WO2020155458A1 - 一种飞行方法以及飞行装置 - Google Patents

一种飞行方法以及飞行装置 Download PDF

Info

Publication number
WO2020155458A1
WO2020155458A1 PCT/CN2019/085930 CN2019085930W WO2020155458A1 WO 2020155458 A1 WO2020155458 A1 WO 2020155458A1 CN 2019085930 W CN2019085930 W CN 2019085930W WO 2020155458 A1 WO2020155458 A1 WO 2020155458A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
unit
flying
flying device
acceleration unit
Prior art date
Application number
PCT/CN2019/085930
Other languages
English (en)
French (fr)
Inventor
张文武
王玉峰
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2020155458A1 publication Critical patent/WO2020155458A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/105Space science
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/105Space science
    • B64G1/1064Space science specifically adapted for interplanetary, solar or interstellar exploration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/16Extraterrestrial cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles

Definitions

  • the invention belongs to the field of flying technology, and particularly relates to a flying method and a flying device.
  • the landing and returning of the moon mainly rely on the rocket principle, that is, the reaction material is carried by the aircraft, and the medium impulse is generated through chemical reaction to overcome the gravitational constraint.
  • the rocket principle that is, the reaction material is carried by the aircraft, and the medium impulse is generated through chemical reaction to overcome the gravitational constraint.
  • Other propulsion methods such as electric propulsion, plasma propulsion, etc., still require a large amount of auxiliary energy, structure, and media consumption, and it is more difficult to solve flight problems. Therefore, the lunar exploration after landing is mainly realized by the electric drive wheel device, that is, the wheel is driven by the on-board electric power to realize the movement on the lunar surface.
  • the present invention provides a new method of flying, which is suitable for various environments, including environments where there is no atmosphere or where the atmosphere is thin and unable to fly with atmospheric buoyancy. Therefore, it can be achieved on planets other than the Earth such as the moon and Mars ( (Referred to as alien planet) to break through the obstacles of the planet's surface morphology for scientific investigation, and expand human beings' ability to detect and develop the planet.
  • planets other than the Earth such as the moon and Mars (Referred to as alien planet) to break through the obstacles of the planet's surface morphology for scientific investigation, and expand human beings' ability to detect and develop the planet.
  • the technical solution provided by the present invention is: a flying method that uses the medium on the surface of the planet and the medium acceleration unit; under the action of electric power, the medium acceleration unit works, transports the medium to the medium acceleration unit, and the medium leaves the medium after the medium acceleration unit is accelerated
  • the acceleration unit generates a reaction force due to the momentum conservation effect, which overcomes the gravitational force of the planet and drives the load to take off.
  • the planet may be an earth with an atmosphere, or an alien planet with no atmosphere or a thin atmosphere, such as the moon and Mars.
  • the medium is the medium on the surface of the planet, including solid medium, such as sufficient resources on the planet such as soil, gravel, and rocks, and fluid medium, such as water resources on the planet.
  • the method of obtaining the medium is not limited, including one or a combination of a medium obtaining unit, such as a mechanical gripper, a belt retractor, and a suction pipe.
  • a medium obtaining unit such as a mechanical gripper, a belt retractor, and a suction pipe.
  • the medium acceleration unit is not limited, and may be a device that converts electrical energy into mechanical motion.
  • a drive unit such as a motor and a motor is composed of a rotating unit such as a blade and an impeller. Under the action of electric power, the drive unit works to drive the rotating unit to rotate and transport When the medium reaches the rotating unit, the medium is accelerated by the rotating unit and then thrown out; it can also be an electromagnetic device, for example, the medium is polarized and then input into the electromagnetic device, and the medium is accelerated by the electromagnetic field and then leaves the electromagnetic device.
  • the power supply mode is not limited, and one or more of generators, storage batteries, remote energy transmission power supplies, and airborne nuclear power supplies can be used.
  • the generator includes, but is not limited to, a fuel-based generator.
  • a fuel-based generator On the earth, it can be a fuel-burning internal combustion engine, with oxygen taken from the atmosphere; on the moon, it can be a configuration similar to a rocket engine, using fuel and oxidant, such as kerosene and oxygen.
  • the advantage of the generator is that the power can be expanded as needed to achieve heavy load flight.
  • Solar energy is an available resource on planets such as the earth, the moon, and Mars. Therefore, in the present invention, the generator can convert solar energy into electrical energy as a power supply unit.
  • a solar panel is provided on the flying device, and the solar panel can receive solar energy and convert it into electrical energy.
  • the battery can be charged through a power station, for example, through a planetary solar power station or other types of power stations.
  • the storage battery can be charged through a power station, which includes a solar power station or other types of power stations, and can also be charged by solar energy through a solar sail board installed on the flying device.
  • Remote energy transmission power supplies transmit energy remotely, such as electromagnetic waves to transmit energy over long distances, including microwaves, light energy, etc., and then convert them into electrical energy.
  • the onboard nuclear power supply can provide electricity for a long time.
  • the medium is continuously consumed.
  • land before the medium is exhausted and take off after loading the medium.
  • the method for conveying the medium to the medium acceleration unit is not limited, and it can be through free fall, transmission through transmission, such as conveyor belt transmission, or transmission through vibration.
  • the media acceleration unit includes a driving unit and a rotating unit
  • the rotating unit preferably uses lightweight materials.
  • a wear-resistant coating such as a diamond coating, is provided on the surface of the rotating unit.
  • the stress experienced by the rotating unit during high-speed rotation is lower than its ultimate yield stress.
  • the size of the reaction force determines the size of the load mass that can take off.
  • the magnitude of the reaction force is related to the diameter (m) of the rotating unit, the speed (rpm), and the mass flow rate (Kg/s) of the medium being thrown out. That is, other conditions are certain, and the reaction force can be controlled by controlling the diameter (m), rotation speed (rpm) of the rotating unit and the mass flow rate (Kg/s) of the medium being thrown out, thereby controlling the mass of the load that can take off.
  • the reaction force is proportional to the diameter (m) and rotation speed (rpm) of the rotating unit.
  • the following table shows the reaction force achieved by using high-speed motors to drive blades when the medium is lunar soil and the ultimate mass of takeoff on the moon.
  • the present invention also provides a flying device, including a power supply, a medium acceleration unit and a medium storage unit;
  • the power supply supplies power to the medium acceleration unit, and the medium acceleration unit works.
  • the medium is transported from the medium storage unit to the medium acceleration unit. After the medium acceleration unit is accelerated, it separates from the medium acceleration unit.
  • the reaction force generated overcomes the gravitational force of the planet and drives the flying device take off.
  • the flying device further includes an ejection unit, and the medium leaves the medium acceleration unit after passing through the ejection unit.
  • the ejection unit includes a first ejection unit and a second ejection unit. After the medium is accelerated, the medium is separated from the medium acceleration unit through the first ejection unit, and the reaction force generated is used to overcome the gravitational force of the planet and pass the second ejection unit. After the ejection unit is separated from the medium acceleration unit, the reaction force generated is used to control the flight direction.
  • the first spray unit is arranged on the bottom of the flying device, and the second spray unit is arranged on the side of the flying device.
  • the power source can be a generator or a battery.
  • the generator includes, but is not limited to, a fuel-based generator.
  • a fuel-based generator On the earth, it can be a fuel-burning internal combustion engine, with oxygen taken from the atmosphere; on the moon, it can be a configuration similar to a rocket engine, using fuel and oxidant, such as kerosene and oxygen.
  • the advantage of the generator is that the power can be expanded as needed to achieve heavy load flight.
  • Solar energy is an available resource on planets such as the earth, the moon, and Mars. Therefore, in the present invention, the generator can convert solar energy into electrical energy as a power supply unit.
  • a solar panel is provided on the flying device, and the solar panel can receive solar energy and convert it into electrical energy.
  • the storage battery can be charged by solar energy, for example, it can be charged by solar energy through a planetary solar power station, or it can be charged by solar energy through a solar panel installed on the flying device.
  • the flying device further includes a detector for detection, investigation, research and other purposes.
  • the flying device further includes a communicator for communication.
  • the flying device further includes a central controller for coordinated control of the entire flying device.
  • the present invention provides a new flying method, which is especially suitable for environments where there is no atmosphere or the atmosphere is very thin, so it is impossible to fly with atmospheric buoyancy, for example, flying on the moon, Mars and other alien planets.
  • the invention utilizes the medium existing on the planet. The medium is accelerated by the medium acceleration unit and then separated from the medium acceleration unit to return to the planet. The momentum conservation effect generates a reaction force to overcome the gravitational force of the planet to achieve the purpose of flying ingeniously, breaking through the ground morphology of the planet. Obstacles to scientific investigations can expand civilization's ability to detect, investigate, and exploit the moon and Mars.
  • Fig. 1 is a schematic structural diagram of a lunar flying device in embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the lunar flying device in Embodiment 2 of the present invention.
  • Fig. 3 is a schematic structural diagram of a lunar flying device in embodiment 3 of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the lunar flying device in Embodiment 4 of the present invention.
  • Fig. 5 is a schematic diagram of the structure of the lunar flying device in embodiment 5 of the present invention.
  • Fig. 6 is a schematic structural diagram of a lunar flying device in Embodiment 6 of the present invention.
  • a lunar flying device as shown in FIG. 1, includes a flying main body 1 which includes a power source 16, a high-speed motor 12, an impeller 13 and a lunar soil storage container 14.
  • the power supply 16 supplies power to the high-speed motor 12, and the high-speed motor 12 works to drive the impeller 13 to rotate at a high speed.
  • the lunar soil 8 falls from the lunar soil storage container 14 to the impeller 13, accelerated by the high-speed rotating impeller 13, and thrown out through the nozzle 6.
  • the reaction force generated overcomes the lunar gravity and drives the flying device to take off on the lunar surface.
  • the flying device also includes a probe A3 and a probe B4 for detection research.
  • the flying device also includes a communicator 5 for communication.
  • the flying device also includes a central controller 15 for coordinated control of the entire flying device.
  • the lunar soil 8 is grabbed into the lunar soil storage container 14 from the outside of the flying device by the lunar soil grabbing and filtering device 10.
  • the lunar soil in the lunar soil storage container 14 is 30Kg, and the mass flow rate of the lunar soil 8 thrown out is 0.1Kg/s, which can achieve a 300-second flight. Such a flight time can meet certain scientific detection and engineering requirements.
  • the flying device achieves a soft landing, uses the lunar soil grab and filter device 10 to load the lunar soil 8, and then continues to take off.
  • a lunar flying device as shown in FIG. 2, includes a flying body 1 which includes a power supply 11, a high-speed motor 12, an impeller 13 and a lunar soil storage container 14.
  • the power supply 11 supplies power to the high-speed motor, and the high-speed motor 12 works to drive the impeller 13 to rotate at high speed.
  • the lunar soil 8 falls from the lunar soil storage container 14 to the impeller 13, and is accelerated by the high-speed rotating impeller 13 and thrown out through the nozzle 6.
  • the resulting reaction force overcomes the lunar gravity and drives the flying device to take off on the lunar surface.
  • the power source 11 is a battery, and the on-board battery can be quickly charged by the lunar solar power station 9 when necessary.
  • the lunar soil 8 is grabbed into the lunar soil storage container 14 by the lunar soil grabbing and filtering device 10 from the outside of the flying device. Before the lunar soil 8 is exhausted, the flying device achieves a soft landing, uses the lunar soil grab and filter device 10 to load the lunar soil 8, and then continues to take off.
  • the flying device also includes a probe A3 and a probe B4 for detection research.
  • the flying device also includes a communicator 5 for communication.
  • the flying device also includes a central controller 15 for coordinated control of the entire flying device.
  • the structure of the lunar flying device is basically the same as that of the second embodiment.
  • the difference is that the solar power station 9 is replaced by a solar panel 2.
  • the solar panel 2 is installed on the flying device. Therefore, when the power is insufficient, the flying The device charges the battery 11 through the solar panel 2.
  • the flying method of the flying device is the same as in the first embodiment.
  • a lunar flying device as shown in FIG. 4, includes a flying body 1, which includes a high-speed motor, an impeller, and a lunar soil storage container.
  • Two solar windsurfing boards 2 are arranged on the side of the flying main body 1. Taking advantage of the absence of atmospheric resistance on the moon, the solar windsurfing boards can be installed on the upper part of the aircraft to provide electricity for high-speed motors.
  • the solar panel 2 provides electrical energy for the high-speed motor.
  • the high-speed motor works to drive the impeller to rotate at high speed.
  • the lunar soil 8 falls from the lunar soil storage container to the impeller, and is accelerated by the high-speed rotating impeller, passing through the first nozzle 6 and the second nozzle 6
  • the nozzle 7 is thrown out.
  • the first nozzle 6 is arranged on the side of the flying body 1.
  • the reaction force after the lunar soil is thrown out is used to control the flying direction.
  • the second nozzle 7 is arranged on the bottom surface of the flying body 1. After the lunar soil is thrown out The reaction force is used to overcome the lunar gravity.
  • the flying device further includes a supporting wheel 9 arranged on the side of the flying main body 1 to maintain the attitude of the flying device and realize the cushioning of take-off and landing.
  • the flying device before the lunar soil 8 is exhausted, the flying device achieves a soft landing, and takes off after the lunar soil 8 is loaded.
  • the flying device also includes a probe A3 and a probe B4 for detection research.
  • the flying device also includes a communicator 5 for communication.
  • the flying device also includes a central controller 15 for coordinated control of a series of actions of the flying device, including take-off, detection, and timely landing replenishment.
  • the structure of the lunar flying device is basically the same as that of the fourth embodiment. The difference is that there is no atmospheric resistance on the moon. As shown in FIG. 5, the solar panel 2 is installed on the top of the flying body, vertically place.
  • the flying method of the flying device is the same as in the fourth embodiment.
  • the structure of the lunar flying device is basically the same as that of the fourth embodiment.
  • the difference is that the solar panel 2 is replaced by a power generating device 16 arranged inside the flying body 1.
  • the power generating device 16 can be It is a generator, storage battery, remote energy transmission power supply or airborne nuclear power supply, which provides electrical energy for high-speed motors.
  • a Mars flying device which has a structure similar to that of Figure 1, includes a flying body, which includes a power supply, a high-speed motor, blades, and a soil storage container.
  • the power supply is the high-speed motor.
  • the high-speed motor works to drive the blades to rotate at high speed.
  • the Martian soil falls from the soil storage container to the blades. It is accelerated by the high-speed rotating blades and flung out through the nozzle.
  • the reaction force generated overcomes the gravity of Mars. Drive the flying device to take off on the surface of Mars.
  • the flying device also includes a probe A3 and a probe B4 for detection research.
  • the flying device also includes a communicator 5 for communication.
  • the flying device also includes a central controller 15 for coordinated control of the entire flying device.
  • the Martian soil is grabbed into the soil storage container from the outside of the flying device by the soil grab and filter device. Before the soil is exhausted, the flying device achieves a soft landing, loads the soil with the soil grab and filter device, and then continues to take off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种飞行方法与飞行装置。该方法采用星球表面的介质(8)与介质加速单元(13);在电力作用下,介质加速单元(13)工作,输送介质(8)到介质加速单元(13),介质(8)在介质加速单元(13)被加速后脱离介质加速单元(13),由于动量守恒产生反作用力,该反作用力克服星球引力,带动负载(1)起飞。该方法尤其适用于无大气或者大气很稀薄,因此无法借助大气浮力进行飞行的环境,例如,在月球、火星等的飞行,突破了地面形貌对科学考察的障碍,可拓展人类对月球、火星等星球的探测、考察、开拓能力。

Description

一种飞行方法以及飞行装置 技术领域
本发明属于飞行技术领域,尤其涉及一种飞行方法以及飞行装置。
背景技术
与存在致密大气层的地球不同,有些星球表面没有大气或者大气稀薄,例如月球,火星等,因此对这些星球的探测考察具有很大的挑战性。
以月球探测为例,目前月球的着陆、返回主要依靠火箭原理,即,由飞行器自带反应物质,通过化学反应产生介质冲量,克服引力约束。但由于火箭燃料有限,很难在月球环境长时间使用火箭燃料。其它的推进手段,如电推进、等离子体推进等,尚需要较大的辅助能源、结构和介质消耗,用于解决飞行问题存在更大困难。因此,着陆后的月球探测主要通过电驱轮动装置实现,即,通过车载电力驱动车轮转动,实现在月面上的运动。但是,由于月面上许多区域的月壤松软,月面运动需要克服较大的阻力,尤其是当遇到复杂地貌时,电驱轮动装置容易出现意外。此外,陡峭或高处地貌电驱轮动装置无法就近观察、取样。对火星等其它星球的探测也面临着类似的困境。
发明内容
针对上述技术现状,本发明提供一种飞行新方法,该方法适用于各种环境,包括无大气或者大气稀薄而无法借助大气浮力进行飞行的环境,因此可实现在月球、火星等地球以外星球(简称外星球)上的飞行,从而突破星球表面形貌对科学考察的障碍,拓展人类对星球的探测、开拓能力。
本发明提供的技术方案为:一种飞行方法,采用星球表面的介质与介质加速单元;在电力作用下,介质加速单元工作,输送介质到介质加速单元,介质在介质加速单元被加速后脱离介质加速单元,由于动量守恒效应产生反作用力,该反作用力克服星球引力,带动负载起飞。
所述星球可以是大气存在的地球,也可以是无大气,或者大气稀薄的外星球,例如月球、火星等。
所述介质是星球表面的介质,包括固体介质,例如土壤、沙砾、岩石等星球上的充足资源,也包括流体介质,例如星球上的水资源等。
获取介质的方式不限,包括通过介质获取单元,例如机械抓手、带式卷入器、吸入式管道等中的一种或者几种的组合。
所述介质加速单元不限,可以是将电能转换为机械运动的装置,例如电机、马达等驱动单元与叶片、叶轮等旋转单元组成,在电力作用下,驱动单元工作,带动旋转单元旋转,输送介质到旋转单元上,介质经旋转单元加速后被甩出;也 可以是电磁装置,例如,将介质进行极化处理后输入电磁装置内,在电磁场作用下介质被加速后离开电磁装置。
所述的介质加速单元工作时,供电方式不限,可以采用发电机、蓄电池、远程能量输送电源、机载核能电源等中的一种或者几种。
所述发电机包括但不限于燃料类发电机,在地球上可以是燃油内燃机,氧气取自大气;在月球上可以是类似火箭发动机的配置,使用燃料与氧化剂,如煤油与氧气混合等。发电机的优点是功率可以根据需要扩展,实现重载飞行。太阳能是地球、月球、火星等星球上的可用资源,因此本发明中,发电机可利用太阳能转换为电能,作为电力供给单元。作为一种实现方式,在飞行装置上设置太阳帆板,所述太阳帆板可以接收太阳能并将其转换为电能。
所述蓄电池可以通过电站进行充电,例如,可以通过星球太阳能电站或者其它类型的电站进行充电。
所述蓄电池可以通过电站充电,电站包括太阳能电站或者其它类型的电站,也可以通过设置在飞行装置上的太阳帆板进行太阳能充电。
远程能量输送电源通过远程传输能量,例如电磁波远距离传能,包括微波、光能等,然后转换为电能。
机载核能电源可以长时间提供电力。
在飞行过程中,介质不断消耗,作为一种实现方式,在介质耗尽前着陆,装载介质后再起飞。
介质被输送至介质加速单元的方法不限,可以通过自由落体,通过传动传输、例如传送带传输,或者通过振动传输等。
当所述介质加速单元包括驱动单元与旋转单元时,为了减少冲击磨损,旋转单元优选使用轻质材料。作为进一步优选,旋转单元表面设置耐磨涂层,例如金刚石涂层等。另外,旋转单元高速旋转时承受的应力低于其极限屈服应力。
所述的反作用力的大小决定了能够起飞的负载质量大小。反作用力的大小与旋转单元的直径(m)、转速(rpm)以及介质被甩出的质量流速(Kg/s)等参量有关。即,其它条件一定,通过控制旋转单元的直径(m)、转速(rpm)以及介质被甩出的质量流速(Kg/s)可以控制反作用力大小,从而控制能够起飞的负载质量。当介质被甩出的质量流速一定,以及其它条件一定的情况下,反作用力与旋转单元的直径(m)、转速(rpm)成正比关系。
例如,下表是当介质为月壤,采用高速电机驱动叶片实现的反作用力以及在月球起飞的极限质量。
Figure PCTCN2019085930-appb-000001
从上表中可以看出,当设定月壤甩出的质量流为0.1Kg/s,使用直径为100毫米的叶轮,在75000rpm转速下,月壤甩出的速度为392.7m/s,可以实现约39N的反作用力。月球引力常数约为地球的1/6,因此,该反作用力可以带动起飞的负载质量约为24Kg。在同等条件下,使用直径为200毫米叶轮,可以实现48Kg级的负载起飞;使用直径为400毫米的叶轮,可以实现96Kg级的负载起飞。高速电机可以驱动叶片实现10000-600000rpm的转速,因此可以带动起飞的负载质量很大。
本发明还提供一种飞行装置,包括电源、介质加速单元与介质储存单元;
工作状态时,电源为介质加速单元供电,介质加速单元工作,介质自介质储存单元输送至介质加速单元,在介质加速单元被加速后脱离介质加速单元,产生的反作用力克服星球引力,带动飞行装置起飞。
作为优选,所述飞行装置还包括喷出单元,介质经喷出单元后脱离介质加速单元。作为进一步优选,所述喷出单元包括第一喷出单元与第二喷出单元,介质被加速后通过第一喷出单元脱离介质加速单元,产生的反作用力用于克服星球引力,通过第二喷出单元后脱离介质加速单元,产生的反作用力用于控制飞行方向。作为进一步优选,所述第一喷出单元设置在飞行装置底部,第二喷出单元设置在飞行装置侧面。
所述电源可以是发电机,也可以是蓄电池。
所述发电机包括但不限于燃料类发电机,在地球上可以是燃油内燃机,氧气取自大气;在月球上可以是类似火箭发动机的配置,使用燃料与氧化剂,如煤油与氧气混合等。发电机的优点是功率可以根据需要扩展,实现重载飞行。太阳能是地球、月球、火星等星球上的可用资源,因此本发明中,发电机可利用太阳能转换为电能,作为电力供给单元。作为一种实现方式,在飞行装置上设置太阳帆板,所述太阳帆板可以接收太阳能并将其转换为电能。
所述蓄电池可以通过太阳能进行充电,例如,可以通过星球太阳能电站进行太阳能充电,也可以通过设置在飞行装置上的太阳帆板进行太阳能充电。
作为优选,所述飞行装置还包括探测器,用于进行探测、考察、研究等目的。
作为优选,所述飞行装置还包括通讯器,用于进行通讯联系。
作为优选,所述飞行装置还包括中央控制器,用于协调控制整个飞行装置。
本发明提供了一种飞行新方法,尤其适用于无大气或者大气很稀薄,因此无法借助大气浮力进行飞行的环境,例如,在月球、火星等外星球的飞行。本发明利用星球上存在的介质,该介质通过介质加速单元加速后脱离介质加速单元而重新回归星球,通过动量守恒效应产生反作用力克服星球引力而巧妙地实现飞行目的,突破了星球的地面形貌对科学考察的障碍,可拓展人类对月球、火星等星球的探测、考察、开拓能力。
附图说明
图1是本发明实施例1中月面飞行装置的结构示意图。
图2是本发明实施例2中月面飞行装置的结构示意图。
图3是本发明实施例3中月面飞行装置的结构示意图。
图4是本发明实施例4中月面飞行装置的结构示意图。
图5是本发明实施例5中月面飞行装置的结构示意图。
图6是本发明实施例6中月面飞行装置的结构示意图。
具体实施方式
下面结合实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
图1-6中的附图标记为:1、飞行器主体;2、太阳帆板;3、探测器A;4、探测器B;5、通讯器;6、喷嘴;7、第一喷嘴;8、月壤;9、太阳能电站;10、月壤抓取及过滤装置;11、电源;12、高速电机;13、叶轮;14、月壤储存容器;15、中央处理器;16、发电装置;17、第二喷嘴;19、支撑轮。
实施例1:
一种月面飞行装置,如图1所示,包括飞行主体1,飞行主体1包括电源16、高速电机12、叶轮13以及月壤储存容器14。
工作状态时,电源16为高速电机12供电,高速电机12工作,驱动叶轮13高速旋转,月壤8自月壤储存容器14落下至叶轮13,被高速旋转的叶轮13加速,通过喷嘴6甩出,产生的反作用力克服了月球引力,带动飞行装置在月面起飞。
该飞行装置还包括探测器A3和探测器B4,用于进行探测研究。
该飞行装置还包括通讯器5,用于进行通讯联系。
该飞行装置还包括中央控制器15,用于协调控制整个飞行装置。
本实施例中,月壤8由月壤抓取与过滤装置10从飞行装置外部抓入月壤储存容器14中。月壤储存容器14中的月壤为30Kg,月壤8被甩出的质量流速为 0.1Kg/s,可以实现300秒飞行,这样的飞行时间能够满足一定的科学探测和工程要求。月壤8耗尽前,该飞行装置实现软着陆,利用月壤抓取与过滤装置10装载月壤8,再继续起飞。
实施例2:
一种月面飞行装置,如图2所示,包括飞行主体1,飞行主体1包括电源11、高速电机12、叶轮13以及月壤储存容器14。
工作状态时,电源11为高速电机供电,高速电机12工作,驱动叶轮13高速旋转,月壤8自月壤储存容器14落下至叶轮13,被高速旋转的叶轮13加速,通过喷嘴6甩出,产生的反作用力克服了月球引力,带动飞行装置在月面起飞。
本实施例中,电源11为蓄电池,必要时该机载蓄电池可以通过月面太阳能电站9进行快速充电。
另外,本实施例中,月壤8由月壤抓取与过滤装置10从飞行装置外部抓入月壤储存容器14中。月壤8耗尽前,该飞行装置实现软着陆,利用月壤抓取与过滤装置10装载月壤8,再继续起飞。
该飞行装置还包括探测器A3和探测器B4,用于进行探测研究。
该飞行装置还包括通讯器5,用于进行通讯联系。
该飞行装置还包括中央控制器15,用于协调控制整个飞行装置。
实施例3:
本实施例中,月面飞行装置的结构与实施例2基本相同,所不同的是太阳能电站9由太阳帆板2代替,太阳帆板2设置在飞行装置上,因此在电力不足时,该飞行装置通过太阳帆板2为蓄电池11进行充电。
本实施例中,飞行装置的飞行方法与实施例1相同。
实施例4:
本实施例中,一种月面飞行装置,如图4所示,包括飞行主体1,飞行主体1包括高速马达、叶轮以及月壤储存容器。
飞行主体1的侧面设置两个太阳帆板2,利用月球上没有大气阻力的便利,可以将太阳帆板安装在飞行器上部,为高速马达提供电能。
工作状态时,太阳帆板2为高速马达提供电能,高速马达工作,驱动叶轮高速旋转,月壤8自月壤储存容器落下至叶轮,被高速旋转的叶轮加速,通过第一喷嘴6与第二喷嘴7甩出,第一喷嘴6设置在飞行主体1的侧面,月壤被甩出后的反作用力用于控制飞行方向,第二喷嘴7设置在飞行主体1的底面,月壤被甩出后的反作用力用于克服月球引力。
本实施例中,飞行装置还包括支撑轮9,设置在飞行主体1侧面,用于保持飞行装置的姿态,并实现起飞和降落的缓冲。
另外,本实施例中,月壤8耗尽前,该飞行装置实现软着陆,装载月壤8后再起飞。
该飞行装置还包括探测器A3和探测器B4,用于进行探测研究。
该飞行装置还包括通讯器5,用于进行通讯联系。
该飞行装置还包括中央控制器15,用于协调控制飞行装置的一系列动作,包括起飞、探测、及时着陆补给等。
实施例5:
本实施例中,月面飞行装置的结构与实施例4基本相同,所不同的是利用月球上没有大气阻力的便利,如图5所示,将太阳帆板2安装在飞行主体的顶部,垂直放置。
本实施例中,飞行装置的飞行方法与实施例4相同。
实施例6:
本实施例中,月面飞行装置的结构与实施例4基本相同,所不同的是太阳帆板2由设置在飞行主体1内部的发电装置16取代,如图6所示,该发电装置16可以是发电机、蓄电池、远程能量输送电源或者机载核能电源,给高速马达提供电能。
实施例7:
一种火星飞行装置,其结构与图1类似,包括飞行主体,飞行主体包括电源、高速电机、叶片以及土壤储存容器。
工作状态时,电源为高速电机供电,高速电机工作,驱动叶片高速旋转,火星土壤自土壤储存容器落下至叶片,被高速旋转的叶片加速,通过喷嘴甩出,产生的反作用力克服了火星引力,带动飞行装置在火星面起飞。
该飞行装置还包括探测器A3和探测器B4,用于进行探测研究。
该飞行装置还包括通讯器5,用于进行通讯联系。
该飞行装置还包括中央控制器15,用于协调控制整个飞行装置。
本实施例中,火星土壤由土壤抓取与过滤装置从飞行装置外部抓入土壤储存容器中。土壤耗尽前,该飞行装置实现软着陆,利用土壤抓取与过滤装置装载土壤,再继续起飞。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

Claims (26)

  1. 一种飞行方法,其特征是:采用星球表面的介质与介质加速单元;
    在电力作用下,介质加速单元工作,输送介质到介质加速单元,介质在介质加速单元被加速后脱离介质加速单元,由于动量守恒效应产生反作用力,该反作用力克服星球引力,带动负载起飞。
  2. 如权利要求1所述的飞行方法,其特征是:所述星球是无大气或者大气稀薄的星球。
  3. 如权利要求1所述的飞行方法,其特征是:所述介质是固体介质或者流体介质。
  4. 如权利要求1所述的飞行方法,其特征是:所述固体介质是土壤、沙砾、岩石中的一种或者几种;所述流体介质是水。
  5. 如权利要求1所述的飞行方法,其特征是:所述介质加速单元包括驱动单元与旋转单元,在电力作用下,驱动单元工作,带动旋转单元旋转,输送介质到旋转单元上,介质经旋转单元加速后被甩出。
  6. 如权利要求5所述的飞行方法,其特征是:所述驱动单元是电动马达或者电机。
  7. 如权利要求5所述的飞行方法,其特征是:所述旋转单元是叶片或者叶轮。
  8. 如权利要求1所述的飞行方法,其特征是:所述介质加速单元是电磁装置,将介质进行极化处理后输入电磁装置内,在电磁场作用下介质被加速后离开电磁装置。
  9. 如权利要求1所述的飞行方法,其特征是:采用发电机、蓄电池、远程能量输送电源、机载核能电源中的一种或者几种为介质加速单元供电。
  10. 如权利要求1所述的飞行方法,其特征是:利用星球上的太阳能站,将太阳能转换为电能,为驱动单元供电。
  11. 如权利要求1所述的飞行方法,其特征是:介质通过传动传输、振动传输或者自由落体输送至介质加速单元。
  12. 如权利要求1所述的飞行方法,其特征是:在介质耗尽前着陆,装载介质后再起飞。
  13. 如权利要求1至12中任一权利要求所述的飞行方法,其特征是:所述介质加速单元由驱动单元与旋转单元组成,通过控制旋转单元的直径、转速以及介质被甩出的质量流速控制起飞的负载质量。
  14. 一种飞行装置,其特征是:包括电源、介质加速单元与介质储存单元;
    工作状态时,电源为介质加速单元供电,介质加速单元工作,介质自介质储存单元输送至介质加速单元,在介质加速单元被加速后脱离介质加速单元,产生的反作用力克服星球引力,带动飞行装置起飞。
  15. 如权利要求14所述的飞行装置,其特征是:还包括喷出单元,介质经喷出单元后脱离介质加速单元。
  16. 如权利要求14所述的飞行装置,其特征是:所述喷出单元包括第一喷出单元与第二喷出单元,介质被加速后通过第一喷出单元脱离介质加速单元,产生的反作用力用于克服星球引力,通过第二喷出单元后脱离介质加速单元,产生的反作用力用于控制飞行方向。
  17. 如权利要求16所述的飞行装置,其特征是:所述第一喷出单元设置在飞行装置底部,第二喷出单元设置在飞行装置侧面。
  18. 如权利要求14所述的飞行装置,其特征是:所述电源是发电机或者蓄电池。
  19. 如权利要求18所述的飞行装置,其特征是:所述发电机将太阳能转换为电能。
  20. 如权利要求18所述的飞行装置,其特征是:在飞行装置上设置太阳帆板,所述太阳帆板接收太阳能并将其转换为电能。
  21. 如权利要求18所述的飞行装置,其特征是:所述蓄电池通过太阳能进行充电。
  22. 如权利要求21所述的飞行装置,其特征是:通过星球太阳能电站进行太阳能充电,或者通过设置在飞行装置上的太阳帆板进行太阳能充电。
  23. 如权利要求14所述的飞行装置,其特征是:所述飞行装置还包括探测器。
  24. 如权利要求14所述的飞行装置,其特征是:所述飞行装置还包括通讯器。
  25. 如权利要求14所述的飞行装置,其特征是:所述飞行装置还包括中央控制器。
  26. 如权利要求14至25中任一权利要求所述的飞行装置,其特征是:所述星球是无大气,或者大气稀薄的星球。
PCT/CN2019/085930 2019-02-02 2019-05-08 一种飞行方法以及飞行装置 WO2020155458A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910107849.1A CN111516906A (zh) 2019-02-02 2019-02-02 一种飞行方法以及飞行装置
CN201910107849.1 2019-02-02

Publications (1)

Publication Number Publication Date
WO2020155458A1 true WO2020155458A1 (zh) 2020-08-06

Family

ID=71840367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085930 WO2020155458A1 (zh) 2019-02-02 2019-05-08 一种飞行方法以及飞行装置

Country Status (2)

Country Link
CN (1) CN111516906A (zh)
WO (1) WO2020155458A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3639927C2 (zh) * 1986-11-22 1990-06-21 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De
JPH07156897A (ja) * 1993-12-01 1995-06-20 Nissan Motor Co Ltd 月探査用車両の保温装置
RU2304068C2 (ru) * 2001-08-17 2007-08-10 Алексей Иванович Илюхин Космический корабль с электроракетным двигателем "беталёт"
US20080061191A1 (en) * 2003-05-06 2008-03-13 Gochnour Gary R Multi-functional high energy plasma aircraft and nuclear fusion system to produce energy from a controlled nuclear fusion reaction
CN202609096U (zh) * 2011-11-18 2012-12-19 同济大学第一附属中学 月球车
CN205602155U (zh) * 2016-05-06 2016-09-28 西北工业大学 一种基于电磁推进的空间碎片再利用系统
RU2016122420A (ru) * 2016-06-06 2017-12-07 Александр Федорович Попов Способ растапливания лунного водяного льда
CN108839807A (zh) * 2018-05-14 2018-11-20 哈尔滨工业大学 一种新型的火星飞行器组合推进系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM526542U (zh) * 2012-06-11 2016-08-01 Rui-Gao Yang 離心力推進器結構
CN104354877B (zh) * 2014-10-27 2016-08-24 中国运载火箭技术研究院 一种基于地球-火星循环轨道的载人火星探测系统及方法
CN108516108B (zh) * 2018-03-06 2019-12-31 中国空间技术研究院 一种基于纳米流体微液滴工质的激光微推进装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3639927C2 (zh) * 1986-11-22 1990-06-21 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De
JPH07156897A (ja) * 1993-12-01 1995-06-20 Nissan Motor Co Ltd 月探査用車両の保温装置
RU2304068C2 (ru) * 2001-08-17 2007-08-10 Алексей Иванович Илюхин Космический корабль с электроракетным двигателем "беталёт"
US20080061191A1 (en) * 2003-05-06 2008-03-13 Gochnour Gary R Multi-functional high energy plasma aircraft and nuclear fusion system to produce energy from a controlled nuclear fusion reaction
CN202609096U (zh) * 2011-11-18 2012-12-19 同济大学第一附属中学 月球车
CN205602155U (zh) * 2016-05-06 2016-09-28 西北工业大学 一种基于电磁推进的空间碎片再利用系统
RU2016122420A (ru) * 2016-06-06 2017-12-07 Александр Федорович Попов Способ растапливания лунного водяного льда
CN108839807A (zh) * 2018-05-14 2018-11-20 哈尔滨工业大学 一种新型的火星飞行器组合推进系统

Also Published As

Publication number Publication date
CN111516906A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2020155460A1 (zh) 一种在月球上的飞行方法以及月球飞行装置
CN102933932B (zh) 火箭发射系统和支撑装置
Jenniskens et al. SHEPHERD: a concept for gentle asteroid retrieval with a gas-filled enclosure
US20060208136A1 (en) Centripetal reflex method of space launch
WO2006119056A2 (en) Lighter than air supersonic vehicle
CN107554351A (zh) 向高空中电动民用航空飞机无线供电的空中发电机器人
CN106568352A (zh) 火箭推进舱悬飞软着落回收系统
WO2020155458A1 (zh) 一种飞行方法以及飞行装置
WO2020155459A1 (zh) 一种在火星上的飞行方法以及火星飞行装置
RU2562474C1 (ru) Модернизированное богданова устройство для подъема и перемещения автомобиля или другого транспортного средства
CN110510153B (zh) 一种地磁蓄能低轨道空间碎片离轨控制方法
RU2791892C1 (ru) Устройство и способ полетов на луне
CN104477421A (zh) 登月天梯
US20220332439A1 (en) Device transport by air
CN108910086B (zh) 一种基于小卫星星团的可再入式立方星系统
US10940931B2 (en) Micro-fusion-powered unmanned craft
CN112377358A (zh) 自主水下航行器随体波浪能发电装置
RU2476351C1 (ru) Летательный аппарат с вертикальным взлетом и посадкой
CN205608522U (zh) 一种高效安全的航天器姿态调整器
JPH05296137A (ja) 風力発電設備
CA2875430C (en) Mechanism for receiving rocket-transporting devices for a rocket launch system
CN118145018A (zh) 一种改变空间物体绕星体轨道高度的方法和系统
CN115723969A (zh) 一种离心力电推进发动机
CN107599879A (zh) 向水面上电动船有线供电的空中发电机器人
CN101000045A (zh) 利用万有引力干扰器驱动的机器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913304

Country of ref document: EP

Kind code of ref document: A1