WO2020155238A1 - 一种心肺转流系统 - Google Patents

一种心肺转流系统 Download PDF

Info

Publication number
WO2020155238A1
WO2020155238A1 PCT/CN2019/075952 CN2019075952W WO2020155238A1 WO 2020155238 A1 WO2020155238 A1 WO 2020155238A1 CN 2019075952 W CN2019075952 W CN 2019075952W WO 2020155238 A1 WO2020155238 A1 WO 2020155238A1
Authority
WO
WIPO (PCT)
Prior art keywords
portable
module
power
electrically connected
sensor
Prior art date
Application number
PCT/CN2019/075952
Other languages
English (en)
French (fr)
Inventor
王维宁
李晓坤
刘日东
Original Assignee
江苏赛腾医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏赛腾医疗科技有限公司 filed Critical 江苏赛腾医疗科技有限公司
Publication of WO2020155238A1 publication Critical patent/WO2020155238A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes

Definitions

  • the invention relates to the field of medical devices used for extracorporeal life support, in particular to a cardiopulmonary bypass system.
  • Cardiopulmonary bypass system also known as extracorporeal membrane oxygenation (ECMO) is a mechanical circulatory assist technology that can be inserted percutaneously.
  • the cardiopulmonary bypass system usually consists of three parts: the main engine, the pump head and the membrane oxygenator.
  • the host computer controls and monitors the operation of the cardiopulmonary bypass system.
  • the pump head is used to circulate the blood inside and outside the body, and the membrane oxygenator is used to provide oxygen and exchange carbon dioxide in the blood discharged from the body.
  • the cardiopulmonary bypass system mainly drains the venous blood in the patient's body to the outside of the body, and the blood that passes through the membrane oxygenator to oxygenate and remove the carbon dioxide in the blood is returned to the patient's body.
  • the cardiopulmonary bypass system mainly has two forms: venous-to-venous ECMO (VV-ECMO) and venous-arterial ECMO (VA-ECMO).
  • VV-ECMO venous-to-venous ECMO
  • VA-ECMO venous-arterial ECMO
  • the former only has a respiratory assist function.
  • the latter has both circulation and breathing assistance.
  • the cardiopulmonary bypass system is usually used for emergency patients and patient transfer between hospitals, but the weight of the host of the cardiopulmonary bypass system is greater than 10 kg, the power supply in the host can be used without connecting to the mains, but its independent working time is short, resulting in cardiopulmonary The portability of the diversion system is poor.
  • the pump head directly drives the membrane oxygenator to operate.
  • the flow of blood and bubbles discharged from the body cannot be detected because there is no host. , It brings security risks.
  • the embodiment of the present invention provides a cardiopulmonary bypass system to solve the problem that the cardiopulmonary bypass system is not easy to carry.
  • the present invention is implemented as follows:
  • a cardiopulmonary bypass system which includes a monitoring host, a portable monitoring host, a pump, and a membrane oxygenator.
  • the monitoring host and the portable monitoring host are electrically connected to the pump, and the pump is connected to the membrane through a pipeline
  • the pump and the membrane oxygenator are respectively connected to the blood vessels in the body through medical cannulas.
  • the dual monitoring hosts can be used separately or simultaneously.
  • the operation of the system is shared by the dual monitoring hosts, which simplifies the system complexity of the portable monitoring host and the monitoring host, and greatly reduces the power consumption of the portable monitoring host and the monitoring host.
  • Figure 1 is a block diagram of a cardiopulmonary bypass system according to a first embodiment of the present invention
  • FIG. 2 is a block diagram of the monitoring host in the first embodiment of the present invention.
  • FIG. 3 is another block diagram of the monitoring host of the first embodiment of the present invention.
  • FIG. 4 is a block diagram of a portable monitoring host according to the first embodiment of the present invention.
  • FIG. 5 is another block diagram of the portable monitoring host according to the first embodiment of the present invention.
  • Fig. 6 is a diagram of the state of use of the lung bypass system according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram of a portable monitoring host according to a second embodiment of the present invention.
  • Fig. 8 is a diagram of the operating state of the lung bypass system according to the third embodiment of the present invention.
  • Fig. 9 is a block diagram of a monitoring host of the third embodiment of the present invention.
  • FIG. 1 is a block diagram of a cardiopulmonary bypass system according to the first embodiment of the present invention; as shown in the figure, this embodiment provides a cardiopulmonary bypass system 1.
  • the cardiopulmonary bypass system 1 includes a monitoring host 10 and a portable Monitoring host 11, pump 12 and membrane oxygenator 13.
  • the monitoring host 10 or/and the portable monitoring host 11 are connected to a pump 12, and the pump 12 is connected to a membrane oxygenator 13.
  • the user can select at least one of the monitoring host 10 and the portable monitoring host 11 to use, that is, the monitoring host 10 and the portable monitoring host 11 can be used separately or at the same time.
  • the cardiopulmonary bypass system 1 of this embodiment uses a monitoring host 10 and a portable monitoring host 11 at the same time.
  • the portable monitoring host 11 is electrically connected to the monitoring host 10, and the pump 12 is electrically connected to the portable monitoring host 11.
  • two medical cannulas are first inserted into the blood vessels of the heart or lungs in the human body.
  • One of the two medical cannulas is used as the blood output end, and the other is used as the blood output port.
  • the pump 12 is connected to a medical cannula as a blood output end, and the medical cannula as a blood output end is usually inserted into a venous blood vessel.
  • the membrane oxygenator 13 is connected to a medical cannula as a liquid input end, and the medical cannula as a liquid input end is usually inserted into a venous blood vessel or an arterial blood vessel.
  • the pump 12 and the membrane oxygenator 13 are connected by pipelines.
  • the monitoring host 10 provides power to the portable monitoring host 11, and the portable monitoring host 11 drives the pump 12 to operate.
  • the medical cannula as a blood output terminal outputs venous blood in the body.
  • the venous blood flows through the pump 12 and flows into the membrane oxygenator 13.
  • the membrane oxygenator 13 oxygenates the venous blood in the body and discharges carbon dioxide in the venous blood in the body.
  • the membrane oxygenator 13 outputs oxygenated blood, and the oxygenated blood is fed into a venous or arterial blood vessel from a medical cannula as a blood input end, so that the human heart or lungs, the pump 12 and the membrane oxygenator 13 form Circulation, when the pump 12 continues to operate, the venous blood in the heart or lungs is discharged, and then the venous blood is oxygenated by the membrane oxygenator 13, and finally the oxygenated blood is infused to the heart or lungs.
  • the monitoring host 10 and the portable monitoring host 11 monitor the state of blood during the blood circulation process, such as blood flow, bubble volume, temperature, pressure, or blood oxygen saturation.
  • FIGS. 2 and 3 are block diagrams of the monitoring host according to the first embodiment of the present invention.
  • the monitoring host 10 includes a control module 101, a power module 102, and a sensing module 103.
  • the power module 102 and the sensor module 103 are electrically connected to the control module 101 respectively.
  • the control module 101 includes a first processor 1011, a power conversion circuit 1012, and a sensing signal conversion circuit 1013.
  • the power conversion circuit 1012 and the sensing signal generation circuit 1013 are electrically connected to the first processor 1011, and the power conversion circuit 1012 is electrically connected.
  • the power module 102 is used to adjust the voltage or current form of the power signal input by the power module 102, and the adjusted power signal is supplied to the first processor 1011.
  • the power conversion circuit 1012 includes at least one of a rectifier circuit 10121 and a transformer circuit 10122, which mainly depends on the source of the power signal supplied by the power module 102.
  • the power signal provided by the power module 102 includes the AC power signal of the mains, At least one of the DC power signal of the vehicle and the DC power signal of the battery.
  • the power conversion circuit 1012 further includes a power selection circuit 10123, which is electrically connected The power output terminal of at least one of the rectifier circuit 10121 and the transformer circuit 10122 is used to switch the source of the power signal.
  • the power module 102 can provide the above three types of power sources, which include an AC power interface 1021, a DC power interface 1022, and a battery 1023.
  • the AC power interface 1021 is used to connect to external mains
  • the DC power interface 1022 is used to connect to vehicle power supplies or other external DC power sources.
  • the power conversion circuit 1012 electrically connected to the power module 102 of this embodiment includes a rectifier circuit 10121, two transformer circuits 10122, and a power selection circuit 10123.
  • the power input end of the rectifier circuit 10121 is electrically connected to the AC interface 1021 and the rectifier circuit 10121
  • the power output terminal of is electrically connected to the power selection circuit 10123.
  • the power input terminals of the two transformer circuits 10122 are respectively electrically connected to the DC interface 1022 and the battery 1023, and the power output terminals of the two transformer circuits 10122 are respectively electrically connected to the power selection circuit 10123.
  • the power selection circuit 10123 is electrically connected to the first processor 1011, and the power selection circuit 10123 is implemented using a power switch.
  • the power selection circuit 10123 makes the AC power interface 1021, the rectifier circuit 10121 and the first processor 1011 form a path.
  • the AC power interface 1021 is connected to the external mains.
  • the AC power signal of the mains enters the rectifier circuit 10121 through the AC power interface 1021.
  • the rectifier circuit 10121 converts the AC power signal into a DC power signal suitable for the first processor 1011.
  • the DC power signal passes The power selection circuit 10123 is transmitted to the first processor 1011, so that the first processor 1011 starts to operate.
  • the power selection circuit 10123 makes the DC power interface 1022, the transformer circuit 10122 electrically connected to the DC power interface 1022 and the first processor 1011 form a path, wherein the DC power interface 1022 is connected to an external vehicle power supply; Or the power supply selection circuit 10123 allows the battery 1023, the transformer circuit 10122 electrically connected to the battery 1023, and the first processor 1011 to form a path.
  • the vehicle power supply enters the transformer circuit 10122 through the DC power signal provided by the DC power interface 1021 or the battery 1023, and the transformer circuit 10122 adjusts the voltage of the DC power signal to a voltage suitable for the DC power signal used by the first processor 1011.
  • the adjusted DC The power signal is transmitted to the first processor 1011 through the power selection circuit 10123, so that the first processor 1011 starts to operate.
  • the power output terminal of the power selection circuit 10123 also provides DC power to other modules in the monitoring host 10 so that other modules can operate normally.
  • the sensor signal conversion circuit 1013 is electrically connected to the sensor module 103 for receiving the sensor signal transmitted by the sensor module 103; it can also convert the format of the sensor signal so that the format of the converted sensor signal conforms to the first processing The processing format of the processor 1011; it can further process the converted sensor signal and transmit the processed sensor signal to the first processor 1011.
  • the sensor signal conversion circuit 1013 includes at least one of an analog-digital conversion circuit 10131 and a data conversion interface 10132, which is mainly determined according to the format of the sensor signal generated by the sensor module 103. If the sensor signal generated by the sensor module 103 When the signal is a digital signal, the sensor signal needs to be converted by the analog-digital conversion circuit 10131.
  • the sensing signal conversion circuit 1013 further includes a second processor 10133, which is electrically connected to at least one of the analog-digital conversion circuit 10131 and the data conversion interface 10132 for preprocessing the sensing signal or the converted sensing signal. signal.
  • the second processor 10133 is electrically connected to the first processor 1011 and transmits the preprocessed sensor signal to the first processor 1011.
  • the second processor 10133 preprocessing the sensing signal can reduce the calculation of the first processor 1011, thereby improving the efficiency of the first processor 1011.
  • the sensing module 103 includes a temperature sensor 1031, a pressure sensor 1032, and a blood oxygen saturation sensor 1033.
  • the sensing signals generated by the temperature sensor 1031 and the pressure sensor 1032 are digital signals, and the transmission generated by the blood oxygen saturation sensor 1033
  • the sense signal is an analog signal.
  • the sensor signal conversion circuit 1013 electrically connected to the sensor module 103 of this embodiment includes two analog-digital conversion circuits 10131, a data conversion interface 10132, and a second processor 10133.
  • the two analog-digital conversion circuits 10131 are electrically connected to the temperature.
  • the sensor 1031 and the pressure sensor 1032, the data conversion interface 10132 are electrically connected to the blood oxygen saturation sensor 1033, and the second processor 10133 is electrically connected to the first processor 1011.
  • the temperature sensor 1031, the pressure sensor 1032, and the blood oxygen saturation sensor 1033 respectively detect the temperature, pressure, and blood oxygen saturation of the blood output from the patient's body, and generate temperature sensing signals, pressure sensing signals, and blood oxygen saturation transmission.
  • the temperature sensor signal and the pressure sensor signal are analog signals, which are converted into digital signals through the analog-digital conversion circuit 10131 electrically connected to the temperature sensor 1031 and the pressure sensor 1032.
  • the converted temperature sensor signal and pressure The sensing signal is transmitted to the second processor 10133.
  • the blood oxygen saturation sensor signal is an analog signal, and the blood oxygen saturation sensor signal is directly transmitted to the second processor 10133 through the data conversion interface 10132.
  • the second processor 10133 preprocesses the converted temperature sensor signal, pressure sensor signal, and blood oxygen saturation sensor signal, and combines the preprocessed temperature sensor signal, pressure sensor signal, and blood oxygen saturation sensor signal Transfer to the first processor 1011.
  • the monitoring host 10 of this embodiment and the portable monitoring host 11 are used at the same time, so the sensing module 103 of the monitoring host 10 of this embodiment is only provided with auxiliary sensors, and the main sensor is set on the portable monitoring host 11. 103 is only an embodiment of the present invention, and should not be limited thereto.
  • the monitoring host 10 further includes a display module 104, an input module 105, and a storage module 106.
  • the display module 104, the input module 105, and the storage module 106 are respectively electrically connected to the first processor 1011, and the first processor 1011 processes After sensing the signal, the blood status data is obtained, and the display signal is generated at the same time, and the display signal is transmitted to the display module 104.
  • the display module 104 displays the blood status data according to the display signal to facilitate the user to monitor the patient's physical status.
  • the input module 105 can be a button or a knob.
  • the monitoring parameter can be adjusted or set in the first processor 1011 through the input of the input module 105.
  • the monitoring parameter can be the monitoring threshold of the blood state data.
  • the first processor 1011 judges according to the monitoring parameter Whether the blood status data exceeds the monitoring threshold value, if the blood status data exceeds the monitoring threshold value, the first processor 1011 sends a warning signal to the display module 104, and the display module 104 displays the warning information according to the warning signal.
  • the storage module 106 stores blood status data.
  • the storage module 106 can be an internal memory or an external memory.
  • the internal memory includes flash memory, read-only memory or random access memory
  • the external memory includes a floppy disk, a hard disk, or a solid state disk.
  • the portable monitoring host 11 includes a portable control module 111, a portable power module 112, and a portable
  • the portable sensor module 113 and the motor module 114, the portable power module 112, the portable sensor module 113, and the motor module 114 are electrically connected to the portable control module 111, respectively.
  • the portable control module 111 includes a portable processor 1111, a portable power conversion circuit 1112, a portable sensor signal conversion circuit 1113, a motor drive and control circuit 1114, a portable power conversion circuit 1112, a portable sensor signal conversion circuit 1113
  • the portable processor 1111 is electrically connected to the motor drive and control circuit 1114 respectively.
  • the portable power conversion circuit 1112 is electrically connected to the portable power module 112 for adjusting the voltage of the power signal input by the portable power module 112, and the adjusted power signal is supplied to the portable processor 1111.
  • the portable power conversion circuit 1112 includes a transformer circuit 11121, which mainly depends on the source of the power signal supplied by the portable power module 112.
  • the power signal provided by the portable power module 112 includes the power conversion circuit 1012 of the monitoring host 10. At least one of the provided DC power signal, the vehicle DC power signal, and the battery DC power signal. If there are multiple sources of the power signal provided by the portable power module 112, the portable power conversion circuit 1112 also includes power selection The circuit 11123 and the power selection circuit 11123 are electrically connected to the power output terminal of the transformer circuit 11121 to switch the source of the power signal.
  • the portable power module 112 can provide the above three types of power sources, including a first direct current interface 1122a, a second direct current interface 1122b, and a battery 1123.
  • One of the first direct current interface 1122a is used to connect to the power source of the monitoring host 10.
  • the DC power supply of the power supply selection circuit 1023 of the conversion circuit 102, and the second DC power interface 1122b are used to connect the vehicle power supply or other external DC power supply.
  • the portable power conversion circuit 1112 electrically connected to the portable power module 112 of this embodiment includes two transformer circuits 11122 and a power selection circuit 11123, and is connected to the DC power supply of the power selection circuit 1023 of the power conversion circuit 102 of the monitoring host 10
  • the first direct current interface 1122a is directly electrically connected to the power selection circuit 11123.
  • the power input ends of the two transformer circuits 11122 are electrically connected to the second DC interface 1122b and the battery 1123 that are electrically connected to the external vehicle power supply or other DC power sources, respectively, and the power output ends of the two transformer circuits 11122 are respectively electrically connected to the power source Select circuit 11123.
  • the power selection circuit 11123 is electrically connected to the portable processor 1111, and the power selection circuit 11123 is implemented using a power switch.
  • the portable power modules 112 all provide DC power.
  • the power selection circuit 11123 enables the first DC interface 1122a electrically connected to the monitoring host 10 to form a path with the portable processor 1111; or the power selection circuit 11123 enables the second DC interface 1122b, and The transformer circuit 11122 electrically connected to the second direct current interface 1122b forms a path with the portable processor 1111; or the power selection circuit 11123 causes the battery 1123, the transformer circuit 11122 electrically connected to the battery 1123, and the portable processor 1111 to form a path .
  • the vehicle power supply enters the transformer circuit 11122 through the DC power signal provided by the DC power interface 1121 or the battery 1123, and the transformer circuit 11122 adjusts the voltage of the DC power signal to a voltage suitable for the DC power signal used by the portable processor 1111.
  • the DC power signal of the monitoring host 10 or the adjusted DC power signal is transmitted to the portable processor 1111 through the power selection circuit 11123, so that the portable processor 1111 starts to operate.
  • the portable sensor signal conversion circuit 1113 is electrically connected to the portable sensor module 113 for receiving the sensor signal transmitted by the portable sensor module 113; it can also convert the format of the sensor signal so that the converted sensor signal The format conforms to the processing format of the portable processor 1111; it can further process the converted sensor signal and transmit the processed sensor signal to the portable processor 1111.
  • the portable sensor signal conversion circuit 1113 includes at least one of an analog-digital conversion circuit and a data conversion interface 11132, which mainly depends on the format of the sensor signal generated by the portable sensor module 113. If the portable sensor module 113 When the generated sensor signal is a digital signal, the sensor signal needs to be converted by an analog-digital conversion circuit. If the sensor signal generated by the portable sensor module 113 is an analog signal, the sensor signal can be transmitted through the data conversion interface 11132.
  • the portable sensor module 113 includes a flow sensor 1131, and the sensing signal generated by the flow sensor 1131 is an analog signal.
  • the portable sensor signal conversion circuit 1113 that is electrically connected to the portable sensor module 113 of this embodiment includes a data conversion interface 11132, and the data conversion interface 11132 is electrically connected to the flow sensor 1131 and the portable processor 1111.
  • the flow sensor 1131 detects the flow of blood output from the patient's body and generates a flow sensing signal.
  • the flow sensing signal is an analog signal.
  • the flow sensing signal is directly transmitted to the portable processor 1111 through the data conversion interface 11132.
  • the portable processor 1111 analyzes the flow sensor signal.
  • the portable monitoring host 11 and the monitoring host 10 of this embodiment are used at the same time, so the portable sensor module 113 of this embodiment only has main sensors.
  • the portable sensor module 113 can also include air bubble sensors, temperature sensors, and pressure sensors. At least one of the sensor and the blood oxygen saturation sensor.
  • the motor module 114 is a motor for driving the pump 12, which is electrically connected to the motor driving and control circuit 1114 and connected to the pump 12.
  • the motor drive and control circuit 1114 is electrically connected to the portable processor 1111, and the portable processor 1111 controls the operation of the motor module 114 through the motor drive and control circuit 111.
  • the motor module 114 of this embodiment can also be omitted from the portable monitoring host 11, so that the weight of the portable monitoring host 11 is reduced.
  • the monitoring host 10 is electrically connected to the DC interface 1122 of the portable power module 112 of the portable host 11 through a cable.
  • the cable is electrically connected to the power output end of the power selection circuit 10123 of the power conversion circuit 1012 of the monitoring host 10, so that the monitoring host 10 can supply DC power to the DC interface 1122 of the monitoring host 11.
  • the first processor 1011 of the control module 101 of the monitoring host 10 and the portable processor 1111 of the portable control module 111 of the portable monitoring host 11 are wired or wireless
  • the method is electrically connected to achieve signal transmission
  • the wired method is to achieve wired transmission through a signal transmission line
  • the wireless method is to achieve wireless transmission through Bluetooth or infrared.
  • the power module 102 of the monitoring host 10 After completing the connection between the monitoring host 10 and the portable monitoring host 11, the power module 102 of the monitoring host 10 provides a power signal to the power conversion circuit 1012.
  • the power conversion circuit 1012 processes the power signal into a DC power signal that can be used by each module.
  • the modules transmitted to the monitoring host 10 and the portable monitoring host 11 make the monitoring host 10 and the portable monitoring host 11 start to operate.
  • the portable processor 1111 of the portable monitoring host 11 transmits the motor control signal to the motor drive and control circuit 1114.
  • the motor drive and control circuit 1114 starts and controls the operation of the motor module 114 according to the motor control signal.
  • the motor module 114 drives the pump 12 to operate. 12 Drain the venous blood in the patient to the outside and flow to the membrane oxygenator 13.
  • the venous blood is oxygenated in the membrane oxygenator 13 to remove carbon dioxide in the blood, and the blood processed by the membrane oxygenator 13 finally flows back to the venous or arterial blood vessels in the patient.
  • the multiple sensors of the sensor module 103 of the monitoring host 10 and the sensors of the portable sensor module 113 of the portable monitoring host 11 detect the blood state, and the sensor signals generated by the portable sensor module 113 are transmitted to The portable processor 1111, which processes the sensor signal.
  • the multiple sensing signals generated by the sensing module 103 of the monitoring host 10 are preprocessed by the sensing signal conversion circuit 1013, and the multiple sensing signals processed by the portable processor 1111 and the sensing signal conversion circuit 1013 are all transmitted to The first processor 1011, the first processor 1011 obtains blood status data according to multiple sensor signals, and the blood status data can be stored in the storage module 106.
  • the first processor 1011 generates a display signal according to a plurality of sensor signals, and transmits the display signal to the display module 104.
  • the display module 104 displays blood status data according to the display signal.
  • the source of the blood status data is based on the multiple sensor signals. This is beneficial for the user to monitor the patient's blood status.
  • the user sets the monitoring threshold of the blood state in the first processor 1011 through the input module 105.
  • the first processor 1011 can obtain the blood state data according to multiple sensor signals and determine whether the blood state data exceeds the corresponding If it is determined that the blood status data exceeds the corresponding monitoring threshold, the first processor 1011 generates a warning signal and transmits the warning signal to the display module 104.
  • the display module 104 generates warning information according to the warning signal. Other medical measures can be taken by watching the warning information displayed by the display module 104.
  • FIGS 6 and 7 are the use state diagram of the cardiopulmonary bypass system and the block diagram of the portable monitoring host according to the second embodiment of the present invention.
  • the above embodiment illustrates the monitoring host and the portable monitoring host It can be used at the same time.
  • This embodiment illustrates that the portable monitoring host 11 can be used alone.
  • the power provided by the portable power module 112 can be an external DC power supply or a battery 1123.
  • the power supply module 112 in this embodiment uses an external DC power supply, and the external DC power supply is electrically connected to the second DC interface 1122b electrically connected to the transformer circuit 11122 in the power module 112, and the DC power signal adjusts its voltage through the transformer circuit 11122 ,
  • the adjusted DC power signal is transmitted to the portable processor 1111 of the portable monitoring host 11, the flow sensor 1131 of the portable sensor module 113 and the motor of the motor module 114, so that the various modules of the portable monitoring host 11 can operate normally .
  • the portable processor 1111 first generates a motor control signal, and transmits the motor control signal to the motor drive and control circuit 1114.
  • the motor drive and control circuit 1114 drives and controls the motor module 114 according to the motor control signal, so that the motor module 114 drives the pump 12 to operate .
  • the pump 12 starts to operate, the venous blood in the fluid is oxygenated through the membrane oxygenator 13, and the membrane oxygenator 13 inputs the oxygenated blood to the venous or arterial blood vessels in the patient.
  • the flow sensor 1131 of the portable sensor module 113 detects the flow of blood, generates a flow sensing signal, and transmits the flow sensing signal to the portable processor 1111, and the portable processor 1111 processes the flow
  • the sensor signal is used to know the current blood flow according to the flow sensor signal.
  • the user can first set the blood flow monitoring threshold in the portable processor 1111.
  • the portable processor 1111 determines whether the blood flow exceeds the monitoring threshold. If it is determined that the blood flow exceeds the monitoring threshold, the portable processor 1111 Generates a warning signal, so the portable monitoring host 11 of this embodiment further includes a warning module 115.
  • the warning module 115 is electrically connected to the portable processor 1111 of the portable control module 111.
  • the portable processor 1111 generates and transmits the warning signal.
  • the warning module 115 generates warning information according to the warning signal.
  • the warning module 115 can be a warning light or a buzzer, so the warning information can be light information or sound information. The user can take other measures through the warning information.
  • the portable monitoring host 11 used alone is used in an emergency state, which includes first aid, transfer between hospitals, and failure of the monitoring host.
  • the weight of the portable monitoring host 11 is less than the weight of the monitoring host, which can effectively improve the portability of the portable monitoring host 11.
  • the portable power module 112 of the portable monitoring host 11 can use the on-board DC power supply and the DC power supply of the built-in battery 1123, so the portable monitoring host 11 can be used in the absence of a stable power supply, which effectively improves the portable monitoring host 11 Portability.
  • the portable monitoring host 11 is provided with a portable sensor module 113 that can monitor the state of the patient's blood, so that it can have good safety even in an emergency.
  • the portable sensor module 113 is only provided with the core flow sensor 1131, which reduces the complexity and power consumption of the portable monitoring host 11 and prolongs the working time of the portable monitoring host 11.
  • Figures 8 and 9 are the use state diagram of the cardiopulmonary bypass system and the block diagram of the monitoring host in the third embodiment of the present invention.
  • the first embodiment illustrates that the monitoring host and the portable monitoring host can be simultaneously Use
  • the second embodiment illustrates that the portable monitoring host can be used alone.
  • This embodiment illustrates that the monitoring host 10 can be used alone.
  • the sensors in the sensing module 103 can be adjusted and the main sensors can be added.
  • reduce auxiliary sensors for example: temperature sensor, pressure sensor, blood oxygen saturation sensor
  • the sensor module 103 of this embodiment increases the flow sensor 1030 compared to the sensor module of the first embodiment Set up.
  • the power supply provided by the power module 102 may be an external AC power supply, an external DC power supply or a battery 1023.
  • the power supply module 102 of this embodiment uses an external DC power supply.
  • the external DC power supply is electrically connected to the DC interface 1022 in the power supply module 102 that is electrically connected to the transformer circuit 10122.
  • the DC power signal is adjusted by the transformer circuit 10122 to adjust its voltage.
  • the adjusted DC power signal is transmitted to the monitoring host 10, the portable first processor 1011, the flow sensor 1030 of the sensing module 103, the temperature sensor 1031, the pressure sensor 1032, the blood oxygen saturation sensor 1033, the second processor 10133 and the display
  • the module 104 enables the modules of the monitoring host 10 to operate normally.
  • the first processor 1011 first generates a motor control signal, and transmits the motor control signal to the pump 12, and the pump 12 starts to operate according to the motor control signal. After the pump 12 starts to operate, the venous blood in the fluid is oxygenated through the membrane oxygenator 13, and the membrane oxygenator 13 inputs the oxygenated blood to the venous or arterial blood vessels in the patient.
  • the flow sensor 1030, temperature sensor 1031, pressure sensor 1032 and blood oxygen saturation sensor 1033 of the sensing module 103 respectively detect the flow, temperature, pressure and blood oxygen saturation of the blood, and respectively generate flow Sensing signal, temperature sensing signal, pressure sensing signal and blood oxygen saturation sensing signal, and transmitting flow sensing signal, temperature sensing signal, pressure sensing signal and blood oxygen saturation sensing signal to the second processing
  • the second processor 10133 preprocesses the flow sensor signal, temperature sensor signal, pressure sensor signal and blood oxygen saturation sensor signal.
  • the second processor 10133 transmits the preprocessed flow sensor signal, temperature sensor Signal, pressure sensing signal, and blood oxygen saturation sensing signal to the first processor 1011, and the first processor 1011 transmits the preprocessed flow sensing signal, temperature sensing signal, pressure sensing signal, and blood oxygen saturation
  • the sensory signal knows the current blood flow, temperature, pressure and blood oxygen saturation and other blood state data.
  • the user can set the monitoring threshold values of flow, temperature, pressure and blood oxygen saturation in the first processor 1011 through the input module 105, and the portable processor 111 can judge the blood flow, temperature, pressure and blood oxygen saturation.
  • the first processor 1011 determines that at least one of them exceeds the corresponding monitoring threshold, if it is determined that at least one of blood flow, temperature, pressure, and blood oxygen saturation exceeds the monitoring threshold, the first processor 1011 generates a warning signal and sends the warning signal to the display Module 104, the display module 104 displays warning information according to the warning signal, and the user can take other medical measures through the warning information.
  • the power module 102 of the monitoring host 10 of this embodiment can use AC power from the mains, DC power on the vehicle, and DC power from the built-in battery 1023. Therefore, the monitoring host 10 can be used without a stable power supply. It is used to cross-use the vehicle-mounted DC power supply and the DC power supply of the built-in battery 1023 when there is no stable power supply to extend the working time of the monitoring host 10 without a stable power supply.
  • the present invention provides a cardiopulmonary bypass system.
  • the dual monitoring hosts can be used separately or simultaneously.
  • the core sensor is set in the portable monitoring host
  • the auxiliary sensor is set in the monitoring host.
  • the operation of the system is shared by the dual monitoring host, which simplifies the system complexity of the portable monitoring host and the monitoring host.
  • the weight of the portable monitoring host is less than the weight of the monitoring host, and only the portable monitoring host can be used in an emergency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种心肺转流系统(1),包括监测主机(10)、携带式监测主机(11)、泵(12)及膜式氧合器(13),监测主机(10)及携带式监测主机(11)电性连接泵(12),泵(12)通过管路连接膜式氧合器(13),泵(12)及膜式氧合器(13)分别通过医用插管与体内血管连接,当体内血管的血液通过泵(12)及膜式氧合器(13)进行循环时,监测主机(10)及携带式监测主机(11)监测血液的状态。心肺转流系统(1)具有双监测主机(10,11),双监测主机(10,11)能分开使用,也能同时使用,其中携带式监测主机(11)的重量小于监测主机(10)的重量,便于急救或医院间转运时等紧急状态下携带使用。

Description

一种心肺转流系统 技术领域
本发明涉及用于体外生命支持的医疗器械领域,尤其涉及一种心肺转流系统。
背景技术
心肺转流系统,又称体外膜式氧合(extracorporeal membrane oxygenation,ECMO),为一种可经皮置入的机械循环辅助技术。心肺转流系统通常由主机、泵头和膜式氧合器三个部分构成。主机对心肺转流系统的运行进行控制和监测,泵头用于使体内外的血液进行循环,膜式氧合器用于提供氧气并交换体内排出的血液内的二氧化碳。心肺转流系统主要引流患者体内的静脉血液至体外,经过膜式氧合器氧合并排除血液中的二氧化碳后的血液回输患者体内。根据血液回输的途径不同,心肺转流系统主要有静脉到静脉(venovenous ECMO,VV-ECMO)和静脉到动脉(venous-arterial ECMO,VA-ECMO)两种形式,前者仅具有呼吸辅助作用,而后者同时具有循环和呼吸辅助作用。
由于心肺转流系统通常用于病人急救及医院间病人转运,但心肺转流系统的主机重量大于10公斤,主机内的电源能不需连接市电使用,但其独立工作时间较短,导致心肺转流系统的携带性不佳。当然也能选择不使用主机,直接通过电池直接供电给泵头,泵头直接驱动膜式氧合器运转,但在此模式下,因没有主机而无法侦测从体内排出的血液的流量及气泡,反而带来安全隐患。
发明内容
本发明实施例提供一种心肺转流系统,以解决心肺转流系统不易携带的问题。
为了解决上述技术问题,本发明是这样实现的:
提供了一种心肺转流系统,其包括监测主机、携带式监测主机、泵及膜式氧合器,该监测主机及该携带式监测主机电性连接该泵,该泵通过管路连接该膜式氧合器,该泵及该膜式氧合器分别通过医用插管与体内血管连接,当该体内血管的血液通过该泵及该膜式氧合器进行循环时,该监测主机及该携带式监测主机监测该血液的状态。
在本发明实施例中,通过设置监测主机及携带式监测主机,双监测主机能分开使用,也能同时使用。监测主机与携带式监测主机同时使用时,由双监测主机分担系统的运作,如此简化携带式监测主机及监测主机的系统复杂度,大幅降低携带式监测主机及监测主机的功耗。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明第一实施例的心肺转流系统的框图;
图2是本发明第一实施例的监测主机的框图;
图3是本发明第一实施例的监测主机的另一框图;
图4是本发明第一实施例的携带式监测主机的框图;
图5是本发明第一实施例的携带式监测主机的另一框图;
图6是本发明第二实施例的肺转流系统的使用状态图;
图7是本发明第二实施例的携带式监测主机的框图;
图8是本发明第三实施例的肺转流系统的使用状态图;
图9是本发明第三实施例的监测主机的框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,其是本发明第一实施例的心肺转流系统的框图;如图所示,本实施例提供一种心肺转流系统1,心肺转流系统1包括监测主机10、携带式监测主机11、泵12及膜式氧合器13。监测主机10或/及携带式监测主机11连接泵12,泵12连接膜式氧合器13。心肺转流系统1于使用时,使用者能择监测主机10及携带式监测主机11中至少一者使用,也就是监测主机10及携带式监测主机11能分开使用也能同时使用。本实施例的心肺转流系统1是同时使用监测主机10及携带式监测主机11,携带式监测主机11电性连接监测主机10,泵12电性连接携带式监测主机11。
本实施例的心肺转流系统1于运作时,先将两个医用插管分别插于人体内的心脏或肺的血管,两个医用插管的一者作为血液输出端,其另一者作为血液输入端。泵12连接作为血液输出端的医用插管,作为血液输出端的医用插管通常插于静脉血管。膜式氧合器13连接作为液体输入端的医用插管,作为液体输入端的医用插管通常插于静脉血管或动脉血管。泵12与膜式氧合器13之间通过管路连接。监测主机10提供电源至携带式监测主机11,携带式监测主机11驱动泵12运作,作为血液输出端的医用插管输出体内静脉血液,体内静脉血液流经泵12并流入膜式氧合器13,膜式氧合器13对体内静脉血液进行氧合并排出体内静脉血液中的二氧化碳。膜式氧合器13输出经氧合的血液,经氧合的血液从作为血液输入端的医用插管输入静脉血管或动脉血管,如此人体的心脏或肺、泵12与膜式氧合器13形成循环,当泵12持续运作时,心脏或肺内的静脉血液排出,再由膜式氧合器13对静脉血液进行氧合,最后经氧合的血液输至心脏或肺。监测主机10及携带式监测主机11于血液循环过程中监测血液的状态,血液的状态如血液的流量、气泡量、温度、压力或血氧饱和度等。
请一并参阅图2及图3,其是本发明第一实施例的监测主机的框图;如图所示,监测主机10包括控制模块101、电源模块102及传感模块103。电源模块102及传感模块103分别电性连接控制模块101。控制模块101包括第一处理器1011、电源转换电路1012及传感信号转换电路1013,电源转换电路1012及传感信号产生电路1013分别电性连接第一处理器1011,电源转换电路1012电性连接电源模块102,用于调整电源模块102所输入电源信号的电压或电流形式,经调整的电源信号供应至第一处理器1011。电源转换电路1012包括整流电路10121和变压电路10122中至少一者,其主要依据电源模块102所供应的电源信号的来源而定,电源模块102所提供的电源信号包括市电的交流电源信号、车载的直流电源信号及电池的直流电源信号中至少一者,若电源模块102所提供的电源信号的来源有多种时,电源转换电路1012还包括电源选择电路10123,电源选择电路10123电性连接整流电路10121和变压电路10122中至少一者的电源输出端,以切换电源信号的来源。
具体应用,电源模块102能提供上述三种电源,其包括交流电接口1021、直流电接口1022及电池1023,交流电接口1021用以连接外部的市电,直流电接口1022用以连接车载电源或其他外部直流电源。与本实施例的电源模块102电性连接的电源转换电路1012包括整流电路10121、两个变压电路10122和电源选择电路10123,整流电路10121的电源输入端电性连接交流电接口1021,整流电路10121的电源输出端电性连接电源选择电路10123。两个变压电路10122的电源输入端分别电性连接直流电接口1022及电池1023,两个变压电路10122的电源输出端分别电性连接电源选择电路10123。电源选择电路10123电性连接第一处理器1011,电源选择电路10123使用电源开关实现。
当电源模块102提供交流电源信号时,电源选择电路10123使交流电接口1021、整流电路10121与第一处理器1011形成通路。此时交流电接口1021连接外部的市电,市电的交流电源信号通过交流电接口1021进入整流电路10121,整流电路10121转换交流电源信号为适合第一处理器1011使用的直流 电源信号,直流电源信号通过电源选择电路10123传输至第一处理器1011,使第一处理器1011开始运作。
当电源模块102提供直流电源信号时,电源选择电路10123使直流电接口1022、与直流电接口1022电性连接的变压电路10122与第一处理器1011形成通路,其中直流电接口1022连接外部的车载电源;或者电源选择电路10123使电池1023、与电池1023电性连接的变压电路10122与第一处理器1011形成通路。车载电源通过直流电接口1021或电池1023所提供的直流电源信号进入变压电路10122,变压电路10122调整直流电源信号的电压为适合第一处理器1011使用的直流电源信号的电压,经调整的直流电源信号通过电源选择电路10123传输至第一处理器1011,使第一处理器1011开始运作。电源选择电路10123的电源输出端还提供直流电源至监测主机10内的其他模块,使其他模块能正常运作。
传感信号转换电路1013电性连接传感模块103,用于接收传感模块103所传送的传感信号;还能转换传感信号的格式,使经转换的传感信号的格式符合第一处理器1011的处理格式;还进一步能处理经转换的传感信号,并传送经处理的传感信号至第一处理器1011。传感信号转换电路1013包括模拟数字转换电路10131及数据转换接口10132中至少一者,其主要根据传感模块103所产生的传感信号的格式而定,若传感模块103所产生的传感信号为数字信号时,则传感信号需通过模拟数字转换电路10131进行转换。若传感模块103所产生的传感信号为模拟信号时,传感信号通过数据转换接口10132传输即可。传感信号转换电路1013还包括第二处理器10133,第二处理器10133电性连接模拟数字转换电路10131及数据转换接口10132中至少一者,用以预处理传感信号或经转换的传感信号。第二处理器10133电性连接第一处理器1011,并将预处理的传感信号传输至第一处理器1011。第二处理器10133对传感信号预处理能减轻第一处理器1011的运算,进而提升第一处理器1011的效率。
具体应用,传感模块103包括温度传感器1031、压力传感器1032及血氧 饱和度传感器1033,温度传感器1031及压力传感器1032所产生的传感信号为数字信号,血氧饱和度传感器1033所产生的传感信号为模拟信号。与本实施的传感模块103电性连接的传感信号转换电路1013包括两个模拟数字转换电路10131、数据转换接口10132和第二处理器10133,两个模拟数字转换电路10131分别电性连接温度传感器1031和压力传感器1032,数据转换接口10132电性连接血氧饱和度传感器1033,第二处理器10133电性连接第一处理器1011。温度传感器1031、压力传感器1032及血氧饱和度传感器1033分别侦测由患者体内输出的血液的温度、压力及血氧饱和度,并产生温度传感信号、压力传感信号及血氧饱和度传感信号,温度传感信号及压力传感信号为模拟信号,其分别通过与温度传感器1031及压力传感器1032电性连接的模拟数字转换电路10131转换成数字信号,经转换的温度传感信号及压力传感信号传送至第二处理器10133。血氧饱和度传感信号为模拟信号,血氧饱和度传感信号直接通过数据转换接口10132传输至第二处理器10133。第二处理器10133预处理经转换的温度传感信号及压力传感信号与血氧饱和度传感信号,并将预处理的温度传感信号、压力传感信号与血氧饱和度传感信号传送至第一处理器1011。
本实施例的监测主机10与携带式监测主机11同时使用,所以本实施例的监测主机10的传感模块103仅设置辅助的传感器,主要的传感器设置于携带式监测主机11,上述传感模块103仅为本发明一实施例,不应以此为限。
更近一步地,监测主机10还包括显示模块104、输入模块105及储存模块106,显示模块104、输入模块105及储存模块106分别与第一处理器1011电性连接,第一处理器1011处理传感信号后会获得血液的状态数据,同时产生显示信号,并传输显示信号至显示模块104,显示模块104根据显示信号显示血液的状态数据,以利于使用者监测患者的身体状态。输入模块105可为按键或旋钮,通过输入模块105的输入于第一处理器1011调整或设定监测参数,监测参数可为血液的状态数据的监测门槛值,第一处理器1011根据监测参数 判断血液的状态数据是否超过监测门槛值,若血液的状态数据超过监测门槛值时,第一处理器1011发出警示信号至显示模块104,显示模块104根据警示信号显示警示信息。储存模块106储存血液的状态数据,储存模块106可为内部存储器或外部存储器,内部存储器包括闪存记忆体、唯读记忆体或随机存取记忆体,外部存储器包括软磁盘、硬磁盘或固态硬盘。
再一并参阅图4及图5,其是本发明第一实施例的携带式监测主机的框图;如图所示,携带式监测主机11包括携带式控制模块111、携带式电源模块112、携带式传感模块113及电机模块114,携带式电源模块112、携带式传感模块113及电机模块114分别与携带式控制模块111电性连接。携带式控制模块111包括携带式处理器1111、携带式电源转换电路1112、携带式传感信号转换电路1113与电机驱动及控制电路1114,携带式电源转换电路1112、携带式传感信号转换电路1113与电机驱动及控制电路1114分别电性连接携带式处理器1111。
携带式电源转换电路1112电性连接携带式电源模块112,用于调整携带式电源模块112所输入电源信号的电压,经调整的电源信号供应至携带式处理器1111。携带式电源转换电路1112包括变压电路11121,其主要依据携带式电源模块112所供应的电源信号的来源而定,携带式电源模块112所提供的电源信号包括监测主机10的电源转换电路1012所提供的直流电源信号、车载的直流电源信号及电池的直流电源信号中至少一者,若携带式电源模块112所提供的电源信号的来源有多种时,携带式电源转换电路1112还包括电源选择电路11123,电源选择电路11123电性连接变压电路11121的电源输出端,以切换电源信号的来源。
本实施例中,携带式电源模块112能提供上述三种电源,其包括第一直流电接口1122a、第二直流电接口1122b及电池1123,第一直流电接口1122a的一者用以连接监测主机10的电源转换电路102的电源选择电路1023的直流电源,第二直流电接口1122b用以连接车载电源或其他外部直流电源。与本实施 例的携带式电源模块112电性连接的携带式电源转换电路1112包括两个变压电路11122和电源选择电路11123,连接监测主机10的电源转换电路102的电源选择电路1023的直流电源的第一直流电接口1122a直接电性连接电源选择电路11123。两个变压电路11122的电源输入端分别电性连接与外部车载电源或其他直流电源电性连接的第二直流电接口1122b及电池1123,两个变压电路11122的电源输出端分别电性连接电源选择电路11123。电源选择电路11123电性连接携带式处理器1111,电源选择电路11123使用电源开关实现。
携带式电源模块112均提供直流电源,电源选择电路11123使与监测主机10电性连接的第一直流电接口1122a与携带式处理器1111形成通路;或者电源选择电路11123使第二直流电接口1122b、与第二直流电接口1122b电性连接的变压电路11122与携带式处理器1111形成通路;或者电源选择电路11123使电池1123、与电池1123电性连接的变压电路11122与携带式处理器1111形成通路。车载电源通过直流电接口1121或电池1123所提供的直流电源信号进入变压电路11122,变压电路11122调整直流电源信号的电压为适合携带式处理器1111使用的直流电源信号的电压。监测主机10的直流电源信号或经调整的直流电源信号通过电源选择电路11123传输至携带式处理器1111,使携带式处理器1111开始运作。
携带式传感信号转换电路1113电性连接携带式传感模块113,用于接收携带式传感模块113所传送的传感信号;还能转换传感信号的格式,使经转换的传感信号的格式符合携带式处理器1111的处理格式;还进一步能处理经转换的传感信号,并传送经处理的传感信号至携带式处理器1111。携带式传感信号转换电路1113包括模拟数字转换电路及数据转换接口11132中至少一者,其主要根据携带式传感模块113所产生的传感信号的格式而定,若携带式传感模块113所产生的传感信号为数字信号时,则传感信号需通过模拟数字转换电路进行转换。若携带式传感模块113所产生的传感信号为模拟信号时,传感信号通过数据转换接口11132传输即可。
本实施例中,携带式传感模块113包括流量传感器1131,流量传感器1131所产生的传感信号为模拟信号。与本实施的携带式传感模块113电性连接的携带式传感信号转换电路1113包括数据转换接口11132,数据转换接口11132电性连接流量传感器1131和携带式处理器1111。流量传感器1131侦测由患者体内输出的血液的流量,并产生流量传感信号,流量传感信号为模拟信号,流量传感信号直接通过数据转换接口11132传输至携带式处理器1111。携带式处理器1111对流量传感信号进行分析。本实施例的携带式监测主机11与监测主机10同时使用,所以本实施例的携带式传感模块113仅具有主要的传感器,当然携带式传感模块113还能包括气泡传感器、温度传感器、压力传感器及血氧饱和度传感器中的至少一者。
电机模块114为驱动泵12的电机,其与电机驱动及控制电路1114电性连接,并与泵12连接。电机驱动及控制电路1114与携带式处理器1111电性连接,携带式处理器1111通过电机驱动及控制电路111控制电机模块114的运作。本实施例的电机模块114也能不设置于携带式监测主机11内,如此减轻携带式监测主机11的重量。
本实施例的心肺转流系统1于运作之前,先完成监测主机10与携带式监测主机11的连接。监测主机10通过电缆与携带式主机11的携带式电源模块112的直流电接口1122电性连接,电缆是电性连接监测主机10的电源转换电路1012的电源选择电路10123的电源输出端,使监测主机10能供应直流电源至监测主机11的直流电接口1122,另外监测主机10的控制模块101的第一处理器1011与携带式监测主机11的携带式控制模块111的携带式处理器1111通过有线或无线方式电性连接并达到信号传输,有线方式为通过信号传输线达到有线传输,无线方式通过蓝牙或红外线达到无线传输。
完成监测主机10与携带式监测主机11的连接之后,监测主机10的电源模块102提供电源信号至电源转换电路1012,电源转换电路1012处理电源信号为各模块能使用的直流电源信号,直流电源信号传输至监测主机10的各模 块及携带式监测主机11的各模块,使监测主机10及携带式监测主机11开始运作。
携带式监测主机11的携带式处理器1111传输电机控制信号至电机驱动及控制电路1114,电机驱动及控制电路1114根据电机控制信号启动及控制电机模块114运作,电机模块114驱动泵12运作,泵12引流患者体内的静脉血液往体外流,并流至膜式氧合器13。静脉血液于膜式氧合器13中进行氧合以排除血液中的二氧化碳,经膜式氧合器13处理的血液最后流回患者体内的静脉血管或动脉血管。
同时,监测主机10的传感模块103的多个传感器及携带式监测主机11的携带式传感模块113的传感器对血液状态进行侦测,携带式传感模块113所产生的传感信号传输至携带式处理器1111,携带式处理器1111对传感信号进行处理。监测主机10的传感模块103所产生的多个传感信号通过传感信号转换电路1013进行预处理,经携带式处理器1111及传感信号转换电路1013处理的多个传感信号均传输至第一处理器1011,第一处理器1011根据多个传感信号获得血液的状态数据,血液的状态数据能储存于储存模块106内。第一处理器1011根据多个传感信号产生显示信号,并传输显示信号至显示模块104,显示模块104根据显示信号显示血液的状态数据,血液的状态数据的来源是根据多个传感信号,如此有利于使用者监控患者的血液状态。同时使用者通过输入模块105于第一处理器1011设定血液的状态的监测门槛值,第一处理器1011能根据多个传感信号获得血液的状态数据,并判断血液的状态数据是否超过对应的监测门槛值,若判断血液的状态数据有超过对应的监测门槛值时,第一处理器1011产生警示信号,并传输警示信号至显示模块104,显示模块104根据警示信号产生警示信息,使用者可通过观看显示模块104所显示的警示信息进行其他医疗措施。
请参阅图6及图7,其是本发明第二实施例的心肺转流系统的使用状态图及携带式监测主机的框图;如图所示,上述实施例是说明监测主机与携带式监 测主机能同时使用,本实施例说明携带式监测主机11能单独使用,监测主机11单独使用时,携带式电源模块112所提供的电源可为外部的直流电源或电池1123。本实施例的电源模块112使用外部的直流电源,外部的直流电源与电源模块112中变压电路11122电性连接的第二直流电接口1122b电性连接,直流电源信号通过变压电路11122调整其电压,经调整的直流电源信号传输至携带式监测主机11的携带式处理器1111、携带式传感模块113的流量传感器1131与电机模块114的电机,使携带式监测主机11的各模块能正常运作。
接着携带式处理器1111先产生电机控制信号,并传送电机控制信号至电机驱动及控制电路1114,电机驱动及控制电路1114根据电机控制信号驱动及控制电机模块114,使电机模块114驱动泵12运作。泵12开始运作后,引流体内的静脉血液通过膜式氧合器13氧合,膜式氧合器13输入经氧合的血液至患者体内的静脉血管或动脉血管。于血液循环的过程中,携带式传感模块113的流量传感器1131侦测血液的流量,并产生流量传感信号,且传送流量传感信号至携带式处理器1111,携带式处理器1111处理流量传感信号,以根据流量传感信号得知目前血液流量。使用者能先于携带式处理器1111内先设定血液流量的监测门槛值,携带式处理器1111判断血液流量是否超过监测门槛值,若判断血液流量超过监测门槛值时,携带式处理器1111产生警示信号,所以本实施例的携带式监测主机11还包括警示模块115,警示模块115电性连接携带式控制模块111的携带式处理器1111,携带式处理器1111产生警示信号并传送警示信号至警示模块115,警示模块115根据警示信号产生警示信息,其中警示模块115可为警示灯或蜂鸣器,所以警示信息可为灯光信息或声音信息,使用者能通过警示信息作其他的措施。
单独使用携带式监测主机11是于紧急状态下使用,紧急状态包括急救、医院间转运、监测主机发生故障。携带式监测主机11的重量小于监测主机的重量,能有效提升携带式监测主机11的携带性。另外携带式监测主机11的携带式电源模块112能使用车载的直流电源及内建电池1123的直流电源,所以 携带式监测主机11能在缺乏稳定电源的情况下使用,有效提升携带式监测主机11的携带性。同时携带式监测主机11中有设置携带式传感模块113能监测患者血液的状态,使在紧急状态下也能具有良好的安全性。携带式传感模块113仅设置核心的流量传感器1131,如此降低携带式监测主机11的复杂度及功耗,延长携带式监测主机11的工作时间。
请参阅图8及9,其是本发明第三实施例的心肺转流系统的使用状态图及监测主机的框图;如图所示,第一实施例是说明监测主机与携带式监测主机能同时使用,第二实施例是说明携带式监测主机能单独使用,本实施例说明监测主机10能单独使用,监测主机10单独使用时,传感模块103内的传感器能作调整,可增加主要的传感器(例如:流量传感器),减少辅助的传感器(例如:温度传感器、压力传感器、血氧饱和度传感器),本实施例的传感模块103相对于第一实施例的传感模块增加流量传感器1030的设置。
电源模块102所提供的电源可为外部的交流电源、外部的直流电源或电池1023。本实施例的电源模块102使用外部的直流电源,外部的直流电源与电源模块102中与变压电路10122电性连接的直流电接口1022电性连接,直流电源信号通过变压电路10122调整其电压,经调整的直流电源信号传输至监测主机10携带式第一处理器1011、传感模块103的流量传感器1030、温度传感器1031、压力传感器1032、血氧饱和度传感器1033、第二处理器10133与显示模块104,使监测主机10的各模块能正常运作。
监测主机10内未设有电机模块,避免监测主机10的重量增加,所以监测主机10需搭配内建电机模块的泵12进行使用。第一处理器1011先产生电机控制信号,并传送电机控制信号至泵12,泵12根据电机控制信号开始运作。泵12开始运作后,引流体内的静脉血液通过膜式氧合器13氧合,膜式氧合器13输入经氧合的血液至患者体内的静脉血管或动脉血管。于血液循环的过程中,传感模块103的流量传感器1030、温度传感器1031、压力传感器1032、血氧饱和度传感器1033分别侦测血液的流量、温度、压力与血氧饱和度,并 分别产生流量传感信号、温度传感信号、压力传感信号及血氧饱和度传感信号,且传送流量传感信号、温度传感信号、压力传感信号及血氧饱和度传感信号至第二处理器10133,第二处理器10133预处理流量传感信号、温度传感信号、压力传感信号及血氧饱和度传感信号,第二处理器10133传输预处理的流量传感信号、温度传感信号、压力传感信号及血氧饱和度传感信号至第一处理器1011,第一处理器1011根据预处理的流量传感信号、温度传感信号、压力传感信号及血氧饱和度传感信号得知目前血液的流量、温度、压力及血氧饱和度等血液的状态数据。使用者能通过输入模块105先于第一处理器1011内先设定流量、温度、压力及血氧饱和度的监测门槛值,携带式处理器111判断血液流量、温度、压力及血氧饱和度中至少一者是否超过对应的监测门槛值,若判断血液流量、温度、压力及血氧饱和度中至少一者超过监测门槛值时,第一处理器1011产生警示信号,并传送警示信号至显示模块104,显示模块104根据警示信号显示警示信息,使用者能通过警示信息作其他的医疗措施。
本实施例的监测主机10的电源模块102能使用市电的交流电源,也能使用车载的直流电源,还能使用内建电池1023的直流电源,所以监测主机10能于没有稳定电源的状态下使用,于没有稳定电源的状态下交叉使用车载的直流电源及内建电池1023的直流电源,以延长监测主机10于没有稳定电源的状态下的工作时间。
综上所述,本发明提供一种心肺转流系统,通过设置监测主机及携带式监测主机,双监测主机能分开使用,也能同时使用。监测主机与携带式监测主机同时使用时,携带式监测主机内设置核心传感器,监测主机内设置辅助传感器,由双监测主机分担系统的运作,如此简化携带式监测主机及监测主机的系统复杂度,大幅降低携带式监测主机及监测主机的功耗。携带式监测主机的重量小于监测主机的重量,于紧急状态下能仅使用携带式监测主机。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置 不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (31)

  1. 一种心肺转流系统,其特征在于,包括监测主机、携带式监测主机、泵及膜式氧合器,所述监测主机及所述携带式监测主机电性连接所述泵,所述泵通过管路连接所述膜式氧合器,所述泵及所述膜式氧合器分别通过医用插管与体内血管连接,当体内血管的血液通过所述泵及所述膜式氧合器进行循环时,所述监测主机及所述携带式监测主机监测所述血液的状态。
  2. 如权利要求1所述的心肺转流系统,其特征在于,所述监测主机与所述携带式监测主机分别电性连接所述泵。
  3. 如权利要求1所述的心肺转流系统,其特征在于,所述监测主机电性连接所述携带式监测主机,所述携带式监测主机电性连接所述泵。
  4. 如权利要求1所述的心肺转流系统,其特征在于,所述监测主机包括控制模块、电源模块及传感模块,所述电源模块及所述传感模块分别与所述控制块电性连接,所述电源模块供应电源至所述控制模块及所述传感模块,所述传感模块监测所述血液的状态,并产生传感信号,且传输所述传感信号至所述控制模块,所述控制模块处理所述传感信号,并根据所述传感信号获得所述血液的状态数据。
  5. 如权利要求4所述的心肺转流系统,其特征在于,所述控制模块包括第一处理器、电源转换电路及传感信号转换电路,所述电源转换电路及所述传感信号转换电路分别电性连接所述第一处理器,所述电源模块电性连接所述电源转换电路,所述传感模块电性连接所述传感信号转换电路。
  6. 如权利要求5所述的心肺转流系统,其特征在于,所述电源模块包括交流电接口、直流电接口及电池中至少一者。
  7. 如权利要求6所述的心肺转流系统,其特征在于,所述电源模块为所述交流电接口,所述电源转换电路包括整流电路,所述整流电路电性连接所述交流电接口及所述第一处理器。
  8. 如权利要求6所述的心肺转流系统,其特征在于,所述电源模块为所述 直流电接口或所述电池,所述电源转换电路包括变压电路,所述直流电接口或所述电池电性连接所述变压电路,所述变压电路电性连接所述第一处理器。
  9. 如权利要求6所述的心肺转流系统,其特征在于,所述电源模块包括所述交流电接口、所述直流电接口及所述电池,所述电源转换电路包括整流电路及两个变压电路,所述交流电接口与所述整流电路电性连接,所述直流电接口及所述电池分别与对应的所述变压电路电性连接,所述整流电路及两个所述变压电路分别与所述第一处理器电性连接。
  10. 如权利要求9所述的心肺转流系统,其特征在于,所述电源转换电路还包括电源选择电路,所述电源选择电路电性连接于所述第一处理器与所述整流电路及两个所述变压电路之间。
  11. 如权利要求5所述的心肺转流系统,其特征在于,所述传感模块包括流量传感器、温度传感器、压力传感器及血氧饱和度传感器中至少一者。
  12. 如权利要求11所述的心肺转流系统,其特征在于,所述传感模块包括所述流量传感器及所述血氧饱和度传感器中至少一者,所述传感信号转换电路包括至少一个数据转换接口,所述流量传感器及所述血氧饱和度传感器中至少一者电性连接对应的所述数据转换接口,所述数据转换接口电性连接所述第一处理器。
  13. 如权利要求12所述的心肺转流系统,其特征在于,所述传感信号转换电路还包括第二处理器,所述第二处理器电性连接所述第一处理器与所述数据转换接口之间。
  14. 如权利要求11所述的心肺转流系统,其特征在于,所述传感模块包括所述温度传感器及所述压力传感器中至少一者,所述传感信号转换电路包括至少一个模拟数字转换电路,所述温度传感器及所述压力传感器中至少一者电性连接对应的所述模拟数字转换电路,所述模拟数字转换电路电性连接所述第一处理器。
  15. 如权利要求14所述的心肺转流系统,其特征在于,所述传感信号转换 电路还包括第二处理器,所述第二处理器电性连接所述第一处理器与所述模拟数字转换电路之间。
  16. 如权利要求4所述的心肺转流系统,其特征在于,所述监测主机还包括显示模块,所述显示模块电性连接所述控制模块,所述控制模块根据所述传感信号产生显示信号,并传输所述显示信号至所述显示模块,所述显示模块根据所述显示信号显示所述血液的状态数据。
  17. 如权利要求4所述的心肺转流系统,其特征在于,所述监测主机还包括输入模块,所述输入模块电性连接所述控制模块,通过所述输入模块于所述控制模块设定或调整监测参数。
  18. 如权利要求4所述的心肺转流系统,其特征在于,所述监测主机还包括储存模块,所述储存模块储存所述血液的状态数据。
  19. 如权利要求5所述的心肺转流系统,其特征在于,所述控制模块包括第一处理器、电源转换电路及传感信号转换电路。
  20. 如权利要求1所述的心肺转流系统,其特征在于,所述携带式监测主机包括携带式控制模块、携带式电源模块及携带式传感模块,所述携带式电源模块及所述携带式传感模块分别与所述携带式控制模块电性连接,所述携带式电源模块供应电源至所述携带式控制模块及所述携带式传感模块,所述携带式传感模块监测所述血液的状态,并产生传感信号,且传输所述传感信号至所述携带式控制模块,所述携带式控制模块处理所述传感信号,并根据所述传感信号获得所述血液的状态数据。
  21. 如权利要求20所述的心肺转流系统,其特征在于,所述携带式控制模块包括携带式处理器、携带式电源转换电路及携带式传感信号转换电路,所述携带式电源转换电路及所述携带式传感信号转换电路分别电性连接所述携带式处理器,所述携带式电源模块电性连接所述携带式电源转换电路,所述携带式传感模块电性连接所述携带式传感信号转换电路。
  22. 如权利要求21所述的心肺转流系统,其特征在于,所述携带式电源 模块包括第一直流电接口、第二直流电接口及电池中至少一者。
  23. 如权利要求22所述的心肺转流系统,其特征在于,所述携带式电源模块为所述第一直流电接口,所述直流电接口通过电缆电性连接所述监测主机,所述监测主机提供电源至所述直流电接口,所述直流电接口通过所述携带式电源电路电性连接所述携带式处理器,以传输电源至所述携带式处理器。
  24. 如权利要求22所述的心肺转流系统,其特征在于,所述携带式电源模块为所述第二直流电接口及所述电池中至少一者,所述携带式电源转换电路包括至少一个变压电路,所述第二直流电接口及所述电池中至少一者电性连接对应的所述变压电路,所述变压电路电性连接所述携带式处理器。
  25. 如权利要求22所述的心肺转流系统,其特征在于,所述携带式电源模块包括所述第一直流电接口、所述第二直流电接口及所述电池,所述电源转换电路包括两个变压电路,所述第一直流电接口通过所述电源转换电路与所述携带式处理器电性连接,所述第二直流电接口及所述电池分别与对应的所述变压电路电性连接,两个所述变压电路分别与所述携带式处理器电性连接。
  26. 如权利要求25所述的心肺转流系统,其特征在于,所述携带式电源转换电路还包括电源选择电路,所述电源选择电路电性连接于所述携带式处理器与所述第一直流电接口及两个所述变压电路之间。
  27. 如权利要求21所述的心肺转流系统,其特征在于,所述携带式传感模块包括流量传感器、温度传感器、压力传感器及血氧饱和度传感器中至少一者。
  28. 如权利要求27所述的心肺转流系统,其特征在于,所述携带式传感模块包括所述流量传感器及所述血氧饱和度传感器中至少一者,所述携带式传感信号转换电路包括至少一个数据转换接口,所述流量传感器及所述血氧饱和度传感器中至少一者电性连接对应的所述数据转换接口,所述数据转换接口电性连接所述携带式处理器。
  29. 如权利要求28所述的心肺转流系统,其特征在于,所述携带式传感模 块包括所述温度传感器及所述压力传感器中至少一者,所述携带式传感信号转换电路包括至少一个模拟数字转换电路,所述温度传感器及所述压力传感器中至少一者电性连接对应的所述模拟数字转换电路,所述模拟数字转换电路电性连接所述携带式处理器。
  30. 如权利要求20所述的心肺转流系统,其特征在于,所述携带式监测主机还包括电机模块,所述电机模块电性连接所述携带式控制模块,所述泵电性连接所述电机模块,所述携带式控制模块控制所述电机模块,所述电机模块驱动所述泵。
  31. 如权利要求20所述的心肺转流系统,其特征在于,所述携带式监测主机还包括警示模块,所述警示模块电性连接所述携带式控制模块,所述控制模块根据所述传感信号产生警示信号,并传输所述警示信号至所述警示模块,所述警示模块根据所述警示信号产生警示信息。
PCT/CN2019/075952 2019-02-01 2019-02-22 一种心肺转流系统 WO2020155238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910104715.4 2019-02-01
CN201910104715.4A CN109745592A (zh) 2019-02-01 2019-02-01 一种心肺转流系统

Publications (1)

Publication Number Publication Date
WO2020155238A1 true WO2020155238A1 (zh) 2020-08-06

Family

ID=66407409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075952 WO2020155238A1 (zh) 2019-02-01 2019-02-22 一种心肺转流系统

Country Status (2)

Country Link
CN (1) CN109745592A (zh)
WO (1) WO2020155238A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109771724A (zh) * 2019-01-31 2019-05-21 江苏赛腾医疗科技有限公司 一种监测主机及心肺转流系统
CN110538353A (zh) * 2019-08-19 2019-12-06 江苏赛腾医疗科技有限公司 体外心肺支持辅助系统
CN111282060A (zh) * 2020-03-18 2020-06-16 上海市东方医院(同济大学附属东方医院) 一种体外膜肺氧合装置
CN114306791B (zh) * 2021-12-23 2024-06-18 上海宏创医疗科技有限公司 一种体外循环设备用控制主机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011066481A2 (en) * 2009-11-27 2011-06-03 Brady Ken M Extra-corporeal membrane oxygenation control
CN102886082A (zh) * 2012-09-20 2013-01-23 上海市杨浦区市东医院 主动体外肺辅助系统
US20170326288A1 (en) * 2016-05-16 2017-11-16 Mayo Foundation For Medical Education And Research Medical reservoir level sensor
CN107592818A (zh) * 2015-05-13 2018-01-16 迈奎特心肺有限公司 一种临床参数计算模拟监测系统
CN108030970A (zh) * 2018-01-16 2018-05-15 王辉山 一种便携式体外循环系统
CN108744099A (zh) * 2018-06-19 2018-11-06 广州军区广州总医院 一种体外膜肺氧合装置及其控制氧合血供的控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210056941U (zh) * 2019-02-01 2020-02-14 江苏赛腾医疗科技有限公司 一种心肺转流系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011066481A2 (en) * 2009-11-27 2011-06-03 Brady Ken M Extra-corporeal membrane oxygenation control
CN102886082A (zh) * 2012-09-20 2013-01-23 上海市杨浦区市东医院 主动体外肺辅助系统
CN107592818A (zh) * 2015-05-13 2018-01-16 迈奎特心肺有限公司 一种临床参数计算模拟监测系统
US20170326288A1 (en) * 2016-05-16 2017-11-16 Mayo Foundation For Medical Education And Research Medical reservoir level sensor
CN108030970A (zh) * 2018-01-16 2018-05-15 王辉山 一种便携式体外循环系统
CN108744099A (zh) * 2018-06-19 2018-11-06 广州军区广州总医院 一种体外膜肺氧合装置及其控制氧合血供的控制方法

Also Published As

Publication number Publication date
CN109745592A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
WO2020155238A1 (zh) 一种心肺转流系统
US10773003B2 (en) System architecture that allows patient replacement of VAD controller/interface module without disconnection of old module
JP4104088B2 (ja) 循環器支援システム
US10434233B2 (en) Blood pump control system and blood pump system
US5643215A (en) Gas exchange apparatus and method
US20110118561A1 (en) Remote control for a medical monitoring device
WO1998014225A9 (en) Circulatory support system
CN210056941U (zh) 一种心肺转流系统
WO2020155237A1 (zh) 一种携带式监测主机及心肺转流系统
EP3813648B1 (en) Wearable modular extracorporeal life support device for mobile treatment of single and multiorgan failure
CN109821086A (zh) 一种便携式ecmo系统
WO2020155236A1 (zh) 一种监测主机及心肺转流系统
CN211157667U (zh) 一种携带式监测主机及心肺转流系统
CN210785665U (zh) 一种监测主机及心肺转流系统
WO2023179517A1 (zh) 一种自动控制制氢设备气流输出流量的方法
CN111701102B (zh) 一种体外膜肺氧合装置
EP1481698B1 (en) Circulatory support system
US20210178038A1 (en) Detecting pump suction, pump thrombus, and other adverse vad motor events
CN209847953U (zh) 一种体外膜肺氧合装置
WO2021031433A1 (zh) 体外心肺支持辅助系统
CN215990294U (zh) 一种心肺转流设备电源管理系统
CN220213557U (zh) 转移式体外膜肺氧合机
CN101999966A (zh) 一种心脏骤停和急性呼吸功能衰竭患者急救的“生命抢救箱”
CN211096520U (zh) 体外心肺支持辅助系统
CN212490965U (zh) 一种体外生命支持血液流转装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914135

Country of ref document: EP

Kind code of ref document: A1