WO2020155515A1 - 一种基于区块链的双源能源互联网交易方法及设备 - Google Patents

一种基于区块链的双源能源互联网交易方法及设备 Download PDF

Info

Publication number
WO2020155515A1
WO2020155515A1 PCT/CN2019/091048 CN2019091048W WO2020155515A1 WO 2020155515 A1 WO2020155515 A1 WO 2020155515A1 CN 2019091048 W CN2019091048 W CN 2019091048W WO 2020155515 A1 WO2020155515 A1 WO 2020155515A1
Authority
WO
WIPO (PCT)
Prior art keywords
transaction
power
model
unit
heating
Prior art date
Application number
PCT/CN2019/091048
Other languages
English (en)
French (fr)
Inventor
刘文涛
李剑辉
曾凯文
刘嘉宁
李嘉龙
张轩
陈雨果
白杨
罗钢
陈晔
林少华
Original Assignee
广东电网有限责任公司电力调度控制中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司电力调度控制中心 filed Critical 广东电网有限责任公司电力调度控制中心
Publication of WO2020155515A1 publication Critical patent/WO2020155515A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • This application relates to the field of Internet technology, and in particular to a dual-source energy Internet transaction method and equipment based on blockchain.
  • Energy Internet technology uses renewable energy as the main energy source, and supports access to large-scale distributed power generation systems and distributed energy storage technology systems, realizing wide-area energy sharing, and more importantly, it is also in line with the current country’s vigorous promotion The electrification process of the power system. It is based on this concept that all countries are optimistic about the development prospects of the Energy Internet and have formulated various development plans, hoping to have more voice in the field of energy Internet technology.
  • Blockchain technology originated from Bitcoin and is the underlying technology realization of Bitcoin.
  • Blockchain technology uses encrypted chain block structure to verify and store data, and uses distributed node consensus algorithm to generate and update data. It has the characteristics of decentralization, openness, transparency, safety and credibility. This method allows the access of multiple users, which is conducive to the consumption of more new energy and access to more energy consumers, and changes the current energy structure based on primary energy.
  • Many researchers have proposed specific implementation methods of energy Internet technology based on blockchain. For example, the urban energy Internet system architecture based on the active distribution network and the application of flexible DC technology in the energy Internet.
  • This application provides a blockchain-based dual-source energy Internet transaction method and equipment, which is used to solve the problem that traditional technology does not break the relatively closed barriers of different energy sources such as power supply, heating, and cooling in the traditional energy system, and realizes multi-energy Technical issues of comprehensive utilization.
  • the first aspect of this application provides a blockchain-based dual-source energy Internet transaction method, including:
  • the step S20 includes:
  • the model includes:
  • the heat transfer resistance of the heat exchanger model is:
  • step S205 Determine whether the transaction matrix meets the constraint conditions in S203. If the constraint conditions are met, record the transactions that meet the requirements in the block and proceed to step S30; if the constraint conditions are not met, proceed to step S206;
  • step S207 Record the transaction that meets the requirements in the block and enter step S30;
  • ⁇ T is the temperature difference between the end and beginning of heating pipes, T start and T end pipes are beginning and the end of the temperature, T e is the ambient temperature;
  • [lambda] is the total heat transfer coefficient per unit length of the pipe;
  • L is the length of the conduit;
  • C p is the specific heat capacity of the working fluid;
  • m is the mass flow of the working fluid in the pipeline,
  • R H is the thermal resistance of the heat exchanger, Q is the heat transfer amount, the inlet temperature of the cold and hot fluid is T c,i , T h,i , cold hot fluid outlet temperature of T c, o, T h, o, Q a heating start point to the user from the total heat transfer, m a total flow rate was, at the beginning of the temperature T s, T u is the UE Temperature, C is the total heat purchase cost, NG is the number of heat supply units, i is the i-th node in the heat supply unit nodes, Q i is the heat
  • the step S203 includes:
  • the constraint equations for establishing the objective function include:
  • Q j is the heat supply of the j-th heat supply unit
  • NG is the number of heat supply units
  • A is the total number of users
  • q f,l is the unit heat loss of the lth pipe
  • L l is the length of the pipe
  • B is the total number of pipes
  • Q min is the lower limit of the heat output of the unit
  • Q max is the upper limit of the heat output of the unit
  • Q user,m is the heat supply of the mth user
  • Q max,p is the maximum capacity of the p-th pipeline
  • T′ ymin is the lower limit of the pipeline water supply temperature
  • T′ ymax is The upper limit of pipeline water temperature.
  • the step S30 includes:
  • the revenue function of the generator is:
  • the price adjustment strategy for generators is:
  • p i (k + 1) p i (k) + ⁇ j (r j (k) -1);
  • the adjustment strategy of the generator's power generation is:
  • the objective function is constructed based on the minimum electricity purchase cost of the electricity purchaser as:
  • the congestion price model is:
  • step S307 Return to step S303 according to the updated blocking price
  • p i is the electricity price set by the generator
  • t ij is the transaction volume between the generator i and user j
  • Li ij is the network loss to be allocated for the transaction t ij
  • a i , b i , and c i are the sum power generation Coefficient related to cost
  • s i is the actual electricity sold by the generator
  • ⁇ ij represents the transmission fee paid for the transaction between generator i and user j
  • r i D j /l j
  • D j is the actual electricity demand
  • l j is the planned power generation
  • ⁇ i is the positive coefficient
  • P loss represents the network loss
  • ⁇ i (k) represents the transmission fee that needs to be paid for all transactions of generator i
  • a j and b j are related to the income of power purchasers
  • the coefficient, ⁇ ij is the congestion price
  • L is the set of lines that contribute to the congestion caused by
  • the step S304 includes:
  • the constraint equations for establishing the objective function include:
  • P j is the heat supply of the j-th heating unit
  • NG is the total number of heating units
  • Is the power consumption of the kth user
  • A is the total number of users
  • P f,l is the network loss of the lth pipeline
  • B is the total number of pipelines
  • P user,m is the power consumption of the mth user
  • P max,p is the maximum value of the transmission line capacity of the p-th grid
  • P min is the lower limit of unit load output
  • P max is the upper limit of unit load output
  • P p is the generating power of the unit.
  • it further includes the step of computing power generation P p of the group:
  • P is the maximum load of the unit
  • P Q is the thermal power of the unit
  • P p is the generating power
  • the calculation formula is: Q x is the heat load of the xth unit, and D and E are preset coefficients.
  • the second aspect of the application provides a dual-source energy Internet transaction device based on blockchain, the device includes a processor and a memory:
  • the memory is used to store program code and transmit the program code to the processor
  • the processor is configured to execute a blockchain-based dual-source energy Internet transaction method as in the first aspect according to instructions in the program code.
  • the third aspect of the present application provides a computer-readable storage medium, the computer-readable storage medium is used to store program code, and the program code is used to execute a blockchain-based dual-source energy Internet as in the first aspect Trading method.
  • the fourth aspect of the present application provides a computer program product including instructions, which when run on a computer, causes the computer to execute a blockchain-based dual-source energy Internet transaction method as in the first aspect.
  • This application provides a blockchain-based dual-source energy Internet transaction method and equipment.
  • the method includes: S10. Packing and encrypting data information issued by power generation units, heating units, and users into blocks, and then Pass it to each network node; S20, establish a thermal load dynamic response model and an optimal solution model, and solve the optimal solution of the heating model based on the heating demand data in the block; S30, establish an energy internet based on smart contract games The optimal power dispatch model uses the power demand data in the block to find the optimal solution of the power dispatch model; S40. Pack the solved optimal solution data into the block and send the block to the entire network. When the transaction time arrives , Automatically complete value transfer.
  • This application breaks the relatively closed barriers of different energy sources such as power supply, heating, and cooling in the traditional energy system, and realizes the comprehensive utilization of multiple energy sources.
  • Figure 1 is a block chain-based dual-source energy Internet transaction method implementation step diagram provided by this application;
  • FIG. 2 is a flowchart of a blockchain-based dual-source energy Internet transaction method provided by this application;
  • Figure 3 is a schematic diagram of the energy flow model.
  • This application provides a blockchain-based dual-source energy Internet transaction method and equipment, which is used to solve the problem that traditional technology does not break the relatively closed barriers of different energy sources such as power supply, heating, and cooling in the traditional energy system, and realizes multi-energy Technical issues of comprehensive utilization.
  • Figure 1 is a block chain-based dual-source energy Internet transaction method implementation step diagram
  • Figure 2 is a block chain-based dual-source energy Internet transaction method flow diagram
  • Figure 3 is a schematic diagram of the energy flow model, you can find, In the heating network, the heat loss of pipes and heat exchangers are uniformly converted into the form of thermal resistance, which simplifies the calculation model.
  • An embodiment of a blockchain-based dual-source energy Internet transaction method includes:
  • Each power generation unit, heating unit, user releases effective information such as electric energy, supply and demand, packaged into a block structure and encrypted, and the block is transmitted to each network node;
  • the data is packaged into blocks and sent to the entire network, the transaction time is reached, and the value transfer is automatically completed.
  • This embodiment realizes the energy Internet transaction form of mutual coupling of heating and power supply.
  • the coupled solution ensures two transactions The security, and the solution mode that is not oversimplified ensures the accuracy of the transaction.
  • the heating power is calculated from the heat supply and the output range of the unit is calculated from this simplifies the model solution variance and can obtain feasible solutions more quickly.
  • the heating data is first solved and optimized, and then the power supply data is calculated.
  • This sequence relationship fully takes into account the characteristics of the two energy sources of heat and electricity.
  • the heat network transaction has a long period of time. After the transaction is completed It will not change much for a long period of time. If grid transactions are calculated first, the frequent fluctuation characteristics of the grid will increase the amount of calculation.
  • This application is a dual-source energy internet transaction method based on blockchain.
  • the dual-energy internet transaction method based on blockchain can realize simultaneous online transactions of heat and electricity. Different from the existing method of implementing the energy internet based on the combination of heat and electricity, this method performs independent multi-batch calculations and checks on the transactions of heat and electricity, which improves the accuracy of transactions.
  • the stability and long-term cycle of thermal users are fully considered.
  • the heat supply is traded, and the new electricity transaction data is calculated based on the heat supply, which realizes the coupling between heat and electricity and ensures Safe operation of the unit and power grid.
  • a weakened central organization is introduced and blockchain technology is used to realize the transaction between the power plant and the heat user.
  • This transaction method also conforms to the characteristics of heat supply and demand.
  • the introduction of a blocking price management mechanism eliminates the need for third-party organizations to participate, reduces transaction costs, and improves the security of grid transactions, which has good application value.
  • step 101 includes:
  • the model includes:
  • the heat exchanger model takes the traditional counterflow heat exchanger as an example.
  • the heat transfer resistance of the heat exchanger model is:
  • step 201 Construct an optimal solution model according to step 201, and the objective function of the model minimizes the total heat purchase cost:
  • the central organization establishes the constraint conditions of the objective function
  • the transactions concluded in the game are recorded in the form of smart contracts and spread to all nodes of the entire network through the P2P network.
  • Each node of the whole network reaches a transaction consensus through mutual network communication, and obtains a transaction matrix T p ;
  • step 205 Determine whether the transaction matrix meets the constraint conditions in 203, if the constraint conditions are met, record the transactions that meet the requirements in the block and proceed to step 103; if the constraint conditions are not met, proceed to step 206;
  • the transaction record that meets the requirements in step 205 is the transaction matrix T p .
  • the central organization combines the objective function and constraint conditions to solve multiple iterations to obtain the transaction matrix T that meets the constraint conditions, and the security region S composed of all the matrices T, and solve the transaction matrix in S that meets the smallest difference from T p :
  • the transaction record meeting the requirements in step 207 is the transaction matrix meeting the smallest difference from T p in the security domain S.
  • ⁇ T is the temperature difference between the end and beginning of heating pipes, T start and T end pipes are beginning and the end of the temperature, T e is the ambient temperature; [lambda] is the total heat transfer coefficient per unit length of the pipe; L is the length of the conduit; C p is the specific heat capacity of the working fluid; m is the mass flow of the working fluid in the pipeline, R H is the thermal resistance of the heat exchanger, Q is the heat transfer amount, and the inlet temperature of the cold and hot fluid is T c,i , T h,i , and cold hot fluid outlet temperature of T c, o, T h, o, Q a heating start point to the user from the total heat transfer, m a total flow rate was, at the beginning of the temperature T s, T u is the UE Temperature, C is the total heat purchase cost, NG is the number of heat supply units, i is the i-th node in the heat supply unit nodes, Q i is the heat supply, a i and
  • step 203 includes:
  • the constraint equations for establishing the objective function include:
  • Q j is the heat supply of the j-th heat supply unit
  • NG is the number of heat supply units
  • A is the total number of users
  • q f,l is the unit heat loss of the lth pipe
  • L l is the length of the pipe
  • B is the total number of pipes
  • Q min is the lower limit of the heat output of the unit
  • Q max is the upper limit of heat output of the unit
  • Q user,m is the heat supply of the mth user
  • Q max,p is the maximum capacity of the p-th pipe
  • T′ ymin is the lower limit of the pipe water supply temperature
  • T′ ymax is The upper limit of pipeline water temperature.
  • step 103 includes:
  • the revenue function of the generator is:
  • the price adjustment strategy for generators is:
  • p i (k + 1) p i (k) + ⁇ j (r j (k) -1);
  • the adjustment strategy of the generator's power generation is:
  • the objective function constructed based on the minimization of the electricity purchase cost of the electricity purchaser is:
  • the game is repeatedly used by means of scheduling adjustment, electricity price adjustment, etc., and the transactions concluded in the game are recorded in the form of smart contracts and propagated to all nodes of the entire network through the P2P network.
  • Each node of the entire network reaches a transaction consensus through mutual network communication, and obtains a transaction matrix S p ;
  • congestion management is applied in step 303, (that is, the market mitigation mechanism adopted when the transmission service requirement exceeds the actual transmission capacity of the grid), and the congestion price is determined (that is, the electricity price of each node of the power system after the implementation of the congestion management plan). ), as long as you know the out-of-bounds information of the specific line, you don't need to know the specific transaction information, thus well protecting the user privacy. The transaction concluded by the game must meet the blocking price.
  • step 305 Determine whether the transaction matrix meets the constraint conditions in 304. If the constraint conditions are met, record the transactions that meet the requirements in the block and proceed to step 104; if the constraint conditions are not met, proceed to step 306;
  • the congestion price model is:
  • step 303 Return to step 303 according to the updated block price
  • step 303 According to the updated blocking price in 305, return to step 303 and iteratively obtain the new transaction matrix S p until all the constraints in 304 are met, then exit the loop and proceed to the next step
  • p i is the electricity price set by the generator
  • t ij is the transaction volume between the generator i and user j
  • Li ij is the network loss to be allocated for the transaction t ij
  • a i , b i , and c i are the sum power generation Coefficient related to cost
  • s i is the actual electricity sold by the generator
  • ⁇ ij represents the transmission fee paid for the transaction between generator i and user j
  • r i D j /l j
  • D j is the actual electricity demand
  • l j is the planned power generation
  • ⁇ i is a positive coefficient (determined by each generator according to its own power generation strategy)
  • P loss represents the network loss
  • ⁇ i (k) represents the transmission fee that needs to be paid for all transactions of generator i
  • a j and b j are related to the income of power purchasers Coefficient
  • ⁇ ij is the congestion price
  • ⁇ ij is the congestion
  • step 304 includes:
  • the constraint equations for establishing the objective function include:
  • P j is the heat supply of the j-th heating unit
  • NG is the total number of heating units
  • Is the power consumption of the kth user
  • A is the total number of users
  • P f,l is the network loss of the lth pipeline
  • B is the total number of pipelines
  • P user,m is the power consumption of the mth user
  • P max,p is the maximum value of the transmission line capacity of the p-th grid
  • P min is the lower limit of unit load output
  • P max is the upper limit of unit load output
  • P p is the generating power of the unit.
  • P is the maximum load of the unit
  • P Q is the thermal power of the unit
  • P p is the generating power
  • the calculation formula is: Q x is the heat load of the xth unit, and D and E are preset coefficients.
  • This application provides an embodiment of a blockchain-based dual-source energy Internet transaction device, the device includes a processor and a memory:
  • the memory is used to store program code and transmit the program code to the processor
  • the processor is configured to execute, according to the instructions in the program code, a blockchain-based dual-source energy Internet transaction method as in the foregoing embodiment.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium is used to store program code, and the program code is used to execute a blockchain-based dual-source energy Internet transaction method as in the above-mentioned embodiment.
  • the present application provides a computer program product including instructions, which when run on a computer, causes the computer to execute a blockchain-based dual-source energy Internet transaction method as in the foregoing embodiment.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Finance (AREA)
  • Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Technology Law (AREA)
  • Quality & Reliability (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于区块链的双源能源互联网交易方法及设备,其中方法包括:S10、将发电单元、供热单元、用户发布的数据信息打包成区块并加密,并在将区块传递给每个网络节点(101);S20、建立热负荷动态响应模型和最优化求解模型,基于区块中的供热需求数据求解出供热模型的最优解(102);S30、建立基于智能合约博弈的能源互联网电力最优化调度模型,利用区块中的电力需求数据求解出电力调度模型的最优解(103);S40、将求解后的最优解数据打包入区块并将区块发送全网,交易时间到达时,自动完成价值转移(104)。该方法打破传统能源系统中供电、供热、供冷等不同能源相对封闭的壁垒,实现多能源的综合利用。

Description

一种基于区块链的双源能源互联网交易方法及设备
本申请要求于2019年1月30日提交中国专利局、申请号为201910092972.0、发明名称为“一种基于区块链的双源能源互联网交易方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及互联网技术领域,尤其涉及一种基于区块链的双源能源互联网交易方法及设备。
背景技术
随着人们对数据价值的认识逐渐提升,很多基于大数据的技术应运而生。基于这种需求,“互联网+”及云计算技术得到了长足的进步。而能源领域经过了长期的发展,在技术上已经进入了瓶颈期,比如现有的技术手段很难改变国内大量弃风弃光现象,这也违背了当前所提倡的节能环保理念。因此很多人从互联网与能源网的关系入手,提出了能源互联网的概念,并指出这将是改变人类社会经济发展模式与生活方式的第三次工业革命。能源互联网技术以可再生能源为主要能源,并且支持大规模分布式发电系统与分布式储能技术系统接入,实现了广域能源的共享,更为重要的是它也符合目前国家在大力提倡的电力系统电气化改造进程。正是基于这种理念,各国都看好能源互联网的发展前景,纷纷制定各种发展计划,期望在能源互联网技术领域占有更多的话语权。
目前,在能源互联网的研究探索中,以去中心化和信任机制为主要特征的区块链技术一直是研究的热点。区块链技术源于比特币,是比特币的底层技术实现。区块链技术利用加密链式区块结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据,具有去中心化、开放透明、安全可信的特点。这种方法允许多用户的接入,有利于消纳更多的新能源并接入更多的能源消费 者,改变目前以一次能源为主的能源结构。许多的研究者提出了基于区块链的能源互联网技术具体实现方式。例如,基于主动配电网的城市能源互联网体系架构以及柔性直流技术在能源互联网应用。还有一些学者在能源互联网接入端口装置上展开研究,以期实现更多用电设备便捷接入电力网络。综合目前已经取得的研究成果,不难发现目前基于区块链的能源互联网技术都仅针对电力领域,并没有打破传统能源系统中供电、供热、供冷等不同能源相对封闭的壁垒,实现多能源的综合利用。如何从技术层面实现多种能源共同接入的能源互联网,对实现最终的能源互联意义重大。
发明内容
本申请提供了一种基于区块链的双源能源互联网交易方法及设备,用于解决传统技术没有打破传统能源系统中供电、供热、供冷等不同能源相对封闭的壁垒,实现多能源的综合利用的技术问题。
有鉴于此,本申请第一方面提供一种基于区块链的双源能源互联网交易方法,包括:
S10、将发电单元、供热单元、用户发布的数据信息打包成区块并加密,并在将区块传递给每个网络节点;
S20、建立热负荷动态响应模型和最优化求解模型,基于区块中的供热需求数据求解出供热模型的最优解;
S30、建立基于智能合约博弈的能源互联网电力最优化调度模型,根据阻塞价格和区块中的电力需求数据求解出电力调度模型的最优解;
S40、将求解后的最优解数据打包入区块并将区块发送全网,交易时间到达时,自动完成价值转移。
优选地,所述步骤S20包括:
S201、建立热负荷动态响应模型,模型包括:
供热管道始末端温差:
Figure PCTCN2019091048-appb-000001
Figure PCTCN2019091048-appb-000002
换热器模型的换热热阻为:
Figure PCTCN2019091048-appb-000003
构建供热模型:Q a=m aC p(T s-T u);
S202、根据步骤S201构建最优化求解模型,模型的目标函数使总购热费用最小:
Figure PCTCN2019091048-appb-000004
S203、建立目标函数的约束条件;
S204、通过调度调整、供热价格调整博弈,将博弈达成的交易以智能合约的形式记录并通过P2P网络传播到全网各个节点,全网各个节点通过相互间的网络通信,达成交易共识,得到交易矩阵T p
S205、判断交易矩阵是否满足S203中的约束条件,如果满足约束条件,将满足要求的交易记录在区块中并进入步骤S30;如果不满足约束条件,进行步骤S206;
S206、联立目标函数和约束条件多次迭代求解获取满足约束条件的交易矩阵T,所有矩阵T组成的安全域S,求解S中满足与T p差异最小的交易矩阵:
Figure PCTCN2019091048-appb-000005
S207、将满足要求的交易记录在区块中并进入步骤S30;
其中,ΔT为供热管道始末端温差,T start和T end分别为管道始端和末端的温度,T e为环境温度;λ为每单位长度管道的总传热系数;L为管道的长度;C p为工质的比热容;m为管道内工质的质量流量,R H为换热器热阻,Q为换热量, 冷热流体进口温度分别为T c,i、T h,i,冷热流体出口温度分别为T c,o、T h,o,Q a为从供热起点至用户的总换热量,m a则为总流量,T s起点处的温度,T u为用户端温度,C为总购热费用,NG为供热机组数量,i为供热机组节点中的第i个节点,Q i为供热量,a i、b i为价格系数,t ij为交易矩阵T中的元素,t pij为交易矩阵T p中的元素。
优选地,所述步骤S203包括:
建立目标函数的约束条件方程组包括:
平衡约束:
Figure PCTCN2019091048-appb-000006
机组热出力上下限约束:Q min<<Q<<Q max
线路容量约束:∑ m∈MQ user,m<<Q max,p
管道供水温度约束:T′ ymin≤T y′≤T′ ymax
其中,Q j为第j个供热机组的供热量,NG为供热机组数量,
Figure PCTCN2019091048-appb-000007
为第k个用户供热需求量,A为总用户数,q f,l为第l条管道的单位热损失,L l为管道长度,B为管道总条数,Q min为机组热出力下限,Q max为机组热出力上限,Q user,m为第m个用户的供热量,Q max,p为第p条管道容量的最大值,T′ ymin为管道供水温度下限,T′ ymax为管道供水温度上限。
优选地,所述步骤S30包括:
S301、建立能源互联网电力最优化调度模型,模型包括:
发电机的收益函数为:
Figure PCTCN2019091048-appb-000008
发电机的价格调整策略为:
p i(k+1)=p i(k)+σ j(r j(k)-1);
发电机的发电量的调整策略为:
Figure PCTCN2019091048-appb-000009
S302、基于购电者的购电费用最小化构建目标函数为:
Figure PCTCN2019091048-appb-000010
S303、通过调度调整、电价调整博弈,将博弈达成的交易以智能合约的形式记录并通过P2P网络传播到全网各个节点,全网各个节点通过相互间的网络通信,达成交易共识,得到交易矩阵S p
S304、建立目标函数的约束条件;
S305、判断交易矩阵是否满足S304中的约束条件,如果满足约束条件,将满足要求的交易记录在区块中并进入步骤S40;如果不满足约束条件,进行步骤S306;
S306、建立阻塞价格模型并更新价格,阻塞价格模型为:
Figure PCTCN2019091048-appb-000011
S307、根据更新后的阻塞价格返回执行步骤S303;
其中,p i为发电机制定的电价;t ij为发电机i和用户j之间的交易量;L ij为交易t ij所需分摊的网损;a i、b i、c i为和发电成本有关的系数;s i为发电机的实际售电量,λ ij表示发电机i和用户j之间交易所需支付的输电费用,r i=D j/l j,D j为实际需求电量,l j为计划发电量;σ i为正系数,
Figure PCTCN2019091048-appb-000012
为增加单位发电量造成的网损增量,P loss表示网损;λ i(k)表示发电机i的所有交易所需支付的输电费用,a j、b j为与购电者收益有关的系数,π ij为阻塞价格;L为交易t ij对线路造成阻塞有贡献的线路的集合;P L为线路L的实际功率;P Lmax为线路L可承受的最大功率;α为阻塞价格系数。
优选地,所述步骤S304包括:
建立目标函数的约束条件方程组包括:
平衡约束:
Figure PCTCN2019091048-appb-000013
线路容量约束:∑ m∈MP user,m<<P max,p
机组负荷上下限约束:P min<<P p<<P max
其中,P j为第j个供热机组的供热量,NG为总供热机组数,
Figure PCTCN2019091048-appb-000014
为第k个用户用电量,A为总用户数,P f,l为第l条管道的网损,B为管道总条数;P user,m为第m个用户的用电量,P max,p为第p条电网输电线路容量的最大值;P min为机组负荷出力下限,P max为机组负荷出力上限,P p为机组发电功率。
优选地,还包括计算机组发电功率P p的步骤:
通过计算公式计算,所述计算公式为:P=P p+P Q
其中,P为机组最大负荷,P Q为机组热功率,P p为发电功率。
优选地,还包括步骤:
通过核算公式核算热功率P Q
所述核算公式为:
Figure PCTCN2019091048-appb-000015
Q x为第x台机组的热负荷,D、E值为预设系数。
本申请第二方面提供一种基于区块链的双源能源互联网交易设备,所述设备包括处理器以及存储器:
所述存储器用于存储程序代码,并将所述程序代码传输给所述处理器;
所述处理器用于根据所述程序代码中的指令执行如第一方面的一种基于区块链的双源能源互联网交易方法。
本申请第三方面提供一种计算机可读存储介质,所述计算机可读存储介质用于存储程序代码,所述程序代码用于执行如第一方面的一种基于区块链的双源能源互联网交易方法。
本申请第四方面提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得所述计算机执行如第一方面的一种基于区块链的双源能源互联网交易方法。
从以上技术方案可以看出,本申请具有以下优点:
本申请提供一种基于区块链的双源能源互联网交易方法及设备,其中方法包括:S10、将发电单元、供热单元、用户发布的数据信息打包成区块并加密,并在将区块传递给每个网络节点;S20、建立热负荷动态响应模型和最优化求解模型,基于区块中的供热需求数据求解出供热模型的最优解;S30、建立基于智能合约博弈的能源互联网电力最优化调度模型,利用区块中的电力需求数据求解出电力调度模型的最优解;S40、将求解后的最优解数据打包入区块并将区块发送全网,交易时间到达时,自动完成价值转移。本申请打破传统能源系统中供电、供热、供冷等不同能源相对封闭的壁垒,实现多能源的综合利用。
附图说明
为了更清楚地说明本申请实施例,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本申请提供的一种基于区块链的双源能源互联网交易方法实施步骤图;
图2为本申请提供的一种基于区块链的双源能源互联网交易方法流程框图;
图3为能量流模型示意图。
具体实施方式
本申请提供了一种基于区块链的双源能源互联网交易方法及设备,用于解决传统技术没有打破传统能源系统中供电、供热、供冷等不同能源相对封闭的壁垒,实现多能源的综合利用的技术问题。
为使得本申请的发明目的、特征、优点能够更加的明显和易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本申请一部分实施例,而非全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
图1是一种基于区块链的双源能源互联网交易方法实施步骤图;图2是一种基于区块链的双源能源互联网交易方法流程框图;图3是能量流模型示意图,可以发现,在供热网络中,将管道热损、换热器等统一转换为热阻的形式,简化了计算模型。
请参阅图1,本申请提供的一种基于区块链的双源能源互联网交易方法的一个实施例,包括:
101、将发电单元、供热单元、用户发布的数据信息打包成区块并加密,并在将区块传递给每个网络节点;
各发电单元、供热单元、用户发布电能、供需等有效信息,打包成区块结构并加密,并在将区块传递给每个网络节点;
102、建立热负荷动态响应模型和最优化求解模型,基于区块中的供热需求数据求解出供热模型的最优解;
103、建立基于智能合约博弈的能源互联网电力最优化调度模型,根据阻塞价格和区块中的电力需求数据求解出电力调度模型的最优解;
建立基于智能合约博弈的能源互联网电力最优化调度模型,基于中心机构定制阻塞价格策略利用区块中的电力需求数据求解出电力调度模型的最优解;
104、将求解后的最优解数据打包入区块并将区块发送全网,交易时间到 达时,自动完成价值转移;
将数据打包成区块发送全网,交易时间达成,自动完成价值转移。
本实施例实现了供热、供电相互耦合的能源互联网交易形式,与过去提出的电、热分别求解和过度简化的电、热耦合求解的能源互联网交易方式相比,耦合求解确保了两种交易的安全性,未过度简化的求解模式确保了交易的准确性。其中,在耦合求解过程中,由供热量核算出热功率,并由此计算出机组出力范围的方式简化了模型求解方差,能更快速的获取可行解。
在数据计算过程中,先对供热数据进行求解优化,随后再对供电数据进行计算,这种顺序关系充分考虑了热、电两种能源的特性,热网交易具有长周期性,交易完成后在相当长的一段时间内并不会发生太大变化,若先计算电网交易,电网的频繁波动特性会增加计算量。
本申请为一种基于区块链的双源能源互联网交易方法,基于区块链的双能源互联网交易方法可以实现热、电两种能源类型同时在线交易。与现有的热、电联合的能源互联网实现方法不同的是,这种方法对热、电两种类型的能源的交易进行独立多批次的运算和校核,提高了交易的精确性。在交易顺序上,充分考虑了热用户的稳定性和长周期性,首先对供热量进行交易,并基于供热量核算新的电力交易数据,实现了热、电之间的耦合,确保了机组及电网的安全运行。在供热交易中,引入弱化的中心机构并利用区块链技术实现电厂、热用户双方的交易,这种交易方式也符合热能供需特点。在电力交易中,引入阻塞价格管理机制,无需第三方机构参与,降低了交易成本,并提高了电网交易的安全性,具有很好的应用价值。
进一步地,步骤101包括:
201、建立热负荷动态响应模型,模型将整个供热过程简化为管道和换热器两个部分;
模型包括:
供热管道始末端温差:
Figure PCTCN2019091048-appb-000016
Figure PCTCN2019091048-appb-000017
换热器模型以传统的逆流换热器为例,换热器模型的换热热阻为:
Figure PCTCN2019091048-appb-000018
通过上述简化过程构建供热模型:Q a=m aC p(T s-T u);
202、根据步骤201构建最优化求解模型,模型的目标函数使总购热费用最小:
Figure PCTCN2019091048-appb-000019
203、中心机构建立目标函数的约束条件;
204、通过调度调整、供热价格调整博弈,将博弈达成的交易以智能合约的形式记录并通过P2P网络传播到全网各个节点,全网各个节点通过相互间的网络通信,达成交易共识,得到交易矩阵T p
通过调度调整、供热价格调整等手段博弈,将博弈达成的交易以智能合约的形式记录并通过P2P网络传播到全网各个节点。全网各个节点通过相互间的网络通信,达成交易共识,得到交易矩阵T p
205、判断交易矩阵是否满足203中的约束条件,如果满足约束条件,将满足要求的交易记录在区块中并进入步骤103;如果不满足约束条件,进行步骤206;
判断交易矩阵是否满足203中的约束条件,如果满足约束条件,进入103步;如果不满足约束条件,进行下一步;
可以理解的是,步骤205中满足要求的交易记录是交易矩阵T p
206、中心机构联立目标函数和约束条件多次迭代求解获取满足约束条件 的交易矩阵T,所有矩阵T组成的安全域S,求解S中满足与T p差异最小的交易矩阵:
Figure PCTCN2019091048-appb-000020
207、将满足要求的交易记录在区块中并进入步骤103;
可以理解的是,步骤207中满足要求的交易记录是安全域S中满足与T p差异最小的交易矩阵。
其中,ΔT为供热管道始末端温差,T start和T end分别为管道始端和末端的温度,T e为环境温度;λ为每单位长度管道的总传热系数;L为管道的长度;C p为工质的比热容;m为管道内工质的质量流量,R H为换热器热阻,Q为换热量,冷热流体进口温度分别为T c,i、T h,i,冷热流体出口温度分别为T c,o、T h,o,Q a为从供热起点至用户的总换热量,m a则为总流量,T s起点处的温度,T u为用户端温度,C为总购热费用,NG为供热机组数量,i为供热机组节点中的第i个节点,Q i为供热量,a i、b i为价格系数,t ij为交易矩阵T中的元素,t pij为交易矩阵T p中的元素。
进一步地,步骤203包括:
建立目标函数的约束条件方程组包括:
平衡约束:
Figure PCTCN2019091048-appb-000021
机组热出力上下限约束:Q min<<Q<<Q max
线路容量约束:∑ m∈MQ user,m<<Q max,p
管道供水温度约束:T′ ymin≤T′ y≤T′ ymax
其中,Q j为第j个供热机组的供热量,NG为供热机组数量,
Figure PCTCN2019091048-appb-000022
为第k个用户供热需求量,A为总用户数,q f,l为第l条管道的单位热损失,L l为管道长度,B为管道总条数,Q min为机组热出力下限,Q max为机组热出力上限,Q user,m 为第m个用户的供热量,Q max,p为第p条管道容量的最大值,T′ ymin为管道供水温度下限,T′ ymax为管道供水温度上限。
进一步地,步骤103包括:
301、建立能源互联网电力最优化调度模型,发电机指定价格和发电量策略,用户根据发电机的价格和自身的收益函数制定其用电策略;
模型中:
发电机的收益函数为:
Figure PCTCN2019091048-appb-000023
发电机的价格调整策略为:
p i(k+1)=p i(k)+σ j(r j(k)-1);
发电机的发电量的调整策略为:
Figure PCTCN2019091048-appb-000024
302、基于购电者的购电费用最小化构建目标函数为:
Figure PCTCN2019091048-appb-000025
303、通过调度调整、电价调整博弈,将博弈达成的交易以智能合约的形式记录并通过P2P网络传播到全网各个节点,全网各个节点通过相互间的网络通信,达成交易共识,得到交易矩阵S p
通过301和302中的函数反复利用调度调整、电价调整等手段博弈,将博弈达成的交易以智能合约的形式记录并通过P2P网络传播到全网各个节点。全网各个节点通过相互间的网络通信,达成交易共识,得到交易矩阵S p
可以理解的是,步骤303中应用了阻塞管理,(即输电服务要求超过了电网的实际输送能力而采取的市场缓解机制),在确定阻塞价格(即阻塞管理方案 实施后电力系统各节点的电价)时,只要知道具体线路的越界信息,而不需要知晓具体的交易信息,从而很好地保护了用户隐私。博弈达成的交易需符合阻塞价格。
304、建立目标函数的约束条件;
305、判断交易矩阵是否满足304中的约束条件,如果满足约束条件,将满足要求的交易记录在区块中并进入步骤104;如果不满足约束条件,进行步骤306;
306、建立阻塞价格模型并更新价格,阻塞价格模型为:
Figure PCTCN2019091048-appb-000026
307、根据更新后的阻塞价格返回执行步骤303;
根据305中更新后的阻塞价格返回执行303步并迭代获取新的交易矩阵S p,直至满足304中所有的约束条件,跳出循环,执行下一步
其中,p i为发电机制定的电价;t ij为发电机i和用户j之间的交易量;L ij为交易t ij所需分摊的网损;a i、b i、c i为和发电成本有关的系数;s i为发电机的实际售电量,λ ij表示发电机i和用户j之间交易所需支付的输电费用,r i=D j/l j,D j为实际需求电量,l j为计划发电量;σ i为正系数(由每台发电机根据自身的发电策略确定),
Figure PCTCN2019091048-appb-000027
为增加单位发电量造成的网损增量,P loss表示网损;λ i(k)表示发电机i的所有交易所需支付的输电费用,a j、b j为与购电者收益有关的系数,π ij为阻塞价格;L为交易t ij对线路造成阻塞有贡献的线路的集合;P L为线路L的实际功率;P Lmax为线路L可承受的最大功率;α为阻塞价格系数,其具体数值由实际市场的阻塞情况设定。
进一步地,步骤304包括:
建立目标函数的约束条件方程组包括:
平衡约束:
Figure PCTCN2019091048-appb-000028
线路容量约束:∑ m∈MP user,m<<P max,p
机组负荷上下限约束:P min<<P p<<P max
其中,P j为第j个供热机组的供热量,NG为总供热机组数,
Figure PCTCN2019091048-appb-000029
为第k个用户用电量,A为总用户数,P f,l为第l条管道的网损,B为管道总条数;P user,m为第m个用户的用电量,P max,p为第p条电网输电线路容量的最大值;P min为机组负荷出力下限,P max为机组负荷出力上限,P p为机组发电功率。
进一步地,还包括计算机组发电功率P p的步骤:
通过计算公式计算,计算公式为:P=P p+P Q
其中,P为机组最大负荷,P Q为机组热功率,P p为发电功率。
进一步地,还包括步骤:
通过核算公式核算热功率P Q
核算公式为:
Figure PCTCN2019091048-appb-000030
Q x为第x台机组的热负荷,D、E值为预设系数。
以下将对本申请提供一种基于区块链的双源能源互联网交易设备的实施例进行详细的描述。
本申请提供一种基于区块链的双源能源互联网交易设备的一个实施例,所述设备包括处理器以及存储器:
所述存储器用于存储程序代码,并将所述程序代码传输给所述处理器;
所述处理器用于根据所述程序代码中的指令执行如上述实施例的一种基于区块链的双源能源互联网交易方法。
本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储程序代码,所述程序代码用于执行如上述实施例的一种基于区块链的双源能源互联网交易方法。
本申请提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得所述计算机执行如上述实施例的一种基于区块链的双源能源互联网交易方法。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本申请内。

Claims (10)

  1. 一种基于区块链的双源能源互联网交易方法,其特征在于,包括:
    S10、将发电单元、供热单元、用户发布的数据信息打包成区块并加密,并在将区块传递给每个网络节点;
    S20、建立热负荷动态响应模型和最优化求解模型,基于区块中的供热需求数据求解出供热模型的最优解;
    S30、建立基于智能合约博弈的能源互联网电力最优化调度模型,根据阻塞价格和区块中的电力需求数据求解出电力调度模型的最优解;
    S40、将求解后的最优解数据打包入区块并将区块发送全网,交易时间到达时,自动完成价值转移。
  2. 根据权利要求1所述的一种基于区块链的双源能源互联网交易方法,其特征在于,所述步骤S20包括:
    S201、建立热负荷动态响应模型,模型包括:
    供热管道始末端温差:
    Figure PCTCN2019091048-appb-100001
    Figure PCTCN2019091048-appb-100002
    换热器模型的换热热阻为:
    Figure PCTCN2019091048-appb-100003
    构建供热模型:Q a=m aC p(T s-T u);
    S202、根据步骤S201构建最优化求解模型,模型的目标函数使总购热费用最小:
    Figure PCTCN2019091048-appb-100004
    S203、建立目标函数的约束条件;
    S204、通过调度调整、供热价格调整博弈,将博弈达成的交易以智能合约的形式记录并通过P2P网络传播到全网各个节点,全网各个节点通过相互间的 网络通信,达成交易共识,得到交易矩阵T p
    S205、判断交易矩阵是否满足S203中的约束条件,如果满足约束条件,将满足要求的交易记录在区块中并进入步骤S30;如果不满足约束条件,进行步骤S206;
    S206、联立目标函数和约束条件多次迭代求解获取满足约束条件的交易矩阵T,所有矩阵T组成的安全域S,求解S中满足与T p差异最小的交易矩阵:
    Figure PCTCN2019091048-appb-100005
    S207、将满足要求的交易记录在区块中并进入步骤S30;
    其中,ΔT为供热管道始末端温差,T start和T end分别为管道始端和末端的温度,T e为环境温度;λ为每单位长度管道的总传热系数;L为管道的长度;C p为工质的比热容;m为管道内工质的质量流量,R H为换热器热阻,Q为换热量,冷热流体进口温度分别为T c,i、T h,i,冷热流体出口温度分别为T c,o、T h,o,Q a为从供热起点至用户的总换热量,m a则为总流量,T s起点处的温度,T u为用户端温度,C为总购热费用,NG为供热机组数量,i为供热机组节点中的第i个节点,Q i为供热量,a i、b i为价格系数,t ij为交易矩阵T中的元素,t pij为交易矩阵T p中的元素。
  3. 根据权利要求2所述的一种基于区块链的双源能源互联网交易方法,其特征在于,所述步骤S203包括:
    建立目标函数的约束条件方程组包括:
    平衡约束:
    Figure PCTCN2019091048-appb-100006
    机组热出力上下限约束:Q min<<Q<<Q max
    线路容量约束:∑ m∈MQ user,m<<Q max,p
    管道供水温度约束:T′ ymin≤T′ y≤T′ ymax
    其中,Q j为第j个供热机组的供热量,NG为供热机组数量,
    Figure PCTCN2019091048-appb-100007
    为第k个用户供热需求量,A为总用户数,q f,l为第l条管道的单位热损失,L l为管道长度,B为管道总条数,Q min为机组热出力下限,Q max为机组热出力上限,Q user,m为第m个用户的供热量,Q max,p为第p条管道容量的最大值,T′ ymin为管道供水温度下限,T′ ymax为管道供水温度上限。
  4. 根据权利要求1所述的一种基于区块链的双源能源互联网交易方法,其特征在于,所述步骤S30包括:
    S301、建立能源互联网电力最优化调度模型,模型包括:
    发电机的收益函数为:
    Figure PCTCN2019091048-appb-100008
    发电机的价格调整策略为:
    p i(k+1)=p i(k)+σ j(r j(k)-1);
    发电机的发电量的调整策略为:
    Figure PCTCN2019091048-appb-100009
    S302、基于购电者的购电费用最小化构建目标函数为:
    Figure PCTCN2019091048-appb-100010
    S303、通过调度调整、电价调整博弈,将博弈达成的交易以智能合约的形式记录并通过P2P网络传播到全网各个节点,全网各个节点通过相互间的网络通信,达成交易共识,得到交易矩阵S p
    S304、建立目标函数的约束条件;
    S305、判断交易矩阵是否满足S304中的约束条件,如果满足约束条件,将满足要求的交易记录在区块中并进入步骤S40;如果不满足约束条件,进行 步骤S306;
    S306、建立阻塞价格模型并更新价格,阻塞价格模型为:
    Figure PCTCN2019091048-appb-100011
    S307、根据更新后的阻塞价格返回执行步骤S303;
    其中,p i为发电机制定的电价;t ij为发电机i和用户j之间的交易量;L ij为交易t ij所需分摊的网损;a i、b i、c i为和发电成本有关的系数;s i为发电机的实际售电量,λ ij表示发电机i和用户j之间交易所需支付的输电费用,r i=D j/l j,D j为实际需求电量,l j为计划发电量;σ i为正系数,
    Figure PCTCN2019091048-appb-100012
    为增加单位发电量造成的网损增量,P loss表示网损;λ i(k)表示发电机i的所有交易所需支付的输电费用,a j、b j为与购电者收益有关的系数,π ij为阻塞价格;L为交易t ij对线路造成阻塞有贡献的线路的集合;P L为线路L的实际功率;P Lmax为线路L可承受的最大功率;α为阻塞价格系数。
  5. 根据权利要求4所述的一种基于区块链的双源能源互联网交易方法,其特征在于,所述步骤S304包括:
    建立目标函数的约束条件方程组包括:
    平衡约束:
    Figure PCTCN2019091048-appb-100013
    线路容量约束:∑ m∈MP user,m<<P max,p
    机组负荷上下限约束:P min<<P p<<P max
    其中,P j为第j个供热机组的供热量,NG为总供热机组数,
    Figure PCTCN2019091048-appb-100014
    为第k个用户用电量,A为总用户数,P f,l为第l条管道的网损,B为管道总条数;P user,m为第m个用户的用电量,P max,p为第p条电网输电线路容量的最大值;P min为机组负荷出力下限,P max为机组负荷出力上限,P p为机组发电功率。
  6. 根据权利要求5所述的一种基于区块链的双源能源互联网交易方法,其特征在于,还包括计算机组发电功率P p的步骤:
    通过计算公式计算,所述计算公式为:P=P p+P Q
    其中,P为机组最大负荷,P Q为机组热功率,P p为发电功率。
  7. 根据权利要求6所述的一种基于区块链的双源能源互联网交易方法,其特征在于,还包括步骤:
    通过核算公式核算热功率P Q
    所述核算公式为:
    Figure PCTCN2019091048-appb-100015
    Q x为第x台机组的热负荷,D、E值为预设系数。
  8. 一种基于区块链的双源能源互联网交易设备,其特征在于,所述设备包括处理器以及存储器:
    所述存储器用于存储程序代码,并将所述程序代码传输给所述处理器;
    所述处理器用于根据所述程序代码中的指令执行权利要求1-7任一项所述的一种基于区块链的双源能源互联网交易方法。
  9. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储程序代码,所述程序代码用于执行权利要求1-7任一项所述的一种基于区块链的双源能源互联网交易方法。
  10. 一种包括指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行权利要求1-7任一项所述的一种基于区块链的双源能源互联网交易方法。
PCT/CN2019/091048 2019-01-30 2019-06-13 一种基于区块链的双源能源互联网交易方法及设备 WO2020155515A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910092972.0 2019-01-30
CN201910092972.0A CN109816257B (zh) 2019-01-30 2019-01-30 一种基于区块链的双源能源互联网交易方法及设备

Publications (1)

Publication Number Publication Date
WO2020155515A1 true WO2020155515A1 (zh) 2020-08-06

Family

ID=66605992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091048 WO2020155515A1 (zh) 2019-01-30 2019-06-13 一种基于区块链的双源能源互联网交易方法及设备

Country Status (2)

Country Link
CN (1) CN109816257B (zh)
WO (1) WO2020155515A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112182964A (zh) * 2020-09-24 2021-01-05 新奥数能科技有限公司 一种电力合约的交易方法和装置
CN113112095A (zh) * 2021-05-11 2021-07-13 杭州英集动力科技有限公司 一种多模式多供热机组负荷实时优化调度方法及管理系统
CN113222755A (zh) * 2021-04-23 2021-08-06 中国华能集团清洁能源技术研究院有限公司 一种综合能源区块链能源交易平台系统及交易方法
CN113362178A (zh) * 2021-06-30 2021-09-07 东南大学 一种指导配电网对参与p2p交易用户收费的计算方法及装置
CN113515853A (zh) * 2021-06-08 2021-10-19 国网江苏省电力有限公司连云港供电分公司 一种基于线性方程的电热互联综合能源系统优化调度方法
CN113762961A (zh) * 2021-08-17 2021-12-07 国网山东省电力公司信息通信公司 一种可信智能交易方法、系统、计算机设备、终端
CN113888348A (zh) * 2021-09-16 2022-01-04 国网湖北省电力有限公司电力科学研究院 一种以多边利益平衡为目标的源荷智能匹配方法
CN114094574A (zh) * 2021-11-18 2022-02-25 国网四川省电力公司成都供电公司 一种基于非合作博弈的配电网优化重构方法
CN114219218A (zh) * 2021-11-18 2022-03-22 国网天津市电力公司电力科学研究院 一种基于区块链技术的虚拟电厂需求响应业务系统及方法
CN114493008A (zh) * 2022-01-27 2022-05-13 国电长源汉川第一发电有限公司 基于改进灰狼算法优化热电负荷经济性分配方法及系统
CN114862097A (zh) * 2022-03-21 2022-08-05 东南大学 一种基于双层演化博弈的用户侧市场类型辨识方法
CN114897232A (zh) * 2022-04-29 2022-08-12 南京邮电大学 一种社区群电热交易方法
CN115082235A (zh) * 2022-06-29 2022-09-20 东南大学 一种虚拟能源站内部多能共享的交易方法及系统
CN117318182A (zh) * 2023-11-28 2023-12-29 中国能源建设集团湖南省电力设计院有限公司 一种火风光储一体化基地容量优化配置方法
CN117634850A (zh) * 2024-01-12 2024-03-01 广州能信数字科技有限公司 一种基于区块链的电力调度指挥交互方法及系统
CN117977649A (zh) * 2024-04-01 2024-05-03 国网江苏省电力有限公司常州供电分公司 确定次日储能调度计划的方法、装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109816257B (zh) * 2019-01-30 2023-08-08 广东电网有限责任公司 一种基于区块链的双源能源互联网交易方法及设备
CN111160880A (zh) * 2019-12-10 2020-05-15 国网天津市电力公司 基于区块链的面向工业用户需求响应交易结算控制方法
CN111400774B (zh) * 2020-03-23 2021-05-07 北京安洁康生物科技有限公司 二次供水反恐防投毒安全体系的区块链系统
CN111915195B (zh) * 2020-08-06 2023-12-01 南京审计大学 一种结合区块链及大数据的公共电力资源调配方法
CN112712190A (zh) * 2020-09-04 2021-04-27 中国石油大学(华东) 一种计及多约束的油田自备热电厂机组调峰调度方法
CN112396285B (zh) * 2020-09-24 2023-11-28 浙江大学 一种分布式数据中心算力和能源流的协同调度系统与方法
CN112819321A (zh) * 2021-01-29 2021-05-18 国网浙江省电力有限公司信息通信分公司 一种智能电网交易决策方法及分布式系统
CN114123163B (zh) * 2021-02-20 2023-10-27 上海交通大学 一种基于信息物理融合模型的主动配电网优化控制方法
CN114580011B (zh) * 2022-01-29 2024-06-14 国网青海省电力公司电力科学研究院 基于联邦隐私训练的电力设施安全态势感知方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089855A1 (es) * 2010-12-27 2012-07-05 Fundacion Tecnalia Research & Innovation Método para la optimización económica de la operación de aparatos microcogeneradores
CN107688944A (zh) * 2017-07-21 2018-02-13 杭州云象网络技术有限公司 一种基于区块链的电力系统交易方法
CN108920558A (zh) * 2018-06-20 2018-11-30 厦门快商通信息技术有限公司 一种基于区块链的分布式能源交易与供给管理系统及方法
CN108961018A (zh) * 2018-07-19 2018-12-07 华北电力大学(保定) 基于智能合约的微电网电力市场去中心化交易机制
CN109034480A (zh) * 2018-07-31 2018-12-18 湘潭大学 一种基于智能合约的互联微网分布式优化调度方法
CN109816257A (zh) * 2019-01-30 2019-05-28 广东电网有限责任公司 一种基于区块链的双源能源互联网交易方法及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10649429B2 (en) * 2015-10-13 2020-05-12 LO3 Energy Inc. Use of blockchain based distributed consensus control
CN108011370A (zh) * 2017-12-27 2018-05-08 华北电力大学(保定) 一种基于全球能源区块链的分布式能源调度交易方法
CN108154309B (zh) * 2017-12-30 2022-03-18 国网天津市电力公司电力科学研究院 计及冷热电多负荷动态响应的能源互联网经济调度方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089855A1 (es) * 2010-12-27 2012-07-05 Fundacion Tecnalia Research & Innovation Método para la optimización económica de la operación de aparatos microcogeneradores
CN107688944A (zh) * 2017-07-21 2018-02-13 杭州云象网络技术有限公司 一种基于区块链的电力系统交易方法
CN108920558A (zh) * 2018-06-20 2018-11-30 厦门快商通信息技术有限公司 一种基于区块链的分布式能源交易与供给管理系统及方法
CN108961018A (zh) * 2018-07-19 2018-12-07 华北电力大学(保定) 基于智能合约的微电网电力市场去中心化交易机制
CN109034480A (zh) * 2018-07-31 2018-12-18 湘潭大学 一种基于智能合约的互联微网分布式优化调度方法
CN109816257A (zh) * 2019-01-30 2019-05-28 广东电网有限责任公司 一种基于区块链的双源能源互联网交易方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAI XUE;SUN HONGBIN;GUO QINGLAI: "Electricity Transactions and Congestion Management Based on Blockchain in Energy Internet", POWER SYSTEM TECHNOLOGY, vol. 40, no. 12, 31 December 2016 (2016-12-31), CN, pages 3630 - 3638, XP009522426, ISSN: 1000-3673, DOI: 10.13335/j.1000-3673.pst.2016.12.002 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112182964A (zh) * 2020-09-24 2021-01-05 新奥数能科技有限公司 一种电力合约的交易方法和装置
CN113222755A (zh) * 2021-04-23 2021-08-06 中国华能集团清洁能源技术研究院有限公司 一种综合能源区块链能源交易平台系统及交易方法
CN113112095A (zh) * 2021-05-11 2021-07-13 杭州英集动力科技有限公司 一种多模式多供热机组负荷实时优化调度方法及管理系统
CN113515853A (zh) * 2021-06-08 2021-10-19 国网江苏省电力有限公司连云港供电分公司 一种基于线性方程的电热互联综合能源系统优化调度方法
CN113362178A (zh) * 2021-06-30 2021-09-07 东南大学 一种指导配电网对参与p2p交易用户收费的计算方法及装置
CN113362178B (zh) * 2021-06-30 2024-05-24 东南大学 一种指导配电网对参与p2p交易用户收费的计算方法及装置
CN113762961A (zh) * 2021-08-17 2021-12-07 国网山东省电力公司信息通信公司 一种可信智能交易方法、系统、计算机设备、终端
CN113762961B (zh) * 2021-08-17 2023-08-11 国网山东省电力公司信息通信公司 一种可信智能交易方法、系统、计算机设备、终端
CN113888348A (zh) * 2021-09-16 2022-01-04 国网湖北省电力有限公司电力科学研究院 一种以多边利益平衡为目标的源荷智能匹配方法
CN113888348B (zh) * 2021-09-16 2024-05-28 国网湖北省电力有限公司电力科学研究院 一种以多边利益平衡为目标的源荷智能匹配方法
CN114219218A (zh) * 2021-11-18 2022-03-22 国网天津市电力公司电力科学研究院 一种基于区块链技术的虚拟电厂需求响应业务系统及方法
CN114094574A (zh) * 2021-11-18 2022-02-25 国网四川省电力公司成都供电公司 一种基于非合作博弈的配电网优化重构方法
CN114094574B (zh) * 2021-11-18 2023-10-03 国网四川省电力公司成都供电公司 一种基于非合作博弈的配电网优化重构方法
CN114493008A (zh) * 2022-01-27 2022-05-13 国电长源汉川第一发电有限公司 基于改进灰狼算法优化热电负荷经济性分配方法及系统
CN114862097A (zh) * 2022-03-21 2022-08-05 东南大学 一种基于双层演化博弈的用户侧市场类型辨识方法
CN114862097B (zh) * 2022-03-21 2024-05-03 东南大学 一种基于双层演化博弈的用户侧市场类型辨识方法
CN114897232A (zh) * 2022-04-29 2022-08-12 南京邮电大学 一种社区群电热交易方法
CN115082235B (zh) * 2022-06-29 2024-05-03 东南大学 一种虚拟能源站内部多能共享的交易方法及系统
CN115082235A (zh) * 2022-06-29 2022-09-20 东南大学 一种虚拟能源站内部多能共享的交易方法及系统
CN117318182A (zh) * 2023-11-28 2023-12-29 中国能源建设集团湖南省电力设计院有限公司 一种火风光储一体化基地容量优化配置方法
CN117318182B (zh) * 2023-11-28 2024-03-05 中国能源建设集团湖南省电力设计院有限公司 一种火风光储一体化基地容量优化配置方法
CN117634850A (zh) * 2024-01-12 2024-03-01 广州能信数字科技有限公司 一种基于区块链的电力调度指挥交互方法及系统
CN117977649A (zh) * 2024-04-01 2024-05-03 国网江苏省电力有限公司常州供电分公司 确定次日储能调度计划的方法、装置

Also Published As

Publication number Publication date
CN109816257B (zh) 2023-08-08
CN109816257A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2020155515A1 (zh) 一种基于区块链的双源能源互联网交易方法及设备
Wang et al. Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes
Zhang et al. Optimal operation of integrated electricity and heat system: A review of modeling and solution methods
Pan et al. Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow
Liu et al. Coordinated operation of multi-integrated energy system based on linear weighted sum and grasshopper optimization algorithm
Tan et al. A wind power accommodation capability assessment method for multi-energy microgrids
Lu et al. Economic dispatch of integrated energy systems with robust thermal comfort management
Pan et al. Quasi-dynamic interactions and security control of integrated electricity and heating systems in normal operations
Bao et al. Optimal inter-and intra-hour scheduling of islanded integrated-energy system considering linepack of gas pipelines
Wang et al. Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals
CN106127342B (zh) 一种基于scuc的跨区联络线交易优化方法
Wang et al. Leveraging heat accumulation of district heating network to improve performances of integrated energy system under source-load uncertainties
CN108881391A (zh) 一种分布式计算存储发热装置及其运行方法
Wang et al. Cost-based siting and sizing of energy stations and pipeline networks in integrated energy system
WO2020093857A1 (zh) 一种按匹配系数分摊计量的装置及方法
CN109861302A (zh) 一种基于主从博弈的能源互联网日前优化控制方法
CN110443467A (zh) 一种区域综合能源系统太阳能消纳能力评估方法
Zhu et al. Cloud-edge collaborative distributed optimal dispatching strategy for an electric-gas integrated energy system considering carbon emission reductions
Wang et al. Stackelberg game-based optimal scheduling of integrated energy systems considering differences in heat demand across multi-functional areas
CN115860241A (zh) 基于salr的互联多区域综合能源系统分布式调度方法及装置
CN113919754B (zh) 一种基于区块链的综合能源系统分布式状态估计方法
Hu et al. A decentralized market framework for procurement of operating reserves from district energy systems
Qin et al. Increasing flexibility of combined heat and power systems through optimal dispatch with variable mass flow
Chen et al. Coordinated heat and power dispatch considering mutual benefit and mutual trust: a multi-party perspective
CN110490386A (zh) 一种综合能源调度方法和综合能源调度系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914140

Country of ref document: EP

Kind code of ref document: A1