WO2020154951A1 - 一种高稳定性的颅内温度测量、计算方法及测量装置 - Google Patents
一种高稳定性的颅内温度测量、计算方法及测量装置 Download PDFInfo
- Publication number
- WO2020154951A1 WO2020154951A1 PCT/CN2019/073902 CN2019073902W WO2020154951A1 WO 2020154951 A1 WO2020154951 A1 WO 2020154951A1 CN 2019073902 W CN2019073902 W CN 2019073902W WO 2020154951 A1 WO2020154951 A1 WO 2020154951A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- thermistor
- value
- module
- intracranial
- Prior art date
Links
- 238000007917 intracranial administration Methods 0.000 title claims abstract description 50
- 238000005259 measurement Methods 0.000 title claims abstract description 41
- 238000004364 calculation method Methods 0.000 title claims abstract description 27
- 238000009529 body temperature measurement Methods 0.000 title claims abstract description 22
- 238000012937 correction Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 19
- 238000012360 testing method Methods 0.000 claims description 26
- 239000000523 sample Substances 0.000 claims description 13
- 238000004590 computer program Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K15/00—Testing or calibrating of thermometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/18—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
Definitions
- the invention belongs to the technical field of intracranial temperature measurement, and in particular relates to a highly stable intracranial temperature measurement and calculation method and measurement device.
- the miniature temperature sensors that can be put into the skull used in hospitals mainly use temperature probes made of miniature thermistors.
- the temperature probes measure the changes in intracranial temperature.
- each type of thermistor The data manual will show the resistance value R0 and characteristic value B of the thermistor under temperature T0, and the resistance value R0 and characteristic value B are marked with the error range, that is, the thermistor under the same model, in the mass production process In, the error between the resistance value R0 of the thermistor and the characteristic value B needs to be considered.
- the corresponding relationship curve between Tx and Rx is:
- the temperature acquisition circuit of the temperature probe is usually optimized and calibrated, which cannot effectively overcome the inconsistent performance value of the thermistor in the temperature probe, resulting in the existence of existing devices for measuring intracranial temperature through the thermistor
- the present invention provides a high-stability intracranial temperature measurement, calculation method and measurement device to solve the problems of high manufacturing cost, low measurement accuracy, and low measurement accuracy of devices that realize intracranial temperature measurement through thermistors in the prior art Complex structure.
- embodiments of the present invention disclose a highly stable intracranial temperature measurement and calculation method, including:
- the actual resistance value Rt of the thermistor is equal to the calibration value Rf.
- test temperature T0 is a temperature of any value.
- test temperature T0 is 37 degrees Celsius or 25 degrees Celsius.
- the initial resistance value R0 and characteristic value B of the thermistor are nominal values.
- an embodiment of the present invention provides a highly stable intracranial temperature measurement device, including:
- the temperature probe module is equipped with a thermistor for measuring intracranial temperature; the thermistor resistance-temperature query module is used for obtaining the initial resistance value and characteristic value of the thermistor at any temperature; The measurement circuit module is used to measure the actual resistance value of the thermistor at any temperature; the memory chip module is used to store the value information of the thermistor; the micro-control unit MCU module is used Uploading the measurement result of the measurement circuit module to the storage chip module and reading the calibration value recorded by the storage chip module; a display module for displaying the measurement result of the measurement circuit module.
- the measurement circuit module includes: a constant current source unit for loading a constant current on the thermistor; and a voltage measurement unit for measuring the voltage value of the thermistor.
- the memory chip module is provided in the temperature probe module or separately.
- the present invention provides a computer device including a processor configured to execute a computer program stored in a memory to implement the method of any one of the above-mentioned first aspects.
- the present invention provides a computer-readable storage medium on which a computer program is stored, and a processor is configured to execute the computer program stored in the storage medium to implement the method of any one of the above-mentioned first aspects.
- the present invention discards the prior art method of optimizing and calibrating the measurement circuit module of the intracranial temperature measurement device, and obtains the After the initial resistance value R0 and characteristic value B of the thermistor measuring the intracranial temperature at the test temperature T0, a reference circuit module is set up and the actual resistance value Rt of the thermistor is obtained at the test temperature T0, through micro-control
- the unit MCU module uploads the actual resistance value Rt of the thermistor to the memory chip module for storage and records it as the calibration value Rf, that is, performs initial calibration on the thermistor, and obtains the thermistor's current value through the measurement circuit module
- the resistance value Rt1 at the unknown temperature Tx and the correction value Rx are obtained through the correction formula, and the unknown temperature Tx is obtained through the correction value Rx and the calculation formula.
- the unknown temperature Tx is regarded as the intracranial temperature.
- Figure 1 is a flow chart of a highly stable intracranial temperature measurement and calculation method disclosed in an embodiment of the present invention
- Fig. 2 is a frame diagram of a high-stability intracranial temperature measuring device disclosed in an embodiment of the present invention.
- FIG. 1 is a high stability intracranial temperature measurement and calculation method disclosed in the embodiment of the present invention
- Fig. 2 is a schematic diagram of the framework of a high-stability intracranial temperature measurement device disclosed in an embodiment of the present invention, which can be obtained in combination with Fig. 1.
- a high-stability intracranial temperature measurement and calculation according to an embodiment of the present invention The method includes the following steps:
- Step S101 Obtain the initial resistance value R0 and the characteristic value B of the thermistor 211 used to measure the intracranial temperature at the test temperature T0.
- the initial resistance value R0 and the characteristic value B of the thermistor 211 are nominal values, and the error rate is within the allowable range of the present invention.
- Step S102 Measure the actual resistance value Rt of the thermistor 211 at the test temperature T0 by the measurement circuit module 22.
- step S101 and step S102 is not limited.
- Step S103 The actual resistance value Rt of the thermistor 211 is uploaded to the memory chip module 24 through the MCU module 23 of the microcontroller unit for storage and recorded as a calibration value Rf.
- the calibration value Rf stored and recorded by the memory chip module 24 is fixed.
- Step S104 Under the condition of unknown temperature Tx, the resistance value Rt1 of the thermistor 211 is measured by the measuring circuit module 22.
- the present invention sets the test temperature T0 to 37 degrees Celsius or 25 degrees Celsius.
- the test temperature T0 can also be a temperature of any value. It should be noted that the specific value of the test temperature T0 needs to be Convert to Kelvin units for calculation.
- the unknown temperature Tx is the patient's intracranial temperature to be measured.
- Step S105 The microcontroller MCU module reads the calibration value Rf recorded by the memory chip module.
- all the calculation formulas can be obtained instantaneously by the computer. After the resistance value Rt1 of the thermistor 211 is measured, the specific value of the unknown temperature Tx can be obtained to achieve the measurement of the patient's intracranial temperature. purpose.
- the intracranial temperature measuring device 20 includes:
- the temperature probe module 21 is provided with a thermistor 211 for measuring intracranial temperature; the thermistor resistance-temperature query module 25 is used for obtaining the initial resistance value of the thermistor 211 at any temperature And characteristic value; measuring circuit module 22, used to measure the actual resistance value of the thermistor 211 at any temperature; memory chip module 24, used to store the value of the thermistor 211 Information; the micro-control unit MCU module 23, used to upload the measurement results of the measurement circuit module 22 to the storage chip module 24 and read the calibration value recorded by the storage chip module 24; display module 26, used The measurement result of the measurement circuit module 22 is displayed.
- the measurement circuit module 22 includes: a constant current source unit 221 for loading a constant current to the thermistor 211; a voltage measurement unit 222 for measuring the voltage of the thermistor 211 value.
- the memory chip module 24 is installed in the temperature probe module 21 or separately.
- the constant current source unit 221 loads the thermistor 211 with a constant current value, and at the same time, the voltage measurement unit 222 obtains the voltage of the thermistor 211 in the case of constant current. Therefore, the actual resistance value of the thermistor 211 can be obtained by Ohm’s law.
- the microcontroller MCU module 23 obtains the actual resistance value Rt of the thermistor 211 measured by the measurement circuit module 22 at the test temperature T0, and uploads this value to the The storage chip module 24, which marks the uploaded data as the calibration value Rf, which is the initial calibration of the thermistor 211, usually takes the test temperature T0 as 37 degrees Celsius and converts it to Kelvin units Calculation.
- the thermistor resistance-temperature query module 21 is loaded with the thermistor 211 characteristic curve comparison table and the resistance-temperature specification, which can obtain the initial resistance at any test temperature. Value and initial characteristic value.
- the temperature probe module is a miniature temperature measuring device, which is convenient for intracranial temperature measurement of the patient, and the display module 26 displays the values processed by the MCU module of the microcontroller in real time, which is convenient for users Obtain the specific intracranial temperature intuitively.
- an embodiment of the present invention also provides a computer device.
- the processor executes the computer instructions to realize the following method: obtain the initial resistance value R0 of the thermistor 211 for measuring intracranial temperature at the test temperature T0 And characteristic value B; measure the actual resistance value Rt of the thermistor 211 at the test temperature T0 through the measuring circuit module 22; measure the actual resistance value Rt of the thermistor 211 through the microcontroller MCU module 23
- the program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
- the storage medium can be a magnetic disk, an optical disk, a read-only memory (ROM) or a random access memory (RAM), etc.
- the present invention discards the prior art method of optimizing and calibrating the measurement circuit module 22 of the intracranial temperature measuring device 20, and obtains the initial resistance of the thermistor 211 used to measure intracranial temperature at the test temperature T0.
- the reference circuit module 22 is set and the actual resistance value Rt of the thermistor 211 is obtained at the test temperature T0, and the actual resistance value of the thermistor 211 is calculated by the microcontroller MCU module 23
- the value Rt is uploaded to the memory chip module 24 for storage and recorded as the calibration value Rf, that is, the thermistor 211 is initially calibrated, and the resistance value Rt1 of the thermistor 211 at the unknown temperature Tx is obtained through the measurement circuit module 22
- the correction value Rx is obtained through the correction formula, and the unknown temperature Tx is obtained through the correction value Rx and the calculation formula.
- the unknown temperature Tx is regarded as the intracranial temperature.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
一种高稳定性的颅内温度测量、计算方法及测量装置(20),因每一种型号的热敏电阻(211)在温度T0下,热敏电阻(211)的电阻值R0和特性值B均标注有误差范围,也就是同一型号下的热敏电阻(211),在批量生产过程中,需要考虑到热敏电阻(211)的电阻值R0和特性值B存在的误差,通过对T0温度下的热敏电阻(211)的电阻值进行定标,并采用存储器的方式记录下来,通过修正公式:Rx=Rt1*(R0/Rf)对测量值进行校准,通过未知温度Tx与Rx的对应关系曲线即:Rx=R0*e B*(1/Tx-1/T0),在获得Rx的条件下,得出更加准确的Tx,Tx为颅内温度。该方法及测量装置解决了现有技术中通过热敏电阻实现颅内温度测量,其制造成本高、测量精度低的问题。
Description
本发明属于颅内温度测量技术领域,尤其涉及一种高稳定性的颅内温度测量、计算方法及测量装置。
目前,在医院应用的能够放入颅内的微型温度传感器主要使用微型热敏电阻制作的温度探头,通过温度探头测量颅内温度的变化,在现有技术在,每一种型号的热敏电阻,数据手册都会显示在温度T0下,热敏电阻的电阻值R0和特性值B,且电阻值R0和特性值B均标注有误差范围,也就是同一型号下的热敏电阻,在批量生产过程中,需要考虑到热敏电阻的电阻值R0和特性值B存在的误差,一般理想状态下,通过Tx与Rx的对应关系曲线即:
Rx=R0*e
B*(1/Tx-1/T0)
通过测量Rx,得到对应的Tx,但是在R0、B偏差很大时,Tx就会误差很大。
上述种种致使温度探头的测量精度低,为了提高温度探头对颅内的温度的测量精度,则必须采用特殊材料或特殊加工工艺制造的热敏电阻,这增加了颅内温度的采集成本。
现有技术中,通常只是对温度探头的温度采集电路进行优化和校准,无法有效克服温度探头内热敏电阻性能值不一致的问题,造成现有的通过热敏电阻实现颅内温度测量的装置存在制造成本高、测量精度低和装置结构复杂的问题。
发明内容
本发明提供了一种高稳定性的颅内温度测量、计算方法及测量装置,以解决现有技术中,通过热敏电阻实现颅内温度测量的装置存在的制造成本高、测量精度低和装置结构复杂的问题。
为此,根据第一方面,本发明实施例公开了一种高稳定性的颅内温度测量、计算方法,包括:
获取用于测量颅内温度的热敏电阻在试验温度T0下的初始电阻值R0和特性值B;通过测量电路模块测量所述热敏电阻在试验温度T0下,所述热敏电阻的实际电阻值Rt;通过微控制单元MCU模块将所述热敏电阻的实际电阻值Rt上传至存储芯片模块储存并记录为定标值Rf;在未知温度Tx条件下,通过测量电路模块测量所述热敏电阻的电阻值Rt1;所述微控制单元MCU模块读取所述存储芯片模块记录的定标值Rf;通过热敏电阻的修正公式:Rx=Rt1*(R0/Rf),计算得出所述热敏电阻的电阻值Rt1的修正值Rx;通过所述热敏电阻的修正值Rx和所述热敏电阻的计算公式:Rx=R0*e
B*(1/Tx-1/T0)得到所述未知温度Tx的实际温度值。
可选地,在试验温度T0下,所述热敏电阻的实际电阻值Rt与所述定标值Rf相等。
可选地,所述试验温度T0为任一数值的温度。
可选地,所述试验温度T0为37摄氏度或25摄氏度。
可选地,所述热敏电阻的初始电阻值R0和特性值B为标称值。
根据第二方面,本发明实施例提供了一种高稳定性的颅内温度测量装置,包括:
温度探头模块,内设有热敏电阻,用于测量颅内温度;热敏电阻阻值-温度查询模块,用于获取所述热 敏电阻在任一温度下所对应的初始电阻值和特性值;测量电路模块,用于测量所述热敏电阻在任一温度下,所述热敏电阻的实际电阻值;存储芯片模块,用于储存所述热敏电阻的数值信息;微控制单元MCU模块,用于将所述测量电路模块的测量结果上传至所述存储芯片模块及读取所述存储芯片模块记录的定标值;显示模块,用于显示所述测量电路模块的测量结果。
可选地,所述测量电路模块包括:恒流源单元,用于向所述热敏电阻加载恒定的电流;电压测量单元,用于测量所述热敏电阻的电压值。
可选地,所述存储芯片模块内设于所述温度探头模块内或单独设置。
根据第三方面,本发明提供了一种计算机装置,包括处理器,处理器用于执行存储器中存储的计算机程序实现上述第一方面任意一项的方法。
根据第四方面,本发明提供了一种计算机可读存储介质,其上存储有计算机程序,处理器用于执行存储介质中存储的计算机程序实现上述第一方面任意一项的方法。
综上所述,与现有技术相比,本发明具有以下有益效果:本发明摒弃了现有技术中通过对颅内温度测量装置的测量电路模块进行优化和校准的方法,在获取了用于测量颅内温度的热敏电阻在试验温度T0下的初始电阻值R0和特性值B后,设置有参考电路模块并在试验温度T0下获取所述热敏电阻的实际电阻值Rt,通过微控制单元MCU模块将所述热敏电阻的实际电阻值Rt上传至存储芯片模块储存并记录为定标值Rf,即对所述热敏电阻进行初始标定,通过测量电路模块获取所述热敏电阻在未知温度Tx下的电阻值Rt1并通过修正公式得到修正值Rx,通过所述修正值Rx及计算公式得到未知温度Tx,所述未知温度Tx即视为颅内温度,通过上述方法,本发明解决了现有技术中,通过热敏电阻实现颅内温度测量的装置存在的制造成本高、测量精度低和装置结构复杂的问题。
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例公开的一种高稳定性的颅内温度测量、计算方法的流程图;
图2为本发明实施例公开的一种高稳定性的颅内温度测量装置的框架图。
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例公开了一种高稳定性的颅内温度测量、计算方法,请参考图1和图2,图1是本发明实施例公开的一种高稳定性的颅内温度测量、计算方法的流程图,图2是本发明实施例公开的一种高稳定性的颅内温度测量装置的框架示意图,结合图1可以得到,本发明实施例的一种高稳定性的颅内温度测量、计算方法,其包括以下步骤:
步骤S101:获取用于测量颅内温度的热敏电阻211在试验温度T0下的初始电阻值R0和特性值B。
在具体实施例中,所述热敏电阻211的初始电阻值R0和特性值B为标称值且误差率在本发明的允许范围内。
步骤S102:通过测量电路模块22测量所述热敏电阻211在试验温度T0下,所述热敏电阻211的实际电阻值Rt。
在具体实施过程中,并不限定步骤S101和步骤S102的先后顺序。
步骤S103:通过微控制单元MCU模块23将所述热敏电阻211的实际电阻值Rt上传至存储芯片模块24储存并记录为定标值Rf。
在具体实施例中,被所述存储芯片模块24储存并记录的定标值Rf固定不变。
步骤S104:在未知温度Tx条件下,通过测量电路模块22测量所述热敏电阻211的电阻值Rt1。
在具体实施例中,本发明将试验温度T0设置为37摄氏度或25摄氏度,同时,所述试验温度T0亦可为任一数值的温度,其中,需要说明的是,试验温度T0的具体数值需转换为开尔文单位进行计算。
需要说明的是,所述未知温度Tx即为患者的颅内待测温度。
步骤S105:所述微控制单元MCU模块读取所述存储芯片模块记录的定标值Rf。
步骤S106:通过热敏电阻211的修正公式:Rx=Rt1*(R0/Rf),计算得出所述热敏电阻211的电阻值Rt1的修正值Rx。
步骤S107:通过所述热敏电阻211的修正值Rx和所述热敏电阻211的计算公式:Rx=R0*e
B*(1/Tx-1/T0)得到所述未知温度Tx的实际温度值。
需要说明的是,所述热敏电阻211的计算公式:
Rx=R0*e
B*(1/Tx-1/T0)
是本领域技术人员根据现有技术能够获得的,此处对于计算公式的原理不再做赘述。
在具体实施例中,所有计算公式均可通过计算机瞬时得出结果,在测得所述热敏电阻211的电阻值Rt1后,即可获取未知温度Tx的具体数值,达到测量患者颅内温度的目的。
本实施例还公开了一种高稳定性的颅内温度测量装置20,请参考图2,所述颅内温度测量装置20包括:
温度探头模块21,内设有热敏电阻211,用于测量颅内温度;热敏电阻阻值-温度查询模块25,用于获取所述热敏电阻211在任一温度下所对应的初始电阻值和特性值;测量电路模块22,用于测量所述热敏电阻211在任一温度下,所述热敏电阻211的实际电阻值;存储芯片模块24,用于储存所述热敏电阻211的数值信息;微控制单元MCU模块23,用于将所述测量电路模块22的测量结果上传至所述存储芯片模块24及读取所述存储芯片模块24记录的定标值;显示模块26,用于显示所述测量电路模块22的测量结果。
在具体实施例中,所述测量电路模块22包括:恒流源单元221,用于向所述热敏电阻211加载恒定的电流;电压测量单元222,用于测量所述热敏电阻211的电压值。
需要说明的是,所述存储芯片模块24内设于所述温度探头模块21内或单独设置。
在具体实施例中,所述恒流源单元221向所述热敏电阻211加载一数值恒定的电流,同时通过所述电压测量单元222获取所述热敏电阻211在恒电流的情况下的电压值,以此,通过欧姆定律即可得出所述热 敏电阻211的实际阻值。
在具体实施例中,所述微控制单元MCU模块23获取所述测量电路模块22在试验温度T0下,测量到的所述热敏电阻211的实际电阻值Rt,并将此数值上传至所述储存芯片模块24,所述储存芯片模块24将上传的数据标记为定标值Rf,即为对所述热敏电阻211的初始标定,通常取试验温度T0为37摄氏度并将其转换为开尔文单位计算。
在具体实施例中,所述热敏电阻阻值-温度查询模块21载入有所述热敏电阻211的特性曲线对照表和阻值-温度规格书,可获取任一试验温度下的初始阻值和初始特性值。
在具体实施例中,所述温度探头模块为微型测温设备,便于对病患进行颅内温度测量,所述显示模块26实时显示经由所述微控制单元MCU模块处理后的数值,便于使用者直观的获取到颅内具体温度。
此外,本发明实施例中还提供一种计算机装置,处理器通过执行所述计算机指令,从而实现以下方法:获取用于测量颅内温度的热敏电阻211在试验温度T0下的初始电阻值R0和特性值B;通过测量电路模块22测量所述热敏电阻211在试验温度T0下,所述热敏电阻211的实际电阻值Rt;通过微控制单元MCU模块23将所述热敏电阻211的实际电阻值Rt上传至存储芯片模块24储存并记录为定标值Rf;在未知温度Tx条件下,通过测量电路模块22测量所述热敏电阻211的电阻值Rt1;所述微控制单元MCU模块23读取所述存储芯片模块24记录的定标值Rf;通过热敏电阻211的修正公式:Rx=Rt1*(R0/Rf),计算得出所述热敏电阻211的电阻值Rt1的修正值Rx;通过所述热敏电阻211的修正值Rx和所述热敏电阻211的计算公式:Rx=R0*e
B*(1/Tx-1/T0)得到所述未知温度Tx的实际温度值。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(ROM)或随机存储记忆体(RAM)等。计算机处理器用于执行存储介质中存储的计算机程序实现以下方法:获取用于测量颅内温度的热敏电阻211在试验温度T0下的初始电阻值R0和特性值B;通过测量电路模块22测量所述热敏电阻211在试验温度T0下,所述热敏电阻211的实际电阻值Rt;通过微控制单元MCU模块23将所述热敏电阻211的实际电阻值Rt上传至存储芯片模块24储存并记录为定标值Rf;在未知温度Tx条件下,通过测量电路模块22测量所述热敏电阻211的电阻值Rt1;所述微控制单元MCU模块23读取所述存储芯片模块24记录的定标值Rf;通过热敏电阻211的修正公式:Rx=Rt1*(R0/Rf),计算得出所述热敏电阻211的电阻值Rt1的修正值Rx;通过所述热敏电阻211的修正值Rx和所述热敏电阻211的计算公式:Rx=R0*e
B*(1/Tx-1/T0)得到所述未知温度Tx的实际温度值。
本发明摒弃了现有技术中通过对颅内温度测量装置20的测量电路模块22进行优化和校准的方法,在获取了用于测量颅内温度的热敏电阻211在试验温度T0下的初始电阻值R0和特性值B后,设置有参考电路模块22并在试验温度T0下获取所述热敏电阻211的实际电阻值Rt,通过微控制单元MCU模块23将所述热敏电阻211的实际电阻值Rt上传至存储芯片模块24储存并记录为定标值Rf,即对所述热敏电阻211进行初始标定,通过测量电路模块22获取所述热敏电阻211在未知温度Tx下的电阻值Rt1并通过修正公式得到修正值Rx,通过所述修正值Rx及计算公式得到未知温度Tx,所述未知温度Tx即视为颅内温度,通过上述方法,本发明解决了现有技术中,通过热敏电阻211实现颅内温度测量的装置存在的制造成 本高、测量精度低和装置结构复杂的问题。
以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进。这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。
Claims (10)
- 一种高稳定性的颅内温度测量、计算方法,其特征在于,包括:获取用于测量颅内温度的热敏电阻在试验温度T0下的初始电阻值R0和特性值B;通过测量电路模块测量所述热敏电阻在试验温度T0下,所述热敏电阻的实际电阻值Rt;通过微控制单元MCU模块将所述热敏电阻的实际电阻值Rt上传至存储芯片模块储存并记录为定标值Rf;在未知温度Tx条件下,通过测量电路模块测量所述热敏电阻的电阻值Rt1;所述微控制单元MCU模块读取所述存储芯片模块记录的定标值Rf;通过热敏电阻的修正公式:Rx=Rt1*(R0/Rf),计算得出所述热敏电阻的电阻值Rt1的修正值Rx;通过所述热敏电阻的修正值Rx和所述热敏电阻的计算公式:Rx=R0*e B*(1/Tx-1/T0)得到所述未知温度Tx的实际温度值。
- 如权利要求1所述的一种高稳定性的颅内温度测量、计算方法,其特征在于,在试验温度T0下,所述热敏电阻的实际电阻值Rt与所述定标值Rf相等。
- 如权利要求1所述的一种高稳定性的颅内温度测量、计算方法,其特征在于,所述试验温度T0为任一数值的温度。
- 如权利要求1所述的一种高稳定性的颅内温度测量、计算方法,其特征在于,所述试验温度T0为37摄氏度或25摄氏度。
- 如权利要求1所述的一种高稳定性的颅内温度测量、计算方法,其特征在于,所述热敏电阻的初始电阻值R0和特性值B为标称值。
- 一种高稳定性的颅内温度测量装置,其特征在于,包括:温度探头模块,内设有热敏电阻,用于测量颅内温度;热敏电阻阻值-温度查询模块,用于获取所述热敏电阻在任一温度下所对应的初始电阻值和特性值;测量电路模块,用于测量所述热敏电阻在任一温度下,所述热敏电阻的实际电阻值;存储芯片模块,用于储存所述热敏电阻的数值信息;微控制单元MCU模块,用于将所述测量电路模块的测量结果上传至所述存储芯片模块及读取所述存储芯片模块记录的定标值;显示模块,用于显示所述测量电路模块的测量结果。
- 如权利要求6所述的一种高稳定性的颅内温度测量装置,其特征在于,所述测量电路模块包括:恒流源单元,用于向所述热敏电阻加载恒定的电流;电压测量单元,用于测量所述热敏电阻的电压值。
- 如权利要求6所述的一种高稳定性的颅内温度测量装置,其特征在于,所述存储芯片模块内设于所述温度探头模块内或单独设置。
- 一种计算机装置,其特征在于,包括处理器,所述处理器用于执行存储器中存储的计算机程序实现如权利要求1-5任意一项的所述的方法。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,处理器用于执行存储介质中存储的计算机程序实现如权利要求1-5任意一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/073902 WO2020154951A1 (zh) | 2019-01-30 | 2019-01-30 | 一种高稳定性的颅内温度测量、计算方法及测量装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/073902 WO2020154951A1 (zh) | 2019-01-30 | 2019-01-30 | 一种高稳定性的颅内温度测量、计算方法及测量装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020154951A1 true WO2020154951A1 (zh) | 2020-08-06 |
Family
ID=71841527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/073902 WO2020154951A1 (zh) | 2019-01-30 | 2019-01-30 | 一种高稳定性的颅内温度测量、计算方法及测量装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020154951A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2747562Y (zh) * | 2004-07-21 | 2005-12-21 | 中国科学院广州电子技术研究所 | 温湿度巡检测量仪 |
CN102507038A (zh) * | 2011-12-28 | 2012-06-20 | 上海贝岭股份有限公司 | 一种等周期的温度测量计算查表方法 |
CN104107032A (zh) * | 2014-06-24 | 2014-10-22 | 深圳市迈泰生物医疗有限公司 | 电子体温计及该电子体温计的校温方法 |
CN105466603A (zh) * | 2015-12-07 | 2016-04-06 | 上海温尔信息科技有限公司 | 一种温度计测量温度的自动校准方法、测温探头及温度计 |
CN108088589A (zh) * | 2016-11-23 | 2018-05-29 | 大陆汽车电子(长春)有限公司 | 用于检测热敏电阻的有效性的装置及方法 |
EP3355039A1 (en) * | 2017-01-30 | 2018-08-01 | Omron Corporation | Temperature sensing unit and temperature regulator |
-
2019
- 2019-01-30 WO PCT/CN2019/073902 patent/WO2020154951A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2747562Y (zh) * | 2004-07-21 | 2005-12-21 | 中国科学院广州电子技术研究所 | 温湿度巡检测量仪 |
CN102507038A (zh) * | 2011-12-28 | 2012-06-20 | 上海贝岭股份有限公司 | 一种等周期的温度测量计算查表方法 |
CN104107032A (zh) * | 2014-06-24 | 2014-10-22 | 深圳市迈泰生物医疗有限公司 | 电子体温计及该电子体温计的校温方法 |
CN105466603A (zh) * | 2015-12-07 | 2016-04-06 | 上海温尔信息科技有限公司 | 一种温度计测量温度的自动校准方法、测温探头及温度计 |
CN108088589A (zh) * | 2016-11-23 | 2018-05-29 | 大陆汽车电子(长春)有限公司 | 用于检测热敏电阻的有效性的装置及方法 |
EP3355039A1 (en) * | 2017-01-30 | 2018-08-01 | Omron Corporation | Temperature sensing unit and temperature regulator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105588667B (zh) | 一种高精密热敏电阻温度计校准装置 | |
CN103278264B (zh) | 一种面源黑体温度准确度的校准方法及其校准系统 | |
CN105466603A (zh) | 一种温度计测量温度的自动校准方法、测温探头及温度计 | |
CN110608809B (zh) | 基于热敏电阻的温度测量设备、模块及其方法 | |
CN113218527B (zh) | 基于热敏电阻的温度检测方法、装置、设备、介质及系统 | |
CN109620172A (zh) | 一种颅内温度测量、计算方法及测量装置 | |
CN113932937A (zh) | 基于冷端补偿的热电偶温度测量的方法、系统和存储介质 | |
CN104107032A (zh) | 电子体温计及该电子体温计的校温方法 | |
WO2020154951A1 (zh) | 一种高稳定性的颅内温度测量、计算方法及测量装置 | |
CN115682905A (zh) | 薄膜厚度确定方法、装置和计算机设备 | |
CN115166468A (zh) | 一种半导体器件同步结温测试的方法 | |
CN207833285U (zh) | 基于阻性传感器的采样电路 | |
CN108572037B (zh) | 一种规避自热效应的热敏电阻器稳态标定方法 | |
CN101852654A (zh) | 植物叶片温度测量仪 | |
WO2020154952A1 (zh) | 一种颅内温度测量、计算方法及测量装置 | |
CN108613751A (zh) | 一种高精度高稳定性温度巡检仪及其制备方法、巡检方法 | |
CN115016437B (zh) | 一种伺服系统产品位置标定装置及方法 | |
JP2015219077A (ja) | 校正システム | |
CN104064076A (zh) | 一种利用非平衡电桥设计电阻温度计的实验装置 | |
CN208350230U (zh) | 一种高精度高稳定性温度巡检仪 | |
CN112445637B (zh) | 测试和测量仪器中硬件设置的信号路径校准 | |
Zhao et al. | The influence of axial temperature distribution on calibration accuracy based on dry block furnace | |
CN103746720A (zh) | 无线通信模块调整系统及其调整方法 | |
CN209707422U (zh) | 一种金属线膨胀系数测量装置及材料温变长度测量设备 | |
CN204064498U (zh) | 用于工作环境参数测量的系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19912863 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19912863 Country of ref document: EP Kind code of ref document: A1 |