WO2020155567A1 - 一种石膏料浆结块处理方法和装置 - Google Patents

一种石膏料浆结块处理方法和装置 Download PDF

Info

Publication number
WO2020155567A1
WO2020155567A1 PCT/CN2019/095569 CN2019095569W WO2020155567A1 WO 2020155567 A1 WO2020155567 A1 WO 2020155567A1 CN 2019095569 W CN2019095569 W CN 2019095569W WO 2020155567 A1 WO2020155567 A1 WO 2020155567A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixer
zone
stirring
agglomeration
gypsum slurry
Prior art date
Application number
PCT/CN2019/095569
Other languages
English (en)
French (fr)
Inventor
王鹏起
何亮
杜伟肖
武发德
张军
白宏成
尹东杰
Original Assignee
北新集团建材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北新集团建材股份有限公司 filed Critical 北新集团建材股份有限公司
Publication of WO2020155567A1 publication Critical patent/WO2020155567A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/08Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing
    • B28C5/0881Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing having a stator-rotor system with intermeshing teeth or cages
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the embodiments of the present disclosure relate to the technical field of gypsum slurry performance treatment, in particular to a method and device for treating gypsum slurry agglomeration.
  • Gypsum is a monoclinic mineral, and its main chemical component is calcium sulfate hydrate. It is a widely used industrial material and building material. The microporous structure and heating dehydration of gypsum and its products have excellent sound insulation and insulation. Heat and fire performance.
  • the mixer is one of the key equipment for the production of gypsum board, and its performance directly affects the performance of the gypsum slurry.
  • the gypsum slurry is mixed according to the preset ratio, the gypsum powder will form a gypsum slurry when it meets water.
  • the mixture of gypsum powder, foaming agent and water is mixed in the mixer or the feed tube under the action of external force, the partial mixing at the beginning reaches the overall uniform mixing state, and the dynamic equilibrium is reached at a certain moment, and then the mixing The uniformity will not be improved, and the separation and mixing will be repeated alternately.
  • the gypsum slurry has a high viscosity and bubbles are easy to appear. If the mixing is not uniform, there will still be agglomeration and bubbles. Due to uneven mixing or unstable slurry flow rate, it will eventually affect the drying process and the quality of the finished board. .
  • the agglomeration in the mixer causes the gypsum board production process to interrupt the paper, directly affects the production efficiency, and directly affects the quality of the subsequent processed products.
  • the gypsum slurry mixing simulation can be used to pre-evaluate the agglomeration of gypsum slurry mixing in the design stage, which is conducive to the early detection of the weak links of the original design to optimize the entire process Effective guidance during the process shortens the development cycle of new products and improves product performance.
  • the treatment of gypsum slurry agglomeration has become an important aspect of the mixing effect of gypsum slurry.
  • the present disclosure provides a method for treating agglomeration of gypsum slurry, which includes:
  • the mechanical structure parameters of the mixer include: each component of the mixer except for the stirring pin Parameters and mixing parameters;
  • Agglomeration processing is performed on the mixer based on the analysis result.
  • the parameters of each part of the mixer except the stirring pin include at least: the size and position of each part of the mixer except the stirring pin;
  • the stirring parameters include any one or more of the following information: the number, position, thickness, height of the stirring pins used, the inlet position, size, quantity of the feed inlet, the inlet position, size, and quantity of the water inlet , The entrance position, size and quantity of the blowing agent entrance;
  • the parameter information of the gypsum slurry mixture includes any one or more of the following information: flow rate of water, flow rate of foaming agent, flow rate of gypsum powder, flow rate of water, flow rate of foaming agent, flow rate of gypsum powder , Solution viscosity of gypsum powder;
  • the working mode of the mixer includes the feeding mode of the mixer and the rotation speed of the motor.
  • the step of analyzing the agglomeration of the gypsum slurry in the mixer based on the velocity cloud map, and obtaining the analysis result includes:
  • the gypsum slurry agglomeration is analyzed, and the analysis result is obtained.
  • the step of performing agglomeration processing on the mixer based on the analysis result includes:
  • New mixing parameters parameter information of new gypsum slurry mixture, new working mode of mixer.
  • the method further includes:
  • a plurality of radial lower stirring groups are uniformly arranged on the turntable of the mixer, and each group of the lower stirring groups includes a plurality of first lower stirring groups; the position on the turntable corresponding to the slurry area is also set There are multiple second lower stirring pins and multiple third lower stirring pins;
  • the step of determining the agglomeration zone of the gypsum slurry mixture according to the slow speed zone and/or the vortex zone shown in the speed cloud chart includes:
  • the velocity cloud diagram it is determined that there are a slow speed zone and a vortex zone in the slurry outlet area of the mixer, and the slow speed zone and the vortex zone are determined to be a caking zone;
  • the velocity cloud map it is determined that there is a slow velocity zone and a vortex zone in the area between the water throwing groove of the mixing zone of the mixer and the first lower stirring pin, and the slow velocity zone and the vortex zone are determined to be easy to agglomerate.
  • the step of determining a new stirring parameter according to the analysis result includes:
  • the positions of the second lower stirring pin and the third stirring pin are changed so that the second stirring pin and the third stirring pin are located on the turntable.
  • the rotating shaft is on the center of the circle, and the distances between the two and the inner side wall of the casing and the upper stirring ring are equal, and the second stirring pin and the third stirring pin can rub against the slurry outside the stirring ring to determine the new second stirring pin And the position of the third stirring pin;
  • the diameter and/or number of the first lower stirring pins in the mixing zone of the mixer are changed, and the mixing zone is changed.
  • the position of the first lower stirring pin enables the upper stirring pin to rub against the adjacent first lower stirring pin during rotation to determine the position, diameter and/or quantity of the new first lower stirring pin;
  • the first lower stirring pin in the outermost layer of the mixing zone determines the new position of the stirring ear, the upper stirring ring and the outermost upper stirring pin to make the mixing
  • the outermost first lower stirring pin and the outer side of the stirring ear can rub the inner side of the upper stirring ring, and the outermost upper stirring pin can rub the inner side of the stirring ear;
  • each lower stirring group includes 3-6 first lower stirring pins, the corresponding slow speed zone and/or vortex zone in the speed cloud graph reach the corresponding preset Standards.
  • each lower stirring group includes 4 stirring pins, the corresponding slow speed zone and/or vortex zone in the speed cloud graph reach the corresponding preset standard.
  • the diameter of the first lower stirring pins in each lower stirring group increases or decreases sequentially from the inside to the outside, the corresponding slow speed zone and the / Or the vortex area reaches the corresponding preset standard.
  • the new stirring parameter is: the diameter of the first lower stirring pin is in an arithmetic sequence from the inside to the outside or from the outside to the inside, the corresponding slow speed zone and/or vortex zone in the speed cloud diagram reaches Corresponding preset standards, where from inside to outside means from the center of the circle or a position close to the center of the circle outward along the diameter.
  • the new stirring parameter is: the number of stirring pins included in each lower stirring group is equal, the corresponding slow speed zone and/or vortex zone in the speed cloud diagram reach the corresponding preset standard.
  • all corresponding first lower stirring pins in the plurality of lower stirring groups are located on a circle centered on the axis of the rotating shaft of the turntable and the intersection of the turntable, so The corresponding slow speed zone and/or vortex zone in the speed cloud diagram reach the corresponding preset standard, wherein the corresponding first lower stirring pin refers to the lower stirring pin at the same distance from the center of the circle.
  • the new stirring parameter is: when a plurality of second lower stirring pins and third stirring pins are located on a circle centered on the rotating shaft of the turntable, the corresponding slow speed zone and/or in the speed cloud Or the vortex area reaches the corresponding preset standard.
  • the new stirring parameter is: when a plurality of second lower stirring pins and third stirring pins are located on a circle centered on the rotating shaft of the turntable, and the diameter of the circle is 461 mm, the speed cloud graph The corresponding slow speed zone and/or vortex zone reach the corresponding preset standard.
  • a gypsum slurry agglomeration processing device comprising a processor and a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions are executed by the processor, any of the above Treatment method of gypsum slurry agglomeration.
  • Figure 1 is a schematic diagram of the structure of the current mixer
  • Figure 2 is a schematic cross-sectional structure diagram of the current mixer
  • Figure 3 is a schematic top view of the current mixer
  • Figure 4 is a flow chart of a method for processing gypsum slurry agglomeration according to an embodiment of the disclosure
  • FIG. 5 is a flowchart of the method of analyzing the agglomeration of the gypsum slurry in the mixer based on the velocity cloud diagram in step S403 of the embodiment of the disclosure to obtain the analysis result;
  • Fig. 6 is a step S4031 of an embodiment of the disclosure, according to the slow speed zone and/or vortex zone shown in the velocity cloud chart, determining that the slow speed zone and/or vortex zone is the stagnation zone of the gypsum slurry mixture or The flow chart of the method for the caking area.
  • the structure of the mixer includes a casing 1.
  • the top of the casing 1 is open, including a bottom and a cylindrical side wall;
  • a motor is provided in the casing 1, which is connected to the rotating shaft of the turntable 2;
  • the bottom of the side wall is provided with a slurry outlet 5;
  • the upper cover 6 is provided with an upper cover 6,
  • the upper cover 6 is provided with a water inlet 7, a feed inlet 8 and a blowing agent inlet 9, and the upper cover 6 is provided with a turntable 2
  • the area corresponding to the water slinger 11 is the water sling area
  • the area between the circumference of the water slinger 11 and the circle formed by the multiple stirring ears 4 is the mixing area
  • the circle formed by the multiple stirring ears 4 is the mixing area.
  • the area between the side walls is the slurry area.
  • each group of the lower stirring group includes 4 lower stirring pins.
  • the lower mixing group is located in the mixing zone.
  • the diameter of all lower stirring pins 3 is the same.
  • an upper stirring ring 62 is further provided under the upper cover 6, and a tooth groove 21 is provided on the edge of the turntable 2, and 63 is the inner side of the casing.
  • a plurality of second lower agitating pins 32 and a plurality of third lower agitating pins 33 are also provided on the turntable 2 corresponding to the slurry zone.
  • the plurality of second lower agitating pins 32 are located in a circle centered on the rotating shaft of the turntable 2 Above, the diameter of the circle is generally 482 mm, and the plurality of third lower stirring pins 33 are located on a circle centered on the rotating shaft of the turntable 2, and the diameter of the circle is generally 450 mm.
  • the slurry and the slurry in the embodiments of the present disclosure are the same thing, and refer to a fluid mixture formed by stirring of gypsum, water, foaming agent, etc.
  • an embodiment of the present disclosure provides a method for processing gypsum slurry agglomeration, including:
  • the step of modeling the mixer according to the mechanical structure parameters to obtain a corresponding mixer model includes:
  • the multiphase flow (Mixture model) in the fluid is selected for simulation, and the simulation operation of the mixer is realized by solving the continuity, momentum and energy equations of the mixed phase, and the algebraic equations of relative velocity. It can also be implemented by other methods in the prior art, which will not be repeated here.
  • the mechanical structure parameters of the gypsum slurry mixer include: parameters of various parts of the mixer except for the stirring pin and stirring parameters.
  • the method of inputting the mixing parameters of the current mixer, the parameter information of the gypsum slurry mixture and the working mode of the mixer, and using the above-mentioned mixer model simulation to obtain the speed cloud map of the gypsum slurry mixture in the mixer can adopt the existing method It can be achieved by technical methods, such as obtaining a velocity cloud image based on a finite element algorithm, which will not be repeated here.
  • the velocity cloud image can be obtained, but also pressure cloud image information and vortex cloud image information can be obtained, and the velocity cloud image is of reference significance for the processing of agglomeration.
  • the mechanical structure parameters of the gypsum slurry mixer include: parameters of various parts of the mixer except for the stirring pin and stirring parameters.
  • the parameters of the various parts of the mixer except the stirring pin include at least: the size and position of the various parts of the mixer except the stirring pin, such as the size and position of the mixer turntable, the size and position of the mixer's water slinging plate, The size and position of the slurry outlet, the size and position of the wedge-shaped outlet of the turntable, etc.;
  • the stirring parameters include any one or more of the following information: the number, position, thickness and height of the stirring pins used, and the inlet The inlet position, size and quantity of the material inlet, water inlet and foaming agent inlet.
  • the parameter information of the gypsum slurry mixture includes any one or more of the following information: flow rate of water, flow rate of foaming agent, flow rate of gypsum powder, flow rate of water, flow rate of foaming agent, flow rate of gypsum powder , Solution viscosity of gypsum powder, etc.;
  • the working mode of the mixer includes information such as the feeding mode of the mixer and the rotation speed of the motor.
  • the parameter information of the gypsum slurry mixture may also include: the initial flow rate, weight, concentration, or viscosity of the admixture, etc.
  • the admixture may include: water reducer, retarder, coagulant, etc.
  • step S403 analyzing the agglomeration of gypsum slurry in the mixer based on the velocity cloud graph, and the step of obtaining the analysis result includes:
  • the step of performing agglomeration processing on the mixer based on the analysis result in S404 includes: determining a new stirring parameter according to the analysis result.
  • the step of performing agglomeration processing on the mixer based on the analysis result in S404 includes: determining parameter information of a new gypsum slurry mixture according to the analysis result.
  • the step of performing agglomeration processing on the mixer based on the analysis result in S404 includes: determining a new working mode of the mixer according to the analysis result.
  • the above-mentioned gypsum slurry agglomeration treatment method further includes step S405: repeating the operation based on the new mixing parameters, the parameter information of the new gypsum slurry mixture and the working mode of the mixer Steps S402-S404, until one or more slow speed regions and/or vortex regions in the speed cloud graph reach a corresponding preset standard.
  • different areas have different standards, or different areas have the same standard.
  • the preset standard may mean that the vortex and the slow speed area in the speed cloud graph are less than a certain ratio, or 0, that is The vortex zone or the slow speed zone is completely improved or significantly improved, or the flow or the slow speed zone disappears or nearly disappears.
  • the S4031 determines that the slow velocity zone and/or vortex zone is the stagnation of the gypsum slurry mixture according to the slow velocity zone and/or vortex zone displayed in the velocity cloud chart
  • the steps for the zone or the caking zone include:
  • the velocity cloud diagram it is determined that there is a vortex area in the area between the two adjacent lower stirring pins of the mixing area of the mixer, and the closer to the water sling plate, the more obvious the vortex and the larger the agglomeration area;
  • the velocity cloud diagram it is determined that there is no slow velocity zone and vortex zone near the tooth groove of the turntable of the mixer, and it is not easy to agglomerate;
  • the slurry outlet area of the mixer has a slow velocity zone and a vortex zone, which is easy to agglomerate
  • the area between the water throwing groove and the lower stirring pin of the mixing zone of the mixer has a slow velocity zone and a vortex zone, which is easy to agglomerate.
  • an analysis of agglomeration of gypsum slurry is performed based on the actual agglomeration zone and the stagnation zone or the agglomeration zone, and the steps of obtaining the analysis result include:
  • the step of determining a new stirring parameter in S404 according to the analysis result includes:
  • the positions of the second lower stirring pin and the third stirring pin are changed to make the second stirring pin and the third stirring pin It is located on a circle centered on the rotating shaft of the turntable 2, and the distance between the two from the inner side wall of the casing and the upper stirring ring is equal, and the second stirring pin and the third stirring pin can rub against the slurry outside the stirring ring to determine the new The position of the second stirring pin and the third stirring pin;
  • the speed cloud graph shows that the slow speed area and the vortex area are significantly improved, which can significantly improve the slurry mixed by the mixer.
  • the agglomeration of the material when each group of the lower stirring group includes 4 lower stirring pins, the speed cloud diagram shows that the slow speed area and the vortex area are significantly improved, which can significantly improve the agglomeration of the slurry obtained by the mixer. That is to say, when the new stirring parameter is: each lower stirring group includes 3-6 lower stirring pins, especially when each group includes 4 stirring pins, the corresponding slow speed zone in the speed cloud graph And/or the vortex area reaches the corresponding preset standard.
  • the speed cloud graph shows that the slow speed area and the vortex area are significantly improved, which can be significantly improved.
  • the speed cloud diagram shows that the slow speed area and the vortex area are significantly improved, which can significantly improve the slurry mixed by the mixer.
  • the agglomeration of the material is 29mm, 28mm, 27mm, 26mm from the inside to the outside or from the outside to the inside.
  • the new stirring parameter is: the diameter of the plurality of lower stirring pins 3 in each lower stirring group increases or decreases sequentially from the inside to the outside, especially when the diameter of the lower stirring pins 3 is from the inside to the outside or
  • an arithmetic sequence from the outside to the inside for example, 29mm, 28mm, 27mm, and 26mm in sequence
  • the corresponding slow velocity zone and/or vortex zone in the velocity cloud graph reach the corresponding preset standard.
  • the speed cloud graph shows that the slow speed area and the vortex area are significantly improved, which can significantly improve the agglomeration of the slurry mixed by the mixer . That is to say, when the new stirring parameter is: the lower stirring pin is a cylindrical stirring pin, the corresponding slow speed zone and/or vortex zone in the speed cloud graph reach the corresponding preset standard.
  • the speed cloud graph shows that the slow speed area and the vortex area are significantly improved, which can significantly improve the composition of the slurry mixed by the mixer. Block situation. That is to say, when the new stirring parameter is: the number of stirring pins included in the lower stirring group of each group is equal, the corresponding slow speed zone and/or vortex zone in the speed cloud diagram reach the corresponding preset standard .
  • the speed cloud graph shows that the slow speed area and the vortex area are significantly improved, which can be significantly improved. Improve the agglomeration of the slurry obtained by the mixer.
  • the corresponding lower stirring pin refers to the lower stirring pin at the same distance from the center of the circle. That is, when the new stirring parameter is: all corresponding lower stirring pins in the multiple lower stirring groups are located on a circle centered on the rotating shaft of the turntable 2, the corresponding speed in the speed cloud diagram is slow The zone and/or vortex zone meet the corresponding preset standards.
  • the speed cloud graph shows that the speed is slow
  • the zone and vortex zone are significantly improved, which can significantly improve the agglomeration of the slurry obtained by the mixer. That is, when the new stirring parameter is: when a plurality of second lower stirring pins 32 and third stirring pins 33 are located on a circle centered on the rotating shaft of the turntable 2, especially when the diameter of the circle is 461 mm, The corresponding slow speed zone and/or vortex zone in the speed cloud graph reach the corresponding preset standard.
  • the speed The cloud chart shows that the slow speed area and the vortex area are significantly improved, which can significantly improve the agglomeration of the slurry mixed by the mixer. That is to say, when the new stirring parameter is: when a plurality of second upper stirring pins corresponding to the plurality of second lower stirring pins 32 are further provided under the upper cover 6, the speed cloud graph The corresponding slow-speed zone and/or vortex zone in the system meets the corresponding preset standard.
  • the processing method further includes: adjusting any one of the position attributes of the various components of the mixer in the mixer model, the combined attributes of the mixing components, the parameter information of the gypsum slurry mixture, and the working mode or Various ways to change the speed field data in the mixer model, and re-analyze the agglomeration.
  • the current mixer structure is used as the basis, and the simulation is performed according to the combination attributes related to mixing in the mixer model and the parameter information and working mode of the gypsum slurry mixture.
  • the speed cloud diagram in the mixer determines that the agglomeration of gypsum slurry is not ideal or analyzes the agglomeration corresponding to other conditions, by changing the combination properties related to mixing in the mixer model, the parameter information of the gypsum slurry mixture, and the working mode Any one or more of the ways to obtain the speed cloud map in the new mixer.
  • the processing method further includes: determining the position attribute of each component in the mixer model, the combined attribute of the mixing component, and the parameter information and working mode of the gypsum slurry mixture according to the simulation result. Correspondence between the agglomeration conditions;
  • the control parameter includes at least one of the following:
  • the mechanical structure parameters of the mixer, the mixing mode, and the parameter information of the gypsum slurry mixture are the mechanical structure parameters of the mixer, the mixing mode, and the parameter information of the gypsum slurry mixture.
  • the above-mentioned simulation method and experimental verification can be used to determine the mixing-related combination properties and the mixing properties of the mixer model.
  • the parameter information of the gypsum slurry mixture and the corresponding relationship between the working mode and the agglomeration situation In actual production, according to the current slurry type and the plate type to be produced, the structure of the mixer and the mixing working mode, The parameter information of the gypsum slurry mixture is adjusted.
  • the processing method further includes:
  • a preset multiphase flow mixing model establish the position attribute of each component, the combined attribute of the stirring component, and the mapping relationship between the parameter information and the speed cloud diagram in the mixer to form the speed cloud diagram in the mixer.
  • step S4031 according to the slow speed zone and/or vortex zone displayed in the speed cloud chart, determine that the slow speed zone and/or vortex zone are the difference of the gypsum slurry mixture
  • the stagnant zone or the easy agglomeration zone includes:
  • the embodiment of the present disclosure further provides a gypsum slurry agglomeration processing device, including a processor and a computer-readable storage medium, the computer-readable storage medium stores instructions, and when the instructions are executed by the processor, Realize the above-mentioned gypsum slurry agglomeration treatment method.
  • a gypsum slurry agglomeration processing device including a processor and a computer-readable storage medium, the computer-readable storage medium stores instructions, and when the instructions are executed by the processor, Realize the above-mentioned gypsum slurry agglomeration treatment method.
  • this embodiment illustrates the mixing process of the mixer:
  • Water is injected into the water jetting area from the water inlet 7, and is jetted out in the tangential direction through the gap between the wall surface near the water jetting area and the turntable 2; gypsum is added from the inlet 8 and blowing agent is injected from the blowing agent inlet 9.
  • the mixing zone is mixed.
  • the upper stirring pin is stationary, the lower stirring pin 3 rotates, and the lower stirring pin 3 crosses between the upper stirring pins.
  • the two constitute a finger-crossing stirring structure; through periodic position changes,
  • the materials are repeatedly stirred and mixed internally by shearing and diffusion; the main mixing methods are shear mixing and convection mixing.
  • the slurry is mixed. Due to the speed gradient difference, the slurry in the gap between the turntable 2 and the casing 1 and the upper cover produces strong shear mixing.
  • the turntable 2 rotates to bring the slurry to the slurry outlet 5.
  • the working condition of the mixer is used to select the multiphase flow Mixture model in the fluid for simulation.
  • the finite element model (not limited to this) is used to determine the combined properties of the mixing components ( Input parameters such as stirring pin, position and size of the feed inlet, etc.), parameter information of the gypsum slurry mixture (such as flow rate, etc.) and working methods (such as speed, working mode, etc.) and corresponding indicators of the mixing effect (such as agglomeration)
  • Input parameters such as stirring pin, position and size of the feed inlet, etc.
  • parameter information of the gypsum slurry mixture such as flow rate, etc.
  • working methods such as speed, working mode, etc.
  • corresponding indicators of the mixing effect such as agglomeration
  • the water flow rate is 2.26m/s
  • the foaming agent is 0.57m/s
  • the gypsum powder is 0.29m/s.
  • the speed cloud diagram in the mixer is simulated.
  • the lower stirring pin has a high speed, which pushes the slurry near it to move quickly, and when it encounters the static lower stirring pin and the slurry nearby, it is subjected to strong shearing, forming a speed gradient Poor and vortex, it is easy to form vortex, which affects the stirring effect and causes agglomeration.
  • the slurry on both sides of the slurry outlet is subjected to strong shear and turbulence in the narrow pores enclosed by the shell and the tooth grooves, and maintains the inertial velocity when pushed out by the tooth groove surface.
  • the unstirred slurry in the narrow flow field is pushed to the slurry outlet by other slurry due to its high density.
  • the movement trajectory of the outermost upper stirring pin is consistent with the inner arc surface of the stirring ear, which can scratch the inner arc surface of the stirring ear and reduce the possibility of agglomeration;
  • the position and trajectory of the lower stirring pin are closely matched with the upper stirring pin. Increase the stirring force of the lower stirring pin near the water-spinning plate, so that the injected gypsum powder is fully stirred and agglomeration can be improved.
  • a gypsum slurry mixer comprising: a casing, the top of the casing is open, the bottom of the casing is fitted with a turntable, and the turntable is evenly arranged Group of vertical lower mixing group, each group of said lower mixing group includes a plurality of lower mixing pins and a stirring ear, the casing is provided with a motor, the motor is connected with the rotating shaft of the turntable, and the bottom end of the side wall of the casing is provided with slurry
  • an upper cover is arranged above the casing, and the upper cover is provided with a water inlet, a material inlet and a foaming agent inlet.
  • a plurality of vertical upper stirring pins corresponding to the lower stirring pins on the turntable are evenly arranged under the upper cover, at least The diameters of the plurality of lower stirring pins in a group of the lower stirring group are sequentially increasing/decreasing, and the lower stirring pins staggered through between the upper stirring pins during the rotation of the turntable, forming a cross-type stirring structure.
  • the lower stirring pin is a cylindrical stirring pin.
  • the number of stirring pins included in each lower stirring group is equal.
  • the corresponding lower stirring pins in the multiple lower stirring groups are located on concentric circles centered on the rotating shaft of the turntable.
  • the movement track of the outermost upper stirring pin shaft is consistent with the inner arc surface of each stirring ear.
  • the movement track of the stirring trunnion is consistent with the inner arc surface of the upper cover.
  • each upper stirring pin rubs against two adjacent lower stirring pins during rotation.
  • the movement track of the innermost upper stirring pin shaft is consistent with the outer arc surface of the slinger.
  • the diameters of the plurality of lower stirring pins in each group of the lower stirring group gradually decrease from the inside to the outside.
  • the diameters of the plurality of lower stirring pins in each group of the lower stirring group are sequentially an arithmetic sequence of tolerance A, and the tolerance A is less than or equal to a preset value.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or a non-transitory medium) and a communication medium (or a transitory medium).
  • the term computer storage medium includes volatile and nonvolatile implementations in any method or technology for storing information (such as computer readable instructions, data structures, program modules, or other data). Flexible, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

一种石膏料浆结块处理方法和装置,该方法包括:获取混合机的机械结构参数,根据所述机械结构参数对所述混合机进行建模得到相应的混合机模型,其中,所述混合机的机械结构参数包括:混合机除搅拌销外的各个部件的参数以及搅拌参数;基于混合机当前的搅拌参数,石膏料浆混合物的参数信息和混合机的工作方式,利用上述混合机模型仿真得到所述石膏料浆混合物在所述混合机内的速度云图;基于所述速度云图对所述混合机内石膏料浆的结块情况进行分析,得到分析结果;基于所述分析结果对所述混合机进行结块处理。

Description

一种石膏料浆结块处理方法和装置 技术领域
本公开实施例涉及石膏料浆性能处理技术领域,尤指一种石膏料浆结块处理方法和装置。
背景技术
石膏是单斜晶系矿物,是主要化学成分为硫酸钙的水合物,是一种用途广泛的工业材料和建筑材料,石膏及其制品的微孔结构和加热脱水性,具有优良的隔音、隔热和防火性能。
混合机是纸面石膏板生产的关键设备之一,其性能的优劣,直接影响石膏料浆的性能,目前,石膏料浆按照预设比例进行调配时,石膏粉遇水后形成石膏料浆,当石膏粉、发泡剂和水的混合物在混合机或者料管内,在外力作用下进行混合,从开始时的局部混合达到整体的均匀混合状态,在某个时刻达到动态平衡,之后,混合均匀度不会再提高而离析和混合则反复交替的进行。在搅拌过程中,石膏料浆粘度较大,且易出现气泡,若搅拌不均匀,仍有结块、气泡现象,由于混合不均或料浆流速不稳,最终会影响干燥工艺及成品板质量。混合机内的结块,造成石膏板生产过程中断纸,直接影响生产效率,对后续加工产品的质量造成直接的影响。
目前,随着仿真技术的迅速发展,使得在设计阶段就可以通过石膏料浆混合仿真来预先评估石膏料浆混合的结块情况,有利于尽早发现原设计的薄弱环节,以对整个工艺和优化过程进行有效指导,缩短了新产品开发周期,也提高了产品的性能。鉴于此,石膏料浆结块处理已经成为石膏料浆混合效果中的一个重要方面。
发明概述
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开提供了一种石膏料浆结块处理方法,所述方法包括:
获取混合机的机械结构参数,根据所述机械结构参数对所述混合机进行建模得到相应的混合机模型,其中,所述混合机的机械结构参数包括:混合机除搅拌销外的各个部件的参数以及搅拌参数;
基于混合机当前的搅拌参数,石膏料浆混合物的参数信息和混合机的工作方式,利用上述混合机模型仿真得到所述石膏料浆混合物在所述混合机内的速度云图;
基于所述速度云图对所述混合机内石膏料浆的结块情况进行分析,得到分析结果;
基于所述分析结果对所述混合机进行结块处理。
可选地,所述混合机除搅拌销外的各个部件的参数至少包括:混合机除搅拌销外各个部件的尺寸和位置;
所述搅拌参数包括以下信息中的任意一种或多种:所采用的搅拌销的数量、位置、粗细、高度,进料口的入口位置、大小、数量、进水口的入口位置、大小、数量、发泡剂入口的入口位置、大小、数量;
所述石膏料浆混合物的参数信息包括以下信息中的任意一种或多种:水的流速、发泡剂的流速、石膏粉的流速、水的流量、发泡剂的流量、石膏粉的流量、石膏粉的溶液粘度;
所述混合机的工作方式包括混合机的进料方式和电机转速。
可选地,所述基于所述速度云图对所述混合机内石膏料浆的结块情况进行分析,得到分析结果的步骤包括:
根据所述速度云图中所显示的速度缓慢区和/或涡流区,确定所述石膏料浆混合物的易结块区;
基于实际易结块区和所确定的易结块区进行石膏料浆结块情况分析,得到分析结果。
可选地,所述基于所述分析结果对所述混合机进行结块处理的步骤包括:
根据所述分析结果,确定如下参数中的一个或多个:
新的搅拌参数、新的石膏料浆混合物的参数信息、新的混合机的工作方式。
可选地,该方法还包括:
基于新的搅拌参数,以及新的石膏料浆混合物的参数信息和/或混合机的工作方式重复执行所述利用上述混合机模型仿真得到所述石膏料浆混合物在所述混合机内的速度云图,基于所述速度云图对所述混合机内石膏料浆的结块情况进行分析,得到分析结果,以及基于所述分析结果对所述混合机进行结块处理的步骤,直到所述速度云图中一个或多个速度缓慢区和/或涡流区达到相应的预设的标准。
可选地,所述混合机的转盘上均匀设置有多组径向的下搅拌组,每组所述下搅拌组包括多个第一下搅拌;所述转盘上对应浆料区的位置还设置有多个第二下搅拌销和多个第三下搅拌销;
所述根据所述速度云图中所显示的速度缓慢区和/或涡流区,确定石膏料浆混合物的易结块区的步骤包括:
根据所述速度云图确定所述混合机的混合区相邻两个第一下搅拌销之间的区域存在涡流区,确定该涡流区为易结块区;
根据所述速度云图确定所述混合机的浆料区的第二下搅拌销附近有涡流区,确定所述涡流区为易结块区;
根据所述速度云图确定所述混合机的浆料出口区域存在速度缓慢区和涡流区,确定该速度缓慢区和涡流区为易结块区;
根据所述速度云图确定所述混合机的混合区的甩水槽与第一下搅拌销之间的区域存在速度缓慢区和涡流区,确定所述速度缓慢区和涡流区为易结块区。
可选地,所述根据所述分析结果,确定新的搅拌参数的步骤包括:
针对所述混合机的浆料区的第二下搅拌销附近的易结块区,改变第二下搅拌销和第三搅拌销的位置,使第二搅拌销和第三搅拌销位于以转盘的转轴为圆心的圆上,且二者距离机壳内侧壁和上搅拌环的距离相等,且使得第二 搅拌销和第三搅拌销能够剐蹭上搅拌环外侧浆料,确定新的第二搅拌销和第三搅拌销的位置;
针对所述混合机的混合区相邻两个第一下搅拌销之间的区域存在的易结块区,改变混合机的混合区第一下搅拌销直径和/或数量,且改变混合区的第一下搅拌销的位置,使得转动中上搅拌销能够剐蹭相邻的第一下搅拌销,确定新的第一下搅拌销的位置、直径和/或数量;
针对所述混合机的搅拌耳附近的实际易结块区,确定混合区最外层的第一下搅拌销,所述搅拌耳,上搅拌环以及最外侧上搅拌销的新的位置,使得混合区最外层的第一下搅拌销和搅拌耳外侧能够剐蹭所述上搅拌环内侧,最外侧上搅拌销能够剐蹭所述搅拌耳内侧;
针对所述混合机的所述转盘的齿槽附近的实际易结块区,确定第二搅拌销和第三搅拌销的新的位置,使得第二搅拌销和第三搅拌销能够剐蹭机壳内侧壁的浆料;
针对所述混合机的所述浆料出口区域存在的易结块区,确定新的石膏料浆混合物的参数信息和混合机的工作方式,从而保持浆料区运动速度均匀;
针对所述混合机的混合区的甩水槽与第一下搅拌销之间的区域存在的易结块区,确定最内侧上搅拌销和甩水盘的新的位置,使得最内侧上搅拌销剐蹭甩水盘外侧。
可选地,当所述新的搅拌参数为:每组下搅拌组包括3-6个第一下搅拌销时,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准。
可选地,当所述新的搅拌参数为:每组下搅拌组包括4个搅拌销时,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准。
可选地,当所述新的搅拌参数为:每组下搅拌组中的多个第一下搅拌销的直径由内向外是依次递增或者递减时,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准。
可选地,当所述新的搅拌参数为:第一下搅拌销的直径由内向外或者由外向内依次呈等差数列时,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准,其中,由内向外是指由圆心或者靠近圆心的位置沿着 直径向外。
可选地,当所述新的搅拌参数为:每组下搅拌组包括的搅拌销的数量相等时,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准。
可选地,当所述新的搅拌参数为:多组所述下搅拌组中所有相应的第一下搅拌销位于以所述转盘的转轴的轴心和转盘的交点为圆心的圆上,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准,其中,相应的第一下搅拌销指的是距离圆心位置相等的下搅拌销。
可选地,当所述新的搅拌参数为:当多个第二下搅拌销和第三搅拌销位于以转盘的转轴为圆心的圆上时,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准。
可选地,当所述新的搅拌参数为:当多个第二下搅拌销和第三搅拌销位于以转盘的转轴为圆心的圆上,该圆的直径为461mm时,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准。
一种石膏料浆结块处理装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,其中,当所述指令被所述处理器执行时,实现上述任意的石膏料浆结块处理方法。
本公开实施例的有益效果:通过对混合机内部结构的仿真模拟,研发、优化设计出适应各种石膏料浆的专用混合机,提高搅拌能力和减少结块问题,最终提高石膏板生产效率和质量。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本公开的技术方案,并不构成对本公开 技术方案的限制。
图1为目前混合机的结构示意图;
图2为目前混合机的剖面结构示意图;
图3为目前混合机的俯视结构示意图;
图4为本公开实施例的石膏料浆结块处理方法流程图;
图5为本公开实施例的步骤S403中所述基于所述速度云图对所述混合机内石膏料浆的结块情况进行分析,得到分析结果的步骤的方法流程图;
图6为本公开实施例的步骤S4031中根据所述速度云图中所显示的速度缓慢区和/或涡流区,确定速度缓慢区和/或涡流区为所述石膏料浆混合物的滞流区或者说易结块区的方法流程图。
详述
下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
目前,如图1、图2、和图3所示,混合机的结构包括机壳1,所述机壳1顶端为开口状,包括底部和圆柱形侧壁;机壳1的底部贴合设置有转盘2,转盘2上设置有甩水盘11,转盘2的多个径向均匀设置有多组下搅拌组,每组所述下搅拌组包括多个下搅拌销3(为第一下搅拌销)和一个搅拌耳4,所述转盘2转动时,带动所述甩水盘11和多组下搅拌组一起转动;机壳1内设有电机,该电机与转盘2的转轴连接;机壳1侧壁的底部设有料浆出口5;机壳1的上方设置有上盖6,上盖6设置有进水口7、进料口8和发泡剂入口9,上盖6下面设置有与转盘2上的下搅拌销3对应的多个上搅拌销61(图1和图2中未显示,如图3所示),其中,每个下搅拌销3对应一个上搅拌销61,图3中只示例性地示出了部分上搅拌销61,但是实际上每个下搅拌销3对应 一个上搅拌销61。其中,上盖6的上面指的是上盖6背向机壳1的一面,而上盖6的下面指的是上盖6朝向机壳1的一面。
其中,所述甩水盘11对应的区域为甩水区,甩水盘11圆周与多个搅拌耳4形成的圆之间的区域为混合区,多个搅拌耳4形成的圆与机壳1的侧壁之间的区域为浆料区。
上述混合机中,每组所述下搅拌组包括4个下搅拌销。所述下搅拌组位于所述混合区。所有下搅拌销3的直径都是相同的。
其中,所述上盖6的下面还设置有上搅拌环62,所述转盘2的边缘设置有齿槽21,63为机壳内侧面。转盘2上对应所述浆料区的位置还设置有多个第二下搅拌销32和多个第三下搅拌销33,多个第二下搅拌销32位于以转盘2的转轴为圆心的圆上,该圆的直径一般为482mm,多个第三下搅拌销33位于以转盘2的转轴为圆心的圆上,该圆的直径一般为450mm。
本公开实施例中的浆料和料浆都是一回事,指的是:石膏、水、发泡剂等通过搅拌形成的流体状混合物。
如图4所示,针对上述的混合机结构,本公开实施例提供了一种石膏料浆结块处理方法,包括:
S401、获取所述石膏料浆混合机的机械结构参数,根据所述机械结构参数对所述混合机进行建模得到相应的混合机模型;
其中,根据所述机械结构参数对所述混合机进行建模得到相应的混合机模型的步骤包括:
根据混合机工作情况选择流体中的多相流(Mixture模型)进行模拟,通过求解混合相的连续性、动量和能量方程、相对速度的代数方程来实现混合机模拟运转。也可以通过现有技术中的其他方法来实现,在此不再赘述。
其中,所述石膏料浆混合机的机械结构参数包括:混合机除搅拌销外的各个部件的参数以及搅拌参数。
S402、基于当前混合机的搅拌参数,石膏料浆混合物的参数信息和混合机的工作方式,利用上述混合机模型仿真得到石膏料浆混合物在所述混合机 内的速度云图;
其中,输入当前混合机的搅拌参数,石膏料浆混合物的参数信息和混合机的工作方式,利用上述混合机模型仿真得到石膏料浆混合物在所述混合机内的速度云图的方法可以采用现有技术中的方法来实现,如基于有限元算法获得速度云图,在此不再赘述。
S403、基于所述速度云图对所述混合机内石膏料浆的结块情况进行分析,得到分析结果;
S404、基于所述分析结果对所述混合机进行结块处理。
本公开实施例中不仅可以得到速度云图,还可以得到压力云图信息和涡流云图信息,对于结块情况处理来说速度云图较有参考意义。
其中,所述石膏料浆混合机的机械结构参数包括:混合机除搅拌销外的各个部件的参数以及搅拌参数。其中,所述混合机除搅拌销外的各个部件的参数至少包括:混合机除搅拌销外各个部件的尺寸和位置,例如混合机转盘的尺寸和位置、混合机甩水盘的尺寸和位置、料浆出口的尺寸和位置、转盘的楔形出口的尺寸和位置等;所述搅拌参数包括以下信息中的任意一种或多种:所采用的搅拌销的数量、位置、粗细和高度,以及进料口、进水口和发泡剂入口的入口位置、大小和数量。
所述石膏料浆混合物的参数信息包括以下信息中的任意一种或多种:水的流速、发泡剂的流速、石膏粉的流速、水的流量、发泡剂的流量、石膏粉的流量、石膏粉的溶液粘度等;
所述混合机的工作方式包括混合机的进料方式和电机转速等信息。
所述石膏料浆混合物的参数信息还可以包括:外加剂的初始流速、重量,浓度或粘度等,外加剂可以包括:减水剂、缓凝剂、促凝剂等。
如图5所示,在一示例性的实施方式中,步骤S403中所述基于所述速度云图对所述混合机内石膏料浆的结块情况进行分析,得到分析结果的步骤包括:
S4031、根据所述速度云图中所显示的速度缓慢区和/或涡流区,确定速度缓慢区和/或涡流区为所述石膏料浆混合物的滞流区或者说易结块区;
S4032、基于实际易结块区和所述滞流区或者说易结块区进行石膏料浆结块情况分析,得到分析结果,该分析结果包括产生结块的原因。
在一示例性的实施方式中,所述S404、基于所述分析结果对所述混合机进行结块处理的步骤包括:根据所述分析结果,确定新的搅拌参数。
在一示例性的实施方式中,所述S404、基于所述分析结果对所述混合机进行结块处理的步骤包括:根据所述分析结果,确定新的石膏料浆混合物的参数信息。
在一示例性的实施方式中,所述S404、基于所述分析结果对所述混合机进行结块处理的步骤包括:根据所述分析结果,确定新的混合机的工作方式。
在一示例性的实施方式中,上述石膏料浆结块处理方法还包括步骤S405:基于所述新的搅拌参数,以及新的石膏料浆混合物的参数信息和混合机的工作方式重复执行所述步骤S402-S404,直到所述速度云图中一个或多个速度缓慢区和/或涡流区达到相应的预设的标准。其中,不同的区域有不同的标准,或者不同的区域有相同的标准,预设的标准可以是指,所述速度云图中的涡流和速度缓慢区小于一定的比率,或者为0,也就是说涡流区或者速度缓慢区完全改善或者明显改善,或者说物流或者速度缓慢区消失或者接近消失。
在一示例性的实施方式中,所述S4031、根据所述速度云图中所显示的速度缓慢区和/或涡流区,确定速度缓慢区和/或涡流区为所述石膏料浆混合物的滞流区或者说易结块区的步骤包括:
根据所述速度云图确定上述混合机的浆料区的第二下搅拌销32附近有涡流区,为易结块区;
根据所述速度云图确定上述混合机的混合区相邻两个下搅拌销之间的区域存在涡流区,且离甩水盘越近,涡流越明显,易结块区域越大;
根据所述速度云图确定上述混合机的所述搅拌耳附近不存在速度缓慢区和涡流区,不易结块;
根据所述速度云图确定上述混合机的所述转盘的齿槽附近不存在速度缓慢区和涡流区,不易结块;
根据所述速度云图确定上述混合机的浆料出口区域存在速度缓慢区和涡流区,易结块;
根据所述速度云图确定上述混合机的混合区的甩水槽与下搅拌销之间的区域存在速度缓慢区和涡流区,易结块。
在一示例性的实施方式中,所述S4032、基于实际易结块区和所述滞流区或者说易结块区进行石膏料浆结块情况分析,得到分析结果的步骤包括:
确定浆料区的第二下搅拌销32附近有涡流区,为易结块区的原因是:浆料区第二下搅拌销32附近浆料的圆周速度很大,浆料在流经静止的机壳内侧壁和上搅拌环时,受到强剪切作用,在距离较远壁面一侧形成较大涡流,导致结块;
确定混合区相邻两个下搅拌销之间的区域存在涡流区,且离甩水盘越近,涡流越明显,易结块区域越大的原因是:搅拌过程中,上搅拌销静止,附近浆料流速低,临近的下搅拌销的运动带动的浆料流速大,两者形成速度较大梯度,产生涡流;
所述搅拌耳附近为实际易结块区;
所述转盘的齿槽附近为实际易结块区;
确定所述浆料出口区域存在速度缓慢区和涡流区,易结块的原因是:料浆出口两侧的料浆在机壳内侧壁和齿槽围成的狭小孔隙中受到强烈的剪切和湍动,被齿槽的切面推出时仍然保持惯性速度,且混合区未充分搅拌的料浆也会滞留在此区域;
确定混合区的甩水槽与下搅拌销之间的区域存在速度缓慢区和涡流区,易结块的原因是:甩水盘处靠近用于投入石膏的进料口,石膏含量比较集中, 混合中有未带走的石膏粉末,加之最内侧下搅拌销的圆周速度相较其它下搅拌销速度慢,造成结块。
在一示例性的实施方式中,所述S404、根据所述分析结果,确定新的搅拌参数的步骤包括:
针对上述混合机的浆料区的第二下搅拌销32附近有涡流区,为易结块区,改变第二下搅拌销和第三搅拌销的位置,使第二搅拌销和第三搅拌销位于以转盘2的转轴为圆心的圆上,且二者距离机壳内侧壁和上搅拌环的距离相等,且使得第二搅拌销和第三搅拌销能够剐蹭上搅拌环外侧浆料,确定新的第二搅拌销和第三搅拌销的位置;
针对上述混合机的混合区相邻两个下搅拌销之间的区域存在涡流区,且离甩水盘越近,涡流越明显,易结块区域越大,改变混合区下搅拌销直径和/或数量,且改变混合区下搅拌销的位置,使得转动中上搅拌销能够剐蹭相邻的下搅拌销,确定新的下搅拌销的位置、直径和/或数量;
针对上述混合机的搅拌耳附近的实际易结块区,确定混合区最外层下搅拌销,所述搅拌耳,上搅拌环以及最外侧上搅拌销的位置,使得混合区最外层下搅拌销和搅拌耳外侧能够剐蹭所述上搅拌环内侧,最外侧上搅拌销能够剐蹭所述搅拌耳内侧;
针对上述混合机的所述转盘的齿槽附近的实际易结块区,使得第二搅拌销和第三搅拌销能够剐蹭机壳内侧壁的浆料;
针对上述混合机的所述浆料出口区域存在速度缓慢区和涡流区,易结块,保持浆料区运动速度均匀;
针对上述混合机的混合区的甩水槽与下搅拌销之间的区域存在速度缓慢区和涡流区,易结块,确定最内侧上搅拌销和甩水盘的新的位置,使得最内侧上搅拌销剐蹭甩水盘外侧。
在一示例性的实施例中,每组所述下搅拌组包括3-6个下搅拌销时,速度 云图显示速度缓慢区和涡流区明显改善,能够明显地改善由该混合机混合得到的浆料的结块情况。当每组所述下搅拌组包括4个下搅拌销时,速度云图显示速度缓慢区和涡流区明显改善,能够明显地改善由该混合机混合得到的浆料的结块情况。也就是说,当所述新的搅拌参数为:每组下搅拌组包括3-6个下搅拌销时,尤其是每组包括4个搅拌销时,所述速度云图中的相应的速度缓慢区和/或涡流区达到相应的预设的标准。
在一示例性的实施例中,每组下搅拌组中的多个下搅拌销3的直径由内向外是依次递增或者递减时,速度云图显示速度缓慢区和涡流区明显改善,能够明显地改善由该混合机混合得到的浆料的结块情况,其中,内指的是圆心或者靠近圆心的位置,外指的是由圆心或者靠近圆心的位置沿着直径向外。其中,下搅拌销3的直径由内向外或者由外向内依次为29mm,28mm,27mm,26mm时,速度云图显示速度缓慢区和涡流区明显改善,能够明显地改善由该混合机混合得到的浆料的结块情况。也就是说,当所述新的搅拌参数为:每组下搅拌组中的多个下搅拌销3的直径由内向外是依次递增或者递减时,尤其是下搅拌销3的直径由内向外或者由外向内依次呈等差数列时,例如依次为29mm,28mm,27mm,26mm时,所述速度云图中的相应的速度缓慢区和/或涡流区达到相应的预设的标准。
在一示例性的实施例中,所述下搅拌销为圆柱型搅拌销时,速度云图显示速度缓慢区和涡流区明显改善,能够明显地改善由该混合机混合得到的浆料的结块情况。也就是说,当所述新的搅拌参数为:所述下搅拌销为圆柱型搅拌销时,所述速度云图中的相应的速度缓慢区和/或涡流区达到相应的预设的标准。
在一示例性的实施例中,每组下搅拌组包括的搅拌销的数量相等时,速度云图显示速度缓慢区和涡流区明显改善,能够明显地改善由该混合机混合得到的浆料的结块情况。也就是说,当所述新的搅拌参数为:每组下搅拌组包括的搅拌销的数量相等时,所述速度云图中的相应的速度缓慢区和/或涡流区达到相应的预设的标准。
在一示例性的实施例中,多组所述下搅拌组中所有相应的下搅拌销位于以转盘2的转轴为圆心的圆上时,速度云图显示速度缓慢区和涡流区明显改 善,能够明显地改善由该混合机混合得到的浆料的结块情况。相应的下搅拌销指的是距离圆心位置相等的下搅拌销。也就是说,当所述新的搅拌参数为:多组所述下搅拌组中所有相应的下搅拌销位于以转盘2的转轴为圆心的圆上时,所述速度云图中的相应的速度缓慢区和/或涡流区达到相应的预设的标准。
在一示例性的实施例中,当多个第二下搅拌销32和第三搅拌销33位于以转盘2的转轴为圆心的圆上,且该圆的直径为461mm时,速度云图显示速度缓慢区和涡流区明显改善,能够明显地改善由该混合机混合得到的浆料的结块情况。也就是说,当所述新的搅拌参数为:当多个第二下搅拌销32和第三搅拌销33位于以转盘2的转轴为圆心的圆上,尤其是该圆的直径为461mm时,所述速度云图中的相应的速度缓慢区和/或涡流区达到相应的预设的标准。
在一示例性的实施例中,当所述上盖6的下面还设置有与多个所述第二下搅拌销32对应的多个第二上搅拌销(图中未示出)时,速度云图显示速度缓慢区和涡流区明显改善,能够明显地改善由该混合机混合得到的浆料的结块情况。也就是说,当所述新的搅拌参数为:当所述上盖6的下面还设置有与多个所述第二下搅拌销32对应的多个第二上搅拌销时,所述速度云图中的相应的速度缓慢区和/或涡流区达到相应的预设的标准。
本公开实施例中,所述的处理方法还包括:调整混合机模型中混合机的各个部件的位置属性、搅拌部件的组合属性、石膏料浆混合物的参数信息、工作方式中的任意一种或多种以改变混合机模型中的速度场数据,并重新进行结块情况分析。
本公开实施例中,在首次进行仿真和分析时,以目前的混合机结构作为基础,根据混合机模型中与搅拌相关的组合属性以及石膏料浆混合物的参数信息、工作方式进行仿真,当形成的混合机内的速度云图确定石膏料浆结块情况不理想或者分析其他情况对应的结块情况时,通过改变混合机模型中与搅拌相关的组合属性、石膏料浆混合物的参数信息、工作方式的方式中的任意一种或多种,获得新的混合机内的速度云图。
本公开实施例中,所述的处理方法,还包括:根据仿真结果确定所述混合机模型中各个部件的位置属性、搅拌部件的组合属性以及所述石膏料浆混合物的参数信息和工作方式与结块情况之间的对应关系;
根据所述对应关系确定当前待生产的石膏料浆对应的控制参数;
所述控制参数包括以下至少一项:
混合机的机械结构参数、搅拌工作方式、石膏料浆混合物的参数信息。
因为不同料浆、板型所适应的最佳的结构/工作模式可能是不同的,本公开实施例中可以先通过上述模拟方法、实验验证确定所述混合机模型中与搅拌相关的组合属性以及所述石膏料浆混合物的参数信息和工作方式与结块情况之间的对应关系,在实际生产中,根据当前的料浆种类和要生产的板型,对混合机的结构和搅拌工作方式、石膏料浆混合物的参数信息进行调整。
本公开实施例中,所述的处理方法,还包括:
根据预设的多相流混合模型,建立所述各个部件的位置属性、搅拌部件的组合属性以及所述参数信息与混合机内的速度云图的映射关系,形成所述混合机内的速度云图。
如图6所示,本公开实施例中,步骤S4031、根据所述速度云图中所显示的速度缓慢区和/或涡流区,确定速度缓慢区和/或涡流区为所述石膏料浆混合物的滞流区或者说易结块区包括:
S40311、通过所述混合机内的速度云图获得所述石膏料浆混合机的速度缓慢区和涡流区;
S40312、判断所述石膏料浆混合机的速度缓慢区或涡流区是否符合预设的滞留标准;
S40313、当所述石膏料浆混合机的速度缓慢区或涡流区符合所述滞留标准时,判定所述速度缓慢区或涡流区为石膏料浆混合物的滞流区;
S40314、当所述石膏料浆混合机的速度缓慢区或涡流区不符合所述滞留标准时,判定所述速度缓慢区或涡流区不为石膏料浆混合物的滞流区。
本公开实施例还提供一种石膏料浆结块处理装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述的石膏料浆结块处理方法。
实施例一
如和2和图7所示,本实施例说明混合机搅拌的过程:
水从进水口7注入甩水区,通过甩水区附近的壁面与转盘2之间的缝隙沿切线方向甩出;石膏从进料口8加入,发泡剂从发泡剂入口9投入,在混合区进行混合,混合机在工作过程中,上搅拌销静止,下搅拌销3转动,下搅拌销3从上搅拌销间交错穿过,两者构成手指交叉式搅拌结构;通过周期位置变化,利用剪切和扩散作用将物料在内部反复的搅拌混合;主要的混合方式为剪切混合和对流混合方式。浆料混合,浆料在转盘2和机壳1以及上盖之间的间隙由于速度梯度差,产生强烈的剪切混合,经转盘2转动将浆料带到料浆出口5。
实施例二
本实施例采用混合机工作情况选择流体中的多相流Mixture模型进行模拟,首先在混合机结构进行3D建模的基础上,利用有限元模型(不局限于此)对搅拌部件的组合属性(如搅拌销、进料口的位置、大小等)、石膏料浆混合物的参数信息(如流速等)和工作方式(如转速、工作方式等)等输入参数与混合效果的相应指标(如结块情况)之间的关系进行研究,通过理论分析、采样数据建立数学模型,并对模型加以采样验证,在确定混合机模拟模型后,通过模型寻找到可以达到最佳混合效果的输入参数组合。
本实施例在水的流速2.26m/s,发泡剂0.57m/s,石膏粉0.29m/s。纯石膏粉的溶液粘度为4000-5000cps时仿真出混合机内的速度云图。
根据仿真结果确定:
1)上、下搅拌销附近存在速度缓慢区;
2)搅拌耳内侧存在速度缓慢区;
3)料浆出口区域存在速度缓慢区;
4)甩水区外侧附近区域存在速度缓慢区。
其原因为:因为上搅拌销静止,下搅拌销速度很大,推动着它附近的浆料快速运动,碰到静止的下搅拌销以及其附近的浆料,受到强剪切作用,形成速度梯度差和涡流,很容易形成涡流,影响搅拌效果,导致结块。料浆出 口两侧的浆料被外壳和齿槽围成的狭小孔隙中受到强烈的剪切和湍动,被齿槽面推出时仍然保持惯性速度。狭小流场中未搅拌均匀的浆料由于密度大,被其它浆料推着到浆料出口排出。一般来说,混合区未充分搅拌的浆料大部分会滞留在此区域,而浆料区未搅拌完全的浆料则可能会被通过转子齿槽直接排出料浆出口。甩水盘处靠近石膏投入口,石膏含量比较集中,混合中有未带走的石膏粉末,加之最内圈下搅拌销圆周速度相较其它下搅拌销速度慢,搅拌效果不好,造成结块。
本实施例中通过改变转盘的转速,进一步仿真得出以下结论:下搅拌销速度越大,涡流越深,不利于搅拌,易形成结块。通过进一步调整混合机模型中与搅拌相关的组合属性和/或石膏料浆混合物的参数信息、工作方式,得到的仿真结果:
1、改变运动的下搅拌销位置,使其距离外壳和上盖的距离相等,可以改善结块;
2、改变下搅拌销直径或数量,找到使流场均匀的合适的直径和间距,减小涡流强度,降低结块可能性;
3、最外侧的上搅拌销轴运动轨迹与搅拌耳内侧弧面一致,可以起到与搅拌耳朵内侧弧面剐蹭效果,降低结块可能性;
4、下搅拌销位置和轨迹与上搅拌销配合紧密,增大甩水盘附近的下搅拌销搅拌力度,使投入的石膏粉末被充分搅拌,可以改善结块。
于本公开的一个实施例中,提供了:一种石膏料浆混合机,包括:机壳,所述机壳顶端为开口状,机壳的底端贴合设置有转盘,转盘上均匀设置多组竖向的下搅拌组,每组所述下搅拌组包括多个下搅拌销和一个搅拌耳,机壳内设有电机,电机与转盘的转轴链接,机壳侧壁的底端设有料浆出口,机壳上方设置有上盖,上盖上设置进水口、进料口和发泡剂入口,上盖下方均匀设置与转盘上的下搅拌销对应的竖向的多个上搅拌销,至少一组所述下搅拌组中的多个下搅拌销的直径是依次递增/递减,所述下搅拌销在转盘转动过程中从上搅拌销间交错穿过,构成交叉式搅拌结构。
可选地,所述下搅拌销为圆柱搅拌销。
可选地,每组下搅拌组包括的搅拌销的数量相等。
可选地,所述多组下搅拌组中的对应的下搅拌销位于以转盘的转轴为圆心的同心圆上。
可选地,最外侧的上搅拌销轴运动轨迹与每个搅拌耳内侧弧面一致。
可选地,搅拌耳轴运动轨迹与上盖内侧弧面一致。
可选地,转动中每个上搅拌销剐蹭相邻的两个下搅拌销。
可选地,最内侧上搅拌销轴运动轨迹与甩水盘外侧弧面一致。
可选地,每组所述下搅拌组中的多个下搅拌销的直径自内向外依次递减。
可选地,每组所述下搅拌组中的多个下搅拌销的直径依次为公差为A的等差数列,所述公差A小于或者等于预设值。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (15)

  1. 一种石膏料浆结块处理方法,所述方法包括:
    获取混合机的机械结构参数,根据所述机械结构参数对所述混合机进行建模得到相应的混合机模型,其中,所述混合机的机械结构参数包括:混合机除搅拌销外的各个部件的参数以及搅拌参数;
    基于混合机当前的搅拌参数,石膏料浆混合物的参数信息和混合机的工作方式,利用上述混合机模型仿真得到所述石膏料浆混合物在所述混合机内的速度云图;
    基于所述速度云图对所述混合机内石膏料浆的结块情况进行分析,得到分析结果;
    基于所述分析结果对所述混合机进行结块处理。
  2. 如权利要求1所述的石膏料浆结块处理方法,其中,
    所述混合机除搅拌销外的各个部件的参数至少包括:混合机除搅拌销外各个部件的尺寸和位置;
    所述搅拌参数包括以下信息中的任意一种或多种:所采用的搅拌销的数量、位置、粗细、高度,进料口的入口位置、大小、数量、进水口的入口位置、大小、数量、发泡剂入口的入口位置、大小、数量;
    所述石膏料浆混合物的参数信息包括以下信息中的任意一种或多种:水的流速、发泡剂的流速、石膏粉的流速、水的流量、发泡剂的流量、石膏粉的流量、石膏粉的溶液粘度;
    所述混合机的工作方式包括混合机的进料方式和电机转速。
  3. 如权利要求1所述的石膏料浆结块处理方法,其中,所述基于所述速度云图对所述混合机内石膏料浆的结块情况进行分析,得到分析结果的步骤包括:
    根据所述速度云图中所显示的速度缓慢区和/或涡流区,确定所述石膏料浆混合物的易结块区;
    基于实际易结块区和所确定的易结块区进行石膏料浆结块情况分析,得 到分析结果。
  4. 如权利要求3所述的石膏料浆结块处理方法,其中,所述基于所述分析结果对所述混合机进行结块处理的步骤包括:
    根据所述分析结果,确定如下参数中的一个或多个:
    新的搅拌参数、新的石膏料浆混合物的参数信息、新的混合机的工作方式。
  5. 如权利要求4所述的石膏料浆结块处理方法,该方法还包括:
    基于新的搅拌参数,以及新的石膏料浆混合物的参数信息和/或混合机的工作方式重复执行所述利用上述混合机模型仿真得到所述石膏料浆混合物在所述混合机内的速度云图,基于所述速度云图对所述混合机内石膏料浆的结块情况进行分析,得到分析结果,以及基于所述分析结果对所述混合机进行结块处理的步骤,直到所述速度云图中一个或多个速度缓慢区和/或涡流区达到相应的预设的标准。
  6. 如权利要求4所述的石膏料浆结块处理方法,其中,
    所述混合机的转盘上均匀设置有多组径向的下搅拌组,每组所述下搅拌组包括多个第一下搅拌;所述转盘上对应浆料区的位置还设置有多个第二下搅拌销和多个第三下搅拌销;
    所述根据所述速度云图中所显示的速度缓慢区和/或涡流区,确定石膏料浆混合物的易结块区的步骤包括:
    根据所述速度云图确定所述混合机的混合区相邻两个第一下搅拌销之间的区域存在涡流区,确定该涡流区为易结块区;
    根据所述速度云图确定所述混合机的浆料区的第二下搅拌销附近有涡流区,确定所述涡流区为易结块区;
    根据所述速度云图确定所述混合机的浆料出口区域存在速度缓慢区和涡流区,确定该速度缓慢区和涡流区为易结块区;
    根据所述速度云图确定所述混合机的混合区的甩水槽与第一下搅拌销之间的区域存在速度缓慢区和涡流区,确定所述速度缓慢区和涡流区为易结块区。
  7. 如权利要求6所述的石膏料浆结块处理方法,其中,所述根据所述分析结果,确定新的搅拌参数的步骤包括:
    针对所述混合机的浆料区的第二下搅拌销附近的易结块区,改变第二下搅拌销和第三搅拌销的位置,使第二搅拌销和第三搅拌销位于以转盘的转轴为圆心的圆上,且二者距离机壳内侧壁和上搅拌环的距离相等,且使得第二搅拌销和第三搅拌销能够剐蹭上搅拌环外侧浆料,确定新的第二搅拌销和第三搅拌销的位置;
    针对所述混合机的混合区相邻两个第一下搅拌销之间的区域存在的易结块区,改变混合机的混合区第一下搅拌销直径和/或数量,且改变混合区的第一下搅拌销的位置,使得转动中上搅拌销能够剐蹭相邻的第一下搅拌销,确定新的第一下搅拌销的位置、直径和/或数量;
    针对所述混合机的搅拌耳附近的实际易结块区,确定混合区最外层的第一下搅拌销,所述搅拌耳,上搅拌环以及最外侧上搅拌销的新的位置,使得混合区最外层的第一下搅拌销和搅拌耳外侧能够剐蹭所述上搅拌环内侧,最外侧上搅拌销能够剐蹭所述搅拌耳内侧;
    针对所述混合机的所述转盘的齿槽附近的实际易结块区,确定第二搅拌销和第三搅拌销的新的位置,使得第二搅拌销和第三搅拌销能够剐蹭机壳内侧壁的浆料;
    针对所述混合机的所述浆料出口区域存在的易结块区,确定新的石膏料浆混合物的参数信息和混合机的工作方式,从而保持浆料区运动速度均匀;
    针对所述混合机的混合区的甩水槽与第一下搅拌销之间的区域存在的易结块区,确定最内侧上搅拌销和甩水盘的新的位置,使得最内侧上搅拌销剐蹭甩水盘外侧。
  8. 如权利要求7所述的石膏料浆结块处理方法,其中,当所述新的搅拌参数为:每组下搅拌组包括3-6个第一下搅拌销时,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准。
  9. 如权利要求8所述的石膏料浆结块处理方法,其中,当所述新的搅拌参数为:每组下搅拌组包括4个搅拌销时,所述速度云图中相应的速度缓慢 区和/或涡流区达到相应的预设的标准。
  10. 如权利要求7所述的石膏料浆结块处理方法,其中,
    当所述新的搅拌参数为:每组下搅拌组中的多个第一下搅拌销的直径由内向外是依次递增或者递减时,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准。
  11. 如权利要求10所述的石膏料浆结块处理方法,其中,
    当所述新的搅拌参数为:第一下搅拌销的直径由内向外或者由外向内依次呈等差数列时,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准,其中,由内向外是指由圆心或者靠近圆心的位置沿着直径向外。
  12. 如权利要求7所述的石膏料浆结块处理方法,其中,当所述新的搅拌参数为:多组所述下搅拌组中所有相应的第一下搅拌销位于以所述转盘的转轴的轴心和转盘的交点为圆心的圆上,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准,其中,相应的第一下搅拌销指的是距离圆心位置相等的下搅拌销。
  13. 如权利要求7所述的石膏料浆结块处理方法,其中,当所述新的搅拌参数为:当多个第二下搅拌销和第三搅拌销位于以转盘的转轴为圆心的圆上时,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准。
  14. 如权利要求13所述的石膏料浆结块处理方法,其中,当所述新的搅拌参数为:当多个第二下搅拌销和第三搅拌销位于以转盘的转轴为圆心的圆上,该圆的直径为461mm时,所述速度云图中相应的速度缓慢区和/或涡流区达到相应的预设的标准。
  15. 一种石膏料浆结块处理装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,其中,当所述指令被所述处理器执行时,实现如权利要求1-14中任意一项所述的石膏料浆结块处理方法。
PCT/CN2019/095569 2019-01-30 2019-07-11 一种石膏料浆结块处理方法和装置 WO2020155567A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910093134.5 2019-01-30
CN201910093134.5A CN111506976B (zh) 2019-01-30 2019-01-30 一种石膏料浆结块分析方法和装置

Publications (1)

Publication Number Publication Date
WO2020155567A1 true WO2020155567A1 (zh) 2020-08-06

Family

ID=71840824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095569 WO2020155567A1 (zh) 2019-01-30 2019-07-11 一种石膏料浆结块处理方法和装置

Country Status (2)

Country Link
CN (1) CN111506976B (zh)
WO (1) WO2020155567A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178011A1 (en) * 2022-03-15 2023-09-21 United States Gypsum Company Agitator for gypsum wallboard mixer with reduced water:stucco ratio

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111497015B (zh) * 2019-01-30 2021-07-20 北新集团建材股份有限公司 一种石膏料浆发泡分析方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971015A (zh) * 2014-05-22 2014-08-06 重庆大学 一种石膏浆料搅拌时间的分析方法
CN103971014A (zh) * 2014-05-22 2014-08-06 重庆大学 一种石膏浆料灌注时间的计算方法
US20180143943A1 (en) * 2016-11-23 2018-05-24 Industrial Technology Research Institute Method and system for analyzing process factors affecting trend of continuous process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3604760A1 (de) * 1986-02-14 1987-08-20 Hubert Eirich Verfahren und vorrichtung zur konditionierung von kraftwerksreststoffen
EP1455236B8 (en) * 2003-03-07 2007-03-07 Canon Kabushiki Kaisha Color toner
CN102232974A (zh) * 2010-05-07 2011-11-09 烟台绿叶动物保健品有限公司 禽用中药颗粒剂的制备方法
CN205112095U (zh) * 2015-10-14 2016-03-30 重庆市秋露石膏制品厂 石膏料浆混合机
CN205731063U (zh) * 2016-07-05 2016-11-30 淮南北新建材有限公司 一种石膏混合机挤压装置
US20180009129A1 (en) * 2016-07-11 2018-01-11 National Gypsum Properties, Llc System for making gypsum board using a liquid gypsum set accelerator
US10717059B2 (en) * 2017-05-18 2020-07-21 United States Gypsum Company Calcined gypsum slurry mixing apparatus having variably positionable lump ring and method for manufacturing gypsum product using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971015A (zh) * 2014-05-22 2014-08-06 重庆大学 一种石膏浆料搅拌时间的分析方法
CN103971014A (zh) * 2014-05-22 2014-08-06 重庆大学 一种石膏浆料灌注时间的计算方法
US20180143943A1 (en) * 2016-11-23 2018-05-24 Industrial Technology Research Institute Method and system for analyzing process factors affecting trend of continuous process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178011A1 (en) * 2022-03-15 2023-09-21 United States Gypsum Company Agitator for gypsum wallboard mixer with reduced water:stucco ratio

Also Published As

Publication number Publication date
CN111506976B (zh) 2022-07-26
CN111506976A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2020155566A1 (zh) 一种石膏料浆混合机
WO2020155567A1 (zh) 一种石膏料浆结块处理方法和装置
CN104374878A (zh) 组合式多相流体管道内水合物生成实验装置
CN105396533A (zh) 反应釜
CN205833172U (zh) 一种多效反应釜
Yang et al. Effects of rotor and stator geometry on dissolution process and power consumption in jet-flow high shear mixers
CN106268591A (zh) 一种聚合反应釜及聚酯生产方法
CN204193821U (zh) 一种恒速恒温搅拌釜
Abdulbari et al. Experimental investigations on biopolymer in enhancing the liquid flow in microchannel
CN107636140A (zh) 用于生产剪切稀化介质的发酵罐
CN106693785A (zh) 方便拆卸的易清理式搅拌器
CN115859869B (zh) 一种基于cfd的搅拌机絮凝分析方法及系统
CN104587869B (zh) 一种多级剪切式混合器
JP2010146225A (ja) 流体解析方法および流体解析装置
CN107261939A (zh) 一种自动预热搅拌装置
JP2015054272A (ja) 攪拌装置
CN203750458U (zh) 一种果糖生产线的淀粉乳配置搅拌装置
Boujlel et al. Rate of chaotic mixing in localized flows
CN202527176U (zh) 通过快速沉淀法制备微纳米粉体的装置
CN205517430U (zh) 一种氯化橡胶漆分散机
CN111497015B (zh) 一种石膏料浆发泡分析方法和装置
RU2790167C1 (ru) Способ насыщения жидкости газом в аппарате с мешалкой
US3854701A (en) Fluid mixer
CN113181803A (zh) 一种混合料搅拌设备
CN206577660U (zh) 一种搅拌机械装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913773

Country of ref document: EP

Kind code of ref document: A1