WO2020155504A1 - 侧置式渣油加氢乳化床微界面强化反应装置及方法 - Google Patents
侧置式渣油加氢乳化床微界面强化反应装置及方法 Download PDFInfo
- Publication number
- WO2020155504A1 WO2020155504A1 PCT/CN2019/090257 CN2019090257W WO2020155504A1 WO 2020155504 A1 WO2020155504 A1 WO 2020155504A1 CN 2019090257 W CN2019090257 W CN 2019090257W WO 2020155504 A1 WO2020155504 A1 WO 2020155504A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- gas
- bubble
- bubble breaker
- breaker
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/02—Foam dispersion or prevention
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/41—Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/001—Controlling catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0278—Feeding reactive fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/20—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
- B01J8/22—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
- C10G47/10—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
- C10G47/12—Inorganic carriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00823—Mixing elements
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/205—Metal content
- C10G2300/206—Asphaltenes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4006—Temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4012—Pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4018—Spatial velocity, e.g. LHSV, WHSV
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/70—Catalyst aspects
Definitions
- the invention relates to a side-mounted residual oil hydro-emulsified bed micro-interface strengthening reaction device and method.
- Residues can be divided into many types due to different crude oil producing areas and refining processes. Generally, they can be divided into two categories: atmospheric residues and vacuum residues.
- the main components of residual oil include saturated hydrocarbons, aromatic hydrocarbons, gums and asphaltenes. Under the action of high temperature, high pressure and catalyst, the residual oil can be deeply hydrogenated to obtain light fuel oil products through a series of complex physical and chemical changes such as ring opening and cracking.
- high temperature (above 470°C) and high pressure (above 20MPa) operations have to be used in engineering to increase the solubility of hydrogen to increase the mass transfer rate, thereby strengthening the reaction process.
- high temperature and high pressure produce a series of side effects: high energy consumption and production cost, high investment intensity, short equipment operation cycle, many failures, poor intrinsic safety, etc., which bring challenges to industrialized mass production.
- the bubble diameter (Sauter diameter) d 32 is the key parameter that determines the size of the phase boundary area and the core factor that determines the gas-liquid reaction rate.
- d 32 gradually decreases, the volumetric mass transfer coefficient gradually increases; especially when d 32 is less than 1 mm, the volumetric mass transfer coefficient increases exponentially with the decrease of d 32 . Therefore, reducing d 32 to the nano-micron level can greatly enhance the gas-liquid reaction.
- Bubbles with a diameter of 1 ⁇ m ⁇ d 32 ⁇ 1mm can be called microbubbles, and bubbles with a diameter of 50nm ⁇ d 32 ⁇ 1 ⁇ m can be called nanobubbles.
- the phase interface formed by microbubbles and nanobubbles is called nano-micro interface.
- the system is called a nano-micro interface system.
- the internal pressure of the bubble is inversely proportional to its radius, so nano-microbubbles are also beneficial to increase the internal pressure of the bubble and increase the solubility of the gas. Therefore, in the gas-liquid reaction process, the nano-micro interface system can enhance the gas-liquid mass transfer, thereby accelerating the gas-liquid reaction.
- Nano-micro bubbles have the characteristics of rigidity, good independence, and are not easy to coalesce. Therefore, the gas-liquid of the nano-micro bubble system is fully mixed to obtain a system containing a large number of nano-micro bubbles, and a higher phase boundary area is formed in the reactor, thereby accelerating reaction speed.
- the purpose of the present invention is to provide a side-mounted residual oil hydro-emulsified bed micro-interface strengthening reaction device and method, which uses a small micron bubble breaker to transfer the pressure energy of gas and the kinetic energy of liquid to bubbles and finally convert them into bubble surface energy
- the device forms small micron-sized bubbles through the interaction of fluid turbulent microstructures and mechanical microstructures, and forms a micro-interface gas-liquid reaction system.
- a side-mounted residual oil hydro-emulsified bed micro-interface strengthening reaction device comprising:
- the main body of the reactor the top of which is provided with a gas-liquid discharge port;
- At least one bubble breaker arranged on the side of the reactor body; the bubble breaker is provided with an air inlet, a liquid inlet and a material outlet, and the material outlet is connected to the reactor body;
- a gas-liquid separator ; a gas-liquid discharge port connected to the main body of the reactor; an exhaust port is provided at the top of the gas-liquid separator, and a liquid outlet is provided at the bottom;
- Circulating pump connected to the liquid outlet of the gas-liquid separator
- Heat exchanger connected to the outlet pipeline of the circulating pump; the heat exchanger is provided with a liquid discharge port, the liquid discharge port is respectively connected with the liquid discharge pipeline and the circulating liquid pipeline, and the circulating liquid pipeline is connected with air bubbles Liquid inlet of the breaker.
- the bubble breaker of the present invention is divided into pneumatic, hydraulic and gas-liquid linkage types according to the energy input mode or the gas-liquid ratio.
- the pneumatic bubble breaker is driven by gas, and the input gas volume is much larger than the liquid volume; the hydraulic bubble breaker
- the device is driven by liquid, and the input gas volume is generally less than the amount of liquid.
- the gas-liquid linkage bubble breaker is driven by gas and liquid.
- pneumatic and hydraulic bubble breakers can be connected in series to form a set of bubble breakers.
- a reaction system can combine multiple bubble breakers in series or in parallel.
- the bubble breaker of the present invention is installed on the side of the reactor body, that is, the side-mounted type, and the gas-liquid emulsion enters the reactor body from the side.
- the feature of the side-mounted type is that the gas-liquid emulsion enters the reactor from the side, which can form a vortex in the reactor, which is conducive to macroscopic mass and heat transfer, and accelerates the reaction rate.
- the lower part of the reactor body is provided with a slag removal port for slag discharge.
- the present invention also provides a method for using the above-mentioned device to carry out the micro-interface strengthening reaction of the residual oil hydro-emulsified bed, which includes:
- the bubble breaker breaks the material into a micron-sized bubble system, thereby forming a gas-liquid emulsification system, and then enters the main body of the reactor to form a vortex flow to continue the reaction;
- the material after the reaction enters the gas-liquid separator from the gas-liquid outlet for gas-liquid separation, the gas is discharged from the exhaust port, and the liquid enters the circulating pump from the liquid outlet, and part of it is extracted after passing through the heat exchanger, and part of the bubble breaks.
- the device is used for bubble breaking.
- the method further includes, when emptying, the materials in the reactor are discharged from the slag cleaning port at the lower part of the reactor main body.
- the method further includes the gas-liquid emulsification system and the solid powder catalyst in the main body of the reactor to form a gas-liquid solid pseudo-emulsification system.
- the catalyst is a carbon-supported iron-based catalyst, which accounts for 0.2 to 1% of the mass of the input liquid raw material (ie, residual oil, residual oil-coal tar mixed oil, etc.).
- the volume ratio of the gas material and the liquid material entering the bubble breaker is 500-1800:1.
- reaction pressure in the bubble breaker is 1-12 MPa.
- reaction temperature in the bubble breaker is 440°C to 470°C.
- the air velocity of the bubble breaker is 0.4 to 1.5 h -1 .
- the micron-sized bubble system formed in the bubble breaker has an average bubble diameter of 10 ⁇ m to 500 ⁇ m.
- the 100nm-100 ⁇ m bubble system contains both nanobubbles and microbubbles, which can form a nano-micro interface, which can obtain an effect equivalent to that of a 10 ⁇ m-500 ⁇ m micro-interface on the basis of lower air pressure and temperature.
- the operating temperature and pressure of the bubble breaker are slightly higher than the operating temperature and pressure in the reactor.
- the size of the bubbles in the bubble breaker is small, it is more conducive to the progress of the reaction.
- the operating temperature and pressure in the reactor can be further reduced.
- the device and method of the present invention are suitable for gas-liquid reaction systems.
- the bubble size of the gas-liquid system is reduced from the traditional 3-10mm to 100nm-500 ⁇ m by using the bubble breaker, thereby greatly increasing the gas holdup of the system and the mass transfer area of the gas-liquid phase boundary, accelerating the multiphase reaction process, and improving the gas Utilization rate, improve the environmental problems caused by excessive emissions, and solve the problems of high temperature, high pressure, high material consumption and energy consumption, high investment, high risk in the traditional gas-liquid reaction process, thereby reducing equipment investment costs and operating costs.
- the reaction system of the present invention has relatively small bubbles, resulting in slower gas-liquid separation, so a dedicated high-efficiency gas-liquid separator (such as a suspension separator) needs to be installed after the reactor to realize the separation of microbubbles and liquid.
- a dedicated high-efficiency gas-liquid separator such as a suspension separator
- the device and method of the present invention are not only suitable for the hydrogenation of medium and low pressure high space velocity residual oil, but also for the hydrogenation of mixed oil of medium and low pressure high space velocity residual oil and coal tar, as well as pulverized coal-residue, pulverized coal-tar, and pulverized coal -Catalytic oil slurry and other highly difficult mixed solid-liquid systems, low pressure and high space velocity hydrogenation reaction to prepare light fuel oil or other specific petroleum products.
- the present invention Compared with the traditional gas-liquid reactor, the present invention has the following advantages:
- the gas-liquid ratio is generally controlled at 2000-3000:1. This method greatly enhances the mass transfer, so the gas-liquid ratio can be greatly reduced, which not only reduces the material consumption of the gas, but also reduces the energy consumption of the subsequent gas cycle compression. Due to the enhancement of mass transfer and reaction in this method, the hydrogen-to-oil ratio can be greatly reduced, which not only reduces the material consumption of hydrogen, but also reduces the energy consumption of cyclic compression.
- Figure 1 is a schematic structural diagram of a side-mounted residual oil hydro-emulsified bed micro-interface strengthening reaction device in Example 1;
- Example 2 is a schematic diagram of the structure of the side-mounted residual oil hydro-emulsified bed micro-interface strengthening reaction device in Example 2;
- Example 3 is a schematic structural diagram of a side-mounted residual oil hydro-emulsified bed micro-interface strengthening reaction device in Example 3;
- Example 4 is a schematic structural diagram of a side-mounted residual oil hydro-emulsified bed micro-interface strengthening reaction device in Example 4;
- a side-mounted residual oil hydro-emulsified bed micro-interface strengthening reaction device as shown in Figure 1, includes a reactor body 1; a gas-liquid discharge port is provided on the top of the reactor, connected to gas-liquid discharge pipelines 1-8;
- a set of bubble breakers consists of a hydraulic bubble breaker 1-1 and a pneumatic bubble breaker 1-2 in series.
- the pneumatic bubble breaker 1-2 is equipped with an air inlet, which is connected to the pneumatic bubble breaker air inlet pipeline 1-6; the liquid inlet is connected to the liquid raw material pipeline 1-7; the hydraulic bubble breaker 1-1
- the liquid inlet is connected to the circulating fluid pipeline 4-2; the air inlet is connected to the hydraulic air bubble breaker air inlet pipeline 1-4; the pneumatic air bubble breaker air inlet pipeline 1-6 and the hydraulic air bubble
- the breaker inlet pipe 1-4 is connected to the gas raw material pipe 1-3; the bubble breaker is arranged on the side of the reactor body 1;
- Gas-liquid separator 2 connected to gas-liquid discharge pipelines 1-8; gas-liquid separator 2 is provided with an exhaust port on the top, connected to the exhaust pipeline 2-2, and a liquid outlet at the bottom, connected to the liquid outlet pipeline 2-1;
- Circulating pump 3 connect the liquid outlet line 2-1;
- Heat exchanger 4 connected to the outlet pipe 3-1 of the circulating pump 3; the heat exchanger 4 is provided with a liquid discharge port, connected to the liquid discharge pipe 4-1 and the circulating liquid pipe 4-2;
- the slag cleaning port is set at the bottom of the main body 1 of the bubble breaker, and is connected to the slag cleaning pipeline 1-9 for slag discharge.
- the residual oil is sent to the pneumatic bubble breaker 1-2 from the liquid raw material pipeline 1-7; the hydrogen entering from the gas raw material pipeline 1-3 is divided into two ways, one way is through the pneumatic bubble breaker intake pipeline 1-6 It is sent into the pneumatic bubble breaker 1-2 as the breaking driving force, and the other way enters the hydraulic bubble breaker 1-1 through the air bubble breaker air inlet pipe 1-4, and is in the bubble breaker 1-1.
- the circulating liquid sent from the circulating liquid pipeline 4-2 is broken into primary emulsion, and the obtained primary emulsion enters the pneumatic bubble breaker 1-2 through the primary emulsification pipeline 1-5.
- the bubble breaker 1-2 hydrogen After fully mixing with residual oil to form 100 ⁇ m ⁇ 500 ⁇ m microbubbles and gas-liquid emulsification system, it enters the reactor body 1 to form a vortex to continue the reaction.
- the emulsification system stops in the reactor body for 2.5h it passes through the top gas-liquid discharge pipeline 1-8 enters the gas-liquid separator 2, the separated gas is sent to the subsequent treatment through the exhaust line 2-2, and the obtained liquid enters the circulating pump 3 through the liquid outlet line 2-1.
- the reaction pressure is 4MPa
- the reaction temperature is 440°C
- a carbon-supported iron-based catalyst is used
- the space velocity is controlled to 0.6h -1 .
- the final light oil yield was 81%.
- Example 2 The device structure of Example 2 is shown in FIG. 2, and the difference from Example 1 is that the flow deflector 1-10 is provided in the reactor body 1.
- the residual oil is sent to the pneumatic bubble breaker 1-2 from the liquid raw material pipeline 1-7; the hydrogen entering from the gas raw material pipeline 1-3 is divided into two ways, one way is through the pneumatic bubble breaker intake pipeline 1-6 It is sent into the pneumatic bubble breaker 1-2 as the breaking driving force, and the other way enters the hydraulic bubble breaker 1-1 through the air bubble breaker air inlet pipe 1-4, and is in the bubble breaker 1-1.
- the circulating liquid sent from the circulating liquid pipeline 4-2 is broken into primary emulsion, and the obtained primary emulsion enters the pneumatic bubble breaker 1-2 through the primary emulsification pipeline 1-5.
- the bubble breaker 1-2 hydrogen After fully mixing with residual oil to form 100nm ⁇ 300 ⁇ m microbubbles and gas-liquid emulsification system, it enters the reactor body 1 to form a vortex to continue the reaction.
- the emulsification system stops in the reactor body for 2.5h it passes through the top gas-liquid discharge pipeline 1-8 enters the gas-liquid separator 2, the separated gas is sent to the subsequent treatment through the exhaust line 2-2, and the obtained liquid enters the circulating pump 3 through the liquid outlet line 2-1.
- the reaction pressure is 1MPa
- the reaction temperature is 450°C
- a carbon-supported iron-based catalyst is used
- the space velocity is controlled to 0.4h -1 .
- the final light oil yield was 80%.
- Embodiment 3 The device structure of Embodiment 3 is shown in Fig. 3, and the difference from Embodiment 1 is that the bubble breaker uses gas-liquid linkage bubble breaker 1-11.
- the pressure is maintained at 12MPa, the temperature is controlled at 470°C, the carbon-supported iron-based catalyst is used, and the space velocity is 1.5h -1 .
- the circulating fluid sent through the circulating fluid pipeline 4-2 is broken into a gas-liquid system of 10 ⁇ m-100 ⁇ m micro-bubbles, and then enters the reactor body 1 to form a vortex flow to continue the reaction, and the emulsification system stops reacting After staying in the main body for 2.5 hours, it enters the gas-liquid separator 2 through the top gas-liquid discharge line 1-8, and the separated gas is sent to the subsequent treatment through the exhaust line 2-2, and the obtained liquid is passed through the discharge line 2-1 Enter the circulating pump 3.
- Embodiment 4 The device structure of Embodiment 4 is shown in Fig. 4, and the difference from Embodiment 3 is only that the air bubble breaker adopts a pneumatic air bubble breaker 1-2.
- Hydrogen and atmospheric residual oil enter the bubble breaker 1-2 through the gas raw material pipeline 1-3 and the liquid raw material pipeline 1-7 respectively at a volume ratio of 900:1.
- hydrogen and residual oil are fully mixed to form 10 ⁇ m-200 ⁇ m microbubbles and a gas-liquid emulsification system.
- the emulsification system stops in the reactor body for 2.5h Then, it enters the gas-liquid separator 2 through the top gas-liquid discharge line 1-8, the separated gas is sent to the subsequent treatment through the exhaust line 2-2, and the obtained liquid enters the circulating pump through the liquid outlet line 2-1 3.
- the materials in the reactor can be discharged from the slag cleaning pipeline 1-9 at the lower part of the reactor body 1.
- the reaction pressure is 10MPa
- the reaction temperature is 470°C
- a carbon-supported iron-based catalyst is used
- the space velocity is controlled to 1.0h -1 .
- the final light oil yield was 84%.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
一种侧置式渣油加氢乳化床微界面强化反应装置及方法,包括反应器主体(1)、反应器主体(1)下置的至少一个气泡破碎器(1-1、1-2),气液分离器(2)、循环泵(3)和换热器(4)。气体物料和液体物料首先送入破碎器(1-1、1-2),气体被破碎为微米级气泡,与液体剧烈混合形成气液乳化物后,进入反应器主体(1)中,由于微气泡低速和难聚并特性,在反应器主体(1)中形成气液乳化床反应体系,反应完成后反应物料进入气液分离器(2)中分离气体和液体,料液由循环泵(3)输送,经过换热器(4)后一部分采出,一部分进入破碎器(1-1、1-2)用于气泡破碎。
Description
本发明涉及侧置式渣油加氢乳化床微界面强化反应装置及方法。
渣油因原油产地、炼油工艺等的不同可分为很多种类,一般可分为常压渣油和减压渣油两大类。渣油的主要成分包括饱和烃、芳香烃、胶质和沥青质等。在高温高压和催化剂的作用下,渣油可以深度加氢,通过开环、裂化等一系列复杂的物理和化学变化而获得轻质燃料油产品。
随着世界各国对轻质油品的需求日益增加,对环保的要求不断趋严,人们对渣油的加氢技术投入了更大的关注。传统的渣油加氢一般采用悬浮床加氢反应器,该反应器虽然对原料的适应性强、操作简单,但由于其受传质控制,因而加氢反应效率较低。其根本原因是反应器内的气泡尺度较大(一般为3-10mm),故气液相界传质面积小(一般在100-200m
2/m
3),因而限制了传质效率。因此,工程上不得不采用高温(470℃以上)和高压(20MPa以上)操作,通过增加氢的溶解度以提高传质速率,从而强化反应过程。但高温高压产生一系列副作用:能耗和生产成本高、投资强度大、设备操作周期短、故障多、本质安全性差等,从而给工业化大规模生产带来挑战。
气泡直径(Sauter直径)d
32是决定相界面积大小的关键参数,是决定气液反应速率的核心因素。d
32逐渐减小时,体积传质系数逐渐增大;特别是当d
32小于1mm时,体积传质系数随d
32的减小以类似于指数形式快速增大。因此,将d
32减小到纳微米级能够大幅度强化气液反应。直径满足1μm≤d
32<1mm的气泡可称为微气泡,直径满足50nm≤d
32<1μm的气泡可称为纳气泡。由微气泡和纳气泡形成的相界面称为纳微界面。若体系中既有纳气泡,也有微气泡,则称该体系为纳微界面体系。根据Yang-Laplace方程,气泡的内压与其半径成反比,故纳微气泡也有利于提高气泡内压,提高气体的溶解度。因此气液反应过程中,纳微界面体系能够强化气液传质,进而加快气液反应。纳微气泡具有刚性特征,独立性好,不易聚并,因此纳微气泡体系的气液充分混合,可获得含有大量纳微气泡体系,并在反应器内形成较高的相界面积,进而加快反应速率。
发明内容
本发明的目的是提供一种侧置式渣油加氢乳化床微界面强化反应装置及方法,利用小微米级气泡破碎器将气体的压力能和液体的动能传递给气泡并最终转变为气泡表面能,该装置通过流体湍流微结构与机械微结构共同作用形成小微米级气泡,并形成微界面气液反应体系。
本发明具体采用如下技术方案实现上述技术目的:
一种侧置式渣油加氢乳化床微界面强化反应装置,包括:
反应器主体;其顶部设有气液出料口;
至少一个气泡破碎器;设置于反应器主体的侧部;气泡破碎器上设有进气口、进液口和出料口,出料口连接反应器主体;
气液分离器;连接反应器主体的气液出料口;所述气液分离器顶部设有排气口,底部设有出液口;
循环泵;连接气液分离器的出液口;
换热器;连接循环泵的出口管路;所述换热器上设有液体出料口,液体出料口分别连接液体出料管路和循环液管路,所述循环液管路连接气泡破碎器进液口。
本发明所述的气泡破碎器根据能量输入方式或气液比分为气动式、液动式和气液联动式,其中气动式气泡破碎器采用气体驱动,输入气量远大于液体量;液动式气泡破碎器采用液体驱动,输入气量一般小于液体量,气液联动式气泡破碎器则是气体和液体共同驱动。采用多个气泡破碎器时,可以将气动式、液动式气泡破碎器串联形成一组气泡破碎器。一个反应体系可以串联或并联的结合多个气泡破碎器。
本发明的气泡破碎器安装在反应器主体侧边,即侧置式,气液乳化物从侧方进入反应器主体。侧置式的特点是气液乳化物从侧面进入反应器,可以在反应器内形成旋涡流,有利于宏观的传质和传热,加快反应速率。
作为本发明的进一步改进,所述反应器主体下部设有清渣口,用于排渣。
本发明还提供了利用上述装置进行渣油加氢乳化床微界面强化反应方法,包括:
向气泡破碎器的进气口、进液口分别通入气体物料和液体物料;
气泡破碎器将物料破碎形成微米级气泡体系,从而形成气液乳化体系,之后进入反应器主体形成旋涡流继续反应;
反应结束的物料从气液出料口进入气液分离器中进行气液分离,气体从排气口排出,液体由出液口进入循环泵,经过换热器后一部分采出,一部分进入气泡破碎器用于气泡破碎。
作为本发明的进一步改进,所述方法还包括,清空时,反应器内的物料由反应器主体下部的清渣口排出。
作为本发明的进一步改进,所述方法还包括,气液乳化体系在反应器主体中和固体粉末催化剂形成气液固拟乳化体系。优选的,所述催化剂为碳载铁系催化剂,占输入液体原料(即渣油、渣油-煤焦油混合油等)质量的0.2~1%。
作为本发明的进一步改进,进入气泡破碎器的气体物料和液体物料的体积比为500-1800: 1。
作为本发明的进一步改进,所述气泡破碎器内反应压强为1-12MPa。
作为本发明的进一步改进,所述气泡破碎器内反应温度为440℃~470℃。
作为本发明的进一步改进,所述气泡破碎器空速为0.4~1.5h
-1。
作为本发明的进一步改进,所述气泡破碎器中形成的微米级气泡体系,平均气泡直径为10μm-500μm。对于100nm-100μm的气泡体系,既含有纳气泡,也含有微气泡,可形成纳微界面,可在更低气压、温度的基础上获取和10μm-500μm微界面相当的效果。
本发明的反应体系,为保证气泡破碎器内体系进入反应器,气泡破碎器操作温度、压强略高于反应器内操作温度、压强,在气泡破碎器内气泡大小较小时,更利于反应进行,可进一步降低反应器内操作温度、压强。
本发明的装置和方法适用于含气液反应体系。利用气泡破碎器将气液体系的气泡尺度由传统的3-10mm,破碎缩小至100nm-500μm,从而大幅度地提高体系气含率和气液相界传质面积,加速多相反应进程,提高气体利用率,改善过量排放造成的环境问题,并解决传统气液反应过程中高温、高压、高物耗能耗、高投资、高风险等问题,由此降低设备的投资成本和运行费用。
本发明的反应体系由于气泡比较小,而导致的气液分离较慢,所以需要再反应器后设置专用的高效气液分离器(如悬液分离器)以实现微气泡与液体的分离。
本发明的装置和方法不仅适用于中低压大空速渣油加氢,也可用于中低压大空速渣油和煤焦油的混合油加氢,以及煤粉-渣油、煤粉-焦油、煤粉-催化油浆等高难度混合固液体系中低压大空速加氢反应制备轻质燃料油或其它特定石油产品。
本发明相较于传统的气液反应器的优点在于:
1.能耗低。传统的固定床气液反应器通过高压来提高气体原料在液体原料中的溶解度,以加强传质。而本发明则是通过气体破碎成100nm-500μm的小微米级气泡体系,进而形成乳化床,可大幅增大气液两相的相界面积,达到强化传质的效果。因此可以适当调低压力,从而降低了能耗。
2.气液比低。传统气液反应器为了保证液体原料能充分反应,气液比一般控制在2000-3000:1。本方法由于大幅度强化传质,因此可大幅减小气液比,这不但减少了气体的物耗,同时也降低了后续气体循环压缩的能耗。本方法由于传质、进而反应都得到了强化,因此可大幅减小氢油比,这不但减少了氢气的物耗,同时也降低了循环压缩的能耗。
3.工艺配置灵活,生产安全性高,吨产品成本低,市场竞争力强。
图1为实施例1侧置式渣油加氢乳化床微界面强化反应装置的结构示意图;
图2为实施例2侧置式渣油加氢乳化床微界面强化反应装置的结构示意图;
图3为实施例3侧置式渣油加氢乳化床微界面强化反应装置的结构示意图;
图4为实施例4侧置式渣油加氢乳化床微界面强化反应装置的结构示意图;
图中:1反应器主体;2气液分离器;3循环泵;4换热器;1-1液动式破碎器;1-2气动式气泡破碎器;1-3气体原料管路;1-4液动式气泡破碎器进气管路;1-5初级乳化液管路;1-6气动式气泡破碎器进气管路;1-7液体原料管路;1-8气液出料管路;1-9清渣管路;1-10,导流筒;1-11气液联动式气泡破碎器;2-1出液管路;2-2排气管路;3-1出口管路;4-1液体出料管路;4-2循环液管路。
下面结合附图,对本发明的具体实施方式进一步详细描述。以下实施例用于说明本发明,但不限制本发明的范围。
实施例1
如图1所示的一种侧置式渣油加氢乳化床微界面强化反应装置,包括反应器主体1;其顶部设有气液出料口,连接气液出料管路1-8;
一组气泡破碎器;由液动式气泡破碎器1-1和气动式气泡破碎器1-2串联组成。气动式气泡破碎器1-2上设有进气口,连接气动式气泡破碎器进气管路1-6;进液口,连接液体原料管路1-7;液动式气泡破碎器1-1上设有进液口,连接循环液管路4-2;进气口,连接液动式气泡破碎器进气管路1-4;气动式气泡破碎器进气管路1-6和液动式气泡破碎器进气管路1-4连接至气体原料管路1-3;气泡破碎器设置于反应器主体1侧部;
气液分离器2;连接气液出料管路1-8;气液分离器2顶部设有排气口,连接排气管路2-2,底部设有出液口,连接出液管路2-1;
循环泵3;连接出液管路2-1;
换热器4;连接循环泵3的出口管路3-1;换热器4上设有液体出料口,连接液体出料管路4-1和循环液管路4-2;
清渣口,设置于气泡破碎器主体1底部,连接清渣管路1-9,用于排渣。
氢气和常压渣油以1000:1的体积配比分别通过气体原料管路1-3、液体原料管路1-7进入气泡破碎器中。渣油由液体原料管路1-7送到气动式气泡破碎器1-2;从气体原料管路1-3进入的氢气分为两路,一路经气动式气泡破碎器进气管路1-6送入气动式气泡破碎器1-2作为破碎驱动力,另一路经液动式气泡破碎器进气管路1-4进入液动式气泡破碎器1-1,在气泡破碎器1-1内被循环液管路4-2送来的循环液破碎成初级乳化液,所得初级乳化液经初级乳 化管路1-5进入气动式气泡破碎器1-2,在气泡破碎器1-2中,氢气和渣油充分混合形成100μm~500μm的微气泡和气液乳化体系后,进入反应器主体1形成旋涡流继续反应,乳化体系停在反应器主体内停留2.5h后,经顶部气液出料管路1-8进入气液分离器2中,分离所得气体经排气管路2-2送至后续处理,所得液体经出液管路2-1进入循环泵3。循环泵3送出的液体经出口管路3-1进入换热器4后,一部分由液体出料管路4-1送去后续处理,其余则作为气泡破碎动力由循环液管路4-2送至液动式气泡破碎器1-1。清空时,反应器内的物料可由反应器主体1下部的清渣管路1-9排出。
反应压强为4MPa,反应温度为440℃,采用碳载铁系催化剂,空速控制为0.6h
-1。最终轻油收率为81%。
实施例2
实施例2的装置结构如图2所示,与实施例1的不同之处在于,在反应器主体1内设置导流筒1-10。
氢气和配比为质量分数60%渣油和40%煤焦油的混合液以500:1的体积配比分别通过气体原料管路1-3、液体原料管路1-7进入气泡破碎器中。渣油由液体原料管路1-7送到气动式气泡破碎器1-2;从气体原料管路1-3进入的氢气分为两路,一路经气动式气泡破碎器进气管路1-6送入气动式气泡破碎器1-2作为破碎驱动力,另一路经液动式气泡破碎器进气管路1-4进入液动式气泡破碎器1-1,在气泡破碎器1-1内被循环液管路4-2送来的循环液破碎成初级乳化液,所得初级乳化液经初级乳化管路1-5进入气动式气泡破碎器1-2,在气泡破碎器1-2中,氢气和渣油充分混合形成100nm~300μm的微气泡和气液乳化体系后,进入反应器主体1形成旋涡流继续反应,乳化体系停在反应器主体内停留2.5h后,经顶部气液出料管路1-8进入气液分离器2中,分离所得气体经排气管路2-2送至后续处理,所得液体经出液管路2-1进入循环泵3。循环泵3送出的液体经出口管路3-1进入换热器4后,一部分由液体出料管路4-1送去后续处理,其余则作为气泡破碎动力由循环液管路4-2送至液动式气泡破碎器1-1。清空时,反应器内的物料可由反应器主体1下部的清渣管路1-9排出。
反应压强为1MPa,反应温度为450℃,采用碳载铁系催化剂,空速控制为0.4h
-1。最终轻油收率为80%。
实施例3
实施例3的装置结构如图3所示,与实施例1的不同之处在于,气泡破碎器选用气液联动式气泡破碎器1-11。
30%质量分数渣油与70%煤焦油的混合液和新鲜的氢气以体积比1:1800的配比分别通过气体原料管路1-3、液体原料管路1-7进入气泡破碎器1-11中。保持压强为12MPa,温度 控制470℃,采用碳载铁系催化剂,空速为1.5h
-1。在气泡破碎器1-11内被经循环液管路4-2送来的循环液破碎成10μm-100μm微气泡气液体系,之后进入反应器主体1形成旋涡流继续反应,乳化体系停在反应器主体内停留2.5h后,经顶部气液出料管路1-8进入气液分离器2中,分离所得气体经排气管路2-2送至后续处理,所得液体经出液管路2-1进入循环泵3。循环泵3送出的液体经出口管路3-1进入换热器4后,一部分由液体出料管路4-1送去后续处理,其余则作为气泡破碎动力由循环液管路4-2送至气液联动式气泡破碎器1-11,清空时,反应器内的物料可由反应器主体1下部的清渣管路1-9排出。最终轻油收率为85%。
实施例4
实施例4的装置结构如图4所示,与实施例3的不同之处仅在于,气泡破碎器采用气动式气泡破碎器1-2。
氢气和常压渣油以900:1的体积配比分别通过气体原料管路1-3、液体原料管路1-7进入气泡破碎器1-2中。在气泡破碎器1-2中,氢气和渣油充分混合形成10μm-200μm的微气泡和气液乳化体系后,进入反应器主体1形成旋涡流继续反应,乳化体系停在反应器主体内停留2.5h后,经顶部气液出料管路1-8进入气液分离器2中,分离所得气体经排气管路2-2送至后续处理,所得液体经出液管路2-1进入循环泵3。循环泵3送出的液体经出口管路3-1进入换热器4后,一部分由液体出料管路4-1送去后续处理,其余则作为气泡破碎动力由循环液管路4-2送至气动式气泡破碎器1-2。清空时,反应器内的物料可由反应器主体1下部的清渣管路1-9排出。
反应压强为10MPa,反应温度为470℃,采用碳载铁系催化剂,空速控制为1.0h
-1。最终轻油收率为84%。
Claims (10)
- 一种侧置式渣油加氢乳化床微界面强化反应装置,其特征在于,包括:反应器主体;其顶部设有气液出料口;至少一个气泡破碎器;设置于反应器主体的侧部;气泡破碎器上设有进气口、进液口和出料口,出料口连接反应器主体;气液分离器;连接反应器主体的气液出料口;所述气液分离器顶部设有排气口,底部设有出液口;循环泵;连接气液分离器的出液口;换热器;连接循环泵的出口管路;所述换热器上设有液体出料口,液体出料口分别连接液体出料管路和循环液管路,所述循环液管路连接气泡破碎器进液口。
- 根据权利要求1所述的装置,其特征在于,所述气泡破碎器为气液联动式气泡破碎器、气动式气泡破碎器、液动式气泡破碎器或其串联组合而成。
- 根据权利要求1所述的装置,其特征在于,所述反应器主体下部设有清渣口,用于排渣。
- 一种利用权利要求1~3任一项所述装置进行渣油加氢乳化床微界面强化反应方法,其特征在于,包括:向气泡破碎器的进气口、进液口分别通入气体物料和液体物料;气泡破碎器将物料破碎形成微米级气泡体系,从而形成气液乳化体系,之后进入反应器主体形成旋涡流继续反应;反应结束的物料从气液出料口进入气液分离器中进行气液分离,气体从排气口排出,液体由出液口进入循环泵,经过换热器后一部分采出,一部分进入气泡破碎器用于气泡破碎。
- 根据权利要求4所述的方法,其特征在于,还包括,气液乳化体系在反应器主体中和固体粉末催化剂形成气液固拟乳化体系。
- 根据权利要求4所述的方法,其特征在于,进入气泡破碎器的气体物料和液体物料的体积比为500-1800:1。
- 根据权利要求4所述的方法,其特征在于,所述气泡破碎器内反应压强为1-12MPa。
- 根据权利要求4所述的方法,其特征在于,所述气泡破碎器内反应温度为440℃~470℃。
- 根据权利要求4所述的方法,其特征在于,所述气泡破碎器空速为0.4~1.5h -1。
- 根据权利要求4所述的方法,其特征在于,所述气泡破碎器中形成的微米级气泡体系,平均气泡直径为100nm-500μm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910088338.X | 2019-01-29 | ||
CN201910088338.XA CN111482140A (zh) | 2019-01-29 | 2019-01-29 | 侧置式渣油加氢乳化床微界面强化反应装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020155504A1 true WO2020155504A1 (zh) | 2020-08-06 |
Family
ID=71794233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/090257 WO2020155504A1 (zh) | 2019-01-29 | 2019-06-06 | 侧置式渣油加氢乳化床微界面强化反应装置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111482140A (zh) |
WO (1) | WO2020155504A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112300919A (zh) * | 2020-10-21 | 2021-02-02 | 南京延长反应技术研究院有限公司 | 一种微界面发酵系统及其发酵方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101636472A (zh) * | 2007-06-27 | 2010-01-27 | Hrd有限公司 | 加氢裂化的系统和方法 |
CN102051209A (zh) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | 一种渣油加氢工艺方法及反应器 |
CN102051207A (zh) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | 一种悬浮床加氢技术的强化传质方法 |
CN102049220A (zh) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | 一种强化沸腾床加氢反应器气液传质的方法 |
CN103100352A (zh) * | 2011-11-10 | 2013-05-15 | 中国石油化工股份有限公司 | 一种上流式反应器气液分布器及应用 |
US20160046878A1 (en) * | 2014-08-12 | 2016-02-18 | Roger K. Lott | Ultrasonic cavitation reactor for processing hydrocarbons and methods of use thereof |
-
2019
- 2019-01-29 CN CN201910088338.XA patent/CN111482140A/zh not_active Withdrawn
- 2019-06-06 WO PCT/CN2019/090257 patent/WO2020155504A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101636472A (zh) * | 2007-06-27 | 2010-01-27 | Hrd有限公司 | 加氢裂化的系统和方法 |
CN102051209A (zh) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | 一种渣油加氢工艺方法及反应器 |
CN102051207A (zh) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | 一种悬浮床加氢技术的强化传质方法 |
CN102049220A (zh) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | 一种强化沸腾床加氢反应器气液传质的方法 |
CN103100352A (zh) * | 2011-11-10 | 2013-05-15 | 中国石油化工股份有限公司 | 一种上流式反应器气液分布器及应用 |
US20160046878A1 (en) * | 2014-08-12 | 2016-02-18 | Roger K. Lott | Ultrasonic cavitation reactor for processing hydrocarbons and methods of use thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112300919A (zh) * | 2020-10-21 | 2021-02-02 | 南京延长反应技术研究院有限公司 | 一种微界面发酵系统及其发酵方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111482140A (zh) | 2020-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210045217U (zh) | 上下对冲式渣油加氢乳化床微界面强化反应装置 | |
CN210045215U (zh) | 低压气液强化乳化床反应装置 | |
CN111482139A (zh) | 上下对冲式渣油加氢乳化床微界面强化反应装置及方法 | |
WO2020155503A1 (zh) | 下置式渣油加氢乳化床微界面强化反应装置及方法 | |
CN210045219U (zh) | 一种上下对冲式微界面强化反应装置 | |
CN102002395B (zh) | 液相循环加氢脱硫系统溶气方法及装置 | |
WO2020186635A1 (zh) | 一种油煤共加氢微界面强化乳化床反应系统 | |
CN111495288A (zh) | 一种上下对冲式微界面强化反应装置及方法 | |
WO2020155505A1 (zh) | 低压气液强化乳化床反应装置及方法 | |
CN115430368A (zh) | 一种羰基化浆态气液混合制备丁辛醇的系统及工艺 | |
WO2020186636A1 (zh) | 一种煤焦油加氢微界面乳化床强化反应系统 | |
WO2020155504A1 (zh) | 侧置式渣油加氢乳化床微界面强化反应装置及方法 | |
CN113083169B (zh) | 沸腾床加氢反应器及其使用方法 | |
CN111482137A (zh) | 上置式渣油加氢乳化床微界面强化反应装置及方法 | |
WO2023284031A1 (zh) | 一种内置式即时脱水微界面强化dmc制备系统及方法 | |
CN210045216U (zh) | 上置式渣油加氢乳化床微界面强化反应装置 | |
CN210176791U (zh) | 一种煤与生物质的多级液化系统 | |
WO2020155506A1 (zh) | 下置式气液强化乳化固定床反应装置及方法 | |
CN213506759U (zh) | 一种煤直接液化的强化反应系统 | |
WO2020186640A1 (zh) | 一种微界面强化润滑油加氢精制反应系统及方法 | |
CN115040900B (zh) | 一种利用旋流离心力场强化微细气泡分离的装置及方法 | |
CN111495287A (zh) | 用于渣油加氢反应的侧置式微界面强化反应装置及方法 | |
WO2021047040A1 (zh) | 一种基于微界面强化煤间接液化的系统及工艺 | |
CN210229911U (zh) | 用于渣油加氢反应的上置式微界面强化反应装置 | |
CN213506757U (zh) | 一种煤直接液化的乳化床强化反应系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19913063 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19913063 Country of ref document: EP Kind code of ref document: A1 |