WO2020155313A1 - 兼具采样宽度和精度的光学采样电路及采集方法 - Google Patents

兼具采样宽度和精度的光学采样电路及采集方法 Download PDF

Info

Publication number
WO2020155313A1
WO2020155313A1 PCT/CN2019/077733 CN2019077733W WO2020155313A1 WO 2020155313 A1 WO2020155313 A1 WO 2020155313A1 CN 2019077733 W CN2019077733 W CN 2019077733W WO 2020155313 A1 WO2020155313 A1 WO 2020155313A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
digital converter
analog
processor
resistor
Prior art date
Application number
PCT/CN2019/077733
Other languages
English (en)
French (fr)
Inventor
杜沛深
卢鹏
招睿雄
张二盈
章国建
Original Assignee
深圳市金准生物医学工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市金准生物医学工程有限公司 filed Critical 深圳市金准生物医学工程有限公司
Publication of WO2020155313A1 publication Critical patent/WO2020155313A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/05Digital input using the sampling of an analogue quantity at regular intervals of time, input from a/d converter or output to d/a converter

Definitions

  • the present application relates to the field of detection technology, in particular to an optical sampling circuit and acquisition method with both sampling width and accuracy.
  • the purpose of this application is to solve the deficiencies of the prior art and provide an optical sampling circuit and a sampling method that has both sampling width and accuracy.
  • An optical sampling circuit with both sampling width and accuracy including a photocell, a sampling resistor, an operational amplifier, an analog-to-digital converter, and a processor; the photocell, the sampling resistor, the operational amplifier, the analog-to-digital converter, and the processor Connected sequentially, N compensation resistors are connected between the photocell and the sampling resistor, each compensation resistor is connected in parallel with a switch, and the control terminal of each switch and the signal output terminal of the analog-to-digital converter are respectively connected to the processor; When the processor outputs a low level, the switch is turned off, and the compensation resistor is connected to the sampling resistor to increase the resistance of the analog-to-digital converter during sampling; when the processor outputs a high level, the switch is turned on, and the compensation resistor is short-circuited to reduce the analog value. The resistance value of the resistor when the digital converter is sampling.
  • a preferred solution is that the switch is a triode, the input and output ends of the triode are connected to both ends of the compensation resistor, and the control end of the triode is connected to the processor. [0011] A preferred solution is that the number of compensation resistors N is greater than or equal to 2.
  • a collection method of an optical sampling circuit with both sampling width and accuracy including:
  • the analog-to-digital converter performs the first sampling, and the analog-to-digital converter transmits the collected signal to the processor;
  • the processor analyzes the data sampled for the first time and determines the strength of the signal. If it is determined that the signal of the first sampled data is weak, that is, the signal sampled for the first time is weak, it represents the front end of the analog-to-digital converter When the resistance during sampling is too small, the processor controls the switch to open to increase the resistance of the resistance during sampling. After that, the analog-to-digital converter performs a second sampling, and the processor analyzes and judges the signal again based on the second sampling data The strength of the data is collected M times in this way until the analog-to-digital converter outputs appropriate data;
  • the processor controls the switch to close to reduce the resistance of the resistance during sampling.
  • the analog-to-digital converter performs a second sampling, and the processor analyzes and judges the strength of the signal again according to the second-sampled data, and collects M times in this way until the analog-to-digital converter outputs appropriate data.
  • the beneficial effects of this application are: to achieve dynamic sampling, an optical sampling circuit with sampling width and accuracy, sampling resistors and N compensation resistors are used for sampling, and the compensation resistors are switched to the sampling circuit In the resistance, the resistance value of the resistor during sampling by the analog-to-digital converter is increased to ensure that the high signal will not overflow, and at the same time, the application scenario of the low signal can be recognized normally; specifically, when the signal collected by the analog-to-digital converter When the signal is strong, the analog-to-digital converter controls the switch to close through the processor to compensate the resistance short circuit to reduce the resistance value of the resistance when the analog-to-digital converter is sampling to ensure that the signal does not overflow; when the signal collected by the analog-to-digital converter is very weak, the analog-to-digital converter The converter is turned on by the processor control switch, and the compensation resistor is connected to the sampling resistor to increase the resistance value of the resistor during sampling by the analog-to-digital converter to
  • This application can expand the measurement range of the optical sampling module, that is, increase the signal measurement range, the optical sampling module can identify weaker signals, that is, improve the signal-to-noise ratio of the system, and the large resistance sampling of weak signals can improve the measurement results The stability.
  • FIG. 1 is a schematic diagram of the first embodiment of the present application
  • FIG. 2 is a flowchart of a second embodiment of the present application.
  • an optical sampling circuit with both sampling width and accuracy including a photocell 201, a sampling resistor 204, an operational amplifier 206, an analog-to-digital converter 202 and a processor 203; photocell 201, the sampling resistor 204, the operational amplifier 206, the analog-to-digital converter 202 and the processor 203 are connected in sequence.
  • N compensation resistors are connected between the photocell 201 and the sampling resistor 204, each compensation resistor is connected in parallel with a switch, each compensation resistor 205 is connected in parallel with a switch, the control terminal of each switch and the signal of the analog-to-digital converter 202
  • the output terminals are respectively connected to the processor 203; the compensation resistor 205 can be set according to needs, and can be set to one, two or more. In this application, two compensation resistors 205 are used for illustration, which are the resistor R 2 and the resistor.
  • a switch one is connected in parallel at both ends of the resistor R2
  • a switch n is connected in parallel at both ends of the resistor Rn+1
  • the control ends of the switch one and switch n are electrically connected to the processor 203
  • the processor 203 separately controls the switch one and the switch On and off of n
  • the switch is off, that is, switch one or/and switch n are off
  • the compensation resistor 205 is connected to the sampling resistor 204 to increase the sampling resistance of the analog-to-digital converter 202
  • the compensation resistor 205 is short-circuited to Reduce the sampling time of the ADC 202
  • the resistance of the resistance that is, the resistance R2 or/and the resistance Rn+1 is bypassed, and the resistance R2 or/and the resistance Rn+1 does not participate in the resistance when the analog-to-digit
  • the resistance value of the sampling resistor 204 is greater than the resistance value of the compensation resistor 205, and two different resistors, one large and one small, are used for sampling, and the processor 203 controls the closing of the switch.
  • the compensation resistor 205 is connected or not connected together, it can ensure that the high signal will not overflow, and at the same time, the low signal can be recognized normally.
  • the specific principle is that when the analog-to-digital converter 202 detects that the signal is strong, the processor 203 switches to make the sampled resistance of the analog-to-digital converter 202 small to ensure that the signal does not overflow; when the signal collected by the analog-to-digital converter 202 is very weak The processor 203 switches to make the resistance value of the sampled resistance of the analog-to-digital converter 202 large, ensuring that weak signals can also be identified and sampled normally.
  • the sampling system sets an initial sampling resistance value according to the actual application scenario, and then performs the first sampling.
  • the processor 203 analyzes the data sampled this time. If the data overflows, it represents the sampling time of the front end of the analog-to-digital converter 202.
  • the resistance is too large, reduce the sampling resistance of the analog-to-digital converter 202, and then perform another sampling and output appropriate data; if the first sampled signal is found to be weak, it means that the sampling resistance at the front end of the analog-to-digital converter 202 is too high. If it is small, increase the resistance value during sampling and output appropriate data.
  • the resistance value of the resistor during sampling can be adjusted in real time to obtain the best sampling data.
  • an optical sampling circuit acquisition method with both sampling width and accuracy includes:
  • the optical sampling module sets an initialized sampling resistance value according to actual application scenarios
  • S2 then performs the first sampling, and the analog-to-digital converter 202 transmits the collected signal to the processor 203,
  • the processor 203 analyzes the data sampled for the first time and determines the strength of the signal. If the processor 203 determines that the signal of the first sampled data is weak, that is, the signal sampled for the first time is weak, it represents the mode The resistance at the front end of the digital converter 202 during sampling is too small, and the processor 203 controls the switch to open to increase the resistance of the resistor during sampling. After that, the analog-to-digital converter 202 performs a second sampling, and the processor 203 performs a second sampling according to the second sampling. Analyze the data of and determine the strength of the signal, collect M times in this way, until the analog-to-digital converter 202 outputs appropriate data;
  • the processor 203 determines that the first sampling data signal is strong, that is, the data overflows, it means that the resistance at the front end of the analog-to-digital converter 202 is too large during sampling. At this time, the processor 203 controls the switch to close to reduce the sampling time. Electricity Then, the analog-to-digital converter 202 performs a second sampling, and the processor analyzes and judges the strength of the signal according to the second-sampled data, and collects M times in this way until the output of the analog-to-digital converter 202 is appropriate The data.
  • the analog-to-digital converter 202 is connected to the interface 1 of the processor 203.
  • the switch is a triode, the input end and output end of the triode are connected to the two ends of the compensation resistor 205, and the control end of the triode is connected to the processor 203.
  • two compensation resistors 205 are used for illustration, which are resistor R2 and resistor Rn+1.
  • the resistor R2 is connected in parallel with switch one, and the switch one is transistor Q1.
  • the resistor Rn+1 is connected in parallel with switch n.
  • n is the transistor Qn
  • the control ends of the transistor Q1 and the transistor Qn are electrically connected to the processor 203
  • the processor 203 individually controls the on and off of the transistor Q1 and the transistor Qn
  • a resistor R7 is connected between the transistor Q1 and the processor 203
  • the transistor Q1 is connected to the interface 2 of the processor 203 through a resistor R7, the transistor Q1 and the resistor R7 are grounded through a resistor R6;
  • the transistor Qn and the processor 203 are connected with a resistor R5, and the transistor Qn is connected to the interface of the processor 203 through the resistor R5 n+1 connection, the transistor Qn and the resistor R5 are grounded through the resistor R4.
  • the negative electrode of the photovoltaic cell 201 is connected to the analog-to-digital converter 202
  • the positive electrode of the photovoltaic cell 201 is connected to the power source.
  • the optical sampling module has a unique design, and has higher sensitivity and a wider signal measurement range than existing products.
  • the optical sampling module adopts a confocal optical structure.
  • the confocal optical structure has a strong optical path focusing ability. After the excitation light source is focused, the energy is concentrated, so it can excite a larger signal, and the confocal optical structure can collect With more light signals, after focusing, the light transmitted to the photoelectric sensor is more concentrated, the signal strength is greater, the stability is better, and the anti-interference ability is stronger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本申请公开了一种兼具采样宽度和精度的光学采样电路及采集方法,光学采样模块包括包括光电池,采样电阻,运算放大器,模数转换器和处理器;光电池,采样电阻,运算放大器,模数转换器和处理器依次连接,光电池与采样电阻之间连接有N个补偿电阻,每个补偿电阻两端并联有开关,每一开关的控制端以及模数转换器的信号输出端分别与处理器连接;当处理器输出低电平时,开关断开,补偿电阻接入到采样电阻中以增加模数转换器采样时电阻的阻值;当处理器输出高电平时,开关接通,补偿电阻短路以减少模数转换器采样时电阻的阻值;采集方法为采用光学采样模块采集的方法。它的优点是能够实现动态采样,测量灵敏度和检测信号范围两者可以同时兼顾。

Description

说明书 发明名称:兼具釆样宽度和精度的光学釆样电路及釆集方法
[0001] 本申请是以申请号为 201910104184.9, 申请日为 2019年 2月 1日的中国专利申请 为基础, 并主张其优先权, 该申请的全部内容在此作为整体引入本申请中。
[0002] 技术领域
[0003] 本申请涉及检测技术领域, 尤其是一种兼具采样宽度和精度的光学采样电路及 采集方法。
[0004] 背景技术
[0005] 目前测量灵敏度和检测信号范围两者之间无法同时兼顾, 一般而言, 如设备灵 敏度越高, 则需要对于微弱光信号进行特殊处理, 例如通过对光电池的信号进 行放大, 如此一来则会导致高值信号溢出, 而如果要兼顾高值信号而选择较低 的信号增益, 则对微弱信号的识别能力就会不足, 两者之间往往无法同时兼顾 。 同时现有技术的光学采样系统都是使用固定值的采样电阻进行采样, 无法动 态调节, 因此仅能采样一个固定小范围内的光信号。
[0006] 申请内容
[0007] 本申请的目的是解决现有技术的不足, 提供一种兼具采样宽度和精度的光学采 样电路及采集方法。
[0008] 本申请的一种技术方案:
[0009] 一种兼具采样宽度和精度的光学采样电路, 包括光电池, 采样电阻, 运算放大 器, 模数转换器和处理器; 所述光电池, 采样电阻, 运算放大器, 模数转换器 和处理器依次连接, 所述光电池与采样电阻之间连接有 N个补偿电阻, 每个补偿 电阻两端并联有开关, 每一开关的控制端以及模数转换器的信号输出端分别与 处理器连接; 当处理器输出低电平时, 开关断开, 补偿电阻接入到采样电阻中 以增加模数转换器采样时电阻的阻值; 当处理器输出高电平时, 开关接通, 补 偿电阻短路以减少模数转换器采样时电阻的阻值。
[0010] 一种优选方案是所述开关为三极管, 所述三极管的输入端和输出端连接在补偿 电阻两端, 所述所述三极管的控制端与处理器连接。 [0011] 一种优选方案是所述补偿电阻的数量 N大于等于 2。
[0012] 本申请另一技术方案:
[0013] 一种兼具采样宽度和精度的光学采样电路的采集方法, 包括:
[0014] S1 , 根据实际的应用场景设置一个初始化的采样电阻值;
[0015] S2, 模数转换器进行第一次采样, 模数转换器将采集的信号传递给处理器;
[0016] S3 , 处理器根据第一次采样的数据进行分析并判断信号的强弱, 如果判断第一 次采样数据信号弱时, 即第一次采样的信号微弱, 则代表模数转换器前端采样 时的电阻过小, 处理器控制开关断开以增加采样时电阻的阻值, 之后, 模数转 换器然后进行第二次采样, 处理器再次根据第二次采样的数据进行分析并判断 信号的强弱, 如此采集 M次, 直至模数转换器输出合适的数据;
[0017] 如果判断第一次采样数据信号强时, 即数据溢出, 则代表模数转换器前端采样 时的电阻过大, 此时, 处理器控制开关闭合以减小采样时电阻的阻值, 之后, 模数转换器然后进行第二次采样, 处理器再次根据第二次采样的数据进行分析 并判断信号的强弱, 如此采集 M次, 直至模数转换器输出合适的数据。
[0018] 综合上述技术方案, 本申请的有益效果: 实现动态采样, 兼具采样宽度和精度 的光学采样电路, 采用采样电阻和 N个补偿电阻来进行采样, 并通过切换补偿电 阻接入到采样电阻中以增加模数转换器采样时电阻的阻值, 做到既能保证高信 号不会溢出, 同时也能正常地识别到低信号的应用场景; 具体的, 当模数转换 器采集的信号强时, 模数转换器通过处理器控制开关闭合, 补偿电阻短路以减 少模数转换器采样时电阻的阻值, 保证信号不会溢出; 当模数转换器采集的信 号非常微弱时, 模数转换器通过处理器控制开关打开, 补偿电阻接入到采样电 阻中以增加模数转换器采样时电阻的阻值, 保证微弱的信号也能正常地进行识 别和采样。 本申请可以扩大光学采样模块的测量范围, 即增大了信号测量的范 围, 光学采样模块能识别更微弱的信号, 即提高了系统的信噪比, 对于微弱信 号的大电阻采样能提高测量结果的稳定性。
[0019] 上述说明仅是本申请技术方案的概述, 为了能够更清楚了解本申请的技术手段 , 而可依照说明书的内容予以实施, 并且为了让本申请的上述和其他目的、 特 征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附图, 详细说明如下 [0020] 附图说明
[0021] 图 1是本申请第一实施例的原理图;
[0022] 图 2是本申请第二实施例的流程图。
[0023] 具体实施方式
[0024] 下面将结合本申请实施例中的附图, 对本申请实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本申请的一部分实施例, 而不是全 部的实施例。 基于本申请中的实施例, 本领域普通技术人员在没有作出创造性 劳动前提下所获得的所有其他实施例, 都属于本申请保护的范围。
[0025] 需要说明, 本申请中涉及“第一”、 “第二”等的描述仅用于描述目的, 而不能理 解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。 由此, 限定有“第一”、 “第二”的特征可以明示或者隐含地包括至少一个该特征。 另外 , 各个实施例之间的技术方案可以相互结合, 但是必须是以本领域普通技术人 员能够实现为基础, 当技术方案的结合出现相互矛盾或无法实现时应当认为这 种技术方案的结合不存在, 也不在本申请要求的保护范围之内。
[0026] 第一实施例, 如图 1所示, 一种兼具采样宽度和精度的光学采样电路, 包括光 电池 201, 采样电阻 204, 运算放大器 206, 模数转换器 202和处理器 203 ; 光电池 201, 采样电阻 204, 运算放大器 206 , 模数转换器 202和处理器 203依次连接。 光 电池 201与采样电阻 204之间连接有 N个补偿电阻, 每一补偿电阻两端并联有开关 , 每一补偿电阻 205两端并联有开关, 每个开关的控制端以及模数转换器 202的 信号输出端分别与处理器 203连接; 补偿电阻 205可以根据需要来设置, 可以设 置为 1个, 2个或者多个, 本申请中, 补偿电阻 205采用 2个来说明, 分别是电阻 R 2和电阻 Rn+1, 电阻 R2两端并联有开关一, 电阻 Rn+1两端并联有开关 n, 开关一 和开关 n的控制端分别与处理器 203电连接, 处理器 203分别单独控制开关一和开 关 n的开和断, 当处理器 203输出低电平时, 开关断开, 即开关一或 /和开关 n断开 , 补偿电阻 205接入到采样电阻 204中以增加模数转换器 202采样时电阻的阻值, 即电阻 R2或 /和电阻 Rn+1接入采样电阻 204中; 当处理器 203输出高电平时, 开关 接通, 即开关一或 /和开关 n接通, 补偿电阻 205短路以减少模数转换器 202采样时 电阻的阻值, 即电阻 R2或 /和电阻 Rn+1被旁路, 电阻 R2或 /和电阻 Rn+1不参与模 数转换器 202采样时的电阻。
[0027] 如图 1和图 2所示, 采样电阻 204的阻值大于补偿电阻 205的阻值, 一大一小两个 不同的电阻来进行采样, 并通过处理器 203来控制开关的闭或合来切换补偿电阻 205的接入或者不接入, 既能保证高信号不会溢出, 同时也能正常地识别到低信 号。 具体的原理是模数转换器 202检测信号强时, 处理器 203切换使得模数转换 器 202的采样的电阻阻值小, 保证信号不会溢出; 当模数转换器 202采集的信号 非常微弱时, 处理器 203切换使得模数转换器 202的采样的电阻阻值大, 保证微 弱的信号也能正常地进行识别和采样。 采样系统根据实际的应用场景设置一个 初始化的采样电阻值, 然后进行第一次采样, 处理器 203根据此次采样的数据进 行分析, 如果数据溢出, 则代表模数转换器 202前端的采样时的电阻过大, 于是 减小模数转换器 202采样时的电阻, 然后再进行一次采样并输出合适的数据; 如 果发现第一次采样的信号微弱, 则代表模数转换器 202前端的采样电阻过小, 于 是增大采样时的电阻阻值并输出合适的数据。 通过处理器 203的优化, 便可实时 调节采样时的电阻的阻值, 得到最佳的采样数据。
[0028] 第二实施例
[0029] 如图 1和图 2所示, 一种兼具采样宽度和精度的光学采样电路的采集方法, 包括
[0030] S1, 光学采样模块根据实际的应用场景设置一个初始化的采样电阻值;
[0031] S2然后进行第一次采样, 模数转换器 202将采集的信号传递给处理器 203,
[0032] S3 , 处理器 203根据第一次采样的数据进行分析并判断信号的强弱, 如果处理 器 203判断第一次采样数据信号弱时, 即第一次采样的信号微弱, 则代表模数转 换器 202前端采样时的电阻过小, 处理器 203控制开关断开以增加采样时电阻的 阻值, 之后, 模数转换器 202进行第二次采样, 处理器 203再根据第二次采样的 数据进行分析并判断信号的强弱, 如此采集 M次, 直至模数转换器 202输出合适 的数据;
[0033] 如果处理器 203判断第一次采样数据信号强时, 即数据溢出, 则代表模数转换 器 202前端采样时的电阻过大, 此时, 处理器 203控制开关闭合以减小采样时电 阻的阻值, 之后, 模数转换器 202进行第二次采样, 处理器再根据第二次采样的 数据进行分析并判断信号的强弱, 如此采集 M次, 直至模数转换器 202输出合适 的数据。
[0034] 优选的, 如图 1所示, 模数转换器 202与处理器 203的接口 1连接。 开关为三极管 , 三极管的输入端和输出端连接在补偿电阻 205两端, 三极管的控制端与处理器 203连接。 本申请中, 补偿电阻 205采用 2个来说明, 分别是电阻 R2和电阻 Rn+1, 电阻 R2两端并联有开关一, 开关一为三极管 Q1, 电阻 Rn+1两端并联有开关 n, 开关 n为三极管 Qn, 三极管 Q1和三极管 Qn的控制端分别与处理器 203电连接, 处 理器 203分别单独控制三极管 Q1和三极管 Qn的开和断, 三极管 Q1与处理器 203之 间连接有电阻 R7, 三极管 Q1通过电阻 R7与处理器 203的接口 2连接, 三极管 Q1与 电阻 R7之间通过电阻 R6接地; 三极管 Qn与处理器 203之间连接有电阻 R5 , 三极 管 Qn通过电阻 R5与处理器 203的接口 n+1连接, 三极管 Qn与电阻 R5之间通过电阻 R4接地。 其中, 光电池 201的负极与模数转换器 202连接, 光电池 201的正极与电 源连接。
[0035] 如图 1和图 2所示, 光学采样模块具有独特的设计, 相比现有的产品, 具有更高 的灵敏度和更宽的信号测量范围。 光学采样模块采用共聚焦式的光学结构, 共 聚焦式的光学结构的光路聚焦能力强, 激发光源经过聚焦后, 能量集中, 因此 能够激发出更大的信号, 同时共聚焦式的光学结构能够采集更多的光信号, 经 过聚焦后, 透射到光电传感器上的光更加集中, 信号强度更大, 稳定性更好, 抗干扰能力更强。
[0036] 以上仅为本申请的优选实施例, 并非因此限制本申请的专利范围, 凡是在本申 请的申请构思下, 利用本申请说明书及附图内容所作的等效结构变换, 或直接 / 间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。
发明概述
技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种兼具采样宽度和精度的光学采样电路, 其特征在于, 包括光电池 , 采样电阻, 运算放大器, 模数转换器和处理器; 所述光电池, 采样 电阻, 运算放大器, 模数转换器和处理器依次连接, 所述光电池与采 样电阻之间连接有 N个补偿电阻, 每一补偿电阻两端并联有开关, 每 个开关的控制端以及模数转换器的信号输出端分别与处理器连接; 当 处理器输出低电平时, 开关断开, 补偿电阻接入到采样电阻中以增加 模数转换器采样时电阻的阻值; 当处理器输出高电平时, 开关接通, 补偿电阻短路以减少模数转换器采样时电阻的阻值。
[权利要求 2] 根据权利要求 1所述兼具采样宽度和精度的光学采样电路, 其特征在 于, 所述开关为三极管, 所述三极管的输入端和输出端连接在补偿电 阻两端, 所述所述三极管的控制端与处理器连接。
[权利要求 3] 根据权利要求 1所述兼具采样宽度和精度的光学采样电路, 其特征在 于, 所述补偿电阻的数量 N大于等于 2
[权利要求 4] 一种兼具采样宽度和精度的光学采样电路的采集方法, 其特征在于, 包括:
S1, 根据实际的应用场景设置一个初始化的采样电阻值;
52, 模数转换器进行第一次采样, 模数转换器将采集的信号传递给处 理器;
53 , 处理器根据第一次采样的数据进行分析并判断信号的强弱, 如果 判断第一次采样数据信号弱时, 即第一次采样的信号微弱, 则代表模 数转换器前端采样时的电阻过小, 处理器控制开关断开以增加采样时 电阻的阻值, 之后, 模数转换器进行第二次采样, 处理器再根据第二 次采样的数据进行分析并判断信号的强弱, 如此采集 M次, 直至模数 转换器输出合适的数据;
如果判断第一次采样数据信号强时, 即数据溢出, 则代表模数转换器 前端采样时的电阻过大, 此时, 处理器控制开关闭合以减小采样时电 阻的阻值, 之后, 模数转换器进行第二次采样, 处理器再根据第二次 釆样的数据进行分析并判断信号的强弱, 如此釆集 M次, 直至模数转 换器输出合适的数据。
PCT/CN2019/077733 2019-02-01 2019-03-12 兼具采样宽度和精度的光学采样电路及采集方法 WO2020155313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910104184.9 2019-02-01
CN201910104184.9A CN109639280A (zh) 2019-02-01 2019-02-01 兼具采样宽度和精度的光学采样电路及采集方法

Publications (1)

Publication Number Publication Date
WO2020155313A1 true WO2020155313A1 (zh) 2020-08-06

Family

ID=66064778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077733 WO2020155313A1 (zh) 2019-02-01 2019-03-12 兼具采样宽度和精度的光学采样电路及采集方法

Country Status (2)

Country Link
CN (1) CN109639280A (zh)
WO (1) WO2020155313A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655628A (zh) * 2019-02-01 2019-04-19 深圳市金准生物医学工程有限公司 兼具采样宽度和精度的光学采样模块及荧光免疫分析仪
US11837164B2 (en) 2019-09-17 2023-12-05 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Drive control circuit and related driving method thereof, and display panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160301403A1 (en) * 2015-04-07 2016-10-13 Freescale Semiconductor, Inc. Filtered sampling circuit and a method of controlling a filtered sampling circuit
CN106230440A (zh) * 2016-08-31 2016-12-14 江苏惠中电气有限公司 一种可调的采样保持电路及其采样保持方法
CN106330122A (zh) * 2016-08-26 2017-01-11 天津市英贝特航天科技有限公司 一种基于fpga的模拟信号采集自动增益电路
CN108023513A (zh) * 2016-11-04 2018-05-11 德昌电机(深圳)有限公司 电机驱动集成电路和电机装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362253B2 (en) * 2005-09-26 2008-04-22 Supertex, Inc. Introduction to R2RC D/A converter
CN102967742B (zh) * 2012-12-06 2016-04-06 南京匹瑞电气科技有限公司 宽电流检测范围的电子互感器
CN203872158U (zh) * 2014-04-28 2014-10-08 比亚迪股份有限公司 一种降低电阻温度特性的补偿电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160301403A1 (en) * 2015-04-07 2016-10-13 Freescale Semiconductor, Inc. Filtered sampling circuit and a method of controlling a filtered sampling circuit
CN106330122A (zh) * 2016-08-26 2017-01-11 天津市英贝特航天科技有限公司 一种基于fpga的模拟信号采集自动增益电路
CN106230440A (zh) * 2016-08-31 2016-12-14 江苏惠中电气有限公司 一种可调的采样保持电路及其采样保持方法
CN108023513A (zh) * 2016-11-04 2018-05-11 德昌电机(深圳)有限公司 电机驱动集成电路和电机装置

Also Published As

Publication number Publication date
CN109639280A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020135703A1 (zh) 基于全桥绝缘检测电路的绝缘检测系统及电动汽车
WO2020155313A1 (zh) 兼具采样宽度和精度的光学采样电路及采集方法
CN108362377A (zh) 一种低频低噪声平衡零拍探测器
CN102075150B (zh) 一种数字胃肠机自动光圈的光电信号前置调理放大电路
US20110074404A1 (en) Magnetic sensor circuit
CN210155800U (zh) 用于烟雾传感器的电路装置和具有测量室的烟雾传感器
CN107315153A (zh) 一种峰值功率探头硬件调节零点偏置电路和方法
CN106645915A (zh) 基于镜像电流源多串电池电压检测电路的温飘补偿电路
US11610638B2 (en) Sample holding circuit of reduced complexity and electronic device using the same
CN212904654U (zh) 一种氧化还原电位的测量电路
CN113654460A (zh) 一种适用于光镊系统位置探测的差分四象限光电探测器
CN116930797A (zh) 一种电池内阻的检测电路
CN110501559B (zh) 一种电流采集装置
CN210405235U (zh) 一种四象限探测器信号放大电路
CN218006205U (zh) 光学采集放大电路及装置
TWI527456B (zh) Array read device, dual function read device and detection circuit
CN113064524B (zh) 一种触控检测系统及其方法和一种显示模组
CN212514771U (zh) 一种采集电压处理装置
CN209446663U (zh) 一种模拟信号峰值监测装置
CN105656547B (zh) 用于光接收模块中apd的输入信号强度显示电路
CN212210964U (zh) 一种氢燃料电堆单电源差分调理电路
CN204439702U (zh) 逆变焊机电流取样电路
CN206920019U (zh) 一种光电检测电路
CN220794435U (zh) 一种光信号检测电路
CN212363614U (zh) 一种基于ad8304的mems衰减器测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913664

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 14.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19913664

Country of ref document: EP

Kind code of ref document: A1