WO2020154906A1 - 一种动态电压调整的恒流刺激电路 - Google Patents

一种动态电压调整的恒流刺激电路 Download PDF

Info

Publication number
WO2020154906A1
WO2020154906A1 PCT/CN2019/073741 CN2019073741W WO2020154906A1 WO 2020154906 A1 WO2020154906 A1 WO 2020154906A1 CN 2019073741 W CN2019073741 W CN 2019073741W WO 2020154906 A1 WO2020154906 A1 WO 2020154906A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
constant current
power supply
supply voltage
circuit
Prior art date
Application number
PCT/CN2019/073741
Other languages
English (en)
French (fr)
Inventor
张庆军
朱明亮
Original Assignee
深圳市科曼医疗设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市科曼医疗设备有限公司 filed Critical 深圳市科曼医疗设备有限公司
Priority to PCT/CN2019/073741 priority Critical patent/WO2020154906A1/zh
Publication of WO2020154906A1 publication Critical patent/WO2020154906A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents

Definitions

  • the invention belongs to the technical field of medical constant current electrical stimulators, and particularly relates to a constant current stimulation circuit with dynamic voltage adjustment.
  • muscle constant current electrical stimulation is a more commonly used stimulation method, which is usually used in the fields of muscle and nerve excitability testing and rehabilitation.
  • the main principle is to release electrical stimulation pulses through electrodes according to the parameters set by the doctor. Muscles or nerve tissues are stimulated by electrical pulses with a constant current. During the stimulation, the resistance of human tissues can be approximately constant. During stimulation, the voltage on the tissues is positively correlated with the impedance between the electrodes, so this type of stimulation device usually has a constant output current. , The characteristic that the output voltage changes with impedance.
  • the circuit structure of a constant current stimulation device applied to nerves and muscles generally includes a stimulation power circuit, a constant current stimulation circuit, a control circuit, and a signal feedback.
  • the function of the stimulation power supply circuit is to provide the working voltage for the constant current stimulation circuit.
  • the constant current stimulation circuit is based on the principle of voltage clamping and forms a reference current on the loop resistance of the constant current stimulation circuit. It is connected in series with the output electrode through the loop resistance and switching device. , The voltage on the series resistance is clamped at the set value, and then the current flowing in the series stimulation circuit is controlled to achieve constant current output. It has the characteristics of simple structure and flexible control.
  • the constant current stimulation circuit of the prior art also has certain defects. It only has a single constant current output function and cannot guarantee the output voltage amplitude. It is usually used to match muscles and nerve tissues with different impedance values while maintaining a constant current current within a certain range. Output capacity, the stimulation circuit power supply voltage must be guaranteed not to be less than the electrode output voltage value at the maximum constant current value. When the tissue impedance is low or the constant current current does not reach the maximum value, the output stimulation voltage fails to reach the maximum constant current voltage. When the residual voltage of the voltage is applied to the series resistance and the switching device, it will undoubtedly increase the loop loss, and in the case of multiple continuous stimulation, the residual voltage continuously impacts the related devices, which is also a test of the performance of the device.
  • the present invention provides a constant current stimulation circuit with dynamic voltage adjustment to solve the problem that in the prior art, the residual voltage of the constant current stimulation circuit will increase the loop loss, thereby affecting the service life of the constant current stimulation circuit.
  • a constant current stimulation circuit for dynamic voltage adjustment comprising: a power supply voltage module, a constant current output module, an equivalent load and an impedance detection circuit connected in a closed loop; the power supply voltage module is used to output a circuit to the constant current output module The power supply voltage, the constant current output module is used to load a constant stimulation current to the equivalent load, and the impedance detection circuit is used to detect the impedance of the equivalent load and feed back the detection signal to the power supply voltage module
  • the power supply voltage module is further provided with a control unit, the control unit receives the detection signal fed back by the impedance detection circuit and adjusts the size of the power supply voltage output by the power supply voltage module.
  • the present invention is further configured that: the detection signal fed back by the impedance detection circuit is a digital signal.
  • the impedance detection circuit includes: a first electrode and a second electrode respectively in contact with the equivalent load; an excitation module for providing a high-frequency sinusoidal alternating current signal to the first electrode; It is a demodulation module for detecting and converting the voltage feedback signal of the second electrode.
  • the present invention is further provided that: the input end of the excitation module is input with a high-frequency sinusoidal alternating current signal, and the output end of the excitation module is connected to the first electrode.
  • the present invention is further configured that: the input terminal of the demodulation module receives the voltage feedback signal of the second electrode, and the output terminal of the demodulation module is connected to the control unit.
  • the excitation module includes: a filtering unit for filtering and denoising the high-frequency sinusoidal alternating current signal; and an amplifying unit for amplifying the high-frequency sinusoidal alternating current signal.
  • the demodulation module includes: a processing unit for filtering and amplifying the voltage feedback signal; and an A/D converter for performing analog-to-digital conversion on the voltage feedback signal.
  • the invention is further configured as follows: the equivalent load is human muscle and nerve tissue.
  • the present invention is further configured that: the impedance of the human muscle and nerve tissue detected by the impedance detection circuit is the skin impedance.
  • the present invention is further provided that: the filtering unit and the amplifying unit are sequentially connected, and the processing unit and the A/D converter are sequentially connected.
  • the present invention has the following beneficial effects: through the power supply voltage module, the constant current output module, and the impedance detection circuit, the constant current output module can load a constant current to the equivalent load.
  • the impedance detection circuit can monitor the impedance of the equivalent load in real time and feed back the detection signal to the control unit. Further, the control unit adjusts the power supply voltage output by the power supply voltage module, that is, through the above setting , So that the impedance of the equivalent load matches the power supply voltage.
  • the power supply voltage module is configured with a corresponding power supply voltage to satisfy the constant current output module.
  • the safety and working stability of the system are greatly improved, and the service life of the constant current stimulation circuit is improved.
  • FIG. 1 is a framework diagram of a constant current stimulation circuit with dynamic voltage adjustment disclosed in an embodiment of the present invention
  • Fig. 2 is a block diagram of an impedance detection circuit disclosed in an embodiment of the present invention.
  • This embodiment discloses a constant current stimulation circuit with dynamic voltage adjustment, as shown in FIG. 1, including: a power supply voltage module 10, a constant current output module 20, an equivalent load 30 and an impedance detection circuit 40 connected in a closed loop;
  • the power supply voltage module 10 is used for outputting a power supply voltage to the constant current output module 20, the constant current output module 20 is used for loading a constant stimulation current to the equivalent load 30, and the impedance detection circuit 40 is used for The impedance of the equivalent load 30 is detected in real time and the detection signal is fed back to the power supply voltage module 10; wherein, the power supply voltage module 10 is further provided with a control unit 11, and the control unit 11 receives the impedance detection circuit 40 feedback detection signal and adjust the size of the power supply voltage output by the power supply voltage module 10.
  • the impedance detection circuit 40 can monitor the impedance of the equivalent load 30 in real time and detect the signal It is fed back to the control unit 11, and further, the control unit 11 adjusts the size of the power supply voltage output by the power supply voltage module 10 so that the impedance of the equivalent load 30 matches the power supply voltage, and the constant current output module 20
  • the power supply voltage module 10 is configured with a corresponding power supply voltage to meet the output requirements of the constant current output module 20, so as to reduce the residual voltage in the constant current stimulation circuit.
  • the detection signal fed back by the impedance detection circuit 40 is a digital signal with discrete time and discrete amplitude.
  • the digital signal is also called a demodulation signal, which is convenient for the control unit 11 to collect, process, and convert. .
  • the impedance detection circuit 40 includes: a first electrode 41 and a second electrode 42 respectively in contact with the equivalent load 30; used to provide a high-frequency sinusoidal alternating current signal to the first electrode 41
  • the excitation module 43 the demodulation module 44 for detecting and converting the voltage feedback signal of the second electrode 42, wherein the input of the excitation module 43 is input with a high-frequency sinusoidal alternating current signal, the excitation
  • the output terminal of the module 43 is connected to the first electrode 41, the input terminal of the demodulation module 44 receives the voltage feedback signal of the second electrode 42, and the output terminal of the demodulation module 44 is connected to the control unit 11Connect.
  • the equivalent load 30 is human muscle and nerve tissue
  • the impedance of the human muscle and nerve tissue detected by the impedance detection circuit 40 is skin impedance.
  • the impedance is divided into contact impedance and skin impedance.
  • the contact impedance is capacitive, and the impedance gradually decreases under high-frequency sinusoidal AC excitation, while the skin impedance remains unchanged, which can be detected by high-frequency sinusoidal AC excitation.
  • Human skin impedance value When the constant current output module 20 is stimulated, the impedance of the human muscles and nerve tissue refers to the fixed impedance value. Therefore, the input terminal of the excitation module 43 is set to input high-frequency sinusoidal alternating current signal.
  • the excitation module 43 releases the processed high-frequency sinusoidal alternating current signal through the The first electrode 41 acts on the human muscles and nerve tissues to form different peak voltages on the human muscles and nerve tissues with different impedances.
  • the above voltages form a significant voltage drop, and then pass through the demodulation module 44 Detecting the voltage at the second electrode 42 can obtain the carrier signal containing the impedance information of human muscle and nerve tissue, that is, the resistance value of the equivalent load 30 is obtained, and the stimulation output by the constant current output module 20
  • the minimum stimulation power supply voltage that can maintain constant current stimulation can be obtained through the calculation of Ohm's law.
  • the control unit 11 adjusts the output of the power supply voltage module 10 to be equal to the minimum stimulation power supply voltage to achieve In order to ensure the constant current stimulation of the constant current output module 20, the power supply voltage of the constant current stimulation circuit is minimized. Accordingly, the present invention reduces the potential safety hazards caused by the residual voltage in the constant current stimulation circuit, Improve the safety of the system and reduce power consumption.
  • the excitation module 43 includes: a filtering unit 431 for filtering and denoising the high-frequency sinusoidal alternating current signal; and amplifying for amplifying the high-frequency sinusoidal alternating current signal.
  • a filtering unit 431 for filtering and denoising the high-frequency sinusoidal alternating current signal
  • amplifying for amplifying the high-frequency sinusoidal alternating current signal.
  • the filtering unit 431 is connected to the amplifying unit 432 in sequence, and the filtering unit 431 can shape the high-frequency sinusoidal alternating current signal to filter out the attenuated unnecessary frequency of the high-frequency sinusoidal alternating current signal
  • the signal also serves the purpose of suppressing interference and noise, thereby achieving the purpose of improving the signal-to-noise ratio and ensuring the transmission quality of the high-frequency sinusoidal alternating current signal.
  • the demodulation module 44 includes: a processing unit 442 for filtering and amplifying the voltage feedback signal; and an A/D converter for performing analog-to-digital conversion on the voltage feedback signal 441.
  • the processing unit 442 is connected to the A/D converter 441 in sequence, and the processing unit 442 follows, filters, amplifies, and compares the voltage feedback signal of the second electrode 42, A voltage feedback signal with a stable amplitude is output to the A/D converter 441, and the A/D converter 441 converts the voltage feedback signal into a digital signal through analog-to-digital conversion and outputs it to the control unit 11.
  • control unit 11 can include step-up, step-down, control circuit, signal feedback comparison, etc. It can be a transformer or related integrated circuit, chip, etc. to form a buck-boost circuit, for example, the power supply can be adjusted by PWM For voltage, its pulse width is modulated by the control circuit to achieve voltage amplitude adjustment, etc., which will not be discussed here.
  • the present invention loads a high-frequency sinusoidal alternating current signal to the equivalent load 30 through the impedance detection circuit 40, and obtains the impedance of the equivalent load 30 by detecting the voltage feedback signal at the second electrode 42.
  • the stimulation current output by the constant current output module 20 is constant, the power supply voltage capable of maintaining constant current stimulation is calculated by Ohm's law, and the control unit 11 adjusts the output of the power supply voltage module 10 to be equal to the calculated value, thereby The potential safety hazards caused by the residual voltage in the constant current stimulation circuit are reduced, and the impedance detection circuit 40 is combined to realize the dynamic voltage adjustment function of the power supply voltage module 10.
  • the invention reduces the voltage of the constant current stimulation circuit to a minimum while ensuring constant current stimulation, greatly reduces the risk of human muscles and nerve tissue contacting high stimulation power supply voltage, and at the same time eliminates the residual voltage band in the constant current stimulation circuit
  • the potential safety hazards have improved the working safety and stability of the constant current stimulation circuit, and also reduced the power consumption of the constant current stimulation circuit.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Neurology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种动态电压调整的恒流刺激电路,包括:依次闭环连接的电源电压模块(10)、恒流输出模块(20)、等效负载(30)和阻抗检测电路(40);所述电源电压模块(10)用于向所述恒流输出模块(20)输出一电源电压,所述恒流输出模块(20)用于向所述等效负载(30)加载一恒定刺激电流,所述阻抗检测电路(40)用于实时检测所述等效负载(30)的阻抗大小并将检测信号反馈至所述电源电压模块(10);其中,所述电源电压模(10)块还设有控制单元(11),所述控制单元(11)接收所述阻抗检测电路(40)反馈的检测信号并调节所述电源电压模块(10)输出的电源电压的大小。该方案解决了现有技术中,恒流刺激电路存在的剩余电压会加大回路损耗,进而影响恒流刺激电路的使用寿命的问题。

Description

一种动态电压调整的恒流刺激电路 技术领域
本发明属于医用恒流电刺激器技术领域,尤其涉及一种动态电压调整的恒流刺激电路。
背景技术
临床上,肌肉恒流电刺激是一种较为常用的刺激方法,通常应用于肌肉、神经兴奋性检测及康复治疗等领域,其主要原理是根据医生设定参数,通过电极释放电刺激脉冲,对肌肉或神经组织施加恒定电流的电脉冲刺激,在刺激过程中,人体组织电阻可近似为恒定值,刺激时组织上的电压值与电极间阻抗呈正相关,故通常此类刺激装置具有输出电流恒定、输出电压随阻抗变化的特点。
现有技术中,应用于神经、肌肉的恒流刺激装置,其电路结构一般包含刺激电源电路,恒流刺激电路、控制电路以及信号反馈四部分。刺激电源电路功能是为恒流刺激电路提供工作电压,恒流刺激电路基于电压钳位原理,在恒流刺激电路的回路电阻上形成基准电流,通过回路电阻和开关器件与输出电极串联,刺激时,将串联电阻上的电压钳位在设定值,进而控制串联刺激回路中流过的电流大小,实现恒流输出,其具有结构简单,控制灵活等特点。
但现有技术的恒流刺激电路也存在一定缺陷,其仅具有恒定电流单项输出功能,无法保证输出电压幅值,通常为了匹配不同阻抗值的肌肉、神经组织,同时维持一定范围内电流恒流输出能力,刺激电路电源电压需保证不小于最大恒流值时的电极输出电压值,当组织阻抗较低或恒流电流未达到最大值时,输出刺激电压未能达到最大恒流电压,较多的剩余电压加载到串联电阻和开关器件上,无疑增加了回路损耗,且在多次连续刺激时,剩余电压对相关器件不断冲击,对器件的性能也是一种考验。
发明内容
本发明提供了一种动态电压调整的恒流刺激电路,以解决现有技术中,恒流刺激电路存在的剩余电压会加大回路损耗,进而影响恒流刺激电路的使用寿命的问题。
为实现以上发明目的,采用的技术方案为:
一种动态电压调整的恒流刺激电路,包括:依次闭环连接的电源电压模块、恒流输出模块、等效负载和阻抗检测电路;所述电源电压模块用于向所述恒流输出模块输出一电源电压,所述恒流输出模块用于向所述等效负载加载一恒定刺激电流,所述阻抗检测电路用于检测所述等效负载的阻抗大小并将检测信号反馈至所述电源电压模块;其中,所述电源电压模块还设有控制单元,所述控制单元接收所述阻抗检测电路反馈的检测信号并调节所述电源电压模块输出的电源电压的大小。
本发明进一步设置为:所述阻抗检测电路反馈的检测信号为数字信号。
本发明进一步设置为:所述阻抗检测电路包括:分别与所述等效负载接触的第一电极和第二电极;用于向所述第一电极提供高频正弦交流电信号的激励模块;用于对所述第二电极的电压反馈信号进行检测与转换的解调模块。
本发明进一步设置为:所述激励模块的输入端输入有高频正弦交流电信号,所述激励模块的输出端与所述第一电极连接。
本发明进一步设置为:所述解调模块的输入端接收有所述第二电极的电压反馈信号,所述解调模块的输出端与所述控制单元连接。
本发明进一步设置为:所述激励模块包括:用于对所述高频正弦交流电信号进行过滤与除噪的滤波单元;用于对所述高频正弦交流电信号进行放大处理的放大单元。
本发明进一步设置为:所述解调模块包括:用于对所述电压反馈信号进行滤波与放大的处理单元;用于对所述电压反馈信号进行模数转换的A/D转换器。
本发明进一步设置为:所述等效负载为人体肌肉、神经组织。
本发明进一步设置为:所述阻抗检测电路检测的人体肌肉、神经组织的阻抗为皮肤阻抗。
本发明进一步设置为:所述滤波单元与所述放大单元依次连接,所述处理单元与所述A/D转换器依次连接。
综上所述,与现有技术相比,本发明具有以下有益效果:通过电源电压模块、恒流输出模块和阻抗检测电路,使得所述恒流输出模块在向等效负载加载一恒定电流时,所述阻抗检测电路可通过实时监测所述等效负载的阻抗大小并将检测信号反馈至控制单元,进一步的,所述控制单元调整所述电源电压模块输出的电源电压大小,即通过上述设置,使得所述等效负载的阻抗与电源电压相匹配,在所述恒流输出模块输出有不同恒定刺激电流的情况下,所述电源电压模块配置相应的电源电压,使之满足恒流输出模块的输出需求,以降低恒流刺激电路中的剩余电压,极大的提高了系统的安全性和工作稳定性,提升了恒流刺激电路的使用寿命。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例公开的一种动态电压调整的恒流刺激电路的框架图;
图2为本发明实施例公开的阻抗检测电路的框架图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例公开了一种动态电压调整的恒流刺激电路,如图1所示,包括:依次闭环连接的电源电压模块10、恒流输出模块20、等效负载30和阻抗检测电路40;所述电源电压模块10用于向所述恒流输出模块20输出一电源电压,所述恒流输出模块20用于向所述等效负载30加载一恒定刺激电流,所述阻抗检测电路40用于实时检测所述等效负载30的阻抗大小并将检测信号反馈至所述电源电压模块10;其中,所述电源电压模块10还设有控制单元11,所述控制单元11接收所述阻抗检测电路40反馈的检测信号并调节所述电源电压模块10输出的电源电压的大小。
在具体实施过程中,所述恒流输出模块20在向所述等效负载30加载一恒定电流时,所述阻抗检测电 路40可通过实时监测所述等效负载30的阻抗大小并将检测信号反馈至控制单元11,进一步的,所述控制单元11调整所述电源电压模块10输出的电源电压大小,使得所述等效负载30的阻抗与电源电压相匹配,在所述恒流输出模块20输出有不同恒定刺激电流的情况下,所述电源电压模块10配置相应的电源电压,使之满足恒流输出模块20的输出需求,以降低恒流刺激电路中的剩余电压。
需要说明的是,所述阻抗检测电路40反馈的检测信号为时间离散、幅值也离散的数字信号,所述数字信号亦称为解调信号,其便于所述控制单元11采集、处理及转换。
如图2所示,所述阻抗检测电路40包括:分别与所述等效负载30接触的第一电极41和第二电极42;用于向所述第一电极41提供高频正弦交流电信号的激励模块43;用于对所述第二电极42的电压反馈信号进行检测与转换的解调模块44,其中,所述激励模块43的输入端输入有高频正弦交流电信号,所述激励模块43的输出端与所述第一电极41连接,所述解调模块44的输入端接收有所述第二电极42的电压反馈信号,所述解调模块44的输出端与所述控制单元11连接。
在具体实施过程中,所述等效负载30为人体肌肉、神经组织,所述阻抗检测电路40检测的人体肌肉、神经组织的阻抗为皮肤阻抗,需要说明的是,所述人体肌肉、神经组织间的阻抗分为接触阻抗和皮肤阻抗,其中接触阻抗呈电容性,在高频正弦交流电激励下阻抗逐渐减小,而皮肤阻抗保持不变,即可通过高频正弦交流电激励的方式,检测到人体皮肤阻抗值,在所述恒流输出模块20刺激时,所述人体肌肉、神经组织的阻抗即指此固定阻抗值,因此,设置所述激励模块43的输入端输入有高频正弦交流电信号。
在具体实施过程中,所述第一电极41与所述第二电极42接入所述人体肌肉、神经组织后,所述激励模块43释放经处理后的高频正弦交流电信号,通过所述第一电极41作用到所述人体肌肉、神经组织,在不同阻抗的人体肌肉、神经组织上形成不同峰值的电压,受皮肤阻抗作用,上述电压形成明显压降,进而通过所述解调模块44检测所述第二电极42处电压即可获取包含人体肌肉、神经组织的阻抗信息的载波信号,即获取了所述等效负载30的阻值大小,在所述恒流输出模块20输出的刺激电流恒定的情况下,通过欧姆定律运算即可得到能够维持恒流刺激的最小刺激电源电压,所述控制单元11调整所述电源电压模块10的输出,使其与最小刺激电源电压相等,从而达到了在保证所述恒流输出模块20恒流刺激的同时,将恒流刺激电路的电源电压降到最低的目的,相应的,本发明减弱了恒流刺激电路中剩余电压带来的安全隐患,提高了系统工作安全性且降低功耗。
如图2所示,所述激励模块43包括:用于对所述高频正弦交流电信号进行过滤与除噪的滤波单元431;用于对所述高频正弦交流电信号进行放大处理的放大单元432。
在具体实施过程中,所述滤波单元431与所述放大单元432依次连接,所述滤波单元431可对高频正弦交流电信号进行整形,过滤掉所述高频正弦交流电信号的衰减无用频率信号,同时亦起到抑制干扰和噪声的目的,进而达到提高信噪比的目的,保证所述高频正弦交流电信号的传递质量,再经过所述放大单元432放大后,通过所述第一电极41作用到人体肌肉、神经组织。
如图2所示,所述解调模块44包括:用于对所述电压反馈信号进行滤波与放大处理的处理单元442;用于对所述电压反馈信号进行模数转换的A/D转换器441。
在具体实施过程中,所述处理单元442与所述A/D转换器441依次连接,所述处理单元442将所述第二电极42的电压反馈信号经跟随、滤波、放大、比较处理后,输出一幅度稳定的电压反馈信号至所述A/D 转换器441,所述A/D转换器441通过模数转化,将电压反馈信号转换为数字信号输出至所述所述控制单元11。
需要说明是的,所述控制单元11可包含升压、降压、控制电路、信号反馈比较等,其可由变压器或相关集成电路、芯片等构成升降压电路,如可通过PWM的方式调整电源电压,由控制电路对其脉宽进行调制实现电压幅度调整等,这里不在敷述。
本发明通过所述阻抗检测电路40向所述等效负载30加载一高频正弦交流电信号,通过检测所述第二电极42处的电压反馈信号获取所述等效负载30的阻抗大小,在所述恒流输出模块20输出的刺激电流恒定的情况下,通过欧姆定律计算得到能够维持恒流刺激的电源电压,所述控制单元11调整所述电源电压模块10的输出与计算值相等,从而减弱了恒流刺激电路中剩余电压带来的安全隐患,实现了结合所述阻抗检测电路40,实现所述电源电压模块10的动态电压调整功能,与以往神经、肌肉恒流刺激方式相比,本发明在保证恒流刺激的同时,将恒流刺激电路的电压降到最低,极大的降低了人体肌肉、神经组织接触高刺激电源电压的风险,同时消除了恒流刺激电路中剩余电压带来的安全隐患,提高了恒流刺激电路的工作安全性和稳定性,亦降低了恒流刺激电路的功耗。
以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进。这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

Claims (10)

  1. 一种动态电压调整的恒流刺激电路,其特征在于,包括:依次闭环连接的电源电压模块、恒流输出模块、等效负载和阻抗检测电路;
    所述电源电压模块用于向所述恒流输出模块输出一电源电压,所述恒流输出模块用于向所述等效负载加载一恒定刺激电流,所述阻抗检测电路用于实时检测所述等效负载的阻抗大小并将检测信号反馈至所述电源电压模块;
    其中,所述电源电压模块还设有控制单元,所述控制单元接收所述阻抗检测电路反馈的检测信号并调节所述电源电压模块输出的电源电压的大小。
  2. 如权利要求1所述的一种动态电压调整的恒流刺激电路,其特征在于,所述阻抗检测电路反馈的检测信号为数字信号。
  3. 如权利要求1所述的一种动态电压调整的恒流刺激电路,其特征在于,所述阻抗检测电路包括:
    分别与所述等效负载接触的第一电极和第二电极;
    用于向所述第一电极提供高频正弦交流电信号的激励模块;
    用于对所述第二电极的电压反馈信号进行检测与转换的解调模块。
  4. 如权利要求3所述的一种动态电压调整的恒流刺激电路,其特征在于,所述激励模块的输入端输入有高频正弦交流电信号,所述激励模块的输出端与所述第一电极连接。
  5. 如权利要求3所述的一种动态电压调整的恒流刺激电路,其特征在于,所述解调模块的输入端接收有所述第二电极的电压反馈信号,所述解调模块的输出端与所述控制单元连接。
  6. 如权利要求3所述的一种动态电压调整的恒流刺激电路,其特征在于,所述激励模块包括:
    用于对所述高频正弦交流电信号进行过滤与除噪的滤波单元;
    用于对所述高频正弦交流电信号进行放大处理的放大单元。
  7. 如权利要求3所述的一种动态电压调整的恒流刺激电路,其特征在于,所述解调模块包括:
    用于对所述电压反馈信号进行滤波与放大的处理单元;
    用于对所述电压反馈信号进行模数转换的A/D转换器。
  8. 如权利要求1或3所述的一种动态电压调整的恒流刺激电路,其特征在于,所述等效负载为人体肌肉、神经组织。
  9. 如权利要求8所述的一种动态电压调整的恒流刺激电路,其特征在于,所述阻抗检测电路检测的人体肌肉、神经组织的阻抗为皮肤阻抗。
  10. 如权利要求6-7任一项所述的一种动态电压调整的恒流刺激电路,其特征在于,所述滤波单元与所述放大单元依次连接,所述处理单元与所述A/D转换器依次连接。
PCT/CN2019/073741 2019-01-29 2019-01-29 一种动态电压调整的恒流刺激电路 WO2020154906A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/073741 WO2020154906A1 (zh) 2019-01-29 2019-01-29 一种动态电压调整的恒流刺激电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/073741 WO2020154906A1 (zh) 2019-01-29 2019-01-29 一种动态电压调整的恒流刺激电路

Publications (1)

Publication Number Publication Date
WO2020154906A1 true WO2020154906A1 (zh) 2020-08-06

Family

ID=71841746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073741 WO2020154906A1 (zh) 2019-01-29 2019-01-29 一种动态电压调整的恒流刺激电路

Country Status (1)

Country Link
WO (1) WO2020154906A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047934A (zh) * 2022-07-04 2022-09-13 无锡新纺欧迪诺电梯有限公司 一种恒流源安全门锁检测电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501702A (en) * 1994-06-06 1996-03-26 Medtronic, Inc. Time sharing multipolar rheography apparatus and method
CN101732795A (zh) * 2008-11-21 2010-06-16 深圳迈瑞生物医疗电子股份有限公司 起搏发生装置及其控制方法
CN101904743A (zh) * 2010-07-22 2010-12-08 上海诺诚电气有限公司 恒电流刺激器及电流刺激器系统
CN102649003A (zh) * 2012-04-18 2012-08-29 上海诺诚电气有限公司 基于肌电反馈刺激的恒流刺激电路
CN103417292A (zh) * 2013-06-06 2013-12-04 上海理工大学 电外科模拟系统
CN108404292A (zh) * 2018-02-11 2018-08-17 中国人民解放军陆军军医大学 一种基于胸阻抗检测的体外除颤的方法及其系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501702A (en) * 1994-06-06 1996-03-26 Medtronic, Inc. Time sharing multipolar rheography apparatus and method
CN101732795A (zh) * 2008-11-21 2010-06-16 深圳迈瑞生物医疗电子股份有限公司 起搏发生装置及其控制方法
CN101904743A (zh) * 2010-07-22 2010-12-08 上海诺诚电气有限公司 恒电流刺激器及电流刺激器系统
CN102649003A (zh) * 2012-04-18 2012-08-29 上海诺诚电气有限公司 基于肌电反馈刺激的恒流刺激电路
CN103417292A (zh) * 2013-06-06 2013-12-04 上海理工大学 电外科模拟系统
CN108404292A (zh) * 2018-02-11 2018-08-17 中国人民解放军陆军军医大学 一种基于胸阻抗检测的体外除颤的方法及其系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047934A (zh) * 2022-07-04 2022-09-13 无锡新纺欧迪诺电梯有限公司 一种恒流源安全门锁检测电路
CN115047934B (zh) * 2022-07-04 2024-03-12 无锡新纺欧迪诺电梯有限公司 一种恒流源安全门锁检测电路

Similar Documents

Publication Publication Date Title
CN109771817A (zh) 一种动态电压调整的恒流刺激电路
EP3141898A1 (en) A bio-impedance spectroscopy system and method for bio-impedance measurement
US20030006782A1 (en) System and method for measuring bioelectric impedance in the presence of interference
US8630714B1 (en) Bone growth stimulation using a constant current capacitively coupled stimulator
US20110092826A1 (en) System and method for measuring ECG and breath signals by using two polar electrodes
US8442628B2 (en) Differential voltage sensing method
US11114207B2 (en) Medical system capable of artificial intelligence and internet of things
EP1693015A3 (en) Electrosurgical apparatus
WO2020154906A1 (zh) 一种动态电压调整的恒流刺激电路
CN111991695A (zh) 电刺激电路及其控制方法、装置及治疗设备
JP2018094412A (ja) ウェアラブル生体センサ及びノイズキャンセル回路
US20230173273A1 (en) Circuitry to Assist with Neural Sensing in an Implantable Stimulator Device in the Presence of Stimulation Artifacts
CN106466507A (zh) 一种隔离式程控电刺激器
US11980482B2 (en) Circuits and methods for electrosurgical unit signal detection
CN106955104B (zh) 电刺激治疗设备的人体负载阻抗检测设备及方法
CN112401898A (zh) 一种高精度脑电信号采集方法及装置
KR101048567B1 (ko) 피검자에게 발생하는 전압을 측정하기 위한 장치
CN209392593U (zh) 一种基于生物负反馈的新型脉冲治疗装置
CN112823740A (zh) 神经刺激器及其人体负载阻抗检测模块和检测方法
CN102649003B (zh) 基于肌电反馈刺激的恒流刺激电路
US20090240313A1 (en) Electrode for a Neuromuscular Stimulator
CN115664405A (zh) 基于电流域频分复用的多通道模拟前端传感接口电路
CN206993064U (zh) 连续可调的射频衰减器
US20240053385A1 (en) Eeg impedance test circuit, method, and device
CN110957928A (zh) 基于阻抗补偿方法的交流大电流源电路及其阻抗补偿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914019

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19914019

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/03/2022)