WO2020155195A1 - 一种柔性温度传感器 - Google Patents
一种柔性温度传感器 Download PDFInfo
- Publication number
- WO2020155195A1 WO2020155195A1 PCT/CN2019/074948 CN2019074948W WO2020155195A1 WO 2020155195 A1 WO2020155195 A1 WO 2020155195A1 CN 2019074948 W CN2019074948 W CN 2019074948W WO 2020155195 A1 WO2020155195 A1 WO 2020155195A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- flexible
- temperature sensor
- sensitive
- flexible temperature
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B1/14—Other fabrics or articles characterised primarily by the use of particular thread materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/18—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/22—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0271—Thermal or temperature sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/6804—Garments; Clothes
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2101/00—Inorganic fibres
- D10B2101/10—Inorganic fibres based on non-oxides other than metals
- D10B2101/12—Carbon; Pitch
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/16—Physical properties antistatic; conductive
Definitions
- the invention relates to the technical field of sensors, in particular to a flexible temperature sensor.
- Temperature is closely related to physical, chemical, biological, environmental and electronic systems, and is one of the most concerned parameters.
- the main types of sensors that detect temperature are thermocouples, resistance temperature sensors, infrared and semiconductor temperature sensors.
- the resistance temperature sensor made of platinum (Pt) the most widely used and most stable performance on the market is the resistance temperature sensor made of platinum (Pt), but this type of temperature sensor is not flexible and has poor biocompatibility.
- Pt platinum
- temperature sensor devices are usually required to have the characteristics of simple operation, light weight, biological compatibility, high sensitivity and high flexibility. Therefore, the flexible temperature sensor has become one of the research hotspots at home and abroad.
- Taiwan Liao Ying-Chih et al. used inkjet printing to print nickel oxide film thermistors on polyimide substrates. The array is used for temperature sensing applications; Japan’s Takei Kuniharu et al. modified carbon nanotubes on polydimethylsiloxane (PDMS) and PEDOT:PSS polymers to synthesize flexible sensors, which can be applied to stress and temperature monitoring; Singapore’s Lee Pooi See et al. used lithography on PDMS polymers to prepare stretchable graphene thermistor temperature sensors.
- PDMS polydimethylsiloxane
- PSS PEDOT:PSS polymers
- modified carbon nanomaterials will affect the measurement accuracy of temperature sensors.
- polymer substrates will occur as the temperature rises. Deformation will lead to poor stability of temperature measurement, narrow measurement range, cumbersome preparation process, and poor experience of human wearing.
- the purpose of the present invention is to provide a flexible temperature sensor, which has simple preparation, low cost, cleanability, wide temperature monitoring range, high sensitivity, good stability and repeatability, and is compatible with existing textiles The advantages of technology compatibility.
- a flexible temperature sensor includes a flexible temperature-sensitive cloth.
- the flexible temperature-sensitive cloth includes a cloth base and at least one flexible temperature-sensitive conductive fiber.
- the cloth base is a flat fabric woven from a plurality of insulating fibers.
- the temperature-sensitive conductive fibers are fixed in the cloth base by weaving.
- the flexible temperature sensor of the present invention uses the temperature-sensitive conductive fiber as the temperature-sensing element, and the temperature-sensitive conductive fiber is woven into the cloth substrate. Therefore, the sensor is simple to prepare, has low preparation cost, and is compatible with modern textile technology. Warm conductive fibers are woven into clothing fabrics or wearing articles, which can maintain the functions and attributes of the fabric itself, achieve a comfortable wearing effect, and have a light weight, and can monitor the body temperature in real time. Furthermore, it has been verified by experiments that the flexible temperature sensor of the present invention also has the advantages of being cleanable, wide temperature monitoring range, high sensitivity, good stability and good repeatability.
- the temperature-sensitive conductive fiber is a carbon fiber doped with impurity ions.
- the fiber precursor is ion-doped (this type of ion doping means that impurity ions are inevitably brought into the material, or more doped into the material after additional doping treatment), and then The fiber precursor is put into an oxidation furnace for oxidation, and finally carbonized at a high temperature in a carbonization furnace to obtain carbon fiber doped with impurity ions as a temperature-sensitive conductive fiber, and then mix the temperature-sensitive conductive fiber with ordinary insulating fibers to make a flexible temperature Cloth.
- the evenly distributed impurity ions in the temperature-sensitive conductive fiber ionize at room temperature to form a positive center or a negative center, and a local electric field is generated near the impurity ions, so that the carriers passing through the impurity center will be subjected to Coulomb attraction or repulsion. , Its moving direction and speed will change, this process is called impurity scattering.
- the scattering of the impurities will be affected by temperature. As the temperature rises, the scattering effect of the impurities will be weakened, and the mobility of carriers will increase accordingly.
- the macroscopic manifestation is that the resistance of the temperature-sensitive conductive fiber decreases, and it changes with temperature. There is a negative correlation.
- the preparation process of using carbon fiber doped with impurity ions as the temperature-sensitive conductive fiber is simple, and the temperature-sensitive conductive fiber is prepared by the method of ion doping and high-temperature carbonization. It does not need to modify other materials on the surface to achieve temperature sensing characteristics and avoid modification The uniformity of the material limits the accuracy of temperature measurement, and the resulting temperature-sensitive conductive fiber has a wide temperature measurement range, high sensitivity, good stability and repeatability.
- the resistance value of the temperature-sensitive conductive fiber exhibits a negative temperature coefficient characteristic, and the resistance value between its two ends will decrease as the temperature rises.
- thermoelectric conductive fiber also includes a data collection element, and both ends of the temperature-sensitive conductive fiber are electrically connected to the data collection element.
- both ends of the temperature-sensitive conductive fiber are respectively provided with terminal electrodes, and the terminal electrodes at both ends of the temperature-sensitive conductive fiber are respectively electrically connected with the data collection element through wires.
- the flexible temperature-sensitive cloth is packaged inside the packaging shell.
- the material of the packaging shell is a high molecular polymer.
- Figure 1 is a schematic diagram of the structure of the flexible temperature sensor of the present invention.
- Figure 2 is a side view of the flexible temperature sensor of the present invention.
- Figure 3 is a physical view of the flexible temperature-sensitive cloth of the present invention.
- Fig. 4 is a graph of the temperature response range of the flexible temperature sensor of the present invention.
- Figure 5 The temperature response curve of the flexible temperature sensor of the present invention in the human body temperature range (30°C ⁇ 45°C);
- Figure 6 The temperature response curve diagram of the flexible temperature sensor of the present invention after being cleaned and dried for different times;
- 1 Tempoture-sensitive conductive fiber
- 2 Cloth substrate
- 3 Wired point between temperature-sensitive conductive fiber and wire
- 4 Wire
- 5 Packaging shell
- 6 Data acquisition component.
- the flexible temperature sensor of the present invention includes a flexible temperature-sensitive cloth, the flexible temperature-sensitive cloth includes a cloth base 2 and at least one flexible temperature-sensitive conductive fiber 1, and the cloth base 2 is composed of a plurality of A flat fabric woven by insulating fibers, and the temperature-sensitive conductive fibers 1 are fixed in the cloth base 2 by weaving.
- the temperature-sensitive conductive fiber 1 is a carbon fiber doped with impurity ions, and the resistance value of the temperature-sensitive conductive fiber 1 specifically exhibits a negative temperature coefficient characteristic.
- the impurity ions doped into the temperature-sensitive conductive fiber may be one or more of sodium ions, potassium ions, calcium ions, and chloride ions.
- the temperature-sensitive conductive fibers 1 themselves have no crossover or mutual contact parts.
- the insulating fiber uses conventional textile fibers such as polyester or linen.
- the flexible temperature sensor further includes a data collection element 6, and both ends of the temperature-sensitive conductive fiber 1 are electrically connected to the data collection element 6 respectively.
- the data collection element 6 uses a voltage stabilizing source and a single-chip microcomputer to collect electrical signals, and then converts them according to the temperature curve formula, and after transmission to the terminal, the temperature value can be directly displayed.
- both ends of the temperature-sensitive conductive fiber 1 are respectively provided with terminal electrodes, and the terminal electrodes at both ends of the temperature-sensitive conductive fiber 1 are electrically connected to the data collection element 6 through a wire 4, and the temperature-sensitive conductive fiber 1
- the terminal electrodes at both ends of the fiber 1 are respectively welded to the wires, as shown in the welding points 3 in Figs. 1 and 2.
- the flexible temperature sensor further includes a packaging shell 5, and the flexible temperature-sensitive cloth is encapsulated inside the packaging shell 5, as shown in FIGS. 1 and 2.
- the material of the packaging shell 5 is a high molecular polymer. More preferably, the packaging shell 5 is transparent or semi-transparent. In order to more clearly show the relationship between the packaging shell 5 and other components, as shown in FIG. 1 and FIG. 2 uses a black solid line to draw the outline of the package shell 5.
- the chemical fiber precursor is doped with sodium ions, and then subjected to oxidation and high-temperature carbonization to obtain carbon fibers doped with sodium ions as the temperature-sensitive conductive fiber 1, and then electroplating is performed on both ends of the temperature-sensitive conductive fiber 1 respectively
- the terminal electrodes are made by copper, and the terminal electrodes at both ends of the temperature-sensitive conductive fiber 1 are respectively welded to the silver wire 4, and then the temperature-sensitive conductive fiber 1 welded with the wire 4 is mixed with polyester to make a smooth and flexible feeling Warm cloth, as shown in Figure 3, the darker fiber in the figure is the temperature-sensitive conductive fiber 1.
- FIG. 4 is a graph of the temperature response range of the flexible temperature sensor of the present invention. From the graph, it can be seen that the flexible sensor of the present invention belongs to a negative temperature coefficient type, and its resistance decreases as the temperature rises.
- the flexible temperature sensor of the present invention can be used to detect temperatures in the range of -150°C to 150°C, and the temperature response curve matches the quadratic function fitting curve, which shows that the temperature detection range of the flexible temperature sensor of the present invention is relatively large. wide.
- the flexible temperature sensor was prepared according to the method of Example 1.
- the flexible temperature sensor was placed on the temperature changing table to detect the temperature response relationship of the sensor within the range of human body temperature change.
- the detection range was 30°C ⁇ 45°C, and the temperature interval was 1°C.
- the temperature response curve is shown in Figure 5.
- Fig. 5 shows that the flexible temperature sensor of the present invention has better sensitivity, and the resistance change of the sensor presents a better linear relationship with temperature changes in the range of 30°C to 45°C, and can be used for real-time monitoring of human body temperature.
- a flexible temperature sensor was prepared according to the method of Example 1, and the prepared flexible temperature sensor was removed from the package shell 5 and placed in water for ultrasonic cleaning for different times, and then dried and tested for its temperature response performance at 30°C and 70°C. As shown in FIG. 6, the test results found that the temperature response of the sensor after 60 minutes of ultrasonic cleaning has good repeatability, which fully verifies that the flexible temperature sensor of the present invention has cleaning resistance characteristics and the temperature response is also very stable.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Textile Engineering (AREA)
- Nonlinear Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
本发明公开一种柔性温度传感器,该柔性温度传感器包括柔性感温布料,所述柔性感温布料包括布料基底和至少一根柔性的感温导电纤维,所述布料基底是由多根绝缘纤维编织而成的平面织物,所述感温导电纤维通过编织的方式固定在所述布料基底内。本发明的柔性温度传感器具有制备简单,成本低,可清洗、温度监测范围广、灵敏度高、稳定性和重复性好,而且与现有纺织技术兼容的优点。
Description
本发明涉及传感器技术领域,特别是涉及一种柔性温度传感器。
温度与物理、化学、生物、环境和电子系统密切相关,是最受关注的参数之一。目前,检测温度的传感器类型主要有热电偶、电阻式温度传感器、红外线和半导体温度传感器。其中,市面上使用最广泛、性能最稳定的是以白金(Pt)制作的电阻式温度传感器,但是这类温度传感器非柔性而且生物兼容性不好。特别是电子皮肤、机器人传感器、环境安全和人体健康的温度测量方面,通常要求温度传感器件具有操作简单、质量轻巧、生物兼容、高灵敏性和高柔韧性等特点。因此,柔性温度传感器成为了国内外的研究热点之一。
近年来,人们已经报道了并提供了以下几种类型的柔性温度传感技术方案,如台湾Liao Ying–Chih等人利用喷墨打印工艺在聚酰亚胺衬底上印刷氧化镍薄膜热敏电阻阵列用于温度传感应用;日本Takei Kuniharu等人在聚二甲基硅氧烷(PDMS)和PEDOT:PSS聚合物上修饰碳纳米管合成柔性传感器,可应用于应力和温度的监测;新加坡的Lee Pooi See等人在PDMS聚合物上采用平板印刷法制备可拉伸石墨烯热敏电阻温度传感器。然而,上述柔性温度传感技术在实际应用中存在着较大的局限性,比如,修饰碳纳米材料的均匀性会影响温度传感器的测量精度,此外,聚合物基底会随着温度升高而发生变形,会导致温度测量的稳定性较差,测量范围也较窄,制备过程繁琐,而且人体穿戴的体验感较差。
为了进一步满足人类对智能服装的追求,可穿戴的电子织物也应运而生,现有温度传感织物主要是以服用织物为基底,并且在其表面负载导电材料制作而成。虽然此类温度传感器与布料兼容,但是也存在着负载金属或者碳导电材料后的织物手感粗糙,舒适性较差,制备工艺较复杂,织物上负载材料的均匀性和稳定性较差等问题。
因此,发明一种柔软穿戴舒适、耐洗涤、灵敏度较高、稳定性和重复性好,而且探测温度范围广的柔性温度传感器,在智能可穿戴设备和电子织物领域具有重要的意义。
发明内容
针对现有技术的缺陷,本发明的目的是提供一种柔性温度传感器,其具有制备简单,成本低,可清洗、温度监测范围广、灵敏度高、稳定性和重复性好,而且与现有纺织技术兼容的优点。
本发明采取的技术方案如下:
一种柔性温度传感器,包括柔性感温布料,所述柔性感温布料包括布料基底和至少一根柔性的感温导电纤维,所述布料基底是由多根绝缘纤维编织而成的平面织物,所述感温导电纤维通过编织的方式固定在所述布料基底内。
本发明的柔性温度传感器利用感温导电纤维作为感温元件,并将感温导电纤维织入布料基底中,因此该传感器制备简单,制备成本低,而且有利于与现代纺织技术兼容,可以把感温导电纤维编织到衣服织物或者穿戴物品上,既可保持织物本身的功能和属性,达到穿戴舒适效果,且质量轻盈,又可实时监测人体温度。并且经实验验证,本发明的柔性温度传感器还具备可清洗、温度监测范围广、灵敏度高、稳定性和重复性好的优点。
进一步地,所述感温导电纤维是掺入杂质离子的碳纤维。
本发明中,对纤维原丝进行离子掺杂(这种离子掺杂是指,杂质离子不可避免地带入到材料中,或者还经过额外的掺杂处理更多地掺入材料中),然后将纤维原丝放进氧化炉中进行氧化,最后在碳化炉中高温碳化处理,获得掺入杂质离子的碳纤维作为感温导电纤维,然后将感温导电纤维与普通的绝缘纤维混编制得柔性感温布料。感温导电纤维中均匀分布的杂质离子在室温下会电离形成正电中心或者负电中心,在杂质离子附近会产生局域电场,从而使得载流子经过杂质中心附近会受到库伦引力或斥力的作用,其运动方向和速度将发生变化,这个过程称为杂质散射。该杂质散射会受到温度的影响,随着温度升高,杂质散射作用会减弱,载流子的迁移率会随之增加,宏观表现为感温导电纤维的电阻减小,而且与温度的变化趋势呈负相关。
采用掺入杂质离子的碳纤维作为感温导电纤维的制备工艺简单,利用离子掺杂和高温碳化的方法制备感温导电纤维,无需在其表面修饰其他材料,即可实现温度传感特性,避免修饰材料的均匀性对温度测量精度的限制,得到的感温导电纤维测温范围广、灵敏度高、稳定性和重复性好。
进一步地,所述感温导电纤维的阻值呈负温度系数特性,其两端之间的电阻值会随着温 度升高而下降。
进一步地,所述感温导电纤维中无交叉或相互接触的部位,避免短路。
进一步地,还包括数据采集元件,所述感温导电纤维的两端分别与所述数据采集元件电连接。
进一步地,所述感温导电纤维的两端分别设有端电极,所述感温导电纤维两端的端电极分别通过导线与所述数据采集元件电连接。
进一步地,还包括封装外壳,所述柔性感温布料封装于所述封装外壳内部。
进一步地,所述封装外壳的材料为高分子聚合物。
为了更好地理解和实施,下面结合附图详细说明本发明。
图1为本发明的柔性温度传感器的结构示意图;
图2为本发明的柔性温度传感器的侧视图;
图3为本发明的柔性感温布料的实物图;
图4为本发明的柔性温度传感器的温度响应范围曲线图;
图5本发明的柔性温度传感器在人体体温范围(30℃~45℃)内的温度响应曲线图;
图6本发明的柔性温度传感器经过不同时间清洗并干燥后的温度响应曲线图;
附图标记说明:
1–感温导电纤维;2–布料基底;3–感温导电纤维与导线的焊接点;4–导线;5–封装外壳;6–数据采集元件。
请参阅图1-3,本发明的柔性温度传感器包括柔性感温布料,所述柔性感温布料包括布料基底2和至少一根柔性的感温导电纤维1,所述布料基底2是由多根绝缘纤维编织而成的平面织物,所述感温导电纤维1通过编织的方式固定在所述布料基底2内。
进一步地,所述感温导电纤维1是掺入杂质离子的碳纤维,所述感温导电纤维1的阻值具体呈负温度系数特性。具体地,所述感温导电纤维中掺入的杂质离子可为钠离子、钾离子、钙离子、氯离子等中的一种或多种。
为避免短路,所述感温导电纤维1自身无交叉或相互接触的部位。
进一步地,所述绝缘纤维采用涤纶或者亚麻等常规纺织纤维。
为了实现检测数据的采集,所述柔性温度传感器还包括数据采集元件6,所述感温导电纤维1的两端分别与所述数据采集元件6电连接。所述数据采集元件6采用稳压源和单片机采集电学信号,再根据温度曲线公式换算,传输到终端后,可直接显示温度值。更优地,所述感温导电纤维1的两端分别设有端电极,所述感温导电纤维1两端的端电极分别通过导线4与所述数据采集元件6电连接,所述感温导电纤维1两端的端电极分别与导线焊接在一起,如图1和图2中所示的焊接点3。
为了保护柔性感温布料,所述柔性温度传感器还包括封装外壳5,所述柔性感温布料封装于所述封装外壳5内部,如图1和图2所示。进一步地,所述封装外壳5的材料为高分子聚合物,更优地,所述封装外壳5为透明或半透明,为更清楚地显示封装外壳5与其他部件的关系,在图1和图2中用黑色实线绘制封装外壳5的轮廓。
实施例1
本实施例中,在化学纤维原丝中掺杂钠离子,然后进行氧化和高温碳化处理,获得掺入钠离子的碳纤维作为感温导电纤维1,接着在感温导电纤维1两端分别通过电镀铜的方式制得端电极,并将感温导电纤维1两端的端电极分别与银制的导线4焊接,再将焊有导线4的感温导电纤维1与涤纶进行混编制得平整的柔性感温布料,如图3所示,图中颜色较深的纤维为感温导电纤维1。
接着使用高分子聚合物对上述制得的柔性感温布料进行封装,制成封装外壳5,获得柔性温度传感器,然后将该柔性温度传感器置于变温台上,测试其温度响应范围曲线。请参阅图4,其为本发明的柔性温度传感器的温度响应范围曲线图,由该图可知,本发明的柔性传感器属于负温度系数型,其电阻随温度上升而下降。另外,本发明的柔性温度传感器可用于检测–150℃~150℃范围内的温度,而且温度响应曲线与二次函数拟合曲线相匹配,这展示了本发明的柔性温度传感器的温度检测范围较广。
实施例2
按照实施例1的方法制备柔性温度传感器,将柔性温度传感器置于变温台,检测传感器在人体体温变化范围内的温度响应关系,检测范围为30℃~45℃,温度间隔为1℃,测得的 温度响应曲线如图5所示。图5表明,本发明的柔性温度传感器具有较好的灵敏度,而且传感器的电阻变化在30℃~45℃范围内随温度变化呈现较好的线性关系,可以用于实时监测人体温度。
实施例3
按照实施例1的方法制备柔性温度传感器,并将制得的柔性温度传感器除去封装外壳5后置于水中超声清洗不同时间,再烘干后测试其在30℃和70℃的温度响应性能,如图6所示,测试结果发现,长达60分钟超声清洗后传感器的温度响应的重复性很好,充分验证了本发明的柔性温度传感器具有耐清洗的特性,而且温度响应也很稳定。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。
Claims (8)
- 一种柔性温度传感器,其特征在于:包括柔性感温布料,所述柔性感温布料包括布料基底和至少一根柔性的感温导电纤维,所述布料基底是由多根绝缘纤维编织而成的平面织物,所述感温导电纤维通过编织的方式固定在所述布料基底内。
- 根据权利要求1所述的柔性温度传感器,其特征在于:所述感温导电纤维是掺入杂质离子的碳纤维。
- 根据权利要求1或2所述的柔性温度传感器,其特征在于:所述感温导电纤维的阻值呈负温度系数特性。
- 根据权利要求1所述的柔性温度传感器,其特征在于:所述感温导电纤维中无交叉或相互接触的部位。
- 根据权利要求1所述的柔性温度传感器,其特征在于:还包括数据采集元件,所述感温导电纤维的两端分别与所述数据采集元件电连接。
- 根据权利要求5所述的柔性温度传感器,其特征在于:所述感温导电纤维的两端分别设有端电极,所述感温导电纤维两端的端电极分别通过导线与所述数据采集元件电连接。
- 根据权利要求1所述的柔性温度传感器,其特征在于:还包括封装外壳,所述柔性感温布料封装于所述封装外壳内部。
- 根据权利要求7所述的柔性温度传感器,其特征在于:所述封装外壳的材料为高分子聚合物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/646,748 US11313734B2 (en) | 2019-02-02 | 2019-02-13 | Flexible temperature sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910107784.0 | 2019-02-02 | ||
CN201910107784.0A CN109781291B (zh) | 2019-02-02 | 2019-02-02 | 一种柔性温度传感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020155195A1 true WO2020155195A1 (zh) | 2020-08-06 |
Family
ID=66504191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/074948 WO2020155195A1 (zh) | 2019-02-02 | 2019-02-13 | 一种柔性温度传感器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11313734B2 (zh) |
CN (1) | CN109781291B (zh) |
WO (1) | WO2020155195A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111513686B (zh) * | 2020-04-30 | 2023-11-07 | 业成科技(成都)有限公司 | 温度感测组件、温度检测器及穿戴装置 |
CN113390525B (zh) * | 2021-05-31 | 2024-04-02 | 中国科学院深圳先进技术研究院 | 一种柔性温度传感器阵列及其制备方法 |
CN113865626B (zh) * | 2021-09-02 | 2024-03-19 | 浙江大学 | 一种柔性温湿度集成传感器及其制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101561324A (zh) * | 2009-05-26 | 2009-10-21 | 东华大学 | 具有机织结构的柔性电阻式温度传感器 |
JP2012197521A (ja) * | 2011-03-18 | 2012-10-18 | Asahi Kasei Fibers Corp | 導電性伸縮性編地 |
CN107022823A (zh) * | 2017-03-24 | 2017-08-08 | 东华大学 | 一种集成温敏纤维的机织结构柔性温度传感器 |
CN107043990A (zh) * | 2017-03-24 | 2017-08-15 | 东华大学 | 一种针织结构柔性可拉伸温度传感器 |
CN107242856A (zh) * | 2017-06-07 | 2017-10-13 | 宋佳 | 基于非晶合金织物的柔性传感器 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8411480D0 (en) * | 1984-05-04 | 1984-06-13 | Raychem Corp | Sensor array |
JPH0686100B2 (ja) * | 1986-04-24 | 1994-11-02 | 積水化学工業株式会社 | 導電性布状物とその製造方法及び導電性シ−ト又はフイルム |
JP3037525B2 (ja) * | 1993-04-12 | 2000-04-24 | 松下電器産業株式会社 | 発熱シート |
US6137669A (en) * | 1998-10-28 | 2000-10-24 | Chiang; Justin N. | Sensor |
US6713733B2 (en) * | 1999-05-11 | 2004-03-30 | Thermosoft International Corporation | Textile heater with continuous temperature sensing and hot spot detection |
TWI257822B (en) * | 2003-09-19 | 2006-07-01 | Tex Ray Ind Co Ltd | Flexible electro-heating apparatus and fabrication thereof |
GB0404419D0 (en) * | 2004-02-27 | 2004-03-31 | Intelligent Textiles Ltd | Electrical components and circuits constructed as textiles |
ES2663098T3 (es) * | 2010-09-13 | 2018-04-11 | Pst Sensors (Pty) Limited | Método de producción de un sensor de temperatura impreso |
US9603560B2 (en) * | 2012-01-26 | 2017-03-28 | The University Of Akron | Flexible electrode for detecting changes in temperature, humidity, and sodium ion concentration in sweat |
US10462898B2 (en) * | 2012-09-11 | 2019-10-29 | L.I.F.E. Corporation S.A. | Physiological monitoring garments |
US10159440B2 (en) * | 2014-03-10 | 2018-12-25 | L.I.F.E. Corporation S.A. | Physiological monitoring garments |
WO2016033328A1 (en) * | 2014-08-27 | 2016-03-03 | North Carolina State University | Binary encoding of sensors in textile structures |
WO2016073655A2 (en) * | 2014-11-04 | 2016-05-12 | North Carolina State University | Smart sensing systems and related methods |
CN106211383A (zh) * | 2015-04-30 | 2016-12-07 | 常州市纵横新世纪国际贸易有限公司 | 一种碳纤维编织发热布及低压直流加热控温系统 |
JP6845217B2 (ja) * | 2015-10-12 | 2021-03-17 | サンコ テキスタイル イスレットメレリ サン ベ ティク エーエスSanko Tekstil Isletmeleri San. Ve Tic. A.S. | 織布 |
DE102016118001A1 (de) * | 2016-05-25 | 2017-11-30 | Teiimo Gmbh | Textilprodukt mit dehnbarer Elektrode und/oder außenseitiger Kontaktierung der Elektrode oder eines anderen Sensors, und Verfahren zu seiner Herstellung |
IT201600094342A1 (it) * | 2016-09-20 | 2018-03-20 | Plug & Wear Srl | Metodo per la produzione di un sensore tessile |
US20190072440A1 (en) * | 2017-08-31 | 2019-03-07 | Simon Fraser University | Fibre-based sensor for yarn |
CN108103634A (zh) * | 2017-10-30 | 2018-06-01 | 东华镜月(苏州)纺织技术研究有限公司 | 纺织结构热电转换器件的制备方法 |
-
2019
- 2019-02-02 CN CN201910107784.0A patent/CN109781291B/zh active Active
- 2019-02-13 WO PCT/CN2019/074948 patent/WO2020155195A1/zh active Application Filing
- 2019-02-13 US US16/646,748 patent/US11313734B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101561324A (zh) * | 2009-05-26 | 2009-10-21 | 东华大学 | 具有机织结构的柔性电阻式温度传感器 |
JP2012197521A (ja) * | 2011-03-18 | 2012-10-18 | Asahi Kasei Fibers Corp | 導電性伸縮性編地 |
CN107022823A (zh) * | 2017-03-24 | 2017-08-08 | 东华大学 | 一种集成温敏纤维的机织结构柔性温度传感器 |
CN107043990A (zh) * | 2017-03-24 | 2017-08-15 | 东华大学 | 一种针织结构柔性可拉伸温度传感器 |
CN107242856A (zh) * | 2017-06-07 | 2017-10-13 | 宋佳 | 基于非晶合金织物的柔性传感器 |
Also Published As
Publication number | Publication date |
---|---|
CN109781291B (zh) | 2021-10-26 |
US11313734B2 (en) | 2022-04-26 |
US20210131877A1 (en) | 2021-05-06 |
CN109781291A (zh) | 2019-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cai et al. | Flexible temperature sensors constructed with fiber materials | |
Fan et al. | An antisweat interference and highly sensitive temperature sensor based on poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature | |
CN110736559B (zh) | 柔性温度-压力传感器及其制备方法和应用 | |
WO2020155195A1 (zh) | 一种柔性温度传感器 | |
Wu et al. | Silk composite electronic textile sensor for high space precision 2D combo temperature–pressure sensing | |
CN113108935B (zh) | 一种柔性温度传感器、制备方法及其应用 | |
Zhang et al. | Textile‐only capacitive sensors for facile fabric integration without compromise of wearability | |
Yeon et al. | Highly conductive PEDOT: PSS treated by sodium dodecyl sulfate for stretchable fabric heaters | |
Chen et al. | Flexible temperature sensors based on carbon nanomaterials | |
Yang et al. | All-fabric-based multifunctional textile sensor for detection and discrimination of humidity, temperature, and strain stimuli | |
Fan et al. | Highly sensitive, durable and stretchable plastic strain sensors using sandwich structures of PEDOT: PSS and an elastomer | |
US11313743B2 (en) | Tactile sensor | |
Guo et al. | A highly stretchable humidity sensor based on spandex covered yarns and nanostructured polyaniline | |
CN108896199A (zh) | 一种可拉伸的纱线传感器及其制备方法 | |
CN105671654B (zh) | 一种离子感应式人工皮肤阵列结构及其制备方法 | |
Bai et al. | Flexible heating fabrics with temperature perception based on fine copper wire and fusible interlining fabrics | |
WO2021212927A1 (zh) | 多功能传感集成的柔性织物基传感器及其应用 | |
US20130216469A1 (en) | Method of manufacturing infrared sensor material, infrared sensor material, infrared sensor device and infrared image sensor | |
Yang et al. | Toward high-performance multifunctional electronics: Knitted fabric-based composite with electrically conductive anisotropy and self-healing capacity | |
Seeberg et al. | Printed organic conductive polymers thermocouples in textile and smart clothing applications | |
Lin et al. | An all‐nanofiber‐based, breathable, ultralight electronic skin for monitoring physiological signals | |
Nakamura et al. | Development of flexible and wide-range polymer-based temperature sensor for human bodies | |
Cui et al. | Highly stretchable, sensitive, and multifunctional thermoelectric fabric for synergistic-sensing systems of human signal monitoring | |
Zhao et al. | Wet-spun PEDOT: PSS/ionic liquid composite fibers for wearable e-textiles | |
CN105024007B (zh) | 一种热电厚膜制备的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19912720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19912720 Country of ref document: EP Kind code of ref document: A1 |