WO2020155012A1 - 通信方法、设备及存储介质 - Google Patents

通信方法、设备及存储介质 Download PDF

Info

Publication number
WO2020155012A1
WO2020155012A1 PCT/CN2019/074166 CN2019074166W WO2020155012A1 WO 2020155012 A1 WO2020155012 A1 WO 2020155012A1 CN 2019074166 W CN2019074166 W CN 2019074166W WO 2020155012 A1 WO2020155012 A1 WO 2020155012A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication system
communication
measurement subframe
node
measurement
Prior art date
Application number
PCT/CN2019/074166
Other languages
English (en)
French (fr)
Inventor
尹小俊
黄源良
戴劲
Original Assignee
上海飞来信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海飞来信息科技有限公司 filed Critical 上海飞来信息科技有限公司
Priority to PCT/CN2019/074166 priority Critical patent/WO2020155012A1/zh
Priority to CN201980004979.0A priority patent/CN111279653A/zh
Publication of WO2020155012A1 publication Critical patent/WO2020155012A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to the field of electronic technology, in particular to a communication method, equipment and storage medium.
  • multi-layer wireless networks have the characteristics of easy expansion and easy fault isolation
  • multi-layer star wireless networks are widely used. For example, one control terminal controls multiple police drones to patrol certain places (such as stations), one control terminal controls multiple agricultural drones to fertilize crops, and one control terminal controls multiple monitoring devices to Monitor certain areas (such as shopping malls) and so on.
  • the double-layer star wireless network may include a high-level node and multiple communication systems.
  • two communication systems are taken as an example, the first communication system and the second communication system respectively.
  • high-level nodes are used to control various communication systems, such as assigning tasks to various communication systems.
  • Each communication system can include one or more middle-level nodes, and one or more bottom-level nodes under the middle-level nodes. All communication systems use the same working frequency band.
  • the highest-level middle-level nodes of each communication system A frequency point in the working frequency band is acquired as the working frequency point in the corresponding communication system.
  • the uplink and downlink subframes use the same frequency, and this frequency defines the working frequency; if the uplink subframe uses frequency hopping, then only the downlink frequency is defined as working Frequency.
  • the working frequency points of each communication system are usually determined by measuring subframes. For example, the bottom layer node in Figure 1a scans multiple frequency points in the measurement subframe to obtain interference information corresponding to multiple frequency points, and scans to obtain The interference information is reported to the middle layer node, and the middle layer node determines the operating frequency of the bottom layer node and/or the middle layer node according to the received interference information and the interference information obtained by scanning by itself.
  • the middle layer node determines the operating frequency of the bottom layer node and/or the middle layer node according to the received interference information and the interference information obtained by scanning by itself.
  • the embodiments of the present invention provide a communication method, equipment and storage medium, which are beneficial to reducing wireless interference between various communication systems and improving communication quality.
  • an embodiment of the present invention provides a communication method, which is applied to a communication device in a first communication system.
  • the first communication system is a communication system in a multi-layer wireless network. Including multiple communication systems, the method includes:
  • the position of the first measurement subframe of the first communication system is determined according to the identifier of the first communication system, wherein, within each configuration time interval, each communication system is configured with at least one measurement subframe, according to the The identification of each of the multiple communication systems, each of the multiple communication systems is configured with measurement subframes in different positions.
  • an embodiment of the present invention provides a communication device, the communication device is a node in a first communication system, the first communication system is a communication system in a multilayer wireless network, and the multilayer wireless
  • the network includes multiple communication systems
  • the control device includes: a memory and a processor
  • the memory is used to store program instructions
  • the processor calls the program instructions stored in the memory to execute the following steps:
  • the position of the first measurement subframe of the first communication system is determined according to the identifier of the first communication system, wherein, within each configuration time interval, each communication system is configured with at least one measurement subframe, according to the The identification of each of the multiple communication systems, each of the multiple communication systems is configured with measurement subframes in different positions.
  • an embodiment of the present invention provides a computer-readable storage medium, including: the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the computer program is used to execute the communication method described above.
  • the communication device can obtain the identity of the first communication system, and determine the position of the first measurement subframe of the first communication system according to the identity of the first communication system, because the positions of the measurement subframes of multiple communication systems Different, can avoid the time overlap problem of each communication system obtaining the operating frequency, can reduce the wireless interference between each communication system, and improve the communication quality.
  • Figure 1a is a schematic diagram of a network topology structure of a double-layer star wireless network provided by an embodiment of the present invention
  • Figure 1b is a schematic diagram of a network topology structure of a three-layer star wireless network provided by an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a frame structure of a radio frame provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the frame structure of another wireless frame provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a frame structure of another wireless frame provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the relationship between the time for determining the working frequency point and the position of the measurement subframe according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a frame structure of another radio frame provided by an embodiment of the present invention.
  • FIG. 8 is another schematic diagram of the relationship between the time for determining the working frequency point and the position of the measurement subframe according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of another communication method provided by an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of another communication method provided by an embodiment of the present invention.
  • Fig. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present invention.
  • the system architecture applied by the communication method may be a multi-layer wireless network.
  • the multi-layer wireless network may be a multi-layer star wireless network.
  • the multi-layer wireless network may also be other suitable wireless networks containing multiple levels.
  • a multi-layer star wireless network is taken as an example.
  • the multi-layer star wireless network may be a double-layer star wireless network or a three-layer star wireless network.
  • the multilayer star wireless network may include at least two communication systems, that is, at least a first communication system and a second communication system.
  • each communication system in the multi-layer star wireless network includes at least one communication device, and each communication device can be regarded as each node for scanning to obtain interference information in the measurement subframe.
  • the uppermost middle layer node in the communication system can determine the operating frequency point according to the interference information obtained by scanning each node in the communication system.
  • the uppermost intermediate layer node is defined as the first intermediate layer node.
  • the double-layer star wireless network includes a first communication system and a second communication system.
  • Each communication system includes an intermediate node, and the intermediate node in the communication system is a node directly connected to a high-level node.
  • each node of the first communication system is used to scan the measurement subframe to obtain interference information.
  • each bottom layer node of the first communication system sends the interference information obtained by scanning to the middle layer node of the first communication system after the measurement subframe ends.
  • the middle layer node of the first communication system determines the operating frequency according to the interference information scanned by itself and the received interference information reported by the bottom layer node.
  • the operating frequency is delivered to each underlying node of the first communication system.
  • the principle of determining the operating frequency by the second communication system is the same as the principle of determining the operating frequency by the first communication system, and will not be repeated here.
  • the multilayer star wireless network as a three-layer star wireless network as an example, as shown in FIG. 1b, the three-layer star wireless network includes a first communication system and a second communication system, and each communication system includes One high-level node, two-level middle-level nodes, and one-level bottom-level nodes.
  • the two-level middle-tier nodes include a first middle-tier node and a second middle-tier node, wherein the first middle-tier node is used for direct connection with a high-level node, and the second middle-tier node is used for a direct connection with a bottom-level node.
  • each node of the first communication system is used to scan the measurement subframe to obtain interference information.
  • each bottom layer node of the first communication system sends the interference information obtained by scanning to the second middle layer node of the first communication system after the measurement subframe ends.
  • the second middle layer node sends the interference information obtained by its own scanning and the received interference information to the first middle layer node.
  • the first intermediate layer node determines the operating frequency according to the interference information scanned by itself and the received interference information reported by the second intermediate layer node. After the intermediate node of the first communication system determines the operating frequency, it delivers the operating frequency to each node of the first communication system.
  • the principle of determining the operating frequency by the second communication system is the same as the principle of determining the operating frequency by the first communication system, and will not be repeated here.
  • the multi-layer star wireless network in the embodiment of the present application includes a communication device, and the communication device is used to execute the communication method of the present application.
  • the communication device may be any node in the first communication system in the multi-layer star wireless network.
  • the first communication system may be any communication system in the multi-layer star wireless network.
  • the communication device may be any intermediate node or bottom node of the first communication system shown in FIG. 1a or FIG. 1b.
  • the middle layer node in the multi-layer star wireless network can be a control device, such as a remote controller;
  • the bottom node in the multi-layer star wireless network can be the mobile robot, and the mobile robot can be an unmanned aerial vehicle or an unmanned aerial vehicle. Ground robots, unmanned ships, unmanned aerial vehicles, unmanned ground robots, unmanned ships, etc.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present invention. The method may be applied to the above-mentioned communication device. As shown in FIG. 2, the communication method may include the following steps.
  • the communication device obtains an identifier of the first communication system.
  • the communication device may obtain the identification of the first communication system, and the identification may refer to the number or name of the first communication system.
  • the logo can be composed of one or more of numbers, Chinese characters, letters and symbols. Wherein, the identities of the communication systems in the multi-layer star wireless network are different.
  • the communication device determines the position of the first measurement subframe of the first communication system according to the identifier of the first communication system.
  • each communication system is configured with at least one measurement subframe.
  • different communication systems in the multiple communication systems are configured with different locations. Measure the subframe.
  • a configuration time interval may be an integer multiple of the duration of a wireless frame.
  • a configuration time interval may be the duration of one wireless frame or the duration of two wireless frames, etc., which is not limited in this embodiment of the application.
  • a configuration time interval may not be an integer multiple of the duration of the radio frame, which is not limited in the embodiment of the present application.
  • one radio frame may consist of multiple subframes.
  • one radio frame includes 10 subframes, and one subframe is 1ms (milliseconds).
  • a radio frame may also include more than 10 or less than 10 subframes, and a subframe may also be greater than 1 ms or less than 1 ms, which is not limited in the embodiment of the present application.
  • the first measurement subframe of the first communication system is a measurement subframe of the first communication system in the first configured time interval.
  • the first communication system is configured with one or more measurement subframes in the first radio frame
  • the second communication system is also configured with one or more measurement subframes in the first radio frame.
  • the first communication system is configured with one or more measurement subframes in the second radio frame
  • the second communication system is also configured with one or more measurement subframes in the second radio frame.
  • the first communication system and the second communication system are configured with one or more measurement subframes in each radio frame.
  • the position of the measurement subframe of the first communication system in the first radio frame is different from the position of the measurement subframe of the second communication system.
  • the position of the measurement subframe of the first communication system in the second radio frame is different from the position of the measurement subframe of the second communication system, and so on.
  • the first measurement subframe of the first communication system is a measurement subframe included in the first radio frame.
  • the multi-layer star wireless network configures the measurement subframe of the communication system in the first configuration time interval according to the identifier of the communication system.
  • the multi-layer star wireless network configures measurement subframes at different locations for different communication systems in the first configuration time interval according to the identifiers of different communication systems. Therefore, the position of the measurement subframe of the first communication system within the first configuration time interval can be determined according to the identifier of the first communication system, that is, the first measurement of the first communication system can be determined according to the identifier of the first communication system The position of the subframe.
  • the multi-layer star radio can configure subsequent measurement subframes of the first communication system according to the position and configuration time interval of the first measurement subframe of the first communication system.
  • a configuration time interval is the duration of a radio frame.
  • the first wireless frame is the first configuration time interval
  • the second wireless frame is the second configuration time interval.
  • FIG. 3 uses the first wireless frame and the second wireless frame as examples.
  • the multi-layer star wireless network configures one or more measurement subframes in each wireless frame for each communication system according to the identification of each communication system.
  • Figure 3 uses one measurement subframe configured for each communication system in a wireless frame as an example .
  • the multilayer star wireless network configures subframe 2 in the first wireless frame as the first measurement subframe of the first communication system according to the identifier of the first communication system.
  • the multi-layer star wireless network configures the subframe 3 in the first wireless frame as the first measurement subframe of the second communication system according to the identifier of the second communication system.
  • the multi-layer star wireless network configures subframe 2 in the second wireless frame as the measurement subframe of the first communication system according to the position and configuration time interval of the first measurement subframe of the first communication system.
  • the multi-layer star wireless network configures subframe 3 in the second wireless frame as the measurement subframe of the second communication system according to the position and configuration time interval of the first measurement subframe of the second communication system. Therefore, the position of the first measurement subframe of the first communication system can be determined as the subframe 2 in the first radio frame according to the identifier of the first communication system. Further, the position of the first measurement subframe of the second communication system can be determined as subframe 3 in the first radio frame according to the identifier of the second communication system.
  • each communication system is in the state of receiving signals in the measurement subframe, and no communication system is in the state of transmitting signals, which will cause each
  • the communication system cannot detect the interference information of other communication systems in the multi-layer star wireless network, which causes the working frequency points determined by multiple communication systems to be the same or adjacent.
  • the working frequencies of multiple communication systems are the same or adjacent to each other, which will cause interference between various communication systems, and in severe cases, the multiple communication systems cannot work normally.
  • different communication systems are configured with measurement subframes in different positions according to the identifiers of different communication systems.
  • the communication device of the first communication system can determine the position of the first measurement subframe of the first communication system according to the identifier of the first communication system. Since the position of the first measurement subframe of the first communication system determined by the communication device of the first communication system is different from the position of the measurement subframe determined by other communication systems, the The operating frequency determined by the interference information obtained by scanning is different from the operating frequency determined by other communication systems. Therefore, by implementing the method described in FIG. 2, it is beneficial to reduce wireless interference between various communication systems.
  • each communication system in the multi-layer star wireless network has a different frame structure of the radio frame including the measurement subframe.
  • the configuration time interval is one radio frame and each communication system includes one measurement subframe in one configuration time interval.
  • the frame structure of the wireless frame of the first communication system and the second communication system may be as shown in FIG. 3.
  • D represents the downlink subframe in the radio frame
  • U represents the uplink subframe
  • M represents the measurement subframe
  • the downlink subframe is the subframe for the intermediate node to send data to the underlying node
  • the uplink subframe is the The subframe in which the intermediate node sends data.
  • the position of the measurement subframe of the first communication system is the position of subframe 2 in the first wireless frame
  • the position of the measurement subframe of the second communication system is the position of the first wireless frame.
  • the position of the measurement subframe of the first communication system is the position of subframe 2 in the second radio frame
  • the position of the measurement subframe of the second communication system is the position of subframe 2 in the second radio frame.
  • the position of frame 3. As shown in FIG. 3, the frame structure of the first wireless frame of the first communication system in FIG. 3 is different from the frame structure of the first wireless frame of the second communication system. The structure is different from the frame structure of the second radio frame of the second communication system.
  • the configuration time interval is one wireless frame.
  • the first communication system has two measurement subframes
  • the second communication system has one measurement subframe.
  • two adjacent configuration time intervals may be the same or different.
  • the first configuration time interval may be the duration of one wireless frame
  • the second configuration time interval may be the total duration of two wireless frames
  • the third configuration time interval may be the total duration of three wireless frames.
  • each communication system in the multi-layer star wireless network is configured with at least one measurement subframe in turn, where the configuration time interval is the The product of the target time and the number of communication systems in the multilayer star wireless network.
  • the multi-layer star wireless network includes two communication systems, and the target time is the duration of one wireless frame, then the configuration time interval is the duration of two wireless frames.
  • each communication system may require multiple wireless frames to complete a measurement.
  • the target time is the duration of multiple wireless frames.
  • the target time is the duration of 3 wireless frames, and the time is configured at this time.
  • the interval is the product of the duration of 3 wireless frames and the number of communication systems in the multilayer star wireless network.
  • each communication system is alternately configured to measure subframes may be set according to the identity of the communication system. For example, within a configuration time interval, a measurement subframe may be configured for the first communication system first, and then a measurement subframe may be configured for the second communication system.
  • a multi-layer star wireless network includes two communication systems, the target time is the duration of one wireless frame, the configuration time interval is the duration of two wireless frames, and each communication system includes one within a configuration time interval.
  • the first configuration time interval is the first wireless frame + the second wireless frame.
  • first configure subframe 2 of the first radio frame as a measurement subframe of the first communication system
  • subframe 2 of the second radio frame as a measurement subframe of the second communication system.
  • first configure subframe 2 of the third radio frame as the measurement subframe of the first communication system
  • subframe 2 of the fourth radio frame as the measurement subframe of the second communication system. frame. Therefore, within a configuration time interval, the first communication system and the second communication system are configured to measure subframes alternately with the duration of one radio frame as a period.
  • each of the multiple communication systems is configured with at least one measurement subframe in turn, and the configuration time interval is the target time and the multiple communication systems.
  • the structure of the first wireless frame of the first communication system is the same as the structure of the second wireless frame of the second communication system, and the structure of the third wireless frame of the first communication system is the same as that of the fourth wireless frame of the second communication system.
  • the frame structure is the same.
  • each of the multiple communication systems is configured with at least one measurement subframe in turn with the target time as the cycle, and the configuration time interval is the target time for communicating with the multiple communication systems The product of the number of systems.
  • different communication systems may have different numbers of measurement subframes.
  • each of the multiple communication systems is configured with at least one measurement subframe in turn, and the configuration time interval is the target time and the multiple communication systems.
  • the product of the number of communication systems, the plurality of communication systems include a second communication system, and within a configured time interval, if the position of the measurement subframe of the first communication system is before the position of the measurement subframe of the second communication system, Then the position of the measurement subframe of the second communication system is after the operating frequency point is determined by the first communication system.
  • the position of the measurement subframe of the first communication system is before the position of the measurement subframe of the second communication system.
  • the configuration time interval is the duration of two radio frames
  • the time when the first communication system determines the operating frequency is t1
  • the position of the measurement subframe of the second communication system is t2
  • T1 is before t2
  • the position of the measurement subframe of the second communication system is after the operating frequency point of the first measurement subframe is determined.
  • the intermediate node of the first communication system obtains the interference information, it takes a certain time to calculate the operating frequency.
  • the position of the measurement subframe of the first communication system is different from the operating frequency determined in the first communication system. There is a certain interval between. In the same way, within the next configuration time interval, the position of the measurement subframe of the first communication system is also before the position of the measurement subframe of the second communication system, and the position of the measurement subframe of the second communication system is also in the first communication system. After the communication system determines the operating frequency.
  • the plurality of communication systems includes a second communication system, and within a configured time interval, if the position of the measurement subframe of the first communication system is after the position of the measurement subframe of the second communication system, Then, the position of the measurement subframe of the first communication system is after the operating frequency point is determined by the second communication system.
  • the first communication system and the second communication system are alternately configured to measure subframes with the target time (that is, the duration of a radio frame) as the period.
  • the target time that is, the duration of a radio frame
  • subframe 2 is configured as a measurement subframe of the second communication system
  • subframe 2 is configured as a measurement subframe of the first communication system.
  • Each configuration time interval (that is, the duration of two radio frames) has one measurement subframe for the first communication system
  • each configuration time interval for the second communication system has one measurement subframe.
  • the position of the measurement subframe of the first communication system is after the position of the measurement subframe of the second communication system.
  • the position of the measurement subframe determined by the first communication system is t4
  • the time of determining the operating frequency of the second communication system is t3, where t4 is after t3, that is, the measurement of the first communication system
  • the position of the subframe is after the operating frequency point is determined by the second communication system.
  • the middle layer of the second communication system obtains the interference information, it takes a certain time to determine the operating frequency. Therefore, there is a certain difference between the position of the measurement subframe of the second communication system and the operating frequency determined by the second communication system. interval.
  • the communication device is a bottom layer node of the first communication system or an intermediate layer node in the first communication system other than the first intermediate layer node, and the communication device is in the first measurement subframe Scanning for multiple frequency points to obtain interference information corresponding to the multiple frequency points, the communication device sends the interference information corresponding to the multiple frequency points to the first intermediate layer node of the first communication system, and the multiple frequency points correspond to The interference information is used by the first intermediate node of the first communication system to determine the operating frequency, and the communication device receives the operating frequency fed back by the first intermediate node of the first communication system.
  • the communication device may be the bottom node of the first communication system.
  • the communication device may be any underlying node of the first communication system in the two-layer star wireless network shown in FIG. 1a, and the first intermediate node of the first communication system is the intermediate node of the first communication system. .
  • Each underlying node of the first communication system can scan for multiple frequency points in the first measurement subframe to obtain interference information corresponding to the multiple frequency points, and report the interference information to the intermediate node of the first communication system;
  • the layer node determines the operating frequency according to the received interference information and the interference information obtained by its own scanning, and the intermediate node feeds back the operating frequency to each underlying node of the first communication system, and each underlying node and intermediate node of the first communication system Layer nodes can send and receive information at this operating frequency.
  • the communication device may be the bottom node of the first communication system or the first intermediate node in the first communication system. Intermediate layer nodes other than layer nodes.
  • the communication device may be any underlying node of the first communication system in the three-layer star wireless network shown in FIG. 1b, and the first intermediate node of the first communication system is the first intermediate node of the first communication system.
  • Each underlying node of the first communication system may scan for multiple frequency points in the first measurement subframe to obtain interference information corresponding to the multiple frequency points, and report the interference information to the second intermediate node of the first communication system.
  • the second intermediate node of the first communication system reports the interference information obtained by scanning itself and the received interference information to the first intermediate node of the first communication system, and the first intermediate node of the first communication system receives according to The interference information received and the interference information obtained by self scanning determine the working frequency point. Further, the first intermediate node of the first communication system delivers the operating frequency to each second intermediate node of the first communication system, and each underlying node of the first communication system receives each second intermediate node of the first communication system. The working frequency forwarded by the intermediate node.
  • the communication device may be an intermediate node other than the first intermediate node in the first communication system shown in FIG. 1b, that is, the communication device may be a second intermediate node in the first communication system
  • the first intermediate node of the first communication system is the first intermediate node of the first communication system.
  • Each second intermediate layer node of the first communication system can scan for multiple frequency points in the first measurement subframe to obtain the interference information corresponding to the multiple frequency points, and scan itself to obtain the interference information and the scanning information obtained by each bottom layer node.
  • the interference information is reported to the first intermediate node of the first communication system.
  • the first intermediate layer node of the first communication system determines the operating frequency according to the interference information obtained by scanning by itself and the received interference information.
  • Each second intermediate layer node in the first communication system can receive the first communication system The operating frequency sent by the intermediate node.
  • Each second intermediate node in the first communication system can also forward the operating frequency to each underlying node of the first communication system, the first intermediate node of the first communication system, each second intermediate node, Each bottom node can send and receive information at this operating frequency.
  • the communication device is a first intermediate node of the first communication system, and the communication device receives multiple underlying nodes of the first communication system and/or the first intermediate node in the first communication system.
  • Interference information corresponding to multiple frequency points sent by an intermediate node other than the layer node the interference information corresponding to the multiple frequency points is the multiple underlying nodes of the first communication system and/or the first communication system
  • Intermediate nodes other than the first intermediate node scan multiple frequency points in the first measurement subframe
  • the communication device determines the average interference value corresponding to each frequency point according to the received interference information, and the communication device The frequency point with the smallest average interference value is used as the operating frequency point, and the communication device feeds back the operating frequency point to the multiple bottom layer nodes of the first communication system and/or the first communication system except for the first intermediate layer node.
  • the interference value corresponding to each frequency point may be an average interference value, or an interference value obtained through other suitable algorithms such as calculating variance.
  • the communication device may be an intermediate node of the first communication system in the double-layer star wireless network shown in Fig. 1a, the multiple frequency points are f 0 to f M , where M is the number of frequency points, and the interference information It can include the interference value corresponding to each frequency point.
  • the communication device can receive interference information sent by each underlying node, and the interference information sent by each underlying node includes the interference corresponding to each frequency point measured for each of the frequency points f 0 to f M in the first measurement subframe
  • the middle layer node calculates the average interference value corresponding to each frequency point according to the interference information received and the interference information obtained from its own scanning, and uses the frequency point with the smallest average interference value as the working frequency point, and returns it to each bottom node.
  • the communication device can use formula (1) to calculate the operating frequency.
  • freq_working f i whith min(average_ipsd(f i )) (1)
  • the communication device may be the first middle layer node of the first communication system in the multi-layer star wireless network shown in FIG. 1b, and the first middle layer node of the first communication system may receive each first communication system.
  • the interference information sent by the second intermediate node, the interference information includes interference information scanned by each second intermediate node of the first communication system and interference information scanned by each underlying node of the first communication system.
  • the first intermediate layer node of the first communication system may determine the operating frequency according to the received interference information and the interference information scanned by the first intermediate layer node of the first communication system.
  • the first intermediate node of the first communication system can send the operating frequency to the second intermediate node of the first communication system, and the second intermediate node of the first communication system forwards the operating frequency to the first communication Each bottom node of the system.
  • adjacent subframes of the first measurement subframe include at least one uplink subframe. Due to the RF transceiver switching of the TDD system, the frequency bandwidth switching requires stable time. RF chips are often configured with two phase-locked loops (PLLs) to act on receiving events and sending events respectively, so switching between receiving events and sending events is relatively small in frequency and bandwidth overhead, while switching between two receiving events The frequency point and bandwidth overhead is relatively large, so it should be avoided as much as possible in the design. On the frame structure of DUDDDDDUDDD, there is the situation that the receiving and measuring subframes are adjacent. The switching of subframes will involve changes in frequency and bandwidth, resulting in the measurement subframe may be less than 1ms, which will reduce the measurement efficiency.
  • PLLs phase-locked loops
  • At least one uplink subframe may be configured in the adjacent subframes of the first measurement subframe.
  • the radio frame structure including the measurement subframe of the first communication system may be set to DUMDDDDUDDD or DUDDDDUMDD.
  • the multi-layer star wireless network includes a high-level node, and the time reference of the communication device is obtained through the high-level node.
  • the upper node can send the time reference for the lower node of the higher node.
  • the time reference of the communication device is obtained through the high-level node.
  • the high-level node may be an RTK base station or a top-level scheduler.
  • the communication device can obtain the identifier of the first communication system, and determine the position of the first measurement subframe of the first communication system according to the identifier of the first communication system, so that the positions of the measurement subframes of multiple communication systems Different, can avoid the time overlap problem of each communication system obtaining the operating frequency, can reduce the wireless interference between each communication system, and improve the communication quality.
  • the embodiment of the present invention provides another communication method, which can be applied to the above-mentioned communication device.
  • the embodiment of the present invention mainly reflects that different communication systems have different frame structures of radio frames including measurement subframes. Case.
  • the communication method may include the following steps.
  • the communication device obtains an identifier of the first communication system.
  • the communication device determines the position of the first measurement subframe of the first communication system according to the identifier of the first communication system, and the position of the measurement subframe of each communication system in the multiple communication systems is different.
  • the communication device determines the position of the second measurement subframe of the first communication system according to the position of the first measurement subframe and the configuration time interval.
  • the multi-layer star radio configures measurement subframes at different positions for different communication systems in the first configuration time interval according to the identifiers of different communication systems.
  • the multi-layer star radio can configure subsequent measurement subframes of the first communication system according to the position and configuration time interval of the first measurement subframe of the first communication system. Therefore, after the communication device determines the position of the first measurement subframe, it can determine the position of the second measurement subframe of the first communication system according to the position of the first measurement subframe and the configured time interval.
  • the second measurement subframe may refer to any measurement subframe configured in any configuration time interval other than the first configuration time interval.
  • a configuration time interval is the duration of a radio frame.
  • the communication device may obtain the identifier of the first communication system, and determine the position of the first measurement subframe of the first communication system according to the identifier of the first communication system, and the positions of the measurement subframes of multiple communication systems are not In the same way, it can avoid the time overlap problem of each communication system acquiring operating frequency points, reduce wireless interference between various communication systems, and improve communication quality.
  • the second measurement subframe of the first communication system can be determined according to the position of the first measurement subframe and the configuration time interval, so that the operating frequency point can be periodically acquired.
  • the embodiment of the present invention provides another communication method, which can be applied to the above-mentioned communication device.
  • the embodiment of the present invention describes that the frame structure of the radio frames including the measurement subframes in different communication systems is the same Case.
  • the communication method may include the following steps.
  • the communication device obtains an identifier of the first communication system.
  • the communication device determines, according to the identifier of the first communication system, the order in which the first communication system is alternately configured to measure subframes.
  • each of the plurality of communication systems is alternately configured with at least one measurement subframe with a target time as a period, and the configuration time interval is the target time and the plurality of communication
  • the structure of the radio frame including the measurement subframe is the same in each communication system.
  • the communication device determines the position of the first measurement subframe of the first communication system according to the alternate configuration sequence.
  • the identifier of the communication system has a corresponding relationship with the rotation configuration order of the rotation configuration.
  • the communication device can store the corresponding relationship in advance.
  • the communication device may obtain the correspondence between the identifier of the first communication system and the alternate configuration order from the upper node.
  • the communication device may determine the rotation configuration sequence corresponding to the first communication system according to the identifier of the first communication system, and then determine the position of the first measurement subframe of the first communication system according to the rotation configuration sequence .
  • the identification of the first communication system corresponds to the rotation configuration sequence 1
  • the identification of the second communication system corresponds to the rotation configuration sequence 2 that is, within a configuration time interval, the measurement sub-system of the first communication system is configured first.
  • the measurement subframe of the first communication system is configured in the first radio frame
  • the measurement subframe of the second communication system is configured in the second radio frame.
  • the position of the measurement subframe in the radio frame may be a predetermined fixed position.
  • the measurement subframe is in subframe 2 of the first radio frame and the second radio frame.
  • the communication device determines the position of the second measurement subframe of the first communication system according to the configuration time interval and the position of the first measurement subframe.
  • the communication device can configure the measurement subframes of each communication system in turn.
  • the multi-layer star wireless network includes the first communication system and the second communication system. It is assumed that the first measurement subframes of the first communication system and the second communication system are as shown in the figure As shown in 5, the position of the second measurement subframe of the first communication system is the position of the first measurement subframe of the first communication system plus the configured time interval, that is, the position of the second measurement subframe of the first communication system is The position of subframe 2 in the third wireless subframe; the position of the second measurement subframe of the second communication system is the position of the first measurement subframe of the second communication system plus the configured time interval, that is, the second communication system The position of the second measurement subframe is the position of subframe 2 in the fourth wireless subframe.
  • the communication device may obtain the identifier of the first communication system, and the communication device determines the rotation configuration sequence of the measurement subframes that the first communication system is configured in turn according to the identifier of the first communication system, and according to the rotation configuration sequence
  • the position of the first measurement subframe of the first communication system is determined. It can avoid the problem of time overlap when each communication system obtains the operating frequency point, reduce wireless interference between various communication systems, and improve communication quality.
  • the position of the second measurement subframe of the first communication system can be determined according to the configuration time interval and the position of the first measurement subframe, so that the operating frequency point can be periodically acquired.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • the communication device is any node in the aforementioned first communication system, and the communication device may be a drone or a remote control device.
  • the communication device includes a processor 110 and a memory 111.
  • the memory 111 may include a volatile memory (volatile memory); the memory 111 may also include a non-volatile memory (non-volatile memory); the memory 111 may also include a combination of the foregoing types of memories.
  • the processor 110 may be a central processing unit (CPU).
  • the processor 801 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the foregoing PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), or any combination thereof.
  • the memory is used to store program instructions; the processor calls the program instructions stored in the memory to perform the following steps:
  • the position of the first measurement subframe of the first communication system is determined according to the identifier of the first communication system, wherein, within each configuration time interval, each communication system is configured with at least one measurement subframe, according to the The identification of each of the multiple communication systems, each of the multiple communication systems is configured with measurement subframes in different positions.
  • the frame structures of the radio frames including the measurement subframes of the respective communication systems are different.
  • the memory is used to store program instructions; the processor calls the program instructions stored in the memory to perform the following steps:
  • At least one measurement subframe is configured in turn for each of the multiple communication systems with a target time period, and the configuration time interval is the target time and the multiple The product of the number of communication systems in a communication system.
  • the structures of the radio frames including the measurement subframes in each communication system are the same.
  • the memory is used to store program instructions; the processor calls the program instructions stored in the memory to perform the following steps:
  • the position of the first measurement subframe of the first communication system is determined according to the alternate configuration order.
  • the memory is used to store program instructions; the processor calls the program instructions stored in the memory to perform the following steps:
  • the adjacent subframes of the first measurement subframe include at least one uplink subframe.
  • the multiple communication systems include a second communication system, and within one of the configured time intervals, if the position of the measurement subframe of the first communication system is before the position of the measurement subframe of the second communication system, Then the position of the measurement subframe of the second communication system is after the first communication system determines the operating frequency; if the position of the measurement subframe of the first communication system is after the position of the measurement subframe of the second communication system, Then, the position of the measurement subframe of the first communication system is after the operating frequency point is determined by the second communication system.
  • the communication device is a bottom layer node of the first communication system or an intermediate layer node in the first communication system other than the first intermediate layer node
  • the memory is used to store program instructions
  • the processor calls the program instructions stored in the memory to perform the following steps:
  • the interference information corresponding to the multiple frequency points is sent to the first intermediate layer node of the first communication system, and the interference information corresponding to the multiple frequency points is used for the first intermediate layer node of the first communication system Determine the working frequency;
  • the communication device is a first intermediate node of the first communication system
  • the memory is used to store program instructions
  • the processor calls the program instructions stored in the memory to execute the following step:
  • the interference information corresponding to the point is that the multiple bottom-layer nodes of the first communication system and/or the middle-tier nodes in the first communication system other than the first middle-tier node target multiple nodes in the first measurement subframe. Obtained by frequency point scanning;
  • the operating frequency is fed back to multiple bottom nodes of the first communication system and/or intermediate nodes in the first communication system other than the first intermediate node.
  • the multi-layer wireless network includes a high-level node, and the time reference of the communication device is obtained through the high-level node.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, it realizes what is shown in Figs. 2, 10 and 9 of the present invention.
  • the communication device in the embodiment of the invention described in FIG. 11 can also be implemented, which will not be repeated here.
  • the computer-readable storage medium may be the internal storage unit of the test device described in any of the foregoing embodiments, such as the hard disk or memory of the device.
  • the computer-readable storage medium may also be an external storage device of the vehicle control device, such as a plug-in hard disk equipped on the device, a smart memory card (SMC), or a secure digital (SD) ) Card, Flash Card, etc.
  • the computer-readable storage medium may also include both an internal storage unit of the device and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the test device.
  • the computer-readable storage medium can also be used to temporarily store data that has been output or will be output.
  • the program can be stored in a computer readable storage medium.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种通信方法、设备及存储介质,其中,方法包括:获取第一通信系统的标识;根据所述第一通信系统的标识确定所述第一通信系统的第一测量子帧的位置,其中,在每个配置时间间隔之内,每个通信系统被配置至少一个测量子帧,根据所述多个通信系统中的各个通信系统的标识,所述多个通信系统中的所述各个通信系统被配置不同位置的测量子帧。可减低各个通信系统之间的无线干扰,提高通信质量。

Description

通信方法、设备及存储介质 技术领域
本发明涉及电子技术领域,尤其涉及一种通信方法、设备及存储介质。
背景技术
由于多层无线网络具有易于扩展及容易故障隔离等特点,因此,多层星形无线网络得到广泛应用。例如,一个控制端控制多个警用无人机以对某些场所(如车站)进行巡逻,一个控制端控制多个农用无人机以对农作物进行施肥,一个控制端控制多个监控设备以对某些区域(如商场)进行监控等等。
其中,以双层星形无线网络为例,该双层星形无线网络的网络拓扑结构如图1a所示。该双层星形无线网络可以包括一个高层节点及多个通信系统,图1a中以两个通信系统为例,分别为第一通信系统和第二通信系统。其中,高层节点用于控制各个通信系统,如为各个通信系统分配任务。每个通信系统可以包括一个或多个中间层节点,以及位于中间层节点下的一个或多个底层节点,所有的通信系统使用同一个工作频段,每个通信系统的最高层的中间层节点从该工作频段中获取一个频点作为对应通信系统内的工作频点。在严格的时分双工(Time Division Duplexing,TDD)系统下,上下行子帧使用相同频点,这个频点就定义工作频点;如果上行子帧使用跳频,那么只有下行频点定义为工作频点。通常通过测量子帧的方式来确定各个通信系统的工作频点,例如,图1a中的底层节点在测量子帧对多个频点进行扫描得到多个频点对应的干扰信息,并将扫描得到干扰信息上报给中间层节点,由中间层节点根据接收到的干扰信息及自身扫描得到的干扰信息确定底层节点和/或中间层节点的工作频点。实践中发现,存在测量子帧的位置设置不合理的问题,导致各个通信系统之间的无线干扰比较大,并降低了通信质量。
发明内容
本发明实施例提供了一种通信方法、设备及存储介质,有利于降低各个通信系统之间的无线干扰,提高通信质量。
第一方面,本发明实施例提供了一种通信方法,应用于第一通信系统中的通信设备,所述第一通信系统为多层无线网络中的一个通信系统,所述多层无线网络中包括多个通信系统,所述方法包括:
获取第一通信系统的标识;
根据所述第一通信系统的标识确定所述第一通信系统的第一测量子帧的位置,其中,在每个配置时间间隔之内,每个通信系统被配置至少一个测量子帧,根据所述多个通信系统中各个通信系统的标识,所述多个通信系统中的各个通信系统被配置不同位置的测量子帧。
第二方面,本发明实施例提供了一种通信设备,所述通信设备为第一通信系统中的节点,所述第一通信系统为多层无线网络中的一个通信系统,所述多层无线网络中包括多个通信系统,所述控制设备包括:存储器及处理器
所述存储器,用于存储程序指令;
所述处理器,调用所述存储器存储的程序指令,执行以下步骤:
获取第一通信系统的标识;
根据所述第一通信系统的标识确定所述第一通信系统的第一测量子帧的位置,其中,在每个配置时间间隔之内,每个通信系统被配置至少一个测量子帧,根据所述多个通信系统中各个通信系统的标识,所述多个通信系统中的各个通信系统被配置不同位置的测量子帧。
第三方面,本发明实施例提供了一种计算机可读存储介质,包括:所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时用于执行如上所述通信方法。
本发明实施例中,通信设备可以获取第一通信系统的标识,并根据第一通信系统的标识确定第一通信系统的第一测量子帧的位置,由于多个通信系统的测量子帧的位置不相同,可以避免各个通信系统获取工作频点的时间重叠的问题,可减低各个通信系统之间的无线干扰,提高通信质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性 劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是本发明实施例提供的一种双层星形无线网络的网络拓扑结构示意图;
图1b是本发明实施例提供的一种三层星形无线网络的网络拓扑结构示意图;
图2是本发明实施例提供的一种通信方法的流程示意图;
图3是本发明实施例提供的一种无线帧的帧结构示意图;
图4是本发明实施例提供的另一种无线帧的帧结构示意图;
图5是本发明实施例提供的另一种无线帧的帧结构示意图;
图6是本发明实施例提供的一种确定工作频点的时间与测量子帧的位置关系示意图;
图7是本发明实施例提供的又一种无线帧的帧结构示意图;
图8是本发明实施例提供的另一种确定工作频点的时间与测量子帧的位置关系示意图;
图9是本发明实施例提供的另一种通信方法的流程示意图;
图10是本发明实施例提供的又一种通信方法的流程示意图;
图11是本发明实施例提供的一种通信设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了更好理解本发明实施例提供的一种通信方法及设备,下面先对该通信方法应用的系统架构进行描述。
该通信方法应用的系统架构可以为多层无线网络。例如,该多层无线网络可以为多层星形无线网络,在其他实施方式中,多层无线网络也可以是其他合适的含有多个层级的无线网络。在本实施例中,以多层星形无线网络为例。进一步地,多层星形无线网络可以是双层星形无线网络或三层星形无线网络等。其中,该多层星形无线网络可包括至少两个通信系统,即至少包括 第一通信系统和第二通信系统。其中,该多层星形无线网络中各个通信系统中包括至少一个通信设备,各个通信设备可以被视为各个节点,用于在测量子帧扫描得到干扰信息。其中,通信系统中的最上层的中间层节点可根据通信系统中各个节点扫描得到的干扰信息来确定工作频点。在本实施例中,定义最上层的中间层节点为第一中间层节点。
以该多层星形无线网络为双层星形无线网络为例,如图1a所示,该双层星形无线网络包括第一通信系统和第二通信系统,该双层星形无线网络的每个通信系统均包括一个中间层节点,通信系统该中间层节点是与高层节点直接连接的节点。如图1a所示,第一通信系统的各个节点用于在测量子帧扫描得到干扰信息。其中,第一通信系统的各个底层节点在测量子帧结束后,将扫描得到的干扰信息发送至第一通信系统的中间层节点。第一通信系统的中间层节点根据自身扫描到的干扰信息和接收的由底层节点上报的干扰信息确定工作频点。第一通信系统的中间层节点确定工作频点之后,将工作频点下发至第一通信系统的各个底层节点。第二通信系统确定工作频点的原理与第一通信系统确定工作频点的原理相同,在此不赘述。
进一步地,以该多层星形无线网络为三层星形无线网络为例,如图1b所示,该三层星形无线网络包括第一通信系统和第二通信系统,每个通信系统包括一个高层节点、两层中间层节点以及一层底层节点。其中,两层中间层节点包括第一中间层节点和第二中间层节点,其中,第一中间层节点用于与高层节点直接连接,第二中间层节点用于与底层节点直接连接。
具体地,如图1b所示,第一通信系统的各个节点用于在测量子帧扫描得到干扰信息。其中,第一通信系统的各个底层节点在测量子帧结束后,将扫描得到的干扰信息发送至第一通信系统的第二中间层节点。第二中间层节点在测量子帧结束后,将自身扫描得到的干扰信息和接收的干扰信息发送至第一中间层节点。第一中间层节点根据自身扫描到的干扰信息和接收的由第二中间层节点上报的干扰信息确定工作频点。第一通信系统的中间层节点确定工作频点之后,将工作频点下发至第一通信系统的各个节点。第二通信系统确定工作频点的原理与第一通信系统确定工作频点的原理相同,在此不赘述。
本申请实施例的多层星形无线网络中包括通信设备,该通信设备用于执行本申请的通信方法。该通信设备可以是多层星形无线网络中第一通信系统 中的任意一个节点。第一通信系统可以是多层星形无线网络中的任意一个通信系统。例如,该通信设备可以为图1a或图1b所示的第一通信系统的任一中间层节点或底层节点。其中,多层星形无线网络中的中间层节点可以为控制设备,如遥控器;多层星形无线网络中的底层节点可以为该移动机器人,所述移动机器人可以是无人飞行器、无人地面机器人、无人船、无人飞行器、无人地面机器人、无人船等等。
请参见图2,图2是本发明实施例提供的一种通信方法的流程示意图,该方法可以应用于上述通信设备,如图2所示,该通信方法可以包括如下步骤。
S201、通信设备获取第一通信系统的标识。
本发明实施例中,通信设备可以获取第一通信系统的标识,该标识可以是指第一通信系统的编号或名称等。该标识可以是由数字、汉字、字母及符号中的一种或多种组成的。其中,该多层星形无线网络中各个通信系统的标识不相同。
S202、该通信设备根据该第一通信系统的标识确定该第一通信系统的第一测量子帧的位置。
其中,在每个配置时间间隔之内,每个通信系统被配置至少一个测量子帧,根据多个通信系统中不同通信系统的标识,该多个通信系统中的不同通信系统被配置不同位置的测量子帧。其中,一个配置时间间隔可以是无线帧的时长的整数倍,例如,一个配置时间间隔可以是一个无线帧的时长或两个无线帧的时长等,本申请实施例不做限定。当然,一个配置时间间隔也可以不是无线帧的时长的整数倍,本申请实施例不做限定。其中,一个无线帧可以由多个子帧组成。通常一个无线帧包括10个子帧,一个子帧为1ms(毫秒)。其中,一个无线帧也可包括10个以上或10个以下的子帧,一个子帧也可以大于1ms或小于1ms,本申请实施例不做限定。
可选的,第一通信系统的第一测量子帧为第一个配置时间间隔内第一通信系统的测量子帧。
举例来说,多层星形无线网络中具有两个通信系统,分别为第一通信系统和第二通信系统。配置时间间隔为一个无线帧。第一通信系统在第一无线帧中被配置了一个或多个测量子帧,第二通信系统在第一无线帧中也被配置 了一个或多个测量子帧。第一通信系统在第二无线帧中被配置了一个或多个测量子帧,第二通信系统在第二无线帧中也被配置了一个或多个测量子帧。依次类推,第一通信系统和第二通信系统在每个无线帧中都被配置了一个或多个测量子帧。在第一无线帧中第一通信系统的测量子帧的位置和第二通信系统的测量子帧的位置不相同。在第二无线帧中第一通信系统的测量子帧的位置和第二通信系统的测量子帧的位置不相同,依次类推。其中,第一通信系统的第一测量子帧为第一无线帧中包括的测量子帧。
本申请实施例中,多层星形无线网络根据通信系统的标识来配置在第一个配置时间间隔内该通信系统的测量子帧。多层星形无线网络根据不同的通信系统的标识在第一个配置时间间隔内为不同的通信系统配置不同位置的测量子帧。因此,根据第一通信系统的标识就可确定第一通信系统在第一个配置时间间隔内的测量子帧的位置,即根据第一通信系统的标识就可确定第一通信系统的第一测量子帧的位置。多层星形无线可根据第一通信系统的第一测量子帧的位置和配置时间间隔配置后续的第一通信系统的测量子帧。
举例来说,如图3所示,一个配置时间间隔为一个无线帧的时长。第一无线帧为第一个配置时间间隔,第二无线帧为第二个配置时间间隔。依次类推,第二无线帧之后的无线帧未在图3中示出,图3以第一无线帧和第二无线帧为例。多层星形无线网络根据各个通信系统的标识为各个通信系统在各个无线帧内配置一个或多个测量子帧,图3以在一个无线帧内每个通信系统被配置一个测量子帧为例。如图3所示,多层星形无线网络根据第一通信系统的标识,配置第一无线帧中的子帧2为第一通信系统的第一测量子帧。多层星形无线网络根据第二通信系统的标识配置第一无线帧中的子帧3为第二通信系统的第一测量子帧。多层星形无线网络根据第一通信系统的第一测量子帧的位置和配置时间间隔,配置第二无线帧中子帧2为第一通信系统的测量子帧。多层星形无线网络根据第二通信系统的第一测量子帧的位置和配置时间间隔,配置第二无线帧中子帧3为第二通信系统的测量子帧。因此,根据第一通信系统的标识可确定第一通信系统的第一测量子帧的位置为第一无线帧中的子帧2。进一步地,根据第二通信系统的标识可确定第二通信系统的第一测量子帧的位置为第一无线帧中的子帧3。
若多层星形无线网络中的每个通信系统的测量子帧的位置相同,则各个 通信系统在测量子帧内都处于接收信号的状态,没有通信系统处于发送信号状态,这将导致每个通信系统检测不到多层星形无线网络中其他通信系统的干扰信息,进而导致多个通信系统确定的工作频点可能相同或相邻。多个通信系统的工作频点相同或相邻会导致各个通信系统之间形成干扰,严重时导致多个通信系统无法正常工作。在图2所描述的方法中,根据不同通信系统的标识,不同通信系统被配置不同位置的测量子帧。因此,第一通信系统的通信设备可根据第一通信系统的标识确定第一通信系统的第一测量子帧的位置。由于第一通信系统的通信设备确定的第一通信系统的第一测量子帧的位置与其他通信系统确定的测量子帧的位置不相同,进而可使第一通信系统根据在第一测量子帧扫描得到的干扰信息确定的工作频点与其他通信系统确定的工作频点不相同。因此,通过实施图2所描述的方法,有利于降低各个通信系统之间的无线干扰。
作为一种可选的实施方式,多层星形无线网络中的各个通信系统的包括测量子帧的无线帧的帧结构不同。
举例来说,以配置时间间隔为一个无线帧以及各个通信系统在一个配置时间间隔内均包括一个测量子帧为例。第一通信系统及第二通信系统的无线帧的帧结构可以如图3所示。在图3中,D表示无线帧中的下行子帧,U表示上行子帧,M表示测量子帧;下行子帧为中间层节点向底层节点发送数据的子帧,上行子帧为底层节点向中间层节点发送数据的子帧。如图3所示,在第一无线帧中,第一通信系统的测量子帧的位置为第一无线帧中子帧2所在的位置,第二通信系统的测量子帧的位置为第一无线帧中子帧3所在的位置。同样,在第二无线帧中,该第一通信系统的测量子帧的位置为第二无线帧中子帧2所在的位置,第二通信系统的测量子帧的位置为第二无线帧中子帧3所在的位置。如图3所示,图3中第一通信系统的第一无线帧的帧结构与第二通信系统的第一无线帧的帧结构不同,图3中第一通信系统的第二无线帧的帧结构与第二通信系统的第二无线帧的帧结构不同。
在一个实施例中,多层星形无线网络中的各个通信系统的包括测量子帧的无线帧的帧结构不同时,在一个配置时间间隔内,不同的通信系统可具有不同数量的测量子帧。例如,如图4所示,配置时间间隔为一个无线帧。在第一无线帧和第二无线帧内,第一通信系统具有两个测量子帧,第二通信系 统具有一个测量子帧。
在一个实施例中,多层星形无线网络中的各个通信系统的包括测量子帧的无线帧的帧结构不同时,相邻的两个配置时间间隔可以相同或不同。例如,第一个配置时间间隔可以为一个无线帧的时长,第二个配置时间间隔可以为两个无线帧的总时长,第三个配置时间间隔可以为三个无线帧的总时长。
作为一种可选的实施方式,在一个配置时间间隔内,以目标时间为周期,多层星形无线网络中的各个通信系统被轮流配置至少一个测量子帧,其中,该配置时间间隔为该目标时间与该多层星形无线网络中通信系统数量的乘积。例如,该多层星形无线网络中包括2个通信系统,目标时间为1个无线帧的时长,则该配置时间间隔为2个无线帧的时长。可以理解,在其他实施例中,每个通信系统完成一次测量可能需要多个无线帧,此时目标时间为多个无线帧的时长,例如目标时间为3个无线帧的时长,此时配置时间间隔为3个无线帧的时长与该多层星形无线网络中通信系统数量的乘积。
其中,各个通信系统被轮流配置测量子帧的轮流配置次序可以是根据通信系统的标识设置的。例如,在一个配置时间间隔内,可以先为第一通信系统配置测量子帧,再为第二通信系统配置测量子帧。
举例来说,以多层星形无线网络中包括2个通信系统,目标时间为一个无线帧的时长,配置时间间隔为两个无线帧的时长以及各个通信系统在一个配置时间间隔内均包括一个测量子帧为例。如图5所示,第一个配置时间间隔为第一无线帧+第二无线帧。在第一个配置时间间隔内,先配置第一无线帧的子帧2为第一通信系统的测量子帧,再配置第二无线帧的子帧2为第二通信系统的测量子帧。同理,在第二个配置时间间隔内,先配置第三无线帧的子帧2为第一通信系统的测量子帧,再配置第四无线帧的子帧2为第二通信系统的测量子帧。因此,第一通信系统和第二通信系统在一个配置时间间隔内,是以一个无线帧的时长为周期轮流被配置测量子帧的。
在一个实施例中,在一个配置时间间隔内,以目标时间为周期,多个通信系统中的各个通信系统被轮流配置至少一个测量子帧,该配置时间间隔为目标时间与多个通信系统中通信系统数量的乘积,该各个通信系统包括测量子帧的无线帧的帧结构相同。如图5所示,第一通信系统的第一无线帧的结构与第二通信系统的第二无线帧结构相同,第一通信系统的第三无线帧的结 构与第二通信系统的第四无线帧结构相同。
在一个实施例中,在一个配置时间间隔内,以目标时间为周期多个通信系统中的各个通信系统被轮流配置至少一个测量子帧,该配置时间间隔为目标时间与多个通信系统中通信系统数量的乘积,在一个配置时间间隔内,不同的通信系统可具有不同数量的测量子帧。
在一个实施例中,在一个配置时间间隔内,以目标时间为周期,多个通信系统中的各个通信系统被轮流配置至少一个测量子帧,该配置时间间隔为目标时间与多个通信系统中通信系统数量的乘积,该多个通信系统包括第二通信系统,在一个该配置时间间隔之内,如果第一通信系统的测量子帧的位置在第二通信系统的测量子帧的位置之前,则该第二通信系统的测量子帧的位置在该第一通信系统确定工作频点之后。
例如,如图5所示,在一个该配置时间间隔之内,第一通信系统的测量子帧的位置在第二通信系统的测量子帧的位置之前。如图6所示,假设配置时间间隔为两个无线帧的时长,在一个配置时间间隔内,第一通信系统确定工作频点的时间为t1,第二通信系统的测量子帧的位置为t2,t1在t2之前,即第二通信系统的测量子帧的位置在第一测量子帧确定工作频点之后。其中,由于第一通信系统的中间层节点获取到干扰信息后,需要一定的时间来计算工作频点,因此,第一通信系统的测量子帧的位置与在第一通信系统确定工作频点之间具有一定的间隔。同理,在下一个配置时间间隔之内,第一通信系统的测量子帧的位置也在第二通信系统的测量子帧的位置之前,第二通信系统的测量子帧的位置也在该第一通信系统确定工作频点之后。
在一个实施例中,该多个通信系统包括第二通信系统,在一个该配置时间间隔之内,如果第一通信系统的测量子帧的位置在第二通信系统的测量子帧的位置之后,则该第一通信系统的测量子帧的位置在该第二通信系统确定工作频点之后。
例如,如图7所示,在图7中,以目标时间(即一个无线帧的时长)为周期第一通信系统和第二通信系统轮流被配置测量子帧。在第一无线帧,子帧2被配置为第二通信系统的测量子帧,在第二无线帧,子帧2被配置为第一通信系统的测量子帧。每个配置时间间隔(即两个无线帧的时长)第一通信系统具有一个测量子帧,每个配置时间间隔第二通信系统具有一个测量子 帧。如图7所示,在一个配置时间间隔之内,第一通信系统的测量子帧的位置在第二通信系统的测量子帧的位置之后。如图8所示,假设第一通信系统确定的测量子帧的位置为t4,第二通信系统的确定工作频点的时间为t3,其中,t4在t3之后,即该第一通信系统的测量子帧的位置在该第二通信系统确定工作频点之后。其中,由于第二通信系统的中层获取到干扰信息后,需要一定的时间来确定工作频点,因此,第二通信系统的测量子帧的位置与第二通信系统确定工作频点之间具有一定间隔。
在一个实施例中,该通信设备为所述第一通信系统的底层节点或所述第一通信系统中除第一中间层节点之外的中间层节点,该通信设备在该第一测量子帧针对多个频点扫描得到该多个频点对应的干扰信息,该通信设备将该多个频点对应的干扰信息发送到该第一通信系统的第一中间层节点,该多个频点对应的干扰信息用于该第一通信系统的第一中间层节点确定工作频点,该通信设备接收该第一通信系统的第一中间层节点反馈的该工作频点。
若该多层星形无线网络为双层星形无线网络,则该通信设备可为该第一通信系统的底层节点。例如,该通信设备可以为图1a所示的双层星形无线网络中第一通信系统的任一底层节点,该第一通信系统的第一中间层节点即为第一通信系统的中间层节点。第一通信系统的各个底层节点可以在该第一测量子帧针对多个频点扫描得到该多个频点对应的干扰信息,并将干扰信息上报至第一通信系统的中间层节点;由中间层节点根据接收到的干扰信息及自身扫描得到的干扰信息确定工作频点,并由中间层节点将工作频点反馈给第一通信系统的各个底层节点,第一通信系统的各个底层节点和中间层节点可以以该工作频点进行收发信息。
若该多层星形无线网络为三层星形无线网络或三层以上的星形无线网络,则该通信设备可以为该第一通信系统的底层节点或该第一通信系统中除第一中间层节点之外的中间层节点。例如,该通信设备可以为图1b所示的三层星形无线网络中第一通信系统的任一底层节点,该第一通信系统的第一中间层节点即为第一通信系统的第一中间层节点。第一通信系统的各个底层节点可以在该第一测量子帧针对多个频点扫描得到该多个频点对应的干扰信息,并将干扰信息上报至第一通信系统的第二中间层节点。由第一通信系统的第二中间层节点将自身扫描得到干扰信息及接收到的干扰信息上报至第一 通信系统的第一中间层节点,并由第一通信系统的第一中间层节点根据接收到的干扰信息及自身扫描得到的干扰信息确定工作频点。进一步,由第一通信系统的第一中间层节点将工作频点下发至第一通信系统的各个第二中间层节点,第一通信系统的各个底层节点接收由第一通信系统的各个第二中间层节点转发的该工作频点。
再例如,该通信设备可以为图1b所示的该第一通信系统中除第一中间层节点之外的中间层节点,即该通信设备可以为该第一通信系统中的第二中间层节点中的任一中间层节点,该第一通信系统的第一中间层节点即为第一通信系统的第一中间层节点。第一通信系统的各个第二中间层节点可以在该第一测量子帧针对多个频点扫描得到该多个频点对应的干扰信息,并将自身扫描得到干扰信息及各个底层节点扫描得到的干扰信息上报给第一通信系统的第一中间层节点。由第一通信系统的第一中间层节点根据自身扫描得到干扰信息及接收到的干扰信息确定工作频点,该第一通信系统中的各个第二中间层节点可以接收第一通信系统的第一中间层节点发送的工作频点。该第一通信系统中的各个第二中间层节点还可以将该工作频点转发至第一通信系统的各个底层节点,该第一通信系统的第一中间层节点、各个第二中间层节点、各个底层节点可以以该工作频点进行收发信息。
在另一个实施例中,该通信设备为该第一通信系统的第一中间层节点,该通信设备接收该第一通信系统的多个底层节点和/或该第一通信系统中除第一中间层节点之外的中间层节点发送的多个频点对应的干扰信息,该多个频点对应的干扰信息是该第一通信系统的多个底层节点和/或所述第一通信系统中除第一中间层节点之外的中间层节点在该第一测量子帧针对多个频点扫描得到的,该通信设备根据接收到的干扰信息确定每个频点对应的平均干扰值,该通信设备将平均干扰值最小的频点作为工作频点,该通信设备将该工作频点反馈给该第一通信系统的多个底层节点和/或所述第一通信系统中除第一中间层节点之外的中间层节点。具体地,每个频点对应的干扰值可以是平均干扰值,也可以是通过诸如计算方差等其他合适的算法得到的干扰值。
例如,该通信设备可以为图1a所示的双层星形无线网络中第一通信系统的中间层节点,该多个频点为f 0~f M,M为频点个数,该干扰信息可以为包括每个频点对应的干扰值。通信设备可以接收各个底层节点发送的干扰信息, 每个底层节点发送的干扰信息均包括在第一测量子帧针对频点f 0~f M中各个频点测量得到的每个频点对应的干扰值,中间层节点根据接收到干扰信息及自身扫描得到的干扰信息计算每个频点对应的平均干扰值,将该平均干扰值最小的频点作为工作频点,并返回给各个底层节点。其中,通信设备可以采用公式(1)计算工作频点。
freq_working=f iwhith min(average_ipsd(f i))    (1)
其中,average_ipsd(f i)表示所有的底层节点在第一测量子帧针对f i频点上测量得干扰值的平均值,f i表示第i个频点,i=1,2…,M,freq_working表示第一通信系统的工作频点。
再例如,该通信设备可以为图1b所示的多层星形无线网络中第一通信系统的第一中间层节点,第一通信系统的第一中间层节点可接收第一通信系统的各个第二中间层节点发送的干扰信息,该干扰信息包括第一通信系统的各个第二中间层节点自身扫描得到的干扰信息及第一通信系统的各个底层节点扫描得到的干扰信息。第一通信系统的第一中间层节点可以根据接收到的干扰信息及第一通信系统的第一中间层节点自身扫描得到的干扰信息确定工作频点。第一通信系统的第一中间层节点可以将该工作频点发送至第一通信系统的第二中间层节点,由第一通信系统的第二中间层节点将该工作频点转发至第一通信系统的各个底层节点。
在一个实施例中,该第一测量子帧的相邻子帧中至少包括一个上行子帧。由于TDD系统的射频收发切换,频点带宽切换需要稳定时间。射频芯片往往会配置两个锁相环(PLL)分别作用于接收事件和发送事件,因此在接收事件和发送事件之间切换频点和带宽开销相对较小,而在两个接收事件之间切换频点和带宽开销较大,因此在设计上要尽量避免。而DUDMDDDUDDD的帧结构上存在接收和测量子帧相邻情况,子帧切换时会涉及频点和带宽的变化,导致测量子帧可能不到1ms,这会带来测量效率的降低,某些情况下甚至无法完成测量。为了避免这种情况,可以为该第一测量子帧的相邻子帧中至少配置一个上行子帧。例如,可以将第一通信系统的包括测量子帧的无线帧结构设置为DUMDDDDUDDD或DUDDDDUMDD。
进一步地,在一个实施例中,该多层星形无线网络包括高层节点,该通信设备的时间基准通过该高层节点获取。为了使多层星形无线网络中每个节 点的时间同步,可以由高层节点为该高层节点的下层节点发送时间基准。相应的,该通信设备的时间基准是通过该高层节点获取的。在一种实施方式中,该高层节点可以是RTK基站或顶层调度机。
本发明实施例中,通信设备可以获取第一通信系统的标识,并根据第一通信系统的标识确定第一通信系统的第一测量子帧的位置,使多个通信系统的测量子帧的位置不相同,可以避免各个通信系统获取工作频点的时间重叠的问题,可减低各个通信系统之间的无线干扰,提高通信质量。
基于上述对通信方法的描述,本发明实施例提供另一种通信方法,该方法可以应用于上述通信设备,本发明实施例主要体现不同的通信系统的包括测量子帧的无线帧的帧结构不同的情况。如图9所示,该通信方法可以包括如下步骤。
S901、通信设备获取第一通信系统的标识。
本发明实例中,该通信设备如何获取第一通信系统的标识请参见S201对应的说明,在此不赘述。
S902、该通信设备根据该第一通信系统的标识确定该第一通信系统的第一测量子帧的位置,该多个通信系统中的各个通信系统的测量子帧的位置不相同。
本发明实例中,该通信设备如何根据该第一通信系统的标识确定该第一通信系统的第一测量子帧的位置请参见S202对应的说明,在此不赘述。
其中,不同的通信系统的包括测量子帧的无线帧的帧结构不同。
S903、该通信设备根据该第一测量子帧的位置和配置时间间隔确定该第一通信系统的第二测量子帧的位置。
本发明实施例中,多层星形无线根据不同的通信系统的标识在第一个配置时间间隔内为不同的通信系统配置不同位置的测量子帧。多层星形无线可根据第一通信系统的第一测量子帧的位置和配置时间间隔配置后续的第一通信系统的测量子帧。因此,通信设备确定第一测量子帧的位置之后,可根据该第一测量子帧的位置和配置时间间隔确定该第一通信系统的第二测量子帧的位置。其中,该第二测量子帧可以是指配置于除第一个配置时间间隔以外的任一配置时间间隔内的任一测量子帧。
例如,如图3所示,一个配置时间间隔为一个无线帧的时长。第一通信系统的通信设备确定第一无线帧中的子帧2的位置为第一通信系统的第一测量子帧的位置之后,第一通信系统的通信设备根据第一无线帧中的子帧2的位置和配置时间间隔,确定第二无线帧中的子帧2的位置为第二无线帧的位置。
本发明实施例中,通信设备可以获取第一通信系统的标识,并根据第一通信系统的标识确定第一通信系统的第一测量子帧的位置,多个通信系统的测量子帧的位置不相同,可以避免各个通信系统获取工作频点的时间重叠的问题,可减低各个通信系统之间的无线干扰,提高通信质量。并且可以根据第一测量子帧的位置及配置时间间隔确定该第一通信系统的第二测量子帧,以便可以周期性的获取工作频点。
基于上述对通信方法的描述,本发明实施例提供又一种通信方法,该方法可以应用于上述通信设备,本发明实施例体现描述不同的通信系统的包括测量子帧的无线帧的帧结构相同的情况。如图10所示,该通信方法可以包括如下步骤。
S1001、通信设备获取第一通信系统的标识。
S1002、该通信设备根据该第一通信系统的标识确定该第一通信系统被轮流配置测量子帧的轮流配置次序。
其中,多层星形无线网络的多个通信系统中的各个通信系统的测量子帧的位置不相同。在一个所述配置时间间隔内,以目标时间为周期所述多个通信系统中的各个通信系统被轮流配置至少一个测量子帧,所述配置时间间隔为所述目标时间与所述多个通信系统中通信系统数量的乘积。各个通信系统包括测量子帧的无线帧的结构相同。
S1003、该通信设备根据该轮流配置次序确定该第一通信系统的第一测量子帧的位置。
其中,通信系统的标识与轮流配置的轮流配置次序具有对应关系。通信设备预先可存储该对应关系。或者,通信设备可以从上层节点获取第一通信系统的标识与轮流配置的轮流配置次序之间的对应关系。相应的,针对第一通信系统,通信设备可以根据第一通信系统的标识确定第一通信系统对应的 轮流配置次序,进而根据该轮流配置次序确定该第一通信系统的第一测量子帧的位置。例如,第一通信系统的标识与轮流配置次序1相对应,第二通信系统的标识与轮流配置次序2相对应,也就是说在一个配置时间间隔之内,先配置第一通信系统的测量子帧,再配置第二通信系统的测量子帧。例如,如图5所示,在第一无线帧中配置第一通信系统的测量子帧,在第二无线帧中配置第二通信系统的测量子帧。可选的,测量子帧在无线帧的位置可以是预先规定好的固定位置,例如,如图5所示,测量子帧在第一无线帧和第二无线帧的子帧2。通信设备确定轮流配置次序之后,就可确定第一无线帧的子帧2为第一通信系统的测量子帧。
S1004、该通信设备根据该目标时间及该多个通信系统中的通信系统数量确定配置时间间隔。即该配置时间间隔为该目标时间与该多个通信系统中通信系统数量的乘积,假设多层星形无线网络包括2个通信系统,第一时间时间为10ms,则2*10=20ms,即配置时间间隔可以为20ms。
S1005、该通信设备根据该配置时间间隔及该第一测量子帧的位置确定该第一通信系统的第二测量子帧的位置。
例如,通信设备可以轮流配置各个通信系统的测量子帧,多层星形无线网络包括第一通信系统和第二通信系统,假设第一通信系统和第二通信系统的第一测量子帧如图5所示,则第一通信系统的第二测量子帧的位置为第一通信系统的第一测量子帧的位置加上配置时间间隔,即第一通信系统的第二测量子帧的位置为第三无线子帧中的子帧2所在的位置;第二通信系统的第二测量子帧的位置为第二通信系统的第一测量子帧的位置加上配置时间间隔,即第二通信系统的第二测量子帧的位置为第四无线子帧中的子帧2所在的位置。
本发明实施例中,通信设备可以获取第一通信系统的标识,该通信设备根据该第一通信系统的标识确定该第一通信系统被轮流配置测量子帧的轮流配置次序,根据该轮流配置次序确定该第一通信系统的第一测量子帧的位置。可以避免各个通信系统获取工作频点的时间重叠的问题,可减低各个通信系统之间的无线干扰,提高通信质量。并且可以根据该配置时间间隔及该第一测量子帧的位置确定该第一通信系统的第二测量子帧的位置,以便可以周期性的获取工作频点。
请参见图11,图11是本发明实施例提供的通信设备的结构示意图。该通信设备为上述第一通信系统中的任一节点,该通信设备可以为无人机或遥控器等设备。具体的,所述通信设备包括:处理器110及存储器111。
所述存储器111可以包括易失性存储器(volatile memory);存储器111也可以包括非易失性存储器(non-volatile memory);存储器111还可以包括上述种类的存储器的组合。所述处理器110可以是中央处理器(central processing unit,CPU)。所述处理器801还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA)或其任意组合。
在一个实施例中,所述存储器,用于存储程序指令;所述处理器,调用所述存储器存储的程序指令,执行以下步骤:
获取第一通信系统的标识;
根据所述第一通信系统的标识确定所述第一通信系统的第一测量子帧的位置,其中,在每个配置时间间隔之内,每个通信系统被配置至少一个测量子帧,根据所述多个通信系统中各个通信系统的标识,所述多个通信系统中的各个通信系统被配置不同位置的测量子帧。
可选的,所述各个通信系统的包括测量子帧的无线帧的帧结构不同。
在一个实施例中,所述存储器,用于存储程序指令;所述处理器,调用所述存储器存储的程序指令,执行以下步骤:
根据所述第一测量子帧的位置和配置时间间隔确定所述第一通信系统的第二测量子帧的位置。
可选的,在一个配置时间间隔内,以目标时间为周期所述多个通信系统中的各个通信系统被轮流配置至少一个测量子帧,所述配置时间间隔为所述目标时间与所述多个通信系统中通信系统数量的乘积。
可选的,各个通信系统包括测量子帧的无线帧的结构相同。
在一个实施例中,所述存储器,用于存储程序指令;所述处理器,调用所述存储器存储的程序指令,执行以下步骤:
根据所述第一通信系统的标识确定所述第一通信系统被轮流配置测量子帧的轮流配置次序;
根据所述轮流配置次序确定所述第一通信系统的第一测量子帧的位置。
在一个实施例中,所述存储器,用于存储程序指令;所述处理器,调用所述存储器存储的程序指令,执行以下步骤:
根据所述目标时间及所述多个通信系统中的通信系统数量确定配置时间间隔;
根据所述配置时间间隔及所述第一测量子帧的位置确定所述第一通信系统的第二测量子帧的位置。
可选的,所述第一测量子帧的相邻子帧中至少包括一个上行子帧。
可选的,所述多个通信系统包括第二通信系统,在一个所述配置时间间隔之内,如果第一通信系统的测量子帧的位置在第二通信系统的测量子帧的位置之前,则所述第二通信系统的测量子帧的位置在所述第一通信系统确定工作频点之后;如果第一通信系统的测量子帧的位置在第二通信系统的测量子帧的位置之后,则所述第一通信系统的测量子帧的位置在所述第二通信系统确定工作频点之后。
在一个实施例中,所述通信设备为所述第一通信系统的底层节点或所述第一通信系统中除第一中间层节点之外的中间层节点,所述存储器,用于存储程序指令;所述处理器,调用所述存储器存储的程序指令,执行以下步骤:
在所述第一测量子帧针对多个频点扫描得到所述多个频点对应的干扰信息;
将所述多个频点对应的干扰信息发送到所述第一通信系统的第一中间层节点,所述多个频点对应的干扰信息用于所述第一通信系统的第一中间层节点确定工作频点;
接收所述第一通信系统的第一中间层节点反馈的所述工作频点。
在一个实施例中,所述通信设备为所述第一通信系统的第一中间层节点,所述存储器,用于存储程序指令;所述处理器,调用所述存储器存储的程序指令,执行以下步骤:
接收所述第一通信系统的多个底层节点和/或所述第一通信系统中除第一中间层节点之外的中间层节点发送的多个频点对应的干扰信息,所述多个频 点对应的干扰信息是所述第一通信系统的多个底层节点和/或所述第一通信系统中除第一中间层节点之外的中间层节点在所述第一测量子帧针对多个频点扫描得到的;
根据接收到的干扰信息确定每个频点对应的平均干扰值;
将平均干扰值最小的频点作为工作频点;
将所述工作频点反馈给所述第一通信系统的多个底层节点和/或所述第一通信系统中除第一中间层节点之外的中间层节点。
可选的,所述多层无线网络包括高层节点,所述通信设备的时间基准是通过所述高层节点获取的。
在本发明实施例中还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明图2、图10和图9所对应实施例中描述的通信方法,也可实现图11所述发明实施例的通信设备,在此不再赘述。
所述计算机可读存储介质可以是前述任一实施例所述的测试设备的内部存储单元,例如设备的硬盘或内存。所述计算机可读存储介质也可以是所述车辆控制装置的外部存储设备,例如所述设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述计算机可读存储介质还可以既包括所述设备的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机程序以及所述测试设备所需的其他程序和数据。所述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,所述程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (25)

  1. 一种通信方法,应用于第一通信系统中的通信设备,所述第一通信系统为多层无线网络中的一个通信系统,所述多层无线网络中包括多个通信系统,其特征在于,所述方法包括:
    获取第一通信系统的标识;
    根据所述第一通信系统的标识确定所述第一通信系统的第一测量子帧的位置,其中,在每个配置时间间隔之内,每个通信系统被配置至少一个测量子帧,根据所述多个通信系统中的各个通信系统的标识,所述多个通信系统中的所述各个通信系统被配置不同位置的测量子帧。
  2. 根据权利要求1所述的方法,其特征在于,所述各个通信系统包括所述测量子帧的无线帧的帧结构不同。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    根据所述第一测量子帧的位置和所述配置时间间隔确定所述第一通信系统的第二测量子帧的位置。
  4. 根据权利要求1所述的方法,其特征在于,在一个所述配置时间间隔内,以目标时间为周期,所述多个通信系统中的所述各个通信系统被轮流配置至少一个测量子帧,所述配置时间间隔为所述目标时间与所述多个通信系统中的通信系统数量的乘积。
  5. 根据权利要求4所述的方法,其特征在于,所述各个通信系统包括所述测量子帧的无线帧的帧结构相同。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一通信系统的标识确定所述第一通信系统的第一测量子帧的位置,包括:
    根据所述第一通信系统的标识确定所述第一通信系统被轮流配置至少一个所述测量子帧的轮流配置次序;
    根据所述轮流配置次序确定所述第一通信系统的所述第一测量子帧的位 置。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    根据所述目标时间及所述多个通信系统中的通信系统数量确定所述配置时间间隔;
    根据所述配置时间间隔及所述第一测量子帧的位置确定所述第一通信系统的第二测量子帧的位置。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一测量子帧的相邻子帧中至少包括一个上行子帧。
  9. 根据权利要求4-7任一项所述的方法,其特征在于,所述多个通信系统包括第二通信系统,在一个所述配置时间间隔之内,如果第一通信系统的测量子帧的位置在第二通信系统的测量子帧的位置之前,则所述第二通信系统的测量子帧的位置在所述第一通信系统确定工作频点之后;如果第一通信系统的测量子帧的位置在第二通信系统的测量子帧的位置之后,则所述第一通信系统的测量子帧的位置在所述第二通信系统确定工作频点之后。
  10. 根据权利要求1-7任一项所述的方法,其特征在于,所述通信设备为所述第一通信系统的底层节点或所述第一通信系统中除第一中间层节点之外的中间层节点,所述方法还包括:
    在所述第一测量子帧针对多个频点扫描得到所述多个频点对应的干扰信息;
    将所述多个频点对应的干扰信息发送到所述第一通信系统的第一中间层节点,所述多个频点对应的干扰信息用于所述第一通信系统的第一中间层节点确定工作频点;
    接收所述第一通信系统的第一中间层节点反馈的所述工作频点。
  11. 根据权利要求1-7任一项所述的方法,其特征在于,所述通信设备为所述第一通信系统的第一中间层节点,所述方法还包括:
    接收所述第一通信系统的多个底层节点和/或所述第一通信系统中除第一中间层节点之外的中间层节点发送的多个频点对应的干扰信息,所述多个频点对应的干扰信息是所述第一通信系统的多个底层节点和/所述第一通信系统中除第一中间层节点之外的中间层节点在所述第一测量子帧针对多个频点扫描得到的;
    根据接收到的干扰信息确定每个频点对应的平均干扰值;
    将平均干扰值最小的频点作为工作频点;
    将所述工作频点反馈给所述第一通信系统的多个底层节点和/或所述第一通信系统中除第一中间层节点之外的中间层节点。
  12. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:所述多层无线网络包括高层节点,所述多个通信系统的时间基准是通过所述高层节点获取的。
  13. 一种通信设备,所述通信设备为第一通信系统中的节点,所述第一通信系统为多层无线网络中的一个通信系统,所述多层无线网络中包括多个通信系统,其特征在于,所述控制设备包括:存储器及处理器
    所述存储器,用于存储程序指令;
    所述处理器,调用所述存储器存储的程序指令,执行以下步骤:
    获取第一通信系统的标识;
    根据所述第一通信系统的标识确定所述第一通信系统的第一测量子帧的位置,其中,在每个配置时间间隔之内,每个通信系统被配置至少一个测量子帧,根据所述多个通信系统中各个通信系统的标识,所述多个通信系统中的各个通信系统被配置不同位置的测量子帧。
  14. 根据权利要求13所述的设备,其特征在于,所述各个通信系统的包括测量子帧的无线帧的帧结构不同。
  15. 根据权利要求14所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    根据所述第一测量子帧的位置和配置时间间隔确定所述第一通信系统的第二测量子帧的位置。
  16. 根据权利要求13所述的设备,其特征在于,在一个所述配置时间间隔内,以目标时间为周期,所述多个通信系统中的各个通信系统被轮流配置至少一个测量子帧,所述配置时间间隔为所述目标时间与所述多个通信系统中通信系统数量的乘积。
  17. 根据权利要求16所述的设备,其特征在于,所述各个通信系统包括测量子帧的无线帧的帧结构相同。
  18. 根据权利要求17所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    根据所述第一通信系统的标识确定所述第一通信系统被轮流配置测量子帧的轮流配置次序;
    根据所述轮流配置次序确定所述第一通信系统的第一测量子帧的位置。
  19. 根据权利要求18所述的设备,其特征在于,
    所述处理器具体用于执行如下步骤:
    根据所述目标时间及所述多个通信系统中的通信系统数量确定配置时间间隔;
    根据所述配置时间间隔及所述第一测量子帧的位置确定所述第一通信系统的第二测量子帧的位置。
  20. 根据权利要求13-19任一项所述的设备,其特征在于,所述第一测量子帧的相邻子帧中至少包括一个上行子帧。
  21. 根据权利要求16-19任一项所述的设备,其特征在于,所述多个通信系统包括第二通信系统,在一个所述配置时间间隔之内,如果第一通信系统的测量子帧的位置在第二通信系统的测量子帧的位置之前,则所述第二通信 系统的测量子帧的位置在所述第一通信系统确定工作频点之后;如果第一通信系统的测量子帧的位置在第二通信系统的测量子帧的位置之后,则所述第一通信系统的测量子帧的位置在所述第二通信系统确定工作频点之后。
  22. 根据权利要求13-19任一项所述的设备,其特征在于,所述通信设备为所述第一通信系统的底层节点或所述第一通信系统中除第一中间层节点之外的中间层节点,所述处理器具体用于执行如下步骤:
    在所述第一测量子帧针对多个频点扫描得到所述多个频点对应的干扰信息;
    将所述多个频点对应的干扰信息发送到所述第一通信系统的第一中间层节点,所述多个频点对应的干扰信息用于所述第一通信系统的第一中间层节点确定工作频点;
    接收所述第一通信系统的第一中间层节点反馈的所述工作频点。
  23. 根据权利要求13-19任一项所述的设备,其特征在于,所述通信设备为所述第一通信系统的第一中间层节点,所述处理器具体用于执行如下步骤:
    接收所述第一通信系统的多个底层节点和/或所述第一通信系统中除第一中间层节点之外的中间层节点发送的多个频点对应的干扰信息,所述多个频点对应的干扰信息是所述第一通信系统的多个底层节点和/或所述第一通信系统中除第一中间层节点之外的中间层节点在所述第一测量子帧针对多个频点扫描得到的;
    根据接收到的干扰信息确定每个频点对应的平均干扰值;
    将平均干扰值最小的频点作为工作频点;
    将所述工作频点反馈给所述第一通信系统的多个底层节点和/或所述第一通信系统中除第一中间层节点之外的中间层节点。
  24. 根据权利要求13-19任一项所述的设备,其特征在于,所述多层无线网络包括高层节点,所述通信设备的时间基准是通过所述高层节点获取的。
  25. 一种计算机可读存储介质,其特征在于,包括:所述计算机可读存 储介质存储有计算机程序,所述计算机程序被处理器执行时用于执行如权利要求1至12任一项所述通信方法。
PCT/CN2019/074166 2019-01-31 2019-01-31 通信方法、设备及存储介质 WO2020155012A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/074166 WO2020155012A1 (zh) 2019-01-31 2019-01-31 通信方法、设备及存储介质
CN201980004979.0A CN111279653A (zh) 2019-01-31 2019-01-31 通信方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074166 WO2020155012A1 (zh) 2019-01-31 2019-01-31 通信方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020155012A1 true WO2020155012A1 (zh) 2020-08-06

Family

ID=70999831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074166 WO2020155012A1 (zh) 2019-01-31 2019-01-31 通信方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN111279653A (zh)
WO (1) WO2020155012A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552859B (zh) * 2021-07-27 2022-11-25 特灵空调系统(中国)有限公司 通信控制方法、主控制器、设备、温控器和可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730129A (zh) * 2008-11-03 2010-06-09 大唐移动通信设备有限公司 测量Inter-RAT系统的方法、装置及系统
CN101841829A (zh) * 2010-03-03 2010-09-22 展讯通信(上海)有限公司 异系统测量方法及用户终端
CN102572734A (zh) * 2010-12-23 2012-07-11 高通股份有限公司 用于执行td-scdma测量的tdd-lte测量间隙
CN104602283A (zh) * 2015-01-30 2015-05-06 武汉虹信通信技术有限责任公司 一种lte系统解决异频测量时测量冲突的方法
WO2016024831A1 (ko) * 2014-08-14 2016-02-18 엘지전자 주식회사 무선접속시스템에서 이종망 신호를 이용한 위치 측정 방법 및 장치
CN108933648A (zh) * 2017-05-27 2018-12-04 中兴通讯股份有限公司 信道状态信息的处理方法及装置、终端、基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281638B (zh) * 2011-08-02 2014-07-09 电信科学技术研究院 一种调度子帧的方法和设备
EP2982062B1 (en) * 2013-04-05 2019-12-18 Huawei Technologies Co., Ltd. Method for inter-cell interference coordination
CN107204951A (zh) * 2016-03-17 2017-09-26 电信科学技术研究院 一种通信系统中传输信息的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730129A (zh) * 2008-11-03 2010-06-09 大唐移动通信设备有限公司 测量Inter-RAT系统的方法、装置及系统
CN101841829A (zh) * 2010-03-03 2010-09-22 展讯通信(上海)有限公司 异系统测量方法及用户终端
CN102572734A (zh) * 2010-12-23 2012-07-11 高通股份有限公司 用于执行td-scdma测量的tdd-lte测量间隙
WO2016024831A1 (ko) * 2014-08-14 2016-02-18 엘지전자 주식회사 무선접속시스템에서 이종망 신호를 이용한 위치 측정 방법 및 장치
CN104602283A (zh) * 2015-01-30 2015-05-06 武汉虹信通信技术有限责任公司 一种lte系统解决异频测量时测量冲突的方法
CN108933648A (zh) * 2017-05-27 2018-12-04 中兴通讯股份有限公司 信道状态信息的处理方法及装置、终端、基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "TP for TR 36.894: Proposals on Measurement Gap Enhancement", 3GPP DRAFT; R4-158176, 20 November 2015 (2015-11-20), Anaheim, US, pages 1 - 14, XP051029239 *

Also Published As

Publication number Publication date
CN111279653A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
EP4109937B1 (en) Wireless time-sensitive networking
US20180020453A1 (en) System, method, and apparatus for setting a regulatory operating mode of a device
US20180234974A1 (en) Method and apparatus for directed adaptive control of dynamic channel selection in wireless networks
KR102540534B1 (ko) 리소스를 선택하기 위한 방법 및 장치
US20160338033A1 (en) Acquisition method, beam sending method, communication node, system and storage medium
CN110690953B (zh) 一种下行网关选择方法、装置及计算机存储介质
CN103580818A (zh) 一种信道状态信息的反馈方法、基站和终端
US11696275B2 (en) Spatial assumption configuration for new radio (NR) downlink transmission
CN114390581B (zh) 信道状态信息的报告方法、装置及终端
US20210160898A1 (en) Dynamically controlling a power state of a mobile integrated access and backhaul node
JP2024053043A (ja) 情報の送信方法、装置、および記憶媒体
US20230309124A1 (en) Method and Apparatus for Positioning on Sidelink SL, and Terminal
US20230239215A1 (en) Server availability checking for edge computing services
US11272381B2 (en) Pattern recognition and classification of packet error characteristics for multi-user multiple input multiple output (MU-MIMO) optimization
WO2020155012A1 (zh) 通信方法、设备及存储介质
US20190285723A1 (en) Terminal positioning method and apparatus
US10638329B2 (en) Method for implementing antenna cloud node communication in indoor high-density network and system thereof
US20220321187A1 (en) Channel State Information Processing Method and Apparatus, and Channel State Information Receiving Method and Apparatus
US20230354074A1 (en) Cross-link interference reporting configuration and payload design
US20230353262A1 (en) Prioritization and timing for cross-link interference reporting
WO2024031684A1 (en) Ue-assisted time domain beam prediction
WO2023206062A1 (en) Method and apparatus for beam management
US20230116740A1 (en) Cell reselection and measurement in a high-speed mode in wireless communications
US11641630B2 (en) Time-sensitive networking support over sidelink
WO2024020712A1 (en) Absolute time distribution over sidelink communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913661

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19913661

Country of ref document: EP

Kind code of ref document: A1