示出了自定涡旋220的端板222和涡卷224处截得的根据本申请第二实施方式的涡旋组件的横剖视图,其中具体示出了作为公共的纵向通道的两组纵向孔眼H1和H2,这两组纵向孔眼H1和H2在定涡旋端板222上形成为平行于定涡旋220的中心轴线穿过端板222,并且大致相对于定涡旋220的中心轴线对称。其中,每组孔眼分别连通至大致轴向对称且压力基本相同的第一压缩腔C1和第二压缩腔C2。
定涡旋端板222上还包括从该端板222的外周面横向延伸的两条横向通 路250,其中,第一横向通路250a和第二横向通路250b分别延伸成与第一组纵向孔眼H1和第二组纵向孔眼H2中的一部分纵向孔眼连通。该第一横向通路250a和第二横向通路250b共同构成喷射通道。优选地,第一横向通路250a和第二横向通路250b在端板222的外周面处具有共同的外端口。
具体地,如图11a所示,每组孔眼各包括6个孔眼,而第一横向通路250a和第二横向通路250b分别与每组孔眼中的2~3个孔眼连通。然而,在该实施方式中,孔眼的数量仅是示例,每组孔眼的数量可以更多或更少,例如第一组纵向孔眼和第二组纵向孔眼各自包括的纵向孔眼的数量为6至10个;同样的,第一横向通路250a和第二横向通路250b所连通的孔眼的数量也可以更多或更少。优选地,第一和第二横向通路所连通的孔眼的数量为孔眼总数的二分之一以下,更优选地,为四分之一至三分之一。
图11a和图11b分别以压缩腔C1一侧的结构为例图示根据本申请第二实施方式的涡旋组件的第一状态和第二状态,压缩腔C2一侧的结构与之基本一致,故省略图示。当浮动压板210正常放置在定涡旋端板222上时将堵塞全部孔眼的上端口,而当浮动压板210抬起时,则允许全部孔眼的上端口敞开。
在图11a所示的涡旋组件的第一状态下,电磁阀240的第三口与第二口导通,即向中间腔A中引入高压(排气压力),此时,对浮动压板210施加的向上的力克服浮动压板210自身的重力,浮动压板210被抬起,此时的浮动压板210处于第二位置。在此位置处,在浮动压板210与定涡旋的端板222之间形成有间隙G,并且孔眼的上端口均敞开,此时的压缩腔将与喷射通道、多个孔眼以及间隙G全部导通,其中,间隙G将用作旁通通道。当外部EVI管线R2接通时(即允许喷射流体进入时),一系列纵向孔眼中的除了与喷射通道连通的孔眼以外的剩余孔眼将与间隙G(旁通通道)共同用于流体的旁通,而当外部EVI管线R2切断时(即不允许喷射流体进入时),全部孔眼都可与间隙G(旁通通道)用于流体的旁通。
在图11b所示的涡旋组件的第二状态下,电磁阀240的第三口与第一口导通,即在中间腔A中引入低压(吸入压力),此时,对浮动压板210施加的向上的力不足以克服浮动压板210自身的重力,因此浮动压板210将抵靠在定涡旋220的端板222上,即处于第二位置。在此位置处,中间腔A将所有孔眼的上端口堵塞,且端板222与浮动压板210之间不存在间隙G,即旁通通 道被封闭,此时的压缩腔仅能经由部分孔眼与第一和第二横向通路连通,而不能与旁通通道连通。
尽管未具体描述或示出,本领域技术人员可以理解的是,如果动涡旋230和定涡旋220所形成的一系列腔室或压缩腔为压力互不相同的压缩腔,那么也可以在定涡旋220的端板222的对应于一个的压缩腔的位置处仅设置一组纵向孔眼,并且相应地,可以仅设置一条横向通道来用作喷射通道。
现在参照图12a至图12d,其中示出了包括该第二实施方式的涡旋压缩机的气候控制系统的容量调节的若干工作方式。在容量调节期间,与第一实施方式相同,也可以实现该气候控制系统的至少四个容量水平。
图12a示意性地示出了根据第二实施方式的该系统中的流体的第一循环模式。在该模式下,在电磁阀240的控制下,浮动压板210处于第二位置,旁通通道和喷射通道均与压缩室连通,同时外部EVI管线R2上的控制器将第一阀V1控制成关闭状态,即外部EVI管线R2断开。这样,将没有喷射流体经由第一和第二横向通路被喷射到第一和第二压缩腔中,压缩腔中的部分压缩的(未经充分压缩的)流体中的一部分在经历完全压缩并到达排出口之前即通过一系列纵向孔眼和间隙G泄漏到压缩机的吸入压力侧(如箭头D1所示)。因此在该模式下,该气候控制系统将以低于全部容量的低容量水平操作,即在部分载荷下操作。
图12b示意性地示出了根据第二实施方式的该系统中的流体的第二循环模式。在该模式下,在电磁阀240的控制下,浮动压板210处于第一位置,一系列纵向孔眼的上端口全部被浮动压板210阻塞,此时,作为喷射通道的第一和第二横向通路经由与之连通的孔眼连通至对应的压缩室,同时外部EVI管线R2上的控制器将第一阀V1控制成打开状态,由此接通外部EVI管线R2。这样,从排出出口15排出压缩机的流体在穿过第一热交换器2之后,会有一部分进入包括第一阀V1的外部EVI管线R2,另一部分则继续流经经济器3、第二阀V2以及第二热交换器4。流经外部EVI管线R2的所述一部分流体将形成为具有更高过冷度的喷射流体,该喷射流体进而经由喷射通道进入到压缩腔中(如箭头D2所示),而经过第二热交换器4的另一部分流体则仍经由吸入口17进入压缩机涡旋组件中。因此在该模式下,该气候控制系统将以高于全部容量的高容量水平操作。
图12c示意性地示出了根据第二实施方式的系统中的流体的第三循环模式。在该模式下,在电磁阀240的控制下,浮动压板210处于第一位置,一系列纵向孔眼的上端口全部被浮动压板210阻塞。与第二模式不同的是,外部EVI管线R2上的控制器将第一阀V1控制成关闭状态,因此外部EVI管线R2被阻断。这样,从排出出口15排出压缩机的流体在穿过第一热交换器2之后,会全部流经经济器3、第二阀V2以及第二热交换器4,进而经由吸入口17进入压缩机涡旋组件中。此时,对于涡旋组件而言,既没有喷射流体的进入也不存在部分压缩流体的泄漏。在该模式下,该气候控制系统将以全部容量水平操作,即在全载荷状态下操作。
图12d示意性地示出了根据第二实施方式的该系统中的流体的第四循环模式。在该模式下,在电磁阀240的控制下,浮动压板210处于第二位置,旁通通道和喷射通道均与压缩室连通。与第一循环模式不同的是,外部EVI管线R2上的控制器将第一阀V1控制成打开状态,即外部EVI管线R2接通。这样,会有喷射流体经由第一和第二横向通路以及与之连通的孔眼被喷射到对应的压缩腔中(如箭头D2所示),同时对应的压缩腔中的部分压缩的(未经充分压缩的)流体中的一部分也会通过旁通通道泄漏到压缩机的吸入压力侧(如箭头D1所示)。因此在该模式下,该气候控制系统一方面允许部分压缩的流体的泄露,另一方面还允许喷射流体的进入。如前文所述的,这对于带有长连管的系统——比如变制冷剂流量多联式空调系统(VRF机组)将是特别有利的。
同样的,作为第二实施方式的一种改进形式,可以在第一和第二横向通路中设置仅允许喷射流体沿喷射方向流动的单向阀。如图13所示,可以分别在第一和第二横向通路中设置单向阀252。然而,可选地,也可以在第一和第二横向通路的公共外端口处设置单个单向阀,或者也可以将单向阀设置在第一和第二横向通路的更邻近一系列纵向孔眼的位置处。以这样的方式,当没有压力足够高的喷射流体从外侧喷射到第一和第二横向通路中时,单向阀在其自身弹性元件的弹性力的作用下关闭。这使得压缩腔的余隙容积大幅度减小,可以有利地提高压缩机的效率。
尽管如图10b所示,第一压缩腔和第二压缩腔是一系列压缩腔中的靠近径向外侧的第二级压缩腔,但该构造并非限制性的,在不同的涡旋设置中以及 在不同的压缩机设计中,设计人员可以改变与纵向孔眼连通的压缩腔的位置。例如,第一连通通道和第二连通通道可以与一系列压缩腔中的其他压缩腔流体连通。此外,还可以设置多于两条的连通通道以连通更多的压缩腔,从而实现压缩机更大范围的容量调制。
根据本申请的实施方式的涡旋压缩机使得包含该压缩机的气候调节系统具有较为简单的构造。特别与现有的兼具容量调节和喷气增焓的涡旋压缩机相比,根据本申请的实施方式的涡旋压缩机由于不需要额外的旁通接口和外部旁通通道而使得系统的管路简单,压缩机内的通道数量也得以减少,大大降低了压缩机的设计和制造的复杂度。特别地,形成在定涡旋端板中的通道可以仅通过钻孔来形成,这仅需要对现有的涡旋部件进行少量的加工即可完成,无需重新设计和铸造涡旋部件。因此,大大节省了涡旋部件的设计和制造成本。
此外,已知在一些压缩机中,涡旋EVI喷射孔和旁通共用相同的通道,然而本领域技术人员所理解是,喷射通道的面积优选为较小的以减少喷射余隙,而旁通通道的面积优选为较大的以减少旁通损失。当两者共用一个通道时,则与上述理想方案相冲突,对系统的能效造成一定损失。另外,现有的设计通常是将压缩腔内的流体通过外部控制阀的切换经由压缩机内部通道、额外的连接管路而被引导到压缩机的吸气管路上,流体在经过连接管路和各种控制阀之后会有较大压降。而根据本申请的实施方式的涡旋压缩机则解决了上述问题,一方面,根据本申请的喷射通道的横截面积小于旁通通道的横截面积;另一方面,减少了外部管路和阀构件的使用,因此相对于上述现有的压缩机而言,本申请的实施方式使得压缩机和包含该压缩机的系统的综合能效有明显提升。
此外,显然地,由于结构上的简化,使得系统开发和制造成本明显降低。此外,由于减少了各种管路和管路上的控制阀,因此能够简化对管路和阀的控制逻辑,从而进一步降低了系统的开发和制造成本。
再者,结构以及相应的控制逻辑的简化还有助于提高系统运行的可靠性,避免了复杂的外部连管导致的管路振动以及噪声问题。
这里,需要说明的是,在本文中,方位术语“上方”、“上”和“下”等的使用仅旨在便于说明的目的而无意于限制本公开的范围。例如,立式压缩机情况下的“上方”可以对应于卧式压缩机情况下的“左侧”或“右侧”。
尽管在此已详细描述本公开的各种实施方式,但是应该理解本公开并不 局限于这里详细描述和示出的具体实施方式,在不偏离本公开的实质和范围的情况下可由本领域的技术人员实现其它的变型和变体。所有这些变型和变体都落入本申请的范围内。而且,所有在此描述的构件、部件或特征都可以由其他结构上和功能上等同的构件、部件或特征来代替。

Claims (23)

  1. 一种涡旋压缩机,所述涡旋压缩机包括:
    动涡旋构件(30;130;230),所述动涡旋构件具有第一端板(32;132;232)和第一螺旋涡卷(34;134;234);
    定涡旋构件(20;120;220),所述定涡旋构件在所述涡旋压缩机的纵向方向上位于所述动涡旋构件上方并且具有第二端板(22;122;222)和第二螺旋涡卷(24;124;224),其中,所述第二螺旋涡卷与所述第一螺旋涡卷形成啮合式接合以在所述动涡旋构件(30;130;230)与所述定涡旋构件(20;120;220)之间形成多个压缩腔,并且,在所述第二端板中设置有与所述多个压缩腔中的至少一个压缩腔连通的纵向通道,
    其特征在于,还包括:
    喷射通道,所述喷射通道能够经由所述纵向通道而与所述至少一个压缩腔连通并且在与所述至少一个压缩腔连通的情况下允许喷射流体喷射至所述至少一个压缩腔中以增大压缩机容量;
    旁通通道,所述旁通通道能够经由所述纵向通道而与所述至少一个压缩腔连通并且在与所述至少一个压缩腔连通的情况下允许压缩流体从所述至少一个压缩腔泄漏以减小所述压缩机容量;以及
    切换组件,所述切换组件至少包括可动部件,所述可动部件适于被控制成能够在第一位置与第二位置之间移动,从而选择性地允许所述旁通通道与所述至少一个压缩腔连通或断开。
  2. 根据权利要求1所述的涡旋压缩机,其中,所述切换组件还包括控制阀(140;240),所述控制阀包括:连通至所述涡旋压缩机的吸入压力区域的第一口、连通至所述涡旋压缩机的排出压力区域的第二口以及连通至所述可动部件的第三口,其中,所述第三口选择性地与所述第一口或所述第二口导通以改变对所述可动部件施加的压力从而允许所述可动部件在所述第一位置与第二位置之间的移动,其中,当所述第三口与所述第一口导通时,所述可动部件移动至所述第一位置;当所述第三口与所述第二口导通时,所述可动部件移动至所述第二位置。
  3. 根据权利要求2所述的涡旋压缩机,其中,所述纵向通道为形成在所述第二端板(122)上的连通所述多个压缩腔中的一个压缩腔(C)的纵向通孔(126),所述纵向通孔将所述喷射通道和所述旁通通道的末端与所述压缩腔连通,并且所述可动部件以可纵向滑动的方式设置在所述纵向通孔(126)中。
  4. 根据权利要求3所述的涡旋压缩机,其中,所述可动部件呈柱状阀体(170)的形式,且所述阀体内设置有允许所述喷射通道和所述旁通通道中的至少一者与所述压缩腔连通的通路。
  5. 根据权利要求4所述的涡旋压缩机,其中,在所述第一位置中,所述阀体(170)允许所述旁通通道与所述压缩腔连通;在所述第二位置中,所述阀体(170)允许所述喷射通道与所述压缩腔完全连通而不允许所述旁通通道与所述压缩腔连通。
  6. 根据权利要求5所述的涡旋压缩机,其中,在所述第一位置中,所述阀体(170)还允许所述喷射通道至少部分地与所述压缩腔(C)连通。
  7. 根据权利要求4至6中任一项所述的涡旋压缩机,其中,所述控制阀的所述第三口连通至所述阀体(170)的顶部,并且所述喷射通道(150)在所述纵向方向上位于所述旁通通道(160)的上方。
  8. 根据权利要求7所述的涡旋压缩机,其中,所述旁通通道经由所述纵向通孔的底部开口(127)与所述压缩腔连通;所述喷射通道经由所述阀体内的所述通路与所述压缩腔连通。
  9. 根据权利要求8所述的涡旋压缩机,其中,所述通路的横截面积小于所述纵向通孔的底部开口(127)的横截面积。
  10. 根据权利要求3至6中任一项所述的涡旋压缩机,其中,所述喷射通 道(150)的横截面积小于所述旁通通道(160)的横截面积。
  11. 根据权利要求4至6中任一项所述的涡旋压缩机,还包括弹簧,所述弹簧设置在所述阀体(170)与所述纵向通孔(126)之间并且将所述阀体(170)朝向所述第一位置偏置。
  12. 根据权利要求2所述的涡旋压缩机,其中,所述纵向通道为形成在所述第二端板(222)上的多个纵向孔眼(H1;H2),所述多个纵向孔眼将所述喷射通道和所述旁通通道与所述压缩腔连通,所述可动部件设置在所述多个纵向孔眼的外部,所述可动部件构造成当处于所述第一位置时覆盖并关闭所述多个纵向孔眼以及当处于所述第二位置时远离并打开所述多个纵向孔眼。
  13. 根据权利要求12所述的涡旋压缩机,其中,所述可动部件是设置在所述第二端板(222)上方的浮动压板(210),所述浮动压板与所述第二端板之间形成有与所述第三口连通的中间腔(A),所述浮动压板(210)能够根据所述中间腔(A)中压力的变化而相对于所述第二端板在所述第一位置与所述第二位置之间上下浮动,从而实现所述多个纵向孔眼的打开和关闭。
  14. 根据权利要求13所述的涡旋压缩机,其中,在所述第一位置中,所述浮动压板(210)抵靠所述第二端板(222)并关闭所述多个纵向孔眼的上端口;在所述第二位置中,所述浮动压板(210)向上移动离开所述第二端板并打开所述多个纵向孔眼的上端口。
  15. 根据权利要求14所述的涡旋压缩机,其中,所述喷射通道(250a;250b)在所述第二端板内从所述第二端板的外周面横向延伸,并且延伸成与所述多个纵向孔眼(H1;H2)中的一部分纵向孔眼连通。
  16. 根据权利要求15所述的涡旋压缩机,其中,在所述第一位置和所述第二位置中,所述喷射通道(250a;250b)经由所述一部分纵向孔眼与对应的压缩腔连通;在所述第二位置中,所述浮动压板(210)与所述第二端板(222) 之间产生间隙(G),所述间隙用作所述旁通通道并且经由所述多个纵向孔眼中的全部或另一部分纵向孔眼与对应的压缩腔连通。
  17. 根据权利要求12至16中任一项所述的涡旋压缩机,其中,所述多个纵向孔眼(H1;H2)包括呈弧形等间距排列的若干纵向孔眼。
  18. 根据权利要求12至16中任一项所述的涡旋压缩机,其中,所述多个纵向孔眼(H1;H2)中的与所述喷射通道(250a;250b)连通的所述一部分纵向孔眼的数量小于所述多个纵向孔眼的总数量的二分之一。
  19. 根据权利要求1至6和12至16中任一项所述的涡旋压缩机,其中,所述喷射通道中设置有仅允许所述喷射流体沿喷射方向流动的单向阀(152;252)。
  20. 根据权利要求1至6和12至16中任一项所述的涡旋压缩机,其中,所述控制阀(140;240)为两位三通电磁阀。
  21. 一种包括如权利要求1至20中的任一项所述的涡旋压缩机的气候控制系统,所述气候控制系统还具有与所述喷射通道连接以向所述喷射通道提供喷射流体的外部喷射路径,其中,在所述外部喷射路径上设置有用于产生所述喷射流体的喷射流体发生装置。
  22. 根据权利要求21所述的气候控制系统,其中,在所述外部喷射路径上还设置有用于控制所述外部喷射路径的连通和断开的阀装置。
  23. 根据权利要求22所述的气候控制系统,其中,所述阀装置是带有控制器的膨胀阀。
PCT/CN2019/115566 2019-01-30 2019-11-05 容量调节和喷气增焓一体式涡旋压缩机及其系统 WO2020155727A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910091413.8A CN111502987B (zh) 2019-01-30 2019-01-30 容量调节和喷气增焓一体式涡旋压缩机及其系统
CN201910091413.8 2019-01-30

Publications (1)

Publication Number Publication Date
WO2020155727A1 true WO2020155727A1 (zh) 2020-08-06

Family

ID=71840801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115566 WO2020155727A1 (zh) 2019-01-30 2019-11-05 容量调节和喷气增焓一体式涡旋压缩机及其系统

Country Status (2)

Country Link
CN (1) CN111502987B (zh)
WO (1) WO2020155727A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024002338A1 (zh) * 2022-06-30 2024-01-04 谷轮环境科技(苏州)有限公司 定涡旋组件、涡旋压缩机及加工定涡旋组件的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106990A (ja) * 1987-10-19 1989-04-24 Daikin Ind Ltd スクロール形圧縮機の容量制御機構
CN1246604A (zh) * 1998-07-13 2000-03-08 运载器有限公司 在节能装置和吸入装置之间具有卸载阀的涡卷压缩机
US20020039540A1 (en) * 2000-09-29 2002-04-04 Kazuhiro Kuroki Scroll type compressor and method for compressing gas
CN1576604A (zh) * 2003-07-26 2005-02-09 Lg电子株式会社 变容量涡旋式压缩机
CN101178065A (zh) * 2006-11-07 2008-05-14 蜗卷技术公司 带有蒸汽注射和卸载端口的涡旋压缩机
CN102449314A (zh) * 2009-05-29 2012-05-09 艾默生环境优化技术有限公司 具有容量调制系统或流体注入系统的压缩机
CN108626117A (zh) * 2017-03-23 2018-10-09 艾默生环境优化技术(苏州)有限公司 双圈涡旋压缩组件及涡旋压缩机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850903B2 (en) * 2014-12-09 2017-12-26 Emerson Climate Technologies, Inc. Capacity modulated scroll compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106990A (ja) * 1987-10-19 1989-04-24 Daikin Ind Ltd スクロール形圧縮機の容量制御機構
CN1246604A (zh) * 1998-07-13 2000-03-08 运载器有限公司 在节能装置和吸入装置之间具有卸载阀的涡卷压缩机
US20020039540A1 (en) * 2000-09-29 2002-04-04 Kazuhiro Kuroki Scroll type compressor and method for compressing gas
CN1576604A (zh) * 2003-07-26 2005-02-09 Lg电子株式会社 变容量涡旋式压缩机
CN101178065A (zh) * 2006-11-07 2008-05-14 蜗卷技术公司 带有蒸汽注射和卸载端口的涡旋压缩机
CN102449314A (zh) * 2009-05-29 2012-05-09 艾默生环境优化技术有限公司 具有容量调制系统或流体注入系统的压缩机
CN108626117A (zh) * 2017-03-23 2018-10-09 艾默生环境优化技术(苏州)有限公司 双圈涡旋压缩组件及涡旋压缩机

Also Published As

Publication number Publication date
CN111502987A (zh) 2020-08-07
CN111502987B (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
KR102178368B1 (ko) 가변 체적비 압축기
US20050019177A1 (en) Variable capacity scroll compressor
US20020071773A1 (en) Multi-stage capacity-controlled scroll compressor
US6276149B2 (en) Air conditioner
CN108425842B (zh) 压缩机构的压缩操作的调节结构、涡旋压缩机和循环系统
CN103890505B (zh) 具有压力平衡的流量控制阀
JP2004340560A (ja) 複合弁
CN102797875A (zh) 双方向单向阀及其控制方法
EP1004773B1 (en) Multi-stage capacity control scroll compressor
WO2020155727A1 (zh) 容量调节和喷气增焓一体式涡旋压缩机及其系统
CN101886628B (zh) 涡旋压缩机
CA2436089C (en) Refrigeration manifold
CN108361195A (zh) 可变排量涡旋压缩机
CN105782032A (zh) 涡旋压缩机
US20010029744A1 (en) Heat pump and method for controlling operation thereof
CN211343341U (zh) 涡旋压缩机
CN107806415B (zh) 压缩机组件和具有其的制冷装置
CN105822770A (zh) 双向热力膨胀阀
US20150004039A1 (en) Capacity-modulated scroll compressor
CN108626117B (zh) 双圈涡旋压缩组件及涡旋压缩机
CN219974808U (zh) 容量调节装置及变容量的涡旋压缩机
CN215980946U (zh) 换向阀及制冷系统
CN219281963U (zh) 旋转式压缩机及其空调系统
WO2024002351A1 (zh) 压缩机构、涡旋压缩机及用于涡旋压缩机的控制方法
CN116085257A (zh) 旋转式压缩机及其空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913956

Country of ref document: EP

Kind code of ref document: A1